49 lines
1.1 KiB
Matlab
49 lines
1.1 KiB
Matlab
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
|
|
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
|
%regression with multiple variables
|
|
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
|
% cost of using theta as the parameter for linear regression to fit the
|
|
% data points in X and y. Returns the cost in J and the gradient in grad
|
|
|
|
% Initialize some useful values
|
|
m = length(y); % number of training examples
|
|
|
|
% You need to return the following variables correctly
|
|
J = 0;
|
|
grad = zeros(size(theta));
|
|
|
|
% ====================== YOUR CODE HERE ======================
|
|
% Instructions: Compute the cost and gradient of regularized linear
|
|
% regression for a particular choice of theta.
|
|
%
|
|
% You should set J to the cost and grad to the gradient.
|
|
%
|
|
|
|
h = X * theta;
|
|
J = h-y;
|
|
J = J.^2;
|
|
J = sum(J);
|
|
J = J / (2*m);
|
|
tempTheta = theta(1);
|
|
theta(1) = 0;
|
|
J = J + (lambda/(2*m))*sum(theta.^2);
|
|
theta(1) = tempTheta;
|
|
|
|
grad = (1/m)*X'*(h-y);
|
|
grad(2:end) = grad(2:end) + (lambda/m)*theta(2:end);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% =========================================================================
|
|
|
|
grad = grad(:);
|
|
|
|
end
|