Add entirety of Stanford ML course exercises
This commit is contained in:
parent
5c47bad887
commit
bc688d82d7
Binary file not shown.
|
|
@ -0,0 +1,23 @@
|
|||
function J = computeCost(X, y, theta)
|
||||
%COMPUTECOST Compute cost for linear regression
|
||||
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
|
||||
% parameter for linear regression to fit the data points in X and y
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta
|
||||
% You should set J to the cost.
|
||||
h = X * theta;
|
||||
J = h-y;
|
||||
J = J.^2;
|
||||
J = sum(J);
|
||||
J = J / (2*m);
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
function J = computeCostMulti(X, y, theta)
|
||||
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
|
||||
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
|
||||
% parameter for linear regression to fit the data points in X and y
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta
|
||||
% You should set J to the cost.
|
||||
h = X * theta;
|
||||
J = h-y;
|
||||
J = J.^2;
|
||||
J = sum(J);
|
||||
J = J / (2*m);
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,135 @@
|
|||
%% Machine Learning Online Class - Exercise 1: Linear Regression
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% warmUpExercise.m
|
||||
% plotData.m
|
||||
% gradientDescent.m
|
||||
% computeCost.m
|
||||
% gradientDescentMulti.m
|
||||
% computeCostMulti.m
|
||||
% featureNormalize.m
|
||||
% normalEqn.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
% x refers to the population size in 10,000s
|
||||
% y refers to the profit in $10,000s
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% ==================== Part 1: Basic Function ====================
|
||||
% Complete warmUpExercise.m
|
||||
fprintf('Running warmUpExercise ... \n');
|
||||
fprintf('5x5 Identity Matrix: \n');
|
||||
warmUpExercise()
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ======================= Part 2: Plotting =======================
|
||||
fprintf('Plotting Data ...\n')
|
||||
data = load('ex1data1.txt');
|
||||
X = data(:, 1); y = data(:, 2);
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% Plot Data
|
||||
% Note: You have to complete the code in plotData.m
|
||||
plotData(X, y);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =================== Part 3: Cost and Gradient descent ===================
|
||||
|
||||
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
|
||||
theta = zeros(2, 1); % initialize fitting parameters
|
||||
|
||||
% Some gradient descent settings
|
||||
iterations = 1500;
|
||||
alpha = 0.01;
|
||||
|
||||
fprintf('\nTesting the cost function ...\n')
|
||||
% compute and display initial cost
|
||||
J = computeCost(X, y, theta);
|
||||
fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J);
|
||||
fprintf('Expected cost value (approx) 32.07\n');
|
||||
|
||||
% further testing of the cost function
|
||||
J = computeCost(X, y, [-1 ; 2]);
|
||||
fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J);
|
||||
fprintf('Expected cost value (approx) 54.24\n');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
fprintf('\nRunning Gradient Descent ...\n')
|
||||
% run gradient descent
|
||||
theta = gradientDescent(X, y, theta, alpha, iterations);
|
||||
|
||||
% print theta to screen
|
||||
fprintf('Theta found by gradient descent:\n');
|
||||
fprintf('%f\n', theta);
|
||||
fprintf('Expected theta values (approx)\n');
|
||||
fprintf(' -3.6303\n 1.1664\n\n');
|
||||
|
||||
% Plot the linear fit
|
||||
hold on; % keep previous plot visible
|
||||
plot(X(:,2), X*theta, '-')
|
||||
legend('Training data', 'Linear regression')
|
||||
hold off % don't overlay any more plots on this figure
|
||||
|
||||
% Predict values for population sizes of 35,000 and 70,000
|
||||
predict1 = [1, 3.5] *theta;
|
||||
fprintf('For population = 35,000, we predict a profit of %f\n',...
|
||||
predict1*10000);
|
||||
predict2 = [1, 7] * theta;
|
||||
fprintf('For population = 70,000, we predict a profit of %f\n',...
|
||||
predict2*10000);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
|
||||
fprintf('Visualizing J(theta_0, theta_1) ...\n')
|
||||
|
||||
% Grid over which we will calculate J
|
||||
theta0_vals = linspace(-10, 10, 100);
|
||||
theta1_vals = linspace(-1, 4, 100);
|
||||
|
||||
% initialize J_vals to a matrix of 0's
|
||||
J_vals = zeros(length(theta0_vals), length(theta1_vals));
|
||||
|
||||
% Fill out J_vals
|
||||
for i = 1:length(theta0_vals)
|
||||
for j = 1:length(theta1_vals)
|
||||
t = [theta0_vals(i); theta1_vals(j)];
|
||||
J_vals(i,j) = computeCost(X, y, t);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
% Because of the way meshgrids work in the surf command, we need to
|
||||
% transpose J_vals before calling surf, or else the axes will be flipped
|
||||
J_vals = J_vals';
|
||||
% Surface plot
|
||||
figure;
|
||||
surf(theta0_vals, theta1_vals, J_vals)
|
||||
xlabel('\theta_0'); ylabel('\theta_1');
|
||||
|
||||
% Contour plot
|
||||
figure;
|
||||
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
|
||||
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
|
||||
xlabel('\theta_0'); ylabel('\theta_1');
|
||||
hold on;
|
||||
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
|
||||
|
|
@ -0,0 +1,159 @@
|
|||
%% Machine Learning Online Class
|
||||
% Exercise 1: Linear regression with multiple variables
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear regression exercise.
|
||||
%
|
||||
% You will need to complete the following functions in this
|
||||
% exericse:
|
||||
%
|
||||
% warmUpExercise.m
|
||||
% plotData.m
|
||||
% gradientDescent.m
|
||||
% computeCost.m
|
||||
% gradientDescentMulti.m
|
||||
% computeCostMulti.m
|
||||
% featureNormalize.m
|
||||
% normalEqn.m
|
||||
%
|
||||
% For this part of the exercise, you will need to change some
|
||||
% parts of the code below for various experiments (e.g., changing
|
||||
% learning rates).
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
|
||||
%% ================ Part 1: Feature Normalization ================
|
||||
|
||||
%% Clear and Close Figures
|
||||
clear ; close all; clc
|
||||
|
||||
fprintf('Loading data ...\n');
|
||||
|
||||
%% Load Data
|
||||
data = load('ex1data2.txt');
|
||||
X = data(:, 1:2);
|
||||
y = data(:, 3);
|
||||
m = length(y);
|
||||
|
||||
% Print out some data points
|
||||
fprintf('First 10 examples from the dataset: \n');
|
||||
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
% Scale features and set them to zero mean
|
||||
fprintf('Normalizing Features ...\n');
|
||||
|
||||
[X mu sigma] = featureNormalize(X);
|
||||
|
||||
% Add intercept term to X
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
|
||||
%% ================ Part 2: Gradient Descent ================
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: We have provided you with the following starter
|
||||
% code that runs gradient descent with a particular
|
||||
% learning rate (alpha).
|
||||
%
|
||||
% Your task is to first make sure that your functions -
|
||||
% computeCost and gradientDescent already work with
|
||||
% this starter code and support multiple variables.
|
||||
%
|
||||
% After that, try running gradient descent with
|
||||
% different values of alpha and see which one gives
|
||||
% you the best result.
|
||||
%
|
||||
% Finally, you should complete the code at the end
|
||||
% to predict the price of a 1650 sq-ft, 3 br house.
|
||||
%
|
||||
% Hint: By using the 'hold on' command, you can plot multiple
|
||||
% graphs on the same figure.
|
||||
%
|
||||
% Hint: At prediction, make sure you do the same feature normalization.
|
||||
%
|
||||
|
||||
fprintf('Running gradient descent ...\n');
|
||||
|
||||
% Choose some alpha value
|
||||
alpha = .3;
|
||||
num_iters = 50;
|
||||
|
||||
% Init Theta and Run Gradient Descent
|
||||
theta = zeros(3, 1);
|
||||
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
|
||||
|
||||
% Plot the convergence graph
|
||||
figure;
|
||||
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
|
||||
xlabel('Number of iterations');
|
||||
ylabel('Cost J');
|
||||
|
||||
% Display gradient descent's result
|
||||
fprintf('Theta computed from gradient descent: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
fprintf('\n');
|
||||
|
||||
% Estimate the price of a 1650 sq-ft, 3 br house
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Recall that the first column of X is all-ones. Thus, it does
|
||||
% not need to be normalized.
|
||||
price = 0; % You should change this
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
|
||||
'(using gradient descent):\n $%f\n'], price);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ================ Part 3: Normal Equations ================
|
||||
|
||||
fprintf('Solving with normal equations...\n');
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: The following code computes the closed form
|
||||
% solution for linear regression using the normal
|
||||
% equations. You should complete the code in
|
||||
% normalEqn.m
|
||||
%
|
||||
% After doing so, you should complete this code
|
||||
% to predict the price of a 1650 sq-ft, 3 br house.
|
||||
%
|
||||
|
||||
%% Load Data
|
||||
data = csvread('ex1data2.txt');
|
||||
X = data(:, 1:2);
|
||||
y = data(:, 3);
|
||||
m = length(y);
|
||||
|
||||
% Add intercept term to X
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% Calculate the parameters from the normal equation
|
||||
theta = normalEqn(X, y);
|
||||
|
||||
% Display normal equation's result
|
||||
fprintf('Theta computed from the normal equations: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
fprintf('\n');
|
||||
|
||||
|
||||
% Estimate the price of a 1650 sq-ft, 3 br house
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
price = 0; % You should change this
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
|
||||
'(using normal equations):\n $%f\n'], price);
|
||||
|
||||
|
|
@ -0,0 +1,97 @@
|
|||
6.1101,17.592
|
||||
5.5277,9.1302
|
||||
8.5186,13.662
|
||||
7.0032,11.854
|
||||
5.8598,6.8233
|
||||
8.3829,11.886
|
||||
7.4764,4.3483
|
||||
8.5781,12
|
||||
6.4862,6.5987
|
||||
5.0546,3.8166
|
||||
5.7107,3.2522
|
||||
14.164,15.505
|
||||
5.734,3.1551
|
||||
8.4084,7.2258
|
||||
5.6407,0.71618
|
||||
5.3794,3.5129
|
||||
6.3654,5.3048
|
||||
5.1301,0.56077
|
||||
6.4296,3.6518
|
||||
7.0708,5.3893
|
||||
6.1891,3.1386
|
||||
20.27,21.767
|
||||
5.4901,4.263
|
||||
6.3261,5.1875
|
||||
5.5649,3.0825
|
||||
18.945,22.638
|
||||
12.828,13.501
|
||||
10.957,7.0467
|
||||
13.176,14.692
|
||||
22.203,24.147
|
||||
5.2524,-1.22
|
||||
6.5894,5.9966
|
||||
9.2482,12.134
|
||||
5.8918,1.8495
|
||||
8.2111,6.5426
|
||||
7.9334,4.5623
|
||||
8.0959,4.1164
|
||||
5.6063,3.3928
|
||||
12.836,10.117
|
||||
6.3534,5.4974
|
||||
5.4069,0.55657
|
||||
6.8825,3.9115
|
||||
11.708,5.3854
|
||||
5.7737,2.4406
|
||||
7.8247,6.7318
|
||||
7.0931,1.0463
|
||||
5.0702,5.1337
|
||||
5.8014,1.844
|
||||
11.7,8.0043
|
||||
5.5416,1.0179
|
||||
7.5402,6.7504
|
||||
5.3077,1.8396
|
||||
7.4239,4.2885
|
||||
7.6031,4.9981
|
||||
6.3328,1.4233
|
||||
6.3589,-1.4211
|
||||
6.2742,2.4756
|
||||
5.6397,4.6042
|
||||
9.3102,3.9624
|
||||
9.4536,5.4141
|
||||
8.8254,5.1694
|
||||
5.1793,-0.74279
|
||||
21.279,17.929
|
||||
14.908,12.054
|
||||
18.959,17.054
|
||||
7.2182,4.8852
|
||||
8.2951,5.7442
|
||||
10.236,7.7754
|
||||
5.4994,1.0173
|
||||
20.341,20.992
|
||||
10.136,6.6799
|
||||
7.3345,4.0259
|
||||
6.0062,1.2784
|
||||
7.2259,3.3411
|
||||
5.0269,-2.6807
|
||||
6.5479,0.29678
|
||||
7.5386,3.8845
|
||||
5.0365,5.7014
|
||||
10.274,6.7526
|
||||
5.1077,2.0576
|
||||
5.7292,0.47953
|
||||
5.1884,0.20421
|
||||
6.3557,0.67861
|
||||
9.7687,7.5435
|
||||
6.5159,5.3436
|
||||
8.5172,4.2415
|
||||
9.1802,6.7981
|
||||
6.002,0.92695
|
||||
5.5204,0.152
|
||||
5.0594,2.8214
|
||||
5.7077,1.8451
|
||||
7.6366,4.2959
|
||||
5.8707,7.2029
|
||||
5.3054,1.9869
|
||||
8.2934,0.14454
|
||||
13.394,9.0551
|
||||
5.4369,0.61705
|
||||
|
|
@ -0,0 +1,47 @@
|
|||
2104,3,399900
|
||||
1600,3,329900
|
||||
2400,3,369000
|
||||
1416,2,232000
|
||||
3000,4,539900
|
||||
1985,4,299900
|
||||
1534,3,314900
|
||||
1427,3,198999
|
||||
1380,3,212000
|
||||
1494,3,242500
|
||||
1940,4,239999
|
||||
2000,3,347000
|
||||
1890,3,329999
|
||||
4478,5,699900
|
||||
1268,3,259900
|
||||
2300,4,449900
|
||||
1320,2,299900
|
||||
1236,3,199900
|
||||
2609,4,499998
|
||||
3031,4,599000
|
||||
1767,3,252900
|
||||
1888,2,255000
|
||||
1604,3,242900
|
||||
1962,4,259900
|
||||
3890,3,573900
|
||||
1100,3,249900
|
||||
1458,3,464500
|
||||
2526,3,469000
|
||||
2200,3,475000
|
||||
2637,3,299900
|
||||
1839,2,349900
|
||||
1000,1,169900
|
||||
2040,4,314900
|
||||
3137,3,579900
|
||||
1811,4,285900
|
||||
1437,3,249900
|
||||
1239,3,229900
|
||||
2132,4,345000
|
||||
4215,4,549000
|
||||
2162,4,287000
|
||||
1664,2,368500
|
||||
2238,3,329900
|
||||
2567,4,314000
|
||||
1200,3,299000
|
||||
852,2,179900
|
||||
1852,4,299900
|
||||
1203,3,239500
|
||||
|
|
@ -0,0 +1,50 @@
|
|||
function [X_norm, mu, sigma] = featureNormalize(X)
|
||||
%FEATURENORMALIZE Normalizes the features in X
|
||||
% FEATURENORMALIZE(X) returns a normalized version of X where
|
||||
% the mean value of each feature is 0 and the standard deviation
|
||||
% is 1. This is often a good preprocessing step to do when
|
||||
% working with learning algorithms.
|
||||
|
||||
% You need to set these values correctly
|
||||
X_norm = X;
|
||||
mu = zeros(1, size(X, 2));
|
||||
sigma = zeros(1, size(X, 2));
|
||||
m = size(X,1);
|
||||
n = size(X,2);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: First, for each feature dimension, compute the mean
|
||||
% of the feature and subtract it from the dataset,
|
||||
% storing the mean value in mu. Next, compute the
|
||||
% standard deviation of each feature and divide
|
||||
% each feature by it's standard deviation, storing
|
||||
% the standard deviation in sigma.
|
||||
%
|
||||
% Note that X is a matrix where each column is a
|
||||
% feature and each row is an example. You need
|
||||
% to perform the normalization separately for
|
||||
% each feature.
|
||||
%
|
||||
% Hint: You might find the 'mean' and 'std' functions useful.
|
||||
%
|
||||
mu = mean(X);
|
||||
sigma = std(X);
|
||||
tempMu = zeros(size(X));
|
||||
for i=1:m
|
||||
tempMu(i,:) = mu;
|
||||
endfor
|
||||
X_norm = X_norm - tempMu;
|
||||
for i=1:n
|
||||
X_norm(:,i) = X_norm(:,i)/sigma(i);
|
||||
endfor
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,43 @@
|
|||
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
|
||||
%GRADIENTDESCENT Performs gradient descent to learn theta
|
||||
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
|
||||
% taking num_iters gradient steps with learning rate alpha
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
n = length(theta); % number of features plus 1
|
||||
J_history = zeros(num_iters, 1);
|
||||
|
||||
for iter = 1:num_iters
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Perform a single gradient step on the parameter vector
|
||||
% theta.
|
||||
%
|
||||
% Hint: While debugging, it can be useful to print out the values
|
||||
% of the cost function (computeCost) and gradient here.
|
||||
%
|
||||
|
||||
tempTheta = theta;
|
||||
temp = 0;
|
||||
for j = 1:n
|
||||
temp = temp + (X*theta-y)'*X(:,j);
|
||||
temp = temp*alpha;
|
||||
temp = temp/m;
|
||||
tempTheta(j) = tempTheta(j) - temp;
|
||||
temp = 0;
|
||||
endfor
|
||||
theta = tempTheta;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
% Save the cost J in every iteration
|
||||
J_history(iter) = computeCost(X, y, theta);
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
|
||||
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
|
||||
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
|
||||
% taking num_iters gradient steps with learning rate alpha
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
n = length(theta);
|
||||
J_history = zeros(num_iters, 1);
|
||||
|
||||
for iter = 1:num_iters
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Perform a single gradient step on the parameter vector
|
||||
% theta.
|
||||
%
|
||||
% Hint: While debugging, it can be useful to print out the values
|
||||
% of the cost function (computeCostMulti) and gradient here.
|
||||
%
|
||||
|
||||
tempTheta = theta;
|
||||
temp = 0;
|
||||
for j = 1:n
|
||||
temp = temp + (X*theta-y)'*X(:,j);
|
||||
temp = temp*alpha;
|
||||
temp = temp/m;
|
||||
tempTheta(j) = tempTheta(j) - temp;
|
||||
temp = 0;
|
||||
endfor
|
||||
theta = tempTheta;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
% Save the cost J in every iteration
|
||||
J_history(iter) = computeCostMulti(X, y, theta);
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
The author of "jsonlab" toolbox is Qianqian Fang. Qianqian
|
||||
is currently an Assistant Professor at Massachusetts General Hospital,
|
||||
Harvard Medical School.
|
||||
|
||||
Address: Martinos Center for Biomedical Imaging,
|
||||
Massachusetts General Hospital,
|
||||
Harvard Medical School
|
||||
Bldg 149, 13th St, Charlestown, MA 02129, USA
|
||||
URL: http://nmr.mgh.harvard.edu/~fangq/
|
||||
Email: <fangq at nmr.mgh.harvard.edu> or <fangqq at gmail.com>
|
||||
|
||||
|
||||
The script loadjson.m was built upon previous works by
|
||||
|
||||
- Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
date: 2009/11/02
|
||||
- François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
date: 2009/03/22
|
||||
- Joel Feenstra: http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
date: 2008/07/03
|
||||
|
||||
|
||||
This toolbox contains patches submitted by the following contributors:
|
||||
|
||||
- Blake Johnson <bjohnso at bbn.com>
|
||||
part of revision 341
|
||||
|
||||
- Niclas Borlin <Niclas.Borlin at cs.umu.se>
|
||||
various fixes in revision 394, including
|
||||
- loadjson crashes for all-zero sparse matrix.
|
||||
- loadjson crashes for empty sparse matrix.
|
||||
- Non-zero size of 0-by-N and N-by-0 empty matrices is lost after savejson/loadjson.
|
||||
- loadjson crashes for sparse real column vector.
|
||||
- loadjson crashes for sparse complex column vector.
|
||||
- Data is corrupted by savejson for sparse real row vector.
|
||||
- savejson crashes for sparse complex row vector.
|
||||
|
||||
- Yul Kang <yul.kang.on at gmail.com>
|
||||
patches for svn revision 415.
|
||||
- savejson saves an empty cell array as [] instead of null
|
||||
- loadjson differentiates an empty struct from an empty array
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
============================================================================
|
||||
|
||||
JSONlab - a toolbox to encode/decode JSON/UBJSON files in MATLAB/Octave
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
|
||||
JSONlab ChangeLog (key features marked by *):
|
||||
|
||||
== JSONlab 1.0 (codename: Optimus - Final), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2015/01/02 polish help info for all major functions, update examples, finalize 1.0
|
||||
2014/12/19 fix a bug to strictly respect NoRowBracket in savejson
|
||||
|
||||
== JSONlab 1.0.0-RC2 (codename: Optimus - RC2), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/11/22 show progress bar in loadjson ('ShowProgress')
|
||||
2014/11/17 add Compact option in savejson to output compact JSON format ('Compact')
|
||||
2014/11/17 add FastArrayParser in loadjson to specify fast parser applicable levels
|
||||
2014/09/18 start official github mirror: https://github.com/fangq/jsonlab
|
||||
|
||||
== JSONlab 1.0.0-RC1 (codename: Optimus - RC1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/09/17 fix several compatibility issues when running on octave versions 3.2-3.8
|
||||
2014/09/17 support 2D cell and struct arrays in both savejson and saveubjson
|
||||
2014/08/04 escape special characters in a JSON string
|
||||
2014/02/16 fix a bug when saving ubjson files
|
||||
|
||||
== JSONlab 0.9.9 (codename: Optimus - beta), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/01/22 use binary read and write in saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.8-1 (codename: Optimus - alpha update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2013/10/07 better round-trip conservation for empty arrays and structs (patch submitted by Yul Kang)
|
||||
|
||||
== JSONlab 0.9.8 (codename: Optimus - alpha), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2013/08/23 *universal Binary JSON (UBJSON) support, including both saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.1 (codename: Rodimus, update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2012/12/18 *handling of various empty and sparse matrices (fixes submitted by Niclas Borlin)
|
||||
|
||||
== JSONlab 0.9.0 (codename: Rodimus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/06/17 *new format for an invalid leading char, unpacking hex code in savejson
|
||||
2012/06/01 support JSONP in savejson
|
||||
2012/05/25 fix the empty cell bug (reported by Cyril Davin)
|
||||
2012/04/05 savejson can save to a file (suggested by Patrick Rapin)
|
||||
|
||||
== JSONlab 0.8.1 (codename: Sentiel, Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/02/28 loadjson quotation mark escape bug, see http://bit.ly/yyk1nS
|
||||
2012/01/25 patch to handle root-less objects, contributed by Blake Johnson
|
||||
|
||||
== JSONlab 0.8.0 (codename: Sentiel), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/01/13 *speed up loadjson by 20 fold when parsing large data arrays in matlab
|
||||
2012/01/11 remove row bracket if an array has 1 element, suggested by Mykel Kochenderfer
|
||||
2011/12/22 *accept sequence of 'param',value input in savejson and loadjson
|
||||
2011/11/18 fix struct array bug reported by Mykel Kochenderfer
|
||||
|
||||
== JSONlab 0.5.1 (codename: Nexus Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/21 fix a bug in loadjson, previous code does not use any of the acceleration
|
||||
2011/10/20 loadjson supports JSON collections - concatenated JSON objects
|
||||
|
||||
== JSONlab 0.5.0 (codename: Nexus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/16 package and release jsonlab 0.5.0
|
||||
2011/10/15 *add json demo and regression test, support cpx numbers, fix double quote bug
|
||||
2011/10/11 *speed up readjson dramatically, interpret _Array* tags, show data in root level
|
||||
2011/10/10 create jsonlab project, start jsonlab website, add online documentation
|
||||
2011/10/07 *speed up savejson by 25x using sprintf instead of mat2str, add options support
|
||||
2011/10/06 *savejson works for structs, cells and arrays
|
||||
2011/09/09 derive loadjson from JSON parser from MATLAB Central, draft savejson.m
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are
|
||||
permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||||
of conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||||
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
The views and conclusions contained in the software and documentation are those of the
|
||||
authors and should not be interpreted as representing official policies, either expressed
|
||||
or implied, of the copyright holders.
|
||||
|
|
@ -0,0 +1,394 @@
|
|||
===============================================================================
|
||||
= JSONLab =
|
||||
= An open-source MATLAB/Octave JSON encoder and decoder =
|
||||
===============================================================================
|
||||
|
||||
*Copyright (C) 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>
|
||||
*License: BSD License, see License_BSD.txt for details
|
||||
*Version: 1.0 (Optimus - Final)
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Table of Content:
|
||||
|
||||
I. Introduction
|
||||
II. Installation
|
||||
III.Using JSONLab
|
||||
IV. Known Issues and TODOs
|
||||
V. Contribution and feedback
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
I. Introduction
|
||||
|
||||
JSON ([http://www.json.org/ JavaScript Object Notation]) is a highly portable,
|
||||
human-readable and "[http://en.wikipedia.org/wiki/JSON fat-free]" text format
|
||||
to represent complex and hierarchical data. It is as powerful as
|
||||
[http://en.wikipedia.org/wiki/XML XML], but less verbose. JSON format is widely
|
||||
used for data-exchange in applications, and is essential for the wild success
|
||||
of [http://en.wikipedia.org/wiki/Ajax_(programming) Ajax] and
|
||||
[http://en.wikipedia.org/wiki/Web_2.0 Web2.0].
|
||||
|
||||
UBJSON (Universal Binary JSON) is a binary JSON format, specifically
|
||||
optimized for compact file size and better performance while keeping
|
||||
the semantics as simple as the text-based JSON format. Using the UBJSON
|
||||
format allows to wrap complex binary data in a flexible and extensible
|
||||
structure, making it possible to process complex and large dataset
|
||||
without accuracy loss due to text conversions.
|
||||
|
||||
We envision that both JSON and its binary version will serve as part of
|
||||
the mainstream data-exchange formats for scientific research in the future.
|
||||
It will provide the flexibility and generality achieved by other popular
|
||||
general-purpose file specifications, such as
|
||||
[http://www.hdfgroup.org/HDF5/whatishdf5.html HDF5], with significantly
|
||||
reduced complexity and enhanced performance.
|
||||
|
||||
JSONLab is a free and open-source implementation of a JSON/UBJSON encoder
|
||||
and a decoder in the native MATLAB language. It can be used to convert a MATLAB
|
||||
data structure (array, struct, cell, struct array and cell array) into
|
||||
JSON/UBJSON formatted strings, or to decode a JSON/UBJSON file into MATLAB
|
||||
data structure. JSONLab supports both MATLAB and
|
||||
[http://www.gnu.org/software/octave/ GNU Octave] (a free MATLAB clone).
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
II. Installation
|
||||
|
||||
The installation of JSONLab is no different than any other simple
|
||||
MATLAB toolbox. You only need to download/unzip the JSONLab package
|
||||
to a folder, and add the folder's path to MATLAB/Octave's path list
|
||||
by using the following command:
|
||||
|
||||
addpath('/path/to/jsonlab');
|
||||
|
||||
If you want to add this path permanently, you need to type "pathtool",
|
||||
browse to the jsonlab root folder and add to the list, then click "Save".
|
||||
Then, run "rehash" in MATLAB, and type "which loadjson", if you see an
|
||||
output, that means JSONLab is installed for MATLAB/Octave.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
III.Using JSONLab
|
||||
|
||||
JSONLab provides two functions, loadjson.m -- a MATLAB->JSON decoder,
|
||||
and savejson.m -- a MATLAB->JSON encoder, for the text-based JSON, and
|
||||
two equivallent functions -- loadubjson and saveubjson for the binary
|
||||
JSON. The detailed help info for the four functions can be found below:
|
||||
|
||||
=== loadjson.m ===
|
||||
<pre>
|
||||
data=loadjson(fname,opt)
|
||||
or
|
||||
data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09, including previous works from
|
||||
|
||||
Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
created on 2009/11/02
|
||||
François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
created on 2009/03/22
|
||||
Joel Feenstra:
|
||||
http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
created on 2008/07/03
|
||||
|
||||
$Id: loadjson.m 452 2014-11-22 16:43:33Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a JSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
speed-optimized array parser when loading an
|
||||
array object. The fast array parser may
|
||||
collapse block arrays into a single large
|
||||
array similar to rules defined in cell2mat; 0 to
|
||||
use a legacy parser; if set to a larger-than-1
|
||||
value, this option will specify the minimum
|
||||
dimension to enable the fast array parser. For
|
||||
example, if the input is a 3D array, setting
|
||||
FastArrayParser to 1 will return a 3D array;
|
||||
setting to 2 will return a cell array of 2D
|
||||
arrays; setting to 3 will return to a 2D cell
|
||||
array of 1D vectors; setting to 4 will return a
|
||||
3D cell array.
|
||||
opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
dat=loadjson(['examples' filesep 'example1.json'])
|
||||
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== savejson.m ===
|
||||
|
||||
<pre>
|
||||
json=savejson(rootname,obj,filename)
|
||||
or
|
||||
json=savejson(rootname,obj,opt)
|
||||
json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
Object Notation) string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09
|
||||
|
||||
$Id: savejson.m 458 2014-12-19 22:17:17Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
filename: a string for the file name to save the output JSON data.
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
of a 1D/2D array;
|
||||
opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
precedent indentation; if 0, no indentation
|
||||
opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
and $1 represents the sign. For those who want to use
|
||||
1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
to represent NaN
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSONP='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a string in the JSON format (see http://json.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
savejson('jmesh',jsonmesh)
|
||||
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
</pre>
|
||||
|
||||
=== loadubjson.m ===
|
||||
|
||||
<pre>
|
||||
data=loadubjson(fname,opt)
|
||||
or
|
||||
data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/01
|
||||
|
||||
$Id: loadubjson.m 436 2014-08-05 20:51:40Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a UBJSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
in the UBJSON input data. B - Big-Endian format for
|
||||
integers (as required in the UBJSON specification);
|
||||
L - input integer fields are in Little-Endian order.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
obj=struct('string','value','array',[1 2 3]);
|
||||
ubjdata=saveubjson('obj',obj);
|
||||
dat=loadubjson(ubjdata)
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== saveubjson.m ===
|
||||
|
||||
<pre>
|
||||
json=saveubjson(rootname,obj,filename)
|
||||
or
|
||||
json=saveubjson(rootname,obj,opt)
|
||||
json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a Universal
|
||||
Binary JSON (UBJSON) binary string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/17
|
||||
|
||||
$Id: saveubjson.m 440 2014-09-17 19:59:45Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
filename: a string for the file name to save the output UBJSON data
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSON='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
saveubjson('jsonmesh',jsonmesh)
|
||||
saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
</pre>
|
||||
|
||||
|
||||
=== examples ===
|
||||
|
||||
Under the "examples" folder, you can find several scripts to demonstrate the
|
||||
basic utilities of JSONLab. Running the "demo_jsonlab_basic.m" script, you
|
||||
will see the conversions from MATLAB data structure to JSON text and backward.
|
||||
In "jsonlab_selftest.m", we load complex JSON files downloaded from the Internet
|
||||
and validate the loadjson/savejson functions for regression testing purposes.
|
||||
Similarly, a "demo_ubjson_basic.m" script is provided to test the saveubjson
|
||||
and loadubjson pairs for various matlab data structures.
|
||||
|
||||
Please run these examples and understand how JSONLab works before you use
|
||||
it to process your data.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
IV. Known Issues and TODOs
|
||||
|
||||
JSONLab has several known limitations. We are striving to make it more general
|
||||
and robust. Hopefully in a few future releases, the limitations become less.
|
||||
|
||||
Here are the known issues:
|
||||
|
||||
# 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays;
|
||||
# When processing names containing multi-byte characters, Octave and MATLAB \
|
||||
can give different field-names; you can use feature('DefaultCharacterSet','latin1') \
|
||||
in MATLAB to get consistant results
|
||||
# savejson can not handle class and dataset.
|
||||
# saveubjson converts a logical array into a uint8 ([U]) array
|
||||
# an unofficial N-D array count syntax is implemented in saveubjson. We are \
|
||||
actively communicating with the UBJSON spec maintainer to investigate the \
|
||||
possibility of making it upstream
|
||||
# loadubjson can not parse all UBJSON Specification (Draft 9) compliant \
|
||||
files, however, it can parse all UBJSON files produced by saveubjson.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
V. Contribution and feedback
|
||||
|
||||
JSONLab is an open-source project. This means you can not only use it and modify
|
||||
it as you wish, but also you can contribute your changes back to JSONLab so
|
||||
that everyone else can enjoy the improvement. For anyone who want to contribute,
|
||||
please download JSONLab source code from it's subversion repository by using the
|
||||
following command:
|
||||
|
||||
svn checkout svn://svn.code.sf.net/p/iso2mesh/code/trunk/jsonlab jsonlab
|
||||
|
||||
You can make changes to the files as needed. Once you are satisfied with your
|
||||
changes, and ready to share it with others, please cd the root directory of
|
||||
JSONLab, and type
|
||||
|
||||
svn diff > yourname_featurename.patch
|
||||
|
||||
You then email the .patch file to JSONLab's maintainer, Qianqian Fang, at
|
||||
the email address shown in the beginning of this file. Qianqian will review
|
||||
the changes and commit it to the subversion if they are satisfactory.
|
||||
|
||||
We appreciate any suggestions and feedbacks from you. Please use iso2mesh's
|
||||
mailing list to report any questions you may have with JSONLab:
|
||||
|
||||
http://groups.google.com/group/iso2mesh-users?hl=en&pli=1
|
||||
|
||||
(Subscription to the mailing list is needed in order to post messages).
