function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % h = X * theta; J = h-y; J = J.^2; J = sum(J); J = J / (2*m); tempTheta = theta(1); theta(1) = 0; J = J + (lambda/(2*m))*sum(theta.^2); theta(1) = tempTheta; grad = (1/m)*X'*(h-y); grad(2:end) = grad(2:end) + (lambda/m)*theta(2:end); % ========================================================================= grad = grad(:); end