693 lines
18 KiB
Plaintext
693 lines
18 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import os\n",
|
|
"import sklearn\n",
|
|
"from sklearn import metrics, preprocessing\n",
|
|
"from sklearn.linear_model import LogisticRegression\n",
|
|
"import pickle\n",
|
|
"import math"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create dataframes from our csv files and set indeces\n",
|
|
"\n",
|
|
"df = pd.read_csv('data/train.csv')\n",
|
|
"df.set_index('PassengerId', inplace=True)\n",
|
|
"\n",
|
|
"testdf = pd.read_csv('data/test.csv')\n",
|
|
"PassengerId = testdf['PassengerId']\n",
|
|
"testdf.set_index('PassengerId', inplace=True)\n",
|
|
"data = [df, testdf]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 51,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Preprocess the data by converting non numerical features into numerical categorical features \n",
|
|
"# and applying mean imputation to deal with NaN values\n",
|
|
"\n",
|
|
"for dataframe in data:\n",
|
|
" le = preprocessing.LabelEncoder()\n",
|
|
" dataframe[\"Sex\"] = le.fit_transform(list(dataframe[\"Sex\"]))\n",
|
|
" dataframe[\"Cabin\"] = le.fit_transform(list(dataframe[\"Cabin\"]))\n",
|
|
" dataframe[\"Embarked\"] = le.fit_transform(list(dataframe[\"Embarked\"]))\n",
|
|
" dataframe.fillna(dataframe.mean(), inplace=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 52,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"<bound method NDFrame.head of Pclass Sex Age SibSp Parch Fare Cabin Embarked\n",
|
|
"PassengerId \n",
|
|
"1 3 1 22.000000 1 0 7.2500 147 2\n",
|
|
"2 1 0 38.000000 1 0 71.2833 81 0\n",
|
|
"3 3 0 26.000000 0 0 7.9250 147 2\n",
|
|
"4 1 0 35.000000 1 0 53.1000 55 2\n",
|
|
"5 3 1 35.000000 0 0 8.0500 147 2\n",
|
|
"... ... ... ... ... ... ... ... ...\n",
|
|
"887 2 1 27.000000 0 0 13.0000 147 2\n",
|
|
"888 1 0 19.000000 0 0 30.0000 30 2\n",
|
|
"889 3 0 29.699118 1 2 23.4500 147 2\n",
|
|
"890 1 1 26.000000 0 0 30.0000 60 0\n",
|
|
"891 3 1 32.000000 0 0 7.7500 147 1\n",
|
|
"\n",
|
|
"[891 rows x 8 columns]>\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Create our input matrix, label vector, and test input matrix\n",
|
|
"\n",
|
|
"X = df.drop(['Name', 'Survived', 'Ticket'], axis=1)\n",
|
|
"y = df['Survived']\n",
|
|
"X_test = testdf.drop(['Name', 'Ticket'], axis=1)\n",
|
|
"print(X.head)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Normalize the data\n",
|
|
"\n",
|
|
"X=(X-X.mean())/X.std()\n",
|
|
"X_test=(X_test-X_test.mean())/X_test.std()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.7957351290684624"
|
|
]
|
|
},
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Create a classifier using logistic regression, opting for liblinear solver\n",
|
|
"# because of how small our dataset is\n",
|
|
"\n",
|
|