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
function val=jsonopt(key,default,varargin)
|
||||
%
|
||||
% val=jsonopt(key,default,optstruct)
|
||||
%
|
||||
% setting options based on a struct. The struct can be produced
|
||||
% by varargin2struct from a list of 'param','value' pairs
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
%
|
||||
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
|
||||
%
|
||||
% input:
|
||||
% key: a string with which one look up a value from a struct
|
||||
% default: if the key does not exist, return default
|
||||
% optstruct: a struct where each sub-field is a key
|
||||
%
|
||||
% output:
|
||||
% val: if key exists, val=optstruct.key; otherwise val=default
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
val=default;
|
||||
if(nargin<=2) return; end
|
||||
opt=varargin{1};
|
||||
if(isstruct(opt) && isfield(opt,key))
|
||||
val=getfield(opt,key);
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,566 @@
|
|||
function data = loadjson(fname,varargin)
|
||||
%
|
||||
% data=loadjson(fname,opt)
|
||||
% or
|
||||
% data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09, including previous works from
|
||||
%
|
||||
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
% created on 2009/11/02
|
||||
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
% created on 2009/03/22
|
||||
% Joel Feenstra:
|
||||
% http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
% created on 2008/07/03
|
||||
%
|
||||
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a JSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
% speed-optimized array parser when loading an
|
||||
% array object. The fast array parser may
|
||||
% collapse block arrays into a single large
|
||||
% array similar to rules defined in cell2mat; 0 to
|
||||
% use a legacy parser; if set to a larger-than-1
|
||||
% value, this option will specify the minimum
|
||||
% dimension to enable the fast array parser. For
|
||||
% example, if the input is a 3D array, setting
|
||||
% FastArrayParser to 1 will return a 3D array;
|
||||
% setting to 2 will return a cell array of 2D
|
||||
% arrays; setting to 3 will return to a 2D cell
|
||||
% array of 1D vectors; setting to 4 will return a
|
||||
% 3D cell array.
|
||||
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
% dat=loadjson(['examples' filesep 'example1.json'])
|
||||
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
|
||||
if(jsonopt('ShowProgress',0,opt)==1)
|
||||
opt.progressbar_=waitbar(0,'loading ...');
|
||||
end
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
if(isfield(opt,'progressbar_'))
|
||||
close(opt.progressbar_);
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=data(j).x0x5F_ArraySize_;
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
if next_char ~= '}'
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
parse_char('}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim2=[];
|
||||
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
|
||||
if next_char ~= ']'
|
||||
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
|
||||
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
|
||||
arraystr=['[' inStr(pos:endpos)];
|
||||
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
|
||||
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
|
||||
arraystr(arraystr==sprintf('\n'))=[];
|
||||
arraystr(arraystr==sprintf('\r'))=[];
|
||||
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
|
||||
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
|
||||
astr=inStr((e1l+1):(e1r-1));
|
||||
astr=regexprep(astr,'"_NaN_"','NaN');
|
||||
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
|
||||
astr(astr==sprintf('\n'))=[];
|
||||
astr(astr==sprintf('\r'))=[];
|
||||
astr(astr==' ')='';
|
||||
if(isempty(find(astr=='[', 1))) % array is 2D
|
||||
dim2=length(sscanf(astr,'%f,',[1 inf]));
|
||||
end
|
||||
else % array is 1D
|
||||
astr=arraystr(2:end-1);
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=obj;
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if(~isempty(dim2))
|
||||
astr=arraystr;
|
||||
astr(astr=='[')='';
|
||||
astr(astr==']')='';
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=reshape(obj,dim2,numel(obj)/dim2)';
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
return;
|
||||
end
|
||||
end
|
||||
arraystr=regexprep(arraystr,'\]\s*,','];');
|
||||
else
|
||||
arraystr='[';
|
||||
end
|
||||
try
|
||||
if(isoct && regexp(arraystr,'"','once'))
|
||||
error('Octave eval can produce empty cells for JSON-like input');
|
||||
end
|
||||
object=eval(arraystr);
|
||||
pos=endpos;
|
||||
catch
|
||||
while 1
|
||||
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
|
||||
val = parse_value(newopt);
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
parse_char(']');
|
||||
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr len esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
if inStr(pos) ~= '"'
|
||||
error_pos('String starting with " expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
str = '';
|
||||
while pos <= len
|
||||
while index_esc <= len_esc && esc(index_esc) < pos
|
||||
index_esc = index_esc + 1;
|
||||
end
|
||||
if index_esc > len_esc
|
||||
str = [str inStr(pos:len)];
|
||||
pos = len + 1;
|
||||
break;
|
||||
else
|
||||
str = [str inStr(pos:esc(index_esc)-1)];
|
||||
pos = esc(index_esc);
|
||||
end
|
||||
nstr = length(str); switch inStr(pos)
|
||||
case '"'
|
||||
pos = pos + 1;
|
||||
if(~isempty(str))
|
||||
if(strcmp(str,'_Inf_'))
|
||||
str=Inf;
|
||||
elseif(strcmp(str,'-_Inf_'))
|
||||
str=-Inf;
|
||||
elseif(strcmp(str,'_NaN_'))
|
||||
str=NaN;
|
||||
end
|
||||
end
|
||||
return;
|
||||
case '\'
|
||||
if pos+1 > len
|
||||
error_pos('End of file reached right after escape character');
|
||||
end
|
||||
pos = pos + 1;
|
||||
switch inStr(pos)
|
||||
case {'"' '\' '/'}
|
||||
str(nstr+1) = inStr(pos);
|
||||
pos = pos + 1;
|
||||
case {'b' 'f' 'n' 'r' 't'}
|
||||
str(nstr+1) = sprintf(['\' inStr(pos)]);
|
||||
pos = pos + 1;
|
||||
case 'u'
|
||||
if pos+4 > len
|
||||
error_pos('End of file reached in escaped unicode character');
|
||||
end
|
||||
str(nstr+(1:6)) = inStr(pos-1:pos+4);
|
||||
pos = pos + 5;
|
||||
end
|
||||
otherwise % should never happen
|
||||
str(nstr+1) = inStr(pos), keyboard
|
||||
pos = pos + 1;
|
||||
end
|
||||
end
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct
|
||||
currstr=inStr(pos:end);
|
||||
numstr=0;
|
||||
if(isoct~=0)
|
||||
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
|
||||
[num, one] = sscanf(currstr, '%f', 1);
|
||||
delta=numstr+1;
|
||||
else
|
||||
[num, one, err, delta] = sscanf(currstr, '%f', 1);
|
||||
if ~isempty(err)
|
||||
error_pos('Error reading number at position %d');
|
||||
end
|
||||
end
|
||||
pos = pos + delta-1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
if(pbar>0)
|
||||
waitbar(pos/len,pbar,'loading ...');
|
||||
end
|
||||
|
||||
switch(inStr(pos))
|
||||
case '"'
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'-','0','1','2','3','4','5','6','7','8','9'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 't'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
|
||||
val = true;
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
case 'f'
|
||||
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
|
||||
val = false;
|
||||
pos = pos + 5;
|
||||
return;
|
||||
end
|
||||
case 'n'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
|
||||
val = [];
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,528 @@
|
|||
function data = loadubjson(fname,varargin)
|
||||
%
|
||||
% data=loadubjson(fname,opt)
|
||||
% or
|
||||
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/01
|
||||
%
|
||||
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a UBJSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
% in the UBJSON input data. B - Big-Endian format for
|
||||
% integers (as required in the UBJSON specification);
|
||||
% L - input integer fields are in Little-Endian order.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% obj=struct('string','value','array',[1 2 3]);
|
||||
% ubjdata=saveubjson('obj',obj);
|
||||
% dat=loadubjson(ubjdata)
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
fileendian=upper(jsonopt('IntEndian','B',opt));
|
||||
[os,maxelem,systemendian]=computer;
|
||||
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
%%
|
||||
function newdata=parse_collection(id,data,obj)
|
||||
|
||||
if(jsoncount>0 && exist('data','var'))
|
||||
if(~iscell(data))
|
||||
newdata=cell(1);
|
||||
newdata{1}=data;
|
||||
data=newdata;
|
||||
end
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=double(data(j).x0x5F_ArraySize_);
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1); % TODO
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
count=double(parse_number());
|
||||
end
|
||||
if next_char ~= '}'
|
||||
num=0;
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
%parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
num=num+1;
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}' || (count>=0 && num>=count)
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char('}');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function [cid,len]=elem_info(type)
|
||||
id=strfind('iUIlLdD',type);
|
||||
dataclass={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
if(id>0)
|
||||
cid=dataclass{id};
|
||||
len=bytelen(id);
|
||||
else
|
||||
error_pos('unsupported type at position %d');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function [data adv]=parse_block(type,count,varargin)
|
||||
global pos inStr isoct fileendian systemendian
|
||||
[cid,len]=elem_info(type);
|
||||
datastr=inStr(pos:pos+len*count-1);
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
id=strfind('iUIlLdD',type);
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,cid));
|
||||
end
|
||||
data=typecast(newdata,cid);
|
||||
adv=double(len*count);
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim=[];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1);
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
if(next_char=='[')
|
||||
dim=parse_array(varargin{:});
|
||||
count=prod(double(dim));
|
||||
else
|
||||
count=double(parse_number());
|
||||
end
|
||||
end
|
||||
if(~isempty(type))
|
||||
if(count>=0)
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
if(~isempty(dim))
|
||||
object=reshape(object,dim);
|
||||
end
|
||||
pos=pos+adv;
|
||||
return;
|
||||
else
|
||||
endpos=matching_bracket(inStr,pos);
|
||||
[cid,len]=elem_info(type);
|
||||
count=(endpos-pos)/len;
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
pos=pos+adv;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if next_char ~= ']'
|
||||
while 1
|
||||
val = parse_value(varargin{:});
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char(']');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
type=inStr(pos);
|
||||
if type ~= 'S' && type ~= 'C' && type ~= 'H'
|
||||
error_pos('String starting with S expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
if(type == 'C')
|
||||
str=inStr(pos);
|
||||
pos=pos+1;
|
||||
return;
|
||||
end
|
||||
bytelen=double(parse_number());
|
||||
if(length(inStr)>=pos+bytelen-1)
|
||||
str=inStr(pos:pos+bytelen-1);
|
||||
pos=pos+bytelen;
|
||||
else
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct fileendian systemendian
|
||||
id=strfind('iUIlLdD',inStr(pos));
|
||||
if(isempty(id))
|
||||
error_pos('expecting a number at position %d');
|
||||
end
|
||||
type={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
datastr=inStr(pos+1:pos+bytelen(id));
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,type{id}));
|
||||
end
|
||||
num=typecast(newdata,type{id});
|
||||
pos = pos + bytelen(id)+1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
switch(inStr(pos))
|
||||
case {'S','C','H'}
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'i','U','I','l','L','d','D'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 'T'
|
||||
val = true;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case 'F'
|
||||
val = false;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case {'Z','N'}
|
||||
val = [];
|
||||
pos = pos + 1;
|
||||
return;
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,33 @@
|
|||
function s=mergestruct(s1,s2)
|
||||
%
|
||||
% s=mergestruct(s1,s2)
|
||||
%
|
||||
% merge two struct objects into one
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% s1,s2: a struct object, s1 and s2 can not be arrays
|
||||
%
|
||||
% output:
|
||||
% s: the merged struct object. fields in s1 and s2 will be combined in s.
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(~isstruct(s1) || ~isstruct(s2))
|
||||
error('input parameters contain non-struct');
|
||||
end
|
||||
if(length(s1)>1 || length(s2)>1)
|
||||
error('can not merge struct arrays');
|
||||
end
|
||||
fn=fieldnames(s2);
|
||||
s=s1;
|
||||
for i=1:length(fn)
|
||||
s=setfield(s,fn{i},getfield(s2,fn{i}));
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,475 @@
|
|||
function json=savejson(rootname,obj,varargin)
|
||||
%
|
||||
% json=savejson(rootname,obj,filename)
|
||||
% or
|
||||
% json=savejson(rootname,obj,opt)
|
||||
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
% Object Notation) string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09
|
||||
%
|
||||
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
% filename: a string for the file name to save the output JSON data.
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
% of a 1D/2D array;
|
||||
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
% precedent indentation; if 0, no indentation
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
% and $1 represents the sign. For those who want to use
|
||||
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
% to represent NaN
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSONP='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a string in the JSON format (see http://json.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% savejson('jmesh',jsonmesh)
|
||||
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
|
||||
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
if(jsonopt('Compact',0,opt)==1)
|
||||
whitespaces=struct('tab','','newline','','sep',',');
|
||||
end
|
||||
if(~isfield(opt,'whitespaces_'))
|
||||
opt.whitespaces_=whitespaces;
|
||||
end
|
||||
|
||||
nl=whitespaces.newline;
|
||||
|
||||
json=obj2json(rootname,obj,rootlevel,opt);
|
||||
if(rootisarray)
|
||||
json=sprintf('%s%s',json,nl);
|
||||
else
|
||||
json=sprintf('{%s%s%s}\n',nl,json,nl);
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=sprintf('%s(%s);%s',jsonp,json,nl);
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
if(jsonopt('SaveBinary',0,opt)==1)
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
else
|
||||
fid = fopen(opt.FileName, 'wt');
|
||||
fwrite(fid,json,'char');
|
||||
end
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2json(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2json(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2json(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2json(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2json(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
|
||||
else
|
||||
txt=sprintf('%s[%s',padding0,nl);
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
|
||||
else
|
||||
txt=sprintf('%s[]',padding0);
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
|
||||
nl=ws.newline;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
|
||||
else
|
||||
txt=sprintf('%s%s{%s',txt,padding1,nl);
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
|
||||
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
|
||||
txt=sprintf('%s%s',txt,nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s}',txt,padding1);
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
if(isoct)
|
||||
val=regexprep(item(e,:),'\\','\\');
|
||||
val=regexprep(val,'"','\"');
|
||||
val=regexprep(val,'^"','\"');
|
||||
else
|
||||
val=regexprep(item(e,:),'\\','\\\\');
|
||||
val=regexprep(val,'"','\\"');
|
||||
val=regexprep(val,'^"','\\"');
|
||||
end
|
||||
val=escapejsonstring(val);
|
||||
if(len==1)
|
||||
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
|
||||
if(isempty(name)) obj=['"',val,'"']; end
|
||||
txt=sprintf('%s%s%s%s',txt,padding1,obj);
|
||||
else
|
||||
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
|
||||
end
|
||||
if(e==len) sep=''; end
|
||||
txt=sprintf('%s%s',txt,sep);
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2json(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
else
|
||||
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
end
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
|
||||
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
else
|
||||
numtxt=matdata2json(item,level+1,varargin{:});
|
||||
end
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s%s',padding1,numtxt);
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
else
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
dataformat='%s%s%s%s%s';
|
||||
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,data],level+2,varargin{:}), nl);
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json(item(:)',level+2,varargin{:}), nl);
|
||||
else
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s%s',txt,padding1,'}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2json(mat,level,varargin)
|
||||
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
tab=ws.tab;
|
||||
nl=ws.newline;
|
||||
|
||||
if(size(mat,1)==1)
|
||||
pre='';
|
||||
post='';
|
||||
level=level-1;
|
||||
else
|
||||
pre=sprintf('[%s',nl);
|
||||
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
|
||||
end
|
||||
|
||||
if(isempty(mat))
|
||||
txt='null';
|
||||
return;
|
||||
end
|
||||
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
|
||||
%if(numel(mat)>1)
|
||||
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
|
||||
%else
|
||||
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
|
||||
%end
|
||||
|
||||
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
|
||||
formatstr=[repmat(tab,1,level) formatstr];
|
||||
end
|
||||
|
||||
txt=sprintf(formatstr,mat');
|
||||
txt(end-length(nl):end)=[];
|
||||
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
|
||||
txt=regexprep(txt,'1','true');
|
||||
txt=regexprep(txt,'0','false');
|
||||
end
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],\n['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
txt=[pre txt post];
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newstr=escapejsonstring(str)
|
||||
newstr=str;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
if(isoct)
|
||||
vv=sscanf(OCTAVE_VERSION,'%f');
|
||||
if(vv(1)>=3.8) isoct=0; end
|
||||
end
|
||||
if(isoct)
|
||||
escapechars={'\a','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},escapechars{i});
|
||||
end
|
||||
else
|
||||
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,504 @@
|
|||
function json=saveubjson(rootname,obj,varargin)
|
||||
%
|
||||
% json=saveubjson(rootname,obj,filename)
|
||||
% or
|
||||
% json=saveubjson(rootname,obj,opt)
|
||||
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a Universal
|
||||
% Binary JSON (UBJSON) binary string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/17
|
||||
%
|
||||
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
% filename: a string for the file name to save the output UBJSON data
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSON='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% saveubjson('jsonmesh',jsonmesh)
|
||||
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
json=obj2ubjson(rootname,obj,rootlevel,opt);
|
||||
if(~rootisarray)
|
||||
json=['{' json '}'];
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=[jsonp '(' json ')'];
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2ubjson(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2ubjson(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2ubjson(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2ubjson(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2ubjson(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item); % let's handle 1D cell first
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=[S_(checkname(name,varargin{:})) '[']; name='';
|
||||
else
|
||||
txt='[';
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
|
||||
else
|
||||
txt='Z';
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=[txt '[']; end
|
||||
for i=1:dim(1)
|
||||
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
|
||||
end
|
||||
if(dim(1)>1) txt=[txt ']']; end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
|
||||
else
|
||||
if(len>1) txt='['; end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=[txt '[']; end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=[txt S_(checkname(name,varargin{:})) '{'];
|
||||
else
|
||||
txt=[txt '{'];
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
|
||||
end
|
||||
end
|
||||
txt=[txt '}'];
|
||||
end
|
||||
if(dim(1)>1) txt=[txt ']']; end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
|
||||
else
|
||||
if(len>1) txt='['; end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
val=item(e,:);
|
||||
if(len==1)
|
||||
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
|
||||
if(isempty(name)) obj=['',S_(val),'']; end
|
||||
txt=[txt,'',obj];
|
||||
else
|
||||
txt=[txt,'',['',S_(val),'']];
|
||||
end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2ubjson(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
cid=I_(uint32(max(size(item))));
|
||||
if(isempty(name))
|
||||
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
|
||||
else
|
||||
if(isempty(item))
|
||||
txt=[S_(checkname(name,varargin{:})),'Z'];
|
||||
return;
|
||||
else
|
||||
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
|
||||
end
|
||||
end
|
||||
else
|
||||
if(isempty(name))
|
||||
txt=matdata2ubjson(item,level+1,varargin{:});
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
txt=[S_(checkname(name,varargin{:})) numtxt];
|
||||
else
|
||||
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=[txt,S_('_ArrayIsComplex_'),'T'];
|
||||
end
|
||||
txt=[txt,S_('_ArrayIsSparse_'),'T'];
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([ix,data],level+2,varargin{:})];
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson(item(:)',level+2,varargin{:})];
|
||||
else
|
||||
txt=[txt,S_('_ArrayIsComplex_'),'T'];
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
|
||||
end
|
||||
end
|
||||
txt=[txt,'}'];
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2ubjson(mat,level,varargin)
|
||||
if(isempty(mat))
|
||||
txt='Z';
|
||||
return;
|
||||
end
|
||||
if(size(mat,1)==1)
|
||||
level=level-1;
|
||||
end
|
||||
type='';
|
||||
hasnegtive=(mat<0);
|
||||
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
|
||||
if(isempty(hasnegtive))
|
||||
if(max(mat(:))<=2^8)
|
||||
type='U';
|
||||
end
|
||||
end
|
||||
if(isempty(type))
|
||||
% todo - need to consider negative ones separately
|
||||
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
|
||||
if(isempty(find(id)))
|
||||
error('high-precision data is not yet supported');
|
||||
end
|
||||
key='iIlL';
|
||||
type=key(find(id));
|
||||
end
|
||||
txt=[I_a(mat(:),type,size(mat))];
|
||||
elseif(islogical(mat))
|
||||
logicalval='FT';
|
||||
if(numel(mat)==1)
|
||||
txt=logicalval(mat+1);
|
||||
else
|
||||
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
|
||||
end
|
||||
else
|
||||
if(numel(mat)==1)
|
||||
txt=['[' D_(mat) ']'];
|
||||
else
|
||||
txt=D_a(mat(:),'D',size(mat));
|
||||
end
|
||||
end
|
||||
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=S_(str)
|
||||
if(length(str)==1)
|
||||
val=['C' str];
|
||||
else
|
||||
val=['S' I_(int32(length(str))) str];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=I_(num)
|
||||
if(~isinteger(num))
|
||||
error('input is not an integer');
|
||||
end
|
||||
if(num>=0 && num<255)
|
||||
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
|
||||
return;
|
||||
end
|
||||
key='iIlL';
|
||||
cid={'int8','int16','int32','int64'};
|
||||
for i=1:4
|
||||
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
|
||||
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
|
||||
return;
|
||||
end
|
||||
end
|
||||
error('unsupported integer');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=D_(num)
|
||||
if(~isfloat(num))
|
||||
error('input is not a float');
|
||||
end
|
||||
|
||||
if(isa(num,'single'))
|
||||
val=['d' data2byte(num,'uint8')];
|
||||
else
|
||||
val=['D' data2byte(num,'uint8')];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function data=I_a(num,type,dim,format)
|
||||
id=find(ismember('iUIlL',type));
|
||||
|
||||
if(id==0)
|
||||
error('unsupported integer array');
|
||||
end
|
||||
|
||||
% based on UBJSON specs, all integer types are stored in big endian format
|
||||
|
||||
if(id==1)
|
||||
data=data2byte(swapbytes(int8(num)),'uint8');
|
||||
blen=1;
|
||||
elseif(id==2)
|
||||
data=data2byte(swapbytes(uint8(num)),'uint8');
|
||||
blen=1;
|
||||
elseif(id==3)
|
||||
data=data2byte(swapbytes(int16(num)),'uint8');
|
||||
blen=2;
|
||||
elseif(id==4)
|
||||
data=data2byte(swapbytes(int32(num)),'uint8');
|
||||
blen=4;
|
||||
elseif(id==5)
|
||||
data=data2byte(swapbytes(int64(num)),'uint8');
|
||||
blen=8;
|
||||
end
|
||||
|
||||
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
|
||||
format='opt';
|
||||
end
|
||||
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
|
||||
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
|
||||
cid=I_(uint32(max(dim)));
|
||||
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
|
||||
else
|
||||
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
|
||||
end
|
||||
data=['[' data(:)'];
|
||||
else
|
||||
data=reshape(data,blen,numel(data)/blen);
|
||||
data(2:blen+1,:)=data;
|
||||
data(1,:)=type;
|
||||
data=data(:)';
|
||||
data=['[' data(:)' ']'];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function data=D_a(num,type,dim,format)
|
||||
id=find(ismember('dD',type));
|
||||
|
||||
if(id==0)
|
||||
error('unsupported float array');
|
||||
end
|
||||
|
||||
if(id==1)
|
||||
data=data2byte(single(num),'uint8');
|
||||
elseif(id==2)
|
||||
data=data2byte(double(num),'uint8');
|
||||
end
|
||||
|
||||
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
|
||||
format='opt';
|
||||
end
|
||||
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
|
||||
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
|
||||
cid=I_(uint32(max(dim)));
|
||||
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
|
||||
else
|
||||
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
|
||||
end
|
||||
data=['[' data];
|
||||
else
|
||||
data=reshape(data,(id*4),length(data)/(id*4));
|
||||
data(2:(id*4+1),:)=data;
|
||||
data(1,:)=type;
|
||||
data=data(:)';
|
||||
data=['[' data(:)' ']'];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function bytes=data2byte(varargin)
|
||||
bytes=typecast(varargin{:});
|
||||
bytes=bytes(:)';
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
function opt=varargin2struct(varargin)
|
||||
%
|
||||
% opt=varargin2struct('param1',value1,'param2',value2,...)
|
||||
% or
|
||||
% opt=varargin2struct(...,optstruct,...)
|
||||
%
|
||||
% convert a series of input parameters into a structure
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% 'param', value: the input parameters should be pairs of a string and a value
|
||||
% optstruct: if a parameter is a struct, the fields will be merged to the output struct
|
||||
%
|
||||
% output:
|
||||
% opt: a struct where opt.param1=value1, opt.param2=value2 ...
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
len=length(varargin);
|
||||
opt=struct;
|
||||
if(len==0) return; end
|
||||
i=1;
|
||||
while(i<=len)
|
||||
if(isstruct(varargin{i}))
|
||||
opt=mergestruct(opt,varargin{i});
|
||||
elseif(ischar(varargin{i}) && i<len)
|
||||
opt=setfield(opt,varargin{i},varargin{i+1});
|
||||
i=i+1;
|
||||
else
|
||||
error('input must be in the form of ...,''name'',value,... pairs or structs');
|
||||
end
|
||||
i=i+1;
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,30 @@
|
|||
function str = makeValidFieldName(str)
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,179 @@
|
|||
function submitWithConfiguration(conf)
|
||||
addpath('./lib/jsonlab');
|
||||
|
||||
parts = parts(conf);
|
||||
|
||||
fprintf('== Submitting solutions | %s...\n', conf.itemName);
|
||||
|
||||
tokenFile = 'token.mat';
|
||||
if exist(tokenFile, 'file')
|
||||
load(tokenFile);
|
||||
[email token] = promptToken(email, token, tokenFile);
|
||||
else
|
||||
[email token] = promptToken('', '', tokenFile);
|
||||
end
|
||||
|
||||
if isempty(token)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
try
|
||||
response = submitParts(conf, email, token, parts);
|
||||
catch
|
||||
e = lasterror();
|
||||
fprintf('\n!! Submission failed: %s\n', e.message);
|
||||
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
|
||||
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
|
||||
fprintf('\nPlease correct your code and resubmit.\n');
|
||||
return
|
||||
end
|
||||
|
||||
if isfield(response, 'errorMessage')
|
||||
fprintf('!! Submission failed: %s\n', response.errorMessage);
|
||||
elseif isfield(response, 'errorCode')
|
||||
fprintf('!! Submission failed: %s\n', response.message);
|
||||
else
|
||||
showFeedback(parts, response);
|
||||
save(tokenFile, 'email', 'token');
|
||||
end
|
||||
end
|
||||
|
||||
function [email token] = promptToken(email, existingToken, tokenFile)
|
||||
if (~isempty(email) && ~isempty(existingToken))
|
||||
prompt = sprintf( ...
|
||||
'Use token from last successful submission (%s)? (Y/n): ', ...
|
||||
email);
|
||||
reenter = input(prompt, 's');
|
||||
|
||||
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
|
||||
token = existingToken;
|
||||
return;
|
||||
else
|
||||
delete(tokenFile);
|
||||
end
|
||||
end
|
||||
email = input('Login (email address): ', 's');
|
||||
token = input('Token: ', 's');
|
||||
end
|
||||
|
||||
function isValid = isValidPartOptionIndex(partOptions, i)
|
||||
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
|
||||
end
|
||||
|
||||
function response = submitParts(conf, email, token, parts)
|
||||
body = makePostBody(conf, email, token, parts);
|
||||
submissionUrl = submissionUrl();
|
||||
|
||||
responseBody = getResponse(submissionUrl, body);
|
||||
jsonResponse = validateResponse(responseBody);
|
||||
response = loadjson(jsonResponse);
|
||||
end
|
||||
|
||||
function body = makePostBody(conf, email, token, parts)
|
||||
bodyStruct.assignmentSlug = conf.assignmentSlug;
|
||||
bodyStruct.submitterEmail = email;
|
||||
bodyStruct.secret = token;
|
||||
bodyStruct.parts = makePartsStruct(conf, parts);
|
||||
|
||||
opt.Compact = 1;
|
||||
body = savejson('', bodyStruct, opt);
|
||||
end
|
||||
|
||||
function partsStruct = makePartsStruct(conf, parts)
|
||||
for part = parts
|
||||
partId = part{:}.id;
|
||||
fieldName = makeValidFieldName(partId);
|
||||
outputStruct.output = conf.output(partId);
|
||||
partsStruct.(fieldName) = outputStruct;
|
||||
end
|
||||
end
|
||||
|
||||
function [parts] = parts(conf)
|
||||
parts = {};
|
||||
for partArray = conf.partArrays
|
||||
part.id = partArray{:}{1};
|
||||
part.sourceFiles = partArray{:}{2};
|
||||
part.name = partArray{:}{3};
|
||||
parts{end + 1} = part;
|
||||
end
|
||||
end
|
||||
|
||||
function showFeedback(parts, response)
|
||||
fprintf('== \n');
|
||||
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
|
||||
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
|
||||
for part = parts
|
||||
score = '';
|
||||
partFeedback = '';
|
||||
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
|
||||
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
|
||||
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
|
||||
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
|
||||
end
|
||||
evaluation = response.evaluation;
|
||||
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
|
||||
fprintf('== --------------------------------\n');
|
||||
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
|
||||
fprintf('== \n');
|
||||
end
|
||||
|
||||
% use urlread or curl to send submit results to the grader and get a response
|
||||
function response = getResponse(url, body)
|
||||
% try using urlread() and a secure connection
|
||||
params = {'jsonBody', body};
|
||||
[response, success] = urlread(url, 'post', params);
|
||||
|
||||
if (success == 0)
|
||||
% urlread didn't work, try curl & the peer certificate patch
|
||||
if ispc
|
||||
% testing note: use 'jsonBody =' for a test case
|
||||
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
|
||||
else
|
||||
% it's linux/OS X, so use the other form
|
||||
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
|
||||
end
|
||||
% get the response body for the peer certificate patch method
|
||||
[code, response] = system(json_command);
|
||||
% test the success code
|
||||
if (code ~= 0)
|
||||
fprintf('[error] submission with curl() was not successful\n');
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% validate the grader's response
|
||||
function response = validateResponse(resp)
|
||||
% test if the response is json or an HTML page
|
||||
isJson = length(resp) > 0 && resp(1) == '{';
|
||||
isHtml = findstr(lower(resp), '<html');
|
||||
|
||||
if (isJson)
|
||||
response = resp;
|
||||
elseif (isHtml)
|
||||
% the response is html, so it's probably an error message
|
||||
printHTMLContents(resp);
|
||||
error('Grader response is an HTML message');
|
||||
else
|
||||
error('Grader sent no response');
|
||||
end
|
||||
end
|
||||
|
||||
% parse a HTML response and print it's contents
|
||||
function printHTMLContents(response)
|
||||
strippedResponse = regexprep(response, '<[^>]+>', ' ');
|
||||
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
|
||||
fprintf(strippedResponse);
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% Service configuration
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function submissionUrl = submissionUrl()
|
||||
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
|
||||
end
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
function [theta] = normalEqn(X, y)
|
||||
%NORMALEQN Computes the closed-form solution to linear regression
|
||||
% NORMALEQN(X,y) computes the closed-form solution to linear
|
||||
% regression using the normal equations.
|
||||
|
||||
theta = zeros(size(X, 2), 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the code to compute the closed form solution
|
||||
% to linear regression and put the result in theta.
|
||||
%
|
||||
|
||||
% ---------------------- Sample Solution ----------------------
|
||||
theta = inv(X'*X)*X'*y;
|
||||
|
||||
|
||||
|
||||
% -------------------------------------------------------------
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,28 @@
|
|||
function plotData(x, y)
|
||||
%PLOTDATA Plots the data points x and y into a new figure
|
||||
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
|
||||
% population and profit.
|
||||
|
||||
figure; % open a new figure window
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Plot the training data into a figure using the
|
||||
% "figure" and "plot" commands. Set the axes labels using
|
||||
% the "xlabel" and "ylabel" commands. Assume the
|
||||
% population and revenue data have been passed in
|
||||
% as the x and y arguments of this function.
|
||||
%
|
||||
% Hint: You can use the 'rx' option with plot to have the markers
|
||||
% appear as red crosses. Furthermore, you can make the
|
||||
% markers larger by using plot(..., 'rx', 'MarkerSize', 10);
|
||||
|
||||
plot(x, y, 'rx', 'markersize', 10); # Plot the data
|
||||
ylabel('Profit in $10,000s'); # Label y-axis
|
||||
xlabel('Population of City in 10,000s'); # Label x-axis
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,69 @@
|
|||
function submit()
|
||||
addpath('./lib');
|
||||
|
||||
conf.assignmentSlug = 'linear-regression';
|
||||
conf.itemName = 'Linear Regression with Multiple Variables';
|
||||
conf.partArrays = { ...
|
||||
{ ...
|
||||
'1', ...
|
||||
{ 'warmUpExercise.m' }, ...
|
||||
'Warm-up Exercise', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'2', ...
|
||||
{ 'computeCost.m' }, ...
|
||||
'Computing Cost (for One Variable)', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'3', ...
|
||||
{ 'gradientDescent.m' }, ...
|
||||
'Gradient Descent (for One Variable)', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'4', ...
|
||||
{ 'featureNormalize.m' }, ...
|
||||
'Feature Normalization', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'5', ...
|
||||
{ 'computeCostMulti.m' }, ...
|
||||
'Computing Cost (for Multiple Variables)', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'6', ...
|
||||
{ 'gradientDescentMulti.m' }, ...
|
||||
'Gradient Descent (for Multiple Variables)', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'7', ...
|
||||
{ 'normalEqn.m' }, ...
|
||||
'Normal Equations', ...
|
||||
}, ...
|
||||
};
|
||||
conf.output = @output;
|
||||
|
||||
submitWithConfiguration(conf);
|
||||
end
|
||||
|
||||
function out = output(partId)
|
||||
% Random Test Cases
|
||||
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
|
||||
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
|
||||
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
|
||||
Y2 = Y1.^0.5 + Y1;
|
||||
if partId == '1'
|
||||
out = sprintf('%0.5f ', warmUpExercise());
|
||||
elseif partId == '2'
|
||||
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
|
||||
elseif partId == '3'
|
||||
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
|
||||
elseif partId == '4'
|
||||
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
|
||||
elseif partId == '5'
|
||||
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
|
||||
elseif partId == '6'
|
||||
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
|
||||
elseif partId == '7'
|
||||
out = sprintf('%0.5f ', normalEqn(X2, Y2));
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
# Created by Octave 4.4.1, Sun Aug 11 21:41:32 2019 GMT <unknown@LAPTOP-8PSOVU3K>
|
||||
# name: email
|
||||
# type: sq_string
|
||||
# elements: 1
|
||||
# length: 17
|
||||
tsb1995@gmail.com
|
||||
|
||||
|
||||
# name: token
|
||||
# type: sq_string
|
||||
# elements: 1
|
||||
# length: 16
|
||||
F1n31VQPbofugvf0
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
function A = warmUpExercise()
|
||||
%WARMUPEXERCISE Example function in octave
|
||||
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
|
||||
|
||||
A = [];
|
||||
% ============= YOUR CODE HERE ==============
|
||||
% Instructions: Return the 5x5 identity matrix
|
||||
% In octave, we return values by defining which variables
|
||||
% represent the return values (at the top of the file)
|
||||
% and then set them accordingly.
|
||||
|
||||
|
||||
A = eye(5);
|
||||
|
||||
|
||||
|
||||
|
||||
% ===========================================
|
||||
|
||||
|
||||
end
|
||||
Binary file not shown.
|
|
@ -0,0 +1,34 @@
|
|||
function [J, grad] = costFunction(theta, X, y)
|
||||
%COSTFUNCTION Compute cost and gradient for logistic regression
|
||||
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
|
||||
% parameter for logistic regression and the gradient of the cost
|
||||
% w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
%
|
||||
% Note: grad should have the same dimensions as theta
|
||||
%
|
||||
|
||||
h = sigmoid(X*theta);
|
||||
J = (1/m)*(-y'*log(h)-(1-y)'*log(1-h));
|
||||
grad = (1/m)*X'*(sigmoid(X*theta)-y);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
function [J, grad] = costFunctionReg(theta, X, y, lambda)
|
||||
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
|
||||
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
|
||||
% theta as the parameter for regularized logistic regression and the
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
n = length(theta);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
tempTheta = theta(1);
|
||||
h = sigmoid(X*theta);
|
||||
theta(1) = 0;
|
||||
J = (1/m)*(-y'*log(h)-(1-y)'*log(1-h));
|
||||
J = J + (lambda/(2*m))*sum(theta.^2);
|
||||
theta(1) = tempTheta;
|
||||
grad = (1/m)*X'*(sigmoid(X*theta)-y);
|
||||
for i=2:n
|
||||
grad(i) = grad(i) + (lambda/m)*theta(i);
|
||||
endfor
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,151 @@
|
|||
%% Machine Learning Online Class - Exercise 2: Logistic Regression
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the logistic
|
||||
% regression exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% sigmoid.m
|
||||
% costFunction.m
|
||||
% predict.m
|
||||
% costFunctionReg.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Load Data
|
||||
% The first two columns contains the exam scores and the third column
|
||||
% contains the label.
|
||||
|
||||
data = load('ex2data1.txt');
|
||||
X = data(:, [1, 2]); y = data(:, 3);
|
||||
|
||||
%% ==================== Part 1: Plotting ====================
|
||||
% We start the exercise by first plotting the data to understand the
|
||||
% the problem we are working with.
