function [C, sigma] = dataset3Params(X, y, Xval, yval) %DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise %where you select the optimal (C, sigma) learning parameters to use for SVM %with RBF kernel % [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and % sigma. You should complete this function to return the optimal C and % sigma based on a cross-validation set. % % You need to return the following variables correctly. C = 1; sigma = 1; % ====================== YOUR CODE HERE ====================== % Instructions: Fill in this function to return the optimal C and sigma % learning parameters found using the cross validation set. % You can use svmPredict to predict the labels on the cross % validation set. For example, % predictions = svmPredict(model, Xval); % will return the predictions on the cross validation set. % % Note: You can compute the prediction error using % mean(double(predictions ~= yval)) % % Code to find better C and sigma sampleVec = [.01 .03 .1 .3 1 3 10 30]; model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma)); predictions = svmPredict(model,Xval); error = mean(double(predictions ~= yval)); for i = 1:8 for j = 1:8 tempC = sampleVec(i); tempSigma = sampleVec(j); tempModel= svmTrain(X, y, tempC, @(x1, x2) gaussianKernel(x1, x2, tempSigma)); tempPredictions = svmPredict(tempModel,Xval); tempError = mean(double(tempPredictions ~= yval)); if tempError < error error = tempError; C = tempC; sigma = tempSigma; endif endfor endfor C sigma % ========================================================================= end