function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples n = length(theta); % number of features plus 1 J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % tempTheta = theta; temp = 0; for j = 1:n temp = temp + (X*theta-y)'*X(:,j); temp = temp*alpha; temp = temp/m; tempTheta(j) = tempTheta(j) - temp; temp = 0; endfor theta = tempTheta; % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end