|
||||
|
||||
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
|
||||
'indicating (y = 0) examples.\n']);
|
||||
|
||||
plotData(X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
% Labels and Legend
|
||||
xlabel('Exam 1 score')
|
||||
ylabel('Exam 2 score')
|
||||
|
||||
% Specified in plot order
|
||||
legend('Admitted', 'Not admitted')
|
||||
hold off;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ============ Part 2: Compute Cost and Gradient ============
|
||||
% In this part of the exercise, you will implement the cost and gradient
|
||||
% for logistic regression. You neeed to complete the code in
|
||||
% costFunction.m
|
||||
|
||||
% Setup the data matrix appropriately, and add ones for the intercept term
|
||||
[m, n] = size(X);
|
||||
|
||||
% Add intercept term to x and X_test
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(n + 1, 1);
|
||||
|
||||
% Compute and display initial cost and gradient
|
||||
[cost, grad] = costFunction(initial_theta, X, y);
|
||||
|
||||
fprintf('Cost at initial theta (zeros): %f\n', cost);
|
||||
fprintf('Expected cost (approx): 0.693\n');
|
||||
fprintf('Gradient at initial theta (zeros): \n');
|
||||
fprintf(' %f \n', grad);
|
||||
fprintf('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628\n');
|
||||
|
||||
% Compute and display cost and gradient with non-zero theta
|
||||
test_theta = [-24; 0.2; 0.2];
|
||||
[cost, grad] = costFunction(test_theta, X, y);
|
||||
|
||||
fprintf('\nCost at test theta: %f\n', cost);
|
||||
fprintf('Expected cost (approx): 0.218\n');
|
||||
fprintf('Gradient at test theta: \n');
|
||||
fprintf(' %f \n', grad);
|
||||
fprintf('Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n');
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ============= Part 3: Optimizing using fminunc =============
|
||||
% In this exercise, you will use a built-in function (fminunc) to find the
|
||||
% optimal parameters theta.
|
||||
|
||||
% Set options for fminunc
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 400);
|
||||
|
||||
% Run fminunc to obtain the optimal theta
|
||||
% This function will return theta and the cost
|
||||
[theta, cost] = ...
|
||||
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
|
||||
|
||||
% Print theta to screen
|
||||
fprintf('Cost at theta found by fminunc: %f\n', cost);
|
||||
fprintf('Expected cost (approx): 0.203\n');
|
||||
fprintf('theta: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
fprintf('Expected theta (approx):\n');
|
||||
fprintf(' -25.161\n 0.206\n 0.201\n');
|
||||
|
||||
% Plot Boundary
|
||||
plotDecisionBoundary(theta, X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
% Labels and Legend
|
||||
xlabel('Exam 1 score')
|
||||
ylabel('Exam 2 score')
|
||||
|
||||
% Specified in plot order
|
||||
legend('Admitted', 'Not admitted')
|
||||
hold off;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============== Part 4: Predict and Accuracies ==============
|
||||
% After learning the parameters, you'll like to use it to predict the outcomes
|
||||
% on unseen data. In this part, you will use the logistic regression model
|
||||
% to predict the probability that a student with score 45 on exam 1 and
|
||||
% score 85 on exam 2 will be admitted.
|
||||
%
|
||||
% Furthermore, you will compute the training and test set accuracies of
|
||||
% our model.
|
||||
%
|
||||
% Your task is to complete the code in predict.m
|
||||
|
||||
% Predict probability for a student with score 45 on exam 1
|
||||
% and score 85 on exam 2
|
||||
|
||||
prob = sigmoid([1 45 85] * theta);
|
||||
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
|
||||
'probability of %f\n'], prob);
|
||||
fprintf('Expected value: 0.775 +/- 0.002\n\n');
|
||||
|
||||
% Compute accuracy on our training set
|
||||
p = predict(theta, X);
|
||||
|
||||
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
fprintf('Expected accuracy (approx): 89.0\n');
|
||||
fprintf('\n');
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,136 @@
|
|||
%% Machine Learning Online Class - Exercise 2: Logistic Regression
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the second part
|
||||
% of the exercise which covers regularization with logistic regression.
|
||||
%
|
||||
% You will need to complete the following functions in this exericse:
|
||||
%
|
||||
% sigmoid.m
|
||||
% costFunction.m
|
||||
% predict.m
|
||||
% costFunctionReg.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Load Data
|
||||
% The first two columns contains the X values and the third column
|
||||
% contains the label (y).
|
||||
|
||||
data = load('ex2data2.txt');
|
||||
X = data(:, [1, 2]); y = data(:, 3);
|
||||
|
||||
plotData(X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
|
||||
% Labels and Legend
|
||||
xlabel('Microchip Test 1')
|
||||
ylabel('Microchip Test 2')
|
||||
|
||||
% Specified in plot order
|
||||
legend('y = 1', 'y = 0')
|
||||
hold off;
|
||||
|
||||
|
||||
%% =========== Part 1: Regularized Logistic Regression ============
|
||||
% In this part, you are given a dataset with data points that are not
|
||||
% linearly separable. However, you would still like to use logistic
|
||||
% regression to classify the data points.
|
||||
%
|
||||
% To do so, you introduce more features to use -- in particular, you add
|
||||
% polynomial features to our data matrix (similar to polynomial
|
||||
% regression).
|
||||
%
|
||||
|
||||
% Add Polynomial Features
|
||||
|
||||
% Note that mapFeature also adds a column of ones for us, so the intercept
|
||||
% term is handled
|
||||
X = mapFeature(X(:,1), X(:,2));
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Set regularization parameter lambda to 1
|
||||
lambda = 1;
|
||||
|
||||
% Compute and display initial cost and gradient for regularized logistic
|
||||
% regression
|
||||
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
|
||||
|
||||
fprintf('Cost at initial theta (zeros): %f\n', cost);
|
||||
fprintf('Expected cost (approx): 0.693\n');
|
||||
fprintf('Gradient at initial theta (zeros) - first five values only:\n');
|
||||
fprintf(' %f \n', grad(1:5));
|
||||
fprintf('Expected gradients (approx) - first five values only:\n');
|
||||
fprintf(' 0.0085\n 0.0188\n 0.0001\n 0.0503\n 0.0115\n');
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
% Compute and display cost and gradient
|
||||
% with all-ones theta and lambda = 10
|
||||
test_theta = ones(size(X,2),1);
|
||||
[cost, grad] = costFunctionReg(test_theta, X, y, 10);
|
||||
|
||||
fprintf('\nCost at test theta (with lambda = 10): %f\n', cost);
|
||||
fprintf('Expected cost (approx): 3.16\n');
|
||||
fprintf('Gradient at test theta - first five values only:\n');
|
||||
fprintf(' %f \n', grad(1:5));
|
||||
fprintf('Expected gradients (approx) - first five values only:\n');
|
||||
fprintf(' 0.3460\n 0.1614\n 0.1948\n 0.2269\n 0.0922\n');
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============= Part 2: Regularization and Accuracies =============
|
||||
% Optional Exercise:
|
||||
% In this part, you will get to try different values of lambda and
|
||||
% see how regularization affects the decision coundart
|
||||
%
|
||||
% Try the following values of lambda (0, 1, 10, 100).
|
||||
%
|
||||
% How does the decision boundary change when you vary lambda? How does
|
||||
% the training set accuracy vary?
|
||||
%
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Set regularization parameter lambda to 1 (you should vary this)
|
||||
lambda = 1;
|
||||
|
||||
% Set Options
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 400);
|
||||
|
||||
% Optimize
|
||||
[theta, J, exit_flag] = ...
|
||||
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
|
||||
|
||||
% Plot Boundary
|
||||
plotDecisionBoundary(theta, X, y);
|
||||
hold on;
|
||||
title(sprintf('lambda = %g', lambda))
|
||||
|
||||
% Labels and Legend
|
||||
xlabel('Microchip Test 1')
|
||||
ylabel('Microchip Test 2')
|
||||
|
||||
legend('y = 1', 'y = 0', 'Decision boundary')
|
||||
hold off;
|
||||
|
||||
% Compute accuracy on our training set
|
||||
p = predict(theta, X);
|
||||
|
||||
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
fprintf('Expected accuracy (with lambda = 1): 83.1 (approx)\n');
|
||||
|
||||
|
|
@ -0,0 +1,100 @@
|
|||
34.62365962451697,78.0246928153624,0
|
||||
30.28671076822607,43.89499752400101,0
|
||||
35.84740876993872,72.90219802708364,0
|
||||
60.18259938620976,86.30855209546826,1
|
||||
79.0327360507101,75.3443764369103,1
|
||||
45.08327747668339,56.3163717815305,0
|
||||
61.10666453684766,96.51142588489624,1
|
||||
75.02474556738889,46.55401354116538,1
|
||||
76.09878670226257,87.42056971926803,1
|
||||
84.43281996120035,43.53339331072109,1
|
||||
95.86155507093572,38.22527805795094,0
|
||||
75.01365838958247,30.60326323428011,0
|
||||
82.30705337399482,76.48196330235604,1
|
||||
69.36458875970939,97.71869196188608,1
|
||||
39.53833914367223,76.03681085115882,0
|
||||
53.9710521485623,89.20735013750205,1
|
||||
69.07014406283025,52.74046973016765,1
|
||||
67.94685547711617,46.67857410673128,0
|
||||
70.66150955499435,92.92713789364831,1
|
||||
76.97878372747498,47.57596364975532,1
|
||||
67.37202754570876,42.83843832029179,0
|
||||
89.67677575072079,65.79936592745237,1
|
||||
50.534788289883,48.85581152764205,0
|
||||
34.21206097786789,44.20952859866288,0
|
||||
77.9240914545704,68.9723599933059,1
|
||||
62.27101367004632,69.95445795447587,1
|
||||
80.1901807509566,44.82162893218353,1
|
||||
93.114388797442,38.80067033713209,0
|
||||
61.83020602312595,50.25610789244621,0
|
||||
38.78580379679423,64.99568095539578,0
|
||||
61.379289447425,72.80788731317097,1
|
||||
85.40451939411645,57.05198397627122,1
|
||||
52.10797973193984,63.12762376881715,0
|
||||
52.04540476831827,69.43286012045222,1
|
||||
40.23689373545111,71.16774802184875,0
|
||||
54.63510555424817,52.21388588061123,0
|
||||
33.91550010906887,98.86943574220611,0
|
||||
64.17698887494485,80.90806058670817,1
|
||||
74.78925295941542,41.57341522824434,0
|
||||
34.1836400264419,75.2377203360134,0
|
||||
83.90239366249155,56.30804621605327,1
|
||||
51.54772026906181,46.85629026349976,0
|
||||
94.44336776917852,65.56892160559052,1
|
||||
82.36875375713919,40.61825515970618,0
|
||||
51.04775177128865,45.82270145776001,0
|
||||
62.22267576120188,52.06099194836679,0
|
||||
77.19303492601364,70.45820000180959,1
|
||||
97.77159928000232,86.7278223300282,1
|
||||
62.07306379667647,96.76882412413983,1
|
||||
91.56497449807442,88.69629254546599,1
|
||||
79.94481794066932,74.16311935043758,1
|
||||
99.2725269292572,60.99903099844988,1
|
||||
90.54671411399852,43.39060180650027,1
|
||||
34.52451385320009,60.39634245837173,0
|
||||
50.2864961189907,49.80453881323059,0
|
||||
49.58667721632031,59.80895099453265,0
|
||||
97.64563396007767,68.86157272420604,1
|
||||
32.57720016809309,95.59854761387875,0
|
||||
74.24869136721598,69.82457122657193,1
|
||||
71.79646205863379,78.45356224515052,1
|
||||
75.3956114656803,85.75993667331619,1
|
||||
35.28611281526193,47.02051394723416,0
|
||||
56.25381749711624,39.26147251058019,0
|
||||
30.05882244669796,49.59297386723685,0
|
||||
44.66826172480893,66.45008614558913,0
|
||||
66.56089447242954,41.09209807936973,0
|
||||
40.45755098375164,97.53518548909936,1
|
||||
49.07256321908844,51.88321182073966,0
|
||||
80.27957401466998,92.11606081344084,1
|
||||
66.74671856944039,60.99139402740988,1
|
||||
32.72283304060323,43.30717306430063,0
|
||||
64.0393204150601,78.03168802018232,1
|
||||
72.34649422579923,96.22759296761404,1
|
||||
60.45788573918959,73.09499809758037,1
|
||||
58.84095621726802,75.85844831279042,1
|
||||
99.82785779692128,72.36925193383885,1
|
||||
47.26426910848174,88.47586499559782,1
|
||||
50.45815980285988,75.80985952982456,1
|
||||
60.45555629271532,42.50840943572217,0
|
||||
82.22666157785568,42.71987853716458,0
|
||||
88.9138964166533,69.80378889835472,1
|
||||
94.83450672430196,45.69430680250754,1
|
||||
67.31925746917527,66.58935317747915,1
|
||||
57.23870631569862,59.51428198012956,1
|
||||
80.36675600171273,90.96014789746954,1
|
||||
68.46852178591112,85.59430710452014,1
|
||||
42.0754545384731,78.84478600148043,0
|
||||
75.47770200533905,90.42453899753964,1
|
||||
78.63542434898018,96.64742716885644,1
|
||||
52.34800398794107,60.76950525602592,0
|
||||
94.09433112516793,77.15910509073893,1
|
||||
90.44855097096364,87.50879176484702,1
|
||||
55.48216114069585,35.57070347228866,0
|
||||
74.49269241843041,84.84513684930135,1
|
||||
89.84580670720979,45.35828361091658,1
|
||||
83.48916274498238,48.38028579728175,1
|
||||
42.2617008099817,87.10385094025457,1
|
||||
99.31500880510394,68.77540947206617,1
|
||||
55.34001756003703,64.9319380069486,1
|
||||
74.77589300092767,89.52981289513276,1
|
||||
|
|
@ -0,0 +1,118 @@
|
|||
0.051267,0.69956,1
|
||||
-0.092742,0.68494,1
|
||||
-0.21371,0.69225,1
|
||||
-0.375,0.50219,1
|
||||
-0.51325,0.46564,1
|
||||
-0.52477,0.2098,1
|
||||
-0.39804,0.034357,1
|
||||
-0.30588,-0.19225,1
|
||||
0.016705,-0.40424,1
|
||||
0.13191,-0.51389,1
|
||||
0.38537,-0.56506,1
|
||||
0.52938,-0.5212,1
|
||||
0.63882,-0.24342,1
|
||||
0.73675,-0.18494,1
|
||||
0.54666,0.48757,1
|
||||
0.322,0.5826,1
|
||||
0.16647,0.53874,1
|
||||
-0.046659,0.81652,1
|
||||
-0.17339,0.69956,1
|
||||
-0.47869,0.63377,1
|
||||
-0.60541,0.59722,1
|
||||
-0.62846,0.33406,1
|
||||
-0.59389,0.005117,1
|
||||
-0.42108,-0.27266,1
|
||||
-0.11578,-0.39693,1
|
||||
0.20104,-0.60161,1
|
||||
0.46601,-0.53582,1
|
||||
0.67339,-0.53582,1
|
||||
-0.13882,0.54605,1
|
||||
-0.29435,0.77997,1
|
||||
-0.26555,0.96272,1
|
||||
-0.16187,0.8019,1
|
||||
-0.17339,0.64839,1
|
||||
-0.28283,0.47295,1
|
||||
-0.36348,0.31213,1
|
||||
-0.30012,0.027047,1
|
||||
-0.23675,-0.21418,1
|
||||
-0.06394,-0.18494,1
|
||||
0.062788,-0.16301,1
|
||||
0.22984,-0.41155,1
|
||||
0.2932,-0.2288,1
|
||||
0.48329,-0.18494,1
|
||||
0.64459,-0.14108,1
|
||||
0.46025,0.012427,1
|
||||
0.6273,0.15863,1
|
||||
0.57546,0.26827,1
|
||||
0.72523,0.44371,1
|
||||
0.22408,0.52412,1
|
||||
0.44297,0.67032,1
|
||||
0.322,0.69225,1
|
||||
0.13767,0.57529,1
|
||||
-0.0063364,0.39985,1
|
||||
-0.092742,0.55336,1
|
||||
-0.20795,0.35599,1
|
||||
-0.20795,0.17325,1
|
||||
-0.43836,0.21711,1
|
||||
-0.21947,-0.016813,1
|
||||
-0.13882,-0.27266,1
|
||||
0.18376,0.93348,0
|
||||
0.22408,0.77997,0
|
||||
0.29896,0.61915,0
|
||||
0.50634,0.75804,0
|
||||
0.61578,0.7288,0
|
||||
0.60426,0.59722,0
|
||||
0.76555,0.50219,0
|
||||
0.92684,0.3633,0
|
||||
0.82316,0.27558,0
|
||||
0.96141,0.085526,0
|
||||
0.93836,0.012427,0
|
||||
0.86348,-0.082602,0
|
||||
0.89804,-0.20687,0
|
||||
0.85196,-0.36769,0
|
||||
0.82892,-0.5212,0
|
||||
0.79435,-0.55775,0
|
||||
0.59274,-0.7405,0
|
||||
0.51786,-0.5943,0
|
||||
0.46601,-0.41886,0
|
||||
0.35081,-0.57968,0
|
||||
0.28744,-0.76974,0
|
||||
0.085829,-0.75512,0
|
||||
0.14919,-0.57968,0
|
||||
-0.13306,-0.4481,0
|
||||
-0.40956,-0.41155,0
|
||||
-0.39228,-0.25804,0
|
||||
-0.74366,-0.25804,0
|
||||
-0.69758,0.041667,0
|
||||
-0.75518,0.2902,0
|
||||
-0.69758,0.68494,0
|
||||
-0.4038,0.70687,0
|
||||
-0.38076,0.91886,0
|
||||
-0.50749,0.90424,0
|
||||
-0.54781,0.70687,0
|
||||
0.10311,0.77997,0
|
||||
0.057028,0.91886,0
|
||||
-0.10426,0.99196,0
|
||||
-0.081221,1.1089,0
|
||||
0.28744,1.087,0
|
||||
0.39689,0.82383,0
|
||||
0.63882,0.88962,0
|
||||
0.82316,0.66301,0
|
||||
0.67339,0.64108,0
|
||||
1.0709,0.10015,0
|
||||
-0.046659,-0.57968,0
|
||||
-0.23675,-0.63816,0
|
||||
-0.15035,-0.36769,0
|
||||
-0.49021,-0.3019,0
|
||||
-0.46717,-0.13377,0
|
||||
-0.28859,-0.060673,0
|
||||
-0.61118,-0.067982,0
|
||||
-0.66302,-0.21418,0
|
||||
-0.59965,-0.41886,0
|
||||
-0.72638,-0.082602,0
|
||||
-0.83007,0.31213,0
|
||||
-0.72062,0.53874,0
|
||||
-0.59389,0.49488,0
|
||||
-0.48445,0.99927,0
|
||||
-0.0063364,0.99927,0
|
||||
0.63265,-0.030612,0
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
The author of "jsonlab" toolbox is Qianqian Fang. Qianqian
|
||||
is currently an Assistant Professor at Massachusetts General Hospital,
|
||||
Harvard Medical School.
|
||||
|
||||
Address: Martinos Center for Biomedical Imaging,
|
||||
Massachusetts General Hospital,
|
||||
Harvard Medical School
|
||||
Bldg 149, 13th St, Charlestown, MA 02129, USA
|
||||
URL: http://nmr.mgh.harvard.edu/~fangq/
|
||||
Email: <fangq at nmr.mgh.harvard.edu> or <fangqq at gmail.com>
|
||||
|
||||
|
||||
The script loadjson.m was built upon previous works by
|
||||
|
||||
- Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
date: 2009/11/02
|
||||
- François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
date: 2009/03/22
|
||||
- Joel Feenstra: http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
date: 2008/07/03
|
||||
|
||||
|
||||
This toolbox contains patches submitted by the following contributors:
|
||||
|
||||
- Blake Johnson <bjohnso at bbn.com>
|
||||
part of revision 341
|
||||
|
||||
- Niclas Borlin <Niclas.Borlin at cs.umu.se>
|
||||
various fixes in revision 394, including
|
||||
- loadjson crashes for all-zero sparse matrix.
|
||||
- loadjson crashes for empty sparse matrix.
|
||||
- Non-zero size of 0-by-N and N-by-0 empty matrices is lost after savejson/loadjson.
|
||||
- loadjson crashes for sparse real column vector.
|
||||
- loadjson crashes for sparse complex column vector.
|
||||
- Data is corrupted by savejson for sparse real row vector.
|
||||
- savejson crashes for sparse complex row vector.
|
||||
|
||||
- Yul Kang <yul.kang.on at gmail.com>
|
||||
patches for svn revision 415.
|
||||
- savejson saves an empty cell array as [] instead of null
|
||||
- loadjson differentiates an empty struct from an empty array
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
============================================================================
|
||||
|
||||
JSONlab - a toolbox to encode/decode JSON/UBJSON files in MATLAB/Octave
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
|
||||
JSONlab ChangeLog (key features marked by *):
|
||||
|
||||
== JSONlab 1.0 (codename: Optimus - Final), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2015/01/02 polish help info for all major functions, update examples, finalize 1.0
|
||||
2014/12/19 fix a bug to strictly respect NoRowBracket in savejson
|
||||
|
||||
== JSONlab 1.0.0-RC2 (codename: Optimus - RC2), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/11/22 show progress bar in loadjson ('ShowProgress')
|
||||
2014/11/17 add Compact option in savejson to output compact JSON format ('Compact')
|
||||
2014/11/17 add FastArrayParser in loadjson to specify fast parser applicable levels
|
||||
2014/09/18 start official github mirror: https://github.com/fangq/jsonlab
|
||||
|
||||
== JSONlab 1.0.0-RC1 (codename: Optimus - RC1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/09/17 fix several compatibility issues when running on octave versions 3.2-3.8
|
||||
2014/09/17 support 2D cell and struct arrays in both savejson and saveubjson
|
||||
2014/08/04 escape special characters in a JSON string
|
||||
2014/02/16 fix a bug when saving ubjson files
|
||||
|
||||
== JSONlab 0.9.9 (codename: Optimus - beta), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/01/22 use binary read and write in saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.8-1 (codename: Optimus - alpha update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2013/10/07 better round-trip conservation for empty arrays and structs (patch submitted by Yul Kang)
|
||||
|
||||
== JSONlab 0.9.8 (codename: Optimus - alpha), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2013/08/23 *universal Binary JSON (UBJSON) support, including both saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.1 (codename: Rodimus, update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2012/12/18 *handling of various empty and sparse matrices (fixes submitted by Niclas Borlin)
|
||||
|
||||
== JSONlab 0.9.0 (codename: Rodimus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/06/17 *new format for an invalid leading char, unpacking hex code in savejson
|
||||
2012/06/01 support JSONP in savejson
|
||||
2012/05/25 fix the empty cell bug (reported by Cyril Davin)
|
||||
2012/04/05 savejson can save to a file (suggested by Patrick Rapin)
|
||||
|
||||
== JSONlab 0.8.1 (codename: Sentiel, Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/02/28 loadjson quotation mark escape bug, see http://bit.ly/yyk1nS
|
||||
2012/01/25 patch to handle root-less objects, contributed by Blake Johnson
|
||||
|
||||
== JSONlab 0.8.0 (codename: Sentiel), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/01/13 *speed up loadjson by 20 fold when parsing large data arrays in matlab
|
||||
2012/01/11 remove row bracket if an array has 1 element, suggested by Mykel Kochenderfer
|
||||
2011/12/22 *accept sequence of 'param',value input in savejson and loadjson
|
||||
2011/11/18 fix struct array bug reported by Mykel Kochenderfer
|
||||
|
||||
== JSONlab 0.5.1 (codename: Nexus Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/21 fix a bug in loadjson, previous code does not use any of the acceleration
|
||||
2011/10/20 loadjson supports JSON collections - concatenated JSON objects
|
||||
|
||||
== JSONlab 0.5.0 (codename: Nexus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/16 package and release jsonlab 0.5.0
|
||||
2011/10/15 *add json demo and regression test, support cpx numbers, fix double quote bug
|
||||
2011/10/11 *speed up readjson dramatically, interpret _Array* tags, show data in root level
|
||||
2011/10/10 create jsonlab project, start jsonlab website, add online documentation
|
||||
2011/10/07 *speed up savejson by 25x using sprintf instead of mat2str, add options support
|
||||
2011/10/06 *savejson works for structs, cells and arrays
|
||||
2011/09/09 derive loadjson from JSON parser from MATLAB Central, draft savejson.m
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are
|
||||
permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||||
of conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||||
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
The views and conclusions contained in the software and documentation are those of the
|
||||
authors and should not be interpreted as representing official policies, either expressed
|
||||
or implied, of the copyright holders.
|
||||
|
|
@ -0,0 +1,394 @@
|
|||
===============================================================================
|
||||
= JSONLab =
|
||||
= An open-source MATLAB/Octave JSON encoder and decoder =
|
||||
===============================================================================
|
||||
|
||||
*Copyright (C) 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>
|
||||
*License: BSD License, see License_BSD.txt for details
|
||||
*Version: 1.0 (Optimus - Final)
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Table of Content:
|
||||
|
||||
I. Introduction
|
||||
II. Installation
|
||||
III.Using JSONLab
|
||||
IV. Known Issues and TODOs
|
||||
V. Contribution and feedback
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
I. Introduction
|
||||
|
||||
JSON ([http://www.json.org/ JavaScript Object Notation]) is a highly portable,
|
||||
human-readable and "[http://en.wikipedia.org/wiki/JSON fat-free]" text format
|
||||
to represent complex and hierarchical data. It is as powerful as
|
||||
[http://en.wikipedia.org/wiki/XML XML], but less verbose. JSON format is widely
|
||||
used for data-exchange in applications, and is essential for the wild success
|
||||
of [http://en.wikipedia.org/wiki/Ajax_(programming) Ajax] and
|
||||
[http://en.wikipedia.org/wiki/Web_2.0 Web2.0].
|
||||
|
||||
UBJSON (Universal Binary JSON) is a binary JSON format, specifically
|
||||
optimized for compact file size and better performance while keeping
|
||||
the semantics as simple as the text-based JSON format. Using the UBJSON
|
||||
format allows to wrap complex binary data in a flexible and extensible
|
||||
structure, making it possible to process complex and large dataset
|
||||
without accuracy loss due to text conversions.
|
||||
|
||||
We envision that both JSON and its binary version will serve as part of
|
||||
the mainstream data-exchange formats for scientific research in the future.
|
||||
It will provide the flexibility and generality achieved by other popular
|
||||
general-purpose file specifications, such as
|
||||
[http://www.hdfgroup.org/HDF5/whatishdf5.html HDF5], with significantly
|
||||
reduced complexity and enhanced performance.
|
||||
|
||||
JSONLab is a free and open-source implementation of a JSON/UBJSON encoder
|
||||
and a decoder in the native MATLAB language. It can be used to convert a MATLAB
|
||||
data structure (array, struct, cell, struct array and cell array) into
|
||||
JSON/UBJSON formatted strings, or to decode a JSON/UBJSON file into MATLAB
|
||||
data structure. JSONLab supports both MATLAB and
|
||||
[http://www.gnu.org/software/octave/ GNU Octave] (a free MATLAB clone).
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
II. Installation
|
||||
|
||||
The installation of JSONLab is no different than any other simple
|
||||
MATLAB toolbox. You only need to download/unzip the JSONLab package
|
||||
to a folder, and add the folder's path to MATLAB/Octave's path list
|
||||
by using the following command:
|
||||
|
||||
addpath('/path/to/jsonlab');
|
||||
|
||||
If you want to add this path permanently, you need to type "pathtool",
|
||||
browse to the jsonlab root folder and add to the list, then click "Save".
|
||||
Then, run "rehash" in MATLAB, and type "which loadjson", if you see an
|
||||
output, that means JSONLab is installed for MATLAB/Octave.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
III.Using JSONLab
|
||||
|
||||
JSONLab provides two functions, loadjson.m -- a MATLAB->JSON decoder,
|
||||
and savejson.m -- a MATLAB->JSON encoder, for the text-based JSON, and
|
||||
two equivallent functions -- loadubjson and saveubjson for the binary
|
||||
JSON. The detailed help info for the four functions can be found below:
|
||||
|
||||
=== loadjson.m ===
|
||||
<pre>
|
||||
data=loadjson(fname,opt)
|
||||
or
|
||||
data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09, including previous works from
|
||||
|
||||
Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
created on 2009/11/02
|
||||
François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
created on 2009/03/22
|
||||
Joel Feenstra:
|
||||
http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
created on 2008/07/03
|
||||
|
||||
$Id: loadjson.m 452 2014-11-22 16:43:33Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a JSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
speed-optimized array parser when loading an
|
||||
array object. The fast array parser may
|
||||
collapse block arrays into a single large
|
||||
array similar to rules defined in cell2mat; 0 to
|
||||
use a legacy parser; if set to a larger-than-1
|
||||
value, this option will specify the minimum
|
||||
dimension to enable the fast array parser. For
|
||||
example, if the input is a 3D array, setting
|
||||
FastArrayParser to 1 will return a 3D array;
|
||||
setting to 2 will return a cell array of 2D
|
||||
arrays; setting to 3 will return to a 2D cell
|
||||
array of 1D vectors; setting to 4 will return a
|
||||
3D cell array.
|
||||
opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
dat=loadjson(['examples' filesep 'example1.json'])
|
||||
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== savejson.m ===
|
||||
|
||||
<pre>
|
||||
json=savejson(rootname,obj,filename)
|
||||
or
|
||||
json=savejson(rootname,obj,opt)
|
||||
json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
Object Notation) string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09
|
||||
|
||||
$Id: savejson.m 458 2014-12-19 22:17:17Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
filename: a string for the file name to save the output JSON data.
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
of a 1D/2D array;
|
||||
opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
precedent indentation; if 0, no indentation
|
||||
opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
and $1 represents the sign. For those who want to use
|
||||
1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
to represent NaN
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSONP='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a string in the JSON format (see http://json.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
savejson('jmesh',jsonmesh)
|
||||
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
</pre>
|
||||
|
||||
=== loadubjson.m ===
|
||||
|
||||
<pre>
|
||||
data=loadubjson(fname,opt)
|
||||
or
|
||||
data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/01
|
||||
|
||||
$Id: loadubjson.m 436 2014-08-05 20:51:40Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a UBJSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
in the UBJSON input data. B - Big-Endian format for
|
||||
integers (as required in the UBJSON specification);
|
||||
L - input integer fields are in Little-Endian order.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
obj=struct('string','value','array',[1 2 3]);
|
||||
ubjdata=saveubjson('obj',obj);
|
||||
dat=loadubjson(ubjdata)
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== saveubjson.m ===
|
||||
|
||||
<pre>
|
||||
json=saveubjson(rootname,obj,filename)
|
||||
or
|
||||
json=saveubjson(rootname,obj,opt)
|
||||
json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a Universal
|
||||
Binary JSON (UBJSON) binary string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/17
|
||||
|
||||
$Id: saveubjson.m 440 2014-09-17 19:59:45Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
filename: a string for the file name to save the output UBJSON data
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSON='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
saveubjson('jsonmesh',jsonmesh)
|
||||
saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
</pre>
|
||||
|
||||
|
||||
=== examples ===
|
||||
|
||||
Under the "examples" folder, you can find several scripts to demonstrate the
|
||||
basic utilities of JSONLab. Running the "demo_jsonlab_basic.m" script, you
|
||||
will see the conversions from MATLAB data structure to JSON text and backward.
|
||||
In "jsonlab_selftest.m", we load complex JSON files downloaded from the Internet
|
||||
and validate the loadjson/savejson functions for regression testing purposes.
|
||||
Similarly, a "demo_ubjson_basic.m" script is provided to test the saveubjson
|
||||
and loadubjson pairs for various matlab data structures.
|
||||
|
||||
Please run these examples and understand how JSONLab works before you use
|
||||
it to process your data.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
IV. Known Issues and TODOs
|
||||
|
||||
JSONLab has several known limitations. We are striving to make it more general
|
||||
and robust. Hopefully in a few future releases, the limitations become less.
|
||||
|
||||
Here are the known issues:
|
||||
|
||||
# 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays;
|
||||
# When processing names containing multi-byte characters, Octave and MATLAB \
|
||||
can give different field-names; you can use feature('DefaultCharacterSet','latin1') \
|
||||
in MATLAB to get consistant results
|
||||
# savejson can not handle class and dataset.
|
||||
# saveubjson converts a logical array into a uint8 ([U]) array
|
||||
# an unofficial N-D array count syntax is implemented in saveubjson. We are \
|
||||
actively communicating with the UBJSON spec maintainer to investigate the \
|
||||
possibility of making it upstream
|
||||
# loadubjson can not parse all UBJSON Specification (Draft 9) compliant \
|
||||
files, however, it can parse all UBJSON files produced by saveubjson.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
V. Contribution and feedback
|
||||
|
||||
JSONLab is an open-source project. This means you can not only use it and modify
|
||||
it as you wish, but also you can contribute your changes back to JSONLab so
|
||||
that everyone else can enjoy the improvement. For anyone who want to contribute,
|
||||
please download JSONLab source code from it's subversion repository by using the
|
||||
following command:
|
||||
|
||||
svn checkout svn://svn.code.sf.net/p/iso2mesh/code/trunk/jsonlab jsonlab
|
||||
|
||||
You can make changes to the files as needed. Once you are satisfied with your
|
||||
changes, and ready to share it with others, please cd the root directory of
|
||||
JSONLab, and type
|
||||
|
||||
svn diff > yourname_featurename.patch
|
||||
|
||||
You then email the .patch file to JSONLab's maintainer, Qianqian Fang, at
|
||||
the email address shown in the beginning of this file. Qianqian will review
|
||||
the changes and commit it to the subversion if they are satisfactory.
|
||||
|
||||
We appreciate any suggestions and feedbacks from you. Please use iso2mesh's
|
||||
mailing list to report any questions you may have with JSONLab:
|
||||
|
||||
http://groups.google.com/group/iso2mesh-users?hl=en&pli=1
|
||||
|
||||
(Subscription to the mailing list is needed in order to post messages).
