StanfordMLOctave/machine-learning-ex5/ex5/submit.m

64 lines
1.7 KiB
Matlab

function submit()
addpath('./lib');
conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance';
conf.itemName = 'Regularized Linear Regression and Bias/Variance';
conf.partArrays = { ...
{ ...
'1', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Cost Function', ...
}, ...
{ ...
'2', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Gradient', ...
}, ...
{ ...
'3', ...
{ 'learningCurve.m' }, ...
'Learning Curve', ...
}, ...
{ ...
'4', ...
{ 'polyFeatures.m' }, ...
'Polynomial Feature Mapping', ...
}, ...
{ ...
'5', ...
{ 'validationCurve.m' }, ...
'Validation Curve', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
y = sin(1:3:30)';
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
yval = sin(1:10)';
if partId == '1'
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', grad);
elseif partId == '3'
[error_train, error_val] = ...
learningCurve(X, y, Xval, yval, 1);
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
elseif partId == '4'
[X_poly] = polyFeatures(X(2,:)', 8);
out = sprintf('%0.5f ', X_poly);
elseif partId == '5'
[lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval);
out = sprintf('%0.5f ', ...
[lambda_vec(:); error_train(:); error_val(:)]);
end
end