{% extends "layout.html" %} {% block title %} Differentiated {% endblock %} {% block main %}
Your function is $f(x) = {{ value }}$
Your Linear Approximation of $f(x)$ at $x = {{ h }}$ is ${{ lh }}$
| Step 1 | Setup L(x) |
| $L(x) = f({{ a }}) + f'({{ a }})(x-{{ a }})$ | |
| Step 2 | Take the Derivative |
| $f'(x) = {{ fprime }}$ | |
| Step 3 | Plug in values |
| $f({{ a }}) = {{ fa }}$ | |
| $f'({{ a }}) = {{ fprimea }}$ | |
| $L(x) = {{ fa }} + [{{ fprimea }}(x - {{ a }})]$ | |
| Step 4 | Use our $L(x)$ to approximate $f({{ h }})$ |
| $L({{ h }}) = {{ fa }} + [{{ fprimea }}({{ h }} - {{ a }})]$ | |
| $= {{ lh }}$ |