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
function val=jsonopt(key,default,varargin)
|
||||
%
|
||||
% val=jsonopt(key,default,optstruct)
|
||||
%
|
||||
% setting options based on a struct. The struct can be produced
|
||||
% by varargin2struct from a list of 'param','value' pairs
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
%
|
||||
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
|
||||
%
|
||||
% input:
|
||||
% key: a string with which one look up a value from a struct
|
||||
% default: if the key does not exist, return default
|
||||
% optstruct: a struct where each sub-field is a key
|
||||
%
|
||||
% output:
|
||||
% val: if key exists, val=optstruct.key; otherwise val=default
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
val=default;
|
||||
if(nargin<=2) return; end
|
||||
opt=varargin{1};
|
||||
if(isstruct(opt) && isfield(opt,key))
|
||||
val=getfield(opt,key);
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,566 @@
|
|||
function data = loadjson(fname,varargin)
|
||||
%
|
||||
% data=loadjson(fname,opt)
|
||||
% or
|
||||
% data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09, including previous works from
|
||||
%
|
||||
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
% created on 2009/11/02
|
||||
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
% created on 2009/03/22
|
||||
% Joel Feenstra:
|
||||
% http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
% created on 2008/07/03
|
||||
%
|
||||
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a JSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
% speed-optimized array parser when loading an
|
||||
% array object. The fast array parser may
|
||||
% collapse block arrays into a single large
|
||||
% array similar to rules defined in cell2mat; 0 to
|
||||
% use a legacy parser; if set to a larger-than-1
|
||||
% value, this option will specify the minimum
|
||||
% dimension to enable the fast array parser. For
|
||||
% example, if the input is a 3D array, setting
|
||||
% FastArrayParser to 1 will return a 3D array;
|
||||
% setting to 2 will return a cell array of 2D
|
||||
% arrays; setting to 3 will return to a 2D cell
|
||||
% array of 1D vectors; setting to 4 will return a
|
||||
% 3D cell array.
|
||||
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
% dat=loadjson(['examples' filesep 'example1.json'])
|
||||
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
|
||||
if(jsonopt('ShowProgress',0,opt)==1)
|
||||
opt.progressbar_=waitbar(0,'loading ...');
|
||||
end
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
if(isfield(opt,'progressbar_'))
|
||||
close(opt.progressbar_);
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=data(j).x0x5F_ArraySize_;
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
if next_char ~= '}'
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
parse_char('}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim2=[];
|
||||
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
|
||||
if next_char ~= ']'
|
||||
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
|
||||
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
|
||||
arraystr=['[' inStr(pos:endpos)];
|
||||
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
|
||||
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
|
||||
arraystr(arraystr==sprintf('\n'))=[];
|
||||
arraystr(arraystr==sprintf('\r'))=[];
|
||||
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
|
||||
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
|
||||
astr=inStr((e1l+1):(e1r-1));
|
||||
astr=regexprep(astr,'"_NaN_"','NaN');
|
||||
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
|
||||
astr(astr==sprintf('\n'))=[];
|
||||
astr(astr==sprintf('\r'))=[];
|
||||
astr(astr==' ')='';
|
||||
if(isempty(find(astr=='[', 1))) % array is 2D
|
||||
dim2=length(sscanf(astr,'%f,',[1 inf]));
|
||||
end
|
||||
else % array is 1D
|
||||
astr=arraystr(2:end-1);
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=obj;
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if(~isempty(dim2))
|
||||
astr=arraystr;
|
||||
astr(astr=='[')='';
|
||||
astr(astr==']')='';
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=reshape(obj,dim2,numel(obj)/dim2)';
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
return;
|
||||
end
|
||||
end
|
||||
arraystr=regexprep(arraystr,'\]\s*,','];');
|
||||
else
|
||||
arraystr='[';
|
||||
end
|
||||
try
|
||||
if(isoct && regexp(arraystr,'"','once'))
|
||||
error('Octave eval can produce empty cells for JSON-like input');
|
||||
end
|
||||
object=eval(arraystr);
|
||||
pos=endpos;
|
||||
catch
|
||||
while 1
|
||||
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
|
||||
val = parse_value(newopt);
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
parse_char(']');
|
||||
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr len esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
if inStr(pos) ~= '"'
|
||||
error_pos('String starting with " expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
str = '';
|
||||
while pos <= len
|
||||
while index_esc <= len_esc && esc(index_esc) < pos
|
||||
index_esc = index_esc + 1;
|
||||
end
|
||||
if index_esc > len_esc
|
||||
str = [str inStr(pos:len)];
|
||||
pos = len + 1;
|
||||
break;
|
||||
else
|
||||
str = [str inStr(pos:esc(index_esc)-1)];
|
||||
pos = esc(index_esc);
|
||||
end
|
||||
nstr = length(str); switch inStr(pos)
|
||||
case '"'
|
||||
pos = pos + 1;
|
||||
if(~isempty(str))
|
||||
if(strcmp(str,'_Inf_'))
|
||||
str=Inf;
|
||||
elseif(strcmp(str,'-_Inf_'))
|
||||
str=-Inf;
|
||||
elseif(strcmp(str,'_NaN_'))
|
||||
str=NaN;
|
||||
end
|
||||
end
|
||||
return;
|
||||
case '\'
|
||||
if pos+1 > len
|
||||
error_pos('End of file reached right after escape character');
|
||||
end
|
||||
pos = pos + 1;
|
||||
switch inStr(pos)
|
||||
case {'"' '\' '/'}
|
||||
str(nstr+1) = inStr(pos);
|
||||
pos = pos + 1;
|
||||
case {'b' 'f' 'n' 'r' 't'}
|
||||
str(nstr+1) = sprintf(['\' inStr(pos)]);
|
||||
pos = pos + 1;
|
||||
case 'u'
|
||||
if pos+4 > len
|
||||
error_pos('End of file reached in escaped unicode character');
|
||||
end
|
||||
str(nstr+(1:6)) = inStr(pos-1:pos+4);
|
||||
pos = pos + 5;
|
||||
end
|
||||
otherwise % should never happen
|
||||
str(nstr+1) = inStr(pos), keyboard
|
||||
pos = pos + 1;
|
||||
end
|
||||
end
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct
|
||||
currstr=inStr(pos:end);
|
||||
numstr=0;
|
||||
if(isoct~=0)
|
||||
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
|
||||
[num, one] = sscanf(currstr, '%f', 1);
|
||||
delta=numstr+1;
|
||||
else
|
||||
[num, one, err, delta] = sscanf(currstr, '%f', 1);
|
||||
if ~isempty(err)
|
||||
error_pos('Error reading number at position %d');
|
||||
end
|
||||
end
|
||||
pos = pos + delta-1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
if(pbar>0)
|
||||
waitbar(pos/len,pbar,'loading ...');
|
||||
end
|
||||
|
||||
switch(inStr(pos))
|
||||
case '"'
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'-','0','1','2','3','4','5','6','7','8','9'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 't'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
|
||||
val = true;
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
case 'f'
|
||||
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
|
||||
val = false;
|
||||
pos = pos + 5;
|
||||
return;
|
||||
end
|
||||
case 'n'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
|
||||
val = [];
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,528 @@
|
|||
function data = loadubjson(fname,varargin)
|
||||
%
|
||||
% data=loadubjson(fname,opt)
|
||||
% or
|
||||
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/01
|
||||
%
|
||||
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a UBJSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
% in the UBJSON input data. B - Big-Endian format for
|
||||
% integers (as required in the UBJSON specification);
|
||||
% L - input integer fields are in Little-Endian order.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% obj=struct('string','value','array',[1 2 3]);
|
||||
% ubjdata=saveubjson('obj',obj);
|
||||
% dat=loadubjson(ubjdata)
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
fileendian=upper(jsonopt('IntEndian','B',opt));
|
||||
[os,maxelem,systemendian]=computer;
|
||||
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
%%
|
||||
function newdata=parse_collection(id,data,obj)
|
||||
|
||||
if(jsoncount>0 && exist('data','var'))
|
||||
if(~iscell(data))
|
||||
newdata=cell(1);
|
||||
newdata{1}=data;
|
||||
data=newdata;
|
||||
end
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=double(data(j).x0x5F_ArraySize_);
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1); % TODO
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
count=double(parse_number());
|
||||
end
|
||||
if next_char ~= '}'
|
||||
num=0;
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
%parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
num=num+1;
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}' || (count>=0 && num>=count)
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char('}');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function [cid,len]=elem_info(type)
|
||||
id=strfind('iUIlLdD',type);
|
||||
dataclass={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
if(id>0)
|
||||
cid=dataclass{id};
|
||||
len=bytelen(id);
|
||||
else
|
||||
error_pos('unsupported type at position %d');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function [data adv]=parse_block(type,count,varargin)
|
||||
global pos inStr isoct fileendian systemendian
|
||||
[cid,len]=elem_info(type);
|
||||
datastr=inStr(pos:pos+len*count-1);
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
id=strfind('iUIlLdD',type);
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,cid));
|
||||
end
|
||||
data=typecast(newdata,cid);
|
||||
adv=double(len*count);
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim=[];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1);
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
if(next_char=='[')
|
||||
dim=parse_array(varargin{:});
|
||||
count=prod(double(dim));
|
||||
else
|
||||
count=double(parse_number());
|
||||
end
|
||||
end
|
||||
if(~isempty(type))
|
||||
if(count>=0)
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
if(~isempty(dim))
|
||||
object=reshape(object,dim);
|
||||
end
|
||||
pos=pos+adv;
|
||||
return;
|
||||
else
|
||||
endpos=matching_bracket(inStr,pos);
|
||||
[cid,len]=elem_info(type);
|
||||
count=(endpos-pos)/len;
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
pos=pos+adv;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if next_char ~= ']'
|
||||
while 1
|
||||
val = parse_value(varargin{:});
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char(']');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
type=inStr(pos);
|
||||
if type ~= 'S' && type ~= 'C' && type ~= 'H'
|
||||
error_pos('String starting with S expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
if(type == 'C')
|
||||
str=inStr(pos);
|
||||
pos=pos+1;
|
||||
return;
|
||||
end
|
||||
bytelen=double(parse_number());
|
||||
if(length(inStr)>=pos+bytelen-1)
|
||||
str=inStr(pos:pos+bytelen-1);
|
||||
pos=pos+bytelen;
|
||||
else
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct fileendian systemendian
|
||||
id=strfind('iUIlLdD',inStr(pos));
|
||||
if(isempty(id))
|
||||
error_pos('expecting a number at position %d');
|
||||
end
|
||||
type={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
datastr=inStr(pos+1:pos+bytelen(id));
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,type{id}));
|
||||
end
|
||||
num=typecast(newdata,type{id});
|
||||
pos = pos + bytelen(id)+1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
switch(inStr(pos))
|
||||
case {'S','C','H'}
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'i','U','I','l','L','d','D'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 'T'
|
||||
val = true;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case 'F'
|
||||
val = false;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case {'Z','N'}
|
||||
val = [];
|
||||
pos = pos + 1;
|
||||
return;
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,33 @@
|
|||
function s=mergestruct(s1,s2)
|
||||
%
|
||||
% s=mergestruct(s1,s2)
|
||||
%
|
||||
% merge two struct objects into one
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% s1,s2: a struct object, s1 and s2 can not be arrays
|
||||
%
|
||||
% output:
|
||||
% s: the merged struct object. fields in s1 and s2 will be combined in s.
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(~isstruct(s1) || ~isstruct(s2))
|
||||
error('input parameters contain non-struct');
|
||||
end
|
||||
if(length(s1)>1 || length(s2)>1)
|
||||
error('can not merge struct arrays');
|
||||
end
|
||||
fn=fieldnames(s2);
|
||||
s=s1;
|
||||
for i=1:length(fn)
|
||||
s=setfield(s,fn{i},getfield(s2,fn{i}));
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,475 @@
|
|||
function json=savejson(rootname,obj,varargin)
|
||||
%
|
||||
% json=savejson(rootname,obj,filename)
|
||||
% or
|
||||
% json=savejson(rootname,obj,opt)
|
||||
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
% Object Notation) string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09
|
||||
%
|
||||
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
% filename: a string for the file name to save the output JSON data.
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
% of a 1D/2D array;
|
||||
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
% precedent indentation; if 0, no indentation
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
% and $1 represents the sign. For those who want to use
|
||||
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
% to represent NaN
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSONP='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a string in the JSON format (see http://json.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% savejson('jmesh',jsonmesh)
|
||||
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
|
||||
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
if(jsonopt('Compact',0,opt)==1)
|
||||
whitespaces=struct('tab','','newline','','sep',',');
|
||||
end
|
||||
if(~isfield(opt,'whitespaces_'))
|
||||
opt.whitespaces_=whitespaces;
|
||||
end
|
||||
|
||||
nl=whitespaces.newline;
|
||||
|
||||
json=obj2json(rootname,obj,rootlevel,opt);
|
||||
if(rootisarray)
|
||||
json=sprintf('%s%s',json,nl);
|
||||
else
|
||||
json=sprintf('{%s%s%s}\n',nl,json,nl);
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=sprintf('%s(%s);%s',jsonp,json,nl);
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
if(jsonopt('SaveBinary',0,opt)==1)
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
else
|
||||
fid = fopen(opt.FileName, 'wt');
|
||||
fwrite(fid,json,'char');
|
||||
end
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2json(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2json(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2json(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2json(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2json(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
|
||||
else
|
||||
txt=sprintf('%s[%s',padding0,nl);
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
|
||||
else
|
||||
txt=sprintf('%s[]',padding0);
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
|
||||
nl=ws.newline;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
|
||||
else
|
||||
txt=sprintf('%s%s{%s',txt,padding1,nl);
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
|
||||
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
|
||||
txt=sprintf('%s%s',txt,nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s}',txt,padding1);
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
if(isoct)
|
||||
val=regexprep(item(e,:),'\\','\\');
|
||||
val=regexprep(val,'"','\"');
|
||||
val=regexprep(val,'^"','\"');
|
||||
else
|
||||
val=regexprep(item(e,:),'\\','\\\\');
|
||||
val=regexprep(val,'"','\\"');
|
||||
val=regexprep(val,'^"','\\"');
|
||||
end
|
||||
val=escapejsonstring(val);
|
||||
if(len==1)
|
||||
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
|
||||
if(isempty(name)) obj=['"',val,'"']; end
|
||||
txt=sprintf('%s%s%s%s',txt,padding1,obj);
|
||||
else
|
||||
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
|
||||
end
|
||||
if(e==len) sep=''; end
|
||||
txt=sprintf('%s%s',txt,sep);
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2json(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
else
|
||||
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
end
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
|
||||
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
else
|
||||
numtxt=matdata2json(item,level+1,varargin{:});
|
||||
end
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s%s',padding1,numtxt);
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
else
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
dataformat='%s%s%s%s%s';
|
||||
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,data],level+2,varargin{:}), nl);
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json(item(:)',level+2,varargin{:}), nl);
|
||||
else
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s%s',txt,padding1,'}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2json(mat,level,varargin)
|
||||
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
tab=ws.tab;
|
||||
nl=ws.newline;
|
||||
|
||||
if(size(mat,1)==1)
|
||||
pre='';
|
||||
post='';
|
||||
level=level-1;
|
||||
else
|
||||
pre=sprintf('[%s',nl);
|
||||
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
|
||||
end
|
||||
|
||||
if(isempty(mat))
|
||||
txt='null';
|
||||
return;
|
||||
end
|
||||
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
|
||||
%if(numel(mat)>1)
|
||||
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
|
||||
%else
|
||||
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
|
||||
%end
|
||||
|
||||
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
|
||||
formatstr=[repmat(tab,1,level) formatstr];
|
||||
end
|
||||
|
||||
txt=sprintf(formatstr,mat');
|
||||
txt(end-length(nl):end)=[];
|
||||
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
|
||||
txt=regexprep(txt,'1','true');
|
||||
txt=regexprep(txt,'0','false');
|
||||
end
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],\n['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
txt=[pre txt post];
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newstr=escapejsonstring(str)
|
||||
newstr=str;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
if(isoct)
|
||||
vv=sscanf(OCTAVE_VERSION,'%f');
|
||||
if(vv(1)>=3.8) isoct=0; end
|
||||
end
|
||||
if(isoct)
|
||||
escapechars={'\a','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},escapechars{i});
|
||||
end
|
||||
else
|
||||
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,504 @@
|
|||
function json=saveubjson(rootname,obj,varargin)
|
||||
%
|
||||
% json=saveubjson(rootname,obj,filename)
|
||||
% or
|
||||
% json=saveubjson(rootname,obj,opt)
|
||||
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a Universal
|
||||
% Binary JSON (UBJSON) binary string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/17
|
||||
%
|
||||
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
% filename: a string for the file name to save the output UBJSON data
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSON='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% saveubjson('jsonmesh',jsonmesh)
|
||||
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
json=obj2ubjson(rootname,obj,rootlevel,opt);
|
||||
if(~rootisarray)
|
||||
json=['{' json '}'];
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=[jsonp '(' json ')'];
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2ubjson(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2ubjson(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2ubjson(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2ubjson(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2ubjson(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item); % let's handle 1D cell first
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=[S_(checkname(name,varargin{:})) '[']; name='';
|
||||
else
|
||||
txt='[';
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
|
||||
else
|
||||
txt='Z';
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=[txt '[']; end
|
||||
for i=1:dim(1)
|
||||
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
|
||||
end
|
||||
if(dim(1)>1) txt=[txt ']']; end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
|
||||
else
|
||||
if(len>1) txt='['; end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=[txt '[']; end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=[txt S_(checkname(name,varargin{:})) '{'];
|
||||
else
|
||||
txt=[txt '{'];
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
|
||||
end
|
||||
end
|
||||
txt=[txt '}'];
|
||||
end
|
||||
if(dim(1)>1) txt=[txt ']']; end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
|
||||
else
|
||||
if(len>1) txt='['; end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
val=item(e,:);
|
||||
if(len==1)
|
||||
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
|
||||
if(isempty(name)) obj=['',S_(val),'']; end
|
||||
txt=[txt,'',obj];
|
||||
else
|
||||
txt=[txt,'',['',S_(val),'']];
|
||||
end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2ubjson(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
cid=I_(uint32(max(size(item))));
|
||||
if(isempty(name))
|
||||
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
|
||||
else
|
||||
if(isempty(item))
|
||||
txt=[S_(checkname(name,varargin{:})),'Z'];
|
||||
return;
|
||||
else
|
||||
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
|
||||
end
|
||||
end
|
||||
else
|
||||
if(isempty(name))
|
||||
txt=matdata2ubjson(item,level+1,varargin{:});
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
txt=[S_(checkname(name,varargin{:})) numtxt];
|
||||
else
|
||||
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=[txt,S_('_ArrayIsComplex_'),'T'];
|
||||
end
|
||||
txt=[txt,S_('_ArrayIsSparse_'),'T'];
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([ix,data],level+2,varargin{:})];
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson(item(:)',level+2,varargin{:})];
|
||||
else
|
||||
txt=[txt,S_('_ArrayIsComplex_'),'T'];
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
|
||||
end
|
||||
end
|
||||
txt=[txt,'}'];
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2ubjson(mat,level,varargin)
|
||||
if(isempty(mat))
|
||||
txt='Z';
|
||||
return;
|
||||
end
|
||||
if(size(mat,1)==1)
|
||||
level=level-1;
|
||||
end
|
||||
type='';
|
||||
hasnegtive=(mat<0);
|
||||
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
|
||||
if(isempty(hasnegtive))
|
||||
if(max(mat(:))<=2^8)
|
||||
type='U';
|
||||
end
|
||||
end
|
||||
if(isempty(type))
|
||||
% todo - need to consider negative ones separately
|
||||
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
|
||||
if(isempty(find(id)))
|
||||
error('high-precision data is not yet supported');
|
||||
end
|
||||
key='iIlL';
|
||||
type=key(find(id));
|
||||
end
|
||||
txt=[I_a(mat(:),type,size(mat))];
|
||||
elseif(islogical(mat))
|
||||
logicalval='FT';
|
||||
if(numel(mat)==1)
|
||||
txt=logicalval(mat+1);
|
||||
else
|
||||
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
|
||||
end
|
||||
else
|
||||
if(numel(mat)==1)
|
||||
txt=['[' D_(mat) ']'];
|
||||
else
|
||||
txt=D_a(mat(:),'D',size(mat));
|
||||
end
|
||||
end
|
||||
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=S_(str)
|
||||
if(length(str)==1)
|
||||
val=['C' str];
|
||||
else
|
||||
val=['S' I_(int32(length(str))) str];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=I_(num)
|
||||
if(~isinteger(num))
|
||||
error('input is not an integer');
|
||||
end
|
||||
if(num>=0 && num<255)
|
||||
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
|
||||
return;
|
||||
end
|
||||
key='iIlL';
|
||||
cid={'int8','int16','int32','int64'};
|
||||
for i=1:4
|
||||
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
|
||||
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
|
||||
return;
|
||||
end
|
||||
end
|
||||
error('unsupported integer');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=D_(num)
|
||||
if(~isfloat(num))
|
||||
error('input is not a float');
|
||||
end
|
||||
|
||||
if(isa(num,'single'))
|
||||
val=['d' data2byte(num,'uint8')];
|
||||
else
|
||||
val=['D' data2byte(num,'uint8')];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function data=I_a(num,type,dim,format)
|
||||
id=find(ismember('iUIlL',type));
|
||||
|
||||
if(id==0)
|
||||
error('unsupported integer array');
|
||||
end
|
||||
|
||||
% based on UBJSON specs, all integer types are stored in big endian format
|
||||
|
||||
if(id==1)
|
||||
data=data2byte(swapbytes(int8(num)),'uint8');
|
||||
blen=1;
|
||||
elseif(id==2)
|
||||
data=data2byte(swapbytes(uint8(num)),'uint8');
|
||||
blen=1;
|
||||
elseif(id==3)
|
||||
data=data2byte(swapbytes(int16(num)),'uint8');
|
||||
blen=2;
|
||||
elseif(id==4)
|
||||
data=data2byte(swapbytes(int32(num)),'uint8');
|
||||
blen=4;
|
||||
elseif(id==5)
|
||||
data=data2byte(swapbytes(int64(num)),'uint8');
|
||||
blen=8;
|
||||
end
|
||||
|
||||
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
|
||||
format='opt';
|
||||
end
|
||||
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
|
||||
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
|
||||
cid=I_(uint32(max(dim)));
|
||||
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
|
||||
else
|
||||
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
|
||||
end
|
||||
data=['[' data(:)'];
|
||||
else
|
||||
data=reshape(data,blen,numel(data)/blen);
|
||||
data(2:blen+1,:)=data;
|
||||
data(1,:)=type;
|
||||
data=data(:)';
|
||||
data=['[' data(:)' ']'];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function data=D_a(num,type,dim,format)
|
||||
id=find(ismember('dD',type));
|
||||
|
||||
if(id==0)
|
||||
error('unsupported float array');
|
||||
end
|
||||
|
||||
if(id==1)
|
||||
data=data2byte(single(num),'uint8');
|
||||
elseif(id==2)
|
||||
data=data2byte(double(num),'uint8');
|
||||
end
|
||||
|
||||
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
|
||||
format='opt';
|
||||
end
|
||||
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
|
||||
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
|
||||
cid=I_(uint32(max(dim)));
|
||||
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
|
||||
else
|
||||
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
|
||||
end
|
||||
data=['[' data];
|
||||
else
|
||||
data=reshape(data,(id*4),length(data)/(id*4));
|
||||
data(2:(id*4+1),:)=data;
|
||||
data(1,:)=type;
|
||||
data=data(:)';
|
||||
data=['[' data(:)' ']'];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function bytes=data2byte(varargin)
|
||||
bytes=typecast(varargin{:});
|
||||
bytes=bytes(:)';
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
function opt=varargin2struct(varargin)
|
||||
%
|
||||
% opt=varargin2struct('param1',value1,'param2',value2,...)
|
||||
% or
|
||||
% opt=varargin2struct(...,optstruct,...)
|
||||
%
|
||||
% convert a series of input parameters into a structure
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% 'param', value: the input parameters should be pairs of a string and a value
|
||||
% optstruct: if a parameter is a struct, the fields will be merged to the output struct
|
||||
%
|
||||
% output:
|
||||
% opt: a struct where opt.param1=value1, opt.param2=value2 ...
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
len=length(varargin);
|
||||
opt=struct;
|
||||
if(len==0) return; end
|
||||
i=1;
|
||||
while(i<=len)
|
||||
if(isstruct(varargin{i}))
|
||||
opt=mergestruct(opt,varargin{i});
|
||||
elseif(ischar(varargin{i}) && i<len)
|
||||
opt=setfield(opt,varargin{i},varargin{i+1});
|
||||
i=i+1;
|
||||
else
|
||||
error('input must be in the form of ...,''name'',value,... pairs or structs');
|
||||
end
|
||||
i=i+1;
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,30 @@
|
|||
function str = makeValidFieldName(str)
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,179 @@
|
|||
function submitWithConfiguration(conf)
|
||||
addpath('./lib/jsonlab');
|
||||
|
||||
parts = parts(conf);
|
||||
|
||||
fprintf('== Submitting solutions | %s...\n', conf.itemName);
|
||||
|
||||
tokenFile = 'token.mat';
|
||||
if exist(tokenFile, 'file')
|
||||
load(tokenFile);
|
||||
[email token] = promptToken(email, token, tokenFile);
|
||||
else
|
||||
[email token] = promptToken('', '', tokenFile);
|
||||
end
|
||||
|
||||
if isempty(token)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
try
|
||||
response = submitParts(conf, email, token, parts);
|
||||
catch
|
||||
e = lasterror();
|
||||
fprintf('\n!! Submission failed: %s\n', e.message);
|
||||
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
|
||||
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
|
||||
fprintf('\nPlease correct your code and resubmit.\n');
|
||||
return
|
||||
end
|
||||
|
||||
if isfield(response, 'errorMessage')
|
||||
fprintf('!! Submission failed: %s\n', response.errorMessage);
|
||||
elseif isfield(response, 'errorCode')
|
||||
fprintf('!! Submission failed: %s\n', response.message);
|
||||
else
|
||||
showFeedback(parts, response);
|
||||
save(tokenFile, 'email', 'token');
|
||||
end
|
||||
end
|
||||
|
||||
function [email token] = promptToken(email, existingToken, tokenFile)
|
||||
if (~isempty(email) && ~isempty(existingToken))
|
||||
prompt = sprintf( ...
|
||||
'Use token from last successful submission (%s)? (Y/n): ', ...
|
||||
email);
|
||||
reenter = input(prompt, 's');
|
||||
|
||||
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
|
||||
token = existingToken;
|
||||
return;
|
||||
else
|
||||
delete(tokenFile);
|
||||
end
|
||||
end
|
||||
email = input('Login (email address): ', 's');
|
||||
token = input('Token: ', 's');
|
||||
end
|
||||
|
||||
function isValid = isValidPartOptionIndex(partOptions, i)
|
||||
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
|
||||
end
|
||||
|
||||
function response = submitParts(conf, email, token, parts)
|
||||
body = makePostBody(conf, email, token, parts);
|
||||
submissionUrl = submissionUrl();
|
||||
|
||||
responseBody = getResponse(submissionUrl, body);
|
||||
jsonResponse = validateResponse(responseBody);
|
||||
response = loadjson(jsonResponse);
|
||||
end
|
||||
|
||||
function body = makePostBody(conf, email, token, parts)
|
||||
bodyStruct.assignmentSlug = conf.assignmentSlug;
|
||||
bodyStruct.submitterEmail = email;
|
||||
bodyStruct.secret = token;
|
||||
bodyStruct.parts = makePartsStruct(conf, parts);
|
||||
|
||||
opt.Compact = 1;
|
||||
body = savejson('', bodyStruct, opt);
|
||||
end
|
||||
|
||||
function partsStruct = makePartsStruct(conf, parts)
|
||||
for part = parts
|
||||
partId = part{:}.id;
|
||||
fieldName = makeValidFieldName(partId);
|
||||
outputStruct.output = conf.output(partId);
|
||||
partsStruct.(fieldName) = outputStruct;
|
||||
end
|
||||
end
|
||||
|
||||
function [parts] = parts(conf)
|
||||
parts = {};
|
||||
for partArray = conf.partArrays
|
||||
part.id = partArray{:}{1};
|
||||
part.sourceFiles = partArray{:}{2};
|
||||
part.name = partArray{:}{3};
|
||||
parts{end + 1} = part;
|
||||
end
|
||||
end
|
||||
|
||||
function showFeedback(parts, response)
|
||||
fprintf('== \n');
|
||||
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
|
||||
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
|
||||
for part = parts
|
||||
score = '';
|
||||
partFeedback = '';
|
||||
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
|
||||
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
|
||||
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
|
||||
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
|
||||
end
|
||||
evaluation = response.evaluation;
|
||||
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
|
||||
fprintf('== --------------------------------\n');
|
||||
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
|
||||
fprintf('== \n');
|
||||
end
|
||||
|
||||
% use urlread or curl to send submit results to the grader and get a response
|
||||
function response = getResponse(url, body)
|
||||
% try using urlread() and a secure connection
|
||||
params = {'jsonBody', body};
|
||||
[response, success] = urlread(url, 'post', params);
|
||||
|
||||
if (success == 0)
|
||||
% urlread didn't work, try curl & the peer certificate patch
|
||||
if ispc
|
||||
% testing note: use 'jsonBody =' for a test case
|
||||
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
|
||||
else
|
||||
% it's linux/OS X, so use the other form
|
||||
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
|
||||
end
|
||||
% get the response body for the peer certificate patch method
|
||||
[code, response] = system(json_command);
|
||||
% test the success code
|
||||
if (code ~= 0)
|
||||
fprintf('[error] submission with curl() was not successful\n');
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% validate the grader's response
|
||||
function response = validateResponse(resp)
|
||||
% test if the response is json or an HTML page
|
||||
isJson = length(resp) > 0 && resp(1) == '{';
|
||||
isHtml = findstr(lower(resp), '<html');
|
||||
|
||||
if (isJson)
|
||||
response = resp;
|
||||
elseif (isHtml)
|
||||
% the response is html, so it's probably an error message
|
||||
printHTMLContents(resp);
|
||||
error('Grader response is an HTML message');
|
||||
else
|
||||
error('Grader sent no response');
|
||||
end
|
||||
end
|
||||
|
||||
% parse a HTML response and print it's contents
|
||||
function printHTMLContents(response)
|
||||
strippedResponse = regexprep(response, '<[^>]+>', ' ');
|
||||
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
|
||||
fprintf(strippedResponse);
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% Service configuration
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function submissionUrl = submissionUrl()
|
||||
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
|
||||
end
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
function out = mapFeature(X1, X2)
|
||||
% MAPFEATURE Feature mapping function to polynomial features
|
||||
%
|
||||
% MAPFEATURE(X1, X2) maps the two input features
|
||||
% to quadratic features used in the regularization exercise.
|
||||
%
|
||||
% Returns a new feature array with more features, comprising of
|
||||
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
|
||||
%
|
||||
% Inputs X1, X2 must be the same size
|
||||
%
|
||||
|
||||
degree = 6;
|
||||
out = ones(size(X1(:,1)));
|
||||
for i = 1:degree
|
||||
for j = 0:i
|
||||
out(:, end+1) = (X1.^(i-j)).*(X2.^j);
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
function plotData(X, y)
|
||||
%PLOTDATA Plots the data points X and y into a new figure
|
||||
% PLOTDATA(x,y) plots the data points with + for the positive examples
|
||||
% and o for the negative examples. X is assumed to be a Mx2 matrix.
|
||||
|
||||
% Create New Figure
|
||||
figure; hold on;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Plot the positive and negative examples on a
|
||||
% 2D plot, using the option 'k+' for the positive
|
||||
% examples and 'ko' for the negative examples.
|
||||
%
|
||||
|
||||
% Seperate between positive and negative ( 0 or 1 admission) to later represent on graph
|
||||
pos = find(y == 1);
|
||||
neg = find(y == 0);
|
||||
|
||||
% Setup Plots note: X(pos,1) finds all rows with positive output thanks to
|
||||
% our find function returning a vector containing the indeces of each
|
||||
plot(X(pos,1), X(pos,2), 'k+', 'LineWidth', 2, 'MarkerSize', 7);
|
||||
plot(X(neg,1), X(neg,2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
|
||||
hold off;
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
function plotDecisionBoundary(theta, X, y)
|
||||
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
|
||||
%the decision boundary defined by theta
|
||||
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
|
||||
% positive examples and o for the negative examples. X is assumed to be
|
||||
% a either
|
||||
% 1) Mx3 matrix, where the first column is an all-ones column for the
|
||||
% intercept.
|
||||
% 2) MxN, N>3 matrix, where the first column is all-ones
|
||||
|
||||
% Plot Data
|
||||
plotData(X(:,2:3), y);
|
||||
hold on
|
||||
|
||||
if size(X, 2) <= 3
|
||||
% Only need 2 points to define a line, so choose two endpoints
|
||||
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
|
||||
|
||||
% Calculate the decision boundary line
|
||||
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
|
||||
|
||||
% Plot, and adjust axes for better viewing
|
||||
plot(plot_x, plot_y)
|
||||
|
||||
% Legend, specific for the exercise
|
||||
legend('Admitted', 'Not admitted', 'Decision Boundary')
|
||||
axis([30, 100, 30, 100])
|
||||
else
|
||||
% Here is the grid range
|
||||
u = linspace(-1, 1.5, 50);
|
||||
v = linspace(-1, 1.5, 50);
|
||||
|
||||
z = zeros(length(u), length(v));
|
||||
% Evaluate z = theta*x over the grid
|
||||
for i = 1:length(u)
|
||||
for j = 1:length(v)
|
||||
z(i,j) = mapFeature(u(i), v(j))*theta;
|
||||
end
|
||||
end
|
||||
z = z'; % important to transpose z before calling contour
|
||||
|
||||
% Plot z = 0
|
||||
% Notice you need to specify the range [0, 0]
|
||||
contour(u, v, z, [0, 0], 'LineWidth', 2)
|
||||
end
|
||||
hold off
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
function p = predict(theta, X)
|
||||
%PREDICT Predict whether the label is 0 or 1 using learned logistic
|
||||
%regression parameters theta
|
||||
% p = PREDICT(theta, X) computes the predictions for X using a
|
||||
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
|
||||
|
||||
m = size(X, 1); % Number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(m, 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned logistic regression parameters.
|
||||
% You should set p to a vector of 0's and 1's
|
||||
%
|
||||
|
||||
temp = sigmoid(X*theta);
|
||||
for i=1:m
|
||||
if (temp(i)>=0.5)
|
||||
p(i) = 1;
|
||||
endif
|
||||
endfor
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
function g = sigmoid(z)
|
||||
%SIGMOID Compute sigmoid function
|
||||
% g = SIGMOID(z) computes the sigmoid of z.
|
||||
|
||||
% You need to return the following variables correctly
|
||||
g = zeros(size(z));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
|
||||
% vector or scalar).
|
||||
g = 1 + exp(-1*z);
|
||||
g = g.^(-1);
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
function submit()
|
||||
addpath('./lib');
|
||||
|
||||
conf.assignmentSlug = 'logistic-regression';
|
||||
conf.itemName = 'Logistic Regression';
|
||||
conf.partArrays = { ...
|
||||
{ ...
|
||||
'1', ...
|
||||
{ 'sigmoid.m' }, ...
|
||||
'Sigmoid Function', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'2', ...
|
||||
{ 'costFunction.m' }, ...
|
||||
'Logistic Regression Cost', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'3', ...
|
||||
{ 'costFunction.m' }, ...
|
||||
'Logistic Regression Gradient', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'4', ...
|
||||
{ 'predict.m' }, ...
|
||||
'Predict', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'5', ...
|
||||
{ 'costFunctionReg.m' }, ...
|
||||
'Regularized Logistic Regression Cost', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'6', ...
|
||||
{ 'costFunctionReg.m' }, ...
|
||||
'Regularized Logistic Regression Gradient', ...
|
||||
}, ...
|
||||
};
|
||||
conf.output = @output;
|
||||
|
||||
submitWithConfiguration(conf);
|
||||
end
|
||||
|
||||
function out = output(partId, auxstring)
|
||||
% Random Test Cases
|
||||
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
|
||||
y = sin(X(:,1) + X(:,2)) > 0;
|
||||
if partId == '1'
|
||||
out = sprintf('%0.5f ', sigmoid(X));
|
||||
elseif partId == '2'
|
||||
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
|
||||
elseif partId == '3'
|
||||
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
|
||||
out = sprintf('%0.5f ', grad);
|
||||
elseif partId == '4'
|
||||
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
|
||||
elseif partId == '5'
|
||||
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
|
||||
elseif partId == '6'
|
||||
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
|
||||
out = sprintf('%0.5f ', grad);
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
# Created by Octave 4.4.1, Wed Aug 14 14:40:02 2019 GMT <unknown@LAPTOP-8PSOVU3K>
|
||||
# name: email
|
||||
# type: sq_string
|
||||
# elements: 1
|
||||
# length: 17
|
||||
tsb1995@gmail.com
|
||||
|
||||
|
||||
# name: token
|
||||
# type: sq_string
|
||||
# elements: 1
|
||||
# length: 16
|
||||
dyGPwTWBjVLKRja1
|
||||
|
||||
|
||||
Binary file not shown.
