63 lines
1.6 KiB
Matlab
63 lines
1.6 KiB
Matlab
function submit()
|
|
addpath('./lib');
|
|
|
|
conf.assignmentSlug = 'logistic-regression';
|
|
conf.itemName = 'Logistic Regression';
|
|
conf.partArrays = { ...
|
|
{ ...
|
|
'1', ...
|
|
{ 'sigmoid.m' }, ...
|
|
'Sigmoid Function', ...
|
|
}, ...
|
|
{ ...
|
|
'2', ...
|
|
{ 'costFunction.m' }, ...
|
|
'Logistic Regression Cost', ...
|
|
}, ...
|
|
{ ...
|
|
'3', ...
|
|
{ 'costFunction.m' }, ...
|
|
'Logistic Regression Gradient', ...
|
|
}, ...
|
|
{ ...
|
|
'4', ...
|
|
{ 'predict.m' }, ...
|
|
'Predict', ...
|
|
}, ...
|
|
{ ...
|
|
'5', ...
|
|
{ 'costFunctionReg.m' }, ...
|
|
'Regularized Logistic Regression Cost', ...
|
|
}, ...
|
|
{ ...
|
|
'6', ...
|
|
{ 'costFunctionReg.m' }, ...
|
|
'Regularized Logistic Regression Gradient', ...
|
|
}, ...
|
|
};
|
|
conf.output = @output;
|
|
|
|
submitWithConfiguration(conf);
|
|
end
|
|
|
|
function out = output(partId, auxstring)
|
|
% Random Test Cases
|
|
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
|
|
y = sin(X(:,1) + X(:,2)) > 0;
|
|
if partId == '1'
|
|
out = sprintf('%0.5f ', sigmoid(X));
|
|
elseif partId == '2'
|
|
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
|
|
elseif partId == '3'
|
|
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
|
|
out = sprintf('%0.5f ', grad);
|
|
elseif partId == '4'
|
|
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
|
|
elseif partId == '5'
|
|
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
|
|
elseif partId == '6'
|
|
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
|
|
out = sprintf('%0.5f ', grad);
|
|
end
|
|
end
|