{% extends "layout.html" %}
{% block title%}
Summed
{% endblock %}
{% block main %}
Approximating the integral of $f(x) = {{ value }}$ from ${{ lb }}$ to ${{ ub }}$ using ${{ si }}$ subintervals
| Step 1 | Calculate $\Delta x$ |
| $\Delta x = {{ dx }}$ | |
| Step 2 | Check values for $x_i$ (start at lowerbound a and add $\Delta x$ repeatedly) |
| $f(x_{{ loop.index }}) = f({{ input }}) = {{ outputs[loop.index - 1] }}$ | |
| Step 3 | Multiply $f(x_i)$ and $\Delta x$ for each subinterval |
| $f(x_{{ loop.index}}) \Delta x = f({{ inputs[loop.index - 1]}})*{{ dx }} = {{ rectangle }}$ | |
| Step 4 | Add up all products (rectangles) to get final approximation: |
| The integral of $f(x) = {{ value }}$ from ${{ lb }}$ to ${{ ub }}$ is approximately equal to ${{ result }}$ |