|
|
@ -0,0 +1,59 @@
|
|||
function [h, display_array] = displayData(X, example_width)
|
||||
%DISPLAYDATA Display 2D data in a nice grid
|
||||
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
|
||||
% stored in X in a nice grid. It returns the figure handle h and the
|
||||
% displayed array if requested.
|
||||
|
||||
% Set example_width automatically if not passed in
|
||||
if ~exist('example_width', 'var') || isempty(example_width)
|
||||
example_width = round(sqrt(size(X, 2)));
|
||||
end
|
||||
|
||||
% Gray Image
|
||||
colormap(gray);
|
||||
|
||||
% Compute rows, cols
|
||||
[m n] = size(X);
|
||||
example_height = (n / example_width);
|
||||
|
||||
% Compute number of items to display
|
||||
display_rows = floor(sqrt(m));
|
||||
display_cols = ceil(m / display_rows);
|
||||
|
||||
% Between images padding
|
||||
pad = 1;
|
||||
|
||||
% Setup blank display
|
||||
display_array = - ones(pad + display_rows * (example_height + pad), ...
|
||||
pad + display_cols * (example_width + pad));
|
||||
|
||||
% Copy each example into a patch on the display array
|
||||
curr_ex = 1;
|
||||
for j = 1:display_rows
|
||||
for i = 1:display_cols
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
% Copy the patch
|
||||
|
||||
% Get the max value of the patch
|
||||
max_val = max(abs(X(curr_ex, :)));
|
||||
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
|
||||
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
|
||||
reshape(X(curr_ex, :), example_height, example_width) / max_val;
|
||||
curr_ex = curr_ex + 1;
|
||||
end
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Display Image
|
||||
h = imagesc(display_array, [-1 1]);
|
||||
|
||||
% Do not show axis
|
||||
axis image off
|
||||
|
||||
drawnow;
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,88 @@
|
|||
%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% lrCostFunction.m (logistic regression cost function)
|
||||
% oneVsAll.m
|
||||
% predictOneVsAll.m
|
||||
% predict.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this part of the exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex3data1.mat'); % training data stored in arrays X, y
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
rand_indices = randperm(m);
|
||||
sel = X(rand_indices(1:100), :);
|
||||
|
||||
displayData(sel);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============ Part 2a: Vectorize Logistic Regression ============
|
||||
% In this part of the exercise, you will reuse your logistic regression
|
||||
% code from the last exercise. You task here is to make sure that your
|
||||
% regularized logistic regression implementation is vectorized. After
|
||||
% that, you will implement one-vs-all classification for the handwritten
|
||||
% digit dataset.
|
||||
%
|
||||
|
||||
% Test case for lrCostFunction
|
||||
fprintf('\nTesting lrCostFunction() with regularization');
|
||||
|
||||
theta_t = [-2; -1; 1; 2];
|
||||
X_t = [ones(5,1) reshape(1:15,5,3)/10];
|
||||
y_t = ([1;0;1;0;1] >= 0.5);
|
||||
lambda_t = 3;
|
||||
[J grad] = lrCostFunction(theta_t, X_t, y_t, lambda_t);
|
||||
|
||||
fprintf('\nCost: %f\n', J);
|
||||
fprintf('Expected cost: 2.534819\n');
|
||||
fprintf('Gradients:\n');
|
||||
fprintf(' %f \n', grad);
|
||||
fprintf('Expected gradients:\n');
|
||||
fprintf(' 0.146561\n -0.548558\n 0.724722\n 1.398003\n');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
%% ============ Part 2b: One-vs-All Training ============
|
||||
fprintf('\nTraining One-vs-All Logistic Regression...\n')
|
||||
|
||||
lambda = 0.1;
|
||||
[all_theta] = oneVsAll(X, y, num_labels, lambda);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 3: Predict for One-Vs-All ================
|
||||
|
||||
pred = predictOneVsAll(all_theta, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
|
|
@ -0,0 +1,90 @@
|
|||
%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% lrCostFunction.m (logistic regression cost function)
|
||||
% oneVsAll.m
|
||||
% predictOneVsAll.m
|
||||
% predict.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
hidden_layer_size = 25; % 25 hidden units
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex3data1.mat');
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
sel = randperm(size(X, 1));
|
||||
sel = sel(1:100);
|
||||
|
||||
displayData(X(sel, :));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ================ Part 2: Loading Pameters ================
|
||||
% In this part of the exercise, we load some pre-initialized
|
||||
% neural network parameters.
|
||||
|
||||
fprintf('\nLoading Saved Neural Network Parameters ...\n')
|
||||
|
||||
% Load the weights into variables Theta1 and Theta2
|
||||
load('ex3weights.mat');
|
||||
|
||||
%% ================= Part 3: Implement Predict =================
|
||||
% After training the neural network, we would like to use it to predict
|
||||
% the labels. You will now implement the "predict" function to use the
|
||||
% neural network to predict the labels of the training set. This lets
|
||||
% you compute the training set accuracy.
|
||||
|
||||
pred = predict(Theta1, Theta2, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
% To give you an idea of the network's output, you can also run
|
||||
% through the examples one at the a time to see what it is predicting.
|
||||
|
||||
% Randomly permute examples
|
||||
rp = randperm(m);
|
||||
|
||||
for i = 1:m
|
||||
% Display
|
||||
fprintf('\nDisplaying Example Image\n');
|
||||
displayData(X(rp(i), :));
|
||||
|
||||
pred = predict(Theta1, Theta2, X(rp(i),:));
|
||||
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
|
||||
|
||||
% Pause with quit option
|
||||
s = input('Paused - press enter to continue, q to exit:','s');
|
||||
if s == 'q'
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
Binary file not shown.
Binary file not shown.
|
|
@ -0,0 +1,175 @@
|
|||
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
% Minimize a continuous differentialble multivariate function. Starting point
|
||||
% is given by "X" (D by 1), and the function named in the string "f", must
|
||||
% return a function value and a vector of partial derivatives. The Polack-
|
||||
% Ribiere flavour of conjugate gradients is used to compute search directions,
|
||||
% and a line search using quadratic and cubic polynomial approximations and the
|
||||
% Wolfe-Powell stopping criteria is used together with the slope ratio method
|
||||
% for guessing initial step sizes. Additionally a bunch of checks are made to
|
||||
% make sure that exploration is taking place and that extrapolation will not
|
||||
% be unboundedly large. The "length" gives the length of the run: if it is
|
||||
% positive, it gives the maximum number of line searches, if negative its
|
||||
% absolute gives the maximum allowed number of function evaluations. You can
|
||||
% (optionally) give "length" a second component, which will indicate the
|
||||
% reduction in function value to be expected in the first line-search (defaults
|
||||
% to 1.0). The function returns when either its length is up, or if no further
|
||||
% progress can be made (ie, we are at a minimum, or so close that due to
|
||||
% numerical problems, we cannot get any closer). If the function terminates
|
||||
% within a few iterations, it could be an indication that the function value
|
||||
% and derivatives are not consistent (ie, there may be a bug in the
|
||||
% implementation of your "f" function). The function returns the found
|
||||
% solution "X", a vector of function values "fX" indicating the progress made
|
||||
% and "i" the number of iterations (line searches or function evaluations,
|
||||
% depending on the sign of "length") used.
|
||||
%
|
||||
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
%
|
||||
% See also: checkgrad
|
||||
%
|
||||
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
|
||||
%
|
||||
%
|
||||
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
|
||||
%
|
||||
% Permission is granted for anyone to copy, use, or modify these
|
||||
% programs and accompanying documents for purposes of research or
|
||||
% education, provided this copyright notice is retained, and note is
|
||||
% made of any changes that have been made.
|
||||
%
|
||||
% These programs and documents are distributed without any warranty,
|
||||
% express or implied. As the programs were written for research
|
||||
% purposes only, they have not been tested to the degree that would be
|
||||
% advisable in any important application. All use of these programs is
|
||||
% entirely at the user's own risk.
|
||||
%
|
||||
% [ml-class] Changes Made:
|
||||
% 1) Function name and argument specifications
|
||||
% 2) Output display
|
||||
%
|
||||
|
||||
% Read options
|
||||
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
|
||||
length = options.MaxIter;
|
||||
else
|
||||
length = 100;
|
||||
end
|
||||
|
||||
|
||||
RHO = 0.01; % a bunch of constants for line searches
|
||||
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
|
||||
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
|
||||
EXT = 3.0; % extrapolate maximum 3 times the current bracket
|
||||
MAX = 20; % max 20 function evaluations per line search
|
||||
RATIO = 100; % maximum allowed slope ratio
|
||||
|
||||
argstr = ['feval(f, X']; % compose string used to call function
|
||||
for i = 1:(nargin - 3)
|
||||
argstr = [argstr, ',P', int2str(i)];
|
||||
end
|
||||
argstr = [argstr, ')'];
|
||||
|
||||
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
|
||||
S=['Iteration '];
|
||||
|
||||
i = 0; % zero the run length counter
|
||||
ls_failed = 0; % no previous line search has failed
|
||||
fX = [];
|
||||
[f1 df1] = eval(argstr); % get function value and gradient
|
||||
i = i + (length<0); % count epochs?!
|
||||
s = -df1; % search direction is steepest
|
||||
d1 = -s'*s; % this is the slope
|
||||
z1 = red/(1-d1); % initial step is red/(|s|+1)
|
||||
|
||||
while i < abs(length) % while not finished
|
||||
i = i + (length>0); % count iterations?!
|
||||
|
||||
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
|
||||
X = X + z1*s; % begin line search
|
||||
[f2 df2] = eval(argstr);
|
||||
i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
|
||||
if length>0, M = MAX; else M = min(MAX, -length-i); end
|
||||
success = 0; limit = -1; % initialize quanteties
|
||||
while 1
|
||||
while ((f2 > f1+z1*RHO*d1) || (d2 > -SIG*d1)) && (M > 0)
|
||||
limit = z1; % tighten the bracket
|
||||
if f2 > f1
|
||||
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
|
||||
else
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
|
||||
end
|
||||
if isnan(z2) || isinf(z2)
|
||||
z2 = z3/2; % if we had a numerical problem then bisect
|
||||
end
|
||||
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
|
||||
z1 = z1 + z2; % update the step
|
||||
X = X + z2*s;
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
z3 = z3-z2; % z3 is now relative to the location of z2
|
||||
end
|
||||
if f2 > f1+z1*RHO*d1 || d2 > -SIG*d1
|
||||
break; % this is a failure
|
||||
elseif d2 > SIG*d1
|
||||
success = 1; break; % success
|
||||
elseif M == 0
|
||||
break; % failure
|
||||
end
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
|
||||
if ~isreal(z2) || isnan(z2) || isinf(z2) || z2 < 0 % num prob or wrong sign?
|
||||
if limit < -0.5 % if we have no upper limit
|
||||
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
|
||||
else
|
||||
z2 = (limit-z1)/2; % otherwise bisect
|
||||
end
|
||||
elseif (limit > -0.5) && (z2+z1 > limit) % extraplation beyond max?
|
||||
z2 = (limit-z1)/2; % bisect
|
||||
elseif (limit < -0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
|
||||
z2 = z1*(EXT-1.0); % set to extrapolation limit
|
||||
elseif z2 < -z3*INT
|
||||
z2 = -z3*INT;
|
||||
elseif (limit > -0.5) && (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
|
||||
z2 = (limit-z1)*(1.0-INT);
|
||||
end
|
||||
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
|
||||
z1 = z1 + z2; X = X + z2*s; % update current estimates
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
end % end of line search
|
||||
|
||||
if success % if line search succeeded
|
||||
f1 = f2; fX = [fX' f1]';
|
||||
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
|
||||
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
d2 = df1'*s;
|
||||
if d2 > 0 % new slope must be negative
|
||||
s = -df1; % otherwise use steepest direction
|
||||
d2 = -s'*s;
|
||||
end
|
||||
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
|
||||
d1 = d2;
|
||||
ls_failed = 0; % this line search did not fail
|
||||
else
|
||||
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
|
||||
if ls_failed || i > abs(length) % line search failed twice in a row
|
||||
break; % or we ran out of time, so we give up
|
||||
end
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
s = -df1; % try steepest
|
||||
d1 = -s'*s;
|
||||
z1 = 1/(1-d1);
|
||||
ls_failed = 1; % this line search failed
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
The author of "jsonlab" toolbox is Qianqian Fang. Qianqian
|
||||
is currently an Assistant Professor at Massachusetts General Hospital,
|
||||
Harvard Medical School.
|
||||
|
||||
Address: Martinos Center for Biomedical Imaging,
|
||||
Massachusetts General Hospital,
|
||||
Harvard Medical School
|
||||
Bldg 149, 13th St, Charlestown, MA 02129, USA
|
||||
URL: http://nmr.mgh.harvard.edu/~fangq/
|
||||
Email: <fangq at nmr.mgh.harvard.edu> or <fangqq at gmail.com>
|
||||
|
||||
|
||||
The script loadjson.m was built upon previous works by
|
||||
|
||||
- Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
date: 2009/11/02
|
||||
- François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
date: 2009/03/22
|
||||
- Joel Feenstra: http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
date: 2008/07/03
|
||||
|
||||
|
||||
This toolbox contains patches submitted by the following contributors:
|
||||
|
||||
- Blake Johnson <bjohnso at bbn.com>
|
||||
part of revision 341
|
||||
|
||||
- Niclas Borlin <Niclas.Borlin at cs.umu.se>
|
||||
various fixes in revision 394, including
|
||||
- loadjson crashes for all-zero sparse matrix.
|
||||
- loadjson crashes for empty sparse matrix.
|
||||
- Non-zero size of 0-by-N and N-by-0 empty matrices is lost after savejson/loadjson.
|
||||
- loadjson crashes for sparse real column vector.
|
||||
- loadjson crashes for sparse complex column vector.
|
||||
- Data is corrupted by savejson for sparse real row vector.
|
||||
- savejson crashes for sparse complex row vector.
|
||||
|
||||
- Yul Kang <yul.kang.on at gmail.com>
|
||||
patches for svn revision 415.
|
||||
- savejson saves an empty cell array as [] instead of null
|
||||
- loadjson differentiates an empty struct from an empty array
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
============================================================================
|
||||
|
||||
JSONlab - a toolbox to encode/decode JSON/UBJSON files in MATLAB/Octave
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
|
||||
JSONlab ChangeLog (key features marked by *):
|
||||
|
||||
== JSONlab 1.0 (codename: Optimus - Final), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2015/01/02 polish help info for all major functions, update examples, finalize 1.0
|
||||
2014/12/19 fix a bug to strictly respect NoRowBracket in savejson
|
||||
|
||||
== JSONlab 1.0.0-RC2 (codename: Optimus - RC2), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/11/22 show progress bar in loadjson ('ShowProgress')
|
||||
2014/11/17 add Compact option in savejson to output compact JSON format ('Compact')
|
||||
2014/11/17 add FastArrayParser in loadjson to specify fast parser applicable levels
|
||||
2014/09/18 start official github mirror: https://github.com/fangq/jsonlab
|
||||
|
||||
== JSONlab 1.0.0-RC1 (codename: Optimus - RC1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/09/17 fix several compatibility issues when running on octave versions 3.2-3.8
|
||||
2014/09/17 support 2D cell and struct arrays in both savejson and saveubjson
|
||||
2014/08/04 escape special characters in a JSON string
|
||||
2014/02/16 fix a bug when saving ubjson files
|
||||
|
||||
== JSONlab 0.9.9 (codename: Optimus - beta), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/01/22 use binary read and write in saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.8-1 (codename: Optimus - alpha update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2013/10/07 better round-trip conservation for empty arrays and structs (patch submitted by Yul Kang)
|
||||
|
||||
== JSONlab 0.9.8 (codename: Optimus - alpha), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2013/08/23 *universal Binary JSON (UBJSON) support, including both saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.1 (codename: Rodimus, update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2012/12/18 *handling of various empty and sparse matrices (fixes submitted by Niclas Borlin)
|
||||
|
||||
== JSONlab 0.9.0 (codename: Rodimus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/06/17 *new format for an invalid leading char, unpacking hex code in savejson
|
||||
2012/06/01 support JSONP in savejson
|
||||
2012/05/25 fix the empty cell bug (reported by Cyril Davin)
|
||||
2012/04/05 savejson can save to a file (suggested by Patrick Rapin)
|
||||
|
||||
== JSONlab 0.8.1 (codename: Sentiel, Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/02/28 loadjson quotation mark escape bug, see http://bit.ly/yyk1nS
|
||||
2012/01/25 patch to handle root-less objects, contributed by Blake Johnson
|
||||
|
||||
== JSONlab 0.8.0 (codename: Sentiel), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/01/13 *speed up loadjson by 20 fold when parsing large data arrays in matlab
|
||||
2012/01/11 remove row bracket if an array has 1 element, suggested by Mykel Kochenderfer
|
||||
2011/12/22 *accept sequence of 'param',value input in savejson and loadjson
|
||||
2011/11/18 fix struct array bug reported by Mykel Kochenderfer
|
||||
|
||||
== JSONlab 0.5.1 (codename: Nexus Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/21 fix a bug in loadjson, previous code does not use any of the acceleration
|
||||
2011/10/20 loadjson supports JSON collections - concatenated JSON objects
|
||||
|
||||
== JSONlab 0.5.0 (codename: Nexus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/16 package and release jsonlab 0.5.0
|
||||
2011/10/15 *add json demo and regression test, support cpx numbers, fix double quote bug
|
||||
2011/10/11 *speed up readjson dramatically, interpret _Array* tags, show data in root level
|
||||
2011/10/10 create jsonlab project, start jsonlab website, add online documentation
|
||||
2011/10/07 *speed up savejson by 25x using sprintf instead of mat2str, add options support
|
||||
2011/10/06 *savejson works for structs, cells and arrays
|
||||
2011/09/09 derive loadjson from JSON parser from MATLAB Central, draft savejson.m
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are
|
||||
permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||||
of conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||||
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
The views and conclusions contained in the software and documentation are those of the
|
||||
authors and should not be interpreted as representing official policies, either expressed
|
||||
or implied, of the copyright holders.
|
||||
|
|
@ -0,0 +1,394 @@
|
|||
===============================================================================
|
||||
= JSONLab =
|
||||
= An open-source MATLAB/Octave JSON encoder and decoder =
|
||||
===============================================================================
|
||||
|
||||
*Copyright (C) 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>
|
||||
*License: BSD License, see License_BSD.txt for details
|
||||
*Version: 1.0 (Optimus - Final)
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Table of Content:
|
||||
|
||||
I. Introduction
|
||||
II. Installation
|
||||
III.Using JSONLab
|
||||
IV. Known Issues and TODOs
|
||||
V. Contribution and feedback
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
I. Introduction
|
||||
|
||||
JSON ([http://www.json.org/ JavaScript Object Notation]) is a highly portable,
|
||||
human-readable and "[http://en.wikipedia.org/wiki/JSON fat-free]" text format
|
||||
to represent complex and hierarchical data. It is as powerful as
|
||||
[http://en.wikipedia.org/wiki/XML XML], but less verbose. JSON format is widely
|
||||
used for data-exchange in applications, and is essential for the wild success
|
||||
of [http://en.wikipedia.org/wiki/Ajax_(programming) Ajax] and
|
||||
[http://en.wikipedia.org/wiki/Web_2.0 Web2.0].
|
||||
|
||||
UBJSON (Universal Binary JSON) is a binary JSON format, specifically
|
||||
optimized for compact file size and better performance while keeping
|
||||
the semantics as simple as the text-based JSON format. Using the UBJSON
|
||||
format allows to wrap complex binary data in a flexible and extensible
|
||||
structure, making it possible to process complex and large dataset
|
||||
without accuracy loss due to text conversions.
|
||||
|
||||
We envision that both JSON and its binary version will serve as part of
|
||||
the mainstream data-exchange formats for scientific research in the future.
|
||||
It will provide the flexibility and generality achieved by other popular
|
||||
general-purpose file specifications, such as
|
||||
[http://www.hdfgroup.org/HDF5/whatishdf5.html HDF5], with significantly
|
||||
reduced complexity and enhanced performance.
|
||||
|
||||
JSONLab is a free and open-source implementation of a JSON/UBJSON encoder
|
||||
and a decoder in the native MATLAB language. It can be used to convert a MATLAB
|
||||
data structure (array, struct, cell, struct array and cell array) into
|
||||
JSON/UBJSON formatted strings, or to decode a JSON/UBJSON file into MATLAB
|
||||
data structure. JSONLab supports both MATLAB and
|
||||
[http://www.gnu.org/software/octave/ GNU Octave] (a free MATLAB clone).
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
II. Installation
|
||||
|
||||
The installation of JSONLab is no different than any other simple
|
||||
MATLAB toolbox. You only need to download/unzip the JSONLab package
|
||||
to a folder, and add the folder's path to MATLAB/Octave's path list
|
||||
by using the following command:
|
||||
|
||||
addpath('/path/to/jsonlab');
|
||||
|
||||
If you want to add this path permanently, you need to type "pathtool",
|
||||
browse to the jsonlab root folder and add to the list, then click "Save".
|
||||
Then, run "rehash" in MATLAB, and type "which loadjson", if you see an
|
||||
output, that means JSONLab is installed for MATLAB/Octave.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
III.Using JSONLab
|
||||
|
||||
JSONLab provides two functions, loadjson.m -- a MATLAB->JSON decoder,
|
||||
and savejson.m -- a MATLAB->JSON encoder, for the text-based JSON, and
|
||||
two equivallent functions -- loadubjson and saveubjson for the binary
|
||||
JSON. The detailed help info for the four functions can be found below:
|
||||
|
||||
=== loadjson.m ===
|
||||
<pre>
|
||||
data=loadjson(fname,opt)
|
||||
or
|
||||
data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09, including previous works from
|
||||
|
||||
Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
created on 2009/11/02
|
||||
François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
created on 2009/03/22
|
||||
Joel Feenstra:
|
||||
http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
created on 2008/07/03
|
||||
|
||||
$Id: loadjson.m 452 2014-11-22 16:43:33Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a JSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
speed-optimized array parser when loading an
|
||||
array object. The fast array parser may
|
||||
collapse block arrays into a single large
|
||||
array similar to rules defined in cell2mat; 0 to
|
||||
use a legacy parser; if set to a larger-than-1
|
||||
value, this option will specify the minimum
|
||||
dimension to enable the fast array parser. For
|
||||
example, if the input is a 3D array, setting
|
||||
FastArrayParser to 1 will return a 3D array;
|
||||
setting to 2 will return a cell array of 2D
|
||||
arrays; setting to 3 will return to a 2D cell
|
||||
array of 1D vectors; setting to 4 will return a
|
||||
3D cell array.
|
||||
opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
dat=loadjson(['examples' filesep 'example1.json'])
|
||||
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== savejson.m ===
|
||||
|
||||
<pre>
|
||||
json=savejson(rootname,obj,filename)
|
||||
or
|
||||
json=savejson(rootname,obj,opt)
|
||||
json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
Object Notation) string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09
|
||||
|
||||
$Id: savejson.m 458 2014-12-19 22:17:17Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
filename: a string for the file name to save the output JSON data.
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
of a 1D/2D array;
|
||||
opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
precedent indentation; if 0, no indentation
|
||||
opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
and $1 represents the sign. For those who want to use
|
||||
1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
to represent NaN
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSONP='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a string in the JSON format (see http://json.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
savejson('jmesh',jsonmesh)
|
||||
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
</pre>
|
||||
|
||||
=== loadubjson.m ===
|
||||
|
||||
<pre>
|
||||
data=loadubjson(fname,opt)
|
||||
or
|
||||
data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/01
|
||||
|
||||
$Id: loadubjson.m 436 2014-08-05 20:51:40Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a UBJSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
in the UBJSON input data. B - Big-Endian format for
|
||||
integers (as required in the UBJSON specification);
|
||||
L - input integer fields are in Little-Endian order.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
obj=struct('string','value','array',[1 2 3]);
|
||||
ubjdata=saveubjson('obj',obj);
|
||||
dat=loadubjson(ubjdata)
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== saveubjson.m ===
|
||||
|
||||
<pre>
|
||||
json=saveubjson(rootname,obj,filename)
|
||||
or
|
||||
json=saveubjson(rootname,obj,opt)
|
||||
json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a Universal
|
||||
Binary JSON (UBJSON) binary string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/17
|
||||
|
||||
$Id: saveubjson.m 440 2014-09-17 19:59:45Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
filename: a string for the file name to save the output UBJSON data
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSON='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
saveubjson('jsonmesh',jsonmesh)
|
||||
saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
</pre>
|
||||
|
||||
|
||||
=== examples ===
|
||||
|
||||
Under the "examples" folder, you can find several scripts to demonstrate the
|
||||
basic utilities of JSONLab. Running the "demo_jsonlab_basic.m" script, you
|
||||
will see the conversions from MATLAB data structure to JSON text and backward.
|
||||
In "jsonlab_selftest.m", we load complex JSON files downloaded from the Internet
|
||||
and validate the loadjson/savejson functions for regression testing purposes.
|
||||
Similarly, a "demo_ubjson_basic.m" script is provided to test the saveubjson
|
||||
and loadubjson pairs for various matlab data structures.
|
||||
|
||||
Please run these examples and understand how JSONLab works before you use
|
||||
it to process your data.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
IV. Known Issues and TODOs
|
||||
|
||||
JSONLab has several known limitations. We are striving to make it more general
|
||||
and robust. Hopefully in a few future releases, the limitations become less.
|
||||
|
||||
Here are the known issues:
|
||||
|
||||
# 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays;
|
||||
# When processing names containing multi-byte characters, Octave and MATLAB \
|
||||
can give different field-names; you can use feature('DefaultCharacterSet','latin1') \
|
||||
in MATLAB to get consistant results
|
||||
# savejson can not handle class and dataset.
|
||||
# saveubjson converts a logical array into a uint8 ([U]) array
|
||||
# an unofficial N-D array count syntax is implemented in saveubjson. We are \
|
||||
actively communicating with the UBJSON spec maintainer to investigate the \
|
||||
possibility of making it upstream
|
||||
# loadubjson can not parse all UBJSON Specification (Draft 9) compliant \
|
||||
files, however, it can parse all UBJSON files produced by saveubjson.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
V. Contribution and feedback
|
||||
|
||||
JSONLab is an open-source project. This means you can not only use it and modify
|
||||
it as you wish, but also you can contribute your changes back to JSONLab so
|
||||
that everyone else can enjoy the improvement. For anyone who want to contribute,
|
||||
please download JSONLab source code from it's subversion repository by using the
|
||||
following command:
|
||||
|
||||
svn checkout svn://svn.code.sf.net/p/iso2mesh/code/trunk/jsonlab jsonlab
|
||||
|
||||
You can make changes to the files as needed. Once you are satisfied with your
|
||||
changes, and ready to share it with others, please cd the root directory of
|
||||
JSONLab, and type
|
||||
|
||||
svn diff > yourname_featurename.patch
|
||||
|
||||
You then email the .patch file to JSONLab's maintainer, Qianqian Fang, at
|
||||
the email address shown in the beginning of this file. Qianqian will review
|
||||
the changes and commit it to the subversion if they are satisfactory.
|
||||
|
||||
We appreciate any suggestions and feedbacks from you. Please use iso2mesh's
|
||||
mailing list to report any questions you may have with JSONLab:
|
||||
|
||||
http://groups.google.com/group/iso2mesh-users?hl=en&pli=1
|
||||
|
||||
(Subscription to the mailing list is needed in order to post messages).
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
function val=jsonopt(key,default,varargin)
|
||||
%
|
||||
% val=jsonopt(key,default,optstruct)
|
||||
%
|
||||
% setting options based on a struct. The struct can be produced
|
||||
% by varargin2struct from a list of 'param','value' pairs
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
%
|
||||
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
|
||||
%
|
||||
% input:
|
||||
% key: a string with which one look up a value from a struct
|
||||
% default: if the key does not exist, return default
|
||||
% optstruct: a struct where each sub-field is a key
|
||||
%
|
||||
% output:
|
||||
% val: if key exists, val=optstruct.key; otherwise val=default
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
val=default;
|
||||
if(nargin<=2) return; end
|
||||
opt=varargin{1};
|
||||
if(isstruct(opt) && isfield(opt,key))
|
||||
val=getfield(opt,key);
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,566 @@
|
|||
function data = loadjson(fname,varargin)
|
||||
%
|
||||
% data=loadjson(fname,opt)
|
||||
% or
|
||||
% data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09, including previous works from
|
||||
%
|
||||
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
% created on 2009/11/02
|
||||
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
% created on 2009/03/22
|
||||
% Joel Feenstra:
|
||||
% http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
% created on 2008/07/03
|
||||
%
|
||||
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a JSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
% speed-optimized array parser when loading an
|
||||
% array object. The fast array parser may
|
||||
% collapse block arrays into a single large
|
||||
% array similar to rules defined in cell2mat; 0 to
|
||||
% use a legacy parser; if set to a larger-than-1
|
||||
% value, this option will specify the minimum
|
||||
% dimension to enable the fast array parser. For
|
||||
% example, if the input is a 3D array, setting
|
||||
% FastArrayParser to 1 will return a 3D array;
|
||||
% setting to 2 will return a cell array of 2D
|
||||
% arrays; setting to 3 will return to a 2D cell
|
||||
% array of 1D vectors; setting to 4 will return a
|
||||
% 3D cell array.
|
||||
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
% dat=loadjson(['examples' filesep 'example1.json'])
|
||||
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
|
||||
if(jsonopt('ShowProgress',0,opt)==1)
|
||||
opt.progressbar_=waitbar(0,'loading ...');
|
||||
end
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
if(isfield(opt,'progressbar_'))
|
||||
close(opt.progressbar_);
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=data(j).x0x5F_ArraySize_;
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
if next_char ~= '}'
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
parse_char('}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim2=[];
|
||||
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
|
||||
if next_char ~= ']'
|
||||
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
|
||||
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
|
||||
arraystr=['[' inStr(pos:endpos)];
|
||||
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
|
||||
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
|
||||
arraystr(arraystr==sprintf('\n'))=[];
|
||||
arraystr(arraystr==sprintf('\r'))=[];
|
||||
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
|
||||
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
|
||||
astr=inStr((e1l+1):(e1r-1));
|
||||
astr=regexprep(astr,'"_NaN_"','NaN');
|
||||
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
|
||||
astr(astr==sprintf('\n'))=[];
|
||||
astr(astr==sprintf('\r'))=[];
|
||||
astr(astr==' ')='';
|
||||
if(isempty(find(astr=='[', 1))) % array is 2D
|
||||
dim2=length(sscanf(astr,'%f,',[1 inf]));
|
||||
end
|
||||
else % array is 1D
|
||||
astr=arraystr(2:end-1);
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=obj;
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if(~isempty(dim2))
|
||||
astr=arraystr;
|
||||
astr(astr=='[')='';
|
||||
astr(astr==']')='';
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=reshape(obj,dim2,numel(obj)/dim2)';
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
return;
|
||||
end
|
||||
end
|
||||
arraystr=regexprep(arraystr,'\]\s*,','];');
|
||||
else
|
||||
arraystr='[';
|
||||
end
|
||||
try
|
||||
if(isoct && regexp(arraystr,'"','once'))
|
||||
error('Octave eval can produce empty cells for JSON-like input');
|
||||
end
|
||||
object=eval(arraystr);
|
||||
pos=endpos;
|
||||
catch
|
||||
while 1
|
||||
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
|
||||
val = parse_value(newopt);
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
parse_char(']');
|
||||
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr len esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
if inStr(pos) ~= '"'
|
||||
error_pos('String starting with " expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
str = '';
|
||||
while pos <= len
|
||||
while index_esc <= len_esc && esc(index_esc) < pos
|
||||
index_esc = index_esc + 1;
|
||||
end
|
||||
if index_esc > len_esc
|
||||
str = [str inStr(pos:len)];
|
||||
pos = len + 1;
|
||||
break;
|
||||
else
|
||||
str = [str inStr(pos:esc(index_esc)-1)];
|
||||
pos = esc(index_esc);
|
||||
end
|
||||
nstr = length(str); switch inStr(pos)
|
||||
case '"'
|
||||
pos = pos + 1;
|
||||
if(~isempty(str))
|
||||
if(strcmp(str,'_Inf_'))
|
||||
str=Inf;
|
||||
elseif(strcmp(str,'-_Inf_'))
|
||||
str=-Inf;
|
||||
elseif(strcmp(str,'_NaN_'))
|
||||
str=NaN;
|
||||
end
|
||||
end
|
||||
return;
|
||||
case '\'
|
||||
if pos+1 > len
|
||||
error_pos('End of file reached right after escape character');
|
||||
end
|
||||
pos = pos + 1;
|
||||
switch inStr(pos)
|
||||
case {'"' '\' '/'}
|
||||
str(nstr+1) = inStr(pos);
|
||||
pos = pos + 1;
|
||||
case {'b' 'f' 'n' 'r' 't'}
|
||||
str(nstr+1) = sprintf(['\' inStr(pos)]);
|
||||
pos = pos + 1;
|
||||
case 'u'
|
||||
if pos+4 > len
|
||||
error_pos('End of file reached in escaped unicode character');
|
||||
end
|
||||
str(nstr+(1:6)) = inStr(pos-1:pos+4);
|
||||
pos = pos + 5;
|
||||
end
|
||||
otherwise % should never happen
|
||||
str(nstr+1) = inStr(pos), keyboard
|
||||
pos = pos + 1;
|
||||
end
|
||||
end
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct
|
||||
currstr=inStr(pos:end);
|
||||
numstr=0;
|
||||
if(isoct~=0)
|
||||
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
|
||||
[num, one] = sscanf(currstr, '%f', 1);
|
||||
delta=numstr+1;
|
||||
else
|
||||
[num, one, err, delta] = sscanf(currstr, '%f', 1);
|
||||
if ~isempty(err)
|
||||
error_pos('Error reading number at position %d');
|
||||
end
|
||||
end
|
||||
pos = pos + delta-1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
if(pbar>0)
|
||||
waitbar(pos/len,pbar,'loading ...');
|
||||
end
|
||||
|
||||
switch(inStr(pos))
|
||||
case '"'
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'-','0','1','2','3','4','5','6','7','8','9'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 't'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
|
||||
val = true;
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
case 'f'
|
||||
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
|
||||
val = false;
|
||||
pos = pos + 5;
|
||||
return;
|
||||
end
|
||||
case 'n'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
|
||||
val = [];
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,528 @@
|
|||
function data = loadubjson(fname,varargin)
|
||||
%
|
||||
% data=loadubjson(fname,opt)
|
||||
% or
|
||||
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/01
|
||||
%
|
||||
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a UBJSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
% in the UBJSON input data. B - Big-Endian format for
|
||||
% integers (as required in the UBJSON specification);
|
||||
% L - input integer fields are in Little-Endian order.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% obj=struct('string','value','array',[1 2 3]);
|
||||
% ubjdata=saveubjson('obj',obj);
|
||||
% dat=loadubjson(ubjdata)
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
fileendian=upper(jsonopt('IntEndian','B',opt));
|
||||
[os,maxelem,systemendian]=computer;
|
||||
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
%%
|
||||
function newdata=parse_collection(id,data,obj)
|
||||
|
||||
if(jsoncount>0 && exist('data','var'))
|
||||
if(~iscell(data))
|
||||
newdata=cell(1);
|
||||
newdata{1}=data;
|
||||
data=newdata;
|
||||
end
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=double(data(j).x0x5F_ArraySize_);
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1); % TODO
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
count=double(parse_number());
|
||||
end
|
||||
if next_char ~= '}'
|
||||
num=0;
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
%parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
num=num+1;
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}' || (count>=0 && num>=count)
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char('}');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function [cid,len]=elem_info(type)
|
||||
id=strfind('iUIlLdD',type);
|
||||
dataclass={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
if(id>0)
|
||||
cid=dataclass{id};
|
||||
len=bytelen(id);
|
||||
else
|
||||
error_pos('unsupported type at position %d');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function [data adv]=parse_block(type,count,varargin)
|
||||
global pos inStr isoct fileendian systemendian
|
||||
[cid,len]=elem_info(type);
|
||||
datastr=inStr(pos:pos+len*count-1);
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
id=strfind('iUIlLdD',type);
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,cid));
|
||||
end
|
||||
data=typecast(newdata,cid);
|
||||
adv=double(len*count);
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim=[];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1);
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
if(next_char=='[')
|
||||
dim=parse_array(varargin{:});
|
||||
count=prod(double(dim));
|
||||
else
|
||||
count=double(parse_number());
|
||||
end
|
||||
end
|
||||
if(~isempty(type))
|
||||
if(count>=0)
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
if(~isempty(dim))
|
||||
object=reshape(object,dim);
|
||||
end
|
||||
pos=pos+adv;
|
||||
return;
|
||||
else
|
||||
endpos=matching_bracket(inStr,pos);
|
||||
[cid,len]=elem_info(type);
|
||||
count=(endpos-pos)/len;
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
pos=pos+adv;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if next_char ~= ']'
|
||||
while 1
|
||||
val = parse_value(varargin{:});
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char(']');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
type=inStr(pos);
|
||||
if type ~= 'S' && type ~= 'C' && type ~= 'H'
|
||||
error_pos('String starting with S expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
if(type == 'C')
|
||||
str=inStr(pos);
|
||||
pos=pos+1;
|
||||
return;
|
||||
end
|
||||
bytelen=double(parse_number());
|
||||
if(length(inStr)>=pos+bytelen-1)
|
||||
str=inStr(pos:pos+bytelen-1);
|
||||
pos=pos+bytelen;
|
||||
else
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct fileendian systemendian
|
||||
id=strfind('iUIlLdD',inStr(pos));
|
||||
if(isempty(id))
|
||||
error_pos('expecting a number at position %d');
|
||||
end
|
||||
type={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
datastr=inStr(pos+1:pos+bytelen(id));
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,type{id}));
|
||||
end
|
||||
num=typecast(newdata,type{id});
|
||||
pos = pos + bytelen(id)+1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
switch(inStr(pos))
|
||||
case {'S','C','H'}
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'i','U','I','l','L','d','D'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 'T'
|
||||
val = true;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case 'F'
|
||||
val = false;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case {'Z','N'}
|
||||
val = [];
|
||||
pos = pos + 1;
|
||||
return;
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,33 @@
|
|||
function s=mergestruct(s1,s2)
|
||||
%
|
||||
% s=mergestruct(s1,s2)
|
||||
%
|
||||
% merge two struct objects into one
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% s1,s2: a struct object, s1 and s2 can not be arrays
|
||||
%
|
||||
% output:
|
||||
% s: the merged struct object. fields in s1 and s2 will be combined in s.