"clfRAW = LogisticRegression(solver='liblinear', max_iter = 1000).fit(X, y)\n",
|
|
"clfRAW.score(X,y)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 55,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create our predictions matrix and save to csv\n",
|
|
"predictions = np.c_[PassengerId, clfRAW.predict(X_test)]\n",
|
|
"submission = pd.DataFrame(predictions, columns = ['PassengerId', 'Survived'])\n",
|
|
"submission['PassengerId'] = PassengerId\n",
|
|
"submission['Survived'] = clfRAW.predict(X_test)\n",
|
|
"submission.to_csv(\"submissions/LogisticSubmissionRAW.csv\", index=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"For C = 0.001 , acc = 0.6983240223463687\n",
|
|
"For C = 0.01 , acc = 0.7430167597765364\n",
|
|
"For C = 0.1 , acc = 0.7541899441340782\n",
|
|
"For C = 1.0 , acc = 0.7486033519553073\n",
|
|
"For C = 10.0 , acc = 0.7541899441340782\n",
|
|
"For C = 100.0 , acc = 0.7541899441340782\n",
|
|
"For C = 1000.0 , acc = 0.7541899441340782\n",
|
|
"For C = 10000.0 , acc = 0.7541899441340782\n",
|
|
"For C = 100000.0 , acc = 0.7541899441340782\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Split our labeled data into train and dev sets\n",
|
|
"\n",
|
|
"X_train, X_dev, y_train, y_dev = sklearn.model_selection.train_test_split(\n",
|
|
" X,y,test_size=0.2)\n",
|
|
"\n",
|
|
"# Setup range of values for tuning of C\n",
|
|
"n=np.arange(-3,6)\n",
|
|
"r=pow(float(10),n)\n",
|
|
"\n",
|
|
"# Tune C\n",
|
|
"best = 0\n",
|
|
"for C in r:\n",
|
|
" clf = LogisticRegression(solver='liblinear', max_iter = 1000, C = C).fit(X_train, y_train)\n",
|
|
" acc = clf.score(X_dev, y_dev)\n",
|
|
" print(\"For C = \", C, \", acc = \", acc)\n",
|
|
" if acc > best:\n",
|
|
" best = acc\n",
|
|
" with open('models/liblinearLogisticRegression.model','wb') as f:\n",
|
|
" pickle.dump(clf,f)\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 47,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.7837078651685393\n",
|
|
"0.8212290502793296\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Load in our best performing model and check train/dev accuracy\n",
|
|
"\n",
|
|
"pickle_in = open('models/liblinearLogisticRegression.model','rb')\n",
|
|
"clf = pickle.load(pickle_in)\n",
|
|
"print(clf.score(X_train, y_train))\n",
|
|
"print(clf.score(X_dev, y_dev))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create submission matrix and save to csv file\n",
|
|
"\n",
|
|
"predictions = np.c_[PassengerId, clf.predict(X_test)]\n",
|
|
"submission = pd.DataFrame(predictions, columns = ['PassengerId', 'Survived'])\n",
|
|
"submission['PassengerId'] = PassengerId\n",
|
|
"submission['Survived'] = clf.predict(X_test)\n",
|
|
"submission.to_csv(\"submissions/LogisticSubmission.csv\", index=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Note that in submitting our normal submission (with a train/dev split and tuning of C) to kaggle, we perform worse (0.75) than our RAW submission with no tuning of C (0.77990). Likely as a result of how small the dataset is."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 57,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[[ 892 0]\n",
|
|
" [ 893 0]\n",
|
|
" [ 894 0]\n",
|
|
" [ 895 0]\n",
|
|
" [ 896 1]\n",
|
|
" [ 897 0]\n",
|
|
" [ 898 1]\n",
|
|
" [ 899 0]\n",
|
|
" [ 900 1]\n",
|
|
" [ 901 0]\n",
|
|
" [ 902 0]\n",
|
|
" [ 903 0]\n",
|
|
" [ 904 1]\n",
|
|
" [ 905 0]\n",
|
|
" [ 906 1]\n",
|
|
" [ 907 1]\n",
|
|
" [ 908 0]\n",
|
|
" [ 909 0]\n",
|
|
" [ 910 1]\n",
|
|
" [ 911 1]\n",
|
|
" [ 912 0]\n",
|
|
" [ 913 0]\n",
|
|
" [ 914 1]\n",
|
|
" [ 915 1]\n",
|
|
" [ 916 1]\n",
|
|
" [ 917 0]\n",
|
|
" [ 918 1]\n",
|
|
" [ 919 0]\n",
|
|
" [ 920 0]\n",
|
|
" [ 921 0]\n",
|
|
" [ 922 0]\n",
|
|
" [ 923 0]\n",
|
|
" [ 924 0]\n",
|
|
" [ 925 0]\n",
|
|
" [ 926 0]\n",
|
|
" [ 927 0]\n",
|
|
" [ 928 1]\n",
|
|
" [ 929 1]\n",
|
|
" [ 930 0]\n",
|
|
" [ 931 0]\n",
|
|
" [ 932 0]\n",
|
|
" [ 933 0]\n",
|
|
" [ 934 0]\n",
|
|
" [ 935 1]\n",
|
|
" [ 936 1]\n",
|
|
" [ 937 0]\n",
|
|
" [ 938 0]\n",
|
|
" [ 939 0]\n",
|
|
" [ 940 1]\n",
|
|
" [ 941 0]\n",
|
|
" [ 942 0]\n",
|
|
" [ 943 0]\n",
|
|
" [ 944 1]\n",
|
|
" [ 945 1]\n",
|
|
" [ 946 0]\n",
|
|
" [ 947 0]\n",
|
|
" [ 948 0]\n",
|
|
" [ 949 0]\n",
|
|
" [ 950 0]\n",
|
|
" [ 951 1]\n",
|
|
" [ 952 0]\n",
|
|
" [ 953 0]\n",
|
|
" [ 954 0]\n",
|
|
" [ 955 1]\n",
|
|
" [ 956 1]\n",
|
|
" [ 957 1]\n",
|
|
" [ 958 1]\n",
|
|
" [ 959 0]\n",
|
|
" [ 960 1]\n",
|
|
" [ 961 1]\n",
|
|
" [ 962 1]\n",
|
|
" [ 963 0]\n",
|
|
" [ 964 1]\n",
|
|
" [ 965 1]\n",
|
|
" [ 966 1]\n",
|
|
" [ 967 1]\n",
|
|
" [ 968 0]\n",
|
|
" [ 969 1]\n",
|
|
" [ 970 0]\n",
|
|
" [ 971 1]\n",
|
|
" [ 972 0]\n",
|
|
" [ 973 0]\n",
|
|
" [ 974 0]\n",
|
|
" [ 975 0]\n",
|
|
" [ 976 0]\n",
|
|
" [ 977 0]\n",
|
|
" [ 978 1]\n",
|
|
" [ 979 1]\n",
|
|
" [ 980 1]\n",
|
|
" [ 981 0]\n",
|
|
" [ 982 1]\n",
|
|
" [ 983 0]\n",
|
|
" [ 984 1]\n",
|
|
" [ 985 0]\n",
|
|
" [ 986 1]\n",
|
|
" [ 987 0]\n",
|
|
" [ 988 1]\n",
|
|
" [ 989 0]\n",
|
|
" [ 990 1]\n",
|
|
" [ 991 0]\n",
|
|
" [ 992 1]\n",
|
|
" [ 993 0]\n",
|
|
" [ 994 0]\n",
|
|
" [ 995 0]\n",
|
|
" [ 996 1]\n",
|
|
" [ 997 0]\n",
|
|
" [ 998 0]\n",
|
|
" [ 999 0]\n",
|
|
" [1000 0]\n",
|
|
" [1001 0]\n",
|
|
" [1002 0]\n",
|
|
" [1003 1]\n",
|
|
" [1004 1]\n",
|
|
" [1005 1]\n",
|
|
" [1006 1]\n",
|
|
" [1007 0]\n",
|
|
" [1008 0]\n",
|
|
" [1009 1]\n",
|
|
" [1010 1]\n",
|
|
" [1011 1]\n",
|
|
" [1012 1]\n",
|
|
" [1013 0]\n",
|
|
" [1014 1]\n",
|
|
" [1015 0]\n",
|
|
" [1016 0]\n",
|
|
" [1017 1]\n",
|
|
" [1018 0]\n",
|
|
" [1019 0]\n",
|
|
" [1020 0]\n",
|
|
" [1021 0]\n",
|
|
" [1022 0]\n",
|
|
" [1023 0]\n",
|
|
" [1024 1]\n",
|
|
" [1025 0]\n",
|
|
" [1026 0]\n",
|
|
" [1027 0]\n",
|
|
" [1028 0]\n",
|
|
" [1029 0]\n",
|
|
" [1030 1]\n",
|
|
" [1031 0]\n",
|
|
" [1032 0]\n",
|
|
" [1033 1]\n",
|
|
" [1034 0]\n",
|
|
" [1035 0]\n",
|
|
" [1036 0]\n",
|
|
" [1037 0]\n",
|
|
" [1038 0]\n",
|
|
" [1039 0]\n",
|
|
" [1040 0]\n",
|
|
" [1041 0]\n",
|
|
" [1042 1]\n",
|
|
" [1043 0]\n",
|
|
" [1044 0]\n",
|
|
" [1045 0]\n",
|
|
" [1046 0]\n",
|
|
" [1047 0]\n",
|
|
" [1048 1]\n",
|
|
" [1049 1]\n",
|
|
" [1050 0]\n",
|
|
" [1051 1]\n",
|
|
" [1052 1]\n",
|
|
" [1053 0]\n",
|
|
" [1054 1]\n",
|
|
" [1055 0]\n",
|
|
" [1056 0]\n",
|
|
" [1057 1]\n",
|
|
" [1058 0]\n",
|
|
" [1059 0]\n",
|
|
" [1060 1]\n",
|
|
" [1061 1]\n",
|
|
" [1062 0]\n",
|
|
" [1063 0]\n",
|
|
" [1064 0]\n",
|
|
" [1065 0]\n",
|
|
" [1066 0]\n",
|
|
" [1067 1]\n",
|
|
" [1068 1]\n",
|
|
" [1069 0]\n",
|
|
" [1070 1]\n",
|
|
" [1071 1]\n",
|
|
" [1072 0]\n",
|
|
" [1073 0]\n",
|
|
" [1074 1]\n",
|
|
" [1075 0]\n",
|
|
" [1076 1]\n",
|
|
" [1077 0]\n",
|
|
" [1078 1]\n",
|
|
" [1079 0]\n",
|
|
" [1080 0]\n",
|
|
" [1081 0]\n",
|
|
" [1082 0]\n",
|
|
" [1083 0]\n",
|
|
" [1084 0]\n",
|
|
" [1085 0]\n",
|
|
" [1086 0]\n",
|
|
" [1087 0]\n",
|
|
" [1088 1]\n",
|
|
" [1089 1]\n",
|
|
" [1090 0]\n",
|
|
" [1091 1]\n",
|
|
" [1092 1]\n",
|
|
" [1093 0]\n",
|
|
" [1094 0]\n",
|
|
" [1095 1]\n",
|
|
" [1096 0]\n",
|
|
" [1097 1]\n",
|
|
" [1098 1]\n",
|
|
" [1099 0]\n",
|
|
" [1100 1]\n",
|
|
" [1101 0]\n",
|
|
" [1102 0]\n",
|
|
" [1103 0]\n",
|
|
" [1104 0]\n",
|
|
" [1105 0]\n",
|
|
" [1106 0]\n",
|
|
" [1107 0]\n",
|
|
" [1108 1]\n",
|
|
" [1109 0]\n",
|
|
" [1110 1]\n",
|
|
" [1111 0]\n",
|
|
" [1112 1]\n",
|
|
" [1113 0]\n",
|
|
" [1114 1]\n",
|
|
" [1115 0]\n",
|
|
" [1116 1]\n",
|
|
" [1117 1]\n",
|
|
" [1118 0]\n",
|
|
" [1119 1]\n",
|
|
" [1120 0]\n",
|
|
" [1121 0]\n",
|
|
" [1122 0]\n",
|
|
" [1123 1]\n",
|
|
" [1124 0]\n",
|
|
" [1125 0]\n",
|
|
" [1126 0]\n",
|
|
" [1127 0]\n",
|
|
" [1128 0]\n",
|
|
" [1129 0]\n",
|
|
" [1130 1]\n",
|
|
" [1131 1]\n",
|
|
" [1132 1]\n",
|
|
" [1133 1]\n",
|
|
" [1134 0]\n",
|
|
" [1135 0]\n",
|
|
" [1136 0]\n",
|
|
" [1137 0]\n",
|
|
" [1138 1]\n",
|
|
" [1139 0]\n",
|
|
" [1140 1]\n",
|
|
" [1141 1]\n",
|
|
" [1142 1]\n",
|
|
" [1143 0]\n",
|
|
" [1144 1]\n",
|
|
" [1145 0]\n",
|
|
" [1146 0]\n",
|
|
" [1147 0]\n",
|
|
" [1148 0]\n",
|
|
" [1149 0]\n",
|
|
" [1150 1]\n",
|
|
" [1151 0]\n",
|
|
" [1152 0]\n",
|
|
" [1153 0]\n",
|
|
" [1154 1]\n",
|
|
" [1155 1]\n",
|
|
" [1156 0]\n",
|
|
" [1157 0]\n",
|
|
" [1158 0]\n",
|
|
" [1159 0]\n",
|
|
" [1160 1]\n",
|
|
" [1161 0]\n",
|
|
" [1162 0]\n",
|
|
" [1163 0]\n",
|
|
" [1164 1]\n",
|
|
" [1165 1]\n",
|
|
" [1166 0]\n",
|
|
" [1167 1]\n",
|
|
" [1168 0]\n",
