taymath/app.py

219 lines
7.5 KiB
Python

from flask import Flask, render_template, request, redirect, Response
from sympy import *
from helpers import apology
import numpy as np
app = Flask(__name__)
# Convert our commonly used variables into sympy symbols
x, y, z, t, X, Y, Z, T = symbols('x y z t X Y Z T')
@app.route('/')
def hello():
return render_template('index.html')
@app.route('/differentiation', methods=['GET', 'POST'])
def differentiation():
if request.method == "POST":
# Check if inputs were given
if not request.form.get("function"):
return apology("must provide a function", 400)
f = request.form.get("function")
# Setup our symbols for SymPy
f = setup_symbols(f)
# Differentiate and return latex expressions
fprime = latex(f.diff(x))
value = latex(f)
return render_template("differentiated.html", value=value, fprime=fprime)
else:
return render_template("differentiation.html")
@app.route("/integration", methods=["GET", "POST"])
def integration():
if request.method == "POST":
# Check if inputs were given
if not request.form.get("function"):
return apology("must provide a function", 400)
f = request.form.get("function")
# Setup our symbols for SymPy
f = setup_symbols(f)
# Integrate and return latex expressions
fintegral = latex(f.integrate(x))
value = latex(f)
return render_template("integrated.html", value=value, fintegral=fintegral)
else:
return render_template("integration.html")
@app.route("/riemann", methods = ["GET", "POST"])
def riemann():
if request.method == "POST":
# Check if inputs were given
if not request.form.get("function"):
return apology("must provide a function", 400)
if not request.form.get("lowerbound"):
return apology("must provide a lower bound", 400)
if not request.form.get("upperbound"):
return apology("must provide an upper bound", 400)
if not request.form.get("subintervals"):
return apology("must provide a number of subintervals", 400)
if not request.form.get("sumtype"):
return apology("must choose left or right", 400)
# Get our info from form
f = request.form.get("function")
sumtype = request.form.get("sumtype")
lb = int(request.form.get("lowerbound"))
ub = int(request.form.get("upperbound"))
si = int(request.form.get("subintervals"))
# Setup our symbols for SymPy
f = setup_symbols(f)
# Run through Riemann Sum algorithm, creatings lists for display
# of inputs, outputs, and areas (their products)
value = latex(f)
dx = round((ub - lb) / si, 3)
inputs = list()
if sumtype == "1":
for i in range(0, si):
inputs.append(round(dx * (i), 3))
if sumtype == "2":
for i in range(0, si):
inputs.append(round(dx * (i + 1), 3))
outputs = list()
for input in inputs:
temp = f.subs(x, input)
outputs.append(round(temp, 3))
rectangles = list()
for output in outputs:
temp = output * dx
rectangles.append(round(temp, 3))
result = round(sum(rectangles), 3)
# Choose template based on left or right sum
if sumtype == "1":
return render_template("summed.html", value=value, sumtype=sumtype, lb=lb, ub=ub, si=si, dx=dx,
inputs=inputs, outputs=outputs, rectangles=rectangles, result=result)
else:
return render_template("rightSummed.html", value=value, sumtype=sumtype, lb=lb, ub=ub, si=si, dx=dx,
inputs=inputs, outputs=outputs, rectangles=rectangles, result=result)
else:
return render_template("riemann.html")
@app.route("/maxmin", methods=["GET", "POST"])
def maxmin():
if request.method == "POST":
# Check if inputs were given
if not request.form.get("function"):
return apology("must provide a function", 400)
if not request.form.get("lowerbound"):
return apology("must provide a lower bound", 400)
if not request.form.get("upperbound"):
return apology("must provide an upper bound", 400)
# Get input from form
f = request.form.get("function")
lb = round(sympify(request.form.get("lowerbound")), 3)
ub = round(sympify(request.form.get("upperbound")), 3)
# Setup our symbols for SymPy
f = setup_symbols(f)
# Get Derivative, solve for real solutions, update candidates list
fprime = f.diff(x)
solutions = list()
solutions.append(round(f.subs(x,0), 3))
candidates = list()
for solution in solutions:
candidates.append(solution)
candidates.append(lb)
candidates.append(ub)
# Fill values list with solutions
values = list()
for candidate in candidates:
temp = round(f.subs(x, candidate), 3)
values.append(temp)
# Find max/min of values
maximum = max(values)
newvar = min(values)
# Turn all into latex
value = latex(f)
fprime = latex(fprime)
for i, solution in enumerate(solutions):
solutions[i] = latex(solution)
return render_template("optimized.html", value=value, fprime=fprime, solutions=solutions, lb=lb, ub=ub,
candidates=candidates, newvar=newvar, values=values, maximum=maximum)
else:
return render_template("maxmin.html")
@app.route("/aprox", methods=["GET", "POST"])
def aprox():
if request.method == "POST":
# Check if inputs were given
if not request.form.get("function"):
return apology("must provide a function", 400)
if not request.form.get("easy"):
return apology("must provide an easy value", 400)
if not request.form.get("hard"):
return apology("must provide a difficult value", 400)
# Get inputs, sympify them, and check to see if valid
f = request.form.get("function")
a = request.form.get("easy")
h = request.form.get("hard")
# Setup our symbols for SymPy
f = setup_symbols(f)
# Make sure a and h are numbers
a = sympify(a)
h = sympify(h)
if not a.is_number:
return apology("easy value must be a number", 400)
if not h.is_number:
return apology("difficult value must be a number", 400)
a = round(a, 3)
h = round(h, 3)
# Run through Linearization algorithm
fprime = f.diff(x)
fa = round(f.subs(x, a), 3)
fprimea = round(fprime.subs(x, a), 3)
lh = round(fa + fprimea*(float(h)-float(a)), 3)
# Convert to latex for MathJax reading
value = latex(f)
fprime = latex(fprime)
fa = latex(fa)
lh = latex(lh)
return render_template("aproxd.html", value=value, fprime=fprime, a=a, h=h, fa=fa, fprimea=fprimea, lh=lh)
else:
return render_template("aprox.html")
def errorhandler(e):
"""Handle error"""
if not isinstance(e, HTTPException):
e = InternalServerError()
return apology(e.name, e.code)
def setup_symbols(f):
f = sympify(f)
# replace commonly used variables with x
for letter in [x, y, z, t, X, Y, Z, T]:
f = f.subs(letter, x)
return f
if __name__ == '__main__':
app.run()