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(~isstruct(s1) || ~isstruct(s2))
|
||||
error('input parameters contain non-struct');
|
||||
end
|
||||
if(length(s1)>1 || length(s2)>1)
|
||||
error('can not merge struct arrays');
|
||||
end
|
||||
fn=fieldnames(s2);
|
||||
s=s1;
|
||||
for i=1:length(fn)
|
||||
s=setfield(s,fn{i},getfield(s2,fn{i}));
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,475 @@
|
|||
function json=savejson(rootname,obj,varargin)
|
||||
%
|
||||
% json=savejson(rootname,obj,filename)
|
||||
% or
|
||||
% json=savejson(rootname,obj,opt)
|
||||
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
% Object Notation) string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09
|
||||
%
|
||||
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
% filename: a string for the file name to save the output JSON data.
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
% of a 1D/2D array;
|
||||
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
% precedent indentation; if 0, no indentation
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
% and $1 represents the sign. For those who want to use
|
||||
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
% to represent NaN
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSONP='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a string in the JSON format (see http://json.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% savejson('jmesh',jsonmesh)
|
||||
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
|
||||
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
if(jsonopt('Compact',0,opt)==1)
|
||||
whitespaces=struct('tab','','newline','','sep',',');
|
||||
end
|
||||
if(~isfield(opt,'whitespaces_'))
|
||||
opt.whitespaces_=whitespaces;
|
||||
end
|
||||
|
||||
nl=whitespaces.newline;
|
||||
|
||||
json=obj2json(rootname,obj,rootlevel,opt);
|
||||
if(rootisarray)
|
||||
json=sprintf('%s%s',json,nl);
|
||||
else
|
||||
json=sprintf('{%s%s%s}\n',nl,json,nl);
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=sprintf('%s(%s);%s',jsonp,json,nl);
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
if(jsonopt('SaveBinary',0,opt)==1)
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
else
|
||||
fid = fopen(opt.FileName, 'wt');
|
||||
fwrite(fid,json,'char');
|
||||
end
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2json(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2json(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2json(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2json(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2json(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
|
||||
else
|
||||
txt=sprintf('%s[%s',padding0,nl);
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
|
||||
else
|
||||
txt=sprintf('%s[]',padding0);
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
|
||||
nl=ws.newline;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
|
||||
else
|
||||
txt=sprintf('%s%s{%s',txt,padding1,nl);
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
|
||||
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
|
||||
txt=sprintf('%s%s',txt,nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s}',txt,padding1);
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
if(isoct)
|
||||
val=regexprep(item(e,:),'\\','\\');
|
||||
val=regexprep(val,'"','\"');
|
||||
val=regexprep(val,'^"','\"');
|
||||
else
|
||||
val=regexprep(item(e,:),'\\','\\\\');
|
||||
val=regexprep(val,'"','\\"');
|
||||
val=regexprep(val,'^"','\\"');
|
||||
end
|
||||
val=escapejsonstring(val);
|
||||
if(len==1)
|
||||
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
|
||||
if(isempty(name)) obj=['"',val,'"']; end
|
||||
txt=sprintf('%s%s%s%s',txt,padding1,obj);
|
||||
else
|
||||
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
|
||||
end
|
||||
if(e==len) sep=''; end
|
||||
txt=sprintf('%s%s',txt,sep);
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2json(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
else
|
||||
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
end
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
|
||||
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
else
|
||||
numtxt=matdata2json(item,level+1,varargin{:});
|
||||
end
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s%s',padding1,numtxt);
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
else
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
dataformat='%s%s%s%s%s';
|
||||
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,data],level+2,varargin{:}), nl);
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json(item(:)',level+2,varargin{:}), nl);
|
||||
else
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s%s',txt,padding1,'}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2json(mat,level,varargin)
|
||||
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
tab=ws.tab;
|
||||
nl=ws.newline;
|
||||
|
||||
if(size(mat,1)==1)
|
||||
pre='';
|
||||
post='';
|
||||
level=level-1;
|
||||
else
|
||||
pre=sprintf('[%s',nl);
|
||||
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
|
||||
end
|
||||
|
||||
if(isempty(mat))
|
||||
txt='null';
|
||||
return;
|
||||
end
|
||||
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
|
||||
%if(numel(mat)>1)
|
||||
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
|
||||
%else
|
||||
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
|
||||
%end
|
||||
|
||||
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
|
||||
formatstr=[repmat(tab,1,level) formatstr];
|
||||
end
|
||||
|
||||
txt=sprintf(formatstr,mat');
|
||||
txt(end-length(nl):end)=[];
|
||||
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
|
||||
txt=regexprep(txt,'1','true');
|
||||
txt=regexprep(txt,'0','false');
|
||||
end
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],\n['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
txt=[pre txt post];
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newstr=escapejsonstring(str)
|
||||
newstr=str;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
if(isoct)
|
||||
vv=sscanf(OCTAVE_VERSION,'%f');
|
||||
if(vv(1)>=3.8) isoct=0; end
|
||||
end
|
||||
if(isoct)
|
||||
escapechars={'\a','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},escapechars{i});
|
||||
end
|
||||
else
|
||||
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,504 @@
|
|||
function json=saveubjson(rootname,obj,varargin)
|
||||
%
|
||||
% json=saveubjson(rootname,obj,filename)
|
||||
% or
|
||||
% json=saveubjson(rootname,obj,opt)
|
||||
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a Universal
|
||||
% Binary JSON (UBJSON) binary string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/17
|
||||
%
|
||||
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
% filename: a string for the file name to save the output UBJSON data
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSON='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% saveubjson('jsonmesh',jsonmesh)
|
||||
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
json=obj2ubjson(rootname,obj,rootlevel,opt);
|
||||
if(~rootisarray)
|
||||
json=['{' json '}'];
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=[jsonp '(' json ')'];
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2ubjson(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2ubjson(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2ubjson(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2ubjson(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2ubjson(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item); % let's handle 1D cell first
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=[S_(checkname(name,varargin{:})) '[']; name='';
|
||||
else
|
||||
txt='[';
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
|
||||
else
|
||||
txt='Z';
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=[txt '[']; end
|
||||
for i=1:dim(1)
|
||||
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
|
||||
end
|
||||
if(dim(1)>1) txt=[txt ']']; end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
|
||||
else
|
||||
if(len>1) txt='['; end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=[txt '[']; end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=[txt S_(checkname(name,varargin{:})) '{'];
|
||||
else
|
||||
txt=[txt '{'];
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
|
||||
end
|
||||
end
|
||||
txt=[txt '}'];
|
||||
end
|
||||
if(dim(1)>1) txt=[txt ']']; end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2ubjson(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
|
||||
else
|
||||
if(len>1) txt='['; end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
val=item(e,:);
|
||||
if(len==1)
|
||||
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
|
||||
if(isempty(name)) obj=['',S_(val),'']; end
|
||||
txt=[txt,'',obj];
|
||||
else
|
||||
txt=[txt,'',['',S_(val),'']];
|
||||
end
|
||||
end
|
||||
if(len>1) txt=[txt ']']; end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2ubjson(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
cid=I_(uint32(max(size(item))));
|
||||
if(isempty(name))
|
||||
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
|
||||
else
|
||||
if(isempty(item))
|
||||
txt=[S_(checkname(name,varargin{:})),'Z'];
|
||||
return;
|
||||
else
|
||||
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
|
||||
end
|
||||
end
|
||||
else
|
||||
if(isempty(name))
|
||||
txt=matdata2ubjson(item,level+1,varargin{:});
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
txt=[S_(checkname(name,varargin{:})) numtxt];
|
||||
else
|
||||
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=[txt,S_('_ArrayIsComplex_'),'T'];
|
||||
end
|
||||
txt=[txt,S_('_ArrayIsSparse_'),'T'];
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([ix,data],level+2,varargin{:})];
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson(item(:)',level+2,varargin{:})];
|
||||
else
|
||||
txt=[txt,S_('_ArrayIsComplex_'),'T'];
|
||||
txt=[txt,S_('_ArrayData_'),...
|
||||
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
|
||||
end
|
||||
end
|
||||
txt=[txt,'}'];
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2ubjson(mat,level,varargin)
|
||||
if(isempty(mat))
|
||||
txt='Z';
|
||||
return;
|
||||
end
|
||||
if(size(mat,1)==1)
|
||||
level=level-1;
|
||||
end
|
||||
type='';
|
||||
hasnegtive=(mat<0);
|
||||
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
|
||||
if(isempty(hasnegtive))
|
||||
if(max(mat(:))<=2^8)
|
||||
type='U';
|
||||
end
|
||||
end
|
||||
if(isempty(type))
|
||||
% todo - need to consider negative ones separately
|
||||
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
|
||||
if(isempty(find(id)))
|
||||
error('high-precision data is not yet supported');
|
||||
end
|
||||
key='iIlL';
|
||||
type=key(find(id));
|
||||
end
|
||||
txt=[I_a(mat(:),type,size(mat))];
|
||||
elseif(islogical(mat))
|
||||
logicalval='FT';
|
||||
if(numel(mat)==1)
|
||||
txt=logicalval(mat+1);
|
||||
else
|
||||
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
|
||||
end
|
||||
else
|
||||
if(numel(mat)==1)
|
||||
txt=['[' D_(mat) ']'];
|
||||
else
|
||||
txt=D_a(mat(:),'D',size(mat));
|
||||
end
|
||||
end
|
||||
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=S_(str)
|
||||
if(length(str)==1)
|
||||
val=['C' str];
|
||||
else
|
||||
val=['S' I_(int32(length(str))) str];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=I_(num)
|
||||
if(~isinteger(num))
|
||||
error('input is not an integer');
|
||||
end
|
||||
if(num>=0 && num<255)
|
||||
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
|
||||
return;
|
||||
end
|
||||
key='iIlL';
|
||||
cid={'int8','int16','int32','int64'};
|
||||
for i=1:4
|
||||
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
|
||||
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
|
||||
return;
|
||||
end
|
||||
end
|
||||
error('unsupported integer');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function val=D_(num)
|
||||
if(~isfloat(num))
|
||||
error('input is not a float');
|
||||
end
|
||||
|
||||
if(isa(num,'single'))
|
||||
val=['d' data2byte(num,'uint8')];
|
||||
else
|
||||
val=['D' data2byte(num,'uint8')];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function data=I_a(num,type,dim,format)
|
||||
id=find(ismember('iUIlL',type));
|
||||
|
||||
if(id==0)
|
||||
error('unsupported integer array');
|
||||
end
|
||||
|
||||
% based on UBJSON specs, all integer types are stored in big endian format
|
||||
|
||||
if(id==1)
|
||||
data=data2byte(swapbytes(int8(num)),'uint8');
|
||||
blen=1;
|
||||
elseif(id==2)
|
||||
data=data2byte(swapbytes(uint8(num)),'uint8');
|
||||
blen=1;
|
||||
elseif(id==3)
|
||||
data=data2byte(swapbytes(int16(num)),'uint8');
|
||||
blen=2;
|
||||
elseif(id==4)
|
||||
data=data2byte(swapbytes(int32(num)),'uint8');
|
||||
blen=4;
|
||||
elseif(id==5)
|
||||
data=data2byte(swapbytes(int64(num)),'uint8');
|
||||
blen=8;
|
||||
end
|
||||
|
||||
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
|
||||
format='opt';
|
||||
end
|
||||
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
|
||||
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
|
||||
cid=I_(uint32(max(dim)));
|
||||
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
|
||||
else
|
||||
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
|
||||
end
|
||||
data=['[' data(:)'];
|
||||
else
|
||||
data=reshape(data,blen,numel(data)/blen);
|
||||
data(2:blen+1,:)=data;
|
||||
data(1,:)=type;
|
||||
data=data(:)';
|
||||
data=['[' data(:)' ']'];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function data=D_a(num,type,dim,format)
|
||||
id=find(ismember('dD',type));
|
||||
|
||||
if(id==0)
|
||||
error('unsupported float array');
|
||||
end
|
||||
|
||||
if(id==1)
|
||||
data=data2byte(single(num),'uint8');
|
||||
elseif(id==2)
|
||||
data=data2byte(double(num),'uint8');
|
||||
end
|
||||
|
||||
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
|
||||
format='opt';
|
||||
end
|
||||
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
|
||||
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
|
||||
cid=I_(uint32(max(dim)));
|
||||
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
|
||||
else
|
||||
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
|
||||
end
|
||||
data=['[' data];
|
||||
else
|
||||
data=reshape(data,(id*4),length(data)/(id*4));
|
||||
data(2:(id*4+1),:)=data;
|
||||
data(1,:)=type;
|
||||
data=data(:)';
|
||||
data=['[' data(:)' ']'];
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
function bytes=data2byte(varargin)
|
||||
bytes=typecast(varargin{:});
|
||||
bytes=bytes(:)';
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
function opt=varargin2struct(varargin)
|
||||
%
|
||||
% opt=varargin2struct('param1',value1,'param2',value2,...)
|
||||
% or
|
||||
% opt=varargin2struct(...,optstruct,...)
|
||||
%
|
||||
% convert a series of input parameters into a structure
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% 'param', value: the input parameters should be pairs of a string and a value
|
||||
% optstruct: if a parameter is a struct, the fields will be merged to the output struct
|
||||
%
|
||||
% output:
|
||||
% opt: a struct where opt.param1=value1, opt.param2=value2 ...
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
len=length(varargin);
|
||||
opt=struct;
|
||||
if(len==0) return; end
|
||||
i=1;
|
||||
while(i<=len)
|
||||
if(isstruct(varargin{i}))
|
||||
opt=mergestruct(opt,varargin{i});
|
||||
elseif(ischar(varargin{i}) && i<len)
|
||||
opt=setfield(opt,varargin{i},varargin{i+1});
|
||||
i=i+1;
|
||||
else
|
||||
error('input must be in the form of ...,''name'',value,... pairs or structs');
|
||||
end
|
||||
i=i+1;
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,30 @@
|
|||
function str = makeValidFieldName(str)
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,179 @@
|
|||
function submitWithConfiguration(conf)
|
||||
addpath('./lib/jsonlab');
|
||||
|
||||
parts = parts(conf);
|
||||
|
||||
fprintf('== Submitting solutions | %s...\n', conf.itemName);
|
||||
|
||||
tokenFile = 'token.mat';
|
||||
if exist(tokenFile, 'file')
|
||||
load(tokenFile);
|
||||
[email token] = promptToken(email, token, tokenFile);
|
||||
else
|
||||
[email token] = promptToken('', '', tokenFile);
|
||||
end
|
||||
|
||||
if isempty(token)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
try
|
||||
response = submitParts(conf, email, token, parts);
|
||||
catch
|
||||
e = lasterror();
|
||||
fprintf('\n!! Submission failed: %s\n', e.message);
|
||||
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
|
||||
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
|
||||
fprintf('\nPlease correct your code and resubmit.\n');
|
||||
return
|
||||
end
|
||||
|
||||
if isfield(response, 'errorMessage')
|
||||
fprintf('!! Submission failed: %s\n', response.errorMessage);
|
||||
elseif isfield(response, 'errorCode')
|
||||
fprintf('!! Submission failed: %s\n', response.message);
|
||||
else
|
||||
showFeedback(parts, response);
|
||||
save(tokenFile, 'email', 'token');
|
||||
end
|
||||
end
|
||||
|
||||
function [email token] = promptToken(email, existingToken, tokenFile)
|
||||
if (~isempty(email) && ~isempty(existingToken))
|
||||
prompt = sprintf( ...
|
||||
'Use token from last successful submission (%s)? (Y/n): ', ...
|
||||
email);
|
||||
reenter = input(prompt, 's');
|
||||
|
||||
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
|
||||
token = existingToken;
|
||||
return;
|
||||
else
|
||||
delete(tokenFile);
|
||||
end
|
||||
end
|
||||
email = input('Login (email address): ', 's');
|
||||
token = input('Token: ', 's');
|
||||
end
|
||||
|
||||
function isValid = isValidPartOptionIndex(partOptions, i)
|
||||
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
|
||||
end
|
||||
|
||||
function response = submitParts(conf, email, token, parts)
|
||||
body = makePostBody(conf, email, token, parts);
|
||||
submissionUrl = submissionUrl();
|
||||
|
||||
responseBody = getResponse(submissionUrl, body);
|
||||
jsonResponse = validateResponse(responseBody);
|
||||
response = loadjson(jsonResponse);
|
||||
end
|
||||
|
||||
function body = makePostBody(conf, email, token, parts)
|
||||
bodyStruct.assignmentSlug = conf.assignmentSlug;
|
||||
bodyStruct.submitterEmail = email;
|
||||
bodyStruct.secret = token;
|
||||
bodyStruct.parts = makePartsStruct(conf, parts);
|
||||
|
||||
opt.Compact = 1;
|
||||
body = savejson('', bodyStruct, opt);
|
||||
end
|
||||
|
||||
function partsStruct = makePartsStruct(conf, parts)
|
||||
for part = parts
|
||||
partId = part{:}.id;
|
||||
fieldName = makeValidFieldName(partId);
|
||||
outputStruct.output = conf.output(partId);
|
||||
partsStruct.(fieldName) = outputStruct;
|
||||
end
|
||||
end
|
||||
|
||||
function [parts] = parts(conf)
|
||||
parts = {};
|
||||
for partArray = conf.partArrays
|
||||
part.id = partArray{:}{1};
|
||||
part.sourceFiles = partArray{:}{2};
|
||||
part.name = partArray{:}{3};
|
||||
parts{end + 1} = part;
|
||||
end
|
||||
end
|
||||
|
||||
function showFeedback(parts, response)
|
||||
fprintf('== \n');
|
||||
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
|
||||
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
|
||||
for part = parts
|
||||
score = '';
|
||||
partFeedback = '';
|
||||
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
|
||||
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
|
||||
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
|
||||
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
|
||||
end
|
||||
evaluation = response.evaluation;
|
||||
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
|
||||
fprintf('== --------------------------------\n');
|
||||
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
|
||||
fprintf('== \n');
|
||||
end
|
||||
|
||||
% use urlread or curl to send submit results to the grader and get a response
|
||||
function response = getResponse(url, body)
|
||||
% try using urlread() and a secure connection
|
||||
params = {'jsonBody', body};
|
||||
[response, success] = urlread(url, 'post', params);
|
||||
|
||||
if (success == 0)
|
||||
% urlread didn't work, try curl & the peer certificate patch
|
||||
if ispc
|
||||
% testing note: use 'jsonBody =' for a test case
|
||||
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
|
||||
else
|
||||
% it's linux/OS X, so use the other form
|
||||
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
|
||||
end
|
||||
% get the response body for the peer certificate patch method
|
||||
[code, response] = system(json_command);
|
||||
% test the success code
|
||||
if (code ~= 0)
|
||||
fprintf('[error] submission with curl() was not successful\n');
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% validate the grader's response
|
||||
function response = validateResponse(resp)
|
||||
% test if the response is json or an HTML page
|
||||
isJson = length(resp) > 0 && resp(1) == '{';
|
||||
isHtml = findstr(lower(resp), '<html');
|
||||
|
||||
if (isJson)
|
||||
response = resp;
|
||||
elseif (isHtml)
|
||||
% the response is html, so it's probably an error message
|
||||
printHTMLContents(resp);
|
||||
error('Grader response is an HTML message');
|
||||
else
|
||||
error('Grader sent no response');
|
||||
end
|
||||
end
|
||||
|
||||
% parse a HTML response and print it's contents
|
||||
function printHTMLContents(response)
|
||||
strippedResponse = regexprep(response, '<[^>]+>', ' ');
|
||||
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
|
||||
fprintf(strippedResponse);
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
% Service configuration
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function submissionUrl = submissionUrl()
|
||||
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
|
||||
end
|
||||
|
|
@ -0,0 +1,58 @@
|
|||
function [J, grad] = lrCostFunction(theta, X, y, lambda)
|
||||
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
|
||||
%regularization
|
||||
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
|
||||
% theta as the parameter for regularized logistic regression and the
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
n = length(theta);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
%
|
||||
% Hint: The computation of the cost function and gradients can be
|
||||
% efficiently vectorized. For example, consider the computation
|
||||
%
|
||||
% sigmoid(X * theta)
|
||||
%
|
||||
% Each row of the resulting matrix will contain the value of the
|
||||
% prediction for that example. You can make use of this to vectorize
|
||||
% the cost function and gradient computations.
|
||||
%
|
||||
% Hint: When computing the gradient of the regularized cost function,
|
||||
% there're many possible vectorized solutions, but one solution
|
||||
% looks like:
|
||||
% grad = (unregularized gradient for logistic regression)
|
||||
% temp = theta;
|
||||
% temp(1) = 0; % because we don't add anything for j = 0
|
||||
% grad = grad + YOUR_CODE_HERE (using the temp variable)
|
||||
%
|
||||
|
||||
h = sigmoid(X*theta);
|
||||
J = (1/m)*(-y'*log(h)-(1-y)'*log(1-h));
|
||||
grad = (1/m)*X'*(sigmoid(X*theta)-y);
|
||||
J = J + (lambda/(2*m))*sum(theta(2:end).^2);
|
||||
grad(2:end) = grad(2:end) + (lambda/m)*theta(2:end);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
grad = grad(:);
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
|
||||
%ONEVSALL trains multiple logistic regression classifiers and returns all
|
||||
%the classifiers in a matrix all_theta, where the i-th row of all_theta
|
||||
%corresponds to the classifier for label i
|
||||
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
|
||||
% logistic regression classifiers and returns each of these classifiers
|
||||
% in a matrix all_theta, where the i-th row of all_theta corresponds
|
||||
% to the classifier for label i
|
||||
|
||||
% Some useful variables
|
||||
m = size(X, 1);
|
||||
n = size(X, 2);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
all_theta = zeros(num_labels, n + 1);
|
||||
|
||||
% Add ones to the X data matrix
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: You should complete the following code to train num_labels
|
||||
% logistic regression classifiers with regularization
|
||||
% parameter lambda.
|
||||
%
|
||||
% Hint: theta(:) will return a column vector.
|
||||
%
|
||||
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
|
||||
% whether the ground truth is true/false for this class.
|
||||
%
|
||||
% Note: For this assignment, we recommend using fmincg to optimize the cost
|
||||
% function. It is okay to use a for-loop (for c = 1:num_labels) to
|
||||
% loop over the different classes.
|
||||
%
|
||||
% fmincg works similarly to fminunc, but is more efficient when we
|
||||
% are dealing with large number of parameters.
|
||||
%
|
||||
% Example Code for fmincg:
|
||||
%
|
||||
% % Set Initial theta
|
||||
% initial_theta = zeros(n + 1, 1);
|
||||
%
|
||||
% % Set options for fminunc
|
||||
% options = optimset('GradObj', 'on', 'MaxIter', 50);
|
||||
%
|
||||
% % Run fmincg to obtain the optimal theta
|
||||
% % This function will return theta and the cost
|
||||
% [theta] = ...
|
||||
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
|
||||
% initial_theta, options);
|
||||
%
|
||||
|
||||
for c=1:num_labels
|
||||
initial_theta = zeros(n+1,1);
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 50);
|
||||
[theta] = ...
|
||||
fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
|
||||
initial_theta, options);
|
||||
all_theta(c,:) = theta;
|
||||
endfor
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,43 @@
|
|||
function p = predict(Theta1, Theta2, X)
|
||||
%PREDICT Predict the label of an input given a trained neural network
|
||||
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
|
||||
% trained weights of a neural network (Theta1, Theta2)
|
||||
|
||||
% Useful values
|
||||
m = size(X, 1);
|
||||
num_labels = size(Theta2, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(size(X, 1), 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned neural network. You should set p to a
|
||||
% vector containing labels between 1 to num_labels.
|
||||
%
|
||||
% Hint: The max function might come in useful. In particular, the max
|
||||
% function can also return the index of the max element, for more
|
||||
% information see 'help max'. If your examples are in rows, then, you
|
||||
% can use max(A, [], 2) to obtain the max for each row.
|
||||
%
|
||||
X = [ones(rows(X), 1) X];
|
||||
z2 = (Theta1*X')';
|
||||
a2 = sigmoid(z2);
|
||||
a2 = [ones(rows(a2), 1) a2];
|
||||
z3 = Theta2*a2';
|
||||
a3 = sigmoid(z3);
|
||||
a3 = a3';
|
||||
[max, imax] = max(a3, [], 2);
|
||||
p = imax;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
function p = predictOneVsAll(all_theta, X)
|
||||
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
|
||||
%are in the range 1..K, where K = size(all_theta, 1).
|
||||
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
|
||||
% for each example in the matrix X. Note that X contains the examples in
|
||||
% rows. all_theta is a matrix where the i-th row is a trained logistic
|
||||
% regression theta vector for the i-th class. You should set p to a vector
|
||||
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
|
||||
% for 4 examples)
|
||||
|
||||
m = size(X, 1);
|
||||
num_labels = size(all_theta, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(size(X, 1), 1);
|
||||
|
||||
% Add ones to the X data matrix
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned logistic regression parameters (one-vs-all).
|
||||
% You should set p to a vector of predictions (from 1 to
|
||||
% num_labels).
|
||||
%
|
||||
% Hint: This code can be done all vectorized using the max function.
|
||||
% In particular, the max function can also return the index of the
|
||||
% max element, for more information see 'help max'. If your examples
|
||||
% are in rows, then, you can use max(A, [], 2) to obtain the max
|
||||
% for each row.
|
||||
%
|
||||
temp = sigmoid(X*all_theta');
|
||||
for i = 1:size(X,1)
|
||||
[tempMax, iTempMax] = max(temp(i,:));
|
||||
p(i) = iTempMax;
|
||||
endfor
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
function g = sigmoid(z)
|
||||
%SIGMOID Compute sigmoid functoon
|
||||
% J = SIGMOID(z) computes the sigmoid of z.
|
||||
|
||||
g = 1.0 ./ (1.0 + exp(-z));
|
||||
end
|
||||
|
|
@ -0,0 +1,56 @@
|
|||
function submit()
|
||||
addpath('./lib');
|
||||
|
||||
conf.assignmentSlug = 'multi-class-classification-and-neural-networks';
|
||||
conf.itemName = 'Multi-class Classification and Neural Networks';
|
||||
conf.partArrays = { ...
|
||||
{ ...
|
||||
'1', ...
|
||||
{ 'lrCostFunction.m' }, ...
|
||||
'Regularized Logistic Regression', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'2', ...
|
||||
{ 'oneVsAll.m' }, ...
|
||||
'One-vs-All Classifier Training', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'3', ...
|
||||
{ 'predictOneVsAll.m' }, ...
|
||||
'One-vs-All Classifier Prediction', ...
|
||||
}, ...
|
||||
{ ...
|
||||
'4', ...
|
||||
{ 'predict.m' }, ...
|
||||
'Neural Network Prediction Function' ...
|
||||
}, ...
|
||||
};
|
||||
conf.output = @output;
|
||||
|
||||
submitWithConfiguration(conf);
|
||||
end
|
||||
|
||||
function out = output(partId, auxdata)
|
||||
% Random Test Cases
|
||||
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
|
||||
y = sin(X(:,1) + X(:,2)) > 0;
|
||||
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
|
||||
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
|
||||
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
|
||||
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
|
||||
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
|
||||
t1 = sin(reshape(1:2:24, 4, 3));
|
||||
t2 = cos(reshape(1:2:40, 4, 5));
|
||||
|
||||
if partId == '1'
|
||||
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
|
||||
out = sprintf('%0.5f ', J);
|
||||
out = [out sprintf('%0.5f ', grad)];
|
||||
elseif partId == '2'
|
||||
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
|
||||
elseif partId == '3'
|
||||
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
|
||||
elseif partId == '4'
|
||||
out = sprintf('%0.5f ', predict(t1, t2, Xm));
|
||||
end
|
||||
end
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
# Created by Octave 4.4.1, Sun Aug 18 21:05:54 2019 GMT <unknown@LAPTOP-8PSOVU3K>
|
||||
# name: email
|
||||
# type: sq_string
|
||||
# elements: 1
|
||||
# length: 17
|
||||
tsb1995@gmail.com
|
||||
|
||||
|
||||
# name: token
|
||||
# type: sq_string
|
||||
# elements: 1
|
||||
# length: 16
|
||||
hVVScLtdMyJhvFGP
|
||||
|
||||
|
||||
Binary file not shown.
|
|
@ -0,0 +1,52 @@
|
|||
function checkNNGradients(lambda)
|
||||
%CHECKNNGRADIENTS Creates a small neural network to check the
|
||||
%backpropagation gradients
|
||||
% CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
|
||||
% backpropagation gradients, it will output the analytical gradients
|
||||
% produced by your backprop code and the numerical gradients (computed
|
||||
% using computeNumericalGradient). These two gradient computations should
|
||||
% result in very similar values.
|
||||
%
|
||||
|
||||
if ~exist('lambda', 'var') || isempty(lambda)
|
||||
lambda = 0;
|
||||
end
|
||||
|
||||
input_layer_size = 3;
|
||||
hidden_layer_size = 5;
|
||||
num_labels = 3;
|
||||
m = 5;
|
||||
|
||||
% We generate some 'random' test data
|
||||
Theta1 = debugInitializeWeights(hidden_layer_size, input_layer_size);
|
||||
Theta2 = debugInitializeWeights(num_labels, hidden_layer_size);
|
||||
% Reusing debugInitializeWeights to generate X
|
||||
X = debugInitializeWeights(m, input_layer_size - 1);
|
||||
y = 1 + mod(1:m, num_labels)';
|
||||
|
||||
% Unroll parameters
|
||||
nn_params = [Theta1(:) ; Theta2(:)];
|
||||
|
||||
% Short hand for cost function
|
||||
costFunc = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
[cost, grad] = costFunc(nn_params);
|
||||
numgrad = computeNumericalGradient(costFunc, nn_params);
|
||||
|
||||
% Visually examine the two gradient computations. The two columns
|
||||
% you get should be very similar.
|
||||
disp([numgrad grad]);
|
||||
fprintf(['The above two columns you get should be very similar.\n' ...
|
||||
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']);
|
||||
|
||||
% Evaluate the norm of the difference between two solutions.
|
||||
% If you have a correct implementation, and assuming you used EPSILON = 0.0001
|
||||
% in computeNumericalGradient.m, then diff below should be less than 1e-9
|
||||
diff = norm(numgrad-grad)/norm(numgrad+grad);
|
||||
|
||||
fprintf(['If your backpropagation implementation is correct, then \n' ...
|
||||
'the relative difference will be small (less than 1e-9). \n' ...
|
||||
'\nRelative Difference: %g\n'], diff);
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
function numgrad = computeNumericalGradient(J, theta)
|
||||
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
|
||||
%and gives us a numerical estimate of the gradient.
|
||||
% numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
|
||||
% gradient of the function J around theta. Calling y = J(theta) should
|
||||
% return the function value at theta.
|
||||
|
||||
% Notes: The following code implements numerical gradient checking, and
|
||||
% returns the numerical gradient.It sets numgrad(i) to (a numerical
|
||||
% approximation of) the partial derivative of J with respect to the
|
||||
% i-th input argument, evaluated at theta. (i.e., numgrad(i) should
|
||||
% be the (approximately) the partial derivative of J with respect
|
||||
% to theta(i).)
