{% extends "layout.html" %} {% block title %} Differentiated {% endblock %} {% block main %}

Your function is $f(x) = {{ value }}$

Your Linear Approximation of $f(x)$ at $x = {{ h }}$ is ${{ lh }}$

Step 1 Setup L(x)
$L(x) = f({{ a }}) + f'({{ a }})(x-{{ a }})$
Step 2 Take the Derivative
$f'(x) = {{ fprime }}$
Step 3 Plug in values
$f({{ a }}) = {{ fa }}$
$f'({{ a }}) = {{ fprimea }}$
$L(x) = {{ fa }} + [{{ fprimea }}(x - {{ a }})]$
Step 4 Use our $L(x)$ to approximate $f({{ h }})$
$L({{ h }}) = {{ fa }} + [{{ fprimea }}({{ h }} - {{ a }})]$
$= {{ lh }}$
Chart {% endblock %}