{% extends "layout.html" %} {% block title%} Summed {% endblock %} {% block main %}
Approximating the integral of $f(x) = {{ value }}$ from ${{ lb }}$ to ${{ ub }}$ using ${{ si }}$ subintervals
{% for input in inputs %} {% endfor %} {% for rectangle in rectangles %} {% endfor %}
Step 1 Calculate $\Delta x$
$\Delta x = {{ dx }}$
Step 2 Check values for $x_i$ (start at lowerbound a and add $\Delta x$ repeatedly)
$f(x_{{ loop.index }}) = f({{ input }}) = {{ outputs[loop.index - 1] }}$
Step 3 Multiply $f(x_i)$ and $\Delta x$ for each subinterval
$f(x_{{ loop.index}}) \Delta x = f({{ inputs[loop.index - 1]}})*{{ dx }} = {{ rectangle }}$
Step 4 Add up all products (rectangles) to get final approximation:
The integral of $f(x) = {{ value }}$ from ${{ lb }}$ to ${{ ub }}$ is approximately equal to ${{ result }}$
Chart {% endblock %}