|
||||
%
|
||||
|
||||
numgrad = zeros(size(theta));
|
||||
perturb = zeros(size(theta));
|
||||
e = 1e-4;
|
||||
for p = 1:numel(theta)
|
||||
% Set perturbation vector
|
||||
perturb(p) = e;
|
||||
loss1 = J(theta - perturb);
|
||||
loss2 = J(theta + perturb);
|
||||
% Compute Numerical Gradient
|
||||
numgrad(p) = (loss2 - loss1) / (2*e);
|
||||
perturb(p) = 0;
|
||||
end
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,22 @@
|
|||
function W = debugInitializeWeights(fan_out, fan_in)
|
||||
%DEBUGINITIALIZEWEIGHTS Initialize the weights of a layer with fan_in
|
||||
%incoming connections and fan_out outgoing connections using a fixed
|
||||
%strategy, this will help you later in debugging
|
||||
% W = DEBUGINITIALIZEWEIGHTS(fan_in, fan_out) initializes the weights
|
||||
% of a layer with fan_in incoming connections and fan_out outgoing
|
||||
% connections using a fix set of values
|
||||
%
|
||||
% Note that W should be set to a matrix of size(1 + fan_in, fan_out) as
|
||||
% the first row of W handles the "bias" terms
|
||||
%
|
||||
|
||||
% Set W to zeros
|
||||
W = zeros(fan_out, 1 + fan_in);
|
||||
|
||||
% Initialize W using "sin", this ensures that W is always of the same
|
||||
% values and will be useful for debugging
|
||||
W = reshape(sin(1:numel(W)), size(W)) / 10;
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,59 @@
|
|||
function [h, display_array] = displayData(X, example_width)
|
||||
%DISPLAYDATA Display 2D data in a nice grid
|
||||
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
|
||||
% stored in X in a nice grid. It returns the figure handle h and the
|
||||
% displayed array if requested.
|
||||
|
||||
% Set example_width automatically if not passed in
|
||||
if ~exist('example_width', 'var') || isempty(example_width)
|
||||
example_width = round(sqrt(size(X, 2)));
|
||||
end
|
||||
|
||||
% Gray Image
|
||||
colormap(gray);
|
||||
|
||||
% Compute rows, cols
|
||||
[m n] = size(X);
|
||||
example_height = (n / example_width);
|
||||
|
||||
% Compute number of items to display
|
||||
display_rows = floor(sqrt(m));
|
||||
display_cols = ceil(m / display_rows);
|
||||
|
||||
% Between images padding
|
||||
pad = 1;
|
||||
|
||||
% Setup blank display
|
||||
display_array = - ones(pad + display_rows * (example_height + pad), ...
|
||||
pad + display_cols * (example_width + pad));
|
||||
|
||||
% Copy each example into a patch on the display array
|
||||
curr_ex = 1;
|
||||
for j = 1:display_rows
|
||||
for i = 1:display_cols
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
% Copy the patch
|
||||
|
||||
% Get the max value of the patch
|
||||
max_val = max(abs(X(curr_ex, :)));
|
||||
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
|
||||
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
|
||||
reshape(X(curr_ex, :), example_height, example_width) / max_val;
|
||||
curr_ex = curr_ex + 1;
|
||||
end
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Display Image
|
||||
h = imagesc(display_array, [-1 1]);
|
||||
|
||||
% Do not show axis
|
||||
axis image off
|
||||
|
||||
drawnow;
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,234 @@
|
|||
%% Machine Learning Online Class - Exercise 4 Neural Network Learning
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% sigmoidGradient.m
|
||||
% randInitializeWeights.m
|
||||
% nnCostFunction.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
hidden_layer_size = 25; % 25 hidden units
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex4data1.mat');
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
sel = randperm(size(X, 1));
|
||||
sel = sel(1:100);
|
||||
|
||||
displayData(X(sel, :));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 2: Loading Parameters ================
|
||||
% In this part of the exercise, we load some pre-initialized
|
||||
% neural network parameters.
|
||||
|
||||
fprintf('\nLoading Saved Neural Network Parameters ...\n')
|
||||
|
||||
% Load the weights into variables Theta1 and Theta2
|
||||
load('ex4weights.mat');
|
||||
|
||||
% Unroll parameters
|
||||
nn_params = [Theta1(:) ; Theta2(:)];
|
||||
|
||||
%% ================ Part 3: Compute Cost (Feedforward) ================
|
||||
% To the neural network, you should first start by implementing the
|
||||
% feedforward part of the neural network that returns the cost only. You
|
||||
% should complete the code in nnCostFunction.m to return cost. After
|
||||
% implementing the feedforward to compute the cost, you can verify that
|
||||
% your implementation is correct by verifying that you get the same cost
|
||||
% as us for the fixed debugging parameters.
|
||||
%
|
||||
% We suggest implementing the feedforward cost *without* regularization
|
||||
% first so that it will be easier for you to debug. Later, in part 4, you
|
||||
% will get to implement the regularized cost.
|
||||
%
|
||||
fprintf('\nFeedforward Using Neural Network ...\n')
|
||||
|
||||
% Weight regularization parameter (we set this to 0 here).
|
||||
lambda = 0;
|
||||
|
||||
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
|
||||
'\n(this value should be about 0.287629)\n'], J);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =============== Part 4: Implement Regularization ===============
|
||||
% Once your cost function implementation is correct, you should now
|
||||
% continue to implement the regularization with the cost.
|
||||
%
|
||||
|
||||
fprintf('\nChecking Cost Function (w/ Regularization) ... \n')
|
||||
|
||||
% Weight regularization parameter (we set this to 1 here).
|
||||
lambda = 1;
|
||||
|
||||
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
|
||||
'\n(this value should be about 0.383770)\n'], J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 5: Sigmoid Gradient ================
|
||||
% Before you start implementing the neural network, you will first
|
||||
% implement the gradient for the sigmoid function. You should complete the
|
||||
% code in the sigmoidGradient.m file.
|
||||
%
|
||||
|
||||
fprintf('\nEvaluating sigmoid gradient...\n')
|
||||
|
||||
g = sigmoidGradient([-1 -0.5 0 0.5 1]);
|
||||
fprintf('Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n ');
|
||||
fprintf('%f ', g);
|
||||
fprintf('\n\n');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 6: Initializing Pameters ================
|
||||
% In this part of the exercise, you will be starting to implment a two
|
||||
% layer neural network that classifies digits. You will start by
|
||||
% implementing a function to initialize the weights of the neural network
|
||||
% (randInitializeWeights.m)
|
||||
|
||||
fprintf('\nInitializing Neural Network Parameters ...\n')
|
||||
|
||||
initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
|
||||
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);
|
||||
|
||||
% Unroll parameters
|
||||
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
|
||||
|
||||
|
||||
%% =============== Part 7: Implement Backpropagation ===============
|
||||
% Once your cost matches up with ours, you should proceed to implement the
|
||||
% backpropagation algorithm for the neural network. You should add to the
|
||||
% code you've written in nnCostFunction.m to return the partial
|
||||
% derivatives of the parameters.
|
||||
%
|
||||
fprintf('\nChecking Backpropagation... \n');
|
||||
|
||||
% Check gradients by running checkNNGradients
|
||||
checkNNGradients;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =============== Part 8: Implement Regularization ===============
|
||||
% Once your backpropagation implementation is correct, you should now
|
||||
% continue to implement the regularization with the cost and gradient.
|
||||
%
|
||||
|
||||
fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')
|
||||
|
||||
% Check gradients by running checkNNGradients
|
||||
lambda = 3;
|
||||
checkNNGradients(lambda);
|
||||
|
||||
% Also output the costFunction debugging values
|
||||
debug_J = nnCostFunction(nn_params, input_layer_size, ...
|
||||
hidden_layer_size, num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = %f): %f ' ...
|
||||
'\n(for lambda = 3, this value should be about 0.576051)\n\n'], lambda, debug_J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =================== Part 8: Training NN ===================
|
||||
% You have now implemented all the code necessary to train a neural
|
||||
% network. To train your neural network, we will now use "fmincg", which
|
||||
% is a function which works similarly to "fminunc". Recall that these
|
||||
% advanced optimizers are able to train our cost functions efficiently as
|
||||
% long as we provide them with the gradient computations.
|
||||
%
|
||||
fprintf('\nTraining Neural Network... \n')
|
||||
|
||||
% After you have completed the assignment, change the MaxIter to a larger
|
||||
% value to see how more training helps.
|
||||
options = optimset('MaxIter', 50);
|
||||
|
||||
% You should also try different values of lambda
|
||||
lambda = 1;
|
||||
|
||||
% Create "short hand" for the cost function to be minimized
|
||||
costFunction = @(p) nnCostFunction(p, ...
|
||||
input_layer_size, ...
|
||||
hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
% Now, costFunction is a function that takes in only one argument (the
|
||||
% neural network parameters)
|
||||
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
|
||||
|
||||
% Obtain Theta1 and Theta2 back from nn_params
|
||||
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
|
||||
hidden_layer_size, (input_layer_size + 1));
|
||||
|
||||
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
|
||||
num_labels, (hidden_layer_size + 1));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================= Part 9: Visualize Weights =================
|
||||
% You can now "visualize" what the neural network is learning by
|
||||
% displaying the hidden units to see what features they are capturing in
|
||||
% the data.
|
||||
|
||||
fprintf('\nVisualizing Neural Network... \n')
|
||||
|
||||
displayData(Theta1(:, 2:end));
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ================= Part 10: Implement Predict =================
|
||||
% After training the neural network, we would like to use it to predict
|
||||
% the labels. You will now implement the "predict" function to use the
|
||||
% neural network to predict the labels of the training set. This lets
|
||||
% you compute the training set accuracy.
|
||||
|
||||
pred = predict(Theta1, Theta2, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
|
||||
Binary file not shown.
Binary file not shown.
|
|
@ -0,0 +1,175 @@
|
|||
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
% Minimize a continuous differentialble multivariate function. Starting point
|
||||
% is given by "X" (D by 1), and the function named in the string "f", must
|
||||
% return a function value and a vector of partial derivatives. The Polack-
|
||||
% Ribiere flavour of conjugate gradients is used to compute search directions,
|
||||
% and a line search using quadratic and cubic polynomial approximations and the
|
||||
% Wolfe-Powell stopping criteria is used together with the slope ratio method
|
||||
% for guessing initial step sizes. Additionally a bunch of checks are made to
|
||||
% make sure that exploration is taking place and that extrapolation will not
|
||||
% be unboundedly large. The "length" gives the length of the run: if it is
|
||||
% positive, it gives the maximum number of line searches, if negative its
|
||||
% absolute gives the maximum allowed number of function evaluations. You can
|
||||
% (optionally) give "length" a second component, which will indicate the
|
||||
% reduction in function value to be expected in the first line-search (defaults
|
||||
% to 1.0). The function returns when either its length is up, or if no further
|
||||
% progress can be made (ie, we are at a minimum, or so close that due to
|
||||
% numerical problems, we cannot get any closer). If the function terminates
|
||||
% within a few iterations, it could be an indication that the function value
|
||||
% and derivatives are not consistent (ie, there may be a bug in the
|
||||
% implementation of your "f" function). The function returns the found
|
||||
% solution "X", a vector of function values "fX" indicating the progress made
|
||||
% and "i" the number of iterations (line searches or function evaluations,
|
||||
% depending on the sign of "length") used.
|
||||
%
|
||||
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
%
|
||||
% See also: checkgrad
|
||||
%
|
||||
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
|
||||
%
|
||||
%
|
||||
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
|
||||
%
|
||||
% Permission is granted for anyone to copy, use, or modify these
|
||||
% programs and accompanying documents for purposes of research or
|
||||
% education, provided this copyright notice is retained, and note is
|
||||
% made of any changes that have been made.
|
||||
%
|
||||
% These programs and documents are distributed without any warranty,
|
||||
% express or implied. As the programs were written for research
|
||||
% purposes only, they have not been tested to the degree that would be
|
||||
% advisable in any important application. All use of these programs is
|
||||
% entirely at the user's own risk.
|
||||
%
|
||||
% [ml-class] Changes Made:
|
||||
% 1) Function name and argument specifications
|
||||
% 2) Output display
|
||||
%
|
||||
|
||||
% Read options
|
||||
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
|
||||
length = options.MaxIter;
|
||||
else
|
||||
length = 100;
|
||||
end
|
||||
|
||||
|
||||
RHO = 0.01; % a bunch of constants for line searches
|
||||
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
|
||||
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
|
||||
EXT = 3.0; % extrapolate maximum 3 times the current bracket
|
||||
MAX = 20; % max 20 function evaluations per line search
|
||||
RATIO = 100; % maximum allowed slope ratio
|
||||
|
||||
argstr = ['feval(f, X']; % compose string used to call function
|
||||
for i = 1:(nargin - 3)
|
||||
argstr = [argstr, ',P', int2str(i)];
|
||||
end
|
||||
argstr = [argstr, ')'];
|
||||
|
||||
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
|
||||
S=['Iteration '];
|
||||
|
||||
i = 0; % zero the run length counter
|
||||
ls_failed = 0; % no previous line search has failed
|
||||
fX = [];
|
||||
[f1 df1] = eval(argstr); % get function value and gradient
|
||||
i = i + (length<0); % count epochs?!
|
||||
s = -df1; % search direction is steepest
|
||||
d1 = -s'*s; % this is the slope
|
||||
z1 = red/(1-d1); % initial step is red/(|s|+1)
|
||||
|
||||
while i < abs(length) % while not finished
|
||||
i = i + (length>0); % count iterations?!
|
||||
|
||||
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
|
||||
X = X + z1*s; % begin line search
|
||||
[f2 df2] = eval(argstr);
|
||||
i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
|
||||
if length>0, M = MAX; else M = min(MAX, -length-i); end
|
||||
success = 0; limit = -1; % initialize quanteties
|
||||
while 1
|
||||
while ((f2 > f1+z1*RHO*d1) || (d2 > -SIG*d1)) && (M > 0)
|
||||
limit = z1; % tighten the bracket
|
||||
if f2 > f1
|
||||
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
|
||||
else
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
|
||||
end
|
||||
if isnan(z2) || isinf(z2)
|
||||
z2 = z3/2; % if we had a numerical problem then bisect
|
||||
end
|
||||
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
|
||||
z1 = z1 + z2; % update the step
|
||||
X = X + z2*s;
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
z3 = z3-z2; % z3 is now relative to the location of z2
|
||||
end
|
||||
if f2 > f1+z1*RHO*d1 || d2 > -SIG*d1
|
||||
break; % this is a failure
|
||||
elseif d2 > SIG*d1
|
||||
success = 1; break; % success
|
||||
elseif M == 0
|
||||
break; % failure
|
||||
end
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
|
||||
if ~isreal(z2) || isnan(z2) || isinf(z2) || z2 < 0 % num prob or wrong sign?
|
||||
if limit < -0.5 % if we have no upper limit
|
||||
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
|
||||
else
|
||||
z2 = (limit-z1)/2; % otherwise bisect
|
||||
end
|
||||
elseif (limit > -0.5) && (z2+z1 > limit) % extraplation beyond max?
|
||||
z2 = (limit-z1)/2; % bisect
|
||||
elseif (limit < -0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
|
||||
z2 = z1*(EXT-1.0); % set to extrapolation limit
|
||||
elseif z2 < -z3*INT
|
||||
z2 = -z3*INT;
|
||||
elseif (limit > -0.5) && (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
|
||||
z2 = (limit-z1)*(1.0-INT);
|
||||
end
|
||||
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
|
||||
z1 = z1 + z2; X = X + z2*s; % update current estimates
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
end % end of line search
|
||||
|
||||
if success % if line search succeeded
|
||||
f1 = f2; fX = [fX' f1]';
|
||||
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
|
||||
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
d2 = df1'*s;
|
||||
if d2 > 0 % new slope must be negative
|
||||
s = -df1; % otherwise use steepest direction
|
||||
d2 = -s'*s;
|
||||
end
|
||||
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
|
||||
d1 = d2;
|
||||
ls_failed = 0; % this line search did not fail
|
||||
else
|
||||
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
|
||||
if ls_failed || i > abs(length) % line search failed twice in a row
|
||||
break; % or we ran out of time, so we give up
|
||||
end
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
s = -df1; % try steepest
|
||||
d1 = -s'*s;
|
||||
z1 = 1/(1-d1);
|
||||
ls_failed = 1; % this line search failed
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
The author of "jsonlab" toolbox is Qianqian Fang. Qianqian
|
||||
is currently an Assistant Professor at Massachusetts General Hospital,
|
||||
Harvard Medical School.
|
||||
|
||||
Address: Martinos Center for Biomedical Imaging,
|
||||
Massachusetts General Hospital,
|
||||
Harvard Medical School
|
||||
Bldg 149, 13th St, Charlestown, MA 02129, USA
|
||||
URL: http://nmr.mgh.harvard.edu/~fangq/
|
||||
Email: <fangq at nmr.mgh.harvard.edu> or <fangqq at gmail.com>
|
||||
|
||||
|
||||
The script loadjson.m was built upon previous works by
|
||||
|
||||
- Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
date: 2009/11/02
|
||||
- François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
date: 2009/03/22
|
||||
- Joel Feenstra: http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
date: 2008/07/03
|
||||
|
||||
|
||||
This toolbox contains patches submitted by the following contributors:
|
||||
|
||||
- Blake Johnson <bjohnso at bbn.com>
|
||||
part of revision 341
|
||||
|
||||
- Niclas Borlin <Niclas.Borlin at cs.umu.se>
|
||||
various fixes in revision 394, including
|
||||
- loadjson crashes for all-zero sparse matrix.
|
||||
- loadjson crashes for empty sparse matrix.
|
||||
- Non-zero size of 0-by-N and N-by-0 empty matrices is lost after savejson/loadjson.
|
||||
- loadjson crashes for sparse real column vector.
|
||||
- loadjson crashes for sparse complex column vector.
|
||||
- Data is corrupted by savejson for sparse real row vector.
|
||||
- savejson crashes for sparse complex row vector.
|
||||
|
||||
- Yul Kang <yul.kang.on at gmail.com>
|
||||
patches for svn revision 415.
|
||||
- savejson saves an empty cell array as [] instead of null
|
||||
- loadjson differentiates an empty struct from an empty array
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
============================================================================
|
||||
|
||||
JSONlab - a toolbox to encode/decode JSON/UBJSON files in MATLAB/Octave
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
|
||||
JSONlab ChangeLog (key features marked by *):
|
||||
|
||||
== JSONlab 1.0 (codename: Optimus - Final), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2015/01/02 polish help info for all major functions, update examples, finalize 1.0
|
||||
2014/12/19 fix a bug to strictly respect NoRowBracket in savejson
|
||||
|
||||
== JSONlab 1.0.0-RC2 (codename: Optimus - RC2), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/11/22 show progress bar in loadjson ('ShowProgress')
|
||||
2014/11/17 add Compact option in savejson to output compact JSON format ('Compact')
|
||||
2014/11/17 add FastArrayParser in loadjson to specify fast parser applicable levels
|
||||
2014/09/18 start official github mirror: https://github.com/fangq/jsonlab
|
||||
|
||||
== JSONlab 1.0.0-RC1 (codename: Optimus - RC1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/09/17 fix several compatibility issues when running on octave versions 3.2-3.8
|
||||
2014/09/17 support 2D cell and struct arrays in both savejson and saveubjson
|
||||
2014/08/04 escape special characters in a JSON string
|
||||
2014/02/16 fix a bug when saving ubjson files
|
||||
|
||||
== JSONlab 0.9.9 (codename: Optimus - beta), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2014/01/22 use binary read and write in saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.8-1 (codename: Optimus - alpha update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2013/10/07 better round-trip conservation for empty arrays and structs (patch submitted by Yul Kang)
|
||||
|
||||
== JSONlab 0.9.8 (codename: Optimus - alpha), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2013/08/23 *universal Binary JSON (UBJSON) support, including both saveubjson and loadubjson
|
||||
|
||||
== JSONlab 0.9.1 (codename: Rodimus, update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
2012/12/18 *handling of various empty and sparse matrices (fixes submitted by Niclas Borlin)
|
||||
|
||||
== JSONlab 0.9.0 (codename: Rodimus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/06/17 *new format for an invalid leading char, unpacking hex code in savejson
|
||||
2012/06/01 support JSONP in savejson
|
||||
2012/05/25 fix the empty cell bug (reported by Cyril Davin)
|
||||
2012/04/05 savejson can save to a file (suggested by Patrick Rapin)
|
||||
|
||||
== JSONlab 0.8.1 (codename: Sentiel, Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/02/28 loadjson quotation mark escape bug, see http://bit.ly/yyk1nS
|
||||
2012/01/25 patch to handle root-less objects, contributed by Blake Johnson
|
||||
|
||||
== JSONlab 0.8.0 (codename: Sentiel), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2012/01/13 *speed up loadjson by 20 fold when parsing large data arrays in matlab
|
||||
2012/01/11 remove row bracket if an array has 1 element, suggested by Mykel Kochenderfer
|
||||
2011/12/22 *accept sequence of 'param',value input in savejson and loadjson
|
||||
2011/11/18 fix struct array bug reported by Mykel Kochenderfer
|
||||
|
||||
== JSONlab 0.5.1 (codename: Nexus Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/21 fix a bug in loadjson, previous code does not use any of the acceleration
|
||||
2011/10/20 loadjson supports JSON collections - concatenated JSON objects
|
||||
|
||||
== JSONlab 0.5.0 (codename: Nexus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
|
||||
|
||||
2011/10/16 package and release jsonlab 0.5.0
|
||||
2011/10/15 *add json demo and regression test, support cpx numbers, fix double quote bug
|
||||
2011/10/11 *speed up readjson dramatically, interpret _Array* tags, show data in root level
|
||||
2011/10/10 create jsonlab project, start jsonlab website, add online documentation
|
||||
2011/10/07 *speed up savejson by 25x using sprintf instead of mat2str, add options support
|
||||
2011/10/06 *savejson works for structs, cells and arrays
|
||||
2011/09/09 derive loadjson from JSON parser from MATLAB Central, draft savejson.m
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are
|
||||
permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||||
of conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||||
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
The views and conclusions contained in the software and documentation are those of the
|
||||
authors and should not be interpreted as representing official policies, either expressed
|
||||
or implied, of the copyright holders.
|
||||
|
|
@ -0,0 +1,394 @@
|
|||
===============================================================================
|
||||
= JSONLab =
|
||||
= An open-source MATLAB/Octave JSON encoder and decoder =
|
||||
===============================================================================
|
||||
|
||||
*Copyright (C) 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>
|
||||
*License: BSD License, see License_BSD.txt for details
|
||||
*Version: 1.0 (Optimus - Final)
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Table of Content:
|
||||
|
||||
I. Introduction
|
||||
II. Installation
|
||||
III.Using JSONLab
|
||||
IV. Known Issues and TODOs
|
||||
V. Contribution and feedback
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
I. Introduction
|
||||
|
||||
JSON ([http://www.json.org/ JavaScript Object Notation]) is a highly portable,
|
||||
human-readable and "[http://en.wikipedia.org/wiki/JSON fat-free]" text format
|
||||
to represent complex and hierarchical data. It is as powerful as
|
||||
[http://en.wikipedia.org/wiki/XML XML], but less verbose. JSON format is widely
|
||||
used for data-exchange in applications, and is essential for the wild success
|
||||
of [http://en.wikipedia.org/wiki/Ajax_(programming) Ajax] and
|
||||
[http://en.wikipedia.org/wiki/Web_2.0 Web2.0].
|
||||
|
||||
UBJSON (Universal Binary JSON) is a binary JSON format, specifically
|
||||
optimized for compact file size and better performance while keeping
|
||||
the semantics as simple as the text-based JSON format. Using the UBJSON
|
||||
format allows to wrap complex binary data in a flexible and extensible
|
||||
structure, making it possible to process complex and large dataset
|
||||
without accuracy loss due to text conversions.
|
||||
|
||||
We envision that both JSON and its binary version will serve as part of
|
||||
the mainstream data-exchange formats for scientific research in the future.
|
||||
It will provide the flexibility and generality achieved by other popular
|
||||
general-purpose file specifications, such as
|
||||
[http://www.hdfgroup.org/HDF5/whatishdf5.html HDF5], with significantly
|
||||
reduced complexity and enhanced performance.
|
||||
|
||||
JSONLab is a free and open-source implementation of a JSON/UBJSON encoder
|
||||
and a decoder in the native MATLAB language. It can be used to convert a MATLAB
|
||||
data structure (array, struct, cell, struct array and cell array) into
|
||||
JSON/UBJSON formatted strings, or to decode a JSON/UBJSON file into MATLAB
|
||||
data structure. JSONLab supports both MATLAB and
|
||||
[http://www.gnu.org/software/octave/ GNU Octave] (a free MATLAB clone).
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
II. Installation
|
||||
|
||||
The installation of JSONLab is no different than any other simple
|
||||
MATLAB toolbox. You only need to download/unzip the JSONLab package
|
||||
to a folder, and add the folder's path to MATLAB/Octave's path list
|
||||
by using the following command:
|
||||
|
||||
addpath('/path/to/jsonlab');
|
||||
|
||||
If you want to add this path permanently, you need to type "pathtool",
|
||||
browse to the jsonlab root folder and add to the list, then click "Save".
|
||||
Then, run "rehash" in MATLAB, and type "which loadjson", if you see an
|
||||
output, that means JSONLab is installed for MATLAB/Octave.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
III.Using JSONLab
|
||||
|
||||
JSONLab provides two functions, loadjson.m -- a MATLAB->JSON decoder,
|
||||
and savejson.m -- a MATLAB->JSON encoder, for the text-based JSON, and
|
||||
two equivallent functions -- loadubjson and saveubjson for the binary
|
||||
JSON. The detailed help info for the four functions can be found below:
|
||||
|
||||
=== loadjson.m ===
|
||||
<pre>
|
||||
data=loadjson(fname,opt)
|
||||
or
|
||||
data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09, including previous works from
|
||||
|
||||
Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
created on 2009/11/02
|
||||
François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
created on 2009/03/22
|
||||
Joel Feenstra:
|
||||
http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
created on 2008/07/03
|
||||
|
||||
$Id: loadjson.m 452 2014-11-22 16:43:33Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a JSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
speed-optimized array parser when loading an
|
||||
array object. The fast array parser may
|
||||
collapse block arrays into a single large
|
||||
array similar to rules defined in cell2mat; 0 to
|
||||
use a legacy parser; if set to a larger-than-1
|
||||
value, this option will specify the minimum
|
||||
dimension to enable the fast array parser. For
|
||||
example, if the input is a 3D array, setting
|
||||
FastArrayParser to 1 will return a 3D array;
|
||||
setting to 2 will return a cell array of 2D
|
||||
arrays; setting to 3 will return to a 2D cell
|
||||
array of 1D vectors; setting to 4 will return a
|
||||
3D cell array.
|
||||
opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
dat=loadjson(['examples' filesep 'example1.json'])
|
||||
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== savejson.m ===
|
||||
|
||||
<pre>
|
||||
json=savejson(rootname,obj,filename)
|
||||
or
|
||||
json=savejson(rootname,obj,opt)
|
||||
json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
Object Notation) string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2011/09/09
|
||||
|
||||
$Id: savejson.m 458 2014-12-19 22:17:17Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
filename: a string for the file name to save the output JSON data.
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
of a 1D/2D array;
|
||||
opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
precedent indentation; if 0, no indentation
|
||||
opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
and $1 represents the sign. For those who want to use
|
||||
1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
to represent NaN
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSONP='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a string in the JSON format (see http://json.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
savejson('jmesh',jsonmesh)
|
||||
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
</pre>
|
||||
|
||||
=== loadubjson.m ===
|
||||
|
||||
<pre>
|
||||
data=loadubjson(fname,opt)
|
||||
or
|
||||
data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
|
||||
parse a JSON (JavaScript Object Notation) file or string
|
||||
|
||||
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/01
|
||||
|
||||
$Id: loadubjson.m 436 2014-08-05 20:51:40Z fangq $
|
||||
|
||||
input:
|
||||
fname: input file name, if fname contains "{}" or "[]", fname
|
||||
will be interpreted as a UBJSON string
|
||||
opt: a struct to store parsing options, opt can be replaced by
|
||||
a list of ('param',value) pairs - the param string is equivallent
|
||||
to a field in opt. opt can have the following
|
||||
fields (first in [.|.] is the default)
|
||||
|
||||
opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
for each element of the JSON data, and group
|
||||
arrays based on the cell2mat rules.
|
||||
opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
in the UBJSON input data. B - Big-Endian format for
|
||||
integers (as required in the UBJSON specification);
|
||||
L - input integer fields are in Little-Endian order.
|
||||
|
||||
output:
|
||||
dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
and [...] are converted to arrays
|
||||
|
||||
examples:
|
||||
obj=struct('string','value','array',[1 2 3]);
|
||||
ubjdata=saveubjson('obj',obj);
|
||||
dat=loadubjson(ubjdata)
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
</pre>
|
||||
|
||||
=== saveubjson.m ===
|
||||
|
||||
<pre>
|
||||
json=saveubjson(rootname,obj,filename)
|
||||
or
|
||||
json=saveubjson(rootname,obj,opt)
|
||||
json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
|
||||
convert a MATLAB object (cell, struct or array) into a Universal
|
||||
Binary JSON (UBJSON) binary string
|
||||
|
||||
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
created on 2013/08/17
|
||||
|
||||
$Id: saveubjson.m 440 2014-09-17 19:59:45Z fangq $
|
||||
|
||||
input:
|
||||
rootname: the name of the root-object, when set to '', the root name
|
||||
is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
the MATLAB variable name will be used as the root name.
|
||||
obj: a MATLAB object (array, cell, cell array, struct, struct array)
|
||||
filename: a string for the file name to save the output UBJSON data
|
||||
opt: a struct for additional options, ignore to use default values.
|
||||
opt can have the following fields (first in [.|.] is the default)
|
||||
|
||||
opt.FileName [''|string]: a file name to save the output JSON data
|
||||
opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
|
||||
array in JSON array format; if sets to 1, an
|
||||
array will be shown as a struct with fields
|
||||
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
sparse arrays, the non-zero elements will be
|
||||
saved to _ArrayData_ field in triplet-format i.e.
|
||||
(ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
with a value of 1; for a complex array, the
|
||||
_ArrayData_ array will include two columns
|
||||
(4 for sparse) to record the real and imaginary
|
||||
parts, and also "_ArrayIsComplex_":1 is added.
|
||||
opt.ParseLogical [1|0]: if this is set to 1, logical array elem
|
||||
will use true/false rather than 1/0.
|
||||
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
numerical element will be shown without a square
|
||||
bracket, unless it is the root object; if 0, square
|
||||
brackets are forced for any numerical arrays.
|
||||
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
|
||||
will use the name of the passed obj variable as the
|
||||
root object name; if obj is an expression and
|
||||
does not have a name, 'root' will be used; if this
|
||||
is set to 0 and rootname is empty, the root level
|
||||
will be merged down to the lower level.
|
||||
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
for example, if opt.JSON='foo', the JSON data is
|
||||
wrapped inside a function call as 'foo(...);'
|
||||
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
back to the string form
|
||||
|
||||
opt can be replaced by a list of ('param',value) pairs. The param
|
||||
string is equivallent to a field in opt and is case sensitive.
|
||||
output:
|
||||
json: a binary string in the UBJSON format (see http://ubjson.org)
|
||||
|
||||
examples:
|
||||
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
'SpecialData',[nan, inf, -inf]);
|
||||
saveubjson('jsonmesh',jsonmesh)
|
||||
saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
|
||||
</pre>
|
||||
|
||||
|
||||
=== examples ===
|
||||
|
||||
Under the "examples" folder, you can find several scripts to demonstrate the
|
||||
basic utilities of JSONLab. Running the "demo_jsonlab_basic.m" script, you
|
||||
will see the conversions from MATLAB data structure to JSON text and backward.
|
||||
In "jsonlab_selftest.m", we load complex JSON files downloaded from the Internet
|
||||
and validate the loadjson/savejson functions for regression testing purposes.
|
||||
Similarly, a "demo_ubjson_basic.m" script is provided to test the saveubjson
|
||||
and loadubjson pairs for various matlab data structures.
|
||||
|
||||
Please run these examples and understand how JSONLab works before you use
|
||||
it to process your data.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
IV. Known Issues and TODOs
|
||||
|
||||
JSONLab has several known limitations. We are striving to make it more general
|
||||
and robust. Hopefully in a few future releases, the limitations become less.
|
||||
|
||||
Here are the known issues:
|
||||
|
||||
# 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays;
|
||||
# When processing names containing multi-byte characters, Octave and MATLAB \
|
||||
can give different field-names; you can use feature('DefaultCharacterSet','latin1') \
|
||||
in MATLAB to get consistant results
|
||||
# savejson can not handle class and dataset.
|
||||
# saveubjson converts a logical array into a uint8 ([U]) array
|
||||
# an unofficial N-D array count syntax is implemented in saveubjson. We are \
|
||||
actively communicating with the UBJSON spec maintainer to investigate the \
|
||||
possibility of making it upstream
|
||||
# loadubjson can not parse all UBJSON Specification (Draft 9) compliant \
|
||||
files, however, it can parse all UBJSON files produced by saveubjson.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
V. Contribution and feedback
|
||||
|
||||
JSONLab is an open-source project. This means you can not only use it and modify
|
||||
it as you wish, but also you can contribute your changes back to JSONLab so
|
||||
that everyone else can enjoy the improvement. For anyone who want to contribute,
|
||||
please download JSONLab source code from it's subversion repository by using the
|
||||
following command:
|
||||
|
||||
svn checkout svn://svn.code.sf.net/p/iso2mesh/code/trunk/jsonlab jsonlab
|
||||
|
||||
You can make changes to the files as needed. Once you are satisfied with your
|
||||
changes, and ready to share it with others, please cd the root directory of
|
||||
JSONLab, and type
|
||||
|
||||
svn diff > yourname_featurename.patch
|
||||
|
||||
You then email the .patch file to JSONLab's maintainer, Qianqian Fang, at
|
||||
the email address shown in the beginning of this file. Qianqian will review
|
||||
the changes and commit it to the subversion if they are satisfactory.
|
||||
|
||||
We appreciate any suggestions and feedbacks from you. Please use iso2mesh's
|
||||
mailing list to report any questions you may have with JSONLab:
|
||||
|
||||
http://groups.google.com/group/iso2mesh-users?hl=en&pli=1
|
||||
|
||||
(Subscription to the mailing list is needed in order to post messages).
