MLProjects/Audi_Classification_ML
tsb1995 b8ba9c81e6
Update README.md
2020-02-29 18:44:59 -08:00
..
.ipynb_checkpoints Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
__pycache__ Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
data Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
figures Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
models Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
pickles Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
README.md Update README.md 2020-02-29 18:44:59 -08:00
cfg.py Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
cleanup.ipynb Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
eda.py Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
model.ipynb Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
predict.ipynb Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00
predictions.csv Add Audio_classification_ML project 2019-10-29 14:14:07 -07:00

README.md

Audio Classification

This repository contains an audio classification task developed in Jupyter Notebooks from following Seth Adams' Deep Learning for Audio Classification series. In it we begin with a labeled dataset consisting of .wav files with audio from a variety of instruments. In our cleanup file, we read in the data and visualize Time Series, Fourier Transforms, Filter Bank Coeffecients, and MFCCs based on the data. We then create envelopes for each and save the data.