MLProjects/MNIST_Digit_Kmeans/MNIST_Digit_Kmeans.ipynb

2106 lines
355 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import sklearn\n",
"from sklearn.cluster import KMeans\n",
"from sklearn.preprocessing import scale\n",
"from sklearn.datasets import load_digits\n",
"from sklearn.decomposition import PCA\n",
"from sklearn import metrics\n",
"import matplotlib as mpl\n",
"from matplotlib import pyplot as plt\n",
"%matplotlib inline "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def display_image(image):\n",
" plt.imshow(image, interpolation='nearest')\n",
" plt.show"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Load the data\n",
"\n",
"digits = load_digits()\n",
"data = digits.data\n",
"target = digits.target\n",
"images = digits.images"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 0. 0. 0. 8. 15. 1. 0. 0. 0. 0. 1. 14. 13. 1. 1. 0. 0. 0.\n",
" 10. 15. 3. 15. 11. 0. 0. 7. 16. 7. 1. 16. 8. 0. 0. 9. 16. 13.\n",
" 14. 16. 5. 0. 0. 1. 10. 15. 16. 14. 0. 0. 0. 0. 0. 1. 16. 10.\n",
" 0. 0. 0. 0. 0. 10. 15. 4. 0. 0.]\n",
"[[ 0. 0. 0. 8. 15. 1. 0. 0.]\n",
" [ 0. 0. 1. 14. 13. 1. 1. 0.]\n",
" [ 0. 0. 10. 15. 3. 15. 11. 0.]\n",
" [ 0. 7. 16. 7. 1. 16. 8. 0.]\n",
" [ 0. 9. 16. 13. 14. 16. 5. 0.]\n",
" [ 0. 1. 10. 15. 16. 14. 0. 0.]\n",
" [ 0. 0. 0. 1. 16. 10. 0. 0.]\n",
" [ 0. 0. 0. 10. 15. 4. 0. 0.]]\n",
"This image is classified as: 4\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAALDklEQVR4nO3dW4ycdRnH8d/P7flk5VBCupWCYBPQSMmmhjSS2IopQsAYL1qliWBSEwOh0YSAd17IjQmBC0JSC0hChWihgqRyCIcgAQvbUoV2W60V06VAaQxQKLa0PF7sNCm4uO/MvIfZp99PsmFnd7L/Z7J8+86+O/v+HRECkMdnmh4AQLmIGkiGqIFkiBpIhqiBZCZU8UUneXJM0fQqvnSjPvzClFrXiw/6alvr5NkHaltr/8EZta01+dWDta1Vp//ofR2OQx7tc5VEPUXT9VUvreJLN2r4l+fVut5HL3+2trVWfueJ2tb61eDXalvri1cP1rZWnTbFp3+/ePoNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRTKGrby2zvtL3L9g1VDwWgc2NGbbtP0m2SLpF0rqQVts+tejAAnSlypF4kaVdE7I6Iw5Luk3RFtWMB6FSRqOdK2nPc7eHWxz7G9irbg7YHP9ShsuYD0KYiUY/2513/c7XCiFgTEQMRMTBRk7ufDEBHikQ9LGnecbf7Je2tZhwA3SoS9YuSzrF9pu1JkpZLeqjasQB0asyLJETEEdvXSHpUUp+kOyNiW+WTAehIoSufRMRGSRsrngVACXhFGZAMUQPJEDWQDFEDyRA1kAxRA8kQNZBMJTt0ZHXwnam1rjfty+/UttbfD86pba1Hl95a21qrz7u6trUk6ei2nbWuNxqO1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJFNkh447be+z/UodAwHoTpEj9a8lLat4DgAlGTPqiHhG0r9rmAVACUr7Ky3bqyStkqQpmlbWlwXQptJOlLHtDtAbOPsNJEPUQDJFfqV1r6TnJS2wPWz7h9WPBaBTRfbSWlHHIADKwdNvIBmiBpIhaiAZogaSIWogGaIGkiFqIBm23WlD/x/6al1vwo/fq22tF177fG1r/ejA92pba1IPbINTN47UQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kU+QaZfNsP2V7yPY229fVMRiAzhR57fcRST+NiC22Z0rabPvxiNhe8WwAOlBk253XI2JL6/0DkoYkza16MACdaeuvtGzPl7RQ0qZRPse2O0APKHyizPYMSfdLWh0R737y82y7A/SGQlHbnqiRoNdFxAPVjgSgG0XOflvSHZKGIuLm6kcC0I0iR+rFklZKWmJ7a+vtWxXPBaBDRbbdeVaSa5gFQAl4RRmQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDybCXVhtmPvfPWtfbeNtjta113vPfr22tqVd+UNtaR2tbqXdwpAaSIWogGaIGkiFqIBmiBpIhaiAZogaSIWogGaIGkily4cEptl+w/ZfWtjs/r2MwAJ0p8jLRQ5KWRMR7rUsFP2v7jxHx54pnA9CBIhceDEnvtW5ObL1FlUMB6FzRi/n32d4qaZ+kxyNi1G13bA/aHvxQh8qeE0BBhaKOiKMRcb6kfkmLbH9plPuw7Q7QA9o6+x0Rb0t6WtKySqYB0LUiZ79PtT279f5USd+QtKPqwQB0psjZ79Ml3W27TyP/CPw2Ih6udiwAnSpy9vuvGtmTGsA4wCvKgGSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGbXfacNqD9W0XI0k37V9Q21on3TOjtrWOvrmttrVORBypgWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIpnDUrQv6v2Sbiw4CPaydI/V1koaqGgRAOYpuu9Mv6VJJa6sdB0C3ih6pb5F0vaSPPu0O7KUF9IYiO3RcJmlfRGz+f/djLy2gNxQ5Ui+WdLntVyXdJ2mJ7XsqnQpAx8aMOiJujIj+iJgvabmkJyPiysonA9ARfk8NJNPW5Ywi4mmNbGULoEdxpAaSIWogGaIGkiFqIBmiBpIhaiAZogaSYdudHvbsxWfUttbZD26vba29G2pb6oTEkRpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWQKvUy0dSXRA5KOSjoSEQNVDgWgc+289vvrEbG/skkAlIKn30AyRaMOSY/Z3mx71Wh3YNsdoDcUffq9OCL22p4j6XHbOyLimePvEBFrJK2RpFk+KUqeE0BBhY7UEbG39d99kjZIWlTlUAA6V2SDvOm2Zx57X9I3Jb1S9WAAOlPk6fdpkjbYPnb/30TEI5VOBaBjY0YdEbslfaWGWQCUgF9pAckQNZAMUQPJEDWQDFEDyRA1kAxRA8mM+213+k6bU9taL7x2am1rSdIZpxypba0rTn6utrVu19m1rXUi4kgNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyhaK2Pdv2ets7bA/ZvrDqwQB0puhrv2+V9EhEfNf2JEnTKpwJQBfGjNr2LEkXSfqBJEXEYUmHqx0LQKeKPP0+S9Jbku6y/ZLtta3rf38M2+4AvaFI1BMkXSDp9ohYKOl9STd88k4RsSYiBiJiYKImlzwmgKKKRD0saTgiNrVur9dI5AB60JhRR8QbkvbYXtD60FJJ2yudCkDHip79vlbSutaZ792SrqpuJADdKBR1RGyVNFDxLABKwCvKgGSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkhm3O+ldfTNfbWtNWfW1NrWkqRVv3+itrVu+sXK2tb6nJ6vba0TEUdqIBmiBpIhaiAZogaSIWogGaIGkiFqIBmiBpIhaiCZMaO2vcD21uPe3rW9uo7hALRvzJeJRsROSedLku0+Sa9J2lDxXAA61O7T76WS/hER/6piGADda/cPOpZLune0T9heJWmVJE1h/zygMYWP1K1rfl8u6XejfZ5td4De0M7T70skbYmIN6saBkD32ol6hT7lqTeA3lEoatvTJF0s6YFqxwHQraLb7hyUdHLFswAoAa8oA5IhaiAZogaSIWogGaIGkiFqIBmiBpIhaiAZR0T5X9R+S1K7f555iqT9pQ/TG7I+Nh5Xc86IiFNH+0QlUXfC9mBEDDQ9RxWyPjYeV2/i6TeQDFEDyfRS1GuaHqBCWR8bj6sH9czP1ADK0UtHagAlIGogmZ6I2vYy2ztt77J9Q9PzlMH2PNtP2R6yvc32dU3PVCbbfbZfsv1w07OUyfZs2+tt72h97y5seqZ2Nf4zdWuDgL9p5HJJw5JelLQiIrY3OliXbJ8u6fSI2GJ7pqTNkr493h/XMbZ/ImlA0qyIuKzpecpi+25Jf4qIta0r6E6LiLebnqsdvXCkXiRpV0TsjojDku6TdEXDM3UtIl6PiC2t9w9IGpI0t9mpymG7X9KlktY2PUuZbM+SdJGkOyQpIg6Pt6Cl3oh6rqQ9x90eVpL/+Y+xPV/SQkmbmp2kNLdIul7SR00PUrKzJL0l6a7WjxZrbU9veqh29ULUHuVjaX7PZnuGpPslrY6Id5uep1u2L5O0LyI2Nz1LBSZIukDS7RGxUNL7ksbdOZ5eiHpY0rzjbvdL2tvQLKWyPVEjQa+LiCyXV14s6XLbr2rkR6Ultu9pdqTSDEsajohjz6jWayTycaUXon5R0jm2z2ydmFgu6aGGZ+qabWvkZ7OhiLi56XnKEhE3RkR/RMzXyPfqyYi4suGxShERb0jaY3tB60NLJY27E5vtbpBXuog4YvsaSY9K6pN0Z0Rsa3isMiyWtFLSy7a3tj72s4jY2OBMGNu1kta1DjC7JV3V8Dxta/xXWgDK1QtPvwGUiKiBZIgaSIaogWSIGkiGqIFkiBpI5r8vYJtLib2GqAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Get an idea of what the data looks like\n",
"\n",
"print(data[14])\n",
"print(images[14])\n",
"display_image(images[18])\n",
"print(\"This image is classified as:\", target[14])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Scale data and set up vectors/constants\n",
"\n",
"data = scale(data)\n",
"x = data\n",
"y = target\n",
"k = 11 # Get number of categories\n",
"samples, features = data.shape"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 8 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 10 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 10 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 2\n",
"Predict: 10 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 10 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 10 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 10 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 10 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 2\n",
"Predict: 8 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 3 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 0 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 0 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 8 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 5\n",
"Predict: 10 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 8 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 0 Actual: 5\n",
"Predict: 8 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 2\n",
"Predict: 0 Actual: 5\n",
"Predict: 0 Actual: 5\n",
"Predict: 10 Actual: 4\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 7 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 9 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 3 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 7 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 0 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 7 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 3 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 3\n",
"Predict: 3 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 0 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 10 Actual: 9\n",
"Predict: 0 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 3 Actual: 9\n",
"Predict: 6 Actual: 3\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 7 Actual: 7\n",
"Predict: 10 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 7 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 7 Actual: 7\n",
"Predict: 4 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 1\n",
"Predict: 7 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 10 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 7 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 6 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 7 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 5 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 7 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 10 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 9 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 0 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 6\n",
"Predict: 10 Actual: 1\n",
"Predict: 7 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 10 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 7 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 10 Actual: 4\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 10 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 8 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 5 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 2\n",
"Predict: 5 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 5 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 5\n",
"Predict: 5 Actual: 2\n",
"Predict: 1 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 5 Actual: 3\n",
"Predict: 5 Actual: 2\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 5 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 5 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 5 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 8\n",
"Predict: 10 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 7 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 7 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 9\n",
"Predict: 2 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 10 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 7 Actual: 7\n",
"Predict: 10 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 2\n",
"Predict: 8 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 8 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 1\n",
"Predict: 7 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 10 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 7 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 7 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 3 Actual: 4\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 10 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 10 Actual: 8\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 10 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 2\n",
"Predict: 8 Actual: 1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 8\n",
"Predict: 3 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 8\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 5 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 5\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 5\n",
"Predict: 5 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 5 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 5\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 5 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 5 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 5 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 8\n",
"Predict: 7 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 5 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 5 Actual: 1\n",
"Predict: 7 Actual: 7\n",
"Predict: 6 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 7 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 5\n",
"Predict: 7 Actual: 4\n",
"Predict: 7 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 7 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 7 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 0 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 7 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 5 Actual: 2\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 5 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 0 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 0 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 2\n",
"Predict: 9 Actual: 8\n",
"Predict: 6 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 0 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 5\n",
"Predict: 0 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 0 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 0 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 6 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 2\n",
"Predict: 5 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 5\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 5 Actual: 2\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 5 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 5 Actual: 2\n",
"Predict: 1 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 5\n",
"Predict: 10 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 7 Actual: 7\n",
"Predict: 10 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 6 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 10 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 10 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 10 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 10 Actual: 6\n",
"Predict: 0 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 10 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 5 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 8\n",
"Predict: 7 Actual: 9\n",
"Predict: 2 Actual: 0\n",
"Predict: 10 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 10 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 9 Actual: 9\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 7\n",
"Predict: 8 Actual: 3\n",
"Predict: 0 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 5 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 5 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 3\n",
"Predict: 3 Actual: 3\n",
"Predict: 0 Actual: 7\n",
"Predict: 3 Actual: 3\n",
"Predict: 8 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 4\n",
"Predict: 10 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 5\n",
"Predict: 5 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 7\n",
"Predict: 8 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 2\n",
"Predict: 6 Actual: 2\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 3 Actual: 9\n",
"Predict: 3 Actual: 8\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 3\n",
"Predict: 10 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 8 Actual: 2\n",
"Predict: 8 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 9 Actual: 5\n",
"Predict: 1 Actual: 6\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 0 Actual: 8\n",
"Predict: 7 Actual: 4\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 7\n",
"Predict: 3 Actual: 3\n",
"Predict: 9 Actual: 5\n",
"Predict: 8 Actual: 1\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 3 Actual: 7\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 0 Actual: 2\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 3\n",
"Predict: 3 Actual: 3\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 3\n",
"Predict: 3 Actual: 3\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 1 Actual: 6\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predict: 8 Actual: 1\n",
"Predict: 9 Actual: 5\n",
"Predict: 4 Actual: 0\n",
"Predict: 6 Actual: 9\n",
"Predict: 9 Actual: 5\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 4 Actual: 0\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 3 Actual: 3\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 2 Actual: 4\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 6 Actual: 3\n",
"Predict: 6 Actual: 9\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 9 Actual: 3\n",
"Predict: 8 Actual: 1\n",
"Predict: 2 Actual: 4\n",
"Predict: 4 Actual: 0\n",
"Predict: 9 Actual: 5\n",
"Predict: 6 Actual: 3\n",
"Predict: 1 Actual: 6\n",
"Predict: 6 Actual: 9\n",
"Predict: 1 Actual: 6\n",
"Predict: 8 Actual: 1\n",
"Predict: 3 Actual: 7\n",
"Predict: 9 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 2 Actual: 4\n",
"Predict: 3 Actual: 7\n",
"Predict: 0 Actual: 2\n",
"Predict: 8 Actual: 8\n",
"Predict: 0 Actual: 2\n",
"Predict: 0 Actual: 2\n",
"Predict: 6 Actual: 5\n",
"Predict: 3 Actual: 7\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 5\n",
"Predict: 2 Actual: 4\n",
"Predict: 8 Actual: 8\n",
"Predict: 8 Actual: 8\n",
"Predict: 2 Actual: 4\n",
"Predict: 6 Actual: 9\n",
"Predict: 4 Actual: 0\n",
"Predict: 8 Actual: 8\n",
"Predict: 6 Actual: 9\n",
"Predict: 6 Actual: 8\n"
]
}
],
"source": [
"# Setup classifier to cluster using KMeans\n",
"\n",
"classifier = KMeans(n_clusters = k).fit(x)\n",
"y_pred = classifier.predict(x)\n",
"for i in range(len(y)):\n",
" print(\"Predict:\", y_pred[i], \"Actual:\", y[i])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Reduce to two dimensions for visualization\n",
"\n",
"pca = PCA(n_components = 2, whiten = False)\n",
"X_pca = pca.fit_transform(x)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAALJCAYAAABhmz8FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde3Rb130v+O/G84AiCUGiSNCCEMmWbcpWaMlR4shJHOV65DpumzSw24mbTp2YmbRp1txmdXFNM3PvtMp0ZsUrZdOk70nrPG5ya9/eLiTyNI4bx6nrxGbiUWwHcSzKViwFpizq5SOQFHAIAtjzxwbEAwgg8TjAOQC/n7W4DrEJHOwD0tYPP/z2bwspJYiIiIiIyDouuydARERERNRrGGQTEREREVmMQTYRERERkcUYZBMRERERWYxBNhERERGRxRhkExERERFZjEE2EREREZHFGGQTEfUwIcRJIURGCLEohDgjhPiyEKK/+LNfEkI8JYRYEEKcE0L8uxDifRWPPyCEkEKI/9WeKyAi6k4MsomIet+vSin7AdwM4K0A/rMQ4h4A/x3AfwEQATAC4I8A/GrFY+8D8EbxSEREdWKQTUS0TkgpTwH4NoA3A/gcgD+RUv6DlDIlpSxIKf9dSvk/l+4vhOgDcA+ATwC4Vgixz5aJExF1IQbZRETrhBBiG4C7AKQBbAPwz2s85G4Ai1AZ738F8NttnSARUQ9hkE1E1Pu+KYS4COAHAP4dwOeL46fXeNx9AP6blDIP4B8B3CuE8LZvmkREvYNBNhFR7/s1KeVGKeWbpJS/B+BCcXy01gOKWe/3APivxaHDADQAv9zWmRIR9QgG2URE688xAK9BlYPU8j9B/Rvx/woh5gC8ChVks2SEiKgODLKJiNYZKaUE8AcA/g8hxEeEEINCCJcQ4p1CiC8W7/bbAD4NYI/p624AvyyE2GzLxImIugiDbCKidUhK+c8A/kcA9wN4HcAZAP8XgMNCiLcD2A7gr6WUc6avRwAcB3CvTdMmIuoaQiU0iIiIiIjIKsxkExERERFZjEE2EREREZHFGGQTEREREVmMQTYRERERkcU8dk+gHYaGhuT27dvtngYRERER9bAf//jH56WUW6r9rCeD7O3bt+PIkSN2T4OIiIiIepgQ4he1fsZyESIiIiIiizHIJiIiIiKyGINsIiIiIiKL9WRNNhERERE5y/LyMmZnZ2EYht1TaZimaYhEIvB6vXU/hkE2EREREbXd7OwsBgYGsH37dggh7J5O3aSUuHDhAmZnZ7Fjx466H8dyESIiIiJqO8MwsHnz5q4KsAFACIHNmzc3nIFnkE1EREREHdFtAXZJM/NmkE1EREREZDEG2URERES0Ljz22GO4/vrrsXPnTjzwwANtfS4G2URERETU8/L5PD7xiU/g29/+Nl566SU89NBDeOmll9r2fOwuQkRERETOk0gA8TiQTALRKBCLAePjTZ/u2Wefxc6dO3H11VcDAD74wQ/i8OHDuOGGG6yacRlmsomIiIjIWRIJYGoK0HUgElHHqSk13qRTp05h27Ztl29HIhGcOnXKitlWxSCbiIiIiJwlHgdCIfXlcq18H483fUop5RVj7ex2wiCbiIiIiJwlmQSCwfKxYFCNNykSieC11167fHt2dhZXXXVV0+dbC4NsIiIiInKWaBRIpcrHUik13qS3vvWteOWVV3DixAlks1k8/PDDeN/73tfiRGtjkE1EREREzhKLqTpsXQcKhZXvY7GmT+nxePBXf/VX+KVf+iXs2rULv/Ebv4Ebb7zRwklXPF/bzkxERERE1IzxcWBysry7yMRES91FAOCuu+7CXXfdZdEkV8cgm4iIiIicZ3y85aDaTiwXISIiIiKyGINsIiIiIiKLMcgmIiIiIrIYg2wiIiIiIot1JMgWQnxJCHFWCPGiaWyTEOJxIcQrxWOoxmPvK97nFSHEfZ2YLxERERFRKzqVyf4KgDsrxj4F4Akp5bUAnijeLiOE2ATgjwHcAuBtAP64VjBORERERLSa+++/H8PDw9i9e3fbn6sjQbaU8ikAb1QMvx/AV4vffxXAr1V56C8BeFxK+YaUUgfwOK4M1omIiIiI1vThD38Yjz32WEeey84+2SNSytMAIKU8LYQYrnKfrQBeM92eLY4RERERUQ9LJMr3oonFWm+bfdttt+HkyZOWzG8tTl/4KKqMyap3FOJjQogjQogj586da/O0iIiIiKhdEglgakrtpB6JqOPUlBrvFnYG2WeEEKMAUDyerXKfWQDbTLcjAF6vdjIp5RellPuklPu2bNli+WSJiIiIqDPicSAUUl8u18r38bjdM6ufnUH2IwBK3ULuA3C4yn3+FcAdQohQccHjHcUxIiIiovZYTAMnTwEzJ9RxMW33jNadZBIIBsvHgkE13i061cLvIQDTAK4XQswKISYAPADgoBDiFQAHi7chhNgnhPgHAJBSvgHgTwD8f8Wv/7M4RkRERGS9xTQwOwcs5wC/Vx1n5xhod1g0CqRS5WOplBrvFp3qLnKvlHJUSumVUkaklA9KKS9IKW+XUl5bPL5RvO8RKeVHTY/9kpRyZ/Hry52YLxEREa1T53XA7Qa8HkAIdXS71Th1TCym6rB1HSgUVr6PxVo777333ov9+/fj2LFjiEQiePDBB62ZcBV2dhchIiIichYjqzLYZh63GqeOGR8HJifLu4tMTLTeXeShhx6yZoJ1YJBNREREVKL5VImI1xQi5fJqnDpqfLz1oNpOTm/hR0RERNQ5QyEgn1eBtpTqmM+rcaIGMMgmIiIiKunvAyJhlcleWlbHSFiNEzWA5SJEREREZv19DKqpZcxkExERERFZjEE2EREREZHFGGQTERERUc977bXX8J73vAe7du3CjTfeiC984QttfT7WZBMRERFRz/N4PPizP/sz3HzzzVhYWMBb3vIWHDx4EDfccEN7nq8tZyUiIiIiakFiLoH4TBzJVBLRYBSxsRjGw803zh4dHcXo6CgAYGBgALt27cKpU6faFmSzXISIiIiIHCUxl8DU9BT0jI7IYAR6RsfU9BQScwlLzn/y5Ek8//zzuOWWWyw5XzUMsomIiIjIUeIzcYS0EEKBEFzChVAghJAWQnwm3vK5FxcXcffdd+Pzn/88BgcHLZhtdQyyiYiIiMhRkqkkglqwbCyoBZFMJVs67/LyMu6++2586EMfQiwWa+lca2GQTURERESOEg1GkTJSZWMpI4VoMNr0OaWUmJiYwK5du/AHf/AHrU5xTQyyiYiIiMhRYmMx6IYOPaOjIAvQMzp0Q0dsrPns89NPP42vfe1r+N73voc9e/Zgz549ePTRRy2cdTl2FyEiIiIiRxkPj2Ny/2RZd5GJvRMtdRd55zvfCSmlhbNcHYNsIiIiInKc8fB4S0G13VguQkRERERkMQbZREREREQWY5BNRERERGQxBtlERERERBZjkE1EREREZDEG2URERETU8wzDwNve9jbcdNNNuPHGG/HHf/zHbX0+tvAjIiIiop7n9/vxve99D/39/VheXsY73/lOvPe978Xb3/72tjwfg2wiIiIicpxEIoF4PI5kMoloNIpYLIbx8eb7Zgsh0N/fDwBYXl7G8vIyhBBWTfcKLBchIiIiIkdJJBKYmpqCruuIRCLQdR1TU1NIJBItnTefz2PPnj0YHh7GwYMHccstt1g04ysxyCYiIiIiR4nH4wiFQgiFQnC5XJe/j8fjLZ3X7XbjhRdewOzsLJ599lm8+OKLFs34SgyyiYiIiMhRkskkgsFg2VgwGEQymbTk/Bs3bsSBAwfw2GOPWXK+ahhkExEREZGjRKNRpFKpsrFUKoVoNNr0Oc+dO4eLFy8CADKZDL773e9ibGyspXmuhkE2ERERETlKLBaDruvQdR2FQuHy97FYrOlznj59Gu95z3swPj6Ot771rTh48CB+5Vd+xcJZl2N3ESIiIqJWLKaB8zpgZAHNBwyFgP4+u2fV1cbHxzE5OVnWXWRiYqKl7iLj4+N4/vnnLZzl6hhkExERETVrMQ3MzgFuN+D3Ass5dTsSZqDdovHx8ZaCaruxXISIiIioWed1FWB7PYAQ6uh2q3Fa1xhkExERETXLyAIed/mYx63GaV1jkE1ERETULM0H5PLlY7m8Gqd1jTXZRERE9eICN6o0FFI12IDKYOfyQD4PjG6xd15kOwbZRERE9eACtyvMzSUwMxNHKpVEMBjF2FgM4XD3LlRrSn+f+hswv/ka3bJu/yZoBctFiIiI6sEFbmXm5hKYnp5CJqNjcDCCTEbH9PQU5uYSdk+t8/r7gO1bgbEd6sgA29Hy+Tz27t3b1h7ZAINsIiKi+nCBW5mZmTg0LYRAIAQhXAgEQtC0EGZm4nZPjWhVX/jCF7Br1662Pw+DbCIionpwgVuZVCoJTQuWjWlaEKlU0qYZUa/JZc/CWHgG6YuPwVh4Brns2ZbPOTs7i29961v46Ec/asEMV8cgm4iIqB5DIbWgbTkHSKmO+bwaX4eCwSgMI1U2ZhgpBINRm2ZEvSSXPYts+ghkwYBwDUAWDGTTR1oOtD/5yU/is5/9LFyu9ofADLKJiIjqUVrg5vUAS8vquI4XPY6NxWAYOjIZHVIWkMnoMAwdY2Mxu6dGPSC3dBxCaBAuDUKI4lFDbul40+f8l3/5FwwPD+Mtb3mLhTOtjd1FiIiI6tXft26D6krh8Dj2758s6y6yd+/E+usuQm1RyM9DuAbKB4Ufhfx80+d8+umn8cgjj+DRRx+FYRiYn5/Hb/3Wb+HrX/96i7OtjkE2ERERNSUcHmdQTW3hcg9CFgxAaCuDcgku92DT5/zMZz6Dz3zmMwCAJ598ElNTU20LsAGWixARERGRw3j8OyGlAVkwIKUsHg14/DvtnlrdmMkmIiIiIkfx+IYB7ENu6TgK+Xm43IPw+ncXx1t34MABHDhwwJJz1cIgm4iIiIgcx+MbtiyotgPLRYiIiIiILMYgm4iIiIjIYiwXISKi1S2mgfO62j5c86nNV9jGjohoVcxkExFRbYtpYHZO7W7o96rj7JwaJyKimhhkExFRbed1wO1WuxsKoY5utxonIqKaWC5CRES1GVmVwTbzuNU4EVGX2b59OwYGBuB2u+HxeHDkyJG2PReDbCIiqk3zqRIRr+mfi1xejRMRdaF/+7d/w9DQUNufh0E2ERHVNhRSNdiAymDn8kA+D4xusXdeRLQOJADEASQBRAHEAIzbOqNGsCabiIhq6+8DImGVyV5aVsdImN1FiKjNEgCmAOgAIsXjVHG8eUII3HHHHXjLW96CL37xiy3PcjXMZBMR0er6+xhUE1GHxQGEil8wHeNoJZv99NNP46qrrsLZs2dx8OBBjI2N4bbbbmttqjUwk01EREREDpMEEKwYCxbHm3fVVVcBAIaHh/GBD3wAzz77bEvnWw2DbCIiom6xmAZOngJmTqgj+5VTz4oCSFWMpYrjzbl06RIWFhYuf/+d73wHu3fvbvp8a2G5CBERUTcobQzkdpdvDMQaeepJMagabEBlsFNQddkTTZ/xzJkz+MAHPgAAyOVy+M3f/E3ceeedLc6zNgbZRERE3cC8MRCwcjyvM8imHjQOYBLl3UUm0Eo99tVXX42f/OQnlsyuHgyyiYiIugE3BqJ1Zxzd1LKvEmuyiYiIuoHmU33KzbgxEJFjMcgmIiLqBkMhtRHQcg6QUh3zeTVORI7DIJuIiKgbcGMgoq7CmmwiIqJu4cSNgRbTavGlkVWlK0Mh582RyAbMZBMREVFzSm0Fl3PlbQXZv5uIQTYRERE1ydxWUAh1dLvVOJEDXbx4Effccw/Gxsawa9cuTE9Pt+25WC5CREREzWFbQeoyv//7v48777wT//zP/4xsNot0un2fujDIJiIiouZoPlUi4jWFE2wrSBb5+VIa38/M40wuixGPD+8KDOIaf/P1/vPz83jqqafwla98BQDg8/ng87Xvb5XlIkRERNQcthWkNvn5Uhr/tHAOC4U8tri9WCjk8U8L5/DzpeYzz6+++iq2bNmCj3zkI9i7dy8++tGP4tKlSxbOuhyDbCIiImoO2wpSm3w/M49+lwcDLjdcQmDA5Ua/y4PvZ+abPmcul8Nzzz2Hj3/843j++eexYcMGPPDAAxbOuhyDbCIiImpefx+wfSswtkMdGWCTBc7kstggysPUDcKFM7nm6/0jkQgikQhuueUWAMA999yD5557rqV5roZBNhERERE5yojHh0uyUDZ2SRYw4mm+hjocDmPbtm04duwYAOCJJ57ADTfc0NI8V8OFj0RERETkKO8KDOKfFs4BUBnsS7KAxUIOd21ord7/L//yL/GhD30I2WwWV199Nb785S9bMd2qGGQTERERkaNc4+/Db2BLWXeRuzaEWuouAgB79uzBkSNHLJrl6hhkExEREZHjXOPvazmothODbCIionotptVuhkZW9YIeCnGhHxFVxYWPRERE9VhMA7Nzqhe036uOs3NqnIioAoNsIiKiepzXAbdb9YIWQh3dbjVORFTBtiBbCHG9EOIF09e8EOKTFfc5IIRIme7zR3bNl4iI1jkjC3jc5WMetxonIqpgW022lPIYgD0AIIRwAzgF4BtV7vp9KeWvdHJuREREV9B8qkTEa/qnM5dX40REFZxSLnI7gJ9LKX9h90SIiIiqGgoB+bwKtKVUx3xejROR4x07dgx79uy5/DU4OIjPf/7zbXs+p3QX+SCAh2r8bL8Q4icAXgcwKaX8WeemRUREVNTfB0TC5d1FRrewuwhRl7j++uvxwgsvAADy+Ty2bt2KD3zgA217PtuDbCGED8D7APxvVX78HIA3SSkXhRB3AfgmgGtrnOdjAD4GANFotE2zJSKida2/j0E1Uae0sWXmE088gWuuuQZvetObLDlfNU4oF3kvgOeklGcqfyClnJdSLha/fxSAVwgxVO0kUsovSin3SSn3bdmypb0zJiIiIqL2aXPLzIcffhj33nuvJeeqxQlB9r2oUSoihAgLIUTx+7dBzfdCB+dGRERERJ3WxpaZ2WwWjzzyCH7913/dgonWZmu5iBCiD8BBAL9jGvtdAJBS/h2AewB8XAiRA5AB8EEppbRjrkRERETUIUZWZbDNLGqZ+e1vfxs333wzRkZGWj7XamwNsqWUaQCbK8b+zvT9XwH4q07Pi4iIiIhs1MaWmQ899FDbS0UAZ5SLEBERERGtaFPLzHQ6jccffxyxWMyiidZme3cRIiIiIqIybWqZ2dfXhwsXOrO8j0E2ERERETlPl7fMZLkIEREREZHFGGQTEREREVmMQTYRERERkcUYZBMRERERWYxBNhERERGRxRhkExEREdG68Od//ue48cYbsXv3btx7770wDKNtz8Ugm4iIiIh63qlTp/AXf/EXOHLkCF588UXk83k8/PDDbXs+9skmIiIiIufJzgPGHJA3ALcGaGHAN9jSKXO5HDKZDLxeL9LpNK666iqLJnslZrKJiIiIyFmy88DiCaCwDLj86rh4Qo03aevWrZicnEQ0GsXo6CiCwSDuuOMOCyddjkE2ERERETmLMQe4PIDLCwihji6PGm+Srus4fPgwTpw4gddffx2XLl3C17/+dQsnXY5BNhERERE5S94AREVVs/Co8SZ997vfxY4dO7BlyxZ4vV7EYjE888wzLU60NgbZREREROQsbg2QufIxmVPjTYpGo/jhD3+IdDoNKSWeeOIJ7Nq1q8WJ1sYgm4iIiIicRQsDhZyqxZZSHQs5Nd6kW265Bffccw9uvvlmvPnNb0ahUMDHPvYxCyddjt1FiIiIOm0xDZzXASMLaD5gKAT099k9KyLn8A0C/TvKu4v0bWu5u8inP/1pfPrTn7ZokqtjkE1ERM7WawHpYhqYnQPcbsDvBZZz6nYk3N3XRWQ132DLQbWdWC5CRETOVQpIl3PlAeli2u6ZNe+8rgJsr0d1TfB61O3zut0zIyILMcgmIiLn6sWA1MgCHnf5mMetxomoZ7BchIiInMvIqgy2WbcHpJpPZeS9pn+Cc3k1Tp3Va6VI5CjMZBMRkXNpPhWAmnV7QDoUAvJ5FWhLqY75vBqnzunFUiRyFAbZRETttJgGTp4CZk6oI/8Bb0wvBqT9fWqRo9cDLC2rIxc9dl4vliKRozDIJiJqF2bKWterAWl/H7B9KzC2Qx27/Xq6EWvj16UvfOEL2L17N2688UZ8/vOfb+tzsSabiKhdzJkyYOV4XmdQ1Yj+Pr5eZD3Wxq87L774Iv7+7/8ezz77LHw+H+6880788i//Mq699tq2PB8z2URE7cJMGZFz9WIpUo+Zm0vgyScP4fDh+/Hkk4cwN5do6XxHjx7F29/+dvT19cHj8eDd7343vvGNb1g02ysxyCYiapdeXLRH1Ct6tRSpR8zNJTA9PYVMRsfgYASZjI7p6amWAu3du3fjqaeewoULF5BOp/Hoo4/itddes3DW5VguQkTULkMhVYMNqAx2Lq8yZaNb7J0XESksRXKsmZk4NC2EQEB9slA6zszEEQ6PN3XOXbt24Q//8A9x8OBB9Pf346abboLH075QmJlsIqJ2YaaMyFK57FkYC88gffExGAvPIJc9a/eUqE1SqSQ0LVg2pmlBpFLJls47MTGB5557Dk899RQ2bdrUtnpsgJlsIiKlXZtSMFNGZIlc9iyy6SMQQoNwDUAWDGTTRwDsg8c3bPf0yGLBYBSZjH45gw0AhpFCMBht6bxnz57F8PAwkskk4vE4pqenW51qTQyyiYhKrfbc7vJWe07KOnNnOlrnckvHiwG2pgaEBhTUOIPs3jM2FsP09BQAlcE2jBQMQ8fevRMtnffuu+/GhQsX4PV68dd//dcIhdq30JVBNhGR01vtdcObAKI2K+TnIVwD5YPCj0J+3p4JUVuFw+PYv38SMzNxpFJJBINR7N070XQ9dsn3v/99i2a4NgbZRERGVgWvZk5qtef0NwFEHeByD0IWDJXBLpFLcLkH7ZsUtVU4PN5yUG0nLnwkInJ6qz322yaCx78TUhqQBQNSyuLRgMe/0+6pEVXFTDYRkdNb7XFnut7C+vqmqLrrfcgtHUchPw+XexBe/27WY5NjMcgmIiq12jMHPqNbnBP4OP1NANWP9fUt8fiGGVRT12CQTUQEOLvVntPfBFD9uqm+nhl3opYwyCYi6gZOfhOwnrQaeDp9kW0JM+5ELePCRyIionqUAs/lXHnguZiu/xxOX2RbYs64C6GObrcaJ+pi999/P4aHh7F79+7LY2+88QYOHjyIa6+9FgcPHoSuW/N3ziCbiIg6YzENnDwFzJxQx0aCUyewIvAcCql6+uUcIKU65vNq3EnY0YZ61Ic//GE89thjZWMPPPAAbr/9drzyyiu4/fbb8cADD1jyXAyyiYiofs0GylZkge1mReBZqq/3eoClZXV0YglGt2TcqbfNnQT+7WHgm3+pjnMnWz7lbbfdhk2bNpWNHT58GPfddx8A4L777sM3v/nNlp8HYJBNRET1aiVQ7oXyA6sCz/4+YPtWYGyHOjotwAa6J+NOvWvuJPDMYSCzCAxuVsdnDlsSaFc6c+YMRkdHAQCjo6M4e/asJedlkE1ERPVZK1BeLcvdC+UH6ynw7JaMO/Wuoz8EtA1AoB8QLnXUNqjxLsHuIkREVJ/VOmOs1Y2iFzbUWW+tFNnRhuyUOqcy2GZanxq32MjICE6fPo3R0VGcPn0aw8PW9GJnJpuIiJS16q1XK5dYK8vdK1ngbij1IOoFwS2AUfH/ICOtxi32vve9D1/96lcBAF/96lfx/ve/35LzMsgmIqL66q1XC5TXKgdh+QERNWLX2wHjkqrFlgV1NC6p8Rbce++92L9/P44dO4ZIJIIHH3wQn/rUp/D444/j2muvxeOPP45PfepTllwCy0WIiKi+nQhXK5eopxyE5QdEVK/wduDW96sa7NQ5lcG++X9Q4y146KGHqo4/8cQTLZ23GgbZRERU/06EtQLloZDKfJcel8urLPeo9R/tErUilz2L3NJxFPLzcLkH4fHvhMdnTQ0uWSy8veWg2k4sFyEiotbb07EchLpALnsW2fQRyIIB4RqALBjIpo8gl7WmZRuRGTPZRERkTSaa5SDkcLml4xBCg3BpakBoQEGNM5vdGVJKCCHsnkbDpJQNP4aZbCIiYiaa1oVCfh4Q/vJB4Vfj1HaapuHChQtNBax2klLiwoUL0DStoccxk01ERAoz0dTjXO5ByIKhMtglcgku96B9k1pHIpEIZmdnce6c9b2u203TNEQikYYewyCbiIiI1gWPfyey6SNAASqjLZcgpQGvf7fdU1sXvF4vduzYYfc0OoblIkRERLQueHzD8PXtg3BpkIUFCJcGX98+1mNTWzCTTUREjVtMl/fLHgqx1IS6gsc3zKCaOoKZbCIiakw9u0MSEa1zzGQTEVFj6tkdktqPnyYQORqDbCKi9a7RYK3e3SGpfUqfJrjd5Z8msO0ikWOwXISIaD1rpvSj1d0hqXXmTxOEUEe3W40TkSMwyCYiWs+aCdaGQmo3yOUcIKU65vNqnDrDyKpPD8z4aQKRo7BchMhmiUQC8XgcyWQS0WgUsVgM4+Pjdk+L1otmSj9Ku0OaS0xGt7BMoZM0n3pz4zX9M85PE4gchZlsIhslEglMTU1B13VEIhHouo6pqSkkEgm7p0brRbOlH/19wPatwNgOdWSA3Vn8NIHI8RhkE9koHo8jFAohFArB5XJd/j4ej9s9NVovGKx1p9KnCV4PsLSsjlz0SOQoLBchslEymUQkEikbCwaDSCaTNs2I1h2WfnSv/j7+nogcjEE2kY2i0Sh0XUcotJI1TKVSiEajNs5qfbOlRt7ufsfdFqzZ/XoREdWB5SJENorFYtB1Hbquo1AoXP4+FovZPbV1yZYaeSfsnriYBk6eAmZOqKOTd2608vXqpusmoq7DIJvIRuPj45icnEQoFMLs7CxCoRAmJyfZXcQmttTI293v2AlBfiMqXy8pgbTReKDcbddNRF2H5SJENhsfH2dQ7RC21MjbvXtit22Rbn69ssvA/CIAoW43sutht103EXUdZrKJiIqi0ShSqVTZWNtr5O3ePbHbNjUxv15pAxAuwCXUnBv5FGplqAUAACAASURBVKDbrpuIug6DbCKiIltq5O1uoWd3kN8o8+u1nAMggYIEAn7183oD5W67biLqOgyyiYiKbKmRt6vfcWnR38IlILWossLd0Cfb/HqJYpnIQPG1urgAnNMBY2nt2mq739wQUc8TUkq752C5ffv2ySNHjtg9DSIiZyot+nO7VeY3bQAZA9D8KojtlpZ4pevIF9Q1AAAksKFPlZCs9WaFrQCJqEVCiB9LKfdV+xkXPhIRrTeVi/42BACfV93evtXeuTWilNU+nlTZaJ8X6NPUcTm39iLGbusPTkRdhUE2EfWOXs9MWnV9dnc0qVc919vfpzLwwf6V8hHAmddDROsKa7KJqDf0et9jK6+vGxb9NXK93XA9RLTuMJNNRL3B6X2PW81CW3l9QyEVsAIq45vLq0V/o1saO087ndcxN/8yZl7/DlKLpxDs34qxq+5A+Lz/yuvthutpRa9/QkPUo5jJJqLe4OS+x1Zkoa28Prs6mjRg7nQC08f+AZmlFAY3jCKzlML0sX/A3OkqW9x3wfU0rdc/oSHqYcxkE1Fv0HwqAPGa/rfmlJIBK7LQVl+fwxf9zZx5HJpnAAF/EADUsVDAzJnHEcZ7r3yAw6+naU7/hIaIamImm4h6g5P7HhtZNZeLC8D5i+qYzzeWhXby9bVBKncemqdfteeTAPIFaJ5+pHLn7Z5aZzn5ExoiWhWDbCLqDU4uGRAA5i8BhQLgdqnj/CU1Xi8nX18bBIeuhuEvvl75POB2wfAXEBy62u6pdRYXdRJ1LdvLRYQQJwEsAMgDyFU29BZCCABfAHAXgDSAD0spn+v0PImoCzi1ZEAIAFJlZIvfArK85Vw9nHp9Zq0s0jM9dmzwHZg++2VgYAu0YBCGkYJhLGDv2O+0d/5rmJtLYGYmjlQqiWAwirGxGMLhNu4I2uuLOomalMueRW7pOAr5ebjcg/D4d8LjG7Z7WmVsD7KL3iOlrPUZ4HsBXFv8ugXA3xaPRETdoSCB4ACQWVJBkscN9A+o8V5i3knSvEivnox7xWPD7uuwf9tvYWbhaaTmZxEMRrF370R7A9o1zM0lMD09BU0LYXAwgkxGx/T0FPbvn6x7Xg0H6aVPMMxvXEa3dPzNVsffXBCtIpc9i2z6CITQIFwDkAUD2fQRAPscFWg7JchezfsB/Bep9n//oRBioxBiVEp52u6JERHVpbRocePAyljlIsZe0MoivSqPDQ/diPDoTY7ZhXJmJg5NCyEQUHXwpePMTLyugLPpIN3mTzCseHNBZKXc0vFigK2pAaEBBTXupCDbCTXZEsB3hBA/FkJ8rMrPtwJ4zXR7tjhGRNQd1suixVYW6XXBAr9UKglNC5aNaVoQqVSyrsebg3QhXAgEQtC0EGZm4u2YrmW6dd7Uuwr5eUD4yweFX407iBPSKO+QUr4uhBgG8LgQYkZK+ZTp59WKFq/4jLUYoH8MAKLRaHtmSkTUDId85N92rbQZdHILxqJgMIpMRr+cwQYAw0ghGKzv35xUKonBwUjZWCNBul3M815cnMP58zMwjIsAwLIRsoXLPQhZMFQGu0QuweUetG9SVdieyZZSvl48ngXwDQBvq7jLLIBtptsRAK9XOc8XpZT7pJT7tmzhghAi6oxEIoFDhw7h/vvvx6FDh5BIVNksBVAB9fatwNgOdey1ABtoLWPfBdn+sbEYDENHJqNDygIyGR2GoWNsLFbX44PBKAwjVTbWSJBul9K8FxfnMDs7jeXlDFwuH9xuP6anpzA3V+NvnqhNPP6dkNKALBiQUhaPBjz+nXZPrYytQbYQYoMQYqD0PYA7ALxYcbdHAPy2UN4OIMV6bCJygkQigampKei6jkgkAl3XMTU1VTvQ7nWttBnsghaF4fA49u+fRCAQwvz8LAKBUEN1ya0G6XYpzfv06efhdquP6PP5JYyO3syyEbKFxzcMX98+CJcGWViAcGnw9Tlr0SNgf7nICIBvqC598AD4RynlY0KI3wUAKeXfAXgUqn3fcagWfh+xaa5ERGXi8ThCoRBCIZVtLR3j8TjGx3v8I/RarfpaWaTXBS0Kw+HxpssjSkG6uUuH3R1T6lGa9ze/eR+klAgENmJ09Gb0949AyoLjy12oN3l8w44LqivZGmRLKV8FcFOV8b8zfS8BfKKT8yIiqkcymUQkUl5jGwwGkUw6MOhopX91tXM126pvnWslSLdTODyOsbH3t1STTrTe2F6TTUTUraLRKFKp8hrbVCrlvMXXpaB4OVceFC+mmzufud2eEOrodqvx9WIxDZw8BcycUMdmX8su0q3lLkR2YZBNRNSkWCwGXdeh6zoKhcLl72MxhwUdVgfFXdBur62sftPSJVqtSSdab+yuySYi6lrj4+OYnJxEPB5HMplENBrFxMSE8+qxjawKBs1aCYq7oN1eW7Wy6U6X69ZyFyI7MMgmImrB+Pi484LqSo0ExfXUbg+FVOYWUMF6Lq/a7Y2uk/apVr9pIaKexCCbiHqTlQv9utliGsguA/q8CgQ3BFQWtlpQXO+Cxlqb6wCqPrnXX/P1nsknorowyCaiVSUSibJyiFgs5vzMrZ3dL5wU3Jtfh40DwKUMcHERCA1Ufy0aKYMotdsrXe+JWdXfuk8DAv7WX3MnvY6V1nsmn4jqwoWPRFRT1262Ylf3i3YviGu0o4X5dfD7gE1BYHNQfV8tYG10QaP5enN5tVNjOrOS5V3rNa91PU5fWNgFG+cQkf2YySaimrp2sxW7amatXhBnzua6BLCUBTR//dn5Rl+HRssgzNebL6hzFySQNgCft74AvdqnDd2wsLALNs4hInsxk01ENSWTSQSDwbIxx262Yqb5VHBo1omaWStb21VmcxfTwCUDSC0CF1Kq9KMgV88UN/o6DIVU2cNyTmWll3Pq9lCo+v3N1+txq8e4xMpz1hugV37asN5bBBJRT2Amm4hqikaj0HX9cgYbcOhmK5XsqplttouHgAo0C3Kl/rgym5vLA7kcUCiomud8AbiUVrdrafR1qLWgsVbG1ny9AT+wkAZkMaNdCtBrPddqWXYuLCSiHsAgm6jNunLhYFEsFsPU1BQAlcFOpVLQdR0TExM2z2wNjQaLdZqbS2BmJo5UKolgMIqxsVh5z+B6g1pzqQQkkLqkjsGBlbKJXF51AlnKApkldZRSPV4IwC1UgF2ZqW71dWikDMJ8vT6vCrQzhgqOvZ76A/SSUiDNhYVtsebfLxFZSsjS/7R7yL59++SRI0fsngbR5YWDoVCoLEidnJzsmkC7m98kWGluLoHp6SloWgiaFoRhpGAY+pU73tXTFePkqZUA8+KCCpYlALdLdQFZzqlyEK9HBdgusVIeIoQKZt0ulc3WfMCbr+voa1Gm2S4g5jca5kC6VGPu5O4iXajuv18iaogQ4sdSyn3VfsZMNlEbde3CQZOu2GylA2Zm4tC0EAIB9TssHWdm4uVBSj2ZYHOpRC6vAmaBlay0x63GMoYKvoVLjeULKshezgFeTXUJ2RCw9kIb1ewCwLWy7FxYaKm6/36JyDIMsonaKJlMIhKJlI11xcJBOzk0g5lKJTE4WP671LQgUqkmfpfmUgmPeyWTXVrsl8sDAxtWAup8QZVj5PLFEhOo4Hq1RYndwO5A2qF/a+3Q7N8vS0yImscgm3qeneUOXbtw0C52biKzhmAwikxGv5wBBADDSCEYbOJ3aa451nzAfLEmu3/gygWD5rrl7LJ6jQpy7ZpnYF0FkQ1r9W+ty17bZv5+zSUmg4MRZDI6pqenWGJCVCe28KOeZvdmKrFYDLquQ9d1FAqFy9/HYrGOPH/XsWsTmRoSiQQOHTqE+++/H08+OYfTp19FJqNDygIyGR2GoWNsrInfpXkzEwgg2A9sHFTZbPPGJpUt9YRQOyqO7QC2b107wHbyhi52a+VvrQtf27GxGAxDb+jv11xiIoQLgUAImhbCzEy8gzMn6l7MZFNPs7smenx8HJOTk2WZ9ImJCdY411JqZ3dxQZVGeNxqkZ8N/ZHNi1bVG7QUZmclDh7MIpudRTAYxd69E81n9OoplWilS0o3bOhihWYzyq1sWNSFr204PI79+yfLSj/W+vu1tESKLJPLnkVu6TgK+Xm43IPw+HfC4xu2e1pUBYNs6mlOqInmwsEGuARwcR5we1a6Z6QWVJbXrAMf1Vd/g3YNjh4N4dChQ5Y+16qarVu2a9fLTmql5KOVXtxd+tqGw+MNvSm0tESKLJHLnkU2fQRCaBCuAciCgWz6CIB9DLQdiOUi1NOi0ShSqVTZGGui65UAcAjA/cVjB0pspAQgVDYbKB7FSn9ooGMf1XfdbpeLadUacOaEOpq7lZT02oYurZR8NLq7pZldO4p2WDMlJtReuaXjxQBbgxCieNSQWzpu99SoCgbZ1NNYE92sBIApADqASPE4hbYH2hLA4AbAVcxiu1zqtrmdf4fqttv+Bq0yKG7lTULFG4+5sz/Fky98Doef/gM8+eM/xdyFlxoLIrtFK9uvm+vil5bLa+HX0kqA3kVKJSaBQAjz87MIBEJc9GizQn4eEP7yQeFX4+Q4LBehnmZXTXT3b+ASBxAqfsF0jANo43WUPsLfOLAyVvmRfoc+qm/rbpdWd1ExvfGYe+MlTB/7B2ieAQz2b0Umt4Dpn/4t9o9/HOHr3uHYmuGmtLr9ert6fPeQRktMqL1c7kHIggEIbWVQLsHlHqz9ILINd3wkslgv7PKoSkQiKP+wqwBgFsCXGj5b3W861toFECjfLbGkdHv71obnZsm8G2X1NcycUMG6EHjyhT9DZimFgC94Obtaqqs9cOBQ63N3knr+Xoh6iLkmG8IPyCVIacDXx5psu3DHR7JN92d0G2d3RxNrRKFKRMwff6eK4425skuHaqNY9U1HPRlCc49pc2BV6ittobYtWrU6G2/K6KYWT2Fww6ja4KZYStGzHSHWUUa5rbqs5/d6pgLpfWXdRbz+3QywHYo12dQ2dveotkvXLZirKgYVZOtQGezS943XspvfdLhcrsvfx+M1eu3296lsbq1e0K3U0jqF1QvnTDXCwQ1bYRgpVSvcp7Zc7+mOEGv9vdDqurDn93rn8Q1DG7gVfRvvhDZwKwNsB2Mmm9qmNzK6jeuNXR7HAUxC1WAnoTLYE2imHrstbRTbtR13RUbv5TfO4R8f+ab1n8SslY1vNLNoyuiOhQ9i+viDwIY+aF43jGJHiL17Laglp97ThT2/iboFg2xqGyf0qLZDWxfMddQ4WlrkWAwU/5eDv4K5izpOLF7E2UsLABz6pqNiMeK503M4+7OXoOXl2mUujVqtzKHZRZHFNx7h7Vuxf8fWhjYdsUQXlhzMzSXKXqexsdj6W+TXpT2/iboBy0WobdZrj+pSR5NQKITZ2VmEQqEuW/RoAdNH0FfteBNcBYl9IxEMBTY4t41iRWvAnx07hpwAbrnmuvrKXBpVq8zBghaF4fA4Dhw4hPe//0s4cOBQZwLsLis5mJtLYHp6CpmMjsHBCDIZHdPTU5ib6+1ytiusk57fRHZgJpvapncyuo1b97s8mgLFkXAYe/bdjBOvHEdE24DzoZAzt5avyOilUikMDg5ioz9weaylT2LqzfR2Y2axC0sOZmbi0LTQ5d0MS8eZmfj6ymZ3cCEx0XrDIJvaxq4e1eQAFYHiyMgIRoaHgaVl/NrYDhsntoqKnsvBoGqBd3Epc/kuTX8S00gJSKu9n+3QzBsDm8tLUqkkBgfLy9l6tgvLatihhahtGGRTW/ViRre5toQJlC8ijKGtm7rYzYmB4lpBXUVG78brr8exn72EH/z8ZRSEbO2TmEYyvX0akDwNFKS6n88LuF3Oziw2+vu2ejOeJgSD0cv9w0t6ugvLatq1kJhonWNNNlEDmmtLaNMW5XYaCkE/fx4//MHTOHz4EfzwB09DP3/evm2n66kZrmgNuGU0jOGb3wzDLVqvrV9t+2/z9urHTgBn3lCt97weNc/MErAp6OwgqNFtxi2oO2/V2FgMhqEjk9EhZQGZYheWsTGHrRUgoq7FHR+JGnDo0KEr2vOVbh86dKjWo3Dlxi6l27Ue090SiQQefvDLeNfYboxs3IgzFy/i+zMv4oMTH+n8JxuLaeB4Esguq6xwn6aObdolsqpaOzxKqTaNKe1Y+EZKBacbB9UcAZxLzeFFfQZfSz2BaDCK2FgM406sGW6k/MO0Q+VlUqq+5x0sJ2J3ESJqFXd8JLJIc20Jk1AZ7LJHFcd7UzwexyUU8KMzrwFnXgMAXEKh8z3SSxns7DLgcWPujaOYeelxpHLnEBzYhrHwQYRbDbJXCy5LP1u4pALIPg0I+FcWlwlRXkYigbmF45h59XtI5c7B7d2Iec9mXB0cR2QwAj2jY2p6CpP7J50XaDdScuCQcqJweJxBNRG1DYNsogY0t9GMdVuUdwvH9EgvlSX4vJjTj2L6xFeheQYw6NuCjKFj+viD2L9ja/OB1mq1xcDKz/r7AJcBpDMqc93fp2qsZ8+UlZHMXTqu5ugdwODgKI6fn0F++Wc45x+Aq9+FULF+OD4Tb1+Q3YkFiTZ2tGD2mog6hUE29aTmFieurbm2hDGoGmxAZbBTUEF3owvoGl08eeX9Ewm05XWp5JhdL0tdLwJ+zLz0ODTvAALeQaBQQMA/CGzoa61l22oLGoHyn20IqBIQc4mKSwD6vFrk6HFjZu670Dz9CPiCAFxwuXzwe4M4ev7fgP5bAQBBLYhkuzpgdGpBYrWOFsF+dXv2TNuC+1JvbE0LlfXG3r9/koE2EVmOCx+p5zS3OLE+zW00U9qiPARgtnicRGPdRRpdPHnl/XX9P+Hhh//3trwulWKx2OVNZwqFgn0b0JQ22vD7kMqegSYCK7XQAT+0gc3VW7aZFyOePFV7U5XVFjQaWZW1vrgAnL+ojoXCSlu7xTSwlFXzEwByeaQWXoPmK9Zj5/NwuT34BRaQNs5dPn3KSCHarg4YnVyQaN6MZyik6tHbvJmNuTe2EC4EAiFoWggzMxZtMEREZMJMNvWceDx+eXc+AJePVtUDN9eWsMUtyhGHCs5LmeGQabzaea+8/7FjZ/GudwE/+pFan2H162JWV4/0TpYlZJcR9I4gszyPgHdABbGZJRj5S1e2bKuVzd0UBNJG+XxXqy3OLgMX5wG3R7XgyxeA1IJa1Aioa9f8l+eCXB7BvquQQRqBzSNAdhlbCluQf2MB0rsRS3IDXjFmoRs6Jva2aUOnyn7XS1l1zdncyuvZji4nHdrMhr2xiaiTGGST4zVa+uGYemBLNbp48sr7nzmzhG3bKs7Qxtdl1TcjnS5LOJ7E2MjtmP7F1wC/F5rHD8NIwcgsYO/bfqf8MdUCvuwykJxTJQ2VgfcbKXW/ytriU2cACJWlBopHobLowEpAKzyAXy34GxMfwPRP/xaYPwdtyQV3Pos+nw9Dw+/ChuVRuAIuvHPvxNr12M2+gTG/aVjKAgtpNV+fp729rDu0yyV7YxNRJ7FchBytmdKPaDSKVCpVNmZLPbClolC13GarLZ688v4jI36cOeMvP4Ndr0unyxI0P8LX3IL9ez+BQCCE+UunEdBC2L9z4spa3GolINllVepROd+0UdZbG17PShAqAQxuAFzFLLbLpW6XuqaWSllMwoPXYf/4xxEo+DFvzCEQCOE/7Pkk7tj9m3jHjnfh97Z/sHaAXSpx+enLqswlbTReelHsd33udA4njhr4RVJi7gxwwQi093dU5bVoR7cR9sYmok5iJpscrZnSj+YWJzpdo4snr7z/9dcP40//VOLSJd3+16VDmcvLihna8KYbEN50gxozl3mYM7/Gkgqo+7SVx1eWhJjnW6t1XSkrvHGg+nlqdNgIX/cOhPt2XtlHerXXx/zJQC6vss/pjHpMsd92XaUX/X14OR3Giz/U8c5rc7iU8+D4uQDOveLFrbcCI8Nt+h11qNtIODyO/fsny7qL7N1b5Y0WEZEFGGSTozVT+lFXPXDXKS2eNHcLmcDqdd4bADwFlTp9O0Kh/xsf/CCc8bp0uk/yakFcZelKPg/MXwJyOZWBXs5Vn9ta810rcKzWYWN0SzHz3uDrY/5kIF9Qz1eQKpvt8zb0BuYfH+mDrvchFAICnhxywgMtABw9CoxsatPvaLXXwmKd6o3NVoFExCCbHK3ZVnDNLU50gtXa9NW7eLLUWSQE4FexkvVu7+vSUO18KQBdzqna3+WcKqeIhtsyt1WDuJOnrmy1l8ur4NvjUeM+L5BeUrfNm8mYM62lbPhiWv3c7VK11oUCsFSoHjjWyoI3mtk1fzLgcavndImVEowqAXqtIDCZBCIR4Oi5EG7dpuYg/W4sZ9rcy7qRzWwcjq0CiQhgTTY5nGNawXVEo236ajF3FnGZvm9fm7KGa+f7+4rdOjIrGduAXy0itLht2+U5vnoch77y97j/s3+CQ1/5eyRePa5+UK0Gu1BQAfXwJiA0qEo+BvpUbXZl7TWwkg1PG0DGUNdkZFfaBUZGVLu6eoPI0puCarXe1ZhrmgN+lcUuBfrLORUcD628US0FgZmMXhYEzs0lEI0CqRRw9lIfnnktjEzOg4BrGZ7AGnPogLm5BJ588hAOH74fTz55CHNz1reftAJbBRIRwCCbHK65vtTdyqrgOAlVh23W3m3czbXzLpfr8vfx+CpzTxtAcGAlkN0QaNvCupefewHHn3gKd+4Yw2+96z9Ay8uVNwHVFt1Vq8Hu01TLvbEdVwbMpXKN7DLgKmbFSwFus9dk7iO9VoBeXLCI5RzmFo/jyVf/HxxO/Gc8+fLfYG7h5SuC49WCwFgM0HX1NbfQh28+vxV/88QObL65gTcJbbDaGwOnSaWS0LTy/wbZKpBo/WG5CDle95Z+NKrRNn21dH4b96baJnZq8eNiGumXT2DTYBDnjZO4aPwYw5suYFnkEY//DcYnP3dlaYbLpUpElrKXe1hDoHaQWbqWUvYYUIsWc/n2LugsKWa+515+GtM//VtogRAGI7uQKaQx/YuvYf9VIwj3r/w3lEolkclE8KMfqax1MAiMjQWRzSZx4AAwOQnE40AyCUSjwMQEYPd/guY3BgAuH1vasbNN2CqQiABmsokcpNE2fbXEoIJsHUDB9H37SmyaapvYobZtOK/jnP4GFpZnMbvwLWTyC/C6NiEc1HDp0ncxt3j8ytKMaFiVjKQWVYYYUMdsrno5S+laSgsOAVUmUgra27Wg06y/DzPzT0Mb2YbAyDYIv79mmYJhRPGjH6VgGMDgIGAYKN5Wv6/xceDQIeBLX1JHuwNsoLuyw2wVSEQAg2wiB7EqOLZiG/fGVKud3wAXfve976u9NbmpxAFSVq0dtoSRhTcQwNziNNyuDfC6NiAvJQLuAWzYsFkFoJWlGcOb1aJFj1s1Z/G41U6Nmq966UfpWnxeoFC8pnyxr3Yd12RVrXG9gejRozEEAjo0TYcQBWiajkBAx9GjFgWB2Xlg/mVAT6hjdr7lUwaDURhG+Rs5R2aHF9MIG5uxP3wvAktuzF84iUAgxEWPROsQy0WIHKOZNn2rnatz/6BXtk3ct+tG3PvOAwht2qwC1Gq7BXaqbZvmw43XX4/E6+egeYcghYSQEgtLSxgb21M7E1qQqlbc3KtayuqlH+ZrKRRWykY2BNbcbdHKThT1likkk+OIRMr/1jyeCSSTFvzNZOeBxROAywO4/EBhWd3u3wH4Bps+7dhYDNPTqve7pgXVjp2Gjr2rbTHf7M6XzTK1gwyH34zw0A3qTZbNC0aJyB4MsokcpbPBsZXGx01lBSfDwDLKtyYHrtwQpdm2bY0ET0MhbDGWcM22N+P1c0kUcgIbAgEMjI6gL+hHIDBa/XGN9qpu8lqsrDWuNxCNRgFdH0coZK7TVuMtM+aKAXax3l54V8ZbCLIb3kimsv95O7eFLzH3Kwdq/90T0brAIJvWmdX6UFPzzL25I4DhBvw/BLAfwIi6i2kBYEM9tYHyoFpA1UZrvvqCp2KW+S3pX0c2oRYFahuHYRTSq2dCrd6FsMYbg1QqicHB8kWjzdYa1xuIxmJAcVNUBIMqwNZ1tcCx5WvKGyqDbSY8arxFDW0kY0fA2+mdTInI0YSU0u45WG7fvn3yyJEjdk+DHMccCJq3Jm9vvfL6cAhlHU1OXgssFwCvG8C71VgxK5yYv4CpqSmEQqGy7d1rtmY0ZyQ9btVLO59XNdKlLcNLGeftW1edZdkGLIFRjA0dUFuY18qGW1VuUHkNpYA9EsaTRz57RYlH6faBA4fWPm+T80skyjuIxGINLnCsdU1DGZW+cZmCzcKyuj14XQNP0KKZE1duTS+lWtw6tqM9z3ny1JWfftT5t0lE3UkI8WMp5b5qP2Mmm9YRcx9qmI5xMMhuVUX7waE5YPZqAG8AHlmWBf7Bf38Y9+5/N8IbQ7i4lMHRc3M4BtVru2qQXZmRlFC9qEtbhgN1ZwsvZ0IrA8Ra2XCrdiFcJavaVK0x0HI5RFl5j5XXtOgDBouLXIUHkDmgkAP6trXwZE1otNzHClZ/+kFEXY1BNq0jVvWhXh9qbbtdXUVv7v4FIPICcP46wFheWdQI4KZNI3D5fEgtGQh4vLh129UoFAp47tjR6qeu/Aje41aBi7n9X6PBkzlAzC6rgD27DBxPAjuj1gTW5izzYlrtGGlWfGMQ3t5grXG1awA6X/9bszTCA1y1Q9Vg5w3ArakAu4V67KbYEfB2ajEvEXUFBtm0jnR+k5Zu1XjHixhUKQ5wuRSnXwf67wZg+mj+5Cm4/T7oiwsIaAEYuRwA4JrBTThfa9VdZUYy4Ff9qz1u9fF/M8FTKUDMLgPzi4BwqfNll61ZHFeZZb4EILVQXuJiemPQUK1x5TWYdbL+d7VMsW+w80F1JbsCXqs+/SCirscgm9aRKoEgdKg2eWTWeMeLOtsPGlns2HkNTk//EACg+TXoiwvY4PEgFqvs0VxcpDq0CMy+Q53TC0TeFAAAIABJREFUM6J2Ywz4VR/rpfIsOU6eqq8+uRQgpg0VYLtdqvWez7uyDXorgVJllrm/T70xWEyrtoBWZFXtKIcw64bSiDYFvLnsWeSWjqOQn4fLPQiPfyc8vmFLzt3YJ0hE5GQMsmkdsbIPdW9rruNFHe0HNR9GNg/h1lv34+jRGaRSKYxs3ozt1+5EuKxA2LRItT9YLD05BRi3AtrIlRnJeuuTSyUci2nAWFJBuhAqIy4ADGywJhtcmWX2+4DBDcBipvyNQWluVRYwJl7tW31hYpuC3LqDvHVaGpHLnkU2fQRCaBCuAciCgWz6CIB9LQfaVvZMJyL7McimdaZ7+1B3Ur2bmjSsGBiObNqMkXffVtZlo1zFItV+AP2vADgP1cmkQj31yeZAfENAZa7TSyv3d7tUAOwy1M9bUS3L7HYDQxuv7DJR5Q2C/tM5PPxwGJfQh0hEtdebmgImJ02BtlVBrinAn0sfx/TxL0Mb2FJfkLcOSyNyS8eLAbamBoQGFNR4q0G2lT3Tich+3FadqF3asLV0p4yNxWAYOjIZHVIWkMnoMAzVCaMlpcDQ61EBrddTo/45CVXSY7bKIlUjq7K5ZpUZaXMgLoTa0dHvBTwuVSbi9aiMdsZofWv3RraMr5yX14NjP3fjXWM6QiFVHRMKqa94vOKxldvBNxNgz86p+fm9mDnxLWg5HwLufgjhQiAQgqaF1NbzBAAo5OcBUdkH3K/GW5RKJaFp5X/3zfZMp87KZc/CWHgG6YuPwVh4BrnsWbunRA7AIJvIbDGt6npnTqjjYrq585S2li4sl28t3SWBdmlTk0AghPn5WQQCIes+sq4rMIxC1cybLArg5O3Vfzear7zbCHBlfXJlIJ7Lq8DWU8xi5wvq55q/9exs3W8mqswLwJkLboxsLC9ZCQZV6YilKgL8VOY0NN8gkM5cvguDvHIu9yAgl8oH5ZIab1EwGIVhlP/dW/IJErVVqYRIFoyyEiIG2sRyEepBTe7qaOU2zG3aWrqTmup4UUb9Ht544wX85CcX8b3vbYTbvWft3R0BXLFIdVEAszsB91j1302fBiTnVAmI16NqoF2ivD65soSj1B/b5wU2DqixyhKPVpRKKUrlGLNnqi/IrFJaMrI5jzMXyxcwWrbtecliGjh/UWXavR6gT0OwfysySykE0H/5bgzyynn8O1UNdgEqoy2XIKUBr393y+duumd6j2jngtJ2amcJEXU3ZrKpx5QWzOlQPbH14u1ElfsdAnB/8Zio+rH95U4TjcobaiMOM4u2lu4O6vdw7twr+Pd/fxVCXEQs9io07WVMTU0hkaj8fVQqLVINAZhV/bbdNwDe8JW/m8W02gUy4FfjyzmVid0ULA9mK0s4fF6VvS6ViaxW0tGsinKMy28OzFn4KqUl11+Tx/dnQtB19b5B19XXFQ1YWp2XgHozki8A84sYGz2oyoTyi9aWCfUQj28Yvr59EC4NsrAA4dLg62t90SPQ5k+QHK6bs8HtLCGi7sZMNvWYenZ1NG+vbgrEjU8C/op/KJvtNOHWVImIMHWYkDk1vi6o38PPfvYTaFoAQABLSxnccsvrOH36ptq7O5YxLVI1TtTuCV16c6T5VxYsltrzmVUuFOzT1ELEtNG+7hj1LMissoAx9OYt+OCG8u4iExO1dmhs4pOb0rz6+4CFtEq3SIGw903Yf91HMbPwNFLzs2tujNPy1uwO0eh1eHzDbctQtv4JUnfq5mywyz0IWTDUnEssKiGi7sYgm3pMPbs61gjEtaPA8mZr+g5rYVWDDdi7tbRt1O8hlUphcFD9Q2MYGjZuTCEYDCLZaHHxaj2hG9mUpdPdMJrZMCa7DJw6g3EfMP7hNfp913rDiEmsGmiX5lX6tCWzBBTyQEEi/OYDCPfftealJRKq40kohNodULpAr1xHtyvk5yFcA+WDXZINbmcJEXW3mkG2EOJRAL8npTzZuekQtaqeXR1rBOJDzwOz+9XNVvsO+waB/rW2lm6ydrxCIpFAPB5HMplENBqts+a53dTvIRgMIpPJIBAIQNMMXLwYRCqVQrSB4uJEIoEf/OvjuGnTCNx+H3bsvAYjm4dWfjfndXs3ZVlNPRvGmNcCCAAX5wEI1Vd7zXUB9Xxys8a8/D71Vbpd55uQeHyl6wmwcozHuyc4TSSA//gfgbNngeFhYNcuYGRE/aybrqMXdHM2WGXa95XVk3v9ux2fgaf2W60m+ysAviOE+E9CCO8q9yNykBhUkK1DpRVK35trSqt0rkAK6O+vvyNETaZab9/ngEEDCI0Dg9dVCbDrqR1f49kSCUxNTUHXdUQiEei6XmfNc8VcS3XpllG/hxtv3ArDyAC4CL8/gx/96Croul5ld8caMyxe37HZJJ4/fxr6wgKO/fRFzL1xYeV300i7vE6rZ27mkpLMEuD2rGS711wX0GCrw0bmtYZkUnU8KXvmdnRAaZNSBvvsWWBoCMhkgGeeAc6cWbmORAI4dAi4/351rOs/K2qKx78TUhqQBQNSyuLRgMe/0+6p1cXjG4Y2cCv6Nt4JbeBWBtgEYJVMtpTyn4QQ3wLwRwCOCCG+BhW1lH7+uQ7Mj6hB9ezquMr26nWWE1TPHgP1f3TfZAay8izxOEKhEELFNGLpuHbNc5NlBnVTv4ctW+J497sv4Sc/uYh4fCPc7uswOVl/pt18feczl3A+cwm6riN06gQO3XKzupOTdx6sZ27mkpJcXrUTLH0PrFFeUs8nN03Oaw3RqCqtCJme2vIOKG1UysQPD6sAO1As5z96FPD5AL9fBeFDQwls2xbH0lISDz4Yxd13x3DbbUxxW43ZYOpFa9VkLwO4BMAPYACmIJvIudba1bG17dVL2dVQKFSWPf7sZzcgHK43cK6ndnwVxbZwt0euwfKbBGbOn8HZSwvqLHXVPFsT5K9O/R42bQLe8x71VQ/zG5jnn38eb3vb28p+XvX6nLzz4FpzK5VuSAnkcsBSQXX88JkC75qlL6u8YWx1XmuIxVQQCqjMbyqlgu6JLuk2l0yqGuyxMWB6Wo35/3/23jy8jfu89/0M1gEIAgQ3QBIFa7NEWTIsKootyUuUxU3T5tgu0zbJ0ya3x0qXJLe9vT1Mmqdpe/k05/Te3uj0yT2ntdM09W17ut00YSN3sdPYjqIkpJwjyzItmdRmSjQlgRDJIUCQGKxz//hhGYAACHDRYs/nefSABAeDHwYQ+Z13vu/3tYvKtqKA0ykEttstTkbtdnEy+tJLR9i+/Z2R+HGzWcuGUgODW0EtT/ZPAn8MPAvs1TRtmVM5DAxuR5Y/Xr1a9fj69eP4/f+hbOtqwnmZFUgo8fBmLGZMmQwHN25h8K03Cc/P1el5XqHIr7U2fXW0ZtPeYspPYM6ePcvx48c5dOgQvpxZtvbra9znHgoNMzo6QCQyjscToLu7d/kCKv/6YwvFqnRzU+3j0O6FsauinCpJQmxnNEilRPJJed53CSs7YVwJwaBoDqwvAeX2I1+J9/vhwAEYHS16s/v64CtfAZ+v9GTUZvMyN7f6Y85X9TNoYGBw21Crkv1F4Oc0TTt7sxZjcLuwOg15b1fGx8fp6ioVqB6PhytXNHp6ItQnnFdQgdR5eHfu7GZwUJThutt9nJsYR1EUDi9ZTqwt8pfVTLkKw3zyJzA7ugLs7PDzwV/dwatvnGXwwggdHR1EIpEar69xC0woNMzQ0BFk2Ytb9hGffIuhy/0cCH4a//YHS9e91AlE/vVnc6PZkcS1QJMJ1IQ4DlB5HzYLJM2gIY4fiIDsZAq2BZY4fss/YVwpweCdI6rL6e2Ff/iLBR7wKfh2JJm8z8YPRr187LCTYFCI8ERiPFfBFiQS0NysMjp6dNUEccln0N1FPK4wNHTkHZOPbWDwdqZq46OmaQ8bAvudyOo05L2dCQQCRCKljZORSIRr1/azdNNlnrJhK3ip2w+tG8Pt8/k4ePAAmM1YMxper5e+vr46JypWXuuymylXYZjP+Pg4d6/v4uDGLTgsVlImie677+bjD70XLbawxOvTVx1Nuq8Hqj7f6OgAsuzFYXYhzS3gsDQjO7yMjv1r6dCYWkNlYgtizPvoGMzHc9Xn3HEwm8S2ZjNcC1ffh4YYntPeUvzX4V2dEe8GFQluWeBzHwvhbU7zVtiKtznN5z4WIrhFvOe9vbCwECCRiKBpoKqQTE7S3Hwcs9lWIohDoeX/fix8Bh1eJMmEw+FFlr2Mjlb/3BoYGNwZGDnZBmXcDK/unU1vby9HcmZUj8dTqK4+9FBfbot6L90vswJZFgvn8/nwtYp874c3faLOnVS3GQwM9C+vmXI5mdB6klE+8cR+trW3QhZCoSzEIKVl6Vjn50s/9xHYtKHGDnQWmFgzTPlBlUGehPaFimI1EhnH7e6CSEycGJhNyKZmIvPXiycILmf1oTJXJ4W9w2wWt5IkqtZ2mxDYkiRsIxYzTEfA46o8mKaeqL9V5511xWo4NMzA6ADjkXECngC/1v4Y/vY29q/LH3OLuPKQe8+DQfjIR3p56aUjzM1Bc7OHdetOYTbDunU9BUEMK7OPFD6DOmTZQyRyh8S0GBgYVMUQ2QZlrJZX9+37BzwYDNLX11dipzh8+LBOgK7x62z3igoorDDPu7LIr2aHWbKZciVCMRmF2Bi779nBwkSYrDlFV8DOxQtRbHGJ3XdtgckZsW1Vf3POAhMLwMQWMKfAPgup9qq2FY8nQDyu4EhTsGmoyTk8rg2lJwjVTiCmY0XhbLWI8eT56nV+XHv+Pco/pnwfahK6fKv0ntbLWqfLrA6rNVFyODTMkaEjeGUvXe4ulLjC+auvI63fDTN+RkZE46bHYya4I0nrJvG4Rx4Jsn17X8Evff16gg0bHsHl8hf2vVJBXPgMOorWLVWN4PHcITEtBgYGValLZEuSdBdwt6ZpL0iS5AAsmqbNre3SDG4NK2jIK3Az/4DfGjEfDAbriqFbytu8LO9zWfxaKKIwcPx7nBw5uyrDaAKBgIjJ02Wz1dVMuRLxr4bAZKGjcx2xFMxOKywsqGy5y0Or1oVDlsU+a/q8cz73qaAQ2NY5QAVrD2AuHWWeo7u7l6GhI5CxItOEmplHTUbouftjpScI5ScQyZSweSSS4rbJIca0R2NCrCdTYnsQVe1MBpqdIgc7mSpWt21W8bibHkN4+1+xWs1JjAOjA3hlL96ckPU6vMyn0px56xLRc35kB7jdQCbDsRM2tjUVn0M/5vzYsX7i8VL7U72CuPSEYZidOweQ5XHMZjvR6FvAVmTZg6pGUFWFnp47JKbFwMCgKrWG0QAgSdIvA98E/ix3Vxfw7bVclMGtpJ5hLkvRuDd2edze/vGlvM0rGiTjcsKmDQwn5/j8n36FcxPjyxhGIwiFhjl2rJ+jR5/k2LF+3ve+3SiKgqIoZLPZwtdLDpDJC8XlDPPJqIUR366OdrrWr2Prpi1s8LcKgS0hhGxNn3fOAqN6wTINOIADgK+qbcXvD3LgQB8Or5/o/DUclmYO3POr+Ju3lw5n0Q9vSSTFVMZ0RlS30xkhrgHcrqJ4tlqEWG5yiOPgdUN0XuzDJInb6LwQ2fnjt2kDdG8Wt2vqxV7mEJu1Qu9rv3wVYgslEyVNpuLXA8v4NTIeGccjl77eS5YZFqJJvO40DlnDYU3T0pTh/Iy36nN0d/eiqgrxuIKmZYnHFVRVobu79v+N/AmDokBX1zDJ5BFOnFCIx7swm22ARCaTIBqdwOHwGk2PBgZvE+qpZH8WuB94GUDTtAuSJBlBlm9bViMSbI3i4RZxe1fjlhoUs/xBMvU/x1JUSjZQ1Wf51Kce46WXzlSxw9RgudnLZhmyKZCsQqC6XbAwD0mTEK1NjmJudE2fdxDktoZsK4VKpT49xGoprSTrK81Ts0Lo5382tyBsIfNxcZ9TrnxyMaWIanYqLdZjkkCTYDwkmiUbjDtcGatxxWqVqJJKk4n68XjK7T3LmygZ8ARQ4kqhkg1wQZ3g2IiJz2yy4LUnmU3YOHW9gwXJyUSV58iflOnj9np6Di8piEtH0A9gs3nJZr2MjsKhQ15gCw6Hl0OH+mvux4j6MzC4s6hHZCc0TUtKkgSAJEkWRC+8wduWlUaC3aw/4DdLzC+PpbzNy/Y+N/AcS6FPNgAKt9nsGfr7++tex4qR/RAbE19LFvGbyWWHrBestsZ83su1rSx1gpD/ed6fnfudCAiRnEwvFud61KQQ4JIkLCPRmCjRwrLiDlfGCiIkV5sqTaXvCyp8+1XnqkyU7O3u5chQrllZ9hBRIyiqQrt0mKOnNzT0HHr7SL3kB9/kvgO6sNvFc0F9vm4j6s/A4M5jSbsI8H1Jkn4HcEiS9Cjwj8A/r+2yDO5sKllO3gRCwJNAP6tj6QggxIGeW1SNq0C1qL+8t3mpn6/GcyxFJDKOXHYZ/ZYkG9jc4NoMJitkE+LWtRnaN+RsGiHQvg+p5yFzCtpvVN9XJdtKq0eIOZ0doSIVbAuLkG3FRkYmwT4ErkHwDcOm6eoiWf+4BRUkk6hmW8zLijtcGSuIkFxtdJGUBSxm7tuRRFGExSKbpfC13rU0PAz9/fDkk+K2mksq6A/Sd6APr8PLRHQCr8NL34E+PtMbXPI5VoNAoCio87+3EglRmYf6fN1G1N/qkE6GUecGWZh9HnVukHQyfKuXZPA2ph6R/QXgBvA68KvAvwG/u5aLMrjTKf8DnkRc/LCzut7p1fCP5xlGiP/VOwno7e2lqekSDzzwHI899m0eeOA5mpouFbzNvb29y/M+lz3HSvbh8QRQ1VKRfsuSDWxucG8Hb1Dc2tw5wRwF6xAkTGC1Q9dpcP0xNd8jvb+53Qszkcr51HpqZWHrKfizQ6ANQSoDGQe0fxPx2fu1ymvT+7pTafG1msh5vOeEyqs37nAZLBakQcRn/Znc7S2qhpactORIZ2hdZ6OvT1gsJibErb7psdTnXGyMrCW0+w/188zjz9B/qJ+gP1iYWlntOVaL3l50Yr6XZFIhkVDo7q7f133bnBDfwaSTYZILJ9GyKpKpGS2rklw4uSpC2xDvBpWQNO3t5/zYt2+fdvLkyVu9DIMC/Sy2j+S/71/BfoeBp4ATiM64/cCnaVws6NNQ9JfO663sVUs4GUZRvsipU5e5eDGMy5VlyxYvbW1/yPbtPyseuZx0kfJnX8E+9Jeg9ckGiy5BJ6MiASSjCv+07Bci+KbQz4o+P5evLvZo57/X527Xux3k/Nv/BKoZ5Ci0fxtc04iTSQnYQcXPT3gart0Qj89mc82RdjElMpOGFjds37T0a2oQfVLH1s1hNq6/iEOOsvMeNxsC27DYbmGbjd6Trbf3LGGd6e8XolVv9ch/fzOdTvVSLV2kXm91PtlEH/WX/34pL7eBQJ0bzAlsuXBf/nu5+eCy95sX75Ikg2QHLYGmqdic+27t/y2Dm4IkSa9omrav0s+qerIlSXqdGt5rTdMME5hBnayFd1ovjB+jKIyXw0oaKGvFFQ6QTruJRk0EApuQZZlEIsKZM19CVbcXYgBXErcH1eME6xHfdTVy5TKsMVnAZBcNirExYee4KUJ7hZ+feofkNDJMx+UE14u5dR0H4og0Ew2IUkzT0R3H8LRocsxmi37urCZEpdkESKKBcg3IN95t2xpmX/AkakImEm3mzUsqHe0ngVsoBpYZX1jqcxYstzHyZlA6gr7xvpdC3CQYUX/LJJuJIpmaS++U7GQz0RXtN524iCTJRfEuyZAV9xsi+51NrcbHD+duP5u7/R+5218Aqhga60eSpI3AXwN+xLX+r2ma9v+UbXMIOArkOqIY0DTtD1b63AY3m7VohFxKGDeSn70SESfWMTmZZGTkOJFIBJ/PxqZNT+P3Jzh7dgJZlnE4HIX9rl9/o6EEkeWQjwf0er0l0X6VRpIvbuTKW2dyx059P5hahU8aRAIIiMp2QyK79ntS/aRghZ+feofkNDxMJ7+uCJA/Diris1P2+YktwPh1ocGtllyMn67p0SqDW16zlvK8IL1700XUhEwiKWO3Q/iGLIZSroIYWNHgmGWk0gQCiyvZkQjYbKKSvdIBNrcby002MShiMrvRsqoQwXm0BCbzyooFayXeDe58qnqyNU27omnaFeBBTdM+r2na67l/XwA+uArPnQb+k6ZpOxHX+T8rSdI9Fbb7gaZpe3L/DIF9R7Ka3uk8tXJ+G83PXkkD5TiTkyqDg4PE43HcbjeKonH+/HcJheykUjeQ5eIvdFlWWVjoaChBZDnoo/1MJlPh64ElQ4YrHLvMayBNl24mWYR1pG5qvye1M8Mb+PxUalzUe6E1reiHbveWPja/3XwclCiEZyAyV8yxXkR+XTZEJTuOENndLPr8TCmiam0xF8a3I0mi8dFmhZZmYZdYozHq+ca75uYoiaQdgJkZIVKf/Wc7r5yMVvUy14PeH221wnPPCXH76U9X90ivlFKfs7i9dAmuXq3fp32n4fcHOXSon8cff4ZDh/oNgd0gFvs2NE1Fy6pompa7VbHYt61ovyazG7RE6Z2rIN4N7nzqaXxskiTpofw3kiQdBJpW+sSapl3XNO1U7us5YATYUPtRBncma5FkUEsYNzoMZyUnAQHGxk4XqtWSJOH1SszPtzEwoNHRYUWSIoCGLMeRZZUf/3hDQwkiy2F8fByPp/QkpL5ovwrHzpwF7SIwCXwfeBa0H4G5/Pg3uF/de1L7pKDOz0+1xkWob0iOyylSSOKJYkXb6RBNkxXTSPLr2gvkRr6zH9HgW/b5yWdv5+0g+Wq5fgx7JeG/SuQFafiGG5s1wfS0aPRzu6GjPUH4hrs+MVolfSVvR0kk4MQJsWlrK5w6tXYit1LT4saNsGXL6gywMXj7YbF1YnPuQzLJaNk5JJO8Kr7ptRLvBnc+9eRkHwaekSTJg7iYGUFEMKwakiRtAnrIDbwp44AkSa8B14A+TdPOruZzG9wsVpq9XU6tnN+v0Jj9YyUDeHrJZP6GlpZWEgkNWVaRZZXZiQ+xPhVgc/KjXI2/RMr9MtMLcOzYVt54w0Jf3wqq+LWaEHM/+/VffA+hGxHGQnHCShyoN9qvgnVGnodYFjgJkhk0L2Qz4PwG4rjWc5xqW3KWzvvWfX4KQ2PGROU3P8SlSt4yU0r9ExQXVPC4wGohNPMGo+efIzL3Fp7RjXTv/6UKlcMg8DSlVph1LPr8yLnR6vEEkBVVbU0Tt8mUKMWuYUZ2XpB+/9g2XE0nyWZg40Y76/wJZLvK2fO7C2K0qrWiytAYuvyMjzvp6oLjx0GWweEQLy8aZen9rvB16ff75JPQURaHfjv7tA1uPhZb56r7pMX+9pFOXCSbiWIyu7Hadxt+bIOlRbamaa8A90mS5EakkTRSvloSSZJcwLeA39Q0rdzAdAq4S9O0mCRJP4UY5353lf38CvArwJpXCQ1uB2oJ4+V4eJd7EhDktdc+wObNr+L3R5md9XD57PvYat9D1iHh6bibZMbN1St7+d6Pf4TZ7aKvr/EEkQK1mhCh8LP1GzcTvvEK+7pb+fHIFBfGQiiKwuHDuiYp/YTDglitcOxsIXBdBfURyHjAnACnAjYT9U/XrP2eBAIBFEUpTKyEKicFNYReQ42L1cjtIzTzBkNn/wzZ5sHdtIH4wswSgz+W+Py0e0Vcn8MOcVXE9kmAt1mki2Qy1R+7SghB2kk6uY9vfeMiG9ZHicXcnDm3m+mZzqXF6LWwOAnJ216cciHbOxBwoijCkuLOne+pqhC4KxG5jfq8q/m0jT8JBmvNWoh3gzufeirZAFQQwCtGkiQrQmD/raZpiy7o6Z9T07R/kyTpKUmS2jVNm6qw7deAr4GI8FvttRrcjlQTNjd3mt1DD32m0GTo8Xg4sO4uFHWOPfv2giTRsc5PR3s7e/bfvzgKrlHUUE5gV2hCBNCykIric0s8+MC9XLp8la5WC1Oz3tLR6FXF6hO5DGoADzduXOLq1TNkMjPMzd1g58578Pl8hZ/XnxBT+z3p7e3lyJHcRD6Ph0gksvikAGpXq2s2LuYqzbEYTPWAuhNk3+JR5rl9jI4/h2zz4LB7IJPF4WwFe4bR0YHaPtiKJy7O0gSNeEIIVJezOCo+/xpuwrRHi62TkYudDP7PBsRobEH41M1mYW/JZMXEyuYmUJP09gpbiM0G8biwm6sq7N27fJGrjx3U+6tr5Vjn1wFC3Eci4nHlHyMDAwODm8Ety8mWxJz2vwJmNE37zSrb+IFJTdM0SZLuB76JqGzXXLSRk21QT7pIw/nS1QRU2b5+/dEPs37zXfj8/uJjNU34gbs3N/5K9Pv+xfewfuNmfL6yfWcTkElCegFMZoTvOStsHRYntJdFeNbMhJ4GBpiZOc2xY2OcP7+L+++/iskUQVE0Dh48mBPa1bKqq+eGLy9dRMfo2OKR5vlj2+WrkrccFScOsc0wsQfMMbBEIb0fMt5Sm0bu5OPo//xt3E0bkLTc/t0uNKuZaHSCxx9/pvIbVW/ec63XsIzPx3LQC1i9GC0K2LL36vJjMG3PNWvmWnkyWVGNb/XApg0MD8NTT8ELL0BbG+zZI6wjpfutn+XmYK8o5cTAwMCgQWrlZN9Kkf0Q8APEJMls7u7fIXf9WNO0r0qS9L8ipoukEa37v6Vp2uBS+zZEtsFS6CPu9JXTShF3QGMDMxoZatLgOg/sasdEhj179xUrytmUqGwnpiGbFpXuPPnvOw6U7rgOodff31+wcHR2hjh4cIjZWQnwcOjQHioP7FnpYJ8lWOrYVjwR+r/FGi7fDykrWNPANDAHKZ+Iz9t0L3rP97EXfpf4woyoYDsdYLMuPfhjLYberCHVxWiF93B0L7ALYg6RiCJJwkeeysDubSX/B1ZL5D75pKhg5zU9iKecmIBnqpznGBgYGNxsljWMRvfgnwOe1zRtTpKk30W00v/nfDLIctE07YeIOkitbf4E+JOVPI+BQSX0aRZA4bZqfnXBpQ+JAAAgAElEQVQtm4LLWVKF3bdzFx9/6BDe9vZSQb6uY/F+G1znWCjOvu5Wxi5dwNfZCVpaCGnnRuHX1lKgZShUsjWtaCnRU0cmtL4ZMRz2Mzh4gO7uEazWa8B7gcMMh2BgtJ/xyDgBT4Bfe9ck/ublDvapg3ZvMTGk0rHNWzPyYntiEuROaG8C1QF2FYgBYXF8LLKY2lgYIBQEl5Pu/b8kBn/YM8hWM+r8JOr8dXq2Pgwzw5BJQTaXOGJtAddd9XvCy19DJgamCDitEJ2/adM0y5sGi1TIoJfTkHoTmt8t7C7pTNFTXnaSWX2/jbGW/upQaLgkb7qeiYsGBgYGjVJPhN/v5QT2Q4h87L9CtNMbGNyxNBxxpyaFINJjMcPcPKGXTzF5/GU2pCSi1yf5q29+g9/72lOEZqZrR8YtY51hJc6PR6YIhaeFRcRkLU5etLnB6solgGTErdVVWbDVkR0dCASIRIp9zuGwn6NH9/Dii78Ayd8idC3CbOg4DzS3srf9bpS4wvnp7zIZK8/PbnS65zAk/wiiXwblryD6A3ECkYxCdgJaZ8E+Balo5WO7KMqvHSYCIGUgbQGmEAqxCdJWkDOURzzmB384HF6iyps4TBoHej6Jv307qFOQnBL+dyRIzkD0vBCi6bIGxkrDbPL+bKtFvAbbDLjtYG8qNrImb+UQiwoZ9O0zwo5kMon0FY8LmhywwVdxD+lkGHVukIXZ51HnBkknww2volIOtqKI+1dCKDTM0NAR4nEFt7uLeFxhaOgIodDbJEzbwMDgtqGexsf8X42fBp7WNO2oJEn9a7ckA4OlaGSaY2XqTrPIU6nyu6BCIsXZ14Y5f2WMNk8Ln/rgh/nr7/07L54YJCPbePrplZ2PVlrnhbEQU7NenvCWvWbZD+kxsLrFsJh8lVv2s4g6RllXa0b87K98AmJjXJ65wHw2i9fu4iGHB5NkYj7VxtjsaXyudbona2S65zAk/xxiQSHoTBHInoRoEjQ3WJ1CjNrS4EqBqxlsZScvi646bANOgeaAjBPQwKJBej1krLDuLSqdCBQmYUbPl1pypCyQO5Ex20CTIKuCywFTuROxpa5g5Cvu0XnIehqfphlbIHT+R4y++S9E1BCezm10Bz+6StXYCkkwrgnoMsGUZcnR5+lkmOTCydyY6Wa0rEpyofHR7fnYQb315PDhlVfJR0cHkGUvDod4ffnbJZtaDQwMDBqkHpF9VZKkPwM+APyRJEl26quAGxisAXq/qH5yYGOe37rTLPK034CJMWAGLA5I74C4HZwOLoy9ic1mR02niakqj/bsQ3Oe5777/glIUH4i0EjDZUPrtLlFVVufoe3cWF2sLTHKOhgM0tfXV7LWw4cPs32jDNkUk/EZ3HY3alach+90eTmr7KHH/iLifcn5eWMmmHpsca51RQZAvVs0b5oygAOkOGSnABlMuQprLTG6yLbhA0sPJK5A149gygvqVpCtsO5NcM1R80Qgo4q4RBAnLRqAlKtkA5iECLdmljxxqbnvPEtN04wtEHr9GEPnv44se3HLPuJTVxk6/n9x4JEvrIJQrJIE4zoMrqU94+nExZzAzk3KlGTILm90+2pZT/REIuO43aWZ7LLsIRIxwrQNDAxWl3pE9s8DPwkc0TRtVpKkdcDn1nZZBgbVqOAXLdxf/1/jagKystgdFukUXZth6m5QTSAPgXwAHC050SWYV+Ns63LR+e7JXJNg6YmASHUQjYz68eGlDZfFSn0wGOB3f/cx/u7vztSxToq2kVUiGAwufi5lGEx2PHYP8XQch8WBms3QYrFzYVrGJH2ABwNeYBxiu2DiEJjbwG4W1f9802VzDNq/B66zFE9ExiGzCUwp3RPKQtxK2dJ1VBKjsQWRRx2NiXg8pyxu0+2iou/qBVeV5szkJ0A9v3jIj1mcVCBZRRNpNpHzuudrDVlRdTfLS564LEK/7zxaWtxfjSmF0Wv/LqqxdnHS4ZBaID23StXYlQxngmwmimRqLr1TspPN3EoLTBGPJ1BoYs2jqhE8HiNM28DAYHWpZxjNgiRJYeAh4AIi6ePCWi/MwKAytScHNkJFAVmRnLB3SeC6mLtPgcteSLXT1dXF5SuXQYIWVzNO7zhvTmVoa9vK5OQNRkZGSKXCWCy/wTe+sXOJhsvFlfrt25+lv3+V0jmAFdttcsJwZ3s3gxNDALTYmgjFIyiqwkMbdWudugrmnM0mmYKFuDgpSUchdRomuqArK+wIHAGcYI5C1iU81ACouQp22QW0cjGa92JbLcLak0pDZA6anCIRo2DbqCAik5+AmFWI+/IhP7JffA1gboJUXDSYYoLUvLCNmOxgdtV/DPPo9623+Dg3Vn+MmiQSv467SWfJMZmQTc5VrMYudzgTmMxutKwqKth5tAQm89o3c9ZDd3evaGpFVLBVNYKqKvT0GGHaBgYGq0s96SL/B7AP2AH8v4AV+BvgwbVdmoFBJZYzzXGllAr7yclJRkbeoFl6HfN1Jzu2bmMuGkXKZpHNFubk49iS7WzZsoXBwUFkWUaW23E4wnz3uxO8//3vL9l7acPlU8A5IIk4eeim2JS3GiJ7Few2OWHoc7ZycMN+xpSLZDIqY4k4fQf6COorqXrrxoIqqr9mCTIRsEqABFPrwTWfe0AS5AvCk40JpLyIbQfNlqv6VhGjeS+2bBee6HhCCPtkCrYFyirMZSJSPZ8T2BW80e7t4NpM6EqI629lUJR2utYvsGVDFItFEjnkliZI3KjeaFqNRi0+ALINj2Md8eRcoZJNNouaXWisGlsj970hktGS9VvM60lm3hDBrJIdtASapmK1725832tAvqlVny7S03PY8GMbGBisOvXYRX4G6EGMOEfTtGuSJDXXfoiBwVpxc6c5CorCfnJyksHBQbxeiUjGw4/PnmZ7awf7976Ly6FrvDT8Ku/b18QH7t/O2bNXkWUZh8OBLMeJxztpa4tz+vRp1q0rViGLDZfDwAtAK+BGRMMPAftZTqW+Mqtgt9EJQ5+zBV/zQyD7ebCSMNQ3jKYzYlqgpoElBshgSYtoPUC8nxNg+zS4nhO2nEwnmLeA+z6xSS0xqhf0dgXso6BFIOEDV7L266vgjZ68YeHaWyr//W/Abnfz1ltutm4Vw1sOpM8zNt7Mnr1WCgMws6naDYvVRG2jFp92L93rf4Kh818Xh9jchJqMolqS9HTXGb1RNvHzxvU0V0+E+NaP/ZjdziWzrfNZ2Eo4yoceHiOVttDssbPrnhQdrXGw30M6e41sJorJ7MZq331bjZwuNLUaGBgYrCH1iOxkbuKiaPeRpKY1XpOBQQ1W5hddHkVhPzLyBl6vREuLxuDgTlSzxPcvX2A4MkV/fz/v5RcQYvmLbNx4FqfTRDptYX6+iVOnetizR+PFF19EUZQKjYwDQFvuOSUgLz5PAx+qsrY6rB8llcYmUem1JXQbLMNuU68w1GdCm025fGUJmlKACulmkOO5jfNXJIJgC4Ktwv6WqPAKQT+NODmRId0Gch3V+jJv9OQknD6VJotMVxd85zsQjRaHo/g7VEJTdkZGKIrsWg2LVcfYLyPa0eXEf+8hDtitJekiPY2ki+gSWCYnYfCEBa8b3nuvwtHTzsL4clg8WAbEtMhMBh4MhpiesRCNWelMww9/ZOWhB6GjM4nFfbCx15XDmNhoYGDwdqEekf2NXLpIiyRJvww8Cfz52i7LwKAWy/eLLv/5hLA3m6+RSq1ncHAn4bCIxqucr61hs9lIp0sHkciyzAc+8AG8Xm+FRsavAHuAE/mtEQbmGYR4LmcYMST1BiLF5CxwEvhDCscnGRWeX5Ml5zVug1gGXDNgiwOTiItUCcR49MbjEGuijwq0WoQyc9jBthlSr0JGg3XXEFcKVnhFoiDoL4ohM+nmXETfLEtabsq80WOX0nhb0pwc3YjJBMkkNDfD6Cj4/TAbk2lpThGeqrNhscowo9BZha8+52xcULqc+Pc+in/vo3VsXAFd1X9kBGQHYDazrmWSJ574cxyOca5cCTA01Mv8fJCuLpFRfeQINDWJATGvvQYbP6gyM2vHYoW5OfD54ewbFg611UhHqYF+3Lv+OesZy24MmDEwMLjdqKfx8YgkSY8CUYQv+/c1Tfvumq/MwOC2oLRS/Prr7+fcOfsS+doDwFZsto0FT3ZLi8bmza9y4sSO6qPbC7aUg8AIorJrAx6lsjh8CriEsJZ4ADX3/VPAV8UmaignsIWgCk1JjJ7/JpHYLB6Ple72HfidPw+yC9qvgavxOMQl0SduFCwTZpD3wrrvgWuEVbkiURD0U6D6QFZFBrZrjiWr9WXe6FBYZmJmI1OzonLu8cDCgpg4GArBX/+jn8ffP0Y6DZOTFnwdSzQsVpgGOTlt5vzrSRSlcUG5YnQ2nkgE3G7wNk/S4h8igkI83kU0qvDEE0c4ebKPcDiI1ws3bsA//ZM40QiF4NqkTJs3RXbBipoQF0nmImm+9wOZ//HtxivRAwNCYOf/e+VvBwZq7yM/YEaWvSUDZg4c6FuR0Daq6gYGBiuhnko2wHlA0zTtBUmSnJIkNWuaNreWCzMwuPUsbhL8+Mev8uUvayjK1hq51aJR0uczcfDgQUZGRgiHZwkEpBoCG4q2FC/wCEW/+aerbH8CaKZoK3EgKt8nipvovMahG6MMvfL/IdsWcDvcTE/c4Ntv/Cue5pOsa9lO9/qD+O/dDK7VarKsQEnE3WZgb/2PradRz+UEVxjRPFqrObaCzcYWLNhRTr9ZOtJ75044dgwsFhgchO0bLKhhJ/v3KcRDGaaybto3b65uZ6kwzGjsYob5tK2moFwzkaez8Xg8Zshk6GwdJ5y5gZryoqowN+clk4GdOwcIh4OEQnDmjLgYYbOJwvzffMvPb392jHQGTFhQ42m0bJqXX9u4rBOH06fFY6JRcWKzcyd0dIjXX4u1GDCzkqq6gYGBAdQxVCZnEfkm8Ge5uzYA317LRRkY3B7omwRNgBevdwu/8Rsb8Xq9TExM4PV6KwjnAELUgc/n49ChQzz++Hvo6Xl8icjAvC3FC0zkbqtVlYeBEPAmcBmI6X4mFb4KTUU4MfQjjh59lhe//6dYzAoO2c18TCIcDaFJGolknHh6jqHz3yZ03s6KmyyTUTElURkWt6sxInzRqPScpzm2UGHjXsTJyQXge5A8DlEzKD259ZxEnMwolCasFMdql4/0ttlg2zaw22Fz5wKf+mCIjhYbl8fXc/n8eiZedUDSItZz+arIAr98tbi+CmPsM4kMPx7zcuwYHD0qRLyqFgVlXuSVV7qHV2v6tyRBJMb92yKkkxph24+YSWrE42IdXV0wO+uhpUUsaHRU+NHvugsSCWhthZGLbo782WZmZq3ctTHB5StWfvTaZtSMG5OpWJUeGFh6OcPDMDZGobIej4sTmkuXxAlGLSKRcWS5dBT8SgfM6Kvqjb4WAwMDA6ivkv1Z4H7gZQBN0y5IknT7tIkblNDINEGDpaicye33T9Df31/jcStJQMm/V/kq60DZ/VCssHcA1xE2kbeATkSM/SGx1fAwX/vTr/Ohh7uJRWOo5svIiVZSNompmatYLFYsZgk1NYfDLvqZR988hX/vCqLWFnnAdXnTKxmSU8XTzJRSoXEwCDwGfAmSbRD7YG495yDbArHL4NoohtQAlRJWgkH41KeGeemlAWKxcbzeAJ/7XC9/+ZdBfvFhBafVjJoWa9BMFm4owLWwUOTVmhvLpkG+eL6Df/hnJ253UVQePw7veU9uNcu0TiyJvgmzzYMzneFd5gwX1HWk0+M4HF725i4wnD4dIRQKkM1COCwq+e9+t/jZyIjwqo9edPPvQ27CcVGJLl+bx7N0JTr/unbtgrNnhciXZSHmz5yB3/7t2o9diwEz4+PiRKP0eep7LQYGBgZQn8hOaJqWlCRRHZMkyULJjDuD24Xh4eE6pgka1M9yM7lXkoDyTeBLQAoholUWJ2PkK+wPAi8B84jGxRmE/ULYS55++mmOHf8xMzMzfOChe2lr62A2qjCnTqGmk9gtTtLZGLLNCmjIZpmIOgH8fh3rrEKZB7zm+POyfOXChMWK+13sacZiFvdX5AxwCNRdufVkgDhI54EFUANgu67bvtSzffz4MC+9dIS5OS/NzV1s3aowPX2EQKAPp6kZNV1ci5oAh8MM0Qh4XNVPBMqmQV6vUuDP/apdO5FXcsKyAPYo3nUJ7jftA/9lsCnkTw7vv1/hOwP/kb1tV9n/y0kWsjbCWS/heSc+X9FSkz/n7O8vtdmAqEwvVYnOv95t28QJx+ioeJzHI/a11K+vtRgwEwgs/7UYGBgYQB12EeD7kiT9DuDINUD+I/DPa7ssg+UwMDBQmCZoMpkKXw8Y1zeXSd52oCAma+S/rieLOIhI63gmd1uPwB5GCGyJosA+i6hO69/DcYQI8gPvA+5GVNw7gP9SeK4TJ07Q3NyMVYakaYrO9bNkzBNE5iaxO82oyQTplERbcwfZ9AJxNU5z284611qFjCqi7PRUirbLV7yzZRMWq1lLZJuI/9OTzoj7K5I7Rhm7bnKkDERAckJGKtu+ePI0PAzf+tYAiYQXl8uLqpo4edJLLOZl584Brs3YIJNB0yCughqHXTtyz2Exl+62xolAIgGPPAIOh/AgOxzi+0QuXTEQEKKuZJWrIfLUZG6dC2C6AWTESVHaBrGPQHI9ebuS1/pbfOxBN0/8VJp3HbDSLKfZ5wvR7lgo2Gl6df8dym02lbapRv71+v1w6BA8/jjs2SP+LUV+wIzD4SUancDh8K646XElr8XAwMAA6qtkfwFRhnsd+FXg34Cvr+WiDJbH+Pg4XWWlr8rxcgb1UbkiLZrR+tfAkjNAsYKtz8m+ihCIefQVdn/uX/774jo0TWPTXR6e+PBWYrEUVyd2cO+uCONvJUmlTajqHO2u9TjNO4gnM8RNs9yzbR/pZLjy4JB6Gg/L8qbFQipE2zVS8YbSvG2LWQjsTEY3Kr2c3DEyJyBryQltFfCAth3MJ3LHbLGdZ2AAnM5x7Hbxf0nOLf3SJQ89PePsfI+XhfMhbiiigr3vvgwd3owQ7+lMSXNjrROBfKX00KHifYoC+TlFvb3Cgw2iohuJiJ8fXkHKoXhBuSZMexTxJ8AsVKTFBiY3qD8Dtu1i26mrYBYNmz4/7NlnYewCdMkKU14nhw+XVpmDQdEYqG/WLN+mGit9vas9YGYlr8XAwMAA6ovwyyJysY1s7NucQCCAoihLxMvdvtyefvLSTO61teSMU6xg5wW2jMjBfq9uO53nO+kHtQky7WC+D+RoQaTu37+fbXdFiUTiqAmNSNTDQvxe9h+MsXVrM6GQldGRDJG5CO5mP/fe/dN0tHWRTlxcLLLrHaZSljddcfw5VJywWHOYSwVPM+s6agxyyR0j+QrEtotjKqmg3Sd82c73A/9CJTvP+Dhs3FhqFbLbYW5OeHy373XC9rK1tOfEfgMnAvWISqcTvv99YSHZv3+Vki3yJyzZhDjJyWbFP5dz8XtQZtPx+cDXaYZEkie6K+8+GFzeGm9HUbvc12JgYGAAdYhsSZIeRFzvviu3vYSI89uytkszaJTe3l6O5P5qV4+Xuz25U/zkeksOULgdGBhYhXUGEN7qM7nvc/YGrJRaVHIV9uRzEGsGkwymbZBtLWky/MxnPsPlc3/FW1cVUqk0FouFTHoLsvV9JBectLrhwQPN5PstQFS/s5kKlo16Gw/L8qYrjj+H+iveeso8zVAr4i53jGwD4HoV1Hsgcz+Y14Ez7/3eV/FpAgGIRntxu4vNq8lkhOZmhe7uw1XXAoC/CaIT4rXbZXB3VT0RqCUq9fFxjz1WFOCrQv6EZUaBdFJUsF1O0QiaTZW+BxWiB2vbdFZGo6K20YjD4dAwA6MDjEfGCXgC9Hb3EjQG1hgYGKwRkqbV7mGUJGkU+N+BV4CCKVLTtOm1Xdry2bdvn3by5MlbvYxbwu1ZDV6a/v7+RVX4/Pe1kzxuLk8++SRdXV2YTMV2hmw2y8TEBM8888wK955PDckgPLE3EAL794CfXbx59HzO06wTqvnv3eJy/5WLA7x5aZTwjQgej4edO3fS2eFBMgkhpWXVwtf67+XmspHYo2OioqkT5GgaJMLQ/SyLxrov1dSoTyHRV7wbSCHRC1F9JXil1d78ftvbh2luHiCZHGdhIcBHPtLLI4/U2PEqvKb8fr73fAiHVSWekhkZ8xNW3IuaDJf56ijYn5I7IPYAmDqqr1d/BUNfnV/OOPj8CuoUxktt1+j7Pxwa5sjQEbyyF4/sIaJGUFSFvgN9htA2MDBYNpIkvaJpWsWqTT2e7Iimac+t8poM1ohgMHhHiOpy7hQ/+dpacvQecDvCIlJjzHkdlosNgYfoaJeRJBkkO2gJNE3FahcxfcmFk6Kns8LPBDlRJndCuhNsHYgplDZIzoB8HPgWwuaSAI5A8jcgZq0d41dvxbsGaxVxV6wwBxkfDxIIwMc/Xsc+G/WZVyIn1NMJC3HNjsOe4mBwjMHhzWSz7hUmi5QNV7JdA9e3QP15yHgqvwcN23SWWEGdA17q2a7R939gdACv7MWbi/nL3w6MDhgi28DAYE2oR2R/T5KkLyP+8ifyd2qadmrNVmXwjuNO8JMPDw8TCoV44YUXaGtrY8+ePciyvMqWnFIPeE3qsFwIb/U+0omLZDNRTGY3Vvtuned6H1fHf8jEW+eYuDpLeKaJ9xzqIhjsFENb1Bchs15EX8StkL0GJkkIc3MGWs5T9JGfAXaDegpMDy4tNm3uFWVn1xNxt9yJicvy4paf9KRVSMcgm0sXqRVRmCcn1K12K3EVpNyx27k5xLk33Q0mi5RPtQxRHK6EuLUpYHsRkr8lnnv+MqhlVx6qWWNqPXOV416vMK5nu0YjDscj43S5y07kZQ/jKxhYY2BgYFCLeiL8HkCYF/8Q+K+5f0dqPsLAoEF6e3tRFAVFUchms4Wve1eclzWMaCl4Mne7vHF5ec+43W7n/e9/PwAvvvgiyWTy1vnGZb+4vJ9NCetGNiW+l/0lm1lsncjNB3G2/CRy88GSpsY3RkP83h98m298O8TZ83YuXprmyJEjnD97EmJnIdssRLVkA1sSTAuQToNpHlwjYPIgcrodCA/5BGRS9cX4VSGdDKPODbIw+zzq3CDpZLjidktF3K35xMRyzLI4yQEhsFMR0DJgsi0dUZgnF4G4c6eIBoyrEE9YcFjVBuPj8lVrBWE5eg74O+CHCLGdxwPJ2cbiFJd65hrHfXxcCGE9lYRxPds1GnEY8ASIqKUPiKgRAisYWGNgYGBQiyVFtqZp763w7303Y3EG7xyCwSCP/dJjvBZ5jb//0d/zWuQ1Hvulx1YoXvVCo/L47HrRNzyuW7eOD33oQ/z0T/80Pp/v1tlz8pYLk7WYFFGn/3d4eJj+/n4++clPcu7cOZLJZEm2+tVLp8A0m/MXA5oJzBFwqND+KrS8AbYZyLQBU7m95pJQzNai2MyzVFNjjnQyTHLhZM4b3oyWVUkunKwotJfKMb7pY7H1Jz1p3Zh7a7N4b0wWUS2uRU6o+3xw8CA4ZEgn08RTsrBKdNc7sn4AUbFOACdy97kQXv8hikI7IppC8zYXSap/rdWeucZxr1cY17NdoznWvd29KKqCElfIalmUuIKiKvR2G8HXBgYGa0M96SJ24CPAJv32mqb9wdoty+CdxnBomGcjz3LfR+/jEfkRImqEZyPPsj20fQV+ybzQ0F0eL9zf2D5vW8/4MiwX+iQXEIkig4ODHDx4EJ/Ph8fjwUJK5D4TBxxgyjXFZWUKmd2aDcxTiEq2RiEJRd4LsZzIrhXjV4F04iKSJBebMSUZslSMFVwq8q1eO8FyLSWL0PvMs0lRwbY2g9lePBZLVfN1EYi+Tgu+jnwz4kagkZH144gTy+OADMmNoD4EGQvJbIrw3BVGLtjp6FDY3LIdj7f2lYdGjlGt4/6bv1lfFnY98YaNRv4F/UH6DvSVpIsc7jn8tvdjp5PhEruYxb6tcg6+gYHBqlOPJ/so4q/nK+g82QYGq8naNCXlhYae0vHZlaiU0HIneMbrRV+Vb2lpIR6PI8syIyMj+Hw+IpEIabrE0BbpZfEgsxkyDmET0dpBs0J2FpxDQBMlSSi2feCKNtjUKPzDZtsgaF1kM4fQstvEjyT7oljBUGiY0dEBIpFxDh0K0N3dWzqIJBnlZz4QgrTK1ZDMy6/7sTe5sdtLq6H1NuLVjf6kpzz5pWo1X+edtgXA9WFQHYuPXfR8A42V+ZzvCCS3QOx+MMVIZeLMRT20yffidjh4/vnDbF8n8/CDKTo6K6+10WNUaxx5vcK4ke0aeZ+C/uAtF9U3U/TmrwyJE9filSHYZwhtA4ObQD0iu0vTtJ9c85UYvKNZm6ak0oEiguL47EpUy+t+7LHHePbZZ8W6Gswgv91iFfVV+e7uboaGhrDb7czOzha88Bu27oWsFXgApPNgmgNzM5hjYpiLWQNrDNS9MP8YmF2igm3LpRjVVWHPi8vTwBiwG4kNaNIsZuvfk0l9XAhtLYHJXNxXKDTM0NARZNmL291FPK4wNHSkOEY7GUV5a4xs2sLENTttLSl+9ifGeP54Bz9x/zTvfXAWJgGrhx9+bxNer3vVE0rqHspTnviBArb/BrY+Fl1taWiAT35gkQ3ULWCKgSlGeGojqaSZhQUXCzMPoarbOT8eZUtgjI52mLxhYexSmkw6zWuXNvLQexc3ISaTcO4cfPKT8MQTi6vaS1Wh6xXGb8dBMDdb9DZyZchg5RhXDQzKqUdkD0qSdK+maa+v+WoM3rEEPAGUuFKoYMNqNCXpJiNWGJ9diWrDZs6cOUNfX1+JWD58+PCSYvl2HLKjr8r7/X4OHDjAq6++iiRJeL1eHn74Yf7uH/+FTGKW9x24h/t2bae1Yz14/GC7DAzkmuV6wLQJTDkvciwtKjb7jL4AACAASURBVNh12Vf04lJBGL/PYLL0kEk50ACT+RjpdFchVjBfvR4dPYrZbGPduh4kyYQj95kZHR0gHA4yfTnEwtwsXYHzBPdEmJ31MKds5T99SsFul3A6zGIJSYUDuxJktR1MzRbXXCuhom7qjihswNLU0ACffBzkU7krECrQhaqacTpVJt7aQ4tLiPOFlJtv/ftm/F0hzr+hMq/KXLq+kQtjbk68AtFoUexOTsLgoJiACZWr2qs5uXHVrDy3CTdb9GYzUSRTc+mdFa4MGawc46qBQSXqEdkPAb8kSdIYwi6Sn/h4B/+qM7jd6O3u5chQblqlblDE4Z6VROPlhYY+xqw4PrsStbzXjWSQ56vXR48exWaz0dPTU2gshNWaEFnfGsor6OWTQe12Ozt27KCvrw+gcFKgqipf+C9/wfT0NI8++iif/vSnc2sOgnoeTKk6rQuV0IvLKOIkSMVkvgy8m2x6Ck2aQDLJWO27mZoJFarXYoCWxsTEEF1dBwCYmhphenoMp/MY79u3j7Z7syhKJ9NTrbS2xdm28QrmrI/rNzyiGw9Ag/bWJFvXhUpEdq2EisWxeDVyzPPV/PxgnvnLEAOQQNJyQ3pmIdkFU+uFRUSOQ/s1kdxSTt3V8TxB4Ktg/gFkL0AqTqvJT3K6Hb9D5nrEXHi9Xq+br/6tu8Tmkb8dH89vAyMjIOf0YUtL9cr/alShV93Kc4tJJ8Ok1IviG8mOydKK2dy0pqLXZHajZVUh5vOUXRkyWB2MqwYGlagnwu9DwN3ATwD/Afhw7tbAYNXINyV5HV4mohN4Hd5VmsQWRET3PZO7rb2/QCBApCzWoFHvdb56rSgKmqahaRpDQ0OEQiFCoRCnT5/mb//2b+nv72d4jfLk9GvQV9CHh4cJBoP09fXh9XqZmJjA6/UWKuv5Sn4ikeDECZFK0drayqlTpwqPBwpRcyWUWBeWik4cRwhryAvs/Bh5k7kJi92N1X6wEDk4OjqALHtx2Jw4rDbIxDED1yZeZmJiiHg8hM2mYrHMcvrcd5hRorR6wzid80QjDsw4MZmTmM36X3km2lqzNMlqnQkV5Wk1F4BPAE9UeY0Up0BmU6I3NKmIIT4a4r7Z++HaJkhZwa6K24kAxHaJx+qTRGB5aTLyfZC8D6I92CwbmVNlrJYUzSkJObNQeL3VYvNaWorHZXZWpEWqKnR3F7dZi/7fm54Os4bkq5xgRtNMoKXJJq+Rycyvqei12LehaSpaVhW/i7IqmqZisW9bk+d7J5PNRMVQLz3GVYN3PEtWsjVNuyJJ0n3Aw7m7fqBp2mtruyyDdyK3Q1NSeZW3Ee91nmqNhSdPniSVSiFJEuvXr1/COjJMKPQ016+f4MoVjWvX9vPQQ5+pu/pdzfaSr6BXq8rnK/mvvPJv7N49hcuVQVVlLl+24/V6ixX4KtaF0MxlRl97mkjku3g8bXR378Hvz0cn6n3Ger98NyJWLoEQ3Arltp5IZBx3UwckFdq9m3nr+muYTWaises0OdtBWsBh78JscWO1j/Hm+GW87oO0eKeYCntIZUyYTAt0dGQp1hayOJ0mtt8j4321srVBb1f4xCcG2L3bS0eHF2HqPoO4sJdfb/lrpHQKZCoKJrN4TGYeLG2grgPrJEjzgAzWOUCDqQfBXSVJxL29rs9AAZsbFtwgzdLkSuPHxsgbrczesPHAVoWf+jknwWD1hsU9e4QIHxgQCX8LC6Ka/fLLQmCvXw/bG1xSPTQ6bOZ2Jl/lNFs7yaSuARY0yUw2NYlkbS2bsrrEvhrw/S49jMpgtTCuGhhUop4Iv/8N+GXENVKAv5Ek6Wuapv33NV2ZgcEtIF/lbdR7rUdvOdm5cyeDg4PY7XYmJibw+/1omsY999xTwzoyjKJ8kddeu0g224zPB+vXf59/+IcJ4A8rCvJyC8NyIwcDgQDR6Hn8/jeRJAeJhB1JirNzp4rHoxYfX25dSM8TCr3G0OvfxGSJspCQmJh4k9HRKzz88MPs2rWe0NzTfPUVH+ORcfatt/HxXVfxOrcAncAu4CxFC0mprcfjCRCPjOGwN+FydbLRH+R6+HUymTSy1UlHewdkO5iOxcAMysI5JPP9OM0OEqk0ofnz3NW+CdmchmzOk61lwOzEf5ef/v6yIzoMTz0FL7wAbW1CaDoc4/zwh10cPAg+3wii8i4j7C5VvNT6ZsVsGqScyM7mh9Y4UTOdXL8awiRFyGoe3K4dtHkzKx/Rrke1gH0dZCVcTnj3PkRJOpEU5zjUbljM2z9274bPfx4sFnC7RWV7fLyRITn1Uyul5E4j7402mSRgPdn0TE6QSdic9Xt2iznyGtnMHOnkdVLxC9iaHsDe1F3xMRZbpyGqbwIW+zZxtSKLqGhriUI/icE7l3o82YeBBzRNmweQJOmPEGUnQ2QbvC1pxHtdCX1joc/n4+DBg5w6dYpkMonH4+Gee+7B5/MB1YTvAOfOhclm3TgcDhIJkGWJhx++URDkw6FhBkYHyGRP85F7xtjQvJuOpq3kK6r79jk5dy7ScORgb28vf/EXnyCTsZJKgSSlSaehs7ODROI0gcCHxIb6xr5kFDJxRq+cIKs5MGdnabIGyDZbiM7PcPz4cSKmIGFe4Rtn/XQ0daCmNjAR1fiN+5P4myeA7cAXKLfz5CvJ16/3cv+eL9LSotHqbcZsgnbvXazr2IHZZMHhSpBKpnAmHCiKm/b2MNPJf2N21kNM28O2gILc9EGI2SE1m3sNXnBtWiRa817gdDzK5z8dYl2HysR1GXVuB17vNUZGvPh8EcCNsLnobS9l76W+4m+yCGGPJL4G5pMS1yeauXBxB7Id1ASYMmke/sA1nCuYmln+eqZP2UjH01gdFjo7IRyGVDyDxWGjLVkU0Us1LJ45AwcOwNWrQvC2tMCuXeL+n/3ZhpdWk3qysu8U9FVOk7kJk7kpN3BJbkgApxMXcwJ7CrAgmRxo2QTJhZcxW1sNMX0LMa4aGFSiHpEtARnd97m/EgYGBpUot5zYbDZ27NhBT08PdrudZDLJsWPHiEQi2Gw29u7dW9Kk+Ou//ipXrizQ2Vkcj66qMj5fhPHxcYZDwxwZOoJX9vJ4t8JsXGJMOcPBjW58Ll9uDUk+/3mlsIZ6bS/BYJA9ezZz9qyFN98cw+l00NXVhclkJpWaLh1zn2/si56HrIPI/BTRSAK3B2yWNE57O8nMAtFYlDPnf0hmvYcOZwdqSuXs1FlgF199xUf/of6Ka9E3vvl8QTzOX0aZfp5UOoTf66an+8OAxtDwP4DahGybRZY1QorE/Py7kKSr2GxekkkvX/7yYT72sWBpw5yuITE0c5nRy0NEYpO8+mqAHVt/guDmJtSkhZlZO96WFNbEA7T6vsXEpIIQ2BGEubont8MK8ZD6ir+5SXiyQQj8bIq3bphJRRx4XWnUtBmvK4Mpm+HMm27u96XrTBKpTv4Y3nOXlw/uChG6AS+8ZuburRn87Rm+c7aDN14qNhMu1bA4Pg5bt8Lddxfvy2bF/audBLKaKSW3mtWqcmYzUbKZOcCClD8Jk+ygxY0Gu9sA46qBQTmS6NSvsYEk/RbwvwD/lLvrCeAvNU37yhqvbdns27dPO3ny5K1ehsHblHpyryttA/DFL36Rixcv0twsYrXm5uZob2+npaWFLVu24PF4OHDgO0xPX8LhWEdbWxsAshxHUeDllz8EhyjEHT6+4yiRhJt4SsVhdXBo0yHEX/IJhod/s6587vK17tw5idttIxpNMjIyQiQSweOxsXPnXj760acXHxBlGEx2jp34E86ePU1LixOPJ4qkObimnCMpRWldn+Dfk/cyNitedzwVR7bKbPVu5ZnHn6l4nPv7S+0Cnd4o+7rHyGoW9u+N5KrCEIqEGR07RiR6EY/bQiwV4/p1jenpFlR1D9CLogTxeinaQvINiSYLoalLDL3yF8j2JmTXRv7lOZVtgSu4rJ9kbm43yQSk0+BpTrFp6wyq9UW2bTtNU9MYirILv39brrKtUOLJji3AlALJiEgNkSXhs9Cli/ze/+nH12Jhl0+hxZ5kNmHj7KSXydk0X/pczpOtTxKpp9GxyjHsbFrAMa/gdSRR4jbiTV7C887Cz8stM/W8JyC+TyZhfl7cr68636lJIGvBSjOU08kw8ej3yKbCIp3E7ECSbGiasCFJkh2LzWdkNBsY3GQkSXpF07R9lX5WT+PjH0uSdAwR5ScB/1HTtFdXd4kGBncG9eZeV7OcbNiwgXA4XLCO7N27l1dffZVwOMy73vUuAMbGeti9O8z4+HXicQctLWAyzfGDH2zlYx/r5StjXykM7plVPbQ6prnLE8UkzeWfBbi74hr0kxI9ngAm026+/vVnS17Pd7/7FgcPSqxbt4X3vOcRVDWColyiqQmOHn0Sj6dswmLOEtG97VFGz50kGlMxmVowmaYwmeIkMfOXz7cxe68FR64wK1tkbszf4KPbf0pUwjMqmCMgD4LtHBAgk+nF4ymuP6y4+fHIZrpaQ2JkeSYOFhd+Xyf+zm7IpgnNz/Nf/9tXaWttotNrwmK+wHz89/G4Ps/rbxwsHghdQ+Lope8iyy047E2QirJ7uwWP00w6868k49uYn5cxSRCJWZgOe/5/9t49vI37PvP9zOA2AEEMQRIESJGQqAtFSjIkynIlSrYs23Fst42dZZ3Uzsa9SN1um81xc061m902OatzepKe9tFm0zTHzZ72uFlvnia7SZjGydaxE8eyYouyK9sUogt0pQRREngRQYAgMbjNnD9+AAjwrqtlGe/z8BlhNJff/DCU3vnO+31f/ubbe9iwAVatCrJihZhLw/Dj85XoyBOTMBABUxQsJyCVhMlaaG4F54biMEw2OHUJRpKO4roiiV2Uz/b8KG0eHJpw8MMfOqiuhvFxeOIJsf5qmgnnknA4HOWBNTcs1OcOwvVUOQtabFmuQpdMYKTRsxkkUxUSEmDD0OMYulrxaK6ggtsIc5JsSZJqSz6ey/8U/84wjNGbN6wKbncUNMHhWBi/6qe7vft9dwa5FVjItWMhpNNpHnnkEWR5ykoulUqVbTM05CMY/Ch1da/j82Xy7iL389RTwl3EPzoV3DM44SHgPUwyYyZrOIExhC74X8w492xJiW+99WfU16/F5Sq9nhWEwymWL3cTi4UxmayAhMlkparKMzNhMS+J8NWt4L4tv0/v299hYjLOaNxFZOhRXj16lCUfXYKWvQgIgh3TYnSozTy9dHM+fnwM9HcgUQvOVWCN8Bu/sZef/GQ3mjY1r6f6XYyMufh4PVNyjxISGgp+Baejitoqg8S4ga67cVRJNNS8wKb16xAyD4oNiYODEDp5CSPnw1Wt461L0uBxMBF3oaUus+2eGG+9B5EhBX9zltExBU0TJHJkJMDISGD2SvBINE+wDyJcQxQgASNvgFOmQMa7u+FP/1RopFMpEfLS0ABf+hKLTM0sx3TJhtU65XENghiPjQktdQFzNRPOJf+YTcLx1a+KcZfiWpxA7rTwmRuFgjuJbFHQDR09MwDoGHoak7UJPXcF2Vxf8Wi+AaikNlZwIzFfJfsdhOBQYspvSwJqEP+Lt9700VVwW6JUE9zsaiaajLK3d+8N8rW+vXGtrh0FlDZFFmCz2WZsd+qUwsjIUzz99B46O8v/rjS4p6FqiLOjHpzWGEtrHIhfzzUIe7nyTrSi13Q+IdFudzM+nqG6+iKi8bD0egbYkddK79u3B5PJVrZf4Xg+X6CsCXLtqrupc6+k558OEDp5Ar/fzxc/382LsRdx68IDfXhyGIvJwv+55TO4qzx5B40TeecNE2h1YE2xZAm0tfXw+uuB2RvfZiGh/f1hapx2JpMGuZxwEYmOqqSqLvGJxyMEgy56emDDcoVqZ4bBYQsmuQnkOA7FRHxcxuowYVHSyJIXA1i/JkH7Sh1/wyTH363hdx64iJGXWoj5moVMammwnUC4j9jFOrMJtHqmO5BMV+wtoOCbE7OFt1y8KI63YsWU3V44LJoVdX3uZsKFgmCmE98b4QRyp4XP3EgU3EmEr3YSSVaETMQwMFlqgSyyuaZ8p4pH81WjktpYwY3GnCTbMIxWAEmSvgG8aBjGP+U/PwZ85NYMr4LbET2hHtyKuxiBXlj2hHrueJI9G0m+mrCa2Xy4PR4PkiQRjUYXbFIsvEGIa3HCsTAfa+tnItuKv+YhHFZvfiudGS4X5L2mXRZgH6JJT8XrtRONDlPK86dfj9iv/MFCUVRisZJzlBBenxs+80f3lW3fFmmjJ9SDzWzjgdYH6G7vZq2NkkCbCJAEKQU5DxDB42lgx44wweDiG9/On/ez1HuKTNbN5KTQUsvmBDbrEqyyViRxA6M+WuV+MmlQnQ8Tm/j/ADPjk/UYk6Oo6ihrVzxJgzuNxWwwMWJiaKCWsxecuJ1Z2lsiHLjgY2jCMTuZVKyQSeYr2HlkzaCky76bnh5BgDeVqPmi0SmZxXR5T5lMZxpKw1tALJcvF3ppt3sqbObuu+HoUTh2DLZsmZ3Eznaswvrp2waDIm79pz+dsjtUlJnkfaEq9XznLCw/rBVu2eQilxlFz14ByYwkOYAUkkQxWKbi0Xz9qKQ2VnCjsRh3kXsMw/iDwgfDMF6SJOnPbuKYKrjNEY6Fi5rgAlRFJRy7ynfDH0Bcb1jNbD7cX/7ylwEW9OYufYPgdXq5nLjM0eFx1jVMV27N4nIBqKqNZHIfdrsLIZtI0tY2yjvvWOYl+KrqJ5mMksulGBkJoWkxTCYrjY1+RNJh3p87/euguabkG4qvSLxnDRqKn8zb241SfFFmuMA0inAJXUttbdusDXlzkc/Ll7vxuv93FJuEqqpkcwmyuRge9QkOH1VYsybI5s091NSEOXVsNVVVW3HYlmG37yI+8RI54yK1rjq2BJ7C6WhjZCiL25lmaFDl0lA1DgfokpmxCWivj3JiwDG7rVy9GwZqgYSoYGfNkLNA49Gp7yYdZ/Wqw6i+s4QnhnirX8cWfYwGNUA4PLu8p0ymMw1l4S2Dg3D8OOpYjAHJz57/aiJIgL17RTW7o2Oqij0bZguCWdUaF3r46NT3Gwy52LsXcjlB4M+ehZMn4SMfgS9+sTzUZ6Eq9VzhM3194rhuN1gs8NJL8K1vwcMPwx/+4e1Ntm+U9MBsW0lGe0m8WpZMYOSQJJBN9YIAVjyabwgKbwzKUHkjUMF1YDEke0SSpC8A30LIRz4NXLmpo6rgtoZfndIEFxDTYvjVD2BKxFXiRoTVzNUUudAxCm8Q0rk0BwcOopgVDg40sbL2Mn2RfWzwbcfrVJiellhAe7tBb6/4s6KIaGzDUHjqqXV897vuOa+nvb2bn//8TxgdPYPNVo0sZ0il+onHjxCJHMfn2wbpDCTeAnkdyL7yhMK5dMVFe7tTIDWAEQfdCo4gQpl2FOGdXY75yGdjY4DRsX/HiqUvMD5xCYtpCY21T9DsW8EbfXEeeeRryHoL9co6lnUlkS3/nYOH7ZwLPwOZv+Dx+w5jksHpMDE0lCOVBGPCipZLkMtW89BDYgzHj5uwZNO43XNU150O0eQ48oaQiChpQbCd/cBuSMeJDr9Lru49LsRN1NlreTKg83zwb4mf/1e0+QOzynugRKYzDUXJRnoQDhwARSFmbcAvRWDvt+mp+kvcbt+iqtPT5R+lzi6lCZRvvNZKLufiyBFxT61ZI8j7yZPlx1tMZXwuycnYGCxdKjTrBw+K89TWwrvv3t5ykhspPTBbG5BNKnpOAyONJNmQzQ1IsgM9F694NN8gVFIbK7jRWAzJfhr4jwgLPwPYn19XwYcUpZpgVVGJaTGiWpRdnR/AlIhrwEJewjcLhTcI+8/vRzEr2C12Lo0rfLMvy85OF5fG38brfILpaYkF+Hxpurq2EwqdyNvyqXR2bsDny7B27Z45z+vzBXC5WpiYGCaXi6EoUZqarJhMNkKhKD7fQdB+B2QJ5JNAY746fQq0V8A6AXTPHFNRy/0K5HzCasPxJljPIoJd3Pl9ShIt06sJHQ6hSDnssg56pox8dncH+M53nCxZ2sqKphXk0g2cOO3B0dDK2g1fIZtsodXjx+44TzqbJa3V8itr7Pj9f0vPj+5n/3uvIJsvYpUbqFYeJBZbT2t9mtraNGdOiWF7veCtzYHFyn3LxLrvfS/I17/ew8WLYe6918ru3RJr16bAaUP8s5lGVLDzFn/aSU5Ez2J3mhiP2xkzdMDER1pW8Y2zPfz77gD9/YuQ6ZSg6Pxxoh/VphDDTTSlsKvrPbC5Ce+/TPPHfGX7FPXk05pIP/UJH//XX7iK27T6IkTHzGzYaBHPP3n/7iZ3hIEBF4oCdnvJMdNBnu3pYXm/aIzuu9xNwBuY/dzTx0+5c0lNjfi8fz/F8xgGxOOCkN+uDiY3WnpgsjQgm7Sp4yEkIgUCWPFovn5U3ghUcKMxL8mWJMkE/AfDMP7oFo2ngg8AAr4Au7t2l7mL7OrcdcfrsQWCwF4EAWymkLBY5o98k1B4gxDTYrhs4j9WLasxPNlI78B2BuIDPP/EnvmOgM8XxefbUbIuCjQWP83lAZ7LpVi58hEkaT+CAJ/HMKzEYmlAgVwK5CqEVGUQ6BWkIudheLiPixef4fvfb8Vk2lDu12115Un4AGJO1+V/ovnPJfOdXgWJWmLxo7icHcInOx0Fq7tIPpuagjz++F7OnHFz7KTKypUD3L3jVdzu3dQ3hhk8tRmTZZCskUU3LOhSFpMlQWLUQW3tn2FzbGAy0cKF4SSG8X1Uu4rL4cdpzyHrWY4fNwmCnctBowcQBPvf/bu9uFxutm2z0N39Om+/DZK0nTVrrMzwzwbIaQwmR2mpk1nnO4esa8QSCj6tmdYNYQIBGB0VMh3xEDEIHEfThlDVhvy8lN9vReeP34oQxo+/JsauzncJ+IZAV/Eb54nGOmdUijetn/IML1Sp2xr7+cLnW/mH77oIh8G3Q6OpxYbXW3JCyczSZo3hYfB4plZfsQSZ7NjL0Lib7fnG6P7GvTjiu2lzBcrOXapln8u5pKdHkO1YTES5g3gLo6pX4WAy3YmmRMp0s3CjpQcfBgL4fjt7VN4IVHCjMS/JNgwjJ0nS3bdqMBV8cDCrxvZDgR4E+SswFXfJ+ps7H4U3CFaTlWQmiSRJaDmNzsbORcp1uhGEFQRRLgSoiDcQ83mAF3TZdnshTlxG066gqhIwCKZLoLtAUoEQoIDhJJGM8tN9/4wsx2hqGuSb37zMoUOH+PKXv1wiSZlvXCXzrdURuXKJaGyUgcuvUOVood7dilO2oOkymubnyJEeamvdNDW5GR2FkydFA6TT2UNHh59lfomsHiOVsmE2Q3VNFqvFYGLilyyrtWA3a1gdkHTYSSQNcvwEXfrXfOt/LqPJkWVJNg0WqyDYTuEu8vWv9+ByuampcfPxXzvCcs/HWFWvkhyZgLQKVphxf5gU3LkrRE79nNOJSRyOGla2rsHnT/BRixUQMp3e3r3ACIrySzRNRtPMdHY2MdeDXSAAgY/3QfS1GbqL7i2X2JvXYJdWirt/dcozHChWqdtaIuzZkyei8Xw8POUJlI0tChaLOJaqCvJ7ubkHEm5GY272vw4dHW7WrYAjh3rwROdwiikd/yy/Rnv3CjvCZBIkSZxn48ZFOpikZz5ELChlugG40dKDO50A3i7OHpU3AhXcSMgLb8J7kiS9KEnSM5IkdRd+bvrIKqjgtkQYQQRLoTLdzSMYDLJnzx527tzJnj17CAaD133mwhuEjY0bGdVEs+OWJVuwmWxEtSjd7bP/Wk6N5av81V8l+fGP3+SHP/w2+/YdJhJ5nAJRK/UAl2W5+Oeenh7a27vRtCjJpBXDuEIyOYmmZWlvV4AkKPtB10BvAyMGehXoJt459lNGR0dJJEwsXSrGc+bMGZ577rnSK0MQRjdTFe0CgZya70hkkN53f4KzqhZZhmRqnPClPq6MnkXTohw/3k1Tk9h+YkJ4T0sSXLmiYreH+drXukGOUl1VRX19lpqaDLKsoY27GB2ZhGwt6VwSsxSjQdVwV9uYTA3y3/+plVfe8vLN15bw6kArLFtSJNgAZ8+GGR1VIWtn/YoN6NkqkpkJJF2ChA/SPqbfH5HYCIP9r5FM5rDaq0mn0xz+5T9z5PKbdLdLgJDpdHXtxm6/SDyexW6voatrKz5fW36O8rYb6bhoIo0GxfITvy4YbDQqfPryfw585l527867qwyI5e7d4KvXSlxe8pDMouqbx8kLPvrey/LTlzPs22cwPJQBPYtvqY8vflHIN4aHYZlnkj/e1sDXtm3n/3hgFU3mag4cAKdFpXVDuHjuVEqE+Zw9u4f33ttJJLIHUZ2f5b7PV7g7O2E03+O7ZYsg3dGokJnMi5LgIdEtaBGftcgCO14fzLaVGIaGoWsYhpFfakU3kGs6prUBpXorjppHUaq33lFksFReI0lSfqmQTZ1+v4dWQQXXjMVosmsRjY4PlqwzKP4LX0EFdy6mh+78wd02fNUxpirYUHDzKEgt+vr66O/vZ+3ataxcuXLOVMhrQcAX4G9+/W/KxtVob5xTrlNenbYwOHiEc+dg8+YHsVoVentfpKurDZ8vMK8HuM8XoGvTHxA69rfEhvtQ1Q46N5nw+fqBJFhzYBuHSSvkWsE0CY4rHD/9LrJZRrYnONqvM5gapHOdifXr/5EpnXJBry3GP+Uc8lVU9Szt7Ro+Xxuh/rdRbFXY7RYUm8LIqMbE5BXGJ4Z59IE/50c/CjA56cfhiHLunBuzWaSYWywxkkk/ExMBfvhKmqd+7R3gDOkMJCdd2LMtVCt2RuNZZMlClSNDJjPB4CUXwXN3cfq0i/FxYbU3ndAFg5BK+dH1KE883MzoWASkCbI5sFktIOdAqwJrebk1dOYVnC4Nk+QllcmRMk+QMeJkoyq+6qlwIp8vgM+3HNhOeU0k/2A3W5W20QKffxa+++MZ3ocBZqkUF6rUHQOjbwAAIABJREFUUnmVGpNSvMa9e12sWdXKr9wVQbFo/OJNhXWbWmhb6+LJJ6GtDd54eZIWIkSs9cTNY3js1fzWyuW8wFkOvBumzuEnHBbk2GwO8sgje8nl3EQizQwNRbHZ9uJ2zy67CgTgG98otwFsbFzY0hEoBg+VYdpDxM3AnV55vtGoOHtUcCdiMbHqv3srBlJBBbcbZgvd+drbF/i3XRJux3JKpQ0nT95XJLPRaBRJkjh69CgulwufTzSbLTYVcjFYrFynPKFyH1arC12HUOgEO3bsAKbcKqY8wFNACEW5TF1dggcfdEL6L/BVbca3eTdIPWDooJsg3QdWD6T9kFLB4gJrBox3IGVh22YVi/M0uZzMX/0XFyuWT/CbT8dJTTiYTdM+0zkkRW9vL11dEJu4hEtpBCOD07ECp8OOoWeJa5P58cPbb3fz6KN7sVgAVEwm0aj53HO7GBqC8+c38dRvtoF2mJHhs7jch8hEM3hdm4lEX8MsT5BK2VGqRnC7c1x8849Ip+H++4UtXU+PSDcseDX39MDddwtZh9cDx4476ey8gq7BkiU+kBKQkxEPElMQ3uMqkjSGFTvV2KgzlhCPDzPTfrGQBTb9wc4K2ndAToLsANpByoumW+zM6n04G4ouLwjyaWRBz4oYd6acQbSci/19QuoQjUKwH/asFbsFAtCQjPLqyya0xEpSnl4MwLBXs62hhh+dPMxd9btoboYf/AA+/ekejh93Yxhu6usB3Jw4AVu2zC+7uqamY9P8DxE3ExXpweJRcfao4E7EgnIRSZKaJUn6gSRJQ5IkDUqS9H1JkpoX2q+CCj7oKA3dkSUZt93NRHoF3z66hOnShn/4hyNFMhuPx1FVFUVRCIVCwNWlQt5IhMNhVLUgb4kBCjabQiwWA8rdKrq7u5mYOEM6/TqKMkJz8wi53CSXLhlELoyC/B7IoyD5QHaD3ATaRwGvqNbKSv6VvA/k5SBfYkn9ZkaGIXTSxEcf0PitJyeIjoKjzowwKtoPnAD+BihPpZQkGbt9FYrSRSh0CbU2h2ZEQWoCQwHJhGaYUNUWiJ/k2WeCtDUqvHPwWVIpN9XVA1y86OZb39rN0FCAWAz6+yEYcoHrPr6w97d5+3gdo+MytfZ1rG3+NRRrFYnUMNVKPU889Ie8/nqAvj74zGfgxRcFuSz1ee7rg02bAnzkI7sZHIGJhIn3+pZhMS/D49HBcIJpPdOJo6r60bRmQAOSgIGmxVBVC9MJufgczf/o+eUZ4CLkAMmeP0YvMDhVpZ0uI0nPUREsuLzIFtBTYlmiVy6E2JSPv7ThMCjkHtrPaV/3Jo0ucIx2MRGzM6Rdoc5ws/SSaHocHhYplC0tYaJRlUwGLlwQoUGDgzNlVyCq13v2wM6dYnnVyivFJx4a9IzQtehC6oLiW3jfCm4ZJLmWbOoC6eQJMlqYXCZ63fKaCip4v7EYucjfA/8AfCL/+dP5dQ/frEFVUMHtgLlCdw5dGkCEsJRsG/5qUWqhqirJZBJFmSKzV5MKuSCuwimhPKFSBZKkUhSJtyB2YlyBQICHH27h+PFhamrOAwrNzY2YTCZCJ0/g27oE0dTYjnAPAXIuIAq5epBL/zMcAsnH2KSF947VkNbSVFdl6dqc5UjIzqZ7Ughi6MovfwoE50iXXEEsZmPz5s+JRkDZhaKoaFoMTRujc+WDoGeorbdx37YMFy9Y+Pvv/m985/su7tkQp/tXI3jcQQYuK5wb9NHT4yIQoFj5bn30uzSYOqlpaKfV34qRTlLraofaahg5BEYGS9zCR7tc/Lfv+jh02EV1tfCEnpwUzXdr1wawqcvYsfEUNnIoJgPGJFBMULNqxvcy1dS4DkUZIBYb5vJlC5cufZF9+wLTEg0LmvUeRkfDHD7sR9dbqKqyss4PToc5T7QR349RKwR9V9PsN0tE/dQ9NF9kunB/OXfOTV1awuPO4azq5ciRLgzuYbVvDNmc5c9/V+HCSJx9+1zY7XD5sh+XK4rFIg4aicBdd80MUSoNsdkYiLOiMcJYv0bEruBbukiHkKJVZMnvjKPlpruLVLB4ZNND5DJnkc116HoC9CR6LoXVtrnyJqCCDzQWQ7I9hmH8fcnnb0qS9LmbNaAKKrhdcDWhO6VktqOjgwMHDpBKpVBVlWg0elWpkPOiRIM7ODJG/5nT5LIah8+Mc+8Dj82Qo5QnVK4mm91PKgUbNmwgmYyiaVE6S/zNFSXF/fc/giT9CEGAJQzDIDYyBEYVSFHAC3SBcQpMw4BbVGv1WkG8xUyB4UayR2ha38T4xXFSE0lsjgk2bbVgsSlAgRhKQB3QU+JiMjXnhQeBQiNgadJjZ9tD+OpWFJ0xPA0WPPXwV3eLprbH7uvnStTM6JiNzkCCjzcd5tKQHeIuPvUJH9/85jJGRx4i57yAajUhG05szrr8pacgMwmShEXOYJFM7PpkP7rRSvCYi95eodMupCbW281khuyY1QnUlhzkzDBmB4c57zAyhdJrOXzYxoEDDxAOd2O1Bmhuni1kJUAwGCgSzt/+7Z0MDnp4ayzK1oAPuwPxmt2YFFVaZJBNMxxD0CJFcrlQzPnUPTS7f/V998Frr/WQzbo5c8ZNe8sg7ZblYIU1605is7aALnEh5qLamWFrUz+vvdbKuM/FP/5jN88+Kw4ai6mYzTFWr54ZolSQqqxeHmdroB8tZSYat3HuTAZf3VU4hMzzEFHB+49C06NsUTBRCwgPcEMffZ9HVkEF14fFuIuMSJL0aUmSTPmfSuJjBR8KdLd3E9WiRJNRdEMnmozO6eLR3d1dJNMej4d169ZhGEZRQjK96fGa3UfyTgmDw6McOHCQaDyBbLLR6rOzd+/eGccpJFS63W4GBjJYrfezZcsO7NYJ7LJO19rH8TmUopRAyBhiiKq3aAzTNA21FtCHQI+C8bpwrdDvBuVfA3tAWT/tlXwt6DouVxbZKeNd6yWwfSmD0jKqnWncihtRbk3mz7MBCJe4mEQxDL34INCen3OfL8COHXt44onn2bFjD77aZXM6Y3z80QiKw8ySZgtr2lMsa5ogl4PamnTRC3rnU+c4fsLDy69t5sdvbGJfsJ1IVGFCy4GeYkKTORc2Mxo14fNoxBJmfvWBCHa7aKocGaHo2NGsRJlIVlFd3YTD5heyFqkKRqKzSjd8vgC1tXt4/vnnOXFiD1ZrAE2DI0eEDXfPtNby0tTEWMyP2x0jbSQ5ci4CclYoSWS7IJ6SMa9jSKFCPF3+MtttWHD3KHUlefxxIZ+x28OYzSomExzpH+fE5FlykoS/2YxktnAlo9J+l5XomIWxuJnHHoiQy8HgYIDvfW83V6648XoHcDjcfPvbu9m5M1AmCSlIVTpaI2gpM1ragmKTGBy+NQ4hFdwa6Lm48P4uRaXpsYI7AIupZO8Evg785/znN/PrKqjgjkbAF+Dxtsf5+j9/nYvjF1lSvYTP3vPZWRsOp8etr1q1is9//vOzNjrO50e9YGNk3inh+PEQil3BrthJZXR8HrVotzf9GDNi3CcuQeIMoIsKZyYBWVEVbG/vpvfNP4d0PYplAi0ziZYdp7MzCc5XQPsY5AwwHQTHQ1PVwRmv5FeB439QZ5XZat5C/1gfOX2UXw59hI76DqqsYSCOIPOdgA1onL1a3blLxIgnJgVh1dKgWKHePW9T2/q1Gq+/YUOxw1LfBOMTErG4idqaLPv2W1i7BqrMo9R5GmhugaGREBeGfkoifQbnKS93tW0nl1mN2QzpjIzqyjI8YqZ1qUYmI9zgdL2kGS+UBpulpJoPmE2QjkFiZFbpRk+Pi0xGhLlI0lRq4sAA2KZxjnBYEGKAXxxfx69s/TNGazKEYx6WmZrxuEwIWYkLtPmb/Z7rCXKisYe0PYyKn3Z3N24CRWI/W4W79Bbas0eQ7WTSj90epbHRzblzcPLiONZ1Ycz6RvrOqmzdKuH1wtatcPy4Gf8SDcOATZtg5coAx48H+PGPxbUvX15O+HfvnpKq1Dg1YgkxIVoqrxGXzIwOa3ztKwtX4yu4vVFpeqzgTsVi3EXCwOO3YCwVVHBNmG6z193efUOCcoKRIC+efJH13vVsX7qdmBbjxZMv0lbXNifRXox7yHPPPceJEydIp9Ooqkp7e/ucBHkG8qQyFovhysffKVYTY4nU4por0/E8wSZPwHTIToC5CrQIvtpldK3rJnT2NWKJc6jOGjrb78JXex6szWCNI8hxFPgxsGnq2DNeyatAD15nGK/zMaCbbf4A5amZM0NxhG3dtHlITMJABEwmQWQzWRg4Dr5e0GVAAWklGHVFZ4xaT4R7t2U4esyCoWcZi5moUXUk2UxSgzfeNBNYDTXVWS5cPsPZi89jMqko1gYmkgn2H/ofBFb9Jg21q6my6yQmzKiuLGfPiwAWp1PYyBWhWMW4LCX/rGZzoCSnmkKL8w5oEcJhFx6PCFcpEGxFEZ7TDzxQPgUFwplyB+kdepHQgbXsWHWRJu8wvwiPsc7zRdrq8/M2j2NIMBLkZxN7qXW4cdFMkii97GWLupu+vgBnz+Yr89MIb+mtWSD8x493s3XrXurrwTBU4vEYuh7l8tBy7t2WxdMgrtXrBa8nC7LCf2srJ/EtLcLWr6D5Lix7eqakKpFhhRpXhrFxC1oSNnbC8HCWX7ypzKjGTx9rBbc/PgxplhV8OLEgyc47ifw1sA3xfvcN4I8Mwxi4yWOroIIFMZvN3t7evezu2n3dRLvUXQQoLntCPdd87GAwyM9+9jNqa2txuVwkk0l6e3vZsmXL4txH8uTJ66klGk/gdjlRbCbePTG8uOZKLSLs92RrvuJqAnL5Crl4/e7zrkGSfRw/HiI2EkNeGSUx8gDOptJXtyqRSB+h0J5ixbm9vXsaOZ7yvi7HVCOfcJPwIwj2tG1LGzzHo2AeFj+oYGkAzgnNsycOk9WQuwSmNDjWFMm+p7afHduh/5SJRm8OsxkuDLqwK2C3ZfllqIamxiwjYz/BbHLhUKrQtCySZCGVNjMw+Dot3hW43QYn+x14arN893+2UFMD8Tjs2hVk37581d3eSHv1Nnz1a0UFO5uPX1ekOaUbfr8g2EeP5r9eRWieLZaZntwFwnlC6cGmuDkTdnP0RBtbt4LVFSU4eIQ9O54UG8/T7NcT6qGuyg2aG0kBe94asC/Vg30swNKlU0R39fI4rb4IuRFN+Gnnm2wLhF+WAxw4sJuOjh48njBOp59t23ZBepkg+TozSP70qvjOneWx7DDlXlKQqrzxmo/1Vf24XdDaacbrydL3XpaT4ZZZyXmFZH+wcLM8xd/vmPYKKqi4i1Twgca1EOFCaEw4HMbv99Pd3T1rBXkud5Fw7Nqt+Hp6eqirqwNAkiTs+fJlX18fjz322MIHyJOnZSvipI8dJhpLcObyBKf6I4trrsxp+YqqTmIiycjwCFoqRa1aha548dXD4MgYBw4cRLEruFwuYuNDpLU4E6ZBvF7hwxyJnKa3tx9FWZr3s47S27uXrq7d04h2kHIyXRo8Mw8TKgtZGYPssGge1GuASeB1MDdAuhlSZrBkwBoVjX8pD1icU0QzcQ6bOU1NdZr4pAKGgWLNYLNm+cHLrVRVgcs1SK2rnvEJE33HVKxW8HmsGEaY+IQZ3bAgmav4Ly/4+GXIxV13wR//cRCncy/JZN7TW4vRe+FbdNl+F59jpahsN3qmtOqzSDcKxHntWjhxAo4dE7z8Ix+ZOSUFwvnbPWGMWDM1qqjoer2gG7Pcl3M0+4VjYTa0N3OwV3xWbGCkVEazYdbVTNn1NbhFs2FSMxO+aKNz45TMpbvbVWyG1PUAJ04EiEbF+MS5WbSjx/zuJQWpigvSJceTFb7/SguSxYVc0llUbi1YwQcJN9pT/HaJaa/gw42Ku0gF7ysWS3jnwtUS4avRQ1+Nu8iixxsOs2HDBg4ePAiAoigYhsHo6CjdC+ZD568hdI6enlfp6+tjbGyMmpoaNmzYwK5duxYpN8mRTAwzcHGAyYyG3W4hOpHjr//2R3zhf/k9zp05XdR7A0wm/NjrTxGJ/AKvtw4YJhS6gq63MTh4GE2LoSgq1dVLisE2+ZEyJQspDZ55HDjCTOJdgtIobE6A2QW6DWQJdAMhc8mAootURTmHkIyMAuYyFw0wCA96OHsxx9KmOMubRzkzUMvLb7bibnDR3Q1f+cpdpNMi8CWVEtKNaMxMNHo3/8/fdbF9u6gyL1kG//nrgvjt29dDMukuOqEUlqH4m/g2ltQg0vOHvVRVwc9/LmLglyyBbdvEuWaTPgQC8MTo9d2XftVP1Bpl61Y3x48LQmtVYzzc6cdbPUV4C82GY+MWQbzlKZlLIOBi9+5y2ceM9MVFOnrM5V4y43lx2vFMNrFdOs3UdVhh48ZFTUMFdzhKY9oBoffWxfoKya7gVmExJHsk7yjy7fznp6m4i1RwA3BdDYB5zEWErSNW9uzZM4O8lycgUlzOpofubu9mb2/e/k5RiWkxolqUXZ3zV4vn04j7/X5OnTqFxWLh/PnzAHg8Hh5++OEZ55/tAQQozlkgECAWixGNRhf/cKL4INtP8NQ5JFmjXnWR0w3+7mf7ePXM23i/5+XBu5ZhMUucP3cOsxm0CZVQeJCu7RcR7/89XL4cJzp6DIvJi81kJ6NFGZwYJp2eKDlZD+AmEkkRCu0nFouhqlna2w/i8z3GbImPRZRFYcfAYYF4XrRsANk6kaSoaCDl8ttpgFoemZ0n660rLBw4YGF8UqGmOsNY3EI8eY5/+S97SKfD3H+/lcOHLzIyshxFEZZyshyltnYXV67A22/Dv/od4bntqxfSidjoaVzu5eXTWxLuU/weQy7eeK2VJneEpc0ajS0KvqUtBEOuoiWfzyeIvWGIJsD5pA/Xel9O39/tgu33T+3/v25+BtfGk5w8pjGhKXhr45y/VF3UQANlc3tN6YuzoFChn5ewz3Yd3fCnfwqnT0N1tZDYxOOAPsT506fx1FckAovBnSqpqMS0V3A74GrdRQzgABV3kRm4Wc13dzKuhvDOhdkIx5nQGaQDErYm2wzyHg6Hi6ExBczVMBjwBdjdtbvse93VuWve73Uhjfi6det44YUXcLlctLW1EY/HicfjPPTQQ+XHmeMBpKqq6vrmLC+heO/kCyxprOVSVPyHc//aDlZ4G/jpgSAkwa2kWNrcwHB0ghd6fsHW+3s5daoZv/83AEglLyABFnMOMGExy2RzGqnkSMnJwkQiFnp7D6IoSl6Dfpre3gRdXSl8PpmpqPAeykh2mWuIKhouq02QdMCkAooFGl8C/VHQq0CaQJDszvLI7DxZn3K4gKERM20rLtGx+XlOnHCj6820t8doaDD4znfSyPIA4Mfh2IXfH2DLliBrVr3EtkA1Q1cUfr5/JQ5bHUbKydsHh5mcrGFZcwKfJwumSVRnU8n3WAhTcRFRXbz2DkVZRaklXzwuqriaBqGQIN1zSR+u5b5caP9/s/4Z2hQLODJIa2z0n8ngVJI0NZjwLakirxK6aXHk10LYAwFR+R8aEtVsVYVffXSIHfce4uwZhYaG20MicDuT2OmSilxmlIz2ErJJxWRpuK3GerWoOJZUcDug4i5yA3Azm+/uZBQI72BikOMjx4lpMVxWF+5B98I75zEbYWi52IK1yTorES1PQBSYr2Ew4Atc1Xe4kEb8yJEjbNmyhUuXLhGLxaipqWHNmjUcOXKEJ598cuo4JQ8gkUiEUCjE0NAQo6OjPPHEE2XnvOrIdquLb+x/lY66Zn770e0kkhroBl3+Dh5ds5GzJ5J85YVvM5gQ5FjTNJ5sypJMTiWq2MzVJI0rZLJJzCYX2VwaDAObudR3zk8o9BKKohS153Z7GnASCoXw+Qqx1rPEaZe5Y6wG4x0waeAbAGsEUQHfCekzkDADTpA2iLTDEilGKVn3eoV+GT0L8kkOHnOj627heW00EWhdwcp/o7L/zS4yZh9DURcNDUE2bdpLvXUTFy7ZMFsSdHQc5OiRLiIDH8Vp/3sa62Pksi7OnJukvj5GZ/uvC0251cUbr8V5+tci+DwaYwmF4/0+Tpx1Fau2hec9VYVkcqrxEcp1ydNxtfflgvvHT4p5kgvzZIFMFf5sAmxWMPIyl2xSSHOiwQXTRm8F0ml45BGKuuwtG0+j6wrDIwqSxKwSgVtJem93XXCppCKXm0DPXsEA9JyGbLq9xnq1qDiWVHA7YDHuIv8V4SYylv/sBv6TYRiVanYeN8OF4sMAv9/PqYunOBI/gmJWcNlcxMZijCljBCPBq6rMlW6784WdeJrL7QoKRPRzn/tcSQKiWpRb3JA0RhbWiIfDYVauXElbW1vx73Vdn0GSCw8gkUiE3t5eFEWhvr6e4eFh9u/fz44dO4pNiNcS2b7l4S2sm7QxFk+gWBTW1PmZTGlkLTKNPhu//9jjfP/tb7J649vU1EgkEgBniUQi+Hw+Gj2tWMxmEpPjaOkEirUat6uFendLyVm6icW+hculABFEw+IkiuIqxs0LzIzTLnfHqAHTJnAcAOspytxIrICzNGbeUt5gN6eV3TEGB1VcLqiy2mmpEYTfW2+wY/Nl7I5BftG3gprGHqJRNz6fSkpKA3ZyWairD3HmzHY2tXdzauCfmcwOYrM14bQ+ic+7ohiSsn5FP7LJTCxhw27NsDUgEiPfDbrKGv46OuDAAfKR92L9mTPC3m7nzmvzgF5soiMwTZ6Th7kq70RjEX9vSELPIpvEXC4U1X4LML1psro6zvBIdbF5EyiTCNxq0nu764JLJRV6dhQkM5JkAiMtxnwbjfVqcbMcSyqo4GqwGLlIoECwAQzDiEqS1DnfDh823AwXig8Duru7eebfPoOkSCiqgpbQMDSDtY+sva4HlPmq1aWhMaWNgz35FI6rabqc9dwLNEtarVZefvnlMo9sm802gyQXriEUChUrwclkkqVLlzIxMcG7777LI488soiHhJnuHpEIPOCVuHLxAJeGraxvepC0nsGkmqm2uBiRI0iWMf7wUx282X+UeBwUxYKqTtLb+zJdXR+lvW01vYcu4vUEUGxetFQCTRujva3UISWAqm4kmfw5drsEOIAaNG0QVXUgSkzlHtllKG10S8dB88KEVlJBnWW72Y4xq8tFDV5vlMyYn5V1y7BhwazoaNkshmzBJOfYFjjDhHWMhiUa+tgJahWJTA4mJ+uw22PU1mRRHStpbtiKiJ/Pa4IlQ5xLi2Aym4nGLdgV0NKicXBFY4SRMVdZw5/HA+vWgaYFefLJHvz+MOfO+blwoZvJycBVe0BPyVQW6SE9V6iP1QWu/ANh/KQoGc8T1X49uJYK8/SmyaFhFxIaHR2zSwRuNem93XXBZZIKIwVYwcghFdIXb+FYb8YbhhvtWFJBBVeLxcSqy/nqNQCSJNWyOHL+oYFf9RPTYmXrrteF4sOAQCBA66+2otaoxIfj2KvtdH2yi5UdK6/rAaU04lzX9eKfC42DgUCA7u5uXC4X69evJxAIFDXPi443n+vc80SxB4NBLl68SDwex2KxMDk5ycuvvsxLb79En7uPPfv2EIwEy65haGgIm81GMplE0zTuuecetm/fTiqVYmBggLQljeN+B1/t/2rZ/gIFd48ohSbDSORP6O39U1wmKy2Na3DX27k8vp+0dZTWhmWkEhrR8cuMWf6J3pOvkkzqGAYMD+dQFD+KkiYUegtfSy1dG/4Au7WB+Phl7NYqujZ8Gl/LjrL5aG+vRdM8JJPLGR+v59SpScJhnerqEUZHgwhN9rSmRyiPIR8NlsgZbJCZgOhhGDlUjCifDcGgSCbc+Qcu9nyljeCFgCCMVhfQTYdfZrmlGbNsQrZkwTCQMirNjQaNTWb8zTody5ZSV7efnO2X5LIuzLKJGtd5LLKCYssSOluDYs0CJUmEBd1yTqN1hRktCUlNFIGjcTNVilasKpfGlW/bFuTv/m4vTz8dJZNpZsmSKI8+upc1qw7x8YdO8pmng1w5t4jr3QnPPgvZrDi2LE9pv6dHtReh+KasBg1DLPWsWF9ATps3qv16UKgwG7pWVmHOpofm3W/6HA5EVnLPPRoNHg3DMDB0DcPQMNtWArc+vls2ufLktQS3kS7YbFuJYWh5om3FMFJAFtlcKza4RWO91u+/ggpudyyGLP8n4IAkSd9DND5+EvjSTR3VBwzX2+3/YcaG9RuItpVXfqPJ6HU9oEyPOPf7/TPs7a616XKhBtf5mtL2fGMPy5cvp7m5mePHjxMZiTDOONvv6uSzOx7DIUucPv8Sip4mENjEFz7/LG/+rAfVaSWWSDNwJUtOdqAoJ3nqqRrWbx5l3/l+To6sZTK7stgL8IXNz9LmdEHuPSGzUJJgTQJuQqFhFAXs9rvB6qDaYic5PkZ89DjOZfdyOn6ao+Gf4HaCbuTQdR3DMKiqqsJub8IwYsRiG8H6eXytcXyN901ViGfR5/p8abq6tnPo0Dv09/djt9tpamojk9H43OdcPP476zgi9xCOfXVqPmuXlXhk2yA1IgifyQZGGrIJcXA9PadkYbZK7p/8iZBfpFLg9wf47Meeoab+NLo0CZITLaWgKBas5iyQtw/MiYpntXuIwYG3qVMCKNJa6lUno1GZ947V8dC2YSaSYBhmNn2kxJ5Pi+D1ZNi61VK0mPN6sixboeBbVbhXSyvLPQxP5Nh37jDBdIxqi0pHbi33332U8+FNJFM2sunFXe/BgzA6Ci6XaKKEBTyk5wmvKWJatXtwEPrPZIkMKfSdnV+OslCV8noqzOVz2EA2PbdE4FY3wy2kC36/myJLJRWiep1CNtUjyY7iA8qt0DDf7rKaCiq4Viym8fEFSZIOAQ8iMuK6DcM4dtNH9gHC9Xb7f5hxLQ8oi/HWXiji/GpcRornXWSD61xNaYVzyrKM1+tl37l9dLpX8qmtW3CYLGh6jlpbNZNjR0Ftoq3RgvvXHuGNN9+idVkDG+6q4t0/tm4QAAAgAElEQVSTb7F63UFWr+4iODRArSLx6KqjHLjgQpZ8NCpOsb9jE8jDoLshoYIzAtYksVgKV4FPmGxgdaNUQSx6AXISR8++BVkFm6kai3IKh8VBLjdlkadpNtTCA9CifJD9+HxRnE4nq1atwm63oyhJkkkXOVuOb7/4//J7z/w6n/StwALEhnsZzw1RrdRNyRIMHSTTFLmWZEACI1fm3Vw6llLnDhDE+swZEVf+yCOgKEESI+eoarlClcMNJhuKzSQ21nNgyGB2gikBbKeq6gSNjRNkx+xERlMYchxH1Xoevm+YV9/0sHJpgoZ6jZ/9XCGabOHeB1wE2smnc4K3oUQP7izVrU9hdLKPN8JnUcx2qq0uUtkkJosV3RJBS1vQUmBXLOL9Y/56I5EgoVAP+/aFaWz0Y7cLz/GGBhgbm3IqgfkbKRf1fZbo2weHzfS9m8Vdk2VgtGVeOcpidNA3UlYxn0TgVjfDzacLvl2aIkvnazrpv1Ua5ttdVlNBBdeKRck+8qS6QqznwfV2+99o3G6WgnON52ofUG6EtzbMr9ueC7M1uA73D/Psv3+W5fLyBcN0pp8zpsX41Jp7SBk6mi6IrCGbGdbGYPI8WFx4GhrZurWL48dDjFwZ48GuGpxNXXg8q4hdOYbLpqJlNTrqQwxN+PiVWr/YX85b30kTgBM0N1iTqKqNZFJ4MgNgsqHJNtSGDSA1YbGkyaRNnBoawd2go11JI0kGFkuWZDKEpnnp7LwaQtIN7CWTGUJR6lGUJIqi8e67nVhrhvnEpm00OVRqLQoGYDdbSKdjYLKKSrbJJpZ6ThBUyEsWcmJ94fM0yUKpcwcIslldLdwofL4gW7fuxRi7nytDdTQvG4fcJJiW5Bv7zIJgS7IIu0EBdmCnCVxmqmsS9J9TcbosuF3wwH0JvvAXbUiSqBZv2AAH34Hdu10E2heXeghweHAMtyKDZMdTDxcu2Km1uhlKxklqTPlVS2YYvkTkK1+hd+JnKFV1xCLbcXmnPMc7OgK8+aawt9P1eQJergYl1e5LFzR0FA6FWhgZc83r672YKuWtqjC/H81wc5H+27F6+35pmCt2exXcqahoq+9A3G6WgguN52oeUG6EtzYIzfPVuoxMb3CNnIlw5B+PkLVm2b5x+4KEf/o5rRkr9c4qrN6pCo6W1bCbHZBLgVX8enq9XuEkYhig/wzcYr2qqFwZvkLiYpwaR4J9/wA7fr8b2enIH60d6BXvn3IuIEp7u4feXgmIoigqmhZD06J0du0C3xIaVm0kpZxi6EyS2LkG/P4Rcrk4um7Gbl9JZ+dqfL4XgTZmi0UvVFZjsTCq6qe9vRufbzeathM4zokTJt56qxmbDe7e0ExGApfZRtYwyBo6JklC13MikSWbECTbVAW5qHC1QBYVYRDuFzCrd/N014lYTISVqCp0dPSgaW7Sxhi+TC1kqsE8DqlxkFqg2gKWqrz85TEEcQVyy0COAxr9/Z0oNtDSZkxoKIqw34vHpwXJ7Flc6iHAz/tr6O4YJZVLglOhbbmGLkU5P+yjRpmKUGcoAm++RSj5HoqjFrsG6lgYzepHqXUDPXi9Ae66Cy5eFFKSsTGoqZnSZF9zf2++2v3X3xIPMYuJNB8ZjnPkaDWxWGH+oaGhvEp5KyvMt5JIzicHqVRvp1Cx26vgTsViGh8r+IChtOIqSzJuuxu34qYnNFfX0wdnPOFwGLXMn+safKKZ0m273W4GBgZwu90LVsOnN7iGfhFCtss01Dcgy3KR/PfM0V02/ZwbWzeSrAWnasPAIJlNomU11ta15fXH2fIDGFkwWYhETrNv3z7Ov3GeU2+eIqvFuJJwMhYdo++fT7BEKhAIL9AFhhNMw4Abn+/LdHV9CbvdTTw+gN3upqtrdzEKvb29G6fTxObN69mx45M0Na3A41nBxz/+W+zY8TF8vjZEs+LMa4xEgvT27iWZjOJyNZNMRunt3ctbb/2UeDxOJpNBlk1oWpLXX38dX5WKXGdDkU1kDR0ALZcRFWTDgLz3NrIJTA4wqyDnLUXMVWKOZmvQQ+iDo1Hxo+sibnt8XBC8mpowIyMqh0+Pc/DiWfovZpiM1YB5CLx3QcPGkgbJAKIx0y3m0HACXciSFy0FijVLeEBBUUSQzIZ1ce7feJJPPhzE5zjJF/9DnD17BNFdCCZ5Ay+fXkcyY0e1xZGtdvaPpljW6GPH9gzehnxD4oVzEI4Ts6dRJDsodjo8V0gOjaNpKoYRJhoFkwk++1mhy16/XhDrgqzjOvt78fun/LwLmE2OEgzCL34hmv9cLjFHBw7AyHB5ldJsbcDq2IQkKxj6OJKsYHV8MP2ZC1iomc/ARDbVT0Y7TSZ1gVxu4kNbvb0Tv/8KKoDF+WRXAUnDMHRJktoQ5bGXDMPI3PTRVXBNuJ0sBYORID8M/RDDMKix19BR34HX6b3m8VyLzGMuLKTbno7p+vGhi0OYa8x01HcUt1mI8E8/58lLh5gcO8qwNobd7GCTdz0eew3YPJAaFhuV+DtHxqvpPXQQRXGhZ3KoDoVkTOPgWZUadw2RIZgYGYOWTH6/WtDvBkcrIP7z9vkokurp8PkCdHXtLqlGp+js3I7klNh3bh8xLYaquAg0uKl1lO8bCvWgKG7seTmNWI7Q3/+XLFnSSCKxgtraCJ/61GUkqQldt7GkvhqrJFFtVUjlskwYOey2GrA4QU+JH5MC6uppdn5TEozIeIxQ8Ctl1XPxQDPlE93ZKaq6VisMDPgZHY2SSrmx+8YJJcc5mYqy3ufG55x2UeJbEz9KPK9JNtPRYdD3bhZZyvJWsIVYDFYsjfP7T/czmTLTd8xGnTvD5k39vPxmK3v3uha03yvcX5cT68v6E+7zr53yqjYp8Mp7YHGhyipJktix463NsDVzjHd0GydO+AmFYMsWOB6cOwznetwqp1vnOSxx7t8YYce9InK+0ATb0wMW80oeXHoILQWSZEOxpRi4oNHYUl6lvNPs1uaTgwAYuXEMI43wosyQS1/AMKko1fe9b2N+P3Gnff8VVACLq2TvBxRJkpYArwK/C3zzZg6qguvD7WIpWJCJWE1WrGYryUySAxcOMJgYvObxLGTPdzNR0I+77W4G4gM0LGngrpq78Dq9xW2ulvC3NW1iw8p/wcMrH2NHy2Y81Y1C91rVJJayRRBN2QLOVkJnTqAoXdjtNchyAsWiMjG2ipX2VnYs24HVVMf3X3lvxn5X42Ps8wXYsWMPTzzxPDt2fBxTdYIDFw6QzCRx2VxgxNh3vn+aXSDEYmEUiwKpK5AchNQVFEuE0dEUhqHidFZTX78Kj2cVv/d7dQwNJ9lUvxIdyBk6NpOZpio3TotTNDqqa8FdaruXR8G72R0gMqnRe+gbM6rnkUiQQEBY2j3/PHzjG/ClLwkpxwsvdFNfH6WjI0p1tY7bHcXtjtLTs8A9VNAkyxa89SnWb7RwKNRKNOHCMODpj0dAMnO234JhSDirLaTSZjavj8xvn5fH9PvLbXezu2s3bU2biteLqw1sNRCL0U47GhpJkhipJOlqE7lclKambh5/HJYtibN2aT8WS6YsDGdVa3xul5HpSEzCuYsQ6hfLxKQYa4l1npGJ8+i9/dy3LUNtvW3K8SUtzpNKN3AouIlUSqHaOY6Bwo9fvvOrlPPZBWZTpzGZazBbW5BlCxI6kmQTkpI7fF4qqODDhMVosiXDMCYlSdoF/LVhGH8pSdJ7N3tgFVw7bhdLwYJMpLOxk96BXhSTgs1k493L77K6fvU1jWcx9nw3E6X68WCraMKMRqPXlx45h6tDMHRuhotKLBYmmXTy1lsQClkxm7M0NlqpqhIPVbFYTFT5XW0zjndt6Obi+DO4FQkkBcWsoZgNDg6sJThYHhikOr0kx89jV2oESTZyaAkd1dmIpmnFaHVNU3A4hlnb5semNOCxuoQGPS8ZQTIW/WAwe/VcrJ9erS9Yve3cGaC/fzdr1/agqmHGxvzs37+LH/wgwKFDC6Qj5r+r0jTFDRvg05+GFbUa4Ys2cllYuhScTjBZrrCisZ9HHvm/OX3az3PPdXPvvYE5q8iL6k/Il5F9uOlStxBK9fH/s/fm0W3d99nn5y4ALhbiEqRIguKihZJMSjIt2fJCpbFpx07iNo3zsm7avGm62BOfJDNNc1qfduZtk+GZd9L27aszJ28mrft2cTtOurwel649J4nTNA5tx6IUy7ZESyK1kuIKrtgI4AK4y/xxARDgTolaHPM5R4cEeJff/V1QfH7f+3yfJ6rPckm4H8v6dfx+e/977wgxMS4zMOhg967FYTirYi4JIyFbd+JyQFa3X9cHweeZt86LhcCUlwypaWz0Ew6DKFYzM2uTx2Kt/M8yVmrmy+uxRVFAlOzeAtvXO36TRruJTWziemBNJFsQhDbgs8zHsm02TN7CuFUsBfOyFVEQaatvo3+6n4hmh4deSxPmemUe1wsLCb/L5cLj8fC1r32NSCSCoAhYQYvyg+UcuOPAuhxelnNRue8+jQsX3sPl8lNfX8eVK1cYGrqAKHo5dep5WnbX89RnvmSHuCzjXb3KmVmYEPkvZ3fw4I4wAVeMiKbyzvhBkno1I7HScmjz9jZ6TpwFwYHi8qGlE2jpNIfv/CgnL3QDoCgKghBlbMxB+x17QPaA4J0/iGXZFfg1jjkaHcK/QBqlKCrRFaRIjY1w4UIr09OtTEzAW2/BhQs2KXY4Vk9HXMqD++WX4c++qnDwzizdrztIaeD1TlC39W2mZiSGh+uprQ2zbdsR/vmf7fCdq/4I58vIXV0Eh4YINj4KHR383dfsZMhYzJZwPHK3hrfMxeSUHYajuErDcJZC8eLhc/eH2X+bRFVt7r97R+7rdBiKZTVLRbLnHF8Wyko2xOXkfYJ8M5+ZTWKac2CmQBBxeu5FhE03jU1s4gMAwbKslTcQhAeA3wPetCzrvwiCsBP4imVZX74RA7waHDp0yDpx4sTNHsYHHp3dnYsixvOvO9s7b97ArgPypFjXdU6fPk3aSDMxN0HNzhpMzUSpUEilUjxy5yN88de/uOoiobOzk3A4TMaRoW+6j6gWxZl14onHaTtk4XT6AYWZmVGmpoY5edJN26GP8Fu//CApLcuBO++ipqoy58u8VrlIL6HQf6K/f4poNI2quqiqcvLdkynCkSQubzVsaQZfcOn7GO4lNDNI/6UfEo2NIUlOIImhT5ARpgmHE+h6iooKFzt2/D73tvwifed+wvG3XySeCFHmDXLvXf+Bltt+bs2V+O7uTlKpcKGCDZBKhYnFAvT1dTI0tLgynSfJhgHvvWfb3Ok61NbabhmHD9va7UzGdvMoPgbYaYqTk1BdDc3NtsY9HIbbdsb40ucGmJqV+emJGQ7d2Y3itLg08R79l7bg9wfZsiVMOBzg+PFOOjsXX8/VorcXPvc5CjaCmga/2XGe7duyGKYDny8fhpNle5OD4G57foutNV1aI8M/7KDJ24qqws83DTA+6+DwYcF2NQF7EZTOQvOO+ZMX0jgd9hMJfc5uWpWcoO6jt99fIO4rPiX4GUQ60U8mcRwLE0FwI0plCKKA5NiJkb2MICglbhqbzX6b2MT7D4IgvG1Z1qElf7YayS46iNeyrMSGjuw6YZNk27jZXtnF1n3FspUbbSW42jysJdxmNeRJ8alTp0ilUkykJ9BSGoIlkNWyuLwu6g7UIWQEbvPetqqTyRNPPIGj3MGx0WMosoIiK6QyKfq7+/ncZz9KlW+aVGqcc+cm6O+HSEThr/+vP6CqQiUcm8OtuGlvfwDMLKGpWf7yH3606vWFQl/g1Vd/QCKRwTAMDMMgnU5RXRfkrRkPHkHEiUm8aj/Tkrz4PhaRrdBUPz1vP4vi9KEbUa6M9wBZtm3bhSw3o2kSPvdeLl94EZfLib/MwjQ1NM1g7+2/xp33/N6iBselqvJ5RxPD0JmbGyWRmCKTcXD+/FdxOh8vqZ4WV6Z7e+fJ8uws1NXZPtp5D/HbboMf/Qh+4RfmK7CXLtk65+btIXY2aoyGFLp/Ok1tw7/h9Q4RizXyB7/7UWTdwEyfxedJk9JM0uYYmnCS4dBOLKua6upezp8/wKc+Nf+0YCk7xGVRXG7OsdbOrlYuXIDTpynYCVaVx/j1jgHaPiRTVVUchmMvuhb+fv7gtSixTJgHnE8TpJUHto8iGDpIMu3tuXNndbuivb1ufjyZXEOoZUI2bjN9y7KbVwVp3T0BP0vQ4kdz7iLzFev8a9m166amPW5iE5vYGKxEsldtfBQEoU0QhLNAX+71HYIg/MUGj3ETG4z8H9BwKlziTb2wWe16YrlGrptB9Jebh3wFOhwOl8gyetfpcZa3FoxGo+i6zvTYNHNTc8wMzSBIAkbWwO10k3FkVrT5y6OxsZGTV06iyApuhxtBEBAyAmVbyjgxMEwo1Mwrryi8+aaDWMyDJEkY6TjT4SiKSyGa81ebmJrh/NlTa7q+EydeZXbW1oS6XC40TSOT0UlGwxxu/BAuSSYbH8c/+Cq/4PCyiA4oQcgmQZuiv+9FFNmB2+FmJhrG5WrC5WpmZqYMt3s3ihLgzWN/STyVorJSx+VwIsludGGG85f/DDInbOJmZm0pQnYOwqdg+oRN5jO2l3Aw2MqePZ9kevoMicQUHk8V0eh+AoGXCQR6EcX55MfiKW9thZ074fHH7Wq0nFNCKIpNqE+ehMpKe7/8MfzuGI9+eIBgVZaxSReK+zT33fMnWMYE6XQ9qhqm58RfcvLcv2CaIlkimNIYkugj4HiQ6sA0gcAl/P4BgsEwUA/kA2TW+HnLl+HD4XmtypEjDJ2cpanJrsK73bZkZCri50fHd1BVvXQT7EJrzUw0QJkjQH/OnrFvKoDqNcimdJs0Z3W7/L9lgaA63xBqaraeXpTBWY4pCuj6FJlwN/Hp/8HczIto8aMFC7ufTfQCncATQCeWdXLZ5kfZWY1SdhhP+ccLhDsZeQUtfpR0oh8tfrTwej1zpmcmr3rf9zs+yNe+iVsTa9FWfwP4GPAygGVZpwRBuP+6jmoT14yl0gnz799IknuzkzBXm4eNCLfp7e3l8uXLHDt2jEgkQiKRQHSKGBhYlkViNoFaYyczqopaYvO3XBW9o6OD77z2HSoCFUzMTDB6fpR0PI1vm4/BgUEYsYmw0+kknU6zfft2pmbnCKiQTqeJx+K89NLLZNNJkBwEAmngdQKBKIripKvrL2ht/cuS6xgZieFySTgcduOaZVnIskgslmbrVqgxskjlOzDNDJIW5cUXP0d5+Q5qaw/YoTMV2wtVzGh8An9ZNQgCWjqGS7HnVcu53iiKSjY7S8UWk2hqBl23z2kCs7Np0N4B8UN20mN2FowUdhCNBbLbJuA5wjg1dZpt29oLkpHeXvD7w9jacvseLhWUkg+saW6Gnh5y12xLRWZm4CMfKd3+w3eHiERl1AoH2VmIaj/GIavUVMiMToscPBhAUWAueoaseTtGsgyfL4KWmiOre6nx15GUu7lyZR+7duWJav7r/FhXxMK8+NzXxqFThKMPUlNDQdphNxj6baPsJbDQ6lNVIampRBV7oiYTHn5wJsi9TWFIZ0BxQm1VqR47D6ff9i4XK0AQMI0ERnYcy7S9vS1Bw0LDyDowjRsfHX5j0Iu9YAqQX0A5lOPoaQewb36zBdrrhfHqRjaMkT2D5KhFlAPrilu/VaLabwY+yNe+iVsXawqjsSxreMFbxnUYyyY2EEPRIVRlQWjLTfLKvplYbR6uNdwmXwmvq6tDlmXS6TSapiFkBQzDQHbLmKaJYRm5+POWgs3fSlX01tZWHv61h5mdm+Xy25cxLIPA3gBimUhKTzExM0Emk6G2tpaKigr27NHY0vAGh+5KsHPbKFVBk4wzQcZM8ncvPkck/n0gBfhRFItE4t8JLXqqUY5l6UAWsJBlAcsyAIXp6T5kWbEr6oLM9PQZQEDTwjnbvD8kNHwE5DdB6UOtqGFWm2NkboK57BxXwheJpWZRcvdC06I4HBUIwhy6LuNwZFDVCGVlk9TWWmDM5Qh21Nb5IthDNDVCE310H//vvPTSb9Hd3cn4+MnCce37B+m0it28aWOpoJR8YI3LZXtKgy0dufNOePhhu6pdjPqgRioj4/NCQwNYjKFpfgLlOocP2+RWUVRSmoZhJsAoh/QB/K4WypQAZHcQj+9g165d8xpne8QlY80jFOqlu7uTl156gu7uTvt+DQ3ZF1iyu0pH+asl4Tv571dytlxo9dnSAvF0FGeqsXCMs1c8VN5ZZ2uwt9ctTbDzkJRCgJKpzwISWBlMAURRQRBkTDOBICgFr+j3I5avlnZhE+wA9p/WAKJUjyh3Y5lazj1Ew7I0ZNeu+eMV+WkLgoBlzoHgzM2VkHt/bXO28Fjr2ff9jg/ytW/i1sVaKtnDgiAcBixBEJzAl8lJRzZx66JRbVzUdHgzvLJvNlabh2sNtymuhPv9fl588cWCVV2wKkhGyhCPxbGyFvfV3Ycz6yzY/K1cRYfOTwvc3zDKyJjEv79TxpkBCcu0qPXUkh5N88ADDxAIBBDFM9xzzxtMTo7xk5Nx7rr9fvbXmLzVH+bvv3scWbrCUMjC4arC6xRIpwW83spFNnf19Q8yOPgKgpBBltM4HAqplIWq1pJKRZBlJ4aRRhQdiKKCLCuk0zHc7gxwkf7zEDz8i0CKHdsV+t58B+RyKtRGouOnmEjHUSubSaXCaFqYu+/+bS5e/D9R1ShlZRlSKUhrXh6876OQKQNzbN59QbDrAaHpQXrOvIiiVOH3biGVCjMxdYbZxBg+3xZMQaJhVy2n33ZjWY24XMs7WhSZdDA0BI8+Ot+Ul1dl1G6Jcc/tITwuDY8rgc9nkNK8eD2g+rdi6GFqtwbwVdrH1LQoqn8XbqeE1+HGsATS6SySVIHHVU3LtjQ4x5ivYANEsbXZ88hrzRUlUOL/3dboIRiOlnrgRaO0HgjwdEepVPvJJ+1rWTLqfhI6ukMcSfw7eCtRmw/gVBV23R6mbuhJRhYcY01QgrmwHrDMNAhOsCwMKV+TkcBKv6+jw1eulg5hV7DBNBKY+iyWlUIQZzAtA8GKI0r+QlS4Fj+KacQwspOIchApV/KyrPzcpedPvMY5+yBHtX+Qr30Tty7WQrK/APw3oA4YAf4N+NL1HNQmrh23ilf2zcZq81BWVsYzzzxDIpFAlmV8Ph+VlZV89atfXdPxh4aGqK+3/7DW1NTQ3NxMMpkkm83y2GOPAXDhwgVGR0fJRrLUNtYWfL2/8Y1vFPbNQ1VVDOMkcJlgWYDJMQeVFRb/02MR/vblADNTDXgkDwNTA4TDYQAee2wSUQxSVmaRTqc5Nvxd3IpGSnAza22hyWsSi8NUYgrJlEilNA4cuG+Rzd2hQ18kFhshkZhE09I4nS5qalxUV+9jZOQYIFBf38bIyHFcLi+6ruUqyH0oShnR6RmwZBDcSN4y7jpwkPMXwswlp5ACTehGmsHwRbbX7OPgwScJBls5fhwmJ/93YjGDMm8VH7r9MeprVDATkErn/LYt8g/d+q/0oDi8uBW7qS6ZSeFyqyTiYzhdZciyC8zz7NrrZWr0TxYRzoUoeD0v8f4f/UGM5OQAwyMyw0MuttXr7N8T4fIwhKY9bAs+SDjxd0iKjmX1omlTaJqDtkP/K6pVSSYbxSKJILhxyOUoXhk0Jzi/C1QCBwAFW5dd9HvZ20t/15dR4pO4y6qhpQV3rvTd35Ih+N1w/sNSsoJY6lqWJOvf+0Pajlq0ept4Wv0IXamTDL31IxrveYSv//w6eiaWakz17QAthCA4sTDQJQNTzCIgA0bBSeP9alW3Uoqj7GwEwpiGEyM7BshYpDB1L0b6CpJrW6GCXUzUYRojO4IgNCBKXgTBZdv7ieu391vJm3td15mZfN81ZW7UtW9iExuJVUm2ZVnT2B7ZBQiC8BVsrfYmblHcKl7ZNxsrzcMLL7zAn//5n6MoCnNzc6RSKVKpFFVbq/jPf/2f+c7od1b1t15YCW9paaG7uxu/349pmkSjUSRJ4pvf/OYijfdyVfRPfSoCbAMClJdXoCU0REXiV9sd/D8v+YiEIzTtbeLp37U9uh2OMQxjK4cP76Wvr48zY2cQcFNTqeGr8GEJfsr8GvF4nO2BHRw8eCd+vxO3u7ZkPMFgKw899PXFVc9ga4GsSZILRfGTSs6ClaW2Yhukw2i6jFrhITQxSv/lE1yZucQWf4CGho9yBidkUjgsk6HYCO1Ftn/33vt7wBtAGGKHwFRBLAPRA3IcDE9BKYLoJDo3gd9XbTtZOFRikUEEWcHQs0Snz4MA/vLtNN52F//z56/ts76nIcSUS2ZgyEF1ECzJx+AYlHk1du+RqKjaTyj6H+m/9KdEo1lUtYqDB+sIBr8P07+JYtaBZdiNgHIaxJ/aEhI+ApzEDtB9GLB9s4FCCT1aN4nftwW0FBw9CocPo1RXEc2MlJbfVyk3LxnWMzRJfyUE3YfswHh3rU3U+wLwK+sg2HMD9rWJRSmPvh22/aJSTjZ5Asv0YOmJnAwJJEnFsrRCNfd64FI6yRupGBN6hhrZyYfdfppcK8hc1oGVq6UdwBFMXQNcIMTAmsRIfwJEBTM7kat6O0qIuuiowcgMY2QnEcTtCKIPjBiiWIllWQV7v7XMWd6bG5MSa8D1zPf7Vdu8Ede+iU1sNK42VOZ32STZtzxudtMh3HwbQVh+Hr71rW/h9/uJRCKUl5fjcDiIJ+KcHzjP7trdhN8JE95ju5Es54rS0dHBkVzahqqqOJ1Odu3aRV1dHSMjIysmUi7cN58Yeccd5dg6Xbjnjnv44Ws/ZGbWSUOtQSQcIRaN8Ue/80cLQnnC5CUIfcN9OKQUoWkvqXiKcbOcu+/N4q+s5oFd96NpUTQtzMElnmoEg62lSYmZGMTOE3RBW+vj9A/24HL40Mxxqip34/VsIZWaRUtbNNbV0HP6RRQ5QLFx4pYAACAASURBVGVZFbFUjPfeexGt7h7wBVeQKx2wx2+0gpjJvZcCpwPSLtuxwhEAPYbqqyalZ+0FguQimwoTm72Iw+khULMPPZtCzyaQcqTummBonDnroqpqgrr6fhQliqapxMO7+ea32+jshKD/Hwk2tFMq/wiD8yKYH8qlIE4AP7TF0lIEe9XwKPP3rGi+c42NqquaFCncii09oq8Pze9EVRuXL78vgSXDeqJpoguLe0t1hq4ELZQj2ItTHnHmo8EP5fSwWUwzjSA4kRwV17Uqeimd5Pn4FD5RpkpyEDcNno9P8Wmqrplo65lJDD2KZY4jih5EucJOayxUS1uBpzHNP0OUZjGybvT0J7DMnQhYQMbWCGdGkF1NheNKkhcc9Zh6CMuMIzkCyK4mLHO2UEl2uPavac6K5329+xauc5lqfSZ5Cj3tvWWr2xtx7ZvYxEbjakm2sPomm/igo9iHt9g+70bb+C2H0dFRamtrCYVCuFy2zZYu6hhJA1VViU3GVnVlWSrm/etf//qanEmWi4ivqOgiT8D27tgLwNkLb3JxMEV5oJw/+p0/4vGHHi86kl1BA6ipqeLh9kP0XT7K898RUHwKdfceIlYe415/A7HYCKraWJBrrIgF1cpgZRPBwDbgM4RmLnLivf+XcwM/BkunvmYLA5cHUTwybvccqWyYszOgmx6c031EJBde5yW+cFcDtr1ZsT90bvxSFEwvCAlAA+mg7bVsavb/OEo1zXc8Rc+Jv4RMEkVxEI+OgmXhK29EEAQ8Lh+y7MCYuWBb/a078bIIkoLTMc6OpuMYukJa86M4sijB4xhGRW7s8zrcPEIhjf4zf0t05ruoZQGadwcIblHALAfPT3L7tAHVLGp4HBqC+nqaaaYH2/JEcbnQ4pPLLoxWgqo2Lgrr0WQD9eIsnH3JJtfNzXb35xr7EIAVUx7zkJ3VN5zgvJGK4RNlykQJgDJBKrx/LSQ7X90VRS+GqWGaGmZmFEmuQhCFomppK6b+JYyMRlYbwMIAaxYQECTvvJ2flS6RNYiijKTsQik7fNVjzONa532par1p6hjZIRyunbd0dftmfOY2sYmVcLUke20JNqtAEISPY+u9JeBvLMv60wU/dwHPAXcBM8CvWJY1uBHnvtm4FSq81xs3ykZwycauNRy/rq6OSCSCoihks1kcDgeZdAbFo6AlNNQau5qcdyNZ7p5dS8z78vvmsqhR2bujlr07PgI8zZd/Y6lt7QpaPg59d8PdWO7f4uBnT1/b52u5amV6FgSZrJ5iW909doS6NsGFwdfZ0RQAanE77mR/NfRNnWUuPsZt+1r4zD6BgMcJVDHvD52XSjwNyvcJDYTov3yG6FwW1TdI884HCe74WIEoB/17aHP4CvdbFp2UVdbhdPlwCCKq7MAQJZJavFTC4PSvKdymGOeHg1RV9hCZ8ZHOOvCXSQiyi+GZUR56KG+510jxU4RQKERPz+soih9/RTOpxAl63u6n7dA+gg2nwRnH1mH3Ay4WNjzmfQWDgSBttNFPP9HMJGpZNQfbnl7T57oYzc0d9OR6EhRFRRu5ZJP1S047Qz6ZhNdeg6Ym+OM/XvuBJcWe3/xnAmxnEUlZfp8bgAk9Q5XkKHnPK4hM6Jll9lgb8tVd0aGA6LLdU0w7Lt3te7CE2MmuXWjxn2CZKezVoQSCgWWkMfUwoqMWy9JuWVnDUtpmU58qqW6bpoGRDZOKvoJD2XXLVbU3sYlbBcsmPgqCEGdpMi0Absuyrpag548vAeeBR7AbKt8CPmNZ1tmibb4EtFqW9QVBEH4V+A+WZf3Kase+1RMfb5UkxOuNJ156gnp/PaIw7xRpWiYjsRGefezZDTlHcWOXoqgFKURbjpCstJh54YUX+P3f/31kWSYajWKaJrFUjGBLkPKKcto+3UawyY4QTxtpktnkDbxnveRJ80qpgBuRVrkswr12tVIoenBlWaBN0v3OP5HKJHArOZJqGVwYfBMkhd27Hy1snq+i2omB82Q0d4Lc604gdy/f/BMU2YniUNCyGpqeoe1D/9uy5LK7u5Px6X40I0FAdiAIIqZhEvDX0d722/Nx33nnC1G2K67F6YewiHz39vs5cgR++wtfAa2FMrdCPJkmkg4zl07w0M/FUF1fAmMMpOOgxMAp0d39A1KpGG53O1ADvEQq5cDtNmlvz2ITbBcwTTh8iH/6p6c5caJ1Pm6cnK1JIMCycZXrRMki9N3LNMe2Ekyp0NdnH9/ptH0Ln3lm7QctfsqxcD6LFy5LpFNez0z1v4+EiJtGoZINFF7/Znnwqo+bjLyCIJYhFP0u2JZ8cTzlHwdKmwWzmSk7AAgNkEH0IGAhCOBW7d+PG9FYeDUNjMWa7PwiIKtdRnI2Ism+nAf6GJYlIQgmsrN+MxJ+Ex9orJT4uCxRtiyrbLmfbRDuAS5alnUZQBCEfwYeA84WbfMY+b/A8ALwLUEQBGutWfC3KG6VoJjrjRthI7hkY1fu/UlYUa7y+OO25OJb3/oWqVQKSZLYvmc7mfoM+x7YR/XOas6fPc+Z186Qnkmj1qgcfOggYpN4A+5ZK6uFk+R9tgOBQInP9mqR7WvGctVKRznR+Cj+stqc84cJlkkweCcDQ2+QSoVLFjy2xOEbLJRVLPSH7u/vQvFUz99LgFR4kdVgMZqbOwj3HKHcW4NiacxGU0xNxdCij9CdhpYWmZot2vJV+bkr9vgXNPD95Mc7CAT8zKXLMa2znDkXIJEArxc++aiBKh3MEfhaMO+DuUHwvUs0msHvvx+bYNvXqChJolEDOIztfjpJPF7Nf/2vT5NItBYHN/L00620rqOxcS0o0dm/9ISdFOkX51NrTBNGRtZ30HzKY/HixNOwmGDnFwylF3ndiPaH3X6ej08BdgU7YZnMmTo/7w2ssufKWM25YmGzoMA4iA5EqRqslG3LhwtRUgpE9HoT0qttYFxK2yy5tiHmpDe2B7psr70Fl13dLjis3BiS/X50P9nEBxPXVI2+RtQBxSE3I8C9y21jWZYuCEIU2/tq+oaM8DphYdIa/GwGxdwIG8ElG7sUlWh0iO41LGYef/zxAtkG+ynDMyee4djIMX7yjz8h8e8JVIdKwpFARqbn+Z5ChXs1Gcn1xtWkVa5rrEW+xwurlWrlXlJzY7idHpugOlRkkuzc+TBud6Ag3ZnXfpfKKmyU+kOvdC+Xk3oEg620tT3NiRPPcObS6yRTFl7lID4vpDQ4+Y7OHXcqBLcs1hBPTMkYyUnOnK/A4XLQ0gI1NTb53hoIEVL99PV1cPjwEbxeSKVUdD1KhXsrmNuLCHstsAW0NlS1PFe9z5+lBU3rRlX92DIZJxDm29+2CfaC4Ea6uqC1c+2NjWtFoaD87m/TeCZEx8EBWoOT+Ylfnx47D6d/Zb37MumU9kVen9+PJpeHT1NV4i7y897ANTc9ruZcsbBZUBQ9mKaGZaVwuBoAsExtvpnwBmBlu8GVCelCbXOesGOCaWogSAiWgejIbXMD/ajfr+4nm/hgYk2Jj9cJSzVPLqxQr2Ube0NBeEoQhBOCIJyYmpq65sFdTyxMWoOfzaCYvH1ewB1gJDZCwB3YcHmFqjYWorrz0LQoqtq47tTLvIzHKTm5R76H5L8nMS2TQGUA2ZQJXQphGib9b/QD9j1zSS6O9BwhnAqXVMt7F6UpbjzWm1aZv741jzVfrRQd9qNv0VGQAzTv+wyaaZHCieUMkMok0bQwhw59ifb2Th577Fna2zuLKtAd2CQ7jM1U8t/PRxKqaiOzs5cYHOymv/8lBge7mZ29hOqrscm+mS21i8vM/1HPZhMkku1srbwfjyIxOvUsknSaQLlO1/eCJWmEABMTNgE3dJCdMinNdsqbmAAEmW31GtEoTE62cvTo06RSAdzuEWQ5AMa9ICyQHuSa/pqbOwopmJZlkko50bRdNDcfxK4jBABbIrJEcOO6DD4WYsmESOYLyuEw1N+zlXBM5Mhrh+gd32K/6b0EX5jAbkjtxJYqbQCWSacsvcje3Dk37txNLg+/WR7kD7Y08pvlwQ2x75Od1Tg9hxBEBcuMI4hKiTzCNGLzTY2AKFcAFpjJZZMerzcWjgkokOHlUyuXRvH1C4KAAIjOrbYzCtxQP+rNZMdNvJ9wMyvZI0BD0et6YGyZbUYEQZCxny/PLnUwy7L+CvgrsDXZGz7aDcQHKSjmetsILmrsykkUvN4Pc/nFbo6NHqO6rprmDzcTbFrJRq5UxtP9k24ES8DtczOTmqE2UMvg1CAzoRkkWSKcChPWwngcnpsm/Sn22Z6YmKCvr4/JyUmqq6sL0ezLXd+ax7pMtTJfQS5uOF3ZsaS0OdOuYD9JsSSmqmo/p049h9Ppx+Xyk0pFiEaHaG68Z0W7uLxkKDQZQBDSVAVceNwWY1M/5vzww7zT67el0EVV+YFLOoFynfEZFbdLR8gds68Paqp0ahsUclk/mGYr5861FqTRSOeXbfoLBvcsMS9fXzQvuf7GhcGNV1VQhhUSItuepqurtaigXEOg/QC8M0DX8XpanzoNnxEgsFxD6jVg1YvszZ0rgP3f/wae+xqwnBRhJeeKhXISUfIiyVWY5hyWGb8pdnLLSVwspKuWkcjO6kJVXxCkdft4bwQ2kx038X7CzSTZbwG7BUHYAYwCvwr8xwXbvAz8BtADPA68+n7XY8NmUMxGYimy5/V+mL/5m5epc9UxWz5LJBzh6P84yv5P7UeulZddzBTLeKITUbyql2wmi4aGz+lj25ZtDI0NQblNUJ88+CTfOP4Nqr2lf5jWKv251qbFvM/29PQ07733HqIoIssyW7duXVKbvR6ZUijUy4kTz+SSHi3q6+/j0KEvlZDFRZ7aq2JlnfnU1Gnq6u5jbm4MTYvidpdTVbWXqel+2PPx0o2L7OLyMpOtNWnKfXMoTp1UupzJcJjxkN/mdAs0xAktSlXt2wQrRHxSHbGEn6HxGqJRCUyd4LaG5TNfMsvIaDwNa56Xjg67ugyLghvXh5yMpv/dZ1BEwZbvCGJJb8LQUCsOB3R32+dR1RpuO1DDUBb40knsRsw8Ec5/zbunXANWvciu3Pmuw7mvEletY15CTiKIAm7fg/Zx0xfJJN9BT984/fByEhdhQRjOemQkcPP9qDeTHTfxfsJNI9k5jfX/AvwA28LvWcuyzgiC8H8AJyzLehn4W+DbgiBcxK5g/+rNGu9G41YIirleuNEa5YWkprOzs6BV9qt++qb7mDQmGfvpGN/8028un95Y1Kip1qhkM1lCl0O4FBeWZWGkDLaWb+W5//Rcgbyup7mzmFS7XC6Gh4dpamq66qbFvM/2l7/8ZXRdp7q6mubmZoLBIOFweJE2e61jDYV6efXVP2R29iJOZxmCAIODrxGLjfDQQ3+8bhu5tSIaHaKychdbtuwpvGdZJtHpMzaRXcYuTlUbSSUm2L/HYnRMZC4pIYkRGqp8xGZjdHTk/vgWqvK91DU9T7nUSiYtEnNM4fPNsbvB5AK1BUnMspkva2n6WwZ5bfT4eC/V1V1I0hDxeCOBQAdPPtm6PqlykcNHIQkzEwZnACRXQc/uctkE2++3/6VS8Prr5Bxfiny+M27QAmBsB2kq55iy8jWt2IDW2rpKOuVij3EmNBh7Cf7vG+NGsuh6rlLHvBzxBNZE2q9HI99SYxLFrWSSP7UTOC0dCwlJ8iFIAQRr7ZXgm+lHvZnsuIn3E25mJRvLsr4HfG/Be18r+l4DfvlGj+tnGRtBgFeqwN4KATRDQ0PU19t/vGt8NdT4ajAbTUZGRlYcQ7GM57afu42Jf5qgrL6MCr2CqakpHA4HX/3qV0uI61qlPwudQH7wgx8Qi8Wor69HFMU1NS0uhdbWVnbu3Mn999+PKM63WCzUZodCvbTMTfDTyz8k5a7EFTxAVFaWHGt/fxeJxCQulx+HI9/BJ5BITK3o9HGtWDI4RYuiVuyxK8WwZOW4ubmDnte/huL0URNUCU3EmUvOUb+9gy8/FSK4eyFR7KJhy27GxyQswUA2JbR0FD1j0Lhjx9rCa1Zr+lsC58/EuPhuiMP7e7kU+A7TkVqmZ+s5dCiMz3eE6up1yiSKHFNUfx0pLYbb5QV9DiRXoTdhuWd/9vu5htTMVpgLgmiAGAOzstRjfAmsqeq7YjrlgmbYiQk4+TqY/hvmRrIQ65EiLCTGglixeJs1kPaF82hkw2RT30eQ/MjOmmsi3MVkOH8eyzKxjCQggqBjGCKCmUB2Nqx8sFsEN7uSvolNrAc3s/FxEzcY6258W2L/L/ztF+j4nQ6+/973cZQ7ChXY3l77GMW6X1Gwre4CSoCu/q7reWklaGxsJBpd0FgajdK4iuC1NdjKJ/d8klMTp3g19Sredi933343d7Tcwac//Wm+/e1vlziR5PdZS3NnsROIKIpkMhnKysro7+8vbLNS0+LarzcEdJPNvkBj42VCod6CXtcvObl7x0dwA6mBHxEw0kuMtZdo9CV0/TyyHALmAJBlBUNPEp16j9D5F+j+wW/zUtevlTTYFR9j9Wa2xdssbhoMo2lhmvd9ZtkGTMhJhg78Gm6lHNMKsXuXn09/6gk++vA+21VkEYbwKn6CQQOHDOk0gEJd/ewy228AMjGSkwNUlGcZm+5GcfnY3WhRVZHl0qUAihKgf72/I4ZmLzqA5l2PoKWjpLQ5LCNDKjGBFr9Cs7eBj+98nV9t/CHuiQFiE0ncbrj/fshkoNCQqrlB1EGcA0EDcbdN4LXQsqe/9ga0Bc2wA+/YfHvgIIjivDNJ18b837GWZj9R8ttpjMVYQopQIKymViDG6bk3MLKzJQsOPTOxbPNh4VhF82iZSUxjGguwrHTRcVZuTFzT9efOgyDZ3veCCJZYuN73kw5TdlajlB3GU/5xlLLDmwR7E7csbmolexM3Ftfiz50n6OdePUdFoAIUODZ6jMMNhwkEAoUK7I2wJ1xNy5zXKoNNXKPRKOFwmCcXCl4X2MKdn4vx8vmXuaPmDu7fdn+hKv2Vtq+sOD9rkf4UV9fz40omkyWLgbUsBJZC/nolaYqystNkMiLJpMzevXX09BzB4fAWvMTdQLCstlAxXkiw4Qiq6mRy0oOup3E4hoEG9CxIAkiCRM+730Fx+fArHlKJiUKDnV3hXksz29LbBINPr9xMmZN6wD+yMKQnGGwlWN1iE3AjbVdzUyGQnPZ9LqnGNoIUw+f14Sszcu9pYCogHsP29G4kFNpPf//pdSeJLgktxNS0jOx0oGXHcTmC6IZFXc0cvefmpR3rQpGPebCqmba7nqD//CtE42OoZUEO7vgkwbPTBNVatv6ak6qX+5g8fxJaDhN21lBbC4WGVONdEKewe8sPAjUgWCUx6Qtx7Q1oC5phQ2kYuR+mi5xbrtVyJYe1aq3XKkVYWKG2zDksRIzsGKYxiyC4EEQflpVZFKG+kLQXz+O8B7UEVmZDPajz5xGwQPRjWamc446A5KhHwFj1GJvYxCbWh02S/QHCtRDgPEHPzGbwV/kRRNtdsW+6j/sb7y9UYK93AM1aAljyWuViIv7kk0+WyjCKE+tytnDJyBn2ljeg5bS/G+kUUuwEAtDS0kJ3dzd+vx/TNJdfCKwB89f7ZSxDZM/2BoJVlRgOgTNT54lO9eGsvp2Wqr14genpPlKpCIIgLCCOdiNac/NBxsbCzM7O5lLdxklrChVqA4gSikO1kx4tA7cggRgokpGspZlt+W2Cwc4ViOwKBF7Zbt9PIwPZeC6lUrDv7SLZQwcofw1zrdiPzBNgJcB0gWccqCcUOk9Pz3MoSht+f1OJW8dVEW1Dw+FykdJAcWwla8QQhDIcko6qzttOrgsLfMyDlkpQuReSURB8cCEKboUdjggXjRoeeVIiPuliYuoMb4Tc81p1WpcJHgqBdI78omNh6uiSDWhTo4hnLsC/Pr9GTXVRM+zJzpwbSdGPV7BcWY+OeZFsYzIKl/rQp15DvugujHOtUoSFCwzTTICpYQkCguDEsnRMfQpRdK8aoV48j5aVBsEJljFfAd8g54z8eQTBBeiIoool6jkJVgbDSJCMvLIZ7rKJTWwgNuUiHyBciz933nNarVHREnZ1S5EVolq0pALb0dxBWAsTToUxLbNgddfR3EFvqJfO7k6eeOkJOrs7r8pLeqHsIv9914JHyq2trXR2dvLss8/S2dm5WOdcnAAoCCA6mNIi3FNROhcbVYXv6OggHA4TDocxTROn08muXbs4ePAgIyMjBAKBa0pqbG1t5WBrPe1t91BdVclwaJyLF85TnnHhMmXSWpTjAz/iwsCPyGZTyLITSXLS03OkSO4xBKgEg0Eeeughtm/fjmkKGEaK7Vvv5KEP/S6GkUFx+XLbi2DqC6qw9jFKkUt2zMQgdh7CVRDbazfaLdxmRRSTc7Ho+675ZkRTsyuwogzOcnD4lpA9tILz8+CbBXEWTBVEBXwz4HQAIv39YyiKH7d7FCHn1qEoAfrP/FPuGnrtr5k1kh9JYd9eHS0FPvcj6EaUrB4hNifS1JSTxTR3rH6cYhT7mE+Pw5vH4CfnodwPsTm4fBl0nZqqNPv2zSBXz/CmcILE1nd56ol3aG0uGrsStHXuZtYWa5vjYJ4G5QqlC5r531nZtQvL0nIe0BbW5AhW3ynk3nCpprp3jb/nHR32PuGwnUKZ/75j8bwslmvMkop+n8Tsvy4pBSnxjJ6YsE3RYxrmVnXRONciRVgoK7EsHbAQBBkBAdtxVsCCgr+0qU+hZ6cwjTR6+mJhjMXzCE4sMw2WnvPaZlm5ylLSl5UkMfnz2BX2bC4sRwdLwsiOI4q+BVKXa5eobGITH3RsVrI/QFitSW+lpsh8hbr5w830PN8DgOW0cGadJRXY5ewJYeWI87VioexiYmKCs2fPMjZmW6yv2QbPWJwA6JA9KEKpMnEtTiFrsd9bqrr+9a9