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
function val=jsonopt(key,default,varargin)
|
||||
%
|
||||
% val=jsonopt(key,default,optstruct)
|
||||
%
|
||||
% setting options based on a struct. The struct can be produced
|
||||
% by varargin2struct from a list of 'param','value' pairs
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
%
|
||||
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
|
||||
%
|
||||
% input:
|
||||
% key: a string with which one look up a value from a struct
|
||||
% default: if the key does not exist, return default
|
||||
% optstruct: a struct where each sub-field is a key
|
||||
%
|
||||
% output:
|
||||
% val: if key exists, val=optstruct.key; otherwise val=default
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
val=default;
|
||||
if(nargin<=2) return; end
|
||||
opt=varargin{1};
|
||||
if(isstruct(opt) && isfield(opt,key))
|
||||
val=getfield(opt,key);
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,566 @@
|
|||
function data = loadjson(fname,varargin)
|
||||
%
|
||||
% data=loadjson(fname,opt)
|
||||
% or
|
||||
% data=loadjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09, including previous works from
|
||||
%
|
||||
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
|
||||
% created on 2009/11/02
|
||||
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
|
||||
% created on 2009/03/22
|
||||
% Joel Feenstra:
|
||||
% http://www.mathworks.com/matlabcentral/fileexchange/20565
|
||||
% created on 2008/07/03
|
||||
%
|
||||
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a JSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
|
||||
% speed-optimized array parser when loading an
|
||||
% array object. The fast array parser may
|
||||
% collapse block arrays into a single large
|
||||
% array similar to rules defined in cell2mat; 0 to
|
||||
% use a legacy parser; if set to a larger-than-1
|
||||
% value, this option will specify the minimum
|
||||
% dimension to enable the fast array parser. For
|
||||
% example, if the input is a 3D array, setting
|
||||
% FastArrayParser to 1 will return a 3D array;
|
||||
% setting to 2 will return a cell array of 2D
|
||||
% arrays; setting to 3 will return to a 2D cell
|
||||
% array of 1D vectors; setting to 4 will return a
|
||||
% 3D cell array.
|
||||
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
|
||||
% dat=loadjson(['examples' filesep 'example1.json'])
|
||||
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
|
||||
if(jsonopt('ShowProgress',0,opt)==1)
|
||||
opt.progressbar_=waitbar(0,'loading ...');
|
||||
end
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
if(isfield(opt,'progressbar_'))
|
||||
close(opt.progressbar_);
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=data(j).x0x5F_ArraySize_;
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
if next_char ~= '}'
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
parse_char('}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim2=[];
|
||||
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
|
||||
if next_char ~= ']'
|
||||
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
|
||||
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
|
||||
arraystr=['[' inStr(pos:endpos)];
|
||||
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
|
||||
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
|
||||
arraystr(arraystr==sprintf('\n'))=[];
|
||||
arraystr(arraystr==sprintf('\r'))=[];
|
||||
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
|
||||
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
|
||||
astr=inStr((e1l+1):(e1r-1));
|
||||
astr=regexprep(astr,'"_NaN_"','NaN');
|
||||
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
|
||||
astr(astr==sprintf('\n'))=[];
|
||||
astr(astr==sprintf('\r'))=[];
|
||||
astr(astr==' ')='';
|
||||
if(isempty(find(astr=='[', 1))) % array is 2D
|
||||
dim2=length(sscanf(astr,'%f,',[1 inf]));
|
||||
end
|
||||
else % array is 1D
|
||||
astr=arraystr(2:end-1);
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=obj;
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if(~isempty(dim2))
|
||||
astr=arraystr;
|
||||
astr(astr=='[')='';
|
||||
astr(astr==']')='';
|
||||
astr(astr==' ')='';
|
||||
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
|
||||
if(nextidx>=length(astr)-1)
|
||||
object=reshape(obj,dim2,numel(obj)/dim2)';
|
||||
pos=endpos;
|
||||
parse_char(']');
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
return;
|
||||
end
|
||||
end
|
||||
arraystr=regexprep(arraystr,'\]\s*,','];');
|
||||
else
|
||||
arraystr='[';
|
||||
end
|
||||
try
|
||||
if(isoct && regexp(arraystr,'"','once'))
|
||||
error('Octave eval can produce empty cells for JSON-like input');
|
||||
end
|
||||
object=eval(arraystr);
|
||||
pos=endpos;
|
||||
catch
|
||||
while 1
|
||||
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
|
||||
val = parse_value(newopt);
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
parse_char(',');
|
||||
end
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
parse_char(']');
|
||||
|
||||
if(pbar>0)
|
||||
waitbar(pos/length(inStr),pbar,'loading ...');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr len esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
if inStr(pos) ~= '"'
|
||||
error_pos('String starting with " expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
str = '';
|
||||
while pos <= len
|
||||
while index_esc <= len_esc && esc(index_esc) < pos
|
||||
index_esc = index_esc + 1;
|
||||
end
|
||||
if index_esc > len_esc
|
||||
str = [str inStr(pos:len)];
|
||||
pos = len + 1;
|
||||
break;
|
||||
else
|
||||
str = [str inStr(pos:esc(index_esc)-1)];
|
||||
pos = esc(index_esc);
|
||||
end
|
||||
nstr = length(str); switch inStr(pos)
|
||||
case '"'
|
||||
pos = pos + 1;
|
||||
if(~isempty(str))
|
||||
if(strcmp(str,'_Inf_'))
|
||||
str=Inf;
|
||||
elseif(strcmp(str,'-_Inf_'))
|
||||
str=-Inf;
|
||||
elseif(strcmp(str,'_NaN_'))
|
||||
str=NaN;
|
||||
end
|
||||
end
|
||||
return;
|
||||
case '\'
|
||||
if pos+1 > len
|
||||
error_pos('End of file reached right after escape character');
|
||||
end
|
||||
pos = pos + 1;
|
||||
switch inStr(pos)
|
||||
case {'"' '\' '/'}
|
||||
str(nstr+1) = inStr(pos);
|
||||
pos = pos + 1;
|
||||
case {'b' 'f' 'n' 'r' 't'}
|
||||
str(nstr+1) = sprintf(['\' inStr(pos)]);
|
||||
pos = pos + 1;
|
||||
case 'u'
|
||||
if pos+4 > len
|
||||
error_pos('End of file reached in escaped unicode character');
|
||||
end
|
||||
str(nstr+(1:6)) = inStr(pos-1:pos+4);
|
||||
pos = pos + 5;
|
||||
end
|
||||
otherwise % should never happen
|
||||
str(nstr+1) = inStr(pos), keyboard
|
||||
pos = pos + 1;
|
||||
end
|
||||
end
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct
|
||||
currstr=inStr(pos:end);
|
||||
numstr=0;
|
||||
if(isoct~=0)
|
||||
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
|
||||
[num, one] = sscanf(currstr, '%f', 1);
|
||||
delta=numstr+1;
|
||||
else
|
||||
[num, one, err, delta] = sscanf(currstr, '%f', 1);
|
||||
if ~isempty(err)
|
||||
error_pos('Error reading number at position %d');
|
||||
end
|
||||
end
|
||||
pos = pos + delta-1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
pbar=jsonopt('progressbar_',-1,varargin{:});
|
||||
if(pbar>0)
|
||||
waitbar(pos/len,pbar,'loading ...');
|
||||
end
|
||||
|
||||
switch(inStr(pos))
|
||||
case '"'
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'-','0','1','2','3','4','5','6','7','8','9'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 't'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
|
||||
val = true;
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
case 'f'
|
||||
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
|
||||
val = false;
|
||||
pos = pos + 5;
|
||||
return;
|
||||
end
|
||||
case 'n'
|
||||
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
|
||||
val = [];
|
||||
pos = pos + 4;
|
||||
return;
|
||||
end
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,528 @@
|
|||
function data = loadubjson(fname,varargin)
|
||||
%
|
||||
% data=loadubjson(fname,opt)
|
||||
% or
|
||||
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% parse a JSON (JavaScript Object Notation) file or string
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2013/08/01
|
||||
%
|
||||
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% fname: input file name, if fname contains "{}" or "[]", fname
|
||||
% will be interpreted as a UBJSON string
|
||||
% opt: a struct to store parsing options, opt can be replaced by
|
||||
% a list of ('param',value) pairs - the param string is equivallent
|
||||
% to a field in opt. opt can have the following
|
||||
% fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
|
||||
% for each element of the JSON data, and group
|
||||
% arrays based on the cell2mat rules.
|
||||
% opt.IntEndian [B|L]: specify the endianness of the integer fields
|
||||
% in the UBJSON input data. B - Big-Endian format for
|
||||
% integers (as required in the UBJSON specification);
|
||||
% L - input integer fields are in Little-Endian order.
|
||||
%
|
||||
% output:
|
||||
% dat: a cell array, where {...} blocks are converted into cell arrays,
|
||||
% and [...] are converted to arrays
|
||||
%
|
||||
% examples:
|
||||
% obj=struct('string','value','array',[1 2 3]);
|
||||
% ubjdata=saveubjson('obj',obj);
|
||||
% dat=loadubjson(ubjdata)
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'])
|
||||
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
|
||||
|
||||
if(regexp(fname,'[\{\}\]\[]','once'))
|
||||
string=fname;
|
||||
elseif(exist(fname,'file'))
|
||||
fid = fopen(fname,'rb');
|
||||
string = fread(fid,inf,'uint8=>char')';
|
||||
fclose(fid);
|
||||
else
|
||||
error('input file does not exist');
|
||||
end
|
||||
|
||||
pos = 1; len = length(string); inStr = string;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
|
||||
jstr=regexprep(inStr,'\\\\',' ');
|
||||
escquote=regexp(jstr,'\\"');
|
||||
arraytoken=sort([arraytoken escquote]);
|
||||
|
||||
% String delimiters and escape chars identified to improve speed:
|
||||
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
|
||||
index_esc = 1; len_esc = length(esc);
|
||||
|
||||
opt=varargin2struct(varargin{:});
|
||||
fileendian=upper(jsonopt('IntEndian','B',opt));
|
||||
[os,maxelem,systemendian]=computer;
|
||||
|
||||
jsoncount=1;
|
||||
while pos <= len
|
||||
switch(next_char)
|
||||
case '{'
|
||||
data{jsoncount} = parse_object(opt);
|
||||
case '['
|
||||
data{jsoncount} = parse_array(opt);
|
||||
otherwise
|
||||
error_pos('Outer level structure must be an object or an array');
|
||||
end
|
||||
jsoncount=jsoncount+1;
|
||||
end % while
|
||||
|
||||
jsoncount=length(data);
|
||||
if(jsoncount==1 && iscell(data))
|
||||
data=data{1};
|
||||
end
|
||||
|
||||
if(~isempty(data))
|
||||
if(isstruct(data)) % data can be a struct array
|
||||
data=jstruct2array(data);
|
||||
elseif(iscell(data))
|
||||
data=jcell2array(data);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
%%
|
||||
function newdata=parse_collection(id,data,obj)
|
||||
|
||||
if(jsoncount>0 && exist('data','var'))
|
||||
if(~iscell(data))
|
||||
newdata=cell(1);
|
||||
newdata{1}=data;
|
||||
data=newdata;
|
||||
end
|
||||
end
|
||||
|
||||
%%
|
||||
function newdata=jcell2array(data)
|
||||
len=length(data);
|
||||
newdata=data;
|
||||
for i=1:len
|
||||
if(isstruct(data{i}))
|
||||
newdata{i}=jstruct2array(data{i});
|
||||
elseif(iscell(data{i}))
|
||||
newdata{i}=jcell2array(data{i});
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newdata=jstruct2array(data)
|
||||
fn=fieldnames(data);
|
||||
newdata=data;
|
||||
len=length(data);
|
||||
for i=1:length(fn) % depth-first
|
||||
for j=1:len
|
||||
if(isstruct(getfield(data(j),fn{i})))
|
||||
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
|
||||
end
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
|
||||
newdata=cell(len,1);
|
||||
for j=1:len
|
||||
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
|
||||
iscpx=0;
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsComplex_)
|
||||
iscpx=1;
|
||||
end
|
||||
end
|
||||
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
|
||||
if(data(j).x0x5F_ArrayIsSparse_)
|
||||
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
dim=double(data(j).x0x5F_ArraySize_);
|
||||
if(iscpx && size(ndata,2)==4-any(dim==1))
|
||||
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
|
||||
end
|
||||
if isempty(ndata)
|
||||
% All-zeros sparse
|
||||
ndata=sparse(dim(1),prod(dim(2:end)));
|
||||
elseif dim(1)==1
|
||||
% Sparse row vector
|
||||
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
elseif dim(2)==1
|
||||
% Sparse column vector
|
||||
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
|
||||
else
|
||||
% Generic sparse array.
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
|
||||
end
|
||||
else
|
||||
if(iscpx && size(ndata,2)==4)
|
||||
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
|
||||
end
|
||||
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
|
||||
end
|
||||
end
|
||||
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
|
||||
if(iscpx && size(ndata,2)==2)
|
||||
ndata=complex(ndata(:,1),ndata(:,2));
|
||||
end
|
||||
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
|
||||
end
|
||||
newdata{j}=ndata;
|
||||
end
|
||||
if(len==1)
|
||||
newdata=newdata{1};
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function object = parse_object(varargin)
|
||||
parse_char('{');
|
||||
object = [];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1); % TODO
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
count=double(parse_number());
|
||||
end
|
||||
if next_char ~= '}'
|
||||
num=0;
|
||||
while 1
|
||||
str = parseStr(varargin{:});
|
||||
if isempty(str)
|
||||
error_pos('Name of value at position %d cannot be empty');
|
||||
end
|
||||
%parse_char(':');
|
||||
val = parse_value(varargin{:});
|
||||
num=num+1;
|
||||
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
|
||||
if next_char == '}' || (count>=0 && num>=count)
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char('}');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function [cid,len]=elem_info(type)
|
||||
id=strfind('iUIlLdD',type);
|
||||
dataclass={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
if(id>0)
|
||||
cid=dataclass{id};
|
||||
len=bytelen(id);
|
||||
else
|
||||
error_pos('unsupported type at position %d');
|
||||
end
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function [data adv]=parse_block(type,count,varargin)
|
||||
global pos inStr isoct fileendian systemendian
|
||||
[cid,len]=elem_info(type);
|
||||
datastr=inStr(pos:pos+len*count-1);
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
id=strfind('iUIlLdD',type);
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,cid));
|
||||
end
|
||||
data=typecast(newdata,cid);
|
||||
adv=double(len*count);
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
|
||||
function object = parse_array(varargin) % JSON array is written in row-major order
|
||||
global pos inStr isoct
|
||||
parse_char('[');
|
||||
object = cell(0, 1);
|
||||
dim=[];
|
||||
type='';
|
||||
count=-1;
|
||||
if(next_char == '$')
|
||||
type=inStr(pos+1);
|
||||
pos=pos+2;
|
||||
end
|
||||
if(next_char == '#')
|
||||
pos=pos+1;
|
||||
if(next_char=='[')
|
||||
dim=parse_array(varargin{:});
|
||||
count=prod(double(dim));
|
||||
else
|
||||
count=double(parse_number());
|
||||
end
|
||||
end
|
||||
if(~isempty(type))
|
||||
if(count>=0)
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
if(~isempty(dim))
|
||||
object=reshape(object,dim);
|
||||
end
|
||||
pos=pos+adv;
|
||||
return;
|
||||
else
|
||||
endpos=matching_bracket(inStr,pos);
|
||||
[cid,len]=elem_info(type);
|
||||
count=(endpos-pos)/len;
|
||||
[object adv]=parse_block(type,count,varargin{:});
|
||||
pos=pos+adv;
|
||||
parse_char(']');
|
||||
return;
|
||||
end
|
||||
end
|
||||
if next_char ~= ']'
|
||||
while 1
|
||||
val = parse_value(varargin{:});
|
||||
object{end+1} = val;
|
||||
if next_char == ']'
|
||||
break;
|
||||
end
|
||||
%parse_char(',');
|
||||
end
|
||||
end
|
||||
if(jsonopt('SimplifyCell',0,varargin{:})==1)
|
||||
try
|
||||
oldobj=object;
|
||||
object=cell2mat(object')';
|
||||
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
|
||||
object=oldobj;
|
||||
elseif(size(object,1)>1 && ndims(object)==2)
|
||||
object=object';
|
||||
end
|
||||
catch
|
||||
end
|
||||
end
|
||||
if(count==-1)
|
||||
parse_char(']');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function parse_char(c)
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len || inStr(pos) ~= c
|
||||
error_pos(sprintf('Expected %c at position %%d', c));
|
||||
else
|
||||
pos = pos + 1;
|
||||
skip_whitespace;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function c = next_char
|
||||
global pos inStr len
|
||||
skip_whitespace;
|
||||
if pos > len
|
||||
c = [];
|
||||
else
|
||||
c = inStr(pos);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function skip_whitespace
|
||||
global pos inStr len
|
||||
while pos <= len && isspace(inStr(pos))
|
||||
pos = pos + 1;
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function str = parseStr(varargin)
|
||||
global pos inStr esc index_esc len_esc
|
||||
% len, ns = length(inStr), keyboard
|
||||
type=inStr(pos);
|
||||
if type ~= 'S' && type ~= 'C' && type ~= 'H'
|
||||
error_pos('String starting with S expected at position %d');
|
||||
else
|
||||
pos = pos + 1;
|
||||
end
|
||||
if(type == 'C')
|
||||
str=inStr(pos);
|
||||
pos=pos+1;
|
||||
return;
|
||||
end
|
||||
bytelen=double(parse_number());
|
||||
if(length(inStr)>=pos+bytelen-1)
|
||||
str=inStr(pos:pos+bytelen-1);
|
||||
pos=pos+bytelen;
|
||||
else
|
||||
error_pos('End of file while expecting end of inStr');
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function num = parse_number(varargin)
|
||||
global pos inStr len isoct fileendian systemendian
|
||||
id=strfind('iUIlLdD',inStr(pos));
|
||||
if(isempty(id))
|
||||
error_pos('expecting a number at position %d');
|
||||
end
|
||||
type={'int8','uint8','int16','int32','int64','single','double'};
|
||||
bytelen=[1,1,2,4,8,4,8];
|
||||
datastr=inStr(pos+1:pos+bytelen(id));
|
||||
if(isoct)
|
||||
newdata=int8(datastr);
|
||||
else
|
||||
newdata=uint8(datastr);
|
||||
end
|
||||
if(id<=5 && fileendian~=systemendian)
|
||||
newdata=swapbytes(typecast(newdata,type{id}));
|
||||
end
|
||||
num=typecast(newdata,type{id});
|
||||
pos = pos + bytelen(id)+1;
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function val = parse_value(varargin)
|
||||
global pos inStr len
|
||||
true = 1; false = 0;
|
||||
|
||||
switch(inStr(pos))
|
||||
case {'S','C','H'}
|
||||
val = parseStr(varargin{:});
|
||||
return;
|
||||
case '['
|
||||
val = parse_array(varargin{:});
|
||||
return;
|
||||
case '{'
|
||||
val = parse_object(varargin{:});
|
||||
if isstruct(val)
|
||||
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
|
||||
val=jstruct2array(val);
|
||||
end
|
||||
elseif isempty(val)
|
||||
val = struct;
|
||||
end
|
||||
return;
|
||||
case {'i','U','I','l','L','d','D'}
|
||||
val = parse_number(varargin{:});
|
||||
return;
|
||||
case 'T'
|
||||
val = true;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case 'F'
|
||||
val = false;
|
||||
pos = pos + 1;
|
||||
return;
|
||||
case {'Z','N'}
|
||||
val = [];
|
||||
pos = pos + 1;
|
||||
return;
|
||||
end
|
||||
error_pos('Value expected at position %d');
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function error_pos(msg)
|
||||
global pos inStr len
|
||||
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
|
||||
if poShow(3) == poShow(2)
|
||||
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
|
||||
end
|
||||
msg = [sprintf(msg, pos) ': ' ...
|
||||
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
|
||||
error( ['JSONparser:invalidFormat: ' msg] );
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
|
||||
function str = valid_field(str)
|
||||
global isoct
|
||||
% From MATLAB doc: field names must begin with a letter, which may be
|
||||
% followed by any combination of letters, digits, and underscores.
|
||||
% Invalid characters will be converted to underscores, and the prefix
|
||||
% "x0x[Hex code]_" will be added if the first character is not a letter.
|
||||
pos=regexp(str,'^[^A-Za-z]','once');
|
||||
if(~isempty(pos))
|
||||
if(~isoct)
|
||||
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
|
||||
else
|
||||
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
|
||||
end
|
||||
end
|
||||
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
|
||||
if(~isoct)
|
||||
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
|
||||
else
|
||||
pos=regexp(str,'[^0-9A-Za-z_]');
|
||||
if(isempty(pos)) return; end
|
||||
str0=str;
|
||||
pos0=[0 pos(:)' length(str)];
|
||||
str='';
|
||||
for i=1:length(pos)
|
||||
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
|
||||
end
|
||||
if(pos(end)~=length(str))
|
||||
str=[str str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function endpos = matching_quote(str,pos)
|
||||
len=length(str);
|
||||
while(pos<len)
|
||||
if(str(pos)=='"')
|
||||
if(~(pos>1 && str(pos-1)=='\'))
|
||||
endpos=pos;
|
||||
return;
|
||||
end
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
error('unmatched quotation mark');
|
||||
%%-------------------------------------------------------------------------
|
||||
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
|
||||
global arraytoken
|
||||
level=1;
|
||||
maxlevel=level;
|
||||
endpos=0;
|
||||
bpos=arraytoken(arraytoken>=pos);
|
||||
tokens=str(bpos);
|
||||
len=length(tokens);
|
||||
pos=1;
|
||||
e1l=[];
|
||||
e1r=[];
|
||||
while(pos<=len)
|
||||
c=tokens(pos);
|
||||
if(c==']')
|
||||
level=level-1;
|
||||
if(isempty(e1r)) e1r=bpos(pos); end
|
||||
if(level==0)
|
||||
endpos=bpos(pos);
|
||||
return
|
||||
end
|
||||
end
|
||||
if(c=='[')
|
||||
if(isempty(e1l)) e1l=bpos(pos); end
|
||||
level=level+1;
|
||||
maxlevel=max(maxlevel,level);
|
||||
end
|
||||
if(c=='"')
|
||||
pos=matching_quote(tokens,pos+1);
|
||||
end
|
||||
pos=pos+1;
|
||||
end
|
||||
if(endpos==0)
|
||||
error('unmatched "]"');
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,33 @@
|
|||
function s=mergestruct(s1,s2)
|
||||
%
|
||||
% s=mergestruct(s1,s2)
|
||||
%
|
||||
% merge two struct objects into one
|
||||
%
|
||||
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% date: 2012/12/22
|
||||
%
|
||||
% input:
|
||||
% s1,s2: a struct object, s1 and s2 can not be arrays
|
||||
%
|
||||
% output:
|
||||
% s: the merged struct object. fields in s1 and s2 will be combined in s.
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(~isstruct(s1) || ~isstruct(s2))
|
||||
error('input parameters contain non-struct');
|
||||
end
|
||||
if(length(s1)>1 || length(s2)>1)
|
||||
error('can not merge struct arrays');
|
||||
end
|
||||
fn=fieldnames(s2);
|
||||
s=s1;
|
||||
for i=1:length(fn)
|
||||
s=setfield(s,fn{i},getfield(s2,fn{i}));
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,475 @@
|
|||
function json=savejson(rootname,obj,varargin)
|
||||
%
|
||||
% json=savejson(rootname,obj,filename)
|
||||
% or
|
||||
% json=savejson(rootname,obj,opt)
|
||||
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
|
||||
%
|
||||
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
|
||||
% Object Notation) string
|
||||
%
|
||||
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
|
||||
% created on 2011/09/09
|
||||
%
|
||||
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
|
||||
%
|
||||
% input:
|
||||
% rootname: the name of the root-object, when set to '', the root name
|
||||
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
|
||||
% the MATLAB variable name will be used as the root name.
|
||||
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
|
||||
% filename: a string for the file name to save the output JSON data.
|
||||
% opt: a struct for additional options, ignore to use default values.
|
||||
% opt can have the following fields (first in [.|.] is the default)
|
||||
%
|
||||
% opt.FileName [''|string]: a file name to save the output JSON data
|
||||
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
|
||||
% of a 1D/2D array;
|
||||
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
|
||||
% precedent indentation; if 0, no indentation
|
||||
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
|
||||
% array in JSON array format; if sets to 1, an
|
||||
% array will be shown as a struct with fields
|
||||
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
|
||||
% sparse arrays, the non-zero elements will be
|
||||
% saved to _ArrayData_ field in triplet-format i.e.
|
||||
% (ix,iy,val) and "_ArrayIsSparse_" will be added
|
||||
% with a value of 1; for a complex array, the
|
||||
% _ArrayData_ array will include two columns
|
||||
% (4 for sparse) to record the real and imaginary
|
||||
% parts, and also "_ArrayIsComplex_":1 is added.
|
||||
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
|
||||
% will use true/false rather than 1/0.
|
||||
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
|
||||
% numerical element will be shown without a square
|
||||
% bracket, unless it is the root object; if 0, square
|
||||
% brackets are forced for any numerical arrays.
|
||||
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
|
||||
% will use the name of the passed obj variable as the
|
||||
% root object name; if obj is an expression and
|
||||
% does not have a name, 'root' will be used; if this
|
||||
% is set to 0 and rootname is empty, the root level
|
||||
% will be merged down to the lower level.
|
||||
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
|
||||
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
|
||||
% and $1 represents the sign. For those who want to use
|
||||
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
|
||||
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
|
||||
% to represent NaN
|
||||
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
|
||||
% for example, if opt.JSONP='foo', the JSON data is
|
||||
% wrapped inside a function call as 'foo(...);'
|
||||
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
|
||||
% back to the string form
|
||||
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
|
||||
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
|
||||
%
|
||||
% opt can be replaced by a list of ('param',value) pairs. The param
|
||||
% string is equivallent to a field in opt and is case sensitive.
|
||||
% output:
|
||||
% json: a string in the JSON format (see http://json.org)
|
||||
%
|
||||
% examples:
|
||||
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
|
||||
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
|
||||
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
|
||||
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
|
||||
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
|
||||
% 'SpecialData',[nan, inf, -inf]);
|
||||
% savejson('jmesh',jsonmesh)
|
||||
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
|
||||
%
|
||||
% license:
|
||||
% BSD, see LICENSE_BSD.txt files for details
|
||||
%
|
||||
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
|
||||
%
|
||||
|
||||
if(nargin==1)
|
||||
varname=inputname(1);
|
||||
obj=rootname;
|
||||
if(isempty(varname))
|
||||
varname='root';
|
||||
end
|
||||
rootname=varname;
|
||||
else
|
||||
varname=inputname(2);
|
||||
end
|
||||
if(length(varargin)==1 && ischar(varargin{1}))
|
||||
opt=struct('FileName',varargin{1});
|
||||
else
|
||||
opt=varargin2struct(varargin{:});
|
||||
end
|
||||
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
|
||||
rootisarray=0;
|
||||
rootlevel=1;
|
||||
forceroot=jsonopt('ForceRootName',0,opt);
|
||||
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
|
||||
rootisarray=1;
|
||||
rootlevel=0;
|
||||
else
|
||||
if(isempty(rootname))
|
||||
rootname=varname;
|
||||
end
|
||||
end
|
||||
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
|
||||
rootname='root';
|
||||
end
|
||||
|
||||
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
if(jsonopt('Compact',0,opt)==1)
|
||||
whitespaces=struct('tab','','newline','','sep',',');
|
||||
end
|
||||
if(~isfield(opt,'whitespaces_'))
|
||||
opt.whitespaces_=whitespaces;
|
||||
end
|
||||
|
||||
nl=whitespaces.newline;
|
||||
|
||||
json=obj2json(rootname,obj,rootlevel,opt);
|
||||
if(rootisarray)
|
||||
json=sprintf('%s%s',json,nl);
|
||||
else
|
||||
json=sprintf('{%s%s%s}\n',nl,json,nl);
|
||||
end
|
||||
|
||||
jsonp=jsonopt('JSONP','',opt);
|
||||
if(~isempty(jsonp))
|
||||
json=sprintf('%s(%s);%s',jsonp,json,nl);
|
||||
end
|
||||
|
||||
% save to a file if FileName is set, suggested by Patrick Rapin
|
||||
if(~isempty(jsonopt('FileName','',opt)))
|
||||
if(jsonopt('SaveBinary',0,opt)==1)
|
||||
fid = fopen(opt.FileName, 'wb');
|
||||
fwrite(fid,json);
|
||||
else
|
||||
fid = fopen(opt.FileName, 'wt');
|
||||
fwrite(fid,json,'char');
|
||||
end
|
||||
fclose(fid);
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=obj2json(name,item,level,varargin)
|
||||
|
||||
if(iscell(item))
|
||||
txt=cell2json(name,item,level,varargin{:});
|
||||
elseif(isstruct(item))
|
||||
txt=struct2json(name,item,level,varargin{:});
|
||||
elseif(ischar(item))
|
||||
txt=str2json(name,item,level,varargin{:});
|
||||
else
|
||||
txt=mat2json(name,item,level,varargin{:});
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=cell2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~iscell(item))
|
||||
error('input is not a cell');
|
||||
end
|
||||
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
if(len>1)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
|
||||
else
|
||||
txt=sprintf('%s[%s',padding0,nl);
|
||||
end
|
||||
elseif(len==0)
|
||||
if(~isempty(name))
|
||||
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
|
||||
else
|
||||
txt=sprintf('%s[]',padding0);
|
||||
end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=struct2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~isstruct(item))
|
||||
error('input is not a struct');
|
||||
end
|
||||
dim=size(item);
|
||||
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
|
||||
item=reshape(item,dim(1),numel(item)/dim(1));
|
||||
dim=size(item);
|
||||
end
|
||||
len=numel(item);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding0=repmat(ws.tab,1,level);
|
||||
padding2=repmat(ws.tab,1,level+1);
|
||||
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
|
||||
nl=ws.newline;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
|
||||
end
|
||||
for j=1:dim(2)
|
||||
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
|
||||
for i=1:dim(1)
|
||||
names = fieldnames(item(i,j));
|
||||
if(~isempty(name) && len==1)
|
||||
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
|
||||
else
|
||||
txt=sprintf('%s%s{%s',txt,padding1,nl);
|
||||
end
|
||||
if(~isempty(names))
|
||||
for e=1:length(names)
|
||||
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
|
||||
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
|
||||
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
|
||||
txt=sprintf('%s%s',txt,nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s}',txt,padding1);
|
||||
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
|
||||
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=str2json(name,item,level,varargin)
|
||||
txt='';
|
||||
if(~ischar(item))
|
||||
error('input is not a string');
|
||||
end
|
||||
item=reshape(item, max(size(item),[1 0]));
|
||||
len=size(item,1);
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(~isempty(name))
|
||||
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
|
||||
else
|
||||
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
|
||||
end
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
for e=1:len
|
||||
if(isoct)
|
||||
val=regexprep(item(e,:),'\\','\\');
|
||||
val=regexprep(val,'"','\"');
|
||||
val=regexprep(val,'^"','\"');
|
||||
else
|
||||
val=regexprep(item(e,:),'\\','\\\\');
|
||||
val=regexprep(val,'"','\\"');
|
||||
val=regexprep(val,'^"','\\"');
|
||||
end
|
||||
val=escapejsonstring(val);
|
||||
if(len==1)
|
||||
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
|
||||
if(isempty(name)) obj=['"',val,'"']; end
|
||||
txt=sprintf('%s%s%s%s',txt,padding1,obj);
|
||||
else
|
||||
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
|
||||
end
|
||||
if(e==len) sep=''; end
|
||||
txt=sprintf('%s%s',txt,sep);
|
||||
end
|
||||
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=mat2json(name,item,level,varargin)
|
||||
if(~isnumeric(item) && ~islogical(item))
|
||||
error('input is not an array');
|
||||
end
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
padding1=repmat(ws.tab,1,level);
|
||||
padding0=repmat(ws.tab,1,level+1);
|
||||
nl=ws.newline;
|
||||
sep=ws.sep;
|
||||
|
||||
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
|
||||
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
else
|
||||
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
|
||||
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
|
||||
end
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
|
||||
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
|
||||
else
|
||||
numtxt=matdata2json(item,level+1,varargin{:});
|
||||
end
|
||||
if(isempty(name))
|
||||
txt=sprintf('%s%s',padding1,numtxt);
|
||||
else
|
||||
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
else
|
||||
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
|
||||
end
|
||||
end
|
||||
return;
|
||||
end
|
||||
dataformat='%s%s%s%s%s';
|
||||
|
||||
if(issparse(item))
|
||||
[ix,iy]=find(item);
|
||||
data=full(item(find(item)));
|
||||
if(~isreal(item))
|
||||
data=[real(data(:)),imag(data(:))];
|
||||
if(size(item,1)==1)
|
||||
% Kludge to have data's 'transposedness' match item's.
|
||||
% (Necessary for complex row vector handling below.)
|
||||
data=data';
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
end
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
|
||||
if(size(item,1)==1)
|
||||
% Row vector, store only column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
|
||||
elseif(size(item,2)==1)
|
||||
% Column vector, store only row indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,data],level+2,varargin{:}), nl);
|
||||
else
|
||||
% General case, store row and column indices.
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
|
||||
end
|
||||
else
|
||||
if(isreal(item))
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json(item(:)',level+2,varargin{:}), nl);
|
||||
else
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
|
||||
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
|
||||
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
|
||||
end
|
||||
end
|
||||
txt=sprintf('%s%s%s',txt,padding1,'}');
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function txt=matdata2json(mat,level,varargin)
|
||||
|
||||
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
|
||||
ws=jsonopt('whitespaces_',ws,varargin{:});
|
||||
tab=ws.tab;
|
||||
nl=ws.newline;
|
||||
|
||||
if(size(mat,1)==1)
|
||||
pre='';
|
||||
post='';
|
||||
level=level-1;
|
||||
else
|
||||
pre=sprintf('[%s',nl);
|
||||
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
|
||||
end
|
||||
|
||||
if(isempty(mat))
|
||||
txt='null';
|
||||
return;
|
||||
end
|
||||
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
|
||||
%if(numel(mat)>1)
|
||||
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
|
||||
%else
|
||||
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
|
||||
%end
|
||||
|
||||
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
|
||||
formatstr=[repmat(tab,1,level) formatstr];
|
||||
end
|
||||
|
||||
txt=sprintf(formatstr,mat');
|
||||
txt(end-length(nl):end)=[];
|
||||
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
|
||||
txt=regexprep(txt,'1','true');
|
||||
txt=regexprep(txt,'0','false');
|
||||
end
|
||||
%txt=regexprep(mat2str(mat),'\s+',',');
|
||||
%txt=regexprep(txt,';',sprintf('],\n['));
|
||||
% if(nargin>=2 && size(mat,1)>1)
|
||||
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
|
||||
% end
|
||||
txt=[pre txt post];
|
||||
if(any(isinf(mat(:))))
|
||||
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
|
||||
end
|
||||
if(any(isnan(mat(:))))
|
||||
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newname=checkname(name,varargin)
|
||||
isunpack=jsonopt('UnpackHex',1,varargin{:});
|
||||
newname=name;
|
||||
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
|
||||
return
|
||||
end
|
||||
if(isunpack)
|
||||
isoct=jsonopt('IsOctave',0,varargin{:});
|
||||
if(~isoct)
|
||||
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
|
||||
else
|
||||
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
|
||||
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
|
||||
if(isempty(pos)) return; end
|
||||
str0=name;
|
||||
pos0=[0 pend(:)' length(name)];
|
||||
newname='';
|
||||
for i=1:length(pos)
|
||||
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
|
||||
end
|
||||
if(pos(end)~=length(name))
|
||||
newname=[newname str0(pos0(end-1)+1:pos0(end))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%%-------------------------------------------------------------------------
|
||||
function newstr=escapejsonstring(str)
|
||||
newstr=str;
|
||||
isoct=exist('OCTAVE_VERSION','builtin');
|
||||
if(isoct)
|
||||
vv=sscanf(OCTAVE_VERSION,'%f');
|
||||
if(vv(1)>=3.8) isoct=0; end
|
||||
end
|
||||
if(isoct)
|
||||
escapechars={'\a','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},escapechars{i});
|
||||
end
|
||||
else
|
||||
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
|
||||
for i=1:length(escapechars);
|
||||
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
|
||||
end
|
||||
end
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue