function [J, grad] = costFunctionReg(theta, X, y, lambda) %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization % J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using % theta as the parameter for regularized logistic regression and the % gradient of the cost w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples n = length(theta); % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta tempTheta = theta(1); h = sigmoid(X*theta); theta(1) = 0; J = (1/m)*(-y'*log(h)-(1-y)'*log(1-h)); J = J + (lambda/(2*m))*sum(theta.^2); theta(1) = tempTheta; grad = (1/m)*X'*(sigmoid(X*theta)-y); for i=2:n grad(i) = grad(i) + (lambda/m)*theta(i); endfor % ============================================================= end