/fWPiz3NQvQFmw2NMhGIkzSQIoKXmcBEkOZfEQ5SoIOFTAhhGmvr6NiTJVVSFnm9ECwaDfOITnyi8Dl34CIMXLzA+FiesRNlasxWnLIIgoSWniqqwyyQ7Zm4renLgzAXKBMEXAmeKhemPS2MJN4picu70EwqP0n+5m2h8HNW/leZdjxDccluJ7MF2+GhlaKiVxsZeWlq6UJR/QFW30tzcQjAYJBqN4vf7c+OyoTgUojNnF4firNAcOL9zkKqKAX7uQ3Dm7G1Iwq+TNv+NjDdKQ8MumptX8hhfgJxFSe9Jg67IQwyV30FjZJSOrRatexyQyIDfBx43hELM7d5CRIyiZzPs986hyXOcS76LMi0R3PrhwtyVOqacA89YbtEBSz2RWFT1PXMBR28aWffl1kDrTHhc1Y1kHsWVacNIYOozWIBpaIhSqRREz0xi6FF74SB6EAcvI7nd4FcQ56xlx7lSpXyxrMTex8Jhe0fnpBeC4CwKrIkgS34QXEvIVex5FCUF00gjSpWIoqcQYlNc+baJ9BtYZgowMbLT6JlxHMo+jOzlZSUxxeeBLKaZzlXdM0iOrUiO3Dys09JvE5vYxPIQfgZspxfh0KFD1okTJ272MG5JLEeki11Bigl4ngQX/1wb1Tj545PMjM/wyJ2P8MVf/+KqZLGzu3ORjCT/urO9c83j7+zsLAlgOXr0KIIgoKoqBw4cIBwOl1SEl104xHKBIuL84/Gp+DhvjBzjtdmxJeegMIdFkhVV1UinT6LrM9xzzyM88MAXr5v7xkoIDR/lRM9/4cKV48iyB51yTEvCMjUagg/w3GvHOHTbCFkjw56aVrZsacbnC2JZJoODvVy5cgDDOMkv/dIAdXX7qapqwiaYYc6f/yR//9ev8amHW0llQoxM/hCnw0PAHyBrpNHSSVtGseNhSiUdauEYxD4PZkVuvieAHjB9IErgP2tvs2oISSeLCXz+td2AmXcZsYOJImjaLG23/7Kt11b30dvv58gRm1epai+6foRUKsBDD51ElqNomkVbWxv9/f2kUhHc7nKgHYBUdAC300v7h74yf/r8Z8i/h1WxTDT8upCLb+zV93Lk9McIiFFUM8ycPIyx+wwHtveyI+Cled8DBLPl0HeeyU/cRQaT8bFhEvEoNDSQckkEFZWDe39jmRM9gb2gKX7YaWLngz27zC5P2BXsIpcbTBNGRuDZZfa5SiQjr9j6YkEgmx7OWTzaOmaHsqsQYZ4nw5ZpYehTgAAjw0gxCQFw9maRz47ZKURjY/DZz0JHB3pzsKDhLpZ5FKc8FpNwQ4+CJYFg5DTYLkTRi+SoQCk7jBY/uihWPf9aKTtccm2ryWASkR9iZIZzsg8JMOwmSRw4XXUl5zCys5hmAklWl5WBFM9lYWyWhWXG8ZQv8KffxCY2sQiCILxtWdahpX62Wcn+gGG5Jr3VmiJLKtRVQzz6+UfXZf+3UQ2RxU2NZ8+eRRAELMuipaVlkQ3einaCFdtL9Kzh2X701Dlq9Rc5oIU4ObODQP0DS4YEzUtW0sAx3G4FTaugr+8dnM5r0O1eJULDR+k5+icoDoWqQAvRuWHM7Aiys5GKyg+TMPyMjRho92zDDWzf3l7Yd2TkEidPDgDbUNVWXnnFw549p9m3b4zxcYtotJx33/0WmrGVE/2zPHp4F8FKDwNjx5kKh6it3snB5l8k6HHlGgznm9lmkyc5NRHh1YFyOoKX2apa1JTlm9ocIFwCoxzIsLaUvw5sAg8lBB77SUl/fxeKtxa3aIGp45ad4PDSP/AqwaAEc++ixePs3fsomtZKMvkMun4Oy8rw5psSd9+dxOPx0N/fR3NzHT09Q8A+FMXMJYnO0lj7S0WhLtDSIlOzVkeSq7D9W4SuLggE6Dp1LwF3mozh5W0tTrDpxxhZlbPDewm6T9Pz3ou01T1C8MA+ZjJzRKYTnJtyo8lVKGMW9c4oV9IXOPj8wDK66WWeSKz0tGGjYyxXQIke3EoDto5ZWKBjzle8RYeCIDox9VlMlxPTlcH9pRUJ2wAAIABJREFUlgnT02g7E5htexGje5Bjc8hHjqB/7VMIVeUrWu8tZY+3kJTnY9TX0yS6mge1mR0HwYkgyJhWxq5om1kgimnWIOXWOIaRwNBnABNBrF+22VOU/BjZsN28aaULTZuFyvYtiOvhK76JTVwPbJLsTQBrI8HXEqCzUQ2RxbKLsbExtm7dSkuL/YgfSm3wVlw4tHcWHo9HZ/uIJf6NydhFtIyTHYFydlddIekoo6u/i28c/0ZJFXxesvI6dl63G5fLIhqNFazYViPZoVBviYvGup0riqqi/b1/i+L04VbKKS8Dn7uCdHYOS5QpK2/gOz94E2eFkxlvFYcRSKXChQj6S5dOE4vVMTBwimg0iqqqnDtXR2/vKPfe247frxKPv0BZ2SyTYT+ReJDysq3s2/lL6EacHdt9NskxJ0A7Bc4PA630huBIz2UCyjZURSWUijKZeptD0k4qPefsebP2gpQgFDpOf/8zRKPpVeZigRvFgmj2fPIjZha0ScBCcSlEkxfAcQ+YXio9Oh/72BFefvmTmOYPMc0KwE8iodHbC3v3SmQyYwSDD9LW1lHiLtJY+XlGBpowhVyoiwYn39G5406F4I3iI0NDUF/PULQch6hzbKSB/ff8I4LuJZv2cynp4tBcJX7HGP3vvELwyW/zwpXvc7urAqVSglQKJZ1mTvbx3oUInwqLC7yoe3PzexIYAPYBu2DqEoyehn/ZAVLn0sR8w2IsV0epXMPWMQsCiHKOaOV0zMXkVpS8iJIXy+XAmjoBsQyZvSLCrAthKoG1axuZcg8A5vA5hOr7S0+6QgPiag2Ta00pXDN5tMAkg2XEsZ822P+M7AgIDUiSN+dUAqLosavUy8hABLECI3vGbrgUnPY4jRiyq2ktt+KG42pTOTexiZuBTZK9CeD6u4KsNbRlLWhtbS3IQYodO6DUBm/VhUOusvjO208hCBGgHEEQgXKm5yJcmPkaz0e2UeWpIq2nC1XweaeQKImEyNTUIIlEAq/XSzSqkcmsXJ3P+1YrSgC/v37NzhV56YuRifBL9QepU7dT5QsSjY/hz0W7iw4vWS2M4vQxp03zD/92lJ8cP0XN1hqmX5YZag7ibcmQyYygqo3091dw9uwIbreb2lqRQOACqjpLIqFgGGkEQaSsrJpweJxo9BWOe7x87P5WMmaamuoM9iJDAVED4xR2hbl10QJnIJ3ikL+CZOYUle5ysHxgSoTil+k5cQlFmcLv/9ga5qLIjaIYmRiq4iUVvYTbXWFLByQ3WroPVQ0AbhBMPC6V4ckAfv+3CIcrEUXQdQFJcmOatmqgvf2zQCfBIASD877of/HfYhxqHsC0QMvIBPw6oqDT9b0GvvQ7K97yjUOuWtyoRvj+hV0oso7PN0Q6VYdQ5sOTStE34ueB5gTRPQFobWW0C97y/TW/uGc3dU6R0WScf/zpBbaebIe7R+zjdnXlpjUv9WkFvMBpiI7DG7Nwfh8Iu5YPiVmHpvpaUUxq7ep1GlHagrBAx6ynLy4mt1XliHsPodOHMHje3r++ASQ3pC301gDiaATrzpWt95Ya03Ikby3WgCuRR6BAvi0ELDOJfbC8NMdAEP2AhZmdQBR3gJkEhPkGSlhyoWCZs0iOWtshxUqDqCCKlVjm7Mo34SbhalM5N7GJm4FNkr0JYGNJ8FJYriFyucr4WhoLV/PDLl44hC6F6H+jn8nRSarrqund0Vs4niyPouu15CWJc5k5Ls5OUqsaVGWq0HSN05On2V+9n67+rsJ5TVMnHB5H12VEUaSsrIzjx1/nvvvaV5yL/v6ugm81UPi6UgW8WPry2Na9RDIJBkaPc7i+DbVsKyktiluU8XjLMC2Bqalh0mknfr2OA7Wwc8dOVFUlHI7y3e/O69Y7O9sRRZEtWwwaGkbRdQlBsDAMnZGRHurr26iurubUqZOUl4scOzXIg20tBAJZRMkFlhMsAWQDJJN8Y9zCBc5kJsVPo9Mc1vu4dCZJdG4KtcLDXCqCYYhMTFxB0/4/FEVFkty88sqXCQR2rq3Kn7NjbN75ID3vPAcIKJKElo6jZWc4uP8uoB8sFbXCR/iciiSNMjf3EH7/MQC8XgVJsshmZ2lu7uD113t59dUu5uaG8PkaeeihDk6casW0drBvZ4hyn0ZkTuHM5Qbe6V2jBGQjNNm5anHH1uN851QrFc4YWiyIENDRUwL1vjmiaTcaGqqn1j7tUCu19Z/nH97pIjr0BqpRz21TD5IZvxMYKfKiXmituBvYAu+cgtfabRnIag2NKyY8biwWyjWWqyIvIrez4zi+d4nMzoxNsP1+8Hrtg4YTmNkIzn85Q6a+HBqaoKrumqO712INaC8ILExzqkS2kUmeArIF8i1JOrqRACuLbUEpIYhuJFc9WBamHsIy4yB6kEQfouSdH8gSCwXTiCHKASRhnoxblrWibeDNlGtcuz/7JjZx4yB1dnbe7DFsOP7qr/6q86mnnrrZw1gTekO9PHPiGZ479Rzvht6lQqmgxlez7m2uFTW+GpoCTQxGBxmODRP0BVckwVd7jvbt7TzW/Bjt29uXvYZ8YyFAdXU1kUiEV199laamJmpq5vepqamhqamJwcFBhoeHCQaDJX7YFUoFrw6+ytTAFG//y9uk9TSCV2CXdxfH3jhWON7ly10IQhS7Kgtj8TFEIUY05eacUYtDspsjk9kkkijx1ANP0dTUxAsvfJeysikURcHvL0fTIiSTM/T0aNx++30lYy3GqVPP4fVWlzQaybKLWGyY5ubHltznmRPPALbk5YC/inSuXzmiRWmuvp3B4R7ARJY9mGYK2WHwyEe/Sv+FCdxuN4FAAEEQcLtt27zBwUHa29v513/9V2ZnZ9m2bRJJEtE0cDozuFwOtmypIZ2OMjqaQFEsNE3m1GkNLWPxYFsDluXC6ZRA1kAAPLMgDQCP8W7oXSJaBLdj3qYvNNlHavTH+BQRr1KFljTo63+PcGSWRCJNOCximgkikQtoWgxRFBgdfYtz517C46miunrv0h+sxBUAfGW1BMobiMbHiMVD+BQPB/c3EKwqB8sPphOH+l227XyHiYkIoJFM7sTjyeB0xtB1GYfjQ/j9d/PSS0fweKZparpCeflbXLnyEopSxej4QSYilZy7UsOV8UpGx10Eg9DevvTQCsj7soPtrmLpkJ4FyQOSa+V9i1FTA01N1Ey+x9nLCiGjijl5J7V1r1FljCNbEj41zhZllIPvSfi27+fdsRr0SA0t7naa393G9lAzeqqRoG+O9u1XIBLBvoghoBr7ZubhgpGjMHoIij6vuFwwPAyPPYYtMXkGeA54F6gANvb/p9UgSl5kVwMOZReyq6FALEXJiyCqWGYMy4wjTsdx/PcfIU9lMXaUg0tAGBgCpxMMA2bGsXQd7mrG9EsYc5NYDgvJW4PDvc7o7t5eeOYZeO45ePddxKoG5MZDCKIf05hFzwxiZCftJknJSzrxNoY+Cwi2X7llYJpxTCOKJG8pJGuKkhtBcGBaKURRQZD8SM4gkuTFMhJYmPb7ohfLTObsBKX5hYJ7fwnxNrKTYKVz2+VgpQtzuhD5ijuAIHrg/2fv3YPbuvMrz899APfiDZAECD5EUaJEUZYsi7Ldlty2LD96Eu/22B3FlelkpzLb651s2uXqpHY9mWw7zihxbVI18U65ervaW8km6elM0klPR91xJ227H2pZtiX50ZZESyZF60nx/QIBkMAFcB/7xwVAAARJUKJktwunyiUTwP3d3/1dSDy/7z3fc6wMRm4IQQyUE/qbhLXOt446bjb+6I/+aOzQoUN/Xu29Osn+GFGoTgJEPBHmtDmOXDlCV6irSEBr+cx6oVYSvNL1rMdm4KWX8oRyGWJYNufmZg4cOMDjjz/OgQMHykl4fuPwnf/6HZKZJI2Njexp3UNHU0fZeLmcl3T6nzFNC8tyksxew+fS+ZfRZjSn7fksizJTqSm6Ql28N/oe3770bd5980OyXi8+1UBPzZLNOpme3sCVK2muXLmyZFNQwPj4KTRtDkcJAdW0ObzeaFlTYim+deZbRPLEPKq4cYkyCCKJTIK7OvcT8rUQT4yQmJ/E622md8+XiW64l29961tEIuWEXlEUrl27xuOPP87AwACSJOHzXWJ+3sTpVHC7A/h8Bj5fgFxugbGxBH6/k1DoQXp67kJ0+glEjmOZCzQ0RkDOgHsanGNAFDhQ3OAAKLLCnDaHNfou3cEegk43ggCWaTE2OYRlWkAjmmaQTk8jihammUFVG1CUALqeYWjoddrbP4u32vcpNWITV0HA62mic8M99Gz5HJ2tLrwBB5gOkBbA/R44f47DkUKS9jMyMkx7+yS6ficLC11kMh4effR3OHLkMG73NFu3nrXnaQWQpAzh8OvE458lkWhGUWxuWpAcL7OfWkR+I1D0ZRck+2cjDUrjKgdXoLkZDhyg44FNDI4H2LS1ncarc5jKBLprjt0NOe5z7SJqhOHKFRoOHuDIkfy9D7qYG5wglnHz5J2nadZHSi5iFJgDSv3L5+BSCs4EwVXyepGYN7DYjBrJH38E6OKWEu0KQktDQ/GmlBHwr/0D4rxuV+MzYHR57A3DbByy8xhtAWiPIiguhJSImNYRtDSOTY+snWAX9OmRiL1eR46gd0fIuuzNliC6MfUYuXQfeuYKem4SLMsm0QgIgohlGVhmGsnZVvZ3uCCVkBwBBByYRhwjO4KpTyGIfiRHIwImlplGEJxgaYiSp/pGQVAwcgWJ2/JkvAC7sk6R9BfIrmUmbg3JXeN866jjZmMlkl0Po/kYUapbFQWRkCtESA1xeODwmj7zSUBhMxBLx8qcPK4ncGZoaIhAoDzQpLShcS3YFd3FZnEzT+x5omzjUDped/cTRCL/GcsKIstjGKafn03eySXJSzqXxrIs4loc3dS5lrjGRzMfcSl2CfxwaWyBV1/X+O7rOV57P0PflQncQfeSgJzSIJ6j8+OMxS6RTsewLJN0evUwktIgof75GKooIZg6UjrJ0bde5O0zfwdqhHv2/zEHfun/AYeXo0cP0dFxikzmNWAxjKUsPOjgQWRZJhjcSHf3RqLRZizLw6ZNDxR/qft8EZLJndgE2sbP3lRICkch9D74h8E5iu1GcbC47s/se4aQK8RwYtiuwAc3EfF0ghABQSSTSyBLDnK6iSzKyLKMJJnoehpRdOBwuBAEAVUNYBg5Bpb7zktqPh66BJZuk35/CkJjoF4CrR1iX4bEb7Bt090cOPAAsuzH5XoHRQnx+OPPsH//Lubnh2hrG0bXVXTdBQhIUoBkMsdXvnKYUAisXIIvPDzIi/+pj12dNYTSGJqdrFcKQV4xtrwSfX1w6JDtlFeojTzzjM0Xhz/qxjX2m/w75Zf4N967iRItykAKUulQCIZzzYQO3MEzD7zHrtz79otFbfXB/D2MYesr8v/f9vQKITErBATdKhQIbayGEJyhIXtdAHnWxNmXQ3AFsDZFEHyNiJ4mpKwDIWvX8wWcCNOJvLf0GpB3gbElNmLx//WLR4t6YtNM2f7elu3vjQVYGoaRsi30it9pGT1zmZx2gVzmGoZha6dlZzOSY7M9hpnGsgwQ3WAtYJopBFFFkkOIkmfFYB3ZGSkG5lhmEkFUy6wKK1EW7FPALZRrrHW+ddTxcaKuyf4YUYujx3pZ391srGYBCCuH3ZSiMoIcyolhLSjVdF+6dIlMJsPWrVuXHa+7+wm6u+0mt8B4Hz878QI7PDoj8yNMLUzhEB3c0XwHrb5WzkycweVw0b63nQv/fIHkbBLFr5DJZMCChC+BJmlFEr/ESlCLM4zF54ws2YTdgNjbu3IYyc7wTp4/9jw5M0fYE+ZqZAe7HE7kyX4kbxR/Qw/pbIoTJ16gu/sxBgdfRlVD9PR8hrffPoYkvY4s7yceV8vDg4puLd9gYeEneDyN7N69l0BAZSyWZsTfxunMOB/+6D0U7QMkU0JRFCKRCAcPPgecpZrTB9hEOwJFF5VYZo6Z2SxNDZsBHyPDGSwrgOJw4XQowByCoGCaOoqyuMnSdQ23O1ySKlmBinhxLN1OL3Sb2EE4nTC/G8QBEKfshMf5IDu2bmLHjgi29/Oh4nBer0IyMYBgOVGcHnzeZlKGjtsdJhod4tBXE4vBOkKNoTRVY8t1+/UC8iEzxabBEgePAo8Mhcp55DPPFAj3T1e0zyuXSkeBp6pMchn3lu5d8Ez3Mg2NL7JiQNCtQCmhhZU14xU2g/KsiXxxJv+zTCqsQ7bkHmUyoPrWTiDzLjBlCAQwxbT9HTcWMDKXsQrfCdFAkgMYxjyQAyQQFARUEHQsKws4gRxG9hqWFED13W83+ykbEESVnHahGMlu6rNIkqdm8ruabWApanVKuZlYy3zrqOPjRJ1kf4zoCHTw0cxHjCRHiGtxAmqANl8bWxu3ln3mZrp+rBdW2wys6FmdD7spEHDnBicj50bYzOYlDY21EPXSsJj29nY0TePECTulsqurq2y8alZ6pU2aqkPlwc4HOdhzkBfffrHYFOpX/CywQE7MYaUtgp4Mt+0S2NihoLHAxYm3uG+rTdqrb0C66K8xiKdvvI+XB19mZ2Qnw4lhphameHXoLTY2bGNTQ89iA6VsP85/992v09x8By5XCJcL9u49QH//+8TjbxMKfaFMtw4Ft5b/t2wtEobIcSw8kkKzp5kz+hkmpyeRNAnREonFYvT1QXf38vOvdFHR9QzDQ8cAgcaGTiTZQMy6UVU/TkcT0Ew2O47TeRVJcmJZFrquoesaDQ1bSlIlK7AkrVAF9wZwPgq8AFoLiFdBXLA/LxjAVdDC+Qp8R3GdD7/3DXLe1zAMC6cM2ZzG+NQgAW8z++69C2i3zyPKi0FGBeKsjS9PspfdCOQfr6/EonftWp1Hrpt93jLuLcs2NHYAg8Aoto92AGgFagjnqQUrbDyKWIbQUu3J1yrrJJ76G6yQG3DaBDudhj07104gl/EMF80Ihj6HaUzblWpBBnQsUwepCUFIIyDa9nlWBj1zDcnRjCAqmPosViHoRvIjOyNkU+8XmwAFQclXv6XFyPd1Jr96dhLTWEDPXs17gvvASmIa8wiCQjY9gCDIiI4WFPcdn3oiXPfrrmM11En2x4S+8T7OTZ7j1Yuv4pbdtPnamEvPMRQf4ld6fqX4uZvt+rFeWG0zsFKlG8oj1+POONa9FtmRLMPDw3R0dNiV10ht0eyLYTH2Obq77V/4IyMjKIpCR0cH9z9+P4eHvsHC0Z/gcTXSE92NMx3jh0eeZcjfxpCRpSPQwe/e87tLouUDaoDpy9NM/2QaQzLYsNfJ3U05tCykMzIOp06r/yoPPWQ7Edzo04jC2m0WBT6nJzBFE8PhYXLqLNvDPWWfVdUAyeQIGzfaHr8TExP09/fnPaiFFePfo9FdxWr6oaOH8EhOQq4QR988itfvJTmVRGlU2BLZQjwe5/nnn6e7u3vZ8SpdVBobt4KRIxm/hMPhpCXaQXZ+D36fm/cH3ySTmSKVUrn7zv+NibFXSCWu4lYDuFQ/U5N9ZLMLHD16iJ6eg0xOUkOsfb4ya/wQxBQ2AcxgB+HoYKQohNkUNoEt0+fZEtkERppceohcxsDpUGkI+di2YSvwqE3kxcrH5atIP5bdCOQJ0CoselUeeQvt88qxE7vh0Z//bw67ir289KlmVGw8dHke/dTfYHr3YDU05dszDcQvdCH3xew49wKWC8FZYZ307CSm50707BBCQkNMuhD37MRq9OLIh8rUjGXIvNz1a+T0C/kU9vxmSyg0EKYRRB+mMUNOG0AQvSCoiHIo3/Bo640LaYxQXlUW5QaM3CiWpSOIStVI9gKuhxyWWgxKjg703CjoV7HtMUUscx4QsEQvVvYampFA9d3/qSWddb/uOmpBnWR/DCj8Qh+KD9Hh72BOm+NK/AqbQ5vZ27aXs1NneQK7CrpW67uPC6ttBqoRTW1E4/s/+T7/FP8nnA1Oeh/qRewSyRgZprxTjGwZ4fGex4vV6kNHD60qSQFKwmIWsWXLFlRV5a/+6q/KCJXb1YAGnBg+ybbGbXw0ewHnwiTtW35pCYkvXGObr43+9/oxnSaSQ+K2DhPDkrFyMnNTceSIjKdZ4silrxPs7r7hpxFD8SFuV7x4x97Dkl0ISgBJ11CyCWam+2kK71hcUy2Oz9eGpsVJJLIcP34cl0vF73eSTgv8/d9/lUhkA9FoBrsKuZNyycdBKi344hNxElMJFFXBkIxijP3U1FQxXbMaiuEwJWgI9yDLTh5/5A/B0BifjnP4h8cZGNxIR8f9fOnffp7uiMX45B0MXH6TsemPmEuOEm7cQmN4G+l0jB/+8FmOH7fweLpob28nFovxwgsvFG0Jy7ELpNfAvB0EE5gHpm39qzRDIWny8ID93XIZWTxqlKzlQfF48CkZgopKIpkC4578eIOrSz+qYaXEx1VYdE1hirfQPm8RZ4F9wAh2JTuIHWBzFnhiheNqQMnGQ28Qye5qREhoWJeuYHjTAEiOdqwdW8mKZ+D0PHLWvXoVv8o6FQlTUwTJbMBsmsIw06CErq8iuwyZl3fsQpiZzDfr6YABostu5jMSCIDsaEWUQ3YlO3sNU58rT18sqU6X+m8LohtRasLUp/P2f+oSm8Cya10jOSz1p5ZEsAwXJoJdXbfM4t8HgSyC4MEy059q7+q6X3cdtaBOsj8GFCqTWSNLk7uJsCdMOpfG5XCxpXHLkgrnjSQt3iqsthmoJJrjF8c59u1j+IN+Mr4MVtrixHdO0P35bgYdgyiSgmVZZUS31orwapruwvq7jCwoftR8g987o+8QdUdQjSzkm0wLn6+Mln9j/g2EoIAHDwF1Asvyo7pkYnMxlC6FNn8HmYVJXjjxAo91P8bLgy8X57vWpxEdgQ68oycRZRdC3pFElxz4/G1MTX6Ax9taTHDUtBh33/00g4Mv099/HpdLQVUBMrS2drNv31muXJkiGv0l7Mf838ImSV3YVd0XgGfK7legOcDwh8M4fU5U2f6Fomka4XB4xWbUQKCDdDpWrGTbx8UJNGwBv/10IRqCp37n/sWDEoOgTRENdxONbOfoO/8fQX8Ul+IDI4XL1cjUxCx7bnfRuamFoekprp0fwVCUKoQ/n16onoT5BwAfCF6wAmAatuUguxgf7yP5wd8RTM1ANsmlmfO4vRHcwQ5SORcqLQS8HpBa7WFXk35cD5Zj0U4nHDrEwdMGL1z+VdjZRqArfDPDFNeG2dPQF4N4opAzD81hqmqya5F+lKJk46F3SlgCGK0uTJ8FZhYEBcuIIUTsddfNj5C/f/G6qvgFwmRaBqYRww53sb/r102Yltn0yM5mLFNDUFQMY8FOZjRTWFhIjlYkR96vWlARpUZMfRpRclUNsan035YcIRTv3TWT5cJ5aiGHlf7UtnTFCWYSLNH+uyCAZRkISEC2Jj34L6rkou7XXUctqJPsdUYtmuECWQyogSK5VmWVuBa/br31auettenwZlwvLK10nzpyClTYs2kP/dP9pHNpVEHl3Z+8S/PnbQeQoCtYRnRrrQivFlJTJOtqAHJpcLjQkzoT/RMY4gKSy4PqGCfaFV0+Wv5B+GjkI0ZyI+SMeSQxw9x8EqfHQWewE48ggeonpIY4O3X2hp5GHOw5yIlLr5JTgzgA3dTRTZ32ph7m40O4XKGiprzQQDkzAwMDT+NyZbEsP17v3TzwwBSG4WNyMovtBDGK/Yh/BDt4pLCuh8vu17b7tnH29bOk5lNsbtlMOp1G0zS6urpWbEbt6TnIifwYpZuA3pU2F4aWr4rZFnfx+XE7zdKybCJrZAgHvcxpY4zOztLo9fPEZ+/kr35yhNMDtuba1pa/RDz+Y2TZharq7Oz5W1KxrVy8kmYhHSPQYNGz4/eAPo4c+Sq++QmMXAbDFLHMDPPxcbKZFL6GTjTZRW/P521yDatLP64H1eQFFy/adn+Kwq5dAZ5xv8rhs90MLRygY3fDrVGDrIS+PrhwGRoE8Ads/fLx43DfTghvXfrZFTTnVVGy8dCbJEyfiJDRQXLYTyJIYxim/Uss3Ia53w+PPVvz9EvJne1XHQBzLq+TdmKhY2Suomcn15X0lVafRdGN6JCwLA3ByNgV7BKIcgjLytluJMuE2Ky1CfB6yWFlw6MgKPmfndhuNCZYIAgSYADiqnrwX2TJxSehAbSOTz7qPtnriFo9rQtBHSFXiCvxK2BBzsghizIep4cne59ck7/0auddT6/tUi/sVy68wvcHvo9Ldq06bmXYzcgbI9zbcy9RXxSX7OLy3GUkWWJ4eBhti8bEwgQepwe/4qfR3ci1xDW+tPtLS7yXCxXh0vOtFlJTDEpxhSB+hYW5FFfPXcMhGfg8MkNTDZx/d4RQawjdpRP1RjlQ4V89bU7z19/7ayzLQlWCNClxNC1D+9ZOQm6XTb6ivSj5uf/WXb913R7kzd5mxoffQtPmyFgmiuSkxRtFNnVCwY0ceOQ/09PzOJ2dB/B6m+nr6+PrX/9rLlzQmZxsYHray6VLEzz22BzxuIrX66OzsxM4g02yE0BB260A12j2/lbxfsWkGK3NrSQHk5gZk0AgQFdXF7Is8+STTy4buuP1NhMKdRGPXyGRuIbXG13VRYX0BOhJMLJgGYxPX0TLzuOQlbxDR5bhyUvohhOvdws53UBEIOoLMDDzAQHxfd58809JJM4hyw5GRqYZH0/w0cU4fQMfMD13gfm0xtSMyfnzJ5maOkcyOUY6lSSVy2IKDuwNiIFpGnidQT63//8guvGRchItKba/tavZ/nMtgTLVEHLBHW3QooKsg8sLOQuammxiKgg0N+ociA7w+KY+Dhw6sLo3983GSy9BXIKdk3m/OxVcGchNQvRZynyy8973hWspem5fubJ8kk9DAwWD78weH2AgpnNYTX5svYKFIAhIjsiaw0gqA1VMI4FpTGDhQBSVvH2lhSA4EARrXf2fEbQlAAAgAElEQVSflwTk5P2rIVs1ZEWSg6i+e5cE7VwvrjvMZYk/tYllzCGKDUAu32xpgeACdETJi9Pdu+J8P3bP7RtB3a+7jjxW8smuV7LXEbXY2MFiVTekhtjbtpfT46eZ1Wb53ObP8eW7vrzEbWO1yvNq513t/VrPVekQ8tqF10hkErT724se3tWut4BS2cuhU4eIxWKATSLv3XAvbw6+iebR0DUdVVYZmx/jyOUj3NVyF91N3WvSp9uOGSWvZxO2FMHQ+O3uh/la33eISQqBtr2M/uifcbsNvK5O+iZyZPGgeCxOHTnFtie2VZV1nBXPsvfX9jL6zijjo3HE9i48nUNYjMNC2iZd0wPMawk6mm7caeGu3f+eE8f/FFUJoCp+tEwCLROn986lVmyFxs89e/Zw/PhxVFVFURQ+/HCajg6R7dvvzH8ygN2oFiw5Ok7BbaNMpvQ49B1cPeq+EqXNlEDZfVgSLZ5N2DIAS7BJm2nQ03EPJz44DIKEqoTR5ocRlAXu2LyFlvAI8QRcvOTAK4l0bZpgbOwULlcDcJmhoTkcDifZbJZUSkeWbZvFbHaBlpaNmKbBpUs/weMJo2dEnATRSWNggeVAS7dzum8P7/78sZrUDdeNQhpkuMEOLtmTl5/82V+Do6IqtpxrxseBoSFo3wLH/bB9AIJxiAXgH0Owu0LznJlAf7gd0yciJk3kKwayucq1lOiaxbkURrMXqyOM4FSxzAQ2oZNXbPBbDpWSCckRsWUbZLBwgWUAOqLcclMe/y9XfV4SAX8DUe7Lnrukkl7tPMvJN6pJU2SlC8ucRc9KmKYTrByCICI62mrSsv8iSy4q16PaU4Y66qiT7HVErZrhSrL46NZHy4jtanZ3az3vSu+v5VyVZD1rZPE5ffRP9y+GvBTG7VuZkB08eJBnn3+WyeFJMlIGxVBIxpM0fqaRrCOLIilgwdTCFO+Nvcfv3/f7xbVbs8ylQGJEGUSFqLuB/3D7r/Ltq2/z3tR5PrwQ4TPbP0PY08LOyAT90/3M5eYQZgUe636MwwOH+cN/+EPmTs0R1ILs7tnN6+rrmM0mib0JAmqAjqbtiAudJC+9RkYJ4lT8ZNNzCPEhHtpeu9NCtQ0Pk3D48I8wsn66OuK4PTNEIlvovfMpohvuXTLG6dOnicViJBIJHA4HhmGg6zo/+pGXP//zLYRChce7rWT0CwxMG1yZ+z7NXoVtDRFC7v+r6tyWbFzWigLBNjU71EQU7df83TbR1sZBdtkblOwcGBmiTV3s2/0bDIyfJz4/QcDl5IG770LXBJLzFqpisfcuJ68cO4niDGIYWRTFjyB4gHnS6TSyLGNZFqZp25sZhkB8foyU6MDIpdCSY2QNF07JgUwQyGEYMD8fZHa2g+3ba1M3XDeWswTcdxv89Nwq3Y4fIwpyDjEKk3kpTaWunHzV+Jc6EBIawryCpQhkdzngzQTyateS1zVLyeOQi9kOFlYGJD9YBoIgLtvgtxIqyZ0oeRCkQH78LIKgIMoRBEFa1C7fJJSSWnBgWgaClVxC2tZLu7wSOdSzk2jJN7DMNGBi5KbRs2NFl5D19qf+RZdc1P2661gNdZK9jliLi8RKZPHwwGF0Q+fMxJmif3art3XZCvFq513p/Vqr77CUrAfUAKlcqphEWBjXOe3khX9c9Kmu6v4QAeteC94DZoBGmO2dpaOzA9WhMp2aRtM1XLILURDtivsqxH1ZVCExIU+Yp3b+Cvi7l1TVm73NxGIxsh1ZXh58GX1M59K/XEJ0icw6Z5GHZlAy7xJJKQihECNGjuPp4+y3TJoDnSiuoH3fXEFui+zAnFreaaH0mpQGhWtt1+jq6cIx5eCV77zCXw7+Ja4FF3f33k1XVxen+m19+TPP/HuiG6o8bejr4/Lly0UHEE3T0DSNHTt20N3dTShUSOkbYjwZ4B/ObaK7McsGf4aJBfizExZf3AG7okuGXhXL358+xse/wcCpK8TnMgT8G+jZ9DmiTZtBX4D5q9Bw+6I1nigwYcC7F95gavQYqpEkGJnnnnsOEG3wMXbRz0RuGqc3gyp7cCgqpnQZpjahNvnI5dI4HE0oyhSapuFwOJAkAcsyyeWcCKJIMh0DJYCkhjBzC+SkBSTLgSQogE426yebjZBKHSwG9kH1fJMbxnKWgDu64btv2j/fkPf1TUKN3tx65gLChi6Et94FlwWWApkM+gYBube2DaisbME03kOUwmXV1+tN+qtG7iS5ESNnB8GYpoaVm0QQXai++9Y8fq2o1CRjZaDKda23dnk5cphJncE04giCgh1+Y2AacTKpM8jOzxXnsl6NiqtV1euo4xcddU32OqJBbahJM7waXjzxIudnzwPgcXrQdI3R+VEyeoYv3v7FNZ93pfdfu/gaEU+kGKFd+My1xDUe73m87DxFLXPe4UKVVQZnBnE73HQ1dBXHdb7vxOv0EgrZ/q6uvP7yypUrHMjrL1967yVcQRe333M7Pff1sPXOrbyfeJ+cmaPF10JQDdLkbsKVj9a+13lvsZkxEokwNzfHkSNH6OrqWlYTXERqBESnrQUtQgQzA65mGhoaOJLXfiqKwtzcHLFYDMddDrwhLxd+ZEcq+wI+fMoCQd8AisNJPJnDExKJ5FIkBQnvwgT3b/lldjbfTk9TD53BTvyuEInENXoq1hIWQ3MK1/Tm4JuM943jklycee0MsigTH4+T1tKk5lI0NjbS1NS0ZC1LcejPDnE1eZXh0WGS2SRulxtLt5icnOTZZ5+luXkXcAB4nBdOvMdYMsRM+nbOz/QwktzKpdgC3/nwOxy7eoxT46doUBtW/e729cF/+k99/OmfvsDICLS1RdB1+/7s2GGQy/3fnDhxCrINeFw+tOwMV0bPEPJ34HU32JVt70bIxcHSmViY5qcfHmb6yo9oUHVkRWZ8/jKTI+doDJ9EZwInnTjEEMlsjAtTbyNas4wPK+zYcSfx+BUsy0kuJ5HJxJEkC7fbx/y8ga5btgmCKCLJTvBEcPlbafS2YOWSiBgIQiOXr/wrBgf/I93du/Dm7ZcVBc6cgYEB+Na34NQpWzbcHErAwlX7e5aL25XotWi089ddaPYE7J+9QbjtM7Zu+do1iEZvkfd1jWhuhq6uVeeXTZ9D8DYhNDTA3BwkEqB6sO66DUfPIzWdqkzHPD2E+O4HOP7+PeQT/fmbsEaBehU9rWkuYCEgYOX/qbA1wrKysarG1ia+Z8imz+UbJ5U1a3Fr1STfKu1yJvkWCDKi4MifR8RCADOJ4rljiZYdK4ORG0IQA9elQ15On16vDtfxi4S6JvsWYb08recyc4iIRTLrcrjI6BnmMnPXdd6V3l9L9b3SIUSRFJrcTaT1NN8++23afG08fffT/PAHPyTcHi47NhAIlNm9VZOwdAQ6uBC7YDuNyCqarpHMJHmg84ElATOFP1fyaS5ilUjrxWjxxSrsk08+yYuXXySiRohPxPGH7ceXbf554pkcAaURNTkPDhep7AKbzCyKO0JALn+0rGnxZZMKDx8+jKEYnImfIT4RZywzRpO7iXe//y7NXc24fC4MzQAVVFWlv7+f5ubmJWtZQN94Hz9+/8c0NDewyb2J8cvjXB6/zKboJjY0b1iyTpX3YGJ+gg8mPkC3dPZv3L+qTAkWTSPOnz9MQ0MICHHyJNx7b4hQCEZGvs7oaBpV9eMyPIBl2/GRZuDSUaINmxYHy1vjXZ79iIWpfkIeJ4riYYEhooEcmYzAwIDEnj0XSDhGmB7rZEHz0hwwySVb8PkkJEmhrW0v4+OnAYhEHmJ09Arj4zI+n4XLNYampxCdDeAOo0oO9t32eZz+VoZmY2xMPYoip7i9QyUUtDDFQfovR5mM+bl4ES5fho0bFw0y/v5vEmz47cuEGm0pUk0R65WosAScmtIZuabzjz/agKT4OXhw143z6rXa59WKGry5RcmPNTkM/RfsancgALdtQQxX+IKvMkfZGUEeGIcXXrEfLQTC163jqSaZECQfDjlYJg+xTK2qtd31VJarVYBr1STfUu2yBQjVf74Z3tB1yUUdn2bUSfY6Yz08rYNKkNnUbBnZNC2ToBJc9pjVzrvc+2tJlKwk607JSVANsie0p3jsy4Mv42nwEI/Hl/WphuoSlm2N20hm7SSzeCaOIil0NXTx1F1P8eLhF5cEzCxHNpegBl/janrjjtl8wmNzgHQyjcvnwiEtACqZTAav30dnsBMsi0xqCmXjfjQtxvT0NBcvDpNMTuHzOXjooeeqTuv0wGkuGZdwOV34FT+TC5OM6WPokzobd20EQHJJoNskOx6PV13LAg4PHKaxpRE08DX48DX4mJmaYfzSOEba4NChQ2USm8p70D/djyiIRNyRFRtZS2Uhly510Np6kGzWDp4pPCzo74f9+wPI8gizsx78/gBoWTDsCq/qdBJPjtkNZs78dyBvjTee+hFSdgE1CHPmKG5lCgsJZJN43InbnWN21iAYHEPX2xDFJO+/38Uv//L/jGmeJR4fYuvWR+npOUg0uqssLl6SnLx39Rj6whRyaopQuJuMaZLKLtAcDLB3pwHZFN1bMvzo9TChYI59t1/mtbc2cfasnx07ykMZ79k+zvmPZPaG1xCxXokSS8DZKY033lIZHNqA4PCvjxb8euzz1jL24cNw+rRdpQ4GYffuMoIsD1lkL58BSwa/35YE9J/BobXZuTVrmeOq+fK1o5LcpeZeBcFd/qFliOxayebypNxhS0RW0SRfj3b5emQdkqMFPXsNyxLsJyuWAWSRHPa/lb/IjYp11PFxoE6yP4HY3bKbnJHj3PQ5EpkEfsXPjqYd7G7Zve7nWmv1vcwh5OghFElZoufObM8Qe93WOFfzqYbq5F6WZP7koT/h7NTZJU4nqwXMrIjr9DUuzLH1M62c/f5ZMnqGpFukRQ0xPhcn3BXGsiyyWpyU6ODX73qKucFBXnnlq5hmjPl5ienpJn7+8/9KMLg0fnxOnUOMibg89hOLFl8LF0cvYnpN0vNpBJeAp9UD1+xrDQQCxGKxxbXMJsquycjOsfvB3Zz87ycB0LM6Yx+MkTNzfH7/55do4yvvweTCJLIo09O0GNVe2bhbkLgU9PYnT8aYnX0Bp9ONpsVxuUKoql2wjMfj6HobgUCadFrD5VwAzZZEaJkcAV+U8dgIA6OvEp9/kUCgg56eg5xOLZDOZknPXcbQ0swaaSSHiNcrE25RkeVNNDVZaNoVzp3LMjr6AF/84lNEIjAwcHbJfSx1OBkf72MyMcIHloXi9CHqWU6/8+c4XEG2tn+GcYdKtGETHpfFvfcK9Pc7mJ6Be+4Y5+TP/WypSNdubtK4NrrGiPVqyKdBfu2/LPYOrpsWfB2JaRkKxFjX4dIle8Kzs+DxlBFk+b//GOQM+i43ppxBvDiO49VzyAtvwde+Zs+h1jmWBtQ0iOidEqa3GXE0jnyDftZrIbJrJZvLkXLTMsDSlmiSRbEVLXl8scouNmAal2rWLl+vhtvpvgPTSGKZaSzTtvkTpSBO9x1rXqM66qijTrI/cegb7+Pc5DmOXTuGW3bTGejEtEz6Z/r5Uu+Xbso5r7f6XjUqXdd4O/c2nXd2MnRqiOCE7cZR6lNdOOdy5P6JkibB7x75Ll/5/a9wqf8SmekMd95xJ3ftvKsqcV8RK0VaL4PSOaZyKeZOzSEshGiOzHLbjh3MyPMkU1P4JAeP3v8cu6K7+PIfvcQbb0j4/ZtRVRVN0xgZucBLL73ESwWv4DyCvUFm/2WWtJxG9ahIGYmwGEZ7QGP2wiyNQiMP7niQZGOSc+fOsXvHZr7w8A7u2NFNQ0iA+HlwuIsyhV9t7+VVxyDCr+1j4I0BBt4cQHbJdG7rpKWlpXjegsSm8h64Z91kPsjwdvJtAs0Beu7vQWlVyqRDlbKdSCTE3Bz4fKNEIoP4fDlSqTAORxuxmExb29P4/d/kxImLgIWqaGgLFprupSNyByc+/AGqO4Lf3046HePEiRd4qPsxvn3pp0yPpfB5dFQFchmD2QW4c5cE3I3X68Tr/dd84QuHAJs8nzjxAqoaKhtr375nyiwEBwYO0xLajMffTv/Iu8zEr+EQZNyCjGSanDj1t+y744tEI9tobs5LfS0ZTI3X319qnjExrdIczgFrjFhfBqukq18frnfQ1SQmBWJ85ozte+1y2YE0IyNwxx2LBHloCLm9HfmVYTusRlVtgfv05CIZr3WOeUcTvauR7C4HQsZCmNGwwoEbDjFZSxPeWsnmcqRcsJI43eWyFVFsxchdKiPIpnEJybEZy5ytyS7uemUdsjOC6rtv2Qp4LWv0i5rgWEcdNwN1kv0JQsFObyg+RIe/gzltjivxK2wObWZv217OTp0tI6AfN5ZEpc+Pc+zqMfyKn127dhHvtqUnB/dV991ejdx/98h3+b0//j38AT+d3Z1MuCc48f4J0gtpHtj3wBLifjNQnOOBxddK5QeBTQ8WZQkAJ0+exOfzFZs9XS4XlmVx8uTJJWPvvmM3boeb0XdGiU/ECTQH6Hq4i+7bujnYcLAoyeju7ubQs/873S0O2yVFkCEzZUeDSwrIDhActAU66U6OM9Y6z/5/t5/JkUnkoMzdG+8unrNSYlO4vr6+Pp79b89yIXUBV9BFKpHi9b97na7Pd/Env/4nxc8PDQ2VyXa2b4cPPtDYuPEU4fA9aNoAXV0f0tDwAffd9zDd3d2QPcS+XS8zMPge8dgcgYad9N7zNAMDh1HdkWLseuFPc+osByI76U/HiGfHgRRBr4Hf52FqKoztehADFjdYAwOHUdXQkrEGBg6Xkex43Ja1uASRtOIlJ7QhCxaZ7EIxun3g8lGirXcWjymQ5mpmGm+8F+U//PblPOm48Yj15dLVb8i1r5ZBKwn1zp3w8ssryzcKxDget2UgQPExRilBLpy/v99+v0DGIxF7/MOHa7/w/E3Qo34ETUZIavZYvb0gqCuSyNXI31p8j9fqirESKa+UrWjJ41UJsmXOovqWWnZWw43IOlbSSK+2RuulVa+T8jo+LaiT7E8QCnZ6WSNLk7uJsCdcjF3f0rhlid/2x40lUeljpwDY07KnpnCa1fD1b30df8BPMGRr0Vs2tuDyu7BCFh+nK86SgJUSWJZV9fV0Ls2ho4cYig+hSAoWFuPJcS6Ll9n5r3eyv2E/F/ovcO71c6SOpaCHcovCxKDdVFewIbQsWzNpLEC+2TLsjXJgwz30pY8yFB8i0hahzdFW5g6yrJ778GE2t26m3dFO/3Q/cSuOP+hnw8iGsntXKdtpbgZZPk063Yjb7efOO3V8vs2IosXU1BBk/wLmf5Vo478heu//tEhCvZ28nSe8pVDVAPH4ECrwwG0HEQQx/84ElvUh8fgodvz7k8BS8lxtrFIEAh2k0zFcrhCaFkdR/Oi5BVTF9l1W1QbiyVEQRMYnBxj46FXiyRECjbfRs+PXeeaZXRXFXT+hDWuQIlVIfMrCeKjZFW8N6IPfnoDBH8NCI1zcDR+p5YNW00M//zxLBOhQLt8oEONAPlLd5QJNW5x44XtWuKjJSTvBMp22P9fbu0jGf/d3a7vwfECNOfMvCCNz9md7e+0vomUtL9eokfzV2oS31iCStZDy9dA930xZx0prtH5a9U9+rHodddSCOsn+BKEgvwiogSK5VmWVuBZf1vHj40Sl3CBrZNm/cX8ZqasWxlMrRq6N0NLaUvaa3+9n5NrIDc0bqoe+3GjDKsDevXt57aevkU1m0UUd2ZQRMgLurW5i6RgO0cHRK0cB2L9xP26Hm7OTZxn9aJTZn82ys2MnXS1dS73FDY3xmSsMXPwx8cQoAXeQns77iTZ1LZ7c0mnwtnLowCHGx/t4XXuJd975Men0BRRlN/G4uqzEplChFkWxeP9M02R4eLiscr99u8KPf3wN6Crq7Z3OGT772YeJRvsBFbCr9/F4ArStIF4CsdU+UUljYCnhLaDUjaX8vWY0zUkg8CBwaMn8VxurgJ6eg5zIbwxV1U86HQcsWlrvBVczWjpGoGkn4zMXOfHzv0BVG/A39JDOporyk0OHKr8nNUqRKkKRqjmRlIQcFon8iq59K0o6+oAXIBoC4WG4fBp6fwriI3BfSUW6mh46l7NlH90laaWV8o0CeW5thbNnIZOxQ4a2bCknyLt2wWOPwbFj9nyDQbj7btvyLxaz573ahVdcp/hvd2HtCYJYG4n8uF0x1kLKVyPItVR+K0m9qc9h6tMIkp+FuR/nzUKMda0c69lJctoFLMtCFFVEucG29bsOrfqN3Jc66vgkoU6yP0EoyC96mno4MXwCsCujTsm5rOPHx43KRshYOlb2/o1sDto2tDEXmytWsgESiQRtG9pWPG41Ar3WRM214JFfe4QfvPcDjKSBrunMM09GydB5ZydZI8v5mfP4FfuX5fmZ8xzoPEDYE+bMP5zhQM+BZS0Kx2evcOLnf4mqBvH7oqS1OU6c+Tb7dv8G0bZImUyhoE/2+0PcfffDDAycZmHhp4RCj/Dkk89Uldgs31jqLNM6O51x7r1XYGgow9DQMB0dHWzf/jn8fid2JLt9bZqmEQgEwPCDOF1+snxjYDnhDaBpcWKxixjGBpLJMebmLhMO76CxcQuaFkfTYvQu83eg2lilny/dKDgcHgwjg6KE0LQ5wuGdeDxh0ulY8ZiBgcOo/s2L8hPZlv9Uyk/WhOWSHSucSGpwxbOxqiPHYeyqfwiageYWIAafDVH6FKCqHjochqmp8tcq5RulxDiVWnQX2bq1nOz39dnSk89+Fj74wG6QPH8eHA6Q5XIyXu3Cq1yn/Oevkv3yA9DQUpNc45PgilFzlXyFqvdaKvIFUm/kJjGNOKLcCIITI3sNAMnRvm6V40X/bBEEsCwdIzcKtCII0pq16nW3kjo+LaiT7E8QCvKLkBpib9teTo+fZlab5XObP8eX7/ryulRabybWYgdYC57+zaf5vT/+PcCuYCcSCRLxBH/wO3+w7DG1EOi1pFyuBX3jfXx96OtYd1gsvLFAZj6DElJQ71JJNaQ4fu04GT1TrBQXkjIDaoCRayPs79hfNl6pfnrgyglUxYNL8QACLjUAlsHA1ZNEW3rLZAql+mSXC6LRlmKVdzkN+8GDB4vBOFu3anR1ncbjmSGRCCJJ28q0zi0tm9m8OcSBA4eAxaZDcKKqM2haDE1L09u7GaQxMJsrfHfHQTpPNHqSffvcDAxkiceHkSQnICBJTqLRXTidHqamzpLLpWhp2U1v75PLEtxodBf79j3DwMBhxsZOk8nMoShBBgYOMzMzyODgy8WNQoGAP/jgH9trW9DXBzqK53j77Rdrkp+sCcslO67ViaSAVR05hoAK8kwg/3oJqumh29tt0lyQg6wk31htR1A6z1wO3nnHHiuRsMnzWo7PX6ccA35wEf1Lm2qSa/wiuWKsVPVeTq9drfJbIPVa8njeoUQll7mWT3MEy4ghyBvWpXJcqEiLjmbM7CgIMpYlYeQmkRyh69Kq11HHpwF1kv0JQqX84tGtj66bjOFWYL3CeAp44iG7yfPr3/o6I9dGaNvQxh/8zh8UX6+GWgh0NVeUG5G1wCK5vzp4FaPfwGw2kTokXJaL1PkUqXAK9TaVeCaOpmvFc4JNtts2tC3rLd7X18fRN17FMpx0tkdoiTSgOmVUp5f4/CR4OssqobXqk0tRCOR5881vcMcdP0WSGtm06WFOnnwDj+cD7Ap1c3GssbHTHD16qEhOu7sfY2rqO8TjrxAIeOjt7SQa1SH7LzD/e0Au3xg4DuZZcI8C7USjcaLRGPAMR48eRpKUIqFvbNyK292Ey7VI6Iuoom0uEPBY7BLB4EZUNUA6HePYsa8SiSi4XDIQwOXaDoQYGDjMgQOHyoj7+HgfR48eYmzsFJOT52hp6cXrtTPmVwoWWm5OZTKSVUKR1oxVHTk6sBtES8gz8fzrJagmBJckeO45WwZSk26lhnlOTNgV7OZme7zpabvC3d298rjLXKd85H3kWbNEKuOFXctrorXkG1hmGrtELOYj0+9f+/XcAixX9a6l8lspJ9GzE0iO/FhWBtME0MDKYgGiFEKwbqxyXJiXJArgbMXUZxHIACyJiC+7znqseh2fctRJ9icM6xFm83Fivef/xENPrEiqK1ELgV5LyiXUpt8ukHvrnAUuECQBGZmsmEXxKGTOZbBus1BEhUTG/oW2O7qbWDpGTIvx9G8+zcvffNmeb4m3+P33388LL7xAS4sTVbUYGZ9DwqAxHEEUTQJeH8x/D7ynwBkEDtasT66EHcgTBf5HCsQsEIiQTs/hcvVTINkzMxeIxy8TDG4s2uUNDr7Mvn0W0WgnMAXYJBrnRvD2g9aTJ5/nbYLtLBDNwhwPr7g5KA3AueuObfz65+8h1Bi2deolzYnz6bkKl5EspjlJIuGmsXErkAaOo6p7l2w6Sm0A29o+w9Wrx7hy5XU2btyPLKsrylVq0VvXEoq0JqzqyHEQyJNnAtgEu9yVBVhZD/3EOrgZ1eIushLJrnad1eI3Vw3YEQABy7IQBIHyxyu/GKis/BrGAmZuAjDtKrfYsMT+zzISmIIDydGAaQlgJcAS7M2epWPkhpGcNxbNXjovSfIgSR4sU0MQ1VUtA9fSQFpHHb9oqJPsOj7xqEVjXXj/UuwSGT3D1satxfcrCfROcyfPf/N5crM5wq1h2u5pQ26Rq8paChVqwzQYTgxzcvgk3xv4Hs/d/xxP7FgkIAVyrywopNQUgi6ABVkji9fjpWmhCQEBt9PN3va9WFhkjSwtrpZitb+7qXtJtHvBl9rl6gVO0NzkwzBhdOwaTWEHvbdvB3EBtO3g/BB4gZ6exzhxwibs1fTJK6NcYtDTE+bEiX7gMqpqoWntTE2dIxLZWWGXN83AwE/wNbQxlVIwzBQe5zAOsZNG93nGZ7W8LONvCQRa6enZTjQazZ/FljAstznQNKUsAGdT1MU77wb5xOkAACAASURBVJ0i0DTHqf6/xTR0PK4gOT3H6PQgzc27mZg4g6bFUdUYsuwglcphkypXftzTBAKPll35oswmC5yns9NibCzJyMjr9PR8cUW5Sk166+sMRVoWq1qR7AKewdZmD2FXsMtdWYqoWQh+A/NcyV2kluNh8TrPnl3d/aQEeuYCkhxEEKPF15aLTP8ko7Tya5o2QbZMHUF0kUufxzTTiFIzDjXfxyKoiHITpjGNKLkRAMsyQRARxMV0yxvdbtxIRboeq17Hpxl1kl3HJxqraawr39dyGkffPkrflT6khITSqBC+K1z0eu7r6+Plb77MTv9OhpVhpmammPunOZ77j89VrcAfHjiMYRqcnTyLKquE3WHiWpznjz1Pd2N38ZhCdbylvQXnrJMZcYbZ9CwO0UFEjOBp87CtaduKzZXVot1ffLEQJy8C+/C6x22JiOll3533EA03guUAw0mhKhyNni3qkyu1xqujVGIwTjQ6yL59AQYGXMTjUwQCcwSDDTQ0dJUdparDTM/C2Pw4lqUgi27SOY158yjj4w8yeKbQPNlKOh3nxIkT7Nu3L0+0bQnDcs2L/f3usgCcaDjA2PRHvNv3N8gOB241SE7PMj1zHtMwuXr1KKFQF4riJ5cbJpXKIssy6XQ6HxBkoWmz9PYeLLsGu5LuAE4CKl5vM1u2+EkkZjlw4CBVyWkBteqtryMUaVkUKtAvvQQ/+IFt67h3b+WHWHHetwKFeX7lKzbRjkRsgl3qLlLL8aWV9k2bWBK/uQJh/7Q02JVVfrMXsCwBQZDyVpcusOYxjQkMw48keQAQ5SCQy+u4syAFEAUBsOxERzkMGDXPYXl3k09uRbruxV3Hx4U6ya6jKm6Wxd1asZrGuvJ9f9yP820ns85ZwqEwaCAcF+BhIFqeWLiVrbAZYrEYZ4+drSpLGYoPMZwYRpVVXA67ChpQA0ylpsp03qUR7LPfnyXiiuDxe1B1lXQyzX1fuI+n9j215jUsd/2IEm3cQ0uDDoKDaDgOqGBJIGXyR9hV4Wpe3n19fXzjG9/g5MmTCILAffdt4b77mlDVTDHSPBotlRj0AwLRqIto9GFsuUiMo0fPkE7HKyrOU2RkFZecwwJ0E2RRwuvI8NcnLnN7w2fzn78Nl+s4IDAw0E80qlCQMJQ2L5ZuDn7wgxdpb1/8hTg3nyGnD5DTdbyeEAICDtkmuHp6CsPIlVy1E4dDJxJpxuVy5ePpnfT2PrJkfexK+iu4XLYNoX1dAoFAI3Y1eIV7t95666roo7wqnd8kLCzA/v2LVd5VZRO3CJX2gk8/vRhwEwjYBLtWE/DKSvuhQ2tK7fk0NdgVKr+mkQB9DiwDQcj/KhcVMDOY+myRZGNlkByRYpBNQcZRQOXPK2E1d5NK4lpJbgWxoSy18laQ3boXdx0fJ+oku44lWC+Lu/Ug6lWj20c0vv+T7zP0rSHeT73PPY/cA/mi1sAbA4Qbw+ScOR7veRywSXTBCq8ysRCWpiCWoiPQwcnhk4Td4cXz6xphT7hM510tgr1T62T3rt3loTJrRKnrRyAQ4O0zV7lvdyvbtneDNQhWDkwF3AW7NbsqXLn2O82dfPO/fJOLFy/i8/nw+RZIJn/E6683sH//v8LpLI0hL0gMbAsuuI2CHhsC9PQEOXHCtmpcrDg7cLerjCRbCbtnUGUN3ZS4NNfF5GwctTWQP74ZuBdVLQTLPEiphKHa5qDSXrD/cozGwAxuxY9u5HBIDrAsZMmBbqRpCG7B4XDl5SItRKNxTBMOHNjPoi75qSVrbVfS/xvQkJfGaGiaRm/vXpY4clRirXrr1ZoklyDveU0IW84Ts39+072Kw8gtRCmpdjptn+3Nmxc10y+/bPtlr0cz5RpTez6NDXai5MfIjoHgKr4mCE4scmCm7GCsiuu80XWoxde6QKz17ASWkUCUmxDlIEZuFiN3DsnRiigHbxnZrTZnM5cmnfgZkhyoV7bruKmok+xbhFtVGV6P86yHxd16EfUl0e0Xxzn27WP4g37a29s5d+4cx759jAd+4wGiXVHiE3EcQQcBJVAco5REL+8HXb0CdrDnIN8b+B5xLU5ADaDpGpqh0RXqwik5iymOhbU+dOBQWQT7jaLg+lGq1Y5svodwxA+GBdLb4B4Bp0SBQA5O379k7Z//5vOYoyZ+vx+Xy8WGDZOASiKRZWDgPAcO2JO2faAPsVi1XepOEY3uZt++gxUV5+cY53nm0gZXcxtRZQ1V1vjZ5W14faNoWrzmYJlKPPTQTv7xH58nk8nhdIa5cLUNdYtCKNjCbPwqWAaypKBlF5BEB02BVhqb77Aj54F0+iNcrhFgmJV0yXYl/REGBk4RjycIBAL09vbmq+0tSz5fhrXorWtpklyCEs9rWPyz9XUYf6z8o7XonK8HKwXf9PXBV79qe2tnMvafTqdNsEVxkfyfPWtXoW8Ua0zt+aTLGa4HsrKFnPYRlpXJE2YDQRAQHFFAxzKTS67zRtdhNdlNadXYsjJYgGlMI4hOTHMBBCeWOY8ghG5Z8EzlnE1jAUOfQsBCENfPK7yOOqqhTrJvAW5m+MnNOM96WNytlxf1kuj2I6dAhT2b9iCKIns27eFo/1FOHTnF7shuJuVJ5kfn2dq2lYn5CZq9zWUkurIyXHDxqJaCCHaF+rn7n+P5Y88zlZoi7AnTFeoikU2QzCZRJOWm3lOortW20Q00UNnY9ndnl659bjbHbGKWbW3bAFAUjUxGQdezxOO2X/dSm7/l3SmqVZwT03BJe55W7xSpXJijl7v4cFrmf737aWYGr68Rc3y8j5mZl7nrrp1cvDhMMjmF3z/Hhs2/znz8LSINm0nMT5HS5pBEmXv3/C9Mzl4gPT+K6t+YP5dEb+/XqEWbHI0+RTRaqBiv4MhRDbXqrWsMpSnHMp7XGwX4Wbxm2cR1Y7Xgm298w3b88Pttkj8yYjc3vvsufP7z+emuM/lfY7Pmp63BTnZGcLrvIbvwNpaZRhBciFIQQRRWts27gXVYNY2ytGpsZfOe3AamPgtWxibZVmbx2HXSxa+kuS6ds2EsYGQuY1lZLMGJaaZsWU09ZbKOm4Q6yb4FuFnhJzfrPGu1uKuG9fKiXhLdPptl//bF6PZmbzP7t+3naN9Rfnr5p4T2hPC84UFf0Hnr6lvcHrwdKSMVSXS1yvCTTz65opzjiR1P0N3YXfaEYGJ+AqfkvOn3dHUsbWwbir+4ZO3DrWGmrk6haRoul4tMRgXSyLJsJzNSzeZvDe4UQHfTE2h6+To9s89+kjLe2H1djZgFx49sNgsImKYCOJmNX+WBe/9PBs78BbLoYFP7nfRs/R+IRm9nfHKAgY9eIZ4YXmPT59qv+bpwXaE0y3het+y1CS+Uyybuv9+uGJ8+vZjEuHt3Rez6GrBa8M3Jk+Dz2fZ8AB6P7SIyPFwy3aXk/2ImxRvpBBN6lmbZyf0uP12Kmzpqg+LpQXI03LKmvtXkJmVVY0GxZVOCtFhtr9R/r4MuflWd+P/P3rtHt3XfV76fc/AmXgQfAihKlCxQEmUrlGQrsSRbivzqxJrUTjhZmqSdthm5za17czOdubrtTDJZl51MOtNWvTerdeOuTK+buu30Dm+GqZ22TmpHkcVUUhIlkmDJoh7UgyYlkJSEF0G8ce4fP+JJgARIgA/p7LW0QBycx+/8ACf79z37u/f0mNOJKVLJuyjpGCCDrBfBOfrVyHLDimuCVbEyoJLsRUA9wk/qeZ1aJDfWgqhnUBDdfqYXX4ZUTMOYMtK2po1tG7fh6Hbg7fAyODDI+Og4o+ZR/ujwHxWQ6PKV4crGAHDojUO0mlsL9imc61JNat1ZOc/t22dpi/lZZ2jkobbt002HtSFyBXM/6YU7g2ztGKLBN8nlC+eJRhuJx41s2hTFZmuiq2tzQaR40Z1TDcEs55NeqvJdCQKBYSIRHSdPnsJkMmKz2YhGI/z4x2+zZcvL7N/3H4TcQs41HLpa3LhW/Vuwbar6etN3QV0dOebVJFnmqYLr8PSaIE82sXev0D+nUnDtmpBr3LsHDQ3zb4ocHmboQw8z8NAaxswmnOEIe6+P4H7vfUGUP/0JxpodOEdus/edY7hjMSEb0ekgnS6pmR6KTdEXmsAia2m96yM0dJW+ZJyD12/jfurZ6sY4m5TlPketKvSVOHDMJTfJrxrL2ibS8VsoShJJMiDLZlKpIJLcktWLp5J+JI2VKf93571AmEsnnhlzJPgDIA2yAUnSI8smFCVJOnkPWVc++l2FioVA01sLfdwywze+8Y3ez33uc0s9jCzOeM/gj/qz7hQA/qgfl8XF/vX7l911nBYnboebG4EbfBD8AJfFVXVyY5OxiaM3jgJg0BrwR/1Zop6pQs8HTU1NHD06fV6DAb/fj8/nQ3pUYl37OiRJwtJkYf329WzZuwXNBg2f+2jtfwuzz3UTOUK0CvADR7l8J8V//ac/RxOeoPneJeLJGB9E7mGRtYyPnsLhcGPJmxuv18Pp069y7tzreL1nMBqbCj4vh8zca8IT6G//FP89PyNDPtpbW1i3Ns3YWIxr16eQm5twdhuIMo7N2saTj/+bmhH9uVDpvXm9Zzh9+odIkhaj0YQkSWi1SdLpBq5eTbL/qecgdm96bxmUJL7wBH9+5R1e/dlrnPGeocnYNMtvzgO8CrwOnEHIb+b/+6wIkm7GmLNNkhpDmYOcgBu4AXwAuMhW2J1O2L8fXnxRvPb1iUOuXBGv1unKYjQK69fDjRtiv3LweIQt4Ouvw5kz0NTEUGSSvk3rQKOhMRpjUq/jTEsjqeYmvrd+NYxP0Hj5CpNWC2c+8iirh0douuWF1auFhMTlmqGZfnPyLiBhnbiDdOIEhnQajCa8Wpntr/93cLvFvc2FjJQFhD2g3w9Hj855vKiAniMeuUAqMQ6SATnjyPGAIVMNBoR/thIjlRhGku0z5kTWmNEa1qIzdqI1rC38XDKQSgxPn8cESKBEkDUWNLoWtIYuJBmUdAgARYmh0TTMec3ZEI9cQJIbpgOGMtCgpEPojJ3ZMafiI6LpUmNBSU+K6yMjKREkjRGdaesD+/2rWBh+53d+53Zvb+83Sn2mkuxFQL0IZz2v47Q4aTI2cWvyFsOBYW5N3pqDrMw8fqFEveR5nU7cbjc3btzg3KVz3EzdRHpUwm/3k0wnaW5ozu5bj4VMBrPPdf/0Xg7yA1A8Y9/hpn89jb6rSIDWYEUCQskI6xvXEwjcYP30WDPpgwBm8yqiUT83bhzNEnGP18Orp1/l9XOvFxBJr9fDB4P9NPpvEr39E6LxSVJ3fbTZJRqtRmy2FtZvXIXXYETf2MS2F17Eb3HhiQfZtnZPTX+P5TDXveXDaGzi3Xe/iclkmrYpiwJRNJqdfPCBjxd7DoKmAVIRSMfwRvz83+99i9vRSVaZV+GP+jl64yhuh7vEvWUcOyB/MSTIbB3nQWMoGDMaQ4WhNE5EV+2L069lxvj664JsejxCtiFJoNVCMChI7rlzMDhYQKKzZLQMYX3zxY/B2BjWeAJJo8Fw5w6MjXHSvQ7X8CjWez6kSARDLA7pNN41q9k+dBOefRb+238TpL6I8H5v8h6Nshbp9GkxRqMRXTrNeKONJz/wzr0YyODVV8WrwyHOk5GszHJ8NaTyfkZmoREL/1hUoOUGZFmftQRU0kG0hsrTIGWNGUm2o6SDKOkQGm0jBvPjGC2PoTWsRatvyRL0VGIMSdIhyUbRsDnPa6YS46DEcjaGMC1DMRecJ7OfrGlAkozTUpcIktyA0fKEqsdWMW/MRrJVucgioFhX3GHvqAnhrOd1atFEWa+I+O7ublgF105eY51xHXajnat3r3Jy5CQA7ib3vCQuVY1h1rn+GqWa1LTyKHbjPogGwCAIlUFrJBANzGg6zKUP5qcqiu3jUPK7+dVNL3D38psYjQ7Wu7oJjr+HIe5nUgM6nQ1IAGNEk2mstg3E78WRJXlBenKv11Ogta5E9jLbvRUf63J1YzY/SyRyBpMpiJBK7CAQMLBz2wYIXs65eZjX86fn/i/CilyhVr6MY8dcnti1QC1DaYqRiSG32yESYWjjBga2PcyYaxXOeJK9ZxO4fb7SDYzT2uuhDesYWLdaSEPu3ONKIor70cdENLrXC34/5tZW7qxqofv9q3D7tqhah8OY4zHGNnXCz/2ckIyUgVOrJ5ROYQ0ERLUbCOt1OMOR6pokh4fFveRjjuMrsaK731HoBKKARFajrNGY592UWKl8pVYBQZXaEubvJ8kNaHQaZCU6a5OoChULhUqyFwn1Ipz1us5iNWvOF8Xj29Qi9LejoVEMWkPZBUYtrRTLz3XpJrVkup1ANIBO1uD3XSWcTqGRNLRZ22Y0HYr0wRxxGBsb4+LF95mcvMXpbx5j/Q4TDvswRAM4jHY0ltUc/ckrPO7cliWtipJClnXodAmSySRarQ5IohCFGNideTaH89DuZyrSIslxDZFIvtd2+Tktvjco5WySQ0/Pb2Rj1TOOMGZ9ms98/PFpPXbOBi8V92M32guOL3tvcT9EH4aUUYT5GH2gT1PKE9vj8RQ0yy7E+7zuyHhIt7czFPTR98yTWEKTtMaThKbC9P3rX+Dg8BhuX3BmA+O09rrvkY1Y4nFawxFCNiteox6jw87a/fvh2DFobCRss9IyFSFss2JtaBC6685OQZTjCTAaoa289eFek42+0AS0tmAOhgjbrEzq9Ry4crM6h5TMoqIKh5X7JQFyIchfaMiyEUVJgqTNBdnUOaynVgFBldoS3o82jiqWP1SSraIkFqtZc74oNb7O5k6MOiOvvfhayWMWy0qxXJNau/XzXPP9BRPhu2yJh0mkE/hSCZLxMJd0Zj79/B9nzyDSB32YTA7GxsY4ceIEDQ0SZvNqYjdvIl3yE96wBnNzEyQiWCfOMxX1Y1y3L3sOjcaALEcwGCSi0QSQRKOBdEpLKBDi0X/+aHbf4qbUSirU1VSk8xtB7fZrRCIxTKaN2U8zi4xS1y3lCPPrv/gMjuamGTZ4T7se5m9HL8zdcBsPwuQOkMMgxyGthUkXWC6DvnBfj8eTJflr1qzB5/Nx5MgRDh8+vHyI9re+Ba+8Iqzz2tvh538eQiEGXI1YEkmsegM0N2NNJEBvYGDdakGyobDq29HBgKsZSzyONS6SM62hSR4yGbiejNKo1WEOBAi3NDOp1/OJi9c4uXY1rOvAPHiJsJJmUq/lwE/fmzPN0W1o4CCtDLg7GbvwHs5AkAPeu7hvfFB5EiRUHUwDsxC8O1Pwtd5Fa6CsVdz3fM6Tv9CQtU2kErdQFA0SMZR0tO5hPbUMCKq0en6/2TjOBTVOfumhkmwVJVFLd5B6YD7jq7Y6P//qZWkbuE0t3bTb3uGG/wY/jNylC5nVeitTso7/OXmbpxHtbABy61Z+NPAVQqkEd6+EadQZMRiMwBY2t98kmdAyMRLC3NIMOhPxZIwGSS4IfbFa21AUBZ0ujslkxO+PEg5LmA1rcX/chWG1gbSSniGtqbRCXXlFujCtsKsrysmTJ6f3d2d9szs69pa97gxHGJ9H2N7lQ9KyrWUTfz70Q6C8M47HA3dveDHo1rPB/SOsViNmsxGIQtQG+ucLTtvf34/D4cgGGGVeMymiC0ItXDG+9S34rd8Skou2NqGj/pM/gd//fcb2f4RWjU5olQH+/u8xXxxkzGEXFektW4RWe3QUDh0Cg4Gxrg5agyEwGITcIxJhdXsHUa0Bq6xhbLUL5/AIB37wQ9wXBln7SBcDTz3J2LYP4UzDgXd+iNtoFhIUEFaCZe7PbWjAvXkbxKSKg2VmoMJgmnzCoaBBSQnNcJbg3buN7hvvQsxUWkpTY9Qq7jtzHiWtkE6FSMZvk4hcQW9+HIO5q+xxBU4gGjOwWuiWAUk21r3KO1dlWSWIC4MaJ788oJLsFQ6P18PXT3+dUyOnkJDYtWYXL+98ecGV2VrY+NUT8xlfNdX5hVcvS9vAxVNxmhqaiOoaCOlMhABFUbg7NZEl+x6vhz+7/CayeTXK3YtMhW8zoWhpij+Ju8mF02zkhn+KdCiMoijEklEiSpp19oeIRnNx51ZrO4HAMGvW7KG5uTNLZnfvPsw4lNXuV1qhzq+2ZzDTaxuKtc8u1yZ274bBwVECAUPWyzpz3VQqxs2bx4lGA2g0ek6f/jof//ifFp6yjA1ek2X1rH0Jmb6+3/hMlEjcxdWru2luHmT9+gAmox1Sj8/43oaHh1lTpPnNTxGdN+YKeKkUr7wiCHZjo3ifeX3lFZzP/r9C9yxpYGwMxscJJ+I4h67D5cvCgUSSYN8+MYZAAOc9P6HWFqzBoKgM79hBuLWFTlnDZxtdEEjA//lfICEq3e5bt3AfG4CvfQ0+9Sn4xKerv79MsExm0fG1r5VedJRblMwRTFNMOCQlRgoFRUmBMp2M+J0htDHTokXU10oXnoxdnSbYdwAtkmxCSceIT/0Ija6pfChNUSVZkjRodI4ZGuV6kt1ylWWVIC4cat/B8oBKslcwPF4PXzz6RYbuDWE1WEGBYzeOMRIc4atPfzVL2OajQa53s+Z8x5V/nFlnJpaKMRIcqWh81VS/a1G9LFUJ77B3cGrkFK0NOY/taDJKa0Nrluz3D/aTTCW5EL6F0exkbBzCwTCy+Rw9ejdOi4s2k4JfFyMYC2I32nmkqZO1zRvp6srFnTc3b6Sr65NMTJyfEQLjgrJzVa5Cff36WY4d683ez9NPbyUarSTJcWZaocvVCUwxONhBIDDM4LR3uMXiZHT0FBqNEYPBRjIZ4dq1d/B6PYUSFKNLRJGDqGjn2eB122xl7y2TqRJJGDEZEkTjTm7cdDI2Bvv3JUCjm3FMR0cHPp8v+xsQc5RLEa0W2d/FG2/QodfTs2MH3fnR49WSutHRmdpnmw1GR3O6Z8B8+jRhCSadrRx4+11BksNh0bC4adpT3OFg790gfZs2wjPPYJZkIQFJJzlgnh7fO+8I/2tFEV7cGo14/847gmRnMFeAzcyJmZ2UL2BRUopwaLQOJNmI0bpHbDv7Z1U3UC4E89WFF5PeVGKcdCoKaHMOG5IBlMishKoSjfJSkd16EMQHrTKu9h0sD6gku4aoZVNdJegf7GciPIHNYMv6NUuSxHh4nP5BYSO3EA1yvZo156uNLj4uU72u9H6qqX4vtHpZrhL+wmdf4NvytwlEA9iNdqLJKNFklM6mzizZHw4MMzo5ilFjxKQz0bKzhchbERJKgvfH38eUbkcjDfPMY0+wZk1ObpHRTc/UQ39q5gBnQakKtXf0MtHAJB97fDVT29v48XvD/Nmfvcmv/uoLpNMzSXwhZjaCer1XOXnyOkbjuqw0xO+/js83hE7XgC7rPy5hMjXP1HnrbWB5SESRZ9xFKrDByxhRXLzuYk+3IOmKoiURy/OqLkJPTw9HpjW/mcZLn8+XTRGtBgW/C0XBpygcOXmSw7t30+1yzY/UtbfnUh0zCAahvT2ne44EGYtO4UwkOXD0BO60BI88AufPC7J67JjQMtvtuDdv5uA7xxnY+eFsEuMBsyOXxHjqFLS2inCbDKamxPZ8DA8L8p13bjZvLn9/s5FygC98AcbHhbXgli05S8AKFiUVEY55NFAuBPNp/CtFetOpAOl0HFmTf38pkE1zEqq5NMpLVQ2tNUF8ECvjtWosVbEwyEs9gPsFGQLoi/gKiKPH66nbNYcDw8RSMYza3H9ERq2RWDLGcGCY/sF+UukU58bO8Z1L3+Hc2DlS6VSWgC8Vvn7661y6c4njN49z/OZxYqkYDqNjznHla6oz1nOVHJdBpjrvMDkYCY7gMDnKEvSOjg4CgUDBtmqql/mVcFmWs3+fP36eL+/7MoqkMDE1gVFrZOuqrWhkDT1dPeLa9g4mwhPZ79Wy1kLrc63Y7DZujd7CZtvEiy/+PmvXbiQYHMFkcszp6FENurp6iEZ9RCI+FCVNJDzGVOgD1jo/QjQh0WDU8bEnN/HwxrUcPXqerq4e7PZcRdo74zffgyDZPsSzaR+DgxcwGrdiMjmQJBmTyUFr6yOEQqMoioKiKCQSEZLJKC7X9tLOI3qbSHV0dIvXCizxOjoEbxr32TjheYhIXIdJH0Nr0AnSXuIcmcZLh8PByMgIDodj3k2PBb+LxkYckoTDaKR/cFDsMB9S9/nPC1Lt94t0Rb9fvP/85wGhe/5so4vf/oM/4bNf+1Pc7/xAeEhPTgqpyOSkiEC32cTr8eO4A5PimJYOPtvoKow6Lwj9oPx2gwGOH59xbgxlAneGhwURz4fdLqLhjxwRBLulRZznxAkhf6lwUSJrbKAU2QkWE46eHkGyfT4xj5m/e3rmPP98oDV0oijR6SZDJdtsqDV0lj0mn/RKkiScQTTNoCRR0rHp/3aSoCSRZcuCCVU6FRRV8XzUoBqajI8TDZ1gyv9doqETJOPjBZ9X9H1Vc70S8yZJRpKxq/O9hWWP+fy+VNQeaiW7RlgKy7sOewcXxi8QTUazlexoMpq1sDt7+yzXfNcw6UzYDDYiiQjvjb1HOB6uy3gqgcfr4Z1r79BkasqO6eTISXa175rTuWS+jifzecKw0OrlbJXw3kd62dS8qeyYerp6+PbFwmq3xqXhiV9+go3NG+nd3zt9xtIV6oXazblc3ezefTjn8mE002R+AnPDegCi8RQAH/lQB//jrbc4efLaHE2SMxtBA4GHsNncBddtbu7k9u1VSJJELBbEaLTT1vYoGo0ek6m8FVw1yDeiSKdtXLpmw+eb7tHTlz9uRuNlPuLBwoq60VWW8Bf8LrZsgRMnsBsMDPv9OVJXbYU8I9HIdxf5j/+xULrh8QjiODUlKtDxuCDasZiw2puaEv7XU1NCBnLnTnn9865dojo9HSBDNAqh0MzgF0UpPd5y28tVkv1+WLdOVLAjkVzYzMWLoNcXLkrKjLkiJ4sKGyhrhflYyuWkIXERVa5tQtY6kFKTtWxpCAAAIABJREFUSMRAiYBsQtbYkWR5wYSqHtXQSqrKtXQegQdTOqFaFi4PqCS7RlgKy7uerh5O3zrN0L0hFBRQIBQP0dnUSU9XD8duHEOW5CwBN+lMxJIx/DF/3cY0F/oH+2k2iVRGSZKyYzvrPcvzG5+f7dB5OYoUS0yCdy7z/3z7l9je+BAPtW0vG55SyjbupZdeqpiszqXjnU2K0+3q5sv7vsxXBr7CxNQErQ2tdDZ1FlS7y95vjezmCmQnPg/HBn5EJBrBZJxezMVTNBgk2tr8TKbNnBs7l10UuK3tJWz8ChtB7fbekk2TDz20n0RiCqPRMYfOe36oOY+KB4U2XNYW+HWXq4oX/C6cTtizh8DPfkYHCMJrNoumP4NBkNF4vDLXkU99SuiqMzd2/rx4nzmmvx927oTTp4UOOxbL/Vu7VpBzjUZc32wW0o8vfQk2bCjUP7/wgjjf5KSolpvNghR3dsLLLxfNTVw0VF66lJOLbN8utmeQT4r1ejGODRsKrfgaG8X7ri6YdqXBYBCV7fxFySyabW13NxURjhINlLNpeReq863GUi4ZHyedCqAoIMkGFCVJKnELWdOC3tiB1tBZc81xrckuzC5ByXwuHGB0kN+YugCC+KBKJx40y8LlCDVWvUY44z2DP+rPkkaob6w3iOjyra1bmZia4GbgJmklzZMdT/LbT/w23a5u/vbi33Iveg8ArawlmoySSCdos7Tx6Q99uuLrlIvwng9eP/c67dZ2bvhvZMeVSCW4F71H70d7Zz3vfGLjXz0tIpdjqRiDN95Fd+snRJIRwsBa86qycd4gItz379/Piy++yP79+3E6K7/npqYmjh6dHqvBgN/vz1bCi89Tan6f2vAUT6x5AlmW0cgaNjg2VNR4+up0xLTD4RCLmOmq340bN9hfSUR1KSQCmBsMXLt2EyTQarRIJBm/GyBuHOLC5A0kwKw3E0tGGQ6OYkzG2DHLb8xobOLG9Hep1RqIRv1Eoz4ef/zfsHbtHgKBGwSDH2CxuMrovOcPp1MUXV98sWTad1XwXvsx58+f56dn3sPrHcPUYMZiMYvIdEPzjP1n/C6SSXxmMy/92q/hPH8eLBZBrt99F27eFIQzmYSjR8HtLj/YMnHo2WNefx3WrxefhUKCgFosglinxJOJ7OfRqKhqe72i+t3QIGQad+4Iu0C3Gx56SFS9p6bgiSfg3//7mYuAM2fE2LdsEQR5/Xrx3uUSE1885mQS7t0T4/L5xH4vvST+9vuFDtzhEOR7YkIc85Wv5K47R7x6JmZbZ+xEa1hbUXz6bPHr6VR4UaPZ41PnQJEgHQEkQCPcUdJTGCyPC0JV5f3NheKYdFljRmdaWDU0HrmAJDcgFciLNKSTE6STY4CYT4k0EEff8Bj6hq6F3Y9kIJXIFLw0ucWCaWtdvisVDxbUWPVFwFJZ3nW7uvnTYnuzaWxv206DroFbk7dyVUaHO5uOWAlqHeCSqUbvWbuHi3cuEogG0Gv0PLfhuTnPNx/Hk+HAMDpZx6nRU2wN30HSmUgA1/zX+XD7R7AZHWXCUxaG/Er42cGz+I1+Gh9rpP9eP3hzzh5zzW+1c1xLu7mMzCYV9/Mv1uxg66ObGb0+TiI2RWtLI6s7P4LnJ2/REJExTC8ujToTUjLGzTmelsyQpBQ1Tdb6+6gHPB4P/uvnCMfS2Gw2ItEIJ06cZM+eXThbGkseM+MJicHASw0NdP/n/yyqs48+Kiq/0zHjXLqUk2HM1uA3l5NHRorhcgkSu3E6CCiVgmvXRIPinTuisj0yIsi3LOf0z3v2iO2JRO7cbW05eUepcW3dKkhwIiEIcns7aLW5ynOpMbvd4rW4+JNPxg0Gshqf/OvOI159LsxVdV3MpsB0KoisdYBsIJ28B0oMSTYgSYa6+1nX8vzlqsrpdAytxlaX+VSlEyqWCirJrhHqbXk3H/R09fDFo18kkoigoBBJRAjGg3NKDvJRa615ZjHiMDrYt25fdjHy8s6X5z6Y6h1POuwdvHXlLYwaIxYlRUxjQEonadCauHjnIh9dt69snPdC0d3dDavg2slrrDOuw260zyDRtZ7fUjKVodtDjKZHOfTGoYo16fnk3260892xy2xqsLF/5+M0WVZndce3PY24IvcgEQGtEZJR9KS5bShNMqGUZvw3l09yYhXo7+/n8S1NOOwWovFUVkpzfegqTueTZY/L6rvz5Q0gKtgnTgiim6lYZ5pvy5DFodiUcA7ZvgmnIrF3+HbpJMd8MbrfL6QZsZggzwC3buUqxsmkkHREo6K50GoV+ueJCUGW85FpTCwOnAF4801BtEdGxLF+P3z5yzliXCkprlTj09EhfL9HR3PylPb23IJiHphLy7uYOt8MOdVozCL2HFDS0RwpXSEoJ0GRJP2cTZYLkeeo0gkVSwGVZNcQ9bK8my8u373M5buX8UV8aCQNLQ0trDJX9z8ytdaaL/ZipKerh7/y/BVNxiaiGiNSMkISshaApcNTaoe5SHSt57e4YXPo9hAnr5xk18FdVT2JKB53FJl3793CEzmW13gJbW3buTEeg0sXkRMh0jorPLSF9W3bS553RUSUV4jh4WFaGg08uUo4YkTjKRqtZlLJqFiEzIX8Sm5jo6gaG42CIEajYp+M20YJ15Gh2BR9oQksspZWZEKk6XtkIwcvXBFEO/+YfKIKQk6xZ48g8x/+MHz3u4JYJ5NCIqIo4l8oJCQh4bAg2+3thfcwNATXr4vGxHwddEar7XDkSK7PJ7TimYbMaizzirXSHs9MYr91q5DF2Gzin98vPv/kJ0vPfwVpm3NpeRdT51sPffRSoFxVWYTqlJ/PB9GGT8XKh2rhd5/C4/XwlYGv0KBt4OHWh1nXuA6NRoNVb63Kwq/D3kEgWmRlt8B49W5XN737e3ntxdfo3d9b14VJt6ub5zY8hyRJ3NAaMEoSHeZVaCUNdo0+6y9dLwwHhrEbC23J8kl0ree32G5uNDHKroO7sHfYs5aJl+5cymrV5zvuDLamt3L825c4e72Rq8FHOHu9kePfvsTWdOn/4y9nbdjfX/lvcungAXqBQ0AvO3fquXLdywmPl0g8id2ixx8Mc24oVJGdYIFlXVeXINaKIuQQwaD4t3lzWSu5gUgQi6zFOnEHeXIS63vnsVy+zECTtfQx3d2CmL7+ujivXi8ItV4v5CIulyDZkiQq1jabkJNkiPeXvyzkHvkWd+fPC79th0PISzLE+tSpknZ8Q9Ew3/R7+b3L5/hm5xqG3n8P3noLbt+u3DIv8wTA5ysk9t//vnA+aWwUi4PGRvH+/PnKz+EptJ+czQZtsS3StPpV6Bt2IslGlHQISTbOSGdcKdDqV2G07qGh8WMYrXum9eSzz+eDaMOnYuVDrWTfp+gf7CeRStDa0Frg4jE6OYpRV/njxeUer16MUnZ9L+98OSd9SEaJec+SiNxlx4bn2L3z5brqf+dyRKnH/ObbzR164xA6WceJD05g1BqztolvX3sbj9dTdoFTqZPL+ePn2b1xN6OJUQLRAI2ORh5Z9Qjnj5/nU0/PtBicr2bc6/UU6LfLucLUDx7gi8AEEAMu8Iu/aOD3fs/GpWvgvRvO2jwePny4slPmV3JdLti9WzQLNjQIcphxF2lrKymPGEvGab3rExITkwk2bMDs9TImy+K4ckmIpeQXDz8stvf1ieZDSRLjmJoS19+wYaaDSUeHaIDsLCKVdrsYeyBQUKUe0sn07duHZXyM1n86QajRTt8X/hcO/sX/wP3978Nzz1UWKV9Of378OPz8z+fSK0EsBkr9tipMo5xby7u4Ot/7WfIw11w/iDZ8KlY+VJJ9n2I4MExrQ2uBh7ZRa2QiPMFT65+q+Dzdrm5e2PQCr/zkFUZDo7Rb2/n8hz+/rGQxGczWRFggUdn4fN3TODOohEQ36Bp49+a7SEjsWrNr3k2lpZDVpGuNBamgzabmWXXflZL/4eFh3GvcbJRzutd0Ol2WNM8notzr9XDy5JE5vLjrja8DQ4ANsANR7PYJ/t2/c/LKK4552TwW6KTtdlHB3rxZ2OSdPz+rjAHAqdUTGrqK1WQSMhMg/PAWnIGgkIHMNo5i+UVvb64xUqcTleBwWMg+PvShnOSj3HHFko9du8T2zL0FAgxs68LS0YH1/YtgMmGVZNBoGfhXB3G3ry3fQFmMclruEsS+rPykiibJ2Yjt/Ux6S6FYEy3JTSjpezWzDZxtPh9UGz4VKxsqyb5P0WHvIJaMcX5cPCo1ao0EogF0sq6qxkeP18Obl99km3NbtlHxzctvsql505IQ7dmCZWbTP9dbllIOs2nQ8xcFL2x+IUtka4msJt3URGg4hPcnXiJ3Izy07iHOTp2F/dWPOx/Vkub5hPwMDvZjNDqyntqZ13q4wpTHKcAKZCw6TYBCS8sVenv/v+pOla8FzgTDjIwIMrh3r2gYLOH1XExA95ps9CXjYLVgTiQJ63VM6vUc8N4tXb2dTYOcIfyrV4tKdmOjkIt86EPCaaSchKN4oZDxts5U8/OuN/bkHlpbV0HgVNY9xRxPMGY2VecCUk7LXYLYlw33WeQI9fsBxZroVOIeqcQFNLrVyNrGWTXSC/UTh/tHk67iwYJKsu9TZCqRW1dtZSQ4wsTUBDqNji/v/XJVZHMpkizLYS67u1JNhNFklDcG3ygg5ZnxV5MAuRCUa4hdjLntdnWzw7WDYz86RvAHQQwWA+2r20lNpbj+D9fxPOUpW3mtpJG3WtI8n5CfQGAYW9H3ajTa6+YKUxplosTLbp8Jj8dD/6uvMvz223Q0N9OzfTvdxXZ0vb0VyRhAxKUfvH6bgVUOxlqacIYjHLhyE/eNDwRZLBf0Uoq850tIpqZE02Bjo6hgzxaEM5fzR95xTr+XUDqF1W4X+nOjkbBehzMcqY7gVkHsyyYNlTtHtWmbDxCK7QzT6TBIepT0JJLkKGu5V6uGRdWGT8VKhEqy71PkVyINWgNPPfTUvMjkUiRZlsNcpLRYRzw2Ocbxm8exGWxZUv7Fo19EQmKDY0NNfL8XgoXMbaUaZY/XQzQZRbmo0OhoRNugZWJqgiZTEx/u+DD9/f0LcvWYD2meNaK8BOz2jpLpkBW7wlTgIjE3dgHHEKTaCESBEGUfBcwYwrSryqVLrGlqwgccOXWKw7t30+1w5Eh0lV7P7qeexZ2xAcwni3v3FqYffu97opFyzZpcgyIUkvcSaYcVYbbj8uZ+77at9B14Bh7eQuzsWYaczQTNJh67PsKQXoN7robH/OtVSOznfQ4VMzBDE63EBMlWYrltJTTSs3mNV13NzpOTZKrj8amf1SzhUoWKWkMl2fcxamEpOJ8o83phLlJarCP+2e2fAbCjbQeyJOMwOZgYmQDgsdWPAUtbma9kbkuRaaBijXL/YD8bHBu4Er9CxBIhloph0BiwGWy429zzCqkpRrWkuVp0dfVwcvp7rTpqfZao7eoI1cvACDAOBAAD0Dm9fW5kXVXicbDZcEyn3fUPDtK9b1+ORFciYyheNBRruF96aWZjXzye87vOeHAvMKhlThTNvfvaTQ5+4y9449d+hTM7t2O7e5dHL19H19BA3+d+hYMdnbgrPfd8FwS1Psd9iHLSjhmaaMkAxT7dJTTS9WhYVO38VKwUqBZ+KmZFT1cPvqgPX8RHWknji/jwRX1V6bprhbns7jLVe4fJwUhwhFgqxr51+3BZcp7FsVSMWDJWcI6lqszPNbeZhr9IxJdHpr/E6dOHMBpPYzKdQ5ImMJkcGKeTK4uRseJzrXHh0rroaumis6mTVDo1i3a60KpOvK8X5r5WJh3SZHIQDI5gMjkqb3rMJ5uZCm4qBV/4Ahw6JOQZnkrurxv4KvA88Oj061ent8+N4eFh7Ha7ILbTHth2o5HhQKCQRPf05KzsMjZ5+bZ2pazn3nxTfP7aa+J+MhXxfAu9fL/tDOqtQS4x9+54iqb3L7KrsYXHNz5M87PPYd3zBJbmFgYiqkvEUiNDXkXITY68JuPjMyz2ZNkMShxJtpBKTpKIXiMRu0Y6FSYZH8+eU9bYRNU7HwtsWFTt/FSsFKiVbBWzYjklWVbieJFfve891osvUthIaNAUJYqxsMr8zPTCnoqrunPN7cyGvzhwlZs377B58xYgApwA9mA0tpbUKGeq5V17uzjZdxIARa+gT+jLaKc9wBHAAawBIWwADlMpoSwutD79tId0upS0pfJruVzd82tyLJZfjI3Be+9BMol332YGI28R+Iu/wv6R5+j66Fx2jt0zxlUpsg2iW7YIyz0goCh06PWFWuC5ZAwVWs/NqIh3dcG774qGw3R64RrkSiQ4ZaQvY6RplQrrO2ZJZiwZn99YVjhq0RRYs7HMIu0wWveQr4nW6JrQGjpJJj4gFbuJJJvQ6DqQJE1BVbkeDYuqnZ+KlQJJUZSlHkPNsXPnTuX06dNLPQwVdcBs7iKl9s2PBg9EAwz5hrKa7HyiPh9Ndn56YX7TX03SC+NB3njjX2MztyBp9KC1MJl8G1/0Frdu+GhyNdHmaMOi1wAmIpFtmEwO9uelMWbm4It/80UmTk/gv+FnMjiJbJT5+Ec/zsu//HKJcfYiyG6eXCH7vujcJXgW5BQCdjtMTnqQpCNs3+5gzZqc1ENUovsrvta8UWwxd+wY+P1427Wc/HACI0aMUYWoUSK6bXPdbAELfivRKIGzZ/HdvcvhZ5+l+zd+o3LZwqFDOV11Bum0cCd57bX8CxZ+EYGASGdcu1bEqc9bmw5D588x8OMTjDlbcMaT7D1/CfeVazMlOKXs/Xw+vvnUbkL79mKVNdnNoXQKq6zhs40VJGUuFWqi7S9Evuwhn4AuVcjMlP+7SLIVSco19IpgmBANjR8reUw0dGJGvHvmvSDmtV9IVHJNFSoWC5Ik/VRRlJ2lPlMr2SpWFKrRmZeqFP/ujt8FqEllPj+9EMi+LrSZkHgQJq9jtziJxCYxGTVEwrcJpseZjKRobG0kFo1xY+IG61o60KZD5TXK4yCdkCANpnYTja5GVsmryhBsgGFEVTkf9untOZSTOuenaQPYbP3EYg6GhhysXVtsv1fZtRaEYheJ8XHQahncAkaMmDCBQcEUCMK05KYeJHtGg+jzz/NSFU89stDrRRNjPC7up6tL+GsXyz5KVcR/93cXRgo9HoZ+8A59NgOWaJRWf5CQo5G+3Y9xEHAXV9PLOHjs7dxCXzoJiAp2WEkzmU5ywOyYec3lgppp+wtRy6bAWmA+XtSVVJVr7Seu2vmpWClQSbaKuqGaqnO9UI6U12Ic800vnBNRL8haujZ9jJM/fQ0kiTtRH1pa0aZv0rZlLQC3r9/Ge/cDNq5+hB07Sldg+/v72bB6A485Hstu8/l8sywEOphZXQ5Mb88/L7S0eLDZ+oFhHI4ONJoefvpT2L9fbBPHnEWv7y6QAufs9yq71oJQTDZXrYLVqwlYLmLDLPaJRcFun9MWcKGpkwtuEPV4hA1fMCiaGKemhATE7RYEeuYF5ySAQ7EpBiJBxpJxnFo9e0023IaG0tc+coSB55/CcmcCazQGwRBWAEcjA1s34/7O2zOvX0L64t7azcGi6x4wO0pfd7mgUplOlVhusof5kNelCIlR7fxUrBSoJFtFXTCXp/X9gPmkF1aEVBRkA67WLnY/dojBq2/jv/M+rkYXm7aGMNg1RJNGtra2k1bu8UTHH1FOK1z9QqAHoYsGUVUOIIhwYZX89m0PLlehntpq/RJbtijE424MhozG+jqJRAN2ey7qOmu/F/84RL8PKQdoFDAOg37mtRaMfLI5TRbtET0RYwRTTIJIFHY8Oqst4JKlTuZLFK5dg/Z22L9fuIQEAkJjvXZtaaKXOfbsWeF7LUkiFbGxEbZvZ+hTn6TP1YhF1tKq0RFKp+gLTXCQ1pmEd5pkjrU00To2Js6l1cLEBGazmTG9tnQTZd7cZwn9neHZCf1yRJXWipViuaUYzoe8LlVVWbXzU7ESoJJsFXXBcgqxqRfmk15YETRGSCdA0uFq7cLV2oVxeAe+2CQXptaypWGQRmMA76Se6/5neaKj/HxWvxDoRjQe5lejM/fTm93mdo/h8zkwGDLndZBKjdPUBOHwThQFDAYHicRWFOU8bncripJnv7f1X8KkDuRdIF+GdAQmN4Hlk6Cv4+9jurra1f91TobfAXMzxu27iNr0s9oCLknqZLFE4dQpkcb4xBOCaENOj13q2C9+EW7eFNVvSRISk0yio9nMwI9PYHlyD9ZVwtLPKgmN9EAkOJP8TpNMZzhCqH011qFrIgkyGiWspHFevg5/93fw138N7e0M/R//joEnPpKtVK/X6DkZC1VG6Bc6ZzXWTQN1S4hcjrKHaqUdS11VVu38VCxnqCRbRV2wnEJs6oX5BLFUBKMLJq+LvyUtKEk2OzbwB+/9T8KKAe/kvryGzd+Y9VTFC4GGhqt89KMX2L//IQRp7mFmFbzYRWOmC8j69W8TCj1DNCokwbEYyHKM1lbYti1XaLXb3bS1hVm71pGVWezY8RKuhumFhNwGtE0HJyYgqgP9wqZvTnR34+r+U3bnyz9MbWJcZQjzkqRO9vdDMgnnzonJnJoSk53vdV2O6H3966LRMRgEoxEmJyGREO87OmB0lCsdq5m8N07YYsQia+jQGmjUaIXLRzFZ1eshEGDvzVv0PbIR3Bsw3xwmbDEzmU5xoP/vxFjb2hiyW+gbHcJyyUbrps2E0in+cmqch7RGrFpB5Gcl9PNFnXTTQN0SIhdKUJeLM0mtNdfVYLnp2lWoyIdKslXUBcspxKaeqEsQi94GloeENjsVBY0RR+ujfHp7U9UNm/kLgVTqLB/72HXa27fS1OSmcnu+fgTBzlWtV61qZvv2s7z3Xts0mQaHw0BDg+B/GQ4YiQQwmbbPcD3B5wG5yE5R0or7XSRUYwu4oNTJ+VZXz54VEhGTSchCEglRlU4k5rbhO3VK6LZ9PkHM02nQ6SAUAqORoUYr3qZGiMexSDIxJc2FeJj1WiNrfQE48oeFZHV0FPx+3KdOcdDVysCTjzO2th3njsc48JX/ijsUFjIUYOCpJ7HEElhPnoLNXVglDSkFJlIJ1pCTRdTctq9OummgrgmR8yWoagVXYLnp2lWoyIdKslXUBZV4Wi8UC2msXA5NmbNCbxP/8lCuiXMur+7cQqAXWEc+WRboZ3aSPdMFpKtrOydPfp/HH/dlUxh9vlWAQiTimzuZMU8Sk4WSFNuXIeadOrmQ6qrfL6z6TCbxvqVFSD7icSERmYXoDa1fK+Qalgact7zsfev7uN8fFOeLRhnY/zwPjd/h+qpW4ijokYgDN5JRfuG7359JVm02uHRJBMrcHMHtnRBNpA/vhB+dhra27LXHmh203rknqufTsMsa/NOOIhmElTRObQ0fW9RJN53FMkuIVCu4AstN165CRT7UxEcVdUFx+qLD5Khp02OmsdIX8RU0Vnq8c6f3LeTY5YaM/7LP52PNmjX4fD6OHDmCp2SK4TCimTEfhZZ5Xq+HY8d6eeONQxw71ovX60HosguTNl0uI7t3P1uQwvj001/l6ad/t7JkRqML0klBtBVFvKaTYvsyxLxTJ0slTjocYvtcaGwUFehIRMxRJCKkH9u3F6Y7FmEoNkXfr/4SIZ2W1kCQkMVM32c/zZB7vahqRyKMrW1n9e1xHrHYMUzb6FkkDW1aA+5z5wvTIkGQeq0Wnn8ePvEJ8bphg7iP9nYhQ5mG866PsFYjKunTaNHo0EoSoXSKtKIQSqeYTCfZa6ohEeroKEy0hPqnWi4RkvFxEtGrJGIfkIx9QDoVFh88gBXc4iRK8RpFa+hc6qGpUKFWslWUx0KrvdV4WleLhTRW3k9NmdV5dc9umVfeQeMFXK43p/fPOY64XKVJZkUSjBKSGBrWzqjeLyfMK3VyIdXV7duF8fjoKFlNTmcnbNw462EDkSCWTZuxfjAKyRQJo57hhzr4L3/4n3jyJ+fYe/wkzitDhNwbaFKgyWgBcoEwJZv8JiagtZUhh42BdasZM5twTk6x90c/w/35z8Nv/ZbYz2Zj7w9+SN8/fwa27cCsKISVNFpZ4pesq7iRis/Ptq8SyU2ddNNLjWLdtSQ3kUpcA2SQQFGSpBK3gNVIkuaBq+AudeOlChWzQSXZKkpiuVvwLaSx8n5qyqzOom92e77yDhrncblKOY4s8HdQQhJz32EhrhQZ0rhtWyFpzERrFmOaiI5t30QrMmzbxr1ggAsOK3pZRjGbCd0N0vdwF7sHTnGytRn+8XuYH9tJuGtzLhCmFFnV6Rh6dBt9j2zEEo/TGo4QQqHv2X0c3PsMboBXXoHRUdyyzMF2NwObu2rjg11KcvOlL4kKejxeSLrno5uulyNJDVBKd52I/ghZ04Ksc5KO3wJJi6JoSCXG0egcD2Qgy1I2XqpQMRtUuYiKksiv9sqSjMPkwGF00D9YwWPuRUCHvYNAtPDRcKWNlQs5drmho6ODQNEj8vIWfRl7PgcwMv2aa3oMBIYxGgtlAjkHjYym+7Xp1+VBQpY9enoEKfT5hPQj83c5opyPDGl0OIRcw+Eor+XOEFGfD6ciEVbScOkSw50b0Hd0wJo1WIMhrJEolpFRbrSt4uDRf8IanmLi4gWsE3c4aJ220+vuhhdeEK4mf/M34vWXf5mBD23BEgphvedDvnoV63vnsfj9DNy4Ap/6lIisv3KFoe/9Q4F934L9sIslN/E4XL0KZ84U6txLSqTmQN68LfhcdUC+7lqSJKG/VtKkUyE0GjOyfjVIWiQpDaSWLI5dhQoVpbEkJFuSpD+QJGlQkiSPJEnfliSpscx+NyRJek+SpLOSJJ1e7HE+yBgODGMvIlzLqdrb09WDL+rDF/GRVtL4Ij58UR89XXOTl4Ucu9zQ09ODz+fD5/ORTqezf/eUJXHlybLd3kG0aPFRsYPGLPB4hHz40CHxukz4y+KgGqJvoOQ/AAAgAElEQVS8EOQR0b3Dt5m0Wgk12pkM+FAUhbiSpmPkNgSDmGNxxlyrcI96+exbP+C3//BVPvs3384RYY8H3nxTVNA/8xnxeu4cY92PYA5PCccTgLY2zDduMvaDo/Drvy5i12NT9IUmCKVTBX7YQ7GpwvFW86MYHi7UiF+8KPTe8Xihzv3VV6snzAvRzC8C0qmg8M/Oh2xCUSIAaDRmdIa1aPVr0BnVABYVKpYblqqS/TawVVGUbuAy8B9m2fcpRVG2K4qyc3GGpgKWf7V3IY2V9W7KXExkLPocDgcjIyM4HA4OHz48L1vBrq4eolEfkYgPRUkTifiIRn10LWDxscwLhYuD7m5BJGdpVpwBj0cQ154eeOstYb832+TlEVG3L8jBC1ewIkEigSRJPKI306TVQThM2GbFedcnjotGobW1UCNehng6R24RbnLApk3CTeTuXcINJpyhSVFVPnKEgRtXsMharLIGWZKwyhosspaBSF4zXrU/iuKGxszf+cTbbhe2hdUS5mICnzlXrRxJFghZYwMlVrhNtiAhq41+KlSsACyJJltRlH/Me3sK+NRSjENFeSyGBd9CsZDGyno2ZS42MhZ9GWnp1742P2lpxkEjG9CSCY5ZwDzNx7p4GUtkFwcZEnrpEjQ1iW2nTsGePTnSWDwhRdpvty+I+9pN9m5YR1/nJnSyTHrLFsIfDDOp03LgJ2fh7l3R0GgyiURIj0ect0yz5t5TP6Vvz6NgtWC+cpWwzcqk3caBf/qJsBu8dImxHx6ntbkVtmzJmqXP8MOu9kdRrBHX64WbyaOP5vYJBIQDS7WEuU5JjrVCqURISZbRmx9HSd9TG/1UqFjmWA6a7EPAW2U+U4B/lCTpp5IkfW4Rx/TA436q9i4EHq+H3mO9HHrjEL3HepetzV+tKsYuVzf79/fy4ouvsX9/74Ijw6stFKqVb3IkNB4XBNhkEtZ9Fy+Wn7wy2m/3U89y0NqKVdYw0ezA+thODv7Nt3H/w/fgyhVxDa1WNBFmJrqMFZ7baObg9dtYgyEmrGassTgH3zoqLP+mSa5z4q7Qg584AWNjQAk/7PlUjxsa4N134TvfgXXrwO3Ohexk7nvXruot/BaimV8EaPWr0DfsRJKNKOkQkmxE37ATg7kLo3UPDY0fw2jdoxJsFSqWKepWyZYk6R2glOntlxRFeWN6ny8BSeCvy5zmCUVRbkmStAp4W5KkQUVRjpe53ueAzwFlmr5UVIv7qdo7Hyx3h5V81DPsbiEoVShs0AX5pU94wTdt3Wd0ZV1Glut9LCoylWS7XXhjZ0h2IFCeNM7irOGGnN76lh8MJkFatVpRFZYkETaj14vjZ7HCcwP85TcZWOVgrKWJgW0Pw7VruCUJJIm95y/Rt/MxAMwXLxJubcm5lmRQTfU431nkhRdyYzl4EM6fL7xXqN7Cr45JjrXCSnLOWC4x7w8y1O9geaFuJFtRlGdn+1ySpF8BPg48oyiKUuYct6ZfxyVJ+jbwEaAkyVYU5RvANwB27txZ8nwqVj4WM6lxJflp1zvsbr4o5msNuiBPbr/O5i1aEaueTsDkdeGZrbct2/tYVGRIaFcXnDwptimKIMGzkcZKEgn7+0WIzMiIINaSJIj8xYuwb5+Y6FmI51Bsir7P/QqWcx5aLw4Sam6i79AvcvC7P8B95RpuayMHL1xhoKONMdI4Zc1M+75q/KzLrbrOnxf69mLMhzAvsyTHlQo15n3poX4Hyw9LosmWJOljwG8DH1UUZarMPmZAVhQlNP33zwH/aRGHqWKZYbEry5X6aS+mhrhchPpylZYW87Vf+oSXzVu0tK6ajlPPxKpHvaC3Ldv7WFRkSKjDISQQZ8/CvXvw3HPw8ssL+3FVWiUvRTw9HgauvY8lFsVqMMIzz2AdH4cPhhl4/FHcrS5wOrN6cBwO+MQvzBxDNdXjalddKmFeMqgx70sP9TtYfliqMJpXAANCAgJwSlGUX5ckaTXwZ4qiHACcwLenP9cC/11RlO8u0XhVLANUWlmuVbW7w96BL+LLXgdmOqyUysk4cqQ+Lm2ZCHWHw1EQoX748GF6erqrflJejrDXGgW8xxcVFex8SFqR+sh9G9pXHYpJ6PPPz3/lVrwC1OvFpFZbJZ/+oY/9y5+ndTIJH1wV2zZswPzYTsa8t2DkjtA1VyrTqOR+1FXXikE6FUSSrYUbH8CY96WE+h0sPyyVu0hJr6FpeciB6b+vAdsWc1wqljeKK8tjk2O8P/E+tyZvAWR9rmtV7a7EYWUxNcSzRaj39nZX9aR8NsJeD6KdhcYoJCKZCjaAkhTbWRES2cVBPgmt1DammFBv3Sr8rvNXgKOjglS73bkq+e3bwgkkGMzZ3RWff/qH7vQFCPnuYQVRBfd6CWtknOvWM7RhHQONZsZWP4azYz1713cKDfdCoK66VgxkjQ0lHRXV0wyU2AMX876UUL+D5QepjBx6RWPnzp3K6dNqds39ht5jvdnK8tjkGCc+OIGEhN1kZ7tzO76ojwZdAwaNoaD6nDmmd39v1decqyp+6JDgL3KeT086LSSvr722kLudiUOHDrFmzRrkvIul02lGRkZ4rczFyklZent78fl8WaIOZN/3ltK61grxoNBgy1pRwVaSkE5mNdkqipD/qCSfZBY/Kim137Fjgmhv3Jjbz+cTjiJOp/hR6PWCeG/YkDvu2rWZkeVf+xqsWcPQtSv0/dw+LNE45qkIYa2GyQ0PsXvsLid//mNYZC1mSSaspJlMJ3Mpkgudgwfa03H5IxkfJzZ1jlTsJpJsQta2IstaFCWqplAuIvI12RnLR/U7qD8kSfppuSyXpZKLqFBRNfIry+9PvI+EhCIpbGnZkiXV7958lxc2v1Bw3EKSKudyWFnMp9kdHR0ziHH5CHX41rfgK1+BRELkjUSjOSnL8PAwa4q0rna7neF6dxjqbYJQR71CIqIxQsPalU2w60ECM+d84w1BhHfsyAWswMxHJXmPVIYcNgYefZixrRtwTk6xVzbg9k0/LrbbxQowk7L4hS/A+DiEQkJCIkkisnx8HP7ZP8vpn8xmYeN3YZCDisLAh7cz1mjD6Q9y4NINBpqs2RAaAKskXgciwYWTbFVnvayRIXayZAR9B+nkOKnEMJJ+nUruFhlirncWuIuoHupLC5Vkq1gxyHh39w/2c2vyFqutq9nSsgWXRThF2o12JCQC0cCsOupaopqn2cePezh6tJ/JyWEslg6efrqHffsqJw89PT0cmb6Y3W4nEAjg8/l4qcTFPB5BsCUpR7AvXIBHHhF8rFrCXlPobSubVOejHqL8/HMqivh38iTs3g0uV+nGv+kGwSGHjb5HNmKJx2kNRwhJ0PfIRg5euCKIdmYFmLnG+Di0tIgmyJMnRbJkcWQ5QCwm7k2vFy4iV6+LH9Xu3WAw8K2tT9MqFcYuzAihUXFfIr/ZTiODRmtBSUeRZKNK7pYAK8ny8UGASrJVrCjkV5ZLNSXuWrMLX1RERi9GUmWlGuLjxz288cYR9HoHZvMaYjEfb7xxBDhcMdHORKjnNyu+9NJLJTXU/f25CrYkCfksCGWA0Qi/+ZuVE3YVs6Aeovz8c2q14kuLx+G73xVNkHr9zEcl049UBh59GEs8jjWeAKsV68QEhEIMdLQJx4/MCjBzjVWrci4jADdvinMVRZYPxSMM/NuXGbs8iPPMOfZ6BnE3t4pAGJ8PZ8d6Qko6W8EGEUKjQ+Kbfi9jyThOrZ69JtvCK9sqao6FeCurzXYqVJSHSrJVrEiUa0o8vPswQIGO+qUdL9XV17qSp9lHj/aj1zswGAQJy7wePdpfVTU7E6E+F4aHcxXsDH8yGkWK9lNPVUfYVcyCehh7Z845NiaaEWMxQazDYaGz7uyEr3618JjpRypjOg2tsbg4RpZh3z7M4+OMkRakOrMCnNZYs2WLSGcEQZhTKSEdyYssH9LJ9O3bR8phZ2Lno7z/cBcDH/fzS+/8kP1TCXjpJfau76QvNAGQ1WTfSkSRkNDJMq0aHaF0ir7QBAepgU57hWE5B4RU661cfC+gASWmNtupUFECKslWsSKRLx0pRaaXW1jM5OQwZnMhGdPr7UxO1lYDnZHy/uxngi/FYmJ7xgpZp8slRldK2FXMgnqI8jPnvHhRnNdmEw4gGo34u7195qpu+pGK89r7hOIxrEaj0HE7nYS7NuOUNYWe1ZlrOJ2wZ4+41vi4iCw3meCHPxTXjEQY+N9+jVTQz/XJAHqTicaGBiZNBv7yX/0L1jZ34DY04AYO0spAJJitWrdq9OhkuVCnfecOAz88ifvNf6xev75CGyCXa0BIhiwnolcBGVnnRCNLs3orl7oXUbGW0GgbC5rtdIatM661HBcZKlTUEyrJVrFisZJi3y2WDmIxX7aCDRCPB7BYaqeBzpfyPv44HD8uJCPJpKhg63Tw5S+vCF6yclAPi7nMOTN66VhMvO7eLeQdIyOlj+vuZu/m6YpyxuUjnZoZa1487tZW0OsZ0msY+OTHGbt6Gef7F9n792/jHrrB2GoXw2YTgWCAtAR6nQ6bJBOnsLHRbWgoqFD/3p1hGvN12mNjmE+cYGxVS+X69QyxPnsWrl8XTQWdnfU1pK8xlmNASD5ZVhQFJEjHb4F+NRqNuazco9S9aLQO0koKSTaWbLZbrosMFSoWA/Lcu6hQsZLhAXqBQ9OvniUZxdNP9xCP+4jFfChKmljMRzzu4+mne2p2jXwpb1sbPPOMhz17etm27RAHD/byx3/s4VOfqtnlVEBOlO9wCPLrcCyc+GXOuWoV3LkjKsuZpsdAgKFtW/mm38vv3Rnmm34vQ7FcaK7b0MBBaytWWcNEKoFV1pS20Ssa99CGdfR97lcI+X20jt8h1NRE3//6EkO7PowulWZ0tQvSaXThMElFwZtKoEeatbHRqdUTVtK5DRcvEm6040ykck2VDkfOm7sYmVWjzyf+SZLo3h0fn/vYZYR0KigqvPlYYs1yPlmWZSMSEkha0sl7Yocyco9y9yKRwmjdQ0PjxzBa9xSQ5/xrSZI0/WokGbtaz1tUoWJZQK1kq7iP4QGOAA5gDeCbfn8YWNzql9BdHy5wF3n++Zcq0mNX+pS8UB7soaXlCM3NDoLBNTz+uI+7d4/g9R7GtUKq/ysG9bCY6+6GP/qjQu9rn48hvYa+A89gSafK6pyLK8rlMLS5k4HPfJKxSxe5LUHLiRNYPxgFwBqNgiwzsHc3yBLaVIqUJKFJpZAACUiQxqnVlz3/XpOtUKcdizLZ7ODAhaHcTrPp1/NXjcGg2DcahcHB8i4ryxDLMSAkv1lR1jaRStxCUTRIxFDS0Rlyjwzmcy9qY6SKBxkqyb7PUauI8ZWJfgTBzjwqd+RtX/w52Levu6omR6jOIa5QHizuPRZzYLeDadqFZXCwXyXZKwUlrGsGPvNJLM0tC/ajHopN0Td8BcuJf6L19m0u7ttN0GahYeIOTXfugkaDOTTJmGsVpNN0/8zD+Ue3ETPoMQBNsoa4Ioh0ObgNDYU6bYORAyfP4E5N7+D1wpkzwjmlt3fm6jF/1Wi3CxeUTHMBrJh4da2hU8gj0pTVLC828smyrDEDq0klxgGQZGNZb+X53MtyXGSoULFYUEn2fQyP11OziPGViWFEBTsf9untKwPVOMTly2wbG4eJxdYQiYj+NwCj0U5gnqE8KpYIRVXysTvD8/ajHopNMXDjCmPDN7it09B8y4vVOwZ6A42TU4RMJoY3dwqSnUoRtphxjtwCRaGhuYm9711kePcuJjVadJLEh3SmOYl9flV9qNPHwD0f33K24LznZ++PTuAOBmHfvtKrx/xVY8YFJRbLVvVXSrz6cgwIKSbLkqRBo3PMGR4zn3tZjosMFSoWCyrJvo/RP9iPw+jIeklnXvsH+x8Qkt2BkIjkN30FprevDFTjEJdf+AwEOrDbfezY4cDpFJ9HowHsdQrlUTF/DMWmClw5sl7SJXRCzo5VhNIpEqk0w8kYk+kUOklio8405zX6hq9g+dlPaZVk3u9yE1RSmEdHaUqn6bjl5fzGh/A1O0hbLYTNDUxaLBz4u38Eq5W+z/8qlk1ddDevykamv2htruoe+1yNWJ7cQ+v7Fwn5ffR95pMcvDqCW9bldsxfPRY3Z27dCufP51adpQzplymWW0DIQoh/tfeyHBcZKlQsFlSSfR9jODDMGltRdPYCIsZXHnoQGmwQFewAgnQv/+pXBvN1iJua6sFuP0I8DopiJxoNEI362FGnUB4V88NQbIq+0AQWWVuosb7ix33kD2fohPb+1v/On7VaGP3/27v38Lru+s737+9a+ypp62JbluOL4kRxcBLiOBAuCRhCSxnImYeAT8eFmaFkoBd6CgynJz3tTM9zTlqeXmhp+7RDhzMtcNJmenM7puGZ0gnQ4WJIuCUEkcQG27GjOLZl2dZlS9rXtX7nj7W3vCVvybrsrZs/r+fRY2nt29pLS/J3ffX9fb8T47RevEisWGSitZULre2cyGycNbN8ODdG27HjZMyDVIqufIGsF2Og7wY2PP0MGxIJbnjxLBc7Mgxt20pP5wbue9vb6fuZDwNwYMaFwH2tXQsqTzmcG4vGrm/uAQeZo0ej7Rsy9B09Vb/Gema5zK5d8Cu/smYC64VYiRZ3yxn4r7aLDJHloiB7Hevt6K07FbFZI8ZXn2ixYVSfPECUwX4/K1GPPR/16uf3798z7w5xtfXbPT17GBt7kO9+9xDl8gA33NDLnXe+/6r12Gu0FfGaNRV8zqyxPn6Evjp1Qn1//1m63/1ORs6foZRK0ubHuHngJeITxzgcQt/L7pj+ApVv6ODem+n+4Y9gW3TR3Tua5ZmudkY2biAslZhIxImVSnzoE5+mL5aMht3UBNHzXUw5m8FykW4/Hg3YefxxiMVoLRQY3LTx8sj4ZHLq6nEqu7+1k56PfGBdT4pUi7srqa+2rBdq4beO7d+9n+H8MMO5YUIXMpwbZjg/zP7djWsbt/rtof/cfh76Si/ve3SAh75yiP5zK9PGby7V+vnh3PC0+nk298+7Q1xt/bbnQXv7HuAhXnjhM9x770PzCrCrHdNqF1n2r77DtfL6+6PFeu97X/TvIg/SYLlIa70aa8Lpo81hKtNbGjjFq14a5PUvnWfvuQtsCCuPGTh15T5WvqE92QkmzKJyix/9CCYnIRZntKuTx9/yJkpmHPjs5+nb2RcF2A2+sopjfCef5esTIzy96wYu9d3IRDJJz9DFKLj+3veiE27//qnsfnZGB5XaVoXriVrcTVe96HBhftpFR7l4fqV3TWTBlMlex642FfFasFYWf85VP//QvXvmFfMsdcL3QhZZXtMW0vLlKnpiCbJhMJXBBphwIT140Z8t6tQJ9Zw5R3bTRkoxn4GODOOJOPEgYNcLM4bUVL+hxSL7/u4fOPiOt0EQUIx5fH9TF5RLvO74aZJ79zJ++x3wvg9My143yonCJENBkYkwpDWXI59M8PQNO9ieaeG+h/826i5iNnX8Do+cq5/dX2AHlbVCLe6mW43De0QWS0H2OreWpiI2w1pZ/NmI+vlEAh57LIpZOjpg9+5pf4G/+j4sMUi/JvT3w4c/HA1E2bw5OshbtkS3LeJq5Ipe0pVFhffddAsc+nx0pxl1Qvu+/CU+vX0rpzd20lIqEw8CJnyPoc2bOVGYvByIVr+hX/safbkcB/7nNzh8+26+/vLdtE5MsOvY82x43T7Y3ANhsKggdtZFmzUO58bYGk/R7ScY8H3GnaO1VGJT2dF308tg4+boYqBy7KZKS2rMt4PKWqQWd9PpokPWE5WLyLo2MDpAR2r6n91X4+LP3o5eRvOj07YtpH6+vx9eeima2RGPR9UAX/0qnDgR1VXPax96L7cgntqHtdGKeHlUM9jVcee5XFRPfO7coq9GZp3Q+PI7Zp0k2femN7PpwiVac3nKnpEsFNl7/AW2brmOw7maQKT6DR0dhVSKvtNneeDQ59k1eJFX5cps8ONUW88sJoidb1lHtSRmQyzO3q7NvP7ZH/GqEwOUfO9yK76ak/SKSZFUsvtzDL5Zy2LJm3AuXxkC46aGwcSSN630rq0Iz28HV5i+8Rq+6JC1TZlsWdfWyuLP/bv3RzXYRBcBo/lRhvPDvH+e3UAOHYIbb4wSl0eORHFVezvs2DF3crV2oWMiEQXqN9549UWW16Rq+cXmzVGAna60zTt6dGF/Mphh1kWFs02S3LOHUsrxqueO4I2ORt+sO/YSdm+eHihXW+AlEtH+mkE+T4/5ZHFkamq+FxPEzrpoc0ZGfFpJTE8P3HMPEyeO03PmXN1WfLNm91trW3GuH2pxN536ast6oiBb1rWlBq/LZan189XKAM+bSk4ShlESdDYzS4tHR8G5qNzk9OkoZlxDrYibr3qQq4NRIAquz59f1quRE4VJzra38tyr7qDLj9MbS7IhFmciDKYHytUWeJ/8JHzxi7BxI7z2tew7eZqDt98Mt95Cq3NXBLHzKQGB+Zd1XBE0d29ifGMn92W669aAXzEpchEtA9catbi7TBcdsp4oyJZ1bS0t/lxK/fxi+mnXW+jY1xf9+9BDi9qN9a16kCvZWI4cuVybvYhFjwt1ojDJo9mLPFkYJwEEDrJhmWcKJW4M0/ieRYFyfz8nvvwlDne2Mrh1S9QC7xc/QN/ffza6UGhvJ3nLbXy/LQW5MW5NRCUrfcmW2ft20w0wLfCNY0y48MpFmzMy4rVB87HCJBMupM3zp0pb6gXPS20ZKGubLjpkvVCQLevetbD4s3Y43nxLPbTQcYGqB/nChSjVPzQUFcB/8IPLEmAfzA4xUCqQMQ8zoxSUiOXKFLKjXBgZ40Pf/xF923o58a3HOfime2hz0H1xmOyFixy865Uc+A//J8BUEH1PTSlG1eHcGG2XRsg8F9UcZTo64NZbeBSPAuG04PtCUMIFjq3x1FXLOqoB89lygS1eklbzpgXwCqhFZD1SkC2yDswcjjefUo/FTpNciHPn+jl69BCjowN0dPSye/f+q/brXrX27IG3vx0++lEolaJR39u2wec+Bzff3NRAu1r/XHJ5WitBNoUyyYEBXjN4kaGNXfQ9/wJ85s85/OGfow0jUypBKkUmn4djxzncHdURzVVHPXh+kO5vPB7Vm7e3Qz5P6zce58tvuIe2ljQll8cnKisqEJIyj24/ZIjgqmUd863hFhFZLxRki6wTs62Tm81ist8LmQh57lw/TzzxcVKpLtrbt5PLDfPEEx/n7rsfXLuB9jPPwL33Tr8yGR5uejPxav2zD7xULhLiiOcmSHZkmMgV6ZnIRcX0Z84wmJug+0fHoouA1lZIJmkdujBVKz1XHXXPc0fIdnZE49fHx+HCBV5qb2MkP0Eb4KWSnA1KGLDZi1HAUSCcKjeZz3uY7bVFRNYbtfATuUZVs9/zmSYJC58IefToIVKpLtLpLsw80ukuUqkujh491Lw31WwDA7NOYmymnliCM6UCk2FIyYV4QBHHaEuaM22t7HvqB9FizHicnjPnmEjE4cUXo5KWEyeYGBul5+uP03NxeM72ePu++STjmVaypSLhS6fJJuKc6ttJ9/kLcPYMY8UCCfNImMewC+n0Y7R5semtA+d4D9Nee3CQiScep+cf/2lJUzNFRFYrZbJF1rjZssvzyTovJPu90ImQo6MDtM8YsJNKdTC6ynqUL8hy1NjUsS/dzm9NjpDwjB6LMxwGlONxNo2N0z2Zo+9r34BUCjZuZN9XvsHBDzwApRKtp04x0b2Js7tvpjSZ49Lzxzgbg52ZDrbFk1fUUfelWjnwxPc4nEkx2LOZnpExrjt/ga7sBM/dfgu5QoFULEbZOYo4emPJeWejp3UZGbrAxFNPMt7Rzn2XskuamikislopyBZZY2brbV2bXX7726NS4QZM/p6y0IWSHR295HLDpGt6lOfzo3Sssh7lC7KYGpsG6Eu2sMVPMB4GTBCyLZ6k18p0PvMkQ5s3wchIdDJ4Hn3bejnwha9xeOdWBrdsJr5tOy6ZIl4KuHE0S+qFAU7u3kXehexKtkzVUZ8oTHL43e9k8Nkf0HPkh/zkt79H34lTPPyOt5LddRO3XRzh2/EY+ZYW4mZs9eNsiEWLIKc6ilzlyi6Jx/fz4zA+zK0tLRw4NkDf6PjVr9hERNYgBdkia8jM3taPPRZNeaz2yK7GKp/4BNxxx/yzzvOx0CTu7t37eaLSozyV6iCfHyWfH+bOVdajfEEWs8J0IeYIUnclW6KhLpWFg6TayL7uHnqeOxINmjGDu++GLVvoA/oOHoTubh7+33+B+PgEmWIJkkm2v3iGjr2vIOP5PNAZjYSfat3XvYnu226POpL8+GYOeB77cmUOdnbSls3yqsGLfL+7GzB2xdNkw+ByJnzmyTk8zIlHHubwz7yX413tnC0X2BlLcU+6nYnjTzC+cUYXErW2EZF1RkG2yBrR3w8f/vDl1sy7d0dr3TKZqGVzdQhNR0eU3X7DG6Y/fqkxzEKTuFu27OHuux+c1l3kzjvfv3YXPVYtdIXpfNUJUmv//FB3EuKGTu5729vhxluj+yaT0RSi0dGoveC2bQy2pumeyEWvUShAR8cVJR7TOn/09JB5473w1JMc/l/ewgNHTnLgiSc5vK2HwdtuY2+yDYASjoznX+4oMqOe6MSN1/Opl9/EyNhFBlt8HI5CGNDq+WxIpiA7weHrt9I3XKnnnnHFNt+hOCIiq5WCbJE1oBp/nT8PmzZFU7KfeCKKoyCKT6pGR6POcqOjjS0dXkwSd8uWPWs/qF4OM6+gbrnl8lVT5c8Pc05CrPPNOfFbH+Xw4Esc62jjVGeGXWfPsyGXgzvvvGJozBWdP3p6aH3FKxkcOAWnD9PX20vfXa+Dm+f4Xs6oJ3r0ZTfw0sZOWicmcc7hY2RdyNHCJPfccgutjz/O4OZNly8Kaq7Y5hqKo0BbRNYKBdkia4MqIdUAACAASURBVEA1Sbh5cxRgp9PR9iCAbDZqaVwbq3zwg1FNNjS2dLhZSdxrUrU05Omn4eTJqGXetm3RN/jxx6Opkt3dMDBwRVb3JzObrgw2a745U0HqpevZ/fzz9G/q4Onebdyx+xYSmzZdMTSmJ5aISlFqpzd2b6Knpwd+4v5Z38K0/Xr7W9j3g6P0nRmEI0d47g130jp0kWQqRdLzKTtH3EUDaZ7uaGXkDffQOXSeE8UcfV1d067Y1FNbRNYDBdkia0A1SXjLLVH8BVFlwIUL0Sj0HTuiNny12eWbb25e6XAjLKTn9rpTWxoyPBzVU4+PR59v3Bjd58gRSCQ4ccfLF5zVnQpSN/eQ2dzD3nKJY6UcR5zj9bUlHhV1S1Fmmd5YdUW2+dZbOFjMc+Dxx+mbnAQzXBAwGQaUiiXGfSPEAdE4eC+VYNONuzj44M2X+2xXTorBvTfTjTcto6+e2iKy1ijIFlkDqosOe3qiBOeRI5crC37rt+oHp6s563yV8uOlPfFaiNxr65fHxqI/N5TLUV/rlpboCur8eRge5vBb37fgrO7M8o8NsTiv8mMMBaWpxY615ixFmcUV2ebNPWAeh39sH31/dYhbTw7w7Tv3kEsliOcmSbe1kcVhQAzjZcnWqe4kh3Nj9P3w+NRJ0eOMLCGZaka/p+eKEhcRkdVOQbbIGlC76LC7O+rWNjy8dtsKL7Tn9rw0LXJvgtr65Y6OqERk48ZoXHs6ffkK6sEHGdzYSbdNnxs2V1b3RGGSs+UiRwqTdPoxemNJNsTiVw1S+5ItU0F1tQzk77MXZl10WHeC42SOwb17YCLgFRbnK+kk+ViMQhiSNkjhsdmLkfZ8NsTi099LzUmxb+AsB2/bFd1+5AgT3VeWuIiIrHaa+CiyBix0OuNq15TBibWRe7WfYVdXtH216e29vFp1927I56Ovt2yJei/edRf88R/Dnj1XTkqEWQPmagnHJi+GhyMblnmmOMGLxTzjYZl96XZOFCZ5eOQcH7swwMMj5zhRmKz7HNkwmFaeUr1f9fHHijm+k89yqVy6vF/dm+i5cIkTXe08sWMrrcUynZM5UmEIZnR7MVKex3gYXPleak6KvuExDjx7jAzGECEZz5/X6HYRkdVEmWyRNWI1l38sVFMGJy50Ws5Kqv3TxObNcNtt8Oyzly8MagroF1IvfTg3RtulETLPHaGlXGJg+3UMd3dzsTXGhzq2Aly1vnuuRYe1j98dT9NfnOTbuTHavRhFHP7LbuI9f/coh6/fQVuhQM9YlgKO5HVbKcQSBKFjwjlaPY/QuenvZcZJ0Tc8Rt/zL0Rfv+NfN+kbISLSPAqyRWTZNWVw4gqNPF+UmS33br4ZfvVX615FzVov/cPjnPjylzjc2crg1i309O7kmAd933gc0mk2JJNsOHWa8Mgxhl53D31bWnh45NxV67vrloFUSjpqA/CM53NDGPB0YZzxcoFWz8dPxnnkX91P2+Agdxw7Sa/v8+yuG6ElTdzBJCHbYgm6/QRDQWl67fcKTdMUEWkWBdkisuyaMjhxrQVpC/jTRG29NAD9/Zx45GEOvuke2hx0Xxwme+Ei5/quJ7VlMzsKlRKOVIqJZCKaCnnzHXMG0FV12/lVSjpmPn40O8aGsVEupBNsGM+R2LCB8XSSgR3Xsemmm9mRSHFbucRAucBIWKbLj/MzndfVL/to9jRNEZFlpiBbROpqdqOOhpe/XEtB2qFDHH7F7bRhZEolSKXI5PPccOSHnLz9VjrPXaS1WGIiEWc8EeO+L30d3vGuaQH0pWrwG5Tp9GOcKEzSl2y5ojzlTKnAyXKeLX5UG14KQ7YnUjA4yPilQcYybSSdI1kowIsv0rZjB7lknFPlPJ2xOJ1+jLjnMR6Wr15XvZ5qokTkmqcgW9at/nP9HDp6iIHRAXo7etm/ez97NH1wXtZSo45pVnmQ1rBR4QMDDL7uzqlx6ZfSSQa2bOJiUGIsneLbW7tJBiG3Dg1z4Inv0ZdqBS7Xd4+US5ws5zHAw7HJi02rza6Wpxwv5jhbLrAzlmJbPMlLpQLPFaMFkKmTzzOybTOj6RQdhSK5dIp0Lk/x0kW6t+8g40dlJfNtCSgist4oyJZ1qf9cPx9/4uN0pbrY3r6d4dwwH3/i4zx494PrLtBuRsa5KS32rnENHRXe20vPhUtkO9op+R7Pdm/EhQGj7W345YB4qcz1o+MUwiDqw/2eB4DL9d3/afgMgXN0+fGpFn9T/aorpSl9yaiGuyeWmKrh3pFIATBQKjCxuYtMqUw+CBhPxBhLttPakiYzmeNmP86ORKpuT24RkWuFWvjJunTo6CG6Ul10pbvwzKMr3UVXqotDR1dhO7clqGach4enZ5z7+5f2vItpsdffDw89BO97X/TvUvdhvaldNOiZkfF82rzYVNeOBdm/n31P/YBxHMc2dBAvFsgmYlg6TXdLG0ngYsyjDePwz7x32pVRX7KF62IJ3tjSyd5U25X9qmscK0xyvDDJ1ydHeTo/zqVyiW3xJKHBa89d5PbTZ2kplADDc46C51GKx8m5kH3p9iUcLRGRtU+ZbFmXBkYH2N4+vZ1bR6qDgdFV2M5tCZqVcU4m4bHHoFiMgutbbokG4MzWqGPNlpdUNKyMYw7zWXQ47/3Zs4e+9zzAgS9/id/e0AHxOOW2dnoSSVr8GK6lhXEX0ppuZzAoXfF8cYwJF9Zd3HiiMMmj2Ys8XRjnXLlIEuO6WIKCC3m2OMHOWJTNbu27if4zL7JxYoLOQoHRRJxczKertY1NflylISJyzVOQLetSb0cvw7lhutKX27mN5kfp7ViF7dyWoBmtofv74cUXoyqDTAYmJ+ErX4GbboLf/M36j1nL5SUNLeOYw1xdOxa1P3v20LdnD68fOUc2DDhRzFGoDK0p4mjzfCZcyGQQ8FsXBwgcdHg+xTBk0gVYYBBPTuu9fXs8zadHznG6XGAiCEhh5HG8VC6yLZYEg1PlPLclWpnobmM8Bq1DQ9jEJL5Lk2zZyJ4NmxkKSoiIXOtULiLr0v7d+xnODzOcGyZ0IcO5YYbzw+zfvX+ld62hagcHVi21NfShQ9DXB298I7S0RJO+29th27bZA+amTHBcJg0t45jDvnQ742GZbBgQOsfpYp6n81mOVSYoVicqznd/qpMXjxdzPJ3PknRQCAOyYZmCC9noxThTyvN8KU8xdOTCgFOlPE8VxglDxyY/TsbzGQpKUxMVnypMcKyYYzQoM+lC4uaRIAraXygXGA+ii4T7MxsZD8vEW9IUendQuHkXxW1b6e3ccNXx7SIi1wplsmVd2rNlDw/e/eC07iLvv/P9627RYzNaQ1ez454XTfkGCMNonPtsmj0HppntBBdSxlFroSUmc3XtqM1Wz2d/arPdN8ZTpDBOlvO0ezEwo9U8diRSXCqXeKFUIBcG+OaRMo+ic/yolCPu+/xS545pz/lkYZxiGJLyPEouYMwFeETZmBYz2nyfrItGoh/IdPNo9iJPFsZpN59b4i1TrfrqTaMUEbnWKMiWdWvPlj3rLqieqRmtoRcTMDdzDkyz673nW8ZRa7ElJrN17aidvDif/almu0thSH85x3gYkDCP3niKX9p0OXD+2IUBAufAjJgZAAlg0jnGw2Davh3OjdHu+RS9kABIm0fBBYRAEsM3j2LoiBv89sUXeX1LB/dnNnJ/ZuPUxUbG8xfVqm85auJFRJabgmyRNa7RraEXEzA3cw5Ms+u9Zw5fqdYnz5WNrS3pgPrjyWfV38/g4Em6z5y7vKq0p2cqW/2aZBuPTJ6n7BydlSDe92za/gyWi8QcPFeaJGEereZRcCFPFsanhsoAxDHGwjJFwAiIV7bFvCjbXetYYZKgUq9ddo4Uhg+UK7e3mUcZR8J8ynD5wiLTvaRWfctVEy8istwUZIvINIsNmJs1B6YZiztr1ZZxzHdwymJLTKpp+Z63vYnspo1ksuPw+ONwzz1MdG8ijvFEIcvOWIoLQYnz5SID5Tw7Y6mpmuy+ZAs9sQTfyo2RMI9kJVg2jHbzeTR7kQ25sUr7vRxRgz0IKh8FHDuJsavm/Z0oTHIuKILBNj/BUFBi0jkA2vHYm2rjaClHPgwpOMcG//IFxrwuLOawpAsWEZFVTEG2iFxhNQ1ObHa9N1wu45ivxZSYAFNp+X3nhznYvSmqnwYmThxnfGMnSbwo4Iz5tJZ9xl1ACz4hTMvw7ku388XxYRLAJVci70I8M3Z6CZ7Mj/PalnbGw4AiDo8oG+05sKCMhY6hsMDObAkqGejDuTFuiKU4Wc7jex69XopxF1AIAzb6CZ4v55kMyiTMo+hCJsIyl8olOv3Y1S8srmLRFywiIqucuouIyKq2f38UZA8PRwswq5/vX8FGMTM7hWTDgPGwfPUBLJU2LH3DYxx49hiZYomhjV1khi5wdzLDc8VJvp8f5+n8OD8sRqUgbRa14pvZZSSG43RQZDQMiAGdns/zQYGkQabSvg8cMYyEg3Q+Tyx0xIBMrsCpbz4+NTFosFxkazzJbYlWkpWSmTbz6fYT5MKQsaBMCSjj6PETxM3j27ksX5sc5Wy5ONUZZTF6YonKvl6mDiUish4oky0iq1oz670XazElJsC0tHzf8Bh9w2MwPMyJG6/nYCFL3AznHAUXcqZc5Do/TtHzaKuUUrSaN9WZxDcjXVmQWA1Ry0CMaIFjm+czah5ZVyZwIeVEHHOOZCmgrVzm6y+/mcHBk/SMbJ4aTrMhFp+aAHm6mOdkOU8ZR28sybgLGArKjIdlci4kcNDiGZu82JJqqBdTEy8ishYoyBaRVW81la9ULbTEBJh1Venht76PIHSEznGmXCRpHj4wFJTZYDF2xdMAlQA0oCeWwDOPLbEkYy4gFwbkQsdG8xkMSnx9chSfqG92tYeIcxB6HpMJY7A1TVuxxFPdXUyMnseA6+IJbk9lpgLdk5Va8IuVvtvtXhR8ny+XMRytfoyXJ6Ox7NkwmLWG+mqdQxZ9wSIissopyBYRWS6zpOWPd2U4U8qR9Hyu8xNcqgS2nhk3xFJ0+rGpkhSc43hhkvOlAmUgbh6+gzFXwmGEOMphSNzzyOMqeW3AIFkOCMyYTMQpeR7J0JGwKIt9olSgGDq2J1LclEizxU+wLZ6kNfB5tjgBQJv5nLcy3X58KsCGucfDz6dzyKIuWEREVjkF2SIiy6lOWn783HHMLOoU4kOL75MNfXxnbE+kpjK8t8fTPFI8TyEMwIyyCym6YKp7iI8jjnEuKNHhohKTTjy6QxjNjlKMx5lMVEpQSiW81jYmXLQ40ifKlLd63lRtebbSSzuGMVguEjhH0owb4+mpABtmr6FW5xARuZYpyBYRabCFDldpNY8xoOBCgjBkOAzIu5BOz5/22IdHzrEzluKpQhYfI2M+Iy4qCTGilewZz6eIo4gjYx4lB+nWVtIAQ0O80Jqm1Jom0drGhOfh4QAjXnn96uLKfel2Pj1yjtPlAi3m0ePHmXCOTvOYdCHZMLhqDbU6h4jItUxBtohIAy1muMquZAuposfpcoGzQYmkeWz0fNJ+jE+PnCOO8VJQ5Hy5SGclcA4qHTn8ykcMI8BhFnUTKTgXjVEnJBuWaU2nmejdTiwokwwDcuZRdiEGuEqQ3eL5U0FwX7KFTX6c4bBMyTnaPJ9dsSRxz6MURt1O5qqhPlGY5Gy5yJHCJJ1+jN5Ykg2xuDqHiMg1Q0G2iEgDLaZEYl+6nYPlAp4Z22MJMKPoQnq8OD8s5ph0AdfFEphznHFlPKAFI+75jIUBIY44EGIELlpA6VzIGMbWWILRICBLwNZ4kvdkNnOuXOQvs0M4wMOi/wjM2B1PTwuCSzhelcrg2VRlNxdKRY6WcuwiPWuWvnqhscmLMRaUyIZlnimWuSFMEZsxvVJEZL1SkC0i0kCLKZGodtj47Ysv4pwj4/nsiqcZKBcouhAzI+X5xDwPKh1DsjjiYYBVFjeGGJs9j0kg5wI889jsx3hNun2qpONA5nI2fUsswV+NDXE6KJAyn1vjaWJmPJ3PssVP8HAlgz7hwqkLhUvlEv3FSVo9b84s/dSFRsynxfMZKBcYDkpcDMt8qGOr6rFF5JqgIFtEpIEWOw2yL9nC61s6osdWsuDPFScpOUe6Mjq9FDp8on7Y1RrsEPAxQnNcciEJF2WnPaA3lsIzq5tNvzezgXszG6bqx48Xc5yutO3bFk+SDQMuBCVc4NgaT9FqHsdKOcCxK56e9Xlh+oVGtfd26BxDQUkBtohcMxRki4jMYqELGGFpw1VmPjZuhhm0eFGQXR06EwcMo4yL2vjhuDXWwrFynoI5cA7PGd/OZ/lBcYJWz6fLi5HxY3Xf0wOdW3h45Bw9scT0Mpd4clr99UQYkMJ4rjhJW9mnN5asO1p90WPnRUTWEQXZIiJ1LGYBIyxtuMrMx+6Kp0k4GHYB+TDAzFFyVPqBOFzlcUXgmdIkHeZTdFEpSZGQkGggzUQYULCQi0GRP770UtR9JAw5Vcrzo8Ik7+/cMmuZyxABD3Ru4URhkh8VJwmANvMouJBnixPcEEuxPZGa9ri5LjQWc+EiIrIWKcgWEaljKT2e6w1XmW9wOfOxJwqTPJq9yPfyWYrucmBdywNKwEUX4BOVkpRrbg+BYVemM4xxMsyzLZ6krdLq73S5wCMjg4y4gOcKE3T58bqdQA7nxtgZS3GqnKeII4FRBE6W87y7Y/MV76HehQawqAsXEZG1SEG2iEgdjezxPFtW/O5ihi9PjtJfnCBwcF0szrsz3dyb2TD12L5kC/cDBUJihUlOl4sEMC3YjhY+RsozbgOm+mhfdGViQOgc5nkkMfIu4MnCOK9OZRgLy1EnkEKJG8M0fk0nkMFyMZoAWVnIOB4GtJlPm+fP62IBoj7fGk4jItcKBdkiInU0sq64XlZ8tFzikyNnGXcBiUqf6jOlIn8ycgZgWqBdfbxvHhk8soRTmWqPavnIlcE1NdurHwFwtlzkuliCtOeTDaPs945EaiqAHgnKXJjRCaR6PKoLGYFpizTnQ8NpRORa4q30DoiIrEb70u2Mh2WyYUDoHNkwYDwsT40cX4jBcpFWm/7rdigoMRoGJPBIej5xzyfpeZQd/MPEpbqPb/N8OmNx0uZNdRepPqtHFFDPVBtgV2/Pu5ChcpGCC8kRsrmmE8jeVBtvaOngulhiWna5EcejJ5ZgwoXTtmlBpIisVwqyRUTq6Eu2cCDTTcbzGQpKZDx/Wp/phagXXI6E5akhMlVRTthxISjVfXxvLIlZlAmPEZWIBEAXXqXjyOw8YLPFSFfa+024KO/d5fnsiE9fuFgv8K13PO5OZjicG+NjFwZ4eOQcJwqTcx6HRl64iIisdioXERGZRb264qqFdMmo120jZkYajxKQrNwvAMBowePhkXNTz73TT/BEOUubF2O7l+B75Ql8jBSOECNLiIfRiqPA5brsaq22B2z3E3TF4uTCgIvlEkUcr0m3R89dyJINg6u2HKw9HovpvrKUzisiImuNgmwRkQVaaIBZL7h8T2Yzn81e4Hg5D6HDA4oOfBxpz+N0Mc9QUOK5wgQxM34i3Une4PthiY1+nJILyPhxEhjPF3OUiIL0Ti9G2TnyLqRUyZQbRovv45zDM6PFj3FPspUHOrcAUT32QgPfxXZfmevCRURkPVGQLSKyQIsJMOsFlzsSKf5iZJD+4gQlB1vjca7zE8TMOFnOkzCPTi/GuAv4Ym6E92Q283VgNCzjYbSEDvM9WjyfbFgmwCg6R8KMBB4Jg12xFGeCAhCVgcTN2BaLc39m45z7djVaxCgiMjcF2SKyJvX3w6FDMDAAvb2wfz/s2bM8r92oALMv2cKv99wwbdvHLgxwplQgYR7JymLJNnzOl4s8kj1PwjyC0OEZnAuKxAOjiCMAWizqNTLpHDGDXbE0XfE497Vt4FRQbOgAGE11FBGZm4JsEVlz+vvh4x+Hri7Yvh2Gh6OvH3xweQLtZgaYPbEEzxUm6PQu/3ou4giBsnPclkhzrlyk6BwFF1LESJvRYjGKFnJ9LAVmtJrHrmRL0yYqLmV8vIjItUBBtoisOYcORQF2VyWeq/576NDyBNnVAHO0XGIoKDESlomZ8Z7M5qs/eB7PfXhyhHEX0EY0lbHoQjwzOr0YG2Jx7ki08s18lpDol3iXH8PM2BlrZUciNVVr3UxaxCgiMjcF2SKy5gwMRBnsWh0d0fbl0Jds4e5ihkey5wkcJDFKDv5sbJCnChPcn9m46GCzL9nCezKbeSR7ntEwoMPz2VoZZ14tUdmZTHOilCcXBgQG7ZVR6J1+bFlrorWIUURkdgqyRWTN6e2NSkS6aioTRkej7cvlVFBkbypDKQx5tjhByjySznGslLtqK7uq2jaA8UqX6xJuqvvIzDrq2lZ7bb6PmbE32TptAmOjaqIX0qJQRESupGE0IrLm7N8fBdnDwxCGlz/fv3/59qE6hXGgfHmRYtI8Ss7R5sU4nBub8/HVNoDZMMB38HRhgqcL48RcFCw/UciyL93OT2Y2AfCtwjhJPEphyFBQYlc8zbZYnLjnNXywS+2+1bYovNqwGRERuUyZbBFZc/bsiRY51nYXef/7l6+7CFxe/DheySxDtECxzfPn1Wmktg3giWKOVi96jheDInvjbQA8mr1IgXCqH3d1cWF18uTMbHOjaqIX2wNbREQuU5AtImvSnj3LG1TPVF38GDej6EIg+ndXPD2vTiO1bQBrA/XxMJr72GoejxfHuSPVNmuw26yaaPXAFhFZOgXZIiKLUO2u8Wj2Ik/mx2n3fW6NtxD3vCta2dWrb65tA9jm+RRcCEBbJaCeqHxdDb6rliPYVQ9sEZGlU022iMgi9SVb+KVNO/iN7ut5TbqdskHG86fKOWD2+uadfoLxsEw2DNjuJ5gIQybCgB1+Yqq++tZEy1SwXbUcwe6+dPvUvjW63ltE5FqxIplsM3sI+FlgqLLpPzrnPl/nfm8F/gjwgU85535n2XZSRGSe5irbmK2++VRQ5EAm6jM9GQbsTbYCUXeRjZ4/lQmfa+BLszqAqAe2iMjSrWS5yB865z4+241m5gN/AvwEcBr4jpl9zjn33HLtoIjIUs1V3zyfmurZgt1qhry6KLKaIZ9P68D5UA9sEZGlWc012a8Gjjvnngcws78B7gcUZIvImrHU+ubZgl11ABERWd1Wsib7g2bWb2afMbOuOrdvA16s+fp0ZVtdZvZzZvZdM/vu0NDQbHcTEVlWzapvrvbprqUOICIiq0fTgmwz+5KZPVPn437gk0AfsBc4C/x+vaeos83N9nrOuT91zt3lnLuru7u7Ie9BRGSp+pItHMh0k/F8hoLSFQsjF6snlpi2KPJSucR38lmeyY/zkXPH+b/On+ThkXMaICMiskKaVi7inHvzfO5nZn8G/Pc6N50GdtR8vR0404BdExFZVs2ob6726QYoBAH9xUmKYUDMPLJhmbGgRArjYLnQsDptERGZvxUpFzGz62q+fCfwTJ27fQfYZWY3mFkCeBfwueXYPxGR1a42Q360FE2M7PBjZHyfjBcj6flcCMvzGvEuIiKNt1ILH3/XzPYSlX+cAn4ewMy2ErXqu885VzazDwKPEbXw+4xz7tkV2l8RkVWnmiGvdjB5PDdGqlJpl8CmJkmqTltEZPmtSJDtnHvPLNvPAPfVfP154Ir+2SIiclm1g0l1cmQSo4ijzfM1qVFEZIWs5hZ+IiIyh+owmmOFSc4FRTZZjDEXUnQhzjm2xRNXjHgXEZHloSBbRGQNqh1G05dIkyp5nCrnaTcfzGjzfLYnUg2bAikiIgujIFtEZA2aOYxmRyJFZyxOxvN5oHPLCu+diIis5DAaERFZJA2jERFZ3RRki4isQTOH0cDCxrWLiEhzKcgWEVmDmjWuXUREGkM12SIia1BfsoUDdHM4N8ZguUhPLDHVReThkXNT27TwUURkZSjIFhFZo2aOa6/tONLtx8mGAQezQxqrLiKyAlQuIiKyTtR2HPHMyHi+xqqLiKwQBdkiIuuEOo6IiKweCrJFRNYJdRwREVk9VJMtItIk1bHny7UIcV+6nYPZISDKYE+4sKlj1Zf7/YmIrCXKZIuINEF1EWI2DKYtQjxRmGzaa/YlWziQ6Sbj+QwFJTKez4FMcxY9rsT7ExFZS5TJFhFpgpljzzPmT21vZrZ3ZseRZlmp9ycislYoky0i0gTrfRHien9/IiJLpSBbRKQJ1vsixPX+/kRElkpBtohIE6z3sefr/f2JiCyVgmwRkSZYzkWIK2G9vz8RkaXSwkcRkSZZrkWIK2W9vz8RkaVQJltEREREpMGUyRYRWaM0DEZEZPVSJltEZA3SMBgRkdVNmWwRkQZZzsyyhsGIiKxuymSLiDTAcmeWNQxGRGR1UyZbRKQBlpJZXkwGvCeWIBsGU68DGgYjIrKaKJMtItIAi80sLzYDrmEwIiKrm4JsEZEGWOyY8doMuGdGxvNp82Iczo3N+TgNgxERWd1ULiIi0gD70u0czA4BUQZ7woWMh2Xua+2a83GD5SLdfnzatvnWVmsYjIjI6qVMtohIAywms3yiMMnZcpGvTo7wdH6cS+USoNpqEZH1QJlsEZEGWUhmuVqLvdGLMRaWyYZlnimUuDFM43t21Qy4iIisbspki4isgGot9o5EipcnWsl4MUKMC2FZtdUiIuuAMtkiIiugthZ7QyzOhlic0DmGgpICbBGRdUCZbBGRFbDYbiQiIrI2KMgWEVkB6nMtIrK+KcgWEVkB6nMtIrK+qSZbRGSFqM+1iMj6pUy2iIiIiEiDKcgWEREREWkwBdkiIiIiIg2mIFtEREREpMEUZIuIiIiINJiCbBERERGRBlMLPxGRBThRmORwbozBcpGeWIJ96Xa14RMRkSsoky0iMk8nCpMczA6RDQO6/TjZMOBgdogThcmV3jUREVllFGSLiMzT4dwYbV6MjOfjpJ6DdAAADZVJREFUmZHxfNq8GIdzYyu9ayIissooyBYRmafBcpFWm/5rs9U8BsvFFdojERFZrRRki4jMU08swYQLp22bcCE9scQK7ZGIiKxWCrJFROZpX7qd8bBMNgwInSMbBoyHZfal21d610REZJVRkC0iMk99yRYOZLrJeD5DQYmM53Mg063uIiIicgW18BMRWYC+ZIuCahERuSplskVEREREGkyZbBGRJtLwGhGRa5My2SIiTaLhNSIi1y4F2SIiTaLhNSIi1y4F2SIiTaLhNSIi1y4F2SIiTaLhNSIi1y4F2SIiTaLhNSIi1y4F2SIiTaLhNSIi1y618BMRaSINrxERuTYpky0iIiIi0mAKskVEREREGkxBtoiIiIhIgynIFhERERFpMAXZIiIiIiINpiBbRERERKTBFGSLiIiIiDSYgmwRERERkQZTkC0iIiIi0mAKskVEREREGkxBtoiIiIhIgynIFhERERFpMAXZIiIiIiINpiBbRERERKTBFGSLiIiIiDSYgmwRERERkQZTkC0iIiIi0mAKskVEREREGkxBtoiIiIhIgynIFhERERFpMAXZIiIiIiINFluJFzWzvwVeVvmyExhxzu2tc79TQBYIgLJz7q5l20kRERERkUVakSDbOfdT1c/N7PeB0Tnu/ibn3IXm75WIiIiISGOsSJBdZWYGHAB+bCX3Q0RERESkkVa6JnsfMOicOzbL7Q74gpk9aWY/N9cTmdnPmdl3zey7Q0NDDd9REREREZH5alom28y+BGypc9OvOecerXz+buCv53ia1znnzpjZZuCLZnbUOfe1end0zv0p8KcAd911l1vCrouIiIiILEnTgmzn3Jvnut3MYsB+4JVzPMeZyr/nzeyzwKuBukG2iIiIiMhqsZI12W8GjjrnTte70cxaAc85l618/hbgN+bzxE8++eQFM3thgfuzCdACy+bTcW4+HePm0zFuPh3j5tMxbj4d4+Zb6WN8/Ww3rGSQ/S5mlIqY2VbgU865+4Ae4LPR2khiwF855/7HfJ7YOde90J0xs++qRWDz6Tg3n45x8+kYN5+OcfPpGDefjnHzreZjvGJBtnPugTrbzgD3VT5/HrhjmXdLRERERGTJVrq7iIiIiIjIuqMg+7I/XekduEboODefjnHz6Rg3n45x8+kYN5+OcfOt2mNszqnbnYiIiIhIIymTLSIiIiLSYAqyRUREREQa7JoNss3sb83s6crHKTN7epb7nTKzH1Tu993l3s+1zsweMrOXao71fbPc761m9kMzO25mv7rc+7mWmdnvmdlRM+s3s8+aWecs99O5vEBXOy/NLFn5XXLczL5lZjuXfy/XLjPbYWZfNrMjZvasmf37Ove518xGa36H/N8rsa9r2dV+9i3yx5XzuN/MXrES+7lWmdnLas7Pp81szMw+MuM+Oo8XyMw+Y2bnzeyZmm0bzOyLZnas8m/XLI99b+U+x8zsvcu31zP2QzXZYGa/D4w6564YdmNmp4C7nHNqJr8IZvYQMO6c+/gc9/GBHwE/AZwGvgO82zn33LLs5BpnZm8B/qdzrmxmHwNwzv1KnfudQufyvM3nvDSz/w3Y45z7gJm9C3inc+6nVmSH1yAzuw64zjn3lJllgCeBd8w4xvcCDzrn/uUK7eaad7Wf/Ury40NELXRfA/yRc+41y7eH60fl98ZLwGuccy/UbL8XnccLYmZvAMaBv3DOvbyy7XeBS86536kkPrpm/n9nZhuA7wJ3AY7o98ornXPDy/oGuIYz2VUWTbs5wIzBOLKsXg0cd84975wrAn8D3L/C+7RmOOe+4JwrV778JrB9JfdnHZnPeXk/8OeVz/8e+PHK7xSZB+fcWefcU5XPs8ARYNvK7tU16X6iQMY5574JdFYugGThfhw4URtgy+I4574GXJqxufZ37p8D76jz0H8BfNE5d6kSWH8ReGvTdnQO13yQDewDBp1zx2a53QFfMLMnzeznlnG/1pMPVv4E+ZlZ/rSzDXix5uvT6D/axXof8E+z3KZzeWHmc15O3adyoTMKbFyWvVtnKqU2dwLfqnPz3Wb2fTP7JzO7bVl3bH242s++fgc3zhXTrGvoPF66HufcWYgu0oHNde6zas7nlRyr3nRm9iVgS52bfs0592jl83czdxb7dc65M2a2GfiimR2tXF1JxVzHGfgk8FGiX/IfBX6fKBCc9hR1Hqs6phrzOZfN7NeAMvCXszyNzuWFmc95qXO3AcysDfhvwEecc2Mzbn4KuN45N14pa/gHYNdy7+Mad7WffZ3HDWBmCeDtwH+oc7PO4+Wzas7ndR1kO+fePNftZhYD9gOvnOM5zlT+PW9mnyX6E7ICkxpXO85VZvZnwH+vc9NpYEfN19uBMw3YtXVjHufye4F/Cfy4m2Whhc7lBZvPeVm9z+nK75MOrvzzpszBzOJEAfZfOucOzby9Nuh2zn3ezP6zmW3S2oL5m8fPvn4HN8bbgKecc4Mzb9B53DCDZnadc+5spaTpfJ37nAburfl6O/CVZdi3K1zr5SJvBo46507Xu9HMWiuLcTCzVuAtwDP17iv1zajreyf1j993gF1mdkMlE/Au4HPLsX/rgZm9FfgV4O3OuclZ7qNzeeHmc15+DqiuXP9JogWoygDOU6V+/dPAEefcH8xyny3VOnczezXR/1sXl28v17Z5/ux/DvjpSpeR1xI1Aji7zLu6Hsz6l3Gdxw1T+zv3vcCjde7zGPAWM+uqlKi+pbJt2a3rTPY8XFE7ZWZbgU855+4DeoDPVn4uYsBfOef+x7Lv5dr2u2a2l+hPNaeAn4fpx7nSFeODRD8EPvAZ59yzK7XDa9AngCTRn4EBvlnpdqFzeQlmOy/N7DeA7zrnPkcUID5iZseJMtjvWrk9XpNeB7wH+IFdbqP6H4FeAOfc/0t08fILZlYGcsC7dCGzIHV/9s3sAzB1jD9P1FnkODAJ/LsV2tc1y8xaiDoR/XzNttpjrPN4gczsr4ky0pvM7DTw/wC/Axw0s/cDA8C/qtz3LuADzrmfcc5dMrOPEiVKAH7DObcif2FUCz8RERERkQa71stFREREREQaTkG2iIiIiEiDKcgWEREREWkwBdkiIiIiIg2mIFtEREREpMEUZIuILICZja/0PiyUmZ0ys00rvR8LYWY7zWzevdzNbIeZnTSzDZWvuypfX9+8vRQRmZ2CbBGRdaQyefKa45x7EfgkUR9dKv/+qXPuhZXbKxG5linIFhFZIjPrNrP/ZmbfqXy8rrL9jWb2dOXje9XJezMe+9Nm1m9m3zezRyrbrjezf65s/2cz673K9ofN7A/M7MvAx8xso5l9ofKa/wWwmtf7JTN7pvLxkcq2nWZ2xMz+zMyerTw2XbntK2b2MTP7tpn9yMz2Vbb7ZvZ7lffbb2a1Qzh+uWb7r1e2tZrZP1be5zNm9lN1jsUrK7c/AfxizfZZX2uGPwReW3lfrwd+f97fRBGRBlOQLSKydH8E/KFz7lXA/wp8qrL9QeAXnXN7gX1Ek96mmNltwK8BP+acuwP495WbPgH8hXNuD/CXwB9fZTvAzcCbnXP/B9FktK875+4kGkNcDcZfSTTN7zXAa4GfNbM7K4/fBfyJc+42YKTyPqpizrlXAx+pPDfA+4nGb78KeFXluW4ws7dUnuvVwF7glWb2BuCtwBnn3B3OuZcD9SaO/n/Ah51zd8/YXve1Zj7YOVcCfpko2P6Ic65Y5zVERJaFgmwRkaV7M/CJymjwzwHtlaz1N4A/MLMPA53OufKMx/0Y8PfOuQsANaN/7wb+qvL5I0RZ2bm2A/ydcy6ofP4G4L9WnvMfgeHK9tcDn3XOTTjnxoFDRME/wEnnXHW0+ZPAzprnPlRn+1uAn668528BG4mC67dUPr4HPAXsrmz/AfDmSlZ8n3NutPZAmFlH5Rh9teb9Vc32WvW8DTgLvHyW20VElsU1WbsnItJgHnC3cy43Y/vvmNk/AvcB3zSzNzvnjtbcboCbx/PPdp/a7RPzeIzV2VZVqPk8ANJ1bgu4/P+GAR9yzj027QXM/gXw2865/3LFi0eZ9PuA3zazLzjnfmPGvs32Puu+Vp3n3wv8BFGW/utm9jfOubNzPUZEpFmUyRYRWbovAB+sflEJ9jCzPufcD5xzHwO+S5TVrfXPwAEz21i5/4bK9seBd1U+/zfA16+yfaavVW7HzN4GdNVsf4eZtZhZK/BO4PDC3uqUx4BfMLN45XVurjznY8D7zKytsn2bmW02s63ApHPuvwIfB15R+2TOuRFg1Myq2fl/M4/XmmJmRrTw8SPOuQHg9yqvIyKyIpTJFhFZmBYzO13z9R8AHwb+xMz6iX6vfg34APARM3sTUQb4OeCfap/IOfesmf0m8FUzC4hKLB6oPN9nzOyXgSGiOmrm2D7TrwN/bWZPAV8FBiqv95SZPQx8u3K/TznnvmdmOxdxHD5FVDryVCXAHQLe4Zz7gpndAjwRbWYc+LfATcDvmVkIlIBfqPOc/67y/iaJAus5X2vGY38WGHDOfbHy9X8GHjCzN9aUoIiILBtzbj5/qRQRERERkflSuYiIiIiISIMpyBYRERERaTAF2SIiIiIiDaYgW0RERESkwRRki4iIiIg0mIJsEREREZEGU5AtIiIiItJg/z+hdOPP1t95WgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 864x864 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# 2D graph of the data and its actual label\n",
"\n",
"plt.figure(figsize=(12,12))\n",
"\n",
"plt.scatter(X_pca[y==0, 0], X_pca[y==0, 1], color='red', alpha=0.5,label='0')\n",
"plt.scatter(X_pca[y==1, 0], X_pca[y==1, 1], color='blue', alpha=0.5,label='1')\n",
"plt.scatter(X_pca[y==2, 0], X_pca[y==2, 1], color='green', alpha=0.5,label='2')\n",
"plt.scatter(X_pca[y==3, 0], X_pca[y==3, 1], color='black', alpha=0.5,label='3')\n",
"plt.scatter(X_pca[y==4, 0], X_pca[y==4, 1], color='khaki', alpha=0.5,label='4')\n",
"plt.scatter(X_pca[y==5, 0], X_pca[y==5, 1], color='yellow', alpha=0.5,label='5')\n",
"plt.scatter(X_pca[y==6, 0], X_pca[y==6, 1], color='turquoise', alpha=0.5,label='6')\n",
"plt.scatter(X_pca[y==7, 0], X_pca[y==7, 1], color='pink', alpha=0.5,label='7')\n",
"plt.scatter(X_pca[y==8, 0], X_pca[y==8, 1], color='moccasin', alpha=0.5,label='8')\n",
"plt.scatter(X_pca[y==9, 0], X_pca[y==9, 1], color='olive', alpha=0.5,label='9')\n",
"plt.scatter(X_pca[y==10, 0], X_pca[y==10, 1], color='coral', alpha=0.5,label='10')\n",
"plt.title(\"PCA\")\n",
"plt.ylabel('Les coordonnees de Y')\n",
"plt.xlabel('Les coordonnees de X')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def create_mapping(k, y, y_pred):\n",
" \"\"\"\n",
" Create a mapping between two cluster vectors based on mutual info score\n",
" \n",
" Arguments\n",
" ---------\n",
" \n",
" k: number of clusters\n",
" y: actual cluster vector\n",
" y_pred: predicted cluster vector\n",
" \n",
" Returns\n",
" --------\n",
" mapping: vector of size k in which each value is the cluster in y_pred most closely associated with \n",
" the index-valued cluster in y\n",
" \"\"\"\n",
" mapping = []\n",
" for j in range(k):\n",
" best = 0\n",
" best_i = 0\n",
" for i in range(k):\n",
" dist = sklearn.metrics.mutual_info_score((y==j)*1, (y_pred==i)*1)\n",
" if dist > best:\n",
" best = dist\n",
" best_i = i\n",
" mapping.append(best_i) \n",
" return mapping"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Create a mapping between y and y_pred so that the two graphs have properly corrosponding colors\n",
"# to give a visualization of how accurate our K-means algorithm was.\n",
"\n",