|
|
" [1169 0]\n",
|
|
" [1170 0]\n",
|
|
" [1171 0]\n",
|
|
" [1172 1]\n",
|
|
" [1173 0]\n",
|
|
" [1174 1]\n",
|
|
" [1175 1]\n",
|
|
" [1176 1]\n",
|
|
" [1177 0]\n",
|
|
" [1178 0]\n",
|
|
" [1179 0]\n",
|
|
" [1180 0]\n",
|
|
" [1181 0]\n",
|
|
" [1182 0]\n",
|
|
" [1183 1]\n",
|
|
" [1184 0]\n",
|
|
" [1185 0]\n",
|
|
" [1186 0]\n",
|
|
" [1187 0]\n",
|
|
" [1188 1]\n",
|
|
" [1189 0]\n",
|
|
" [1190 0]\n",
|
|
" [1191 0]\n",
|
|
" [1192 0]\n",
|
|
" [1193 0]\n",
|
|
" [1194 0]\n",
|
|
" [1195 0]\n",
|
|
" [1196 1]\n",
|
|
" [1197 1]\n",
|
|
" [1198 0]\n",
|
|
" [1199 0]\n",
|
|
" [1200 0]\n",
|
|
" [1201 0]\n",
|
|
" [1202 0]\n",
|
|
" [1203 0]\n",
|
|
" [1204 0]\n",
|
|
" [1205 1]\n",
|
|
" [1206 1]\n",
|
|
" [1207 1]\n",
|
|
" [1208 0]\n",
|
|
" [1209 0]\n",
|
|
" [1210 0]\n",
|
|
" [1211 0]\n",
|
|
" [1212 0]\n",
|
|
" [1213 0]\n",
|
|
" [1214 0]\n",
|
|
" [1215 0]\n",
|
|
" [1216 1]\n",
|
|
" [1217 0]\n",
|
|
" [1218 1]\n",
|
|
" [1219 0]\n",
|
|
" [1220 0]\n",
|
|
" [1221 0]\n",
|
|
" [1222 1]\n",
|
|
" [1223 1]\n",
|
|
" [1224 0]\n",
|
|
" [1225 1]\n",
|
|
" [1226 0]\n",
|
|
" [1227 0]\n",
|
|
" [1228 0]\n",
|
|
" [1229 0]\n",
|
|
" [1230 0]\n",
|
|
" [1231 0]\n",
|
|
" [1232 0]\n",
|
|
" [1233 0]\n",
|
|
" [1234 0]\n",
|
|
" [1235 1]\n",
|
|
" [1236 0]\n",
|
|
" [1237 1]\n",
|
|
" [1238 0]\n",
|
|
" [1239 1]\n",
|
|
" [1240 0]\n",
|
|
" [1241 1]\n",
|
|
" [1242 1]\n",
|
|
" [1243 0]\n",
|
|
" [1244 0]\n",
|
|
" [1245 0]\n",
|
|
" [1246 1]\n",
|
|
" [1247 0]\n",
|
|
" [1248 1]\n",
|
|
" [1249 0]\n",
|
|
" [1250 0]\n",
|
|
" [1251 0]\n",
|
|
" [1252 0]\n",
|
|
" [1253 1]\n",
|
|
" [1254 1]\n",
|
|
" [1255 0]\n",
|
|
" [1256 1]\n",
|
|
" [1257 0]\n",
|
|
" [1258 0]\n",
|
|
" [1259 1]\n",
|
|
" [1260 1]\n",
|
|
" [1261 0]\n",
|
|
" [1262 0]\n",
|
|
" [1263 1]\n",
|
|
" [1264 0]\n",
|
|
" [1265 0]\n",
|
|
" [1266 1]\n",
|
|
" [1267 1]\n",
|
|
" [1268 0]\n",
|
|
" [1269 0]\n",
|
|
" [1270 0]\n",
|
|
" [1271 0]\n",
|
|
" [1272 0]\n",
|
|
" [1273 0]\n",
|
|
" [1274 1]\n",
|
|
" [1275 1]\n",
|
|
" [1276 0]\n",
|
|
" [1277 1]\n",
|
|
" [1278 0]\n",
|
|
" [1279 0]\n",
|
|
" [1280 0]\n",
|
|
" [1281 0]\n",
|
|
" [1282 1]\n",
|
|
" [1283 1]\n",
|
|
" [1284 0]\n",
|
|
" [1285 0]\n",
|
|
" [1286 0]\n",
|
|
" [1287 1]\n",
|
|
" [1288 0]\n",
|
|
" [1289 1]\n",
|
|
" [1290 0]\n",
|
|
" [1291 0]\n",
|
|
" [1292 1]\n",
|
|
" [1293 0]\n",
|
|
" [1294 1]\n",
|
|
" [1295 1]\n",
|
|
" [1296 0]\n",
|
|
" [1297 0]\n",
|
|
" [1298 0]\n",
|
|
" [1299 0]\n",
|
|
" [1300 1]\n",
|
|
" [1301 1]\n",
|
|
" [1302 1]\n",
|
|
" [1303 1]\n",
|
|
" [1304 1]\n",
|
|
" [1305 0]\n",
|
|
" [1306 1]\n",
|
|
" [1307 0]\n",
|
|
" [1308 0]\n",
|
|
" [1309 0]]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(predictions)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|