"mapping = create_mapping(k, y, y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALJCAYAAABLK86qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde5Scd33n+fdT9+6uvpTdklpWqyPJxm5ZprGMwfYEHCNigiHYoe0hccJMACWcMxvPJCejQzI7zI45s3uG4SgzMHF29kAIyYRZWOJ0Ig8D3mALR44ROA729FpYlrEl2t3o1lL1ve717B+/KnVVqbquT1378zpHVPejquf5VXUjf+tb39/3a9m2jYiIiIiIlOdq9QJERERERDqFgmcRERERkQopeBYRERERqZCCZxERERGRCil4FhERERGpkIJnEREREZEKKXgWEREREamQgmcRkQ5kWdYZy7IilmWtWJZ13rKsr1iWFcz83S9YlnXMsqxly7IuWpb1t5Zl3V/w+Hssy7Ity/pUa56BiEhnUvAsItK5PmTbdhC4DXgH8GnLsh4C/gL4r8AosA3434APFTz214HLmVsREamQgmcRkQ5n2/Yc8G3grcB/BP6dbdt/bNv2om3badu2/9a27d/M3t+yrF7gIeC3gLdYlnV7SxYuItKBFDyLiHQ4y7J2Ah8A1oCdwONlHvIgsILJUP+/wD9t6AJFRLqIgmcRkc7115ZlLQB/B/wt8PnM8bNlHvfrwP9j23YK+L+Bhy3L8jZumSIi3UPBs4hI5/ol27aHbNv+Gdu2/xfgUub49o0ekMlSvwf4b5lDR4AA8MGGrlREpEsoeBYR6R6vAm9iyjI28k8w//b/d8uyzgFvYIJnlW6IiFRAwbOISJewbdsGfhf4N5ZlfdyyrAHLslyWZb3LsqwvZu72T4HPALfm/HkQ+KBlWde2ZOEiIh1EwbOISBexbftx4JeBTwA/Bc4D/ztwxLKsO4FdwB/Ztn0u588TwI+Bh1u0bBGRjmGZRIWIiIiIiJSjzLOIiIiISIUUPIuIiIiIVEjBs4iIiIhIhRQ8i4iIiIhUyNPqBVRjeHjY3rVrV6uXISIiIiJd7h/+4R/mbdveUni8o4LnXbt28cILL7R6GSIiIiLS5SzL+kmx4yrbEBERERGpkIJnEREREZEKKXgWEREREalQR9U8i4iIiEh7SSQSzM7OEo1GW72UmgQCAUZHR/F6vRXdX8GziIiIiNRsdnaW/v5+du3ahWVZrV5OVWzb5tKlS8zOzrJ79+6KHqOyDRERERGpWTQa5dprr+24wBnAsiyuvfbaqrLmCp5FREREpC6dGDhnVbt2Bc8iIiIiIhVS8CwiIiIiHe/JJ5/kpptu4oYbbuCzn/1sw66j4FlEREREOloqleK3fuu3+Pa3v82PfvQjvva1r/GjH/2oIddStw0RERERaZ7paZiagpkZGBuDyUmYmKjrlM8//zw33HADe/bsAeBXfuVXOHLkCDfffLMTK86jzLOIiIiINMf0NBw+DOEwjI6a28OHzfE6zM3NsXPnzivfj46OMjc3V+9qi1LwLCIiIiLNMTUFoZD543Ktfz01Vddpbdu+6lijOoAoeBYRERGR5piZgcHB/GODg+Z4HUZHR3nzzTevfD87O8t1111X1zk3ouBZRERERJpjbAwWF/OPLS6a43V4xzvewWuvvcbp06eJx+N8/etf5/7776/rnBtR8CwiIiIizTE5aeqcw2FIp9e/npys67Qej4fHHnuMX/iFX2Dv3r185CMfYd++fQ4tuuBaDTmriIiIiEihiQk4dCi/28bBg3V32wD4wAc+wAc+8AEHFlmagmcRERERaZ6JCUeC5VZR2YaIiIiISIUUPIuIiIiIVEjBs4iIiIhIhRQ8i4iIiIhUSMGziIiIiEiFFDyLiIiISEf7xCc+wdatW7nlllsafi0FzyIiIiLS0T72sY/x5JNPNuVa6vMsIiIiIk0zPZ0/I2Vysv62z3fffTdnzpxxZH3lKPMsIiIiIk0xPQ2HD5uJ3KOj5vbwYXO8Uyh4FhEREZGmmJqCUMj8cbnWv56aavXKKqeyDRERkZU1mA9DNA4BHwyHINjb6lWJdJ2ZGZNxzjU4aI53CmWeRURkc1tZg9lzkEiC32tuZ8+Z4yLiqLExWFzMP7a4aI53CgXPIiKyuc2Hwe0Grwcsy9y63ea4iDhqctLUOYfDkE6vfz05Wd95H374Ye666y5effVVRkdH+fKXv+zMgotQ2YaIiGxu0bjJOOfyuM1xEXHUxAQcOpTfbePgwfq7bXzta19zZoEVUPAsIiKbW8BnSjW8Of9JTKbMcRFx3MRE/cFyK6lsQ0RENrfhEKRSJoC2bXObSpnjIiIFlHkWEWl36gTRWMFeGB3Jf423b9FrLCJFKXgWEWln2U4Qbnd+J4jREQV3Tgr26vUUkYqobENEpJ2pE4SISFtR8Cwi0s6icdP5IZc6QYiItIyCZxGRdhbwmc4PudQJQkQkz5tvvsl73vMe9u7dy759+/jCF77QsGup5llEpJ0Nh0yNM5iMczJlOkFs39LadYmItBGPx8Mf/MEfcNttt7G8vMzb3/527r33Xm6++Wbnr+X4GUVExDnqBCEiXWb63DRTJ6eYWZxhbHCMyfFJJkbqa/y8fft2tm/fDkB/fz979+5lbm6uIcGzyjZERNpdsBd27YDx3eZWgbOIdKjpc9McPn6YcCTM6MAo4UiYw8cPM31u2rFrnDlzhhdffJE77rjDsXPmUuZZRKQe6sEsIlKxqZNThAIhQj1mCFH2durkVN3ZZ4CVlRUefPBBPv/5zzMwMFD3+YpR8CwiUqtO7cGsgF9EWmRmcYbRgdG8Y4OBQWYWZ+o+dyKR4MEHH+TXfu3XmJycrPt8G1HZhohIrTqxB3M24E8k8wP+lbVWr0xENoGxwTEWo4t5xxaji4wNjtV1Xtu2OXjwIHv37uV3f/d36zpXOQqeRURq1Yk9mDsx4BeRrjE5Pkk4GiYcCZO204QjYcLRMJPj9WWKn3vuOf78z/+co0ePcuutt3LrrbfyrW99y6FV51PZhohIrQI+k7n15vxT2u49mKNxk3HO1e4Bv4h0jYmRCQ7ddSiv28bB/Qfrrnd+17vehW3bDq2yNAXPIiK16sQezJ0Y8ItIV5kYmXBkc2CrqGxDRKRW2R7MXg/EEua23TcLDodMgJ9Igm2b21TKHBcRkbKUeRYRqUewt72D5UIauiIiUhcFzyIim02nBfwiIm1EZRsiIiIiIhVS8CwiIiIiUiEFzyIiIiLS0aLRKO985zt529vexr59+/i3//bfNuxaqnkWERERkY7m9/s5evQowWCQRCLBu971Lu677z7uvPNOx6+l4FlEREREmmZ6epqpqSlmZmYYGxtjcnKSiYn6+j5blkUwGAQgkUiQSCSwLMuJ5V5FZRsiItJ6K2twZg5Onja3K2utXpGINMD09DSHDx8mHA4zOjpKOBzm8OHDTE9P133uVCrFrbfeytatW7n33nu54447HFjx1RQ8i4hIa62smUmNiaQZHZ5Imu8VQIt0nampKUKhEKFQCJfLdeXrqampus/tdrt56aWXmJ2d5fnnn+fll192YMVXU/AsIiKtNR8Gt9tMaLQsc+t2m+Mi0lVmZmYYHBzMOzY4OMjMzIxj1xgaGuKee+7hySefdOycuRQ8i4hIa0Xj4HHnH/O4zfEslXWIdIWxsTEWFxfzji0uLjI2NlbXeS9evMjCwgIAkUiEp556ivHx8brOuREFzyIi0loBHyRT+ceSKXMcVNYh0kUmJycJh8OEw2HS6fSVrycnJ+s679mzZ3nPe97DxMQE73jHO7j33nv5xV/8RYdWnU/dNkREpHFW1kz5RTRuguHh0NWjwYdDJhgGk3FOpiCVgu1bzLHcsg5Yv50Pa8y4SIeZmJjg0KFDed02Dh48WHe3jYmJCV588UWHVllaS4Nny7KGgD8GbgFs4BO2bR9v5ZpERMQh2Yyx252fMR4dyQ96g73mWG6QvX3L+n2icfP4XIVlHSLSMSYmJuoOllup1ZnnLwBP2rb9kGVZPkApBBGRblFNxjjYu3EWOeAzgbc35z9ZuWUdIiJN1LKaZ8uyBoC7gS8D2LYdt217oVXrERERh1WyEbASwyFTxpFIgm2b21TKHBcRabJWbhjcA1wEvmJZ1ouWZf2xZVl9hXeyLOuTlmW9YFnWCxcvXmz+KkVEpDblNgJWKlvW4fVALGFuC0s/RESapJXBswe4Dfgvtm3vB1aB3y+8k23bX7Rt+3bbtm/fsmVLs9coIiK1cjJjHOyFXTtgfLe5VeAsIi3SyuB5Fpi1bfsHme8fxwTTIiLSDZQxFpEu1LINg7Ztn7Ms603Lsm6ybftV4L3Aj1q1HhERaYBSGwFFRByUSqW4/fbb2bFjB9/85jcbdp1Wd9v458B/y3TaeAP4eIvXIyIiIiId6Atf+AJ79+5laWmpoddp6YRB27ZfytQzT9i2/Uu2bYdbuR4RERERaaxk/ALR5e+xtvAk0eXvkYxfqPucs7Oz/I//8T/4jd/4DQdWWJrGc4uIiIhIUyTjF4ivvYCdjmK5+rHTUeJrL9QdQP/O7/wOn/vc53C5Gh/aKngWERERkaZIxn6MZQWwXAEsy8rcBkjGflzzOb/5zW+ydetW3v72tzu40o21uuZZRERk3cpa/pju4ZA2HIp0kXRqCcvVn3/Q8pNO1V6n/Nxzz/HEE0/wrW99i2g0ytLSEh/96Ef56le/Wudqi1PmWURE2sPKGsyeM/2g/V5zO3vOHBeRruByD4Adyz9ox8zxGv37f//vmZ2d5cyZM3z961/nwIEDDQucQcGziIi0i/kwuN2mH7RlmVu32xwXka7g8d+AbUex01Fs287cRvH4b2j10iqmsg0REWkP0bjJOOfyuM1xEekKHt9W4HaSsR+TTi3hcg/g9d+SOV6/e+65h3vuuceRc21EwbOIiDivltrlgM+Uanhz/tOUTJnjItI1PL6tjgXLraCyDRERcVattcvDIUilzP1t29ymUua4iEibUPAsIiLOqrV2OdgLoyPm/rGEuR0dUbcNEWkrKtsQERFn1VO7HOxVsCwibU3Bs0g7Uq9b6WSqXRaRLqayDZF2o1630ulUuywiXUyZZ5F2k1svCuu382Fln6UzZGuXcz892b5Fv78i0lC7du2iv78ft9uNx+PhhRdeaMh1FDyLtBv1upVuoNplEWmB7373uwwPDzf0GgqeRdqN6kU7l2rVRUQqMA1MATPAGDAJTLR0RdVQzbNIu1G9aGdqda36yhqcmYOTp81tq2vk2209ItImpoHDQBgYzdwezhyvj2VZvO997+Ptb387X/ziF+s+30aUeRZpN6oX7UytrFXPBu5ud37g3qoeye22HhFpI1NAKPOHnNsp6s0+P/fcc1x33XVcuHCBe++9l/Hxce6+++66zlmMMs8i7SjYC7t2wPhuc6uAo/1F46Y2PVezatVrHUqyWdYjIm1kBhgsODaYOV6f6667DoCtW7fy4Q9/mOeff77ucxaj4FlExAkBn6lNz9WsWvVWBu6dsB4RaSNjwGLBscXM8dqtrq6yvLx85eu/+Zu/4ZZbbqnrnBtR2YaIiBOGQ6Y0AUygmEyZWvXtWxp/7XbbZNpu6xGRNjKJqXEGk3FexNQ9H6zrrOfPn+fDH/4wAMlkkl/91V/l/e9/f13n3IiCZxERJ7SyVr2VgXsnrEdE2sgEcIj8bhsHqbfeec+ePfzP//k/615dJRQ8i4g4pVW9jdttk2m7rUdE2swEndSarpCCZxGRbtAOQ0m6vc91tz8/EamINgyKiEj9Wt3nutG6/fmJSMUUPIuISP26vT1dtz8/EamYgmcREalft7en6/bnJyIVU82ziGxum7GOtRHPuVPb01X6WnTq8xMRxynzLCKb12asY23Ucx4OmXZ0iSTYtrlNpczxdlXNa9GJz09kk1lYWOChhx5ifHycvXv3cvz48YZcR5lnEdm8cutYYf12Ptye2WcnMsaNes6d2J6umteiE5+fyCbz27/927z//e/n8ccfJx6Ps7bWmESIgmcR2byicZNxzNWudazZLKnbnZ8lHR2pLoBr5HNuh3Z51aj2tei05yfSpl6PrfFsZInzyTjbPD7e3TPA9f76/r+1tLTEsWPH+NM//VMAfD4fPl9jyqpUtiEim1fAZ+pWc7VrHatT3R466Tk3ml4LkaZ7PbbGN5YvspxOscXtZTmd4hvLF3k9Vl+W+I033mDLli18/OMfZ//+/fzGb/wGq6urDq06n4JnEdm8OqmONRo3a1tYhvkFc5tKVZ8x7qTn3Gh6LUSa7tnIEkGXh36XG5dl0e9yE3R5eDayVNd5k8kkP/zhD/ln/+yf8eKLL9LX18dnP/tZh1adT8GziGxe2TpWrwdiCXNbbRlEs1jA0iqk0+B2mdulVXO8Gp30nBtNr4VI051Pxumz8sPPPsvF+WR9pWOjo6OMjo5yxx13APDQQw/xwx/+sK5zbkQ1zyKyuXVKHatlATbYmIDZxvyPVW30TOc852bQayHSVNs8PpbTKfqt9b7pq3aabZ76yqVGRkbYuXMnr776KjfddBNPP/00N998c73LLUrBs4hIJ0jbMNgPkZipy/W4Idhvjm8W9XYb2Yw9vUXazLt7BvjG8kXAZJxX7TQr6SQf6Ku/XOoP//AP+bVf+zXi8Th79uzhK1/5St3nLEbBs4hIJ8gO6RjqXz9WOLSjm9XbbcSpbiUiUpfr/b18hC153TY+0Bequ9sGwK233soLL7zgwCpL2yT/6oqIdLjhkAn2wGSdkymzuW37ltauq1nq7U/daT29RbrY9f5eR4LlVtGGQRGRTrDZN7dF4+ZNQ65q+lPX+3gRkQxlnkVEOsVm3tyWLVvJLVOppidzvY8XEclQ5llERNpfvT2Z1dNZRByizLOISCupA0RlsmUrua/V9i2Vv1b1Pl5EJEPBs4hIq6gDRHXqLVvZzGUvIuIYlW2IiLRKbgcIyzK3brc5LiIiFXv11Ve59dZbr/wZGBjg85//fEOupcyziEirROMm45xrs3eAUBmLiNTgpptu4qWXXgIglUqxY8cOPvzhDzfkWgqeRURapZM7QDQiyFUZi8jm0OA3yU8//TTXX389P/MzP+PYOXOpbENEpFU6tQNENshNJPOD3JW1+s6rMpaNrazBmTk4edrc1vtai7RKo/79yPH1r3+dhx9+2LHzFVLwLCLSKp06+KRRQa4GmRTXhGBDpGka/CY5Ho/zxBNP8I//8T925HzFqGxDRKSVOrEDRKNqtTu5jKWRNFpcukmD93p8+9vf5rbbbmPbtm2OnK8YZZ5FRKQ6AZ8JanM5EeR2ahlLoykjL92kUf9+ZHzta19raMkGKHgWEZFqVRvkVlqv26llLI3W4GBDpKka+CZ5bW2N73znO0xOTjqw0I2pbENEJJdapZWWfX2SKfMauV3Q37fxtL5qO2hsVMaymX8uwyHzmoHJOCdTJtjYvqW16xKpRQOnffb29nLp0iUHFlmagmcRqV+3BDZqlVZa7uvT17MexJX6eddar5v7O2UB8aT53dqMPxeNFpdu04l7PXIoeBaR+nRTwNkOG7Oa9UakluvU8vrUsjmo8Hfq8qIJ0v3e9d355a5bTqe94evwYEOkm6jmWUTq0029eVu9MatZLclqvU4tr08t9bqFv1M24HLDWrTy68LGtdZq/SYidVDmWUTq000jplvdKq1Rme/CLGssXtt1anl9aqnXLfyd8rjNY3KD8HLXLfWJSDt8wiAiHUuZZxGpTzd1Amh1q7RGZL6LZVnDyxCNwcIyzC+Y23S6/HVqeX1q6aBR+DvV44dUGlxW5dct9YlIqz9hEJGOpsyziNSnmzoBtHpjVrWZ3cKMcm/AlDbk1vEWy7K6LVhagUDAdMtIpWFxGYYGSq+v1ten2nrdwt8pl8sE0H6fCcAruW6pT0Ra/QmDiHQ0Bc8iUp9WB5xOa9TGrEo2qFXzRqSwLGE1AucuwUCfCTSzZQrJlOmMEYtDJGa+jydNwGxlzmVl/se2yz+PZmxcc+J3qlSA3E1v+ETkiv/0n/4Tf/zHf4xlWbz1rW/lK1/5CoFAwPHrqGxDpNkqHRjRSYK9sGsHjO82t50aODdKpRvUqilxKCxLSCRNFjmeyC9TSKZMNnp5zZRmuF0mSHa5IG1nyiFcJuiuIHZumnp/p0qVmGgYi0jXmZub4z//5//MCy+8wMsvv0wqleLrX/96Q66lzLNIM3VTWzepXDUb1CrN7BaWJSRTJjDOrRX2uM2xSNQExlYmYHa5zB+PG4b6zX0Ls7Sdrlz2Wq3fRFonvgTRc5CKgjsAgRHwlSkbq0AymSQSieD1ellbW+O6665zYLFXU+ZZpJm6qa2bVK4RG9QKN9V53CaLnHudZMpM/wv41//e7YLBoKl7jidaszGyWfSJiEj7iS/BymlIJ8DlN7crp83xOuzYsYNDhw4xNjbG9u3bGRwc5H3ve59Di86n4FmkmbTLf3NqREeSwrIEr8cExz5v8TKFYC8MD5lMc18P9PWa+6psoTm6sVxLpBbRc+DygCsz9MjlNd9Hz9V12nA4zJEjRzh9+jQ//elPWV1d5atf/apDi87XRZ/RiWxs+tw0UyenmFmcYWxwjMnxSSZGJpq/EO3yd14nTIprxAa1wrKEvh7YEsrvtpFbplB4fZcFN4y132vVjZwo1+qE33ORSqSiJuOcy/KY43V46qmn2L17N1u2mH9XJycn+d73vsdHP/rRus5bjDLP0vWmz01z+PhhwpEwowOjhCNhDh8/zPS56eYvptV9hLtNp0yKa9QGtcKyhK3XFi9TcOr6yp7Wpt5yrU75PRephDsAdjL/mJ00x+swNjbG97//fdbW1rBtm6effpq9e/fWdc6NKPMsXW/q5BShQIhQjwlQs7dTJ6ean33utrZurdbOk+KKZQp37WjdeurdIKfNrrWrdwpnO/+ei1QrMGJqnMFknO0kpJPQu7Ou095xxx089NBD3HbbbXg8Hvbv388nP/lJBxZ8NQXP0vVmFmcYHRjNOzYYGGRmcaY1C9Iuf+dE46ZH8cKyKUXwuE2P41bXkHdjoLmZA7h6SybqLdeqN/gWaSe+AQjuzu+20bvTkW4bn/nMZ/jMZz7jwCJLU/AsXW9scIxwJHwl4wywGF1kbHCshasSR7gsWFgCt6f0pLxm14t2Y6C5WQM4J94I1Vvzrr0S0m18A44Ey62immfpepPjk4SjYcKRMGk7TTgSJhwNMzk+2eqlSb1sG7BKT8prRb1oN3ZVaUTHkE7gRHvJemvOtVdCpK0o8yxdb2JkgkN3HcrrtnFw/8HWdNvoOtPAFDADjAGTQBNfVxszGS8aXy/bGAjkT8prRRa4WZnCRmXUi513s460dirjXk+5lvZKiLQVBc+yKUyMTChYdtw0cBgIAaNAOPP9IZoWQGeD1OyUPLg6aG1FuUEzAs1G1VUXnnctarpr+L3rPaRjic0TwLVLyYT2Soi0DQXPIs3QlT1apzCBc/aj41DO8RqD52pfp0qC1FYEP83IFDYqo5573ngC1iImk59MmUmFqVRnb3ys1mbNuIvIhlTzLNJoXdujdQYYLDg2mDleg1pep0pqSVtVL9ro0dCNqqvOPe9aFCzX+mjvzThOvlE9ukWkYynzLNJo3dh5ATA1zmHWM84Ai5njNaj1dSr3cXa31os2KqOee95kynQxse31gLrTNz7WQiUTzdGVn9BJM33hC1/gS1/6ErZt85u/+Zv8zu/8TkOuo+BZGqJtxmG3g65t8TWJqXEGk3FexATTB2s7XSNfp24MfhpVTpB7XrfLnNeyoC8zTnczdNiQ5uvG3ujSVC+//DJf+tKXeP755/H5fLz//e/ngx/8IG95y1scv5aCZ3Fcdhx2KBDKG4d96K5DmzOAbpcNR46bwGwOzO22cZCa6507+XUqkjE79sNvcfToY6yszBEM7uDAgUe4++6HnLtmJRn1WjJ5uef1ekxA3uM3mwWzJS+q9xWnde0ndFLMuXPTnDw5xeLiDIODY4yPTzJSZ3zwyiuvcOedd9Lba35ffu7nfo6/+qu/4lOf+pQTS86j4Fkc11bjsNtBV284msCxzhqd+joVyZideu4Jnvrbz5Cw/fT1bScWW+DIEfMPuOMB9EaBRT2ZvNzzFgbg3VDyIu2naz+hk0Lnzk1z/PhhAoEQAwOjRCJhjh8/zF13HaorgL7lllv41//6X3Pp0iV6enr41re+xe233+7gytcpeBbHtd047Fbr1ppbp+QGZ5bVea3QimTMnj/5l2wf3MH5SBIAv38IgKNHH3M2eK5yXVeOV/OatkPJi2phu18nf/IkVTl5copAIERPJrGWvT15cqqu4Hnv3r383u/9Hvfeey/BYJC3ve1teDyNCXPVbUMcNzY4xmJ0Me/Yph+H3ejOC52qsMOGywXpNIxu65zXqUjXi/DaLIM9+d08fL4BVlbmWrqujszkdW23GsmjKYqbxuLiDIFAfqemQGCQRQcSbAcPHuSHP/whx44d45prrmlIvTO0QfBsWZbbsqwXLcv6ZqvXIs7QOGypmBOjj1utyNjqUO8oi5H85xCPLxEM7mjpujoyk9cNvyNSnloCbhqDg2NECxJs0egigw4k2C5cuADAzMwMU1NTPPzww3Wfs5iWB8/AbwOvtHoR4pzsOOxQT4jZpVlCPaHNu1lQSuuG7GiRjNk7xx/k7OIcsdgCtp0mFlsgHl/iwIFH6rvWyhqcmTMT/87Mlc6+dksmr9bfkWpeK2kP+oRuUxgfnyQaDROJhLHtNJFImGg0zLgDCbYHH3yQm2++mQ996EP80R/9EaFQY/69a2nNs2VZo8AHgf8D+N1WrkWcpXHYUpFuqHMsUtN+48/ez8/3ePK6bdx336frq3eudgNgt9Ta1/I7orZnIm1rZGSCu+46lNdtY//+g3V32wB49tlnHVhhea3eMPh54FNA/0Z3sCzrk8AnAcbGNnHNrLSlUyeWmHv9HB6iJAmw4/oRbtw3UMEjp8lv8TaJY10rOkkndNioZLNakU11d9/9kLObA6vdANgtm+xq+R1R2/IT1SwAACAASURBVDORtjYyMuFIsNwqLQueLcv6ReCCbdv/YFnWPRvdz7btLwJfBLj99tvtJi1PpKxTJ5a48MZpLNtDEj8WCS68cRrYXSaAnsYMFwkBo5jBIocxPZM79x+TmmSyoyeO/3emT/4lF1feJJru5853f7J5XSlKaacMZqlWXoWBcm8ALi+2x7rrVUsGXW3PRKSBWpl5/lngfsuyPgAEgAHLsr5q2/ZHW7gmkYrNvX4Oy/aA5cUCwEsybY6XDp6nMIFzthYrlHN8kwXPwLEffosjT/4rfL4BfL4B4vELjemJXI1sMDq/AC7LBGrZzWrQmgzmRuULLuvqAH/mLPT2QKBLMq/VtsvrhnIgEWlbLdswaNv2v7Jte9S27V3ArwBHFThLJ/EQxS54/2njwUO0zCNnMOOscw1mjm8+R48+hs83gN8/hGW58PuH8PkGOHr0sdYsKLc1GkDahqUViCfM905nMEttbMv9u1jcXLdwA6BtX92NIm2b++dKp82bgc2wga5bNkuKSFtqdc2zSMdKEsAiAax/PGyRJEmgzCPHMKUauf8hX8wc33xWVubo69ued6zpPZFz5dbLetwm6EzZpgzC41nPRDuhVFkI5P9dMgXYVw+RmT1/dTcKrweiMVhYNo+zMMG/z9uaMo5m1193y2ZJEWlLbRE827b9DPBMi5chUpUd149w4Y3TJNMm42yRxONKsnXPzjKPnMTUOIPJOC9igumDjVxu2woGdxCLLVyZwgct6ImcK7detscPizlZZ6/HBKOxTJ1xvcFYqY1tUPzvvB7TxiurWImCZUEqbY67XSaQTtkQ9Da//KRVdePtMBlRRLpSWwTPIo0wfW6aqZNTzCzOMDY4xuT4pKPt80xd8+68bhtb9+ysoNvGBGZzYG63jYPUXu9cS+eO4o85duzxvPZqBw480vC64wMHHrlS42xqnpeIx5e4775PN/S6G8oNRv0+M/XQsswft9sEZC6XM4FnuY1tlWx66w3AzDmTIc+uOZmEgT5TvpFMARb43SagLnWuRmiXzhfd0n1ERIr6xCc+wTe/+U22bt3Kyy+/DMDly5f55V/+Zc6cOcOuXbv4xje+4Ujv53YYkiLiuOlz0xw+fphwJMzowCjhSJjDxw8zfW7a0evcuG+A99x/I+++f4L33H9jhW3qwAS3jwJ/krmtJ3A+jMlc53buKPU8iz/mBz/4A44c+RSx2AJ9fduJxRY4cuRTHDv2eI1rq8zddz/EAw98Dr9/iNXVs/j9QzzwwOdat1nwqnrZnFrnrFKBZzXDOUpNAQz4IJIpvZhfMLeRWP6mt5U1U07S4zdBaSIJaxFTXtLfB0P9MDxkAmyXO/9azdpA1w6DcDTiW6TrfexjH+PJJ5/MO/bZz36W9773vbz22mu8973v5bOf/awj11LmWbrS1MkpQoEQoR7zDjN7O3VyqsuGt9TSuaP4Y1555Q/x+YaulE9kb48efazhgWzZnsjNzBrm1ssur+ZvyEunYXnNBKt9PcXXWU2JQqkexmsROHfJlF24XeZc0bgJhrOyWd1AznoSSViNmHNls7weN6yuARaEl0zts9vVnH7ahWUl2ZIXG/PmohkZ4HbJfouIce4MvPJ9WLwIg1tg750wsquuU959992cOXMm79iRI0d45plnAPj1X/917rnnHv7Df/gPdV0HFDxLm6u19GJmcYbRgdG8Y4OBQWYWu62jxQwme5yrXOeO4o+JxS7j8+VvWmzpxr2sVtTMZutlz8yZ665FTAmEywI7DZEo/Mx1Vz+uXA1zsTcAG21smw9Df695vtlAuNcDazndXDYq+3C7TBAO5nYtCi4PeDJBeCoNY03aLJj7BiGVgqVVwIbB/ubVP6vvs0j7OHcGvncEAn0wcC1EVsz3/+iBugPoQufPn2f7drMhffv27Vy4cMGR8yp4lraVLb0IBUJ5pReH7jpUNoAeGxwjHAlfyTgDLEYXGRvsto4WtXTuKP4Yv/8a4vGl9tm4l9XKrGE0brLMHrcJQJMp87XXU/zaGwVpy6tm095GbwA2OldvwNRaZ9l2fsC3UT/j/j4TtM6HzYZHjxuGek3GGTLlHSVaKhYburIWrS3zn/MGIXLpEnF3hNUkxM4nGOgb4NoBX+N/lur7LNI+Xvm+CZx7gub77O0r33c8eG4U1TxL28otvXBZLkI9IUKBEFMnp8o+dnJ8knA0TDgSJm2nCUfChKNhJscnm7DyZprEBMJhIJ3zdannWfwxe/f+c+LxJWKxBWw7TSy2QDy+xIEDjzT2KZTTyprZbE2yz7teP1yqi8NGNcyp9NW9mN3u9Yx0NefKDfhK9TMO9pquHMFeCA2sB85QvmY7tz54NQJvzJngudZ64WAvp1b7WbTWuBz1EEv4wUqxGrnIpaV443+W6vss0j4WL0Kg4N/QQK857rBt27Zx9uxZAM6ePcvWrVsdOa+CZ2lbM4szDAbyh4lUWnoxMTLBobsOEeoJMbs0S6gnVFHGuvNkO3eEgNnMbbkx38Ufc8cd/7K9Nu5lVRJENkolQVclg0w87urfAFRy7WxW1+sxvZ+9nqtLIKp9/XIz/Za13u4unqg88C9i7vVzROI+vJYLCwvLdpOyPaxFFhr/s6zkdRKR5hjcAtGCN9/RNXPcYffffz9/9md/BsCf/dmf8cADDzhyXpVtSNuqt/RiYmSiC4PlYiaorlvHxq3tym7ca4VSm+oardywjcJ67Owgk3jClEuAqVv2efM38EH5NwCVDvoo18+42tevsPQkmTLBc24AXkPm30OUiyu9jA2umtOmLTwW+Lzx5mSA1fdZpD3svdPUOIPJOEfXILoKt/18Xad9+OGHeeaZZ5ifn2d0dJTPfOYz/P7v/z4f+chH+PKXv8zY2Bh/8Rd/4cATUPAsbWxyfJLDx80wkcHAIIvRRcLRMAf3b85hIs7ItqkLkd/arly22jlV95Ju9bS4UkFXsXrsbLu4wf71YDUaw4z5o7o3AE4EfNW+foX1wR63I/XCSQKk4gneXAoy3Bsl4EkRTcHZy0NsU1ArsnmM7DKbA3O7bdz283XXO3/ta18revzpp5+u67zFKHiWtpUtvcjttnFw/8FNkk3OVcsQlI3U0trOOceOPc6RI5/C5xvI6yUNlA+gg73rG9lmz7fHoItiGwRjcdOZo3CDY3aIyUYBbPa5raytZ3uzG/+cCKArPUdhpjq75j6vKR+pMfOfnci5GvOwEgtWMZFTRLrOyK6O2RxYjIJnaWubp/RiI05nimtpbeeco0cfw+cbqK2XdKvGPJfqMV2si0Ph92CC0Fg6f6x24TVmz5mgOxIFLEhgJhlGY82tzy3MVPf1wJZQfreNGjL/tU/kFBFpLwqeRdqa05niWlrbOWdlZY6+vu15xyruJd2KlnUXLuWPvk6n8wP2YvXELld+ZwsoX+aQfW7RiJkE6HaZayWS4Otp/jCPwkz/5SWz/tFtda3jxn0DCpZFupRt21i5rTU7iG3bVd1f3TZE2toMJjOcq55McS2t7ZwTDO4gHl/KO1ZxL+lmt6xbWYOZs6ZUwesxWeHssJRsp4liXRzGRtYnAlbaFi373JIpM4gFTGeLbF/pVgzzqGGk9akTS3z3iVM8+8Q0333iFKdOLG14XxHpHoFAgEuXLlUdhLYD27a5dOkSgUCg4sco8yzS1pzOFGfb1OXWUB+kWZsFDxx45EqNs883QDy+RDy+xH33fbr8g5s96GI+vF67nM0CpzK36fT6/YrVE/f2wNx5uJTpuDHQV/pa2efmcWd6Qlsm8M4G1K0Y5lFlpv/UiSUuvHEay/aQxI9FggtvnAZ2K9ss0uVGR0eZnZ3l4kXnezU3QyAQYHS0sKRxYwqeRdraJKbGGUzGeRETTNfTcaTa1nbOydY153bb+KX3/a/cMXaX6ZNcahNgs1vWReMmYEwmTWCLZbLCqbSpQ15ZK13CYNswGFxfa6n67Oxz83lhdW09OPf7mteWr1CVI63nXj+HZXvA8mb6inhJps1xBc8i3c3r9bJ79+5WL6NpFDyLtLXWZoobIa+X9EalAcWCzGa3rAtkAtdIFGxMkZttmwC6J1C6Drna+uzc55ZOr3fb6OuprttGqc2N1aoy0282AfrJrXi08eChxBhwEZEOpOBZpO21LlPccLUEmc3aODccMhlmyzItmtO2+bq/F3oDpeuQq8zaAvU/N6e7kVSZ6U8SwCIBrD9viyRJKq8j7FhOvmkRkbanDYMi0mTTwKPAJyD6A/DM5/91qzbIFcpmg3sCJiDt64FrB03v5XJ1yK0YKV44VrvGMdpXVDnSesf1I3hcSbATZtOQncDjSrLj+pE6nlQHqGFjpYh0NmWeRaSJCvpWB8KQuAze24Bt5i6FQaZTWb1azhPshRvG1jO62Wl75eqQWzFSvJZsdzlVZMMd7ePcSZncVrRQFJGWUvAsm5CTE/ukOgV9q4cXYHYU+DF4tl4dZNZailAYfPUG4PJibSUNtdRaN6o+u9qBLdVkux0IWB3p49yqYTi1asSbFhFpayrbkE0mm/kMkz+xb7qVi9pECvpWB5dhdAa888VLA2opRSj2MfrM2fW2c7WUNAR7zXTA8d0mqJwPm+4gZ+Y2/ng+9zG7djgTOJcqDxgOmTce1fSXrvTczeR0+UmjtaJER0RaSpln2WScnti3mdWSwS/Stzo4C8EQUKTN0craen9lj9tkkL2e0lm9Yh+jp22Ixc3js2rJDrYyK1quPKCebHc7lR50Wia3FSU6ItJSyjzLJuP0xL7NqtYMfhUTDlfWTLeLbNu2VBqWViASK53VKzaJ0OvJ9GrOUUt2MDfITCRhNQJLq/DjGeeztCtrJrOdm+EuN2Gx1mx3s6c3ltJpmdwqN1aKSOdT8CybzBhm0Eiueib2bVa5GXxXztdTZR6X7VsdAmYzt4comrGeD5tOF5a13l/ZBtaipUsRigVfPi+4qhyZXUw2yIwnTCCfzYjHE86WORQro4jGzBuHXE4Fle0UsNZTftIqTpfoiEhbU9mGbDKNmNi3Gc1gMs65Ks3gV9i3Opops/C4TdCYTJmvPe4NgpNMGcnwCsz+LDAGnm3rmeuxERN455Y0gMnqVrpJLrspby0KlsucN502wXm2LteJwKlYGUVPwFzX63G+PKCdSg+aPQynE3RS9xGRTUDBs2wy3TexrzWK1C47ncHPBqp+n/kDV3eTuCKnBV5wEEZfgvk5iP4jCGwrHnzVUr+cDTLjCTM4JR432eeA3wSbqbQzz71Y3W9vwATq2ZpvJ4PKRges1QZ/zRyG0+46rfuIyCag4Fk2oS6e2Nc0TcjgV5UNLdgIGgSCrwHzmIEsRVSzSS43+HO5TDlBPGkyz36fKSlZWoXBYB1POMdGbef6+0xZwEaKBKmnfpLM67284/qR4u3kGhWwKvirTztt5hQRQDXPIlKTKmqXa1XVRqwaNoJWukmusP7Ysswftwt8PvMYGyAzvtsJtdT9FqmTXjx5hpXZ17DsBEnbj2UnuPDGaU6dWHJmnaXWkt3s+OMZk5HvlNZz7aadNnOKCKDMs4jUrAkZ/IqzoTWUkVQ6VGSjzJ/XawLobC12sN+0xHNCLWUURda5FF0l1GuzFPNiwnovyTTMvX6u/mEmGynMNC+tmNfZ414vv1HwV7l6h9+IiOMUPIsUmD43zdTJKWYWZxgbHGNyfJKJESeCRE02bJwaykgqLQspVn+cbVU3NLR+bMN67BpVW0ZRZJ1pkgTc+R8w2njwEHVihcUVBvG+TKlGJLYePCv4q1w7beYUEUDBs3SpWgPg6XPTHD5+mFAgxOjAKOFImMPHD3PorkN1BtA5G9ry+iI7XOrQkZx4U1FkI+jKx2H+WoieLr5JrdLsbrHMn9+3XlbRLgFNkXW68BBN5WfDLZIkCRQ+2gGZn2P0evC7gXFgm9nouLhsNlnadnu8Vp1E3UdE2o6CZ+k6lQbAxQLsqZNThAIhQj3m4//s7dTJqTqDZ002LC7nTcXKXpi/BqIvQiAJw+NVBgg5ZSRXSgeSG29Sq7QDRLHMn8uCse1Xt75r1Ia7Gtc5EOjj9UsRsBPYeLBI4nEl2bpnp8OLzPk5BixIpMB7HLgLfNugr9cEz7GEgr9aqPuISFvRhkHpOrkBsMtyEeoJEQqEmDq5PsAjG2CHI+G8APulsy8xGMjfeDYYGGRmsd4JhJpsWFzmTcXKGMzeAIl+8Cch8eP6ho7klg4U26RWbAjJRtfbaOPi1msbPxijznUOju8iOPoWbMuLx4phW1627tndgHrnnDeHw+chFYTEANgnzZpdFtwwpiEiItIVlHmWrjOzOMPoQP4Aj8IAeKMM88ziDIvRxSvfAyxGFxkbrLd/cRP6InekzLCV+RFwJ8CbBALgvQTUMXSkWJ1y7ia1att/tSrz58A6b9xHFcFyrSU0OUNzgssw+gbMb4NoCgKeqjPNp04sVdZeT0SkBZR5lq4zNjjGYjR/BHdhADyzOFM0wzzkHyIcDROOhEnbacKRMOFomMnxyTpXNYkJnsNAOufres/b6TLj0qM94ElmjkWBwfo6MpQbN90p7b+aus5s6UWY/Lr86QoeWzD2PrgMu/4exl+vOtN86sQSF9443fz2eiIiFVLmWbrO5Pgkh4+bzguDgUEWo4uEo2EO7l/vvDA2OEY4Er4qw3zr9luv1D5na6EP7j/oQLeNSicbOteR49ixxzl69DFWVuYIBndw4MAj3H33QzWuv1EyXTICYVOy4V3GBM/7a+7IcOzY43z/2S8y5IvS69vG/r0Psm/3Xfmb1Dql/Vc16yysje4N5Ndklx3pXE9dvnNDc+ZeP4dle8BqYns9EZEqKHiWrjMxMsGhuw6VDIBLBdgTIxMOtaa7amWUDkKc68hx7NjjHDnyKXy+Afr6thOLLXDkyKcA2iyAzrypGP4OzPqBfvDcCslra+rIkPu87d5hUukwz770h2BZ7LvrQ+vBY6e0/6p0nYW9ldeicO4S9PeaILqiqX45pRdXVFqX79zYe1Oq4Sd33EzD2+uJiFRBwbN0pXIBcCUBdr2qb5fnXEeOo0cfw+cbwO83fYizt0ePPlZF8NysvtQTEJyA0dzMafV1spD/vCOpJJEIxGKrnHvuv7Dv3l9ev2OntP+qdJ2FtdHxhBngkkiub5jM3m/D51hvXb4zQ3OSBLBIAOs1641rryciUj0Fz7JpOZVhLlYeMXTjjTX0i64n85dvZWWOvr7tecd8vgFWVuYqPEML+lI7sCmvqufdKe2/Klln4QbJZGp9+mFW2Vpp50ov6rHj+hEuvHGaZJoGt9cTEamNgmeROmxUHhG74e2Edl1XZb/o+jtyZLPds5FlAtEltgzspM8XBCAeXyIY3FHhmTqzL3UwuINYbOFKph2qfd4dKrc2Op6AZHJ9bHg8Yab8la3pdq70oh6mrnl3XreNrXt2qt5ZRNqGgmeROmxUHjH38rPcOP7JvPuW7xddX+YvdzjMtfvexer/9x3mwq9z3dBuvKSJx5e4775PV/jMnMuCN1pu5t/l8hKPXwJMxjkeX6ryebdYdtPfytp69ri/r/xmv2xtdCIJq2uQWzG8uGyGlLisCmq6nSm9qNeN+wYULItI21LwLFKHjcoEenmzhn7R9WX+8npX3xzCsizCP/oel5d+wtiWt3LffZ+uot65fBa8rm4elU7NKyOb+R8KDnPzdbdgEeXisk0kYbG8epZgcEeZ511vXXfm8SsrML8fonshsO3q51PJ881u+kvbEIkCFiQAlwuisfXNfhuda3QEfjwDNua4OwCptMk8xxNmSEknlKmIiLQ5Bc9Sw8Y2ydqoTOCagd1ciJppdhu1yyuu9sxf4XCY4b37uGZ8L7NLszz6wJ9UebbSWfC6unkUdoaoqBNEcUePPsZQcJi3bNlNMp0mme4l1LeTsUCIX/nYV8qcr9667szjV3bD7M+CewX8xyFxJ8wWBLuVPN/spr9oBFxuk3VOp839fT3r0xFLnSvgh8Gg2SSYZdtm4qAC59Zy6A2jiLSehqRschuNqZ4+V8lgBDlw4BHi8SVisQVsO00stkA8vsT99/0+h+46RKgnxOzSLKGeUJnNgvWrZDhM5bJZ8BAwm7ldDypzy1Usy4XfP4TPN8DRo4+VP3W50dlVWFmZY8fgjkzgnAbA7erj8upcBefLret25Xw9VepBVz9+/sbMdEQ3WAHwvpr/fCoZFX5mDs5fNl/H4qbEAsz9s7XL0Xj5c5UbDiOtUc2YdRFpe8o8b3IbjakuvbFNsrJZ1tzyhdwygWa+hpUMh6nOxlnwurp5lBudXaFjxx4nmbzIheXvgd1L0L+TYM8WYsllev3bKjhfQV33Sj/M3wBRGwJzFWQGM4+P9oA/24M4ACzmP59Szzc3K+3zrPdxTlhmk59tr/d3DvjKv3Yt7V/drNaGHajaMesi0tYUPG9yhR/1QyUb24rbrOUfd9/9UFsMHmlG7+qsurpaODDdL1s24nYPkUiv4XZFCUdeJZFcJeD183M3HlzP6G4YBOfUda/0w+yeTOmFu8JSkszjAxFIeMGb5Mpo8dznU+r55gZVfT2wtGK+TyTWSy/8vvUAeD5c+rVrWf/qFrQ27CQOvWEUkfagso1NzqmP+lX+UZlTJ5b47hOnePaJab77xClOnVhy9PwTIxM8es+j/MkDf8IB1y1M/V//gkOH3sKjj97DsWOPO3adjcpVDhx4pPyDh0OZ7GrSZFYTSfP9cKj8YzOyZSP9/btIp3cQcAdxudKk7EU++NZ/zu7hfWa6XsmPxycxQV4Y5reZwNm7BNZ4haUkmccPn4KUFxIpsKOQuCn/+ZR6vtG4CaLAZJoHguY2G1AHfCaozgbxlbx2wV7YtQPGd5vbpmQ26y2B6XIqpxHpKso8b3JOfdTfqvKPTsp2nzqxxIU3TmPZnsz44QQX3jgN7M5ry1VXF4ucczRyPHe5cpWSHMiO5paN2O5BUtYWtg/04fOsMLb9beZcvpxMX9GPx3O6m0Rtk3HmLmCb+euymcHM44NTMPpcptvGXabbxvacbHex5zsYXG9Jt2atr9fnNRnn0IAJfIu9dtcMwk8vmk2Afi9c1w6TETuntWFLdMo4eBGpiILnTc6pj/qdLP+oVG5f48qn+LXO3OvnsGwPWN5MF14vybQ5ng2enQp6nRnPbZw6sZQ3sGLH9SPcuG+gvnKVOqf7FZaNrCbiXF65wMR1N5rAM7fbRMkgOFPXHZirsZQk8/gg5s+GC855vrl1zsEeWFqFhSUY7Ddt6UoFVStrcHnRZKMHg2aNlxeht6fFAXT9A34aqtWdLjplHLyIVETBszgypnpscIxwJFxlX+P6dNpmRxN8+nPHV2DjwUP0yvdOBb31j+c2Ks2WN9uBA49ceVOROwxlYvxBE1BWGwQ3MzOYW+ec7ZqxsgbLazA8VDqoKtx4ZtuwFoWTp81jW9b+rD1GexflYGvEunTKOHgRKUs1z+KIyfFJwtEw4UiYtJ0mHAkTjoaZHJ9s2DVnFmcYDAzmHWt0trseSQJYJPOOWSRJErjy/crKHD5fflBaS9AbDO4gHs+vp65lTPXc6+dIpjPZcssCy0sy7WHu9XNVncdpd9/9EA888Dn8/iFWV8/i9w/xwAOfY99dH6qtnjqbGfR6TDmE19O44Cq3zhnMhsBrBtdrlUtdM/ex8YTZYJi2zfctbX9WurVhSznYGlFEBJR5Foc0s9NDViuy3fXYcf0IF944TTJtMs4WSTyuJFv37Lxyn7q6WOTYKDNb7ZjqSrLlrbJh2UitH48Xyww24uP+K903LgEngUVIXguBG4DdFT7WYzLOlstM4na52qD9WXuM9r6KOl2IiMMUPItjipV/NHJDn/N9jRvbp/bGfQP4fAnstR/Q40sQiXuxem9j11vWM81OBb11bejLYbLlCWA9+CjMlredK0FwnT/Paj/urzTQHg7B7CvAi+CxTOCcisL2TwM+4NaN15pbXpJImmEqaaDPb44pKLyaA60RRURyWbZtt3oNFbv99tvtF154odXLkArlbujLDW6d3NDnXHCe26c2t2bTyY+eK7uGE902nJKteU6mPQXZ8tbWPJfnwM/zTJFNhNnvCzth5AbauTXTGwbafwDzQxANQWAehv8agj/NrPXW0mvNBunzC6ZkIzuN0OM23Tp6A8U7dWxW1f5sREQyLMv6B9u2by88rsyzNEyjN/Q5m9XO7VNLzu0U1QXPpbKd5honTvyUv//7IywvLxMKBdi/P8K+fX9x5QztMnQFyATIu/O6bWzds7No4LxRV47WcODnWc3H/dVOkAuegOAo8CbwDBDBBM5Lla/V4zabDL2ZoDmRNGsbHtr4MY3Q6k4W5ajThYg4TMGzNEwj29c536bOiT615aaszXDixBJPPfU0Pp+Pvr4+lpdjPPvsk1y69HjTAuZqg9wb9w2UDYLbryuHAz/Paj7ur7quNre12yIwwJXphKXWeuESzJyDdNpkTz0u83UiaTYe9mZqoZulXTpZlKNOFyLiIAXP0jCN3NBXSVa7usy0E31qy2WWx3jxxS/h8/no6ekBoL/fw/Jyb039l2vhTJB7dXZ97vVA2R7WzeXAz7Oa9nVV19XmtnYbyKzNBvZvvNaVNZg5a+7m9Zjrkfna54WhftNhpJk1z9Vm3EVEuoBa1UnDNLJ9Xbk2ddWPC88Z1Uw65+tq1jrDiRNzPPXUU0QikUxmOcmzzz6ZGY09ydraMn19bsDG40ng8SRZWtpRdSu6WtXfei6bXQ+Tm10f6PspdsF78fq6ckwDjwKfyNxe/XMrPercgZ9nNe3rqh45ntvaLYSJiPcBWzde63zY1Dh73Kblmjvzz3cqtT76udkb4XJa5126tMbpmXP85PxPOTs35/joeRGRdqHgWRom274u1BNidmmWUE/Isc2CY4NjLEYX847lZrVzM9Muy0WoJ0QoEGLq5NRGQ4AoXAAAIABJREFUq6X+PrVjvPji8SuZZZfLRX+/B9s2mWWYYGHhRlZXU/j9MRIJL2++uZOFhXTVrehq5SFaZ5CbW0vsuvL1NcOnyvawrlzxAD03gF7PoCdI2n4s22TQ1wO2Kn6eK2tmc+DJ0+Y2t09ytvfy+O7SPZizgXY6DZcWYXHFtI8raQLzxuCvgT8Hbiy91mjcBPDZTd7ZLG8qbQLpSntaOyngg2SKS5fWWI1cBCuFCzfRNAU/DxGR7qGyDWkoJ6YXFlOuTV1t9db19qmdZG3tP9LXFySdtvF4kldllu+88/evjN+upxVdrepvPVe8lvia637E3Mwd+HvmGd5yioBvjXhsCLtvXw2rLL/Zr5JR5xX9PJ2u2bVtMzY7W+ZR8bkqWGvAZ4LjSAxIm+Dc487UPmdKJ5q9ES5T2rIWWSBlu/FaFh5XmnNLwerKdtp906GISA4Fz9KRyg1lac0AFZNZ7u9/k6GhNNFogLNnt7OwkATvII8+8ygzizP03vB2rJnTJFbP1tx/uZhyGwFPnVjCsqPsGrnM8qqHS8sDgPuqQS2lFa8lHtwSYnQ8gd/+Pul4iGgiwOD2U1yz7Wmqz+CX3+xX9fCWjYIzJ2t2c8514rW/4+9PfIO12Hl6/VvZc9uv1v8zHg5BNAY9fjNdMJaAdAp6AtDf15qAM5NxT8+fJ+B2EU26OLvSy2rci41d2ScanbLpUEQkQ8GzdKxSWW3nB6hUplhmeSUyz7kdu7kuU3+96FvkwkiPo/2uy20EzP49eDhz7hqu7V9m18hlfnL22o17NhcNOHM3uuX2Tz7IrrdMZb6OZP7eiwmyq233V36zX1UZ9FLBmZPT5zLnOvHa3/HU3/9HfJ5+At4t2OnIlcE3dQXQuS3X0mlTrtHbZ4LpVgacwV7euHwtlp0Aq4ZPNH56wXQIydZz9wbWx2creBaRNqSaZ+lKjay3LuXuux/igQc+h98/xOrqWfz+Ieyb7uK6W26rov66euU2Aub+PVaASytbOHNuC2mXf+PAefZcpgVaTsC5cgMb1xLPsN5qLavadn9QyWa/HdeP4HElwU5g2zbYCTyuJDuuH7n6dLnZZcsyt9ngLFOzmydv0135jYtXZM719ye+gc/TT49vEJ/HA64efL6BTN17nbI12P19pjykN3D1c2qBqn4euVbWILxkAme3y7whWFoxbw40KVFE2pQyz9K1GlVvXa4FXuGQk08c+QSjJTqD1KJwCuGt1/8TBgfetWEZg4coKWCwZ4kef5JIzMPiWh8eUkXPX7qcIb8+16zlX3DNNdNcc00P+/f/I/bty9Y6V9vuD9Y3++W2wzuYd81qhreUzC6PbivRji6nb/fKXpi/BqIvQiAJw+NXZ0Wz9b+x8wS8W/C4XHhcLs4uL+LzDVTWUaXS2l8nM+YOqOrnkWs+vN49xLLAbUEKWI3ANYVvxERE2oOCZ9n0qukHXctwFqfrr48de/xKaUhf33ZisQVOnvkjbthpMXzNu67cL/dj83TaYufWy0RiHqIxD15Pmp1bwsxeuKb4RSoMznLXEonsIpk8zTPP/A1gs2/fDrIlHcWVmsZYfgNdJcNbgNI9mEtOn8tsXFwZg9k94E6AfxkSP4bZoatLJDLn6vVvxU5HSKR7OLu8yGoiTjy+VL6jSjW1v1X3lW68yn4eBT/z6P3QNwQrESBtAmhsiDe5a4iISBVUtiGbWrX9oKtvged8v+ujRx/D5xvA7x/Cslz4/UOsRNzMLzyx4cfmtmVjA7ZtY2Nnbs3xosqWM1y9lkhkgIsXr8flCjA9/XeUbvdXvh2dY8r1YN6wHV2mDGV+xATO3iRYSfC+DO7vwvxfXb3eYC97bvtVXp57lVPn32AlHiUWWyAeX+LAgUdKr7NUeUm1z6ktFfmZB74H7jD095ruIam0uWuoX/XOItK2lHmWTa2SSYW5Km2BV1hWce9tH+L1nuWinUGqtbIyR1/f9rxjbm8PPzn7Gjft8Rb92NxtwezFEIO9q1fKNmYvDuC2il2BiqfrFa5ldTXIyspNvP76WR5++NGcOxaWI3wHgqXb0TmmZHY598kUrnEfBGcg2gP+KLAC/ATwgycAUTf549eNbMlO7s//nbf9HqmFCY5/6wX6eyL0+FMkkm7OXx5i+1t+xvycqinFqPQ5tZUiLQiHL8LsDLiHTQ139vdsx7YWrlNEpDQFz7KpVdsPulQJRrb848ST32Bk7RRutwV2L8vLCV762z/igQc+x90PPFr3moPBHcRiC/j9Q1eOxeNL+Hu28J77byz6mGx3isXItSxmm2GQIIm36P0rDc42WkteiULRcoRtMJqG4GrO2WrZXJhVqgQk83xKBZZF13gPjH4VAmFI9IP3bObO2yHphUCCjbqJ5Na9Zzud2PYK20LLDA0kzCyVBT+jWy8z/5MYp7iRG/uqLMUoeE6Fb9gOHHikKSPfK1ekBWHQhtHnYP6dlb8JUE9oEWkxBc/ScaqpUS6n2nrkjVrgvXvs3Rw+fhjXzEW2rb2KDazFLQKeOFb6HC7XCEePPuZIMHPgwCNXWp9VOmhlx/UjXHjjNMm02UhokSzf37lcwFlmLdm+03uuuYQLD709Q1x7bW8mOPSZDXh5wXMtmwungf8TeAq4FriVbAnImdf+BadfGdiw73Weohskh2H+n8Dwd2HWj8k4j0ByCFJe2P4mlQT82YEug71rBPwpojEXWBa9PSkWl/30BqJmmMiB0Yqy/cUUq4OvuD3eyhonjv93pk/+JRdX3iSa7ufOd3+yAYH3Bi0IgyGodMKmekKLSBtQzbN0lGprlMupth55oxZ4L198mVAgBKdfweWCZNqNZVnEUza27SaVClfWbaECxdrhPfDA50oGOzfuG2Drnt3YlhePFcO2vBv3d3ZgLSPXvu/K+Gyfy0XSTrMaucilS5nR157rIerhqnZ0K7+08ajsq2RraF8Eshsfvw/EuXx+J9bqiRLjuwtE4yZgzeVxQzQEwX8Jo5Pg3QmxQfAmYPQNCC5TScCfHYne409murFZpFMWPm+aZNKF15M2XVGy2X6vxwxA8XoqDgqL1cFX1B5vZY1Tzz3BM//weRYilxnq2cHWHjdPPflvOHbs8bLXrU75FoRlVVMXLiLSIMo8S0eptka5nHKTCq82zcTIFBMj+eUBn//B5xkdGGU5sUwcDy5XmrTtIm2nAT+BwBrj4wlMv+D8soJaPm4vbIdXiYq7U1Sp2Fq++8SpK+Ozo0kPXleahG2xtLpkss/JYQi8FTjNlVKLlY/D7AC4kxVmFbM1tHFgAK406nuFxfMPE/AvlBnfnaNc94pgLwTfypXWdQUDYkrJlsxEYh4G0jHcLhssiCdceDxpEknX+jCRCrL9xRSrg6+oPd58mOdP/iUuVx89vkHS2Hg8QbYP7nDsk5J15VsQltVmLfpEZHNS8Cwdpdoa5UpU3g86p+9vXoeIQ1fKP9LefmLxJEHXKnYqhcty4fdHGRpKc8cdN1/1uGPHTlX0cbuTpSrNkDs+e34twM6BFey0RdqKr3eG2D4O3Lb+oPk5Ezh7PWb89FrU3P54Bm6IQvCvya9pztbQDmKmGvYAAWARn8siGs8PQjcc372yBrE4hJfB54G+nkznh8KSidqCv2zJzErEz2Asul7zvOKnx59kfqGv/DCRMiqqPS8mGie8Nkuff/36yXSawZ4Qr198qa41FVe+BWFJbdiiT0Q2HwXP0lGc7plcnSLdAjLHs7XQrt174dXvsxQP4Ldi9PpsgsEUt98+QTrdx5/+6X9leXmZUCjA/v0Rjh69eOXjduDKbW7Wr5be0q2WOz57Ne7lzaUgw32rBFyZj9yLbQrLZhXjCTNlznKZrGJ8BWZfgVEbgrlvPnox2d9x4HjmJDbgw+ULMz9zZ97pi46Lzq2hHQqa4RwLyxAa2CDjfXXwl63t3qi2OneAyPlwmrWo6bbhcdtEYx7ScGUSZK2fDNRSBw9AwEeod5TlWJgenxlK4nG5WIyEywferVBhFxgRkUZS8CwdZaMNewf3l/7o3BlFugVkNoxdKf8ITXEyGSXw5mn8pBka2sNHPmKRTF7LU089hc/no6+vj+XlGM8++yQLC0EGB9+Sd8bCj9udLlUprUzXigoVblBcjUEs4Wfrnt1s37VBgJjNKq5FTeDsdpkxzb55cAPzN0LwNdbftMRZ34B2J/AScBm4l5j1XmIRr+l7XWqDZG4NrdcDAf96ZrOC8olsJw3L9mQy7aa2GnZfFUDnfp99XDLtyayv+OMqVaw93n33fbp82cVwiHeOP8h3XvwCkTj0+YZIJlc4uzjHz7//31W3CKe7YGx0vo5r0Sci3UbBs3SU6muUnXR1t4BXXnmBH/zgR7z88luu1Cs/+i8fLXjco3z1q1/C5/PR09MDQH+/h/+fvTePjuM8z3x/X3X1vqGBxg5wJ0gKNK3NorXRshQndpJr2YxmEk+cZaLJOr45ORNNkpvck+HMnOTMcTSe5diOJ3FyJxknjmOHlmUnnmi0OPRCybI2WhQ3ccNGrL0v1bV9949CAw2gG2iAAAGa9TuHB2ShuvqrapJ46q3nfd58PgSUnZi5ZR63W/brPLo/TSKQI6PFOTO9H1t2XJdVpT6NbSmrFdBrGtdcrSrqhlNVtG2wJYTHQfU6ectzxIERFtooPkBV7O/Y61zHFd//Oj201SSNlbzVi6vTil1BipVftxrW4oMnEmLg/g9iKGJB2sYPvf8/ru5Y652CsdLxXLHs4uKyibji2eWmo3mP8npzFEdMAsQ5c+Z7nDhxgsnJXsLhzmXiwY5SKn2CcDiCbUtU1URVTXK5XmAMXXcSIOo/bj/FT9x2mUxZkK3ECXrL3Nd/kv99YZBt8fqZzmunsS1lLdXnVTcoVquKbw85AtrnhbAf/D4wLAiUa3auplw09tA29f4LPLQTwFkwyxAIAPmGx65S6+2uIlEJqDleePo8Khq2LfD7NIQMzVWnt3fPcGW8FWpytht6smvZiIzjSIjB9/0kg+/7ybUfo27U3+z2taxvvY/n4uLiso64UXUuLk1TbRhLACO89NJbTE72YlndK8aDhcMRAoEUbW0zCCEZHu4nk7Fpadm/QuzccXqjB0lrkrKhUTYCZMqCgeTpZcd7nxo/xbFvHOMXvvILHPvGsYZRfudPOyLvm0+f4tq5MDPXFjeuXc/gkjUQCcGebRALO417Pi8Y+8ACkudZc8RZI+bGXI+DPOmIdKt19r1WHhfueLvNBdtUUSQRLc/F5LXGsiRbSggshBAgvOSLXtqiC2Pz6nqya6lWY41FaSTLxvndIBpG/a0xBWO9j+fi4uKyjriVZxeXVTFf6Xzzzb2Ew52ImrLj0ngwxwpx552388wzJwmFVMJhE03Lo+vGnC+18SPyIdrDu7mvP8aZ6TNktSzxQJyHtidoDdWvip4aP8XfnP5dHtw2xQcHKkwUT/M3p78H/OGCiv1iv65WbsM2LGZI0dZdrfJeBEapF7G3YSzxtXZBtwciF4Fh1hRxtuJ7nQStDQIWdF+CiKDR9MBa6g2faU8Umc5E5iwZXlWiaR5ioSLZsiOOZ/JRdnSlmMmv4MmuZStXY5dNwViDj95N1XBxcdnCuOLZxWWNNBcP5lghDhzYhW2Hefnll8lkMvT3V3jPe55swlfq+Kw7I510Rjpnty2e0raQbw1/mg/tu4hNjJweJxHU+NC+i3xr+NMc6vrM3H6L/brFUhvJbS8hKOI034WBszjNeNfngV41S3ytvTjTAzfqvZ7DOcfah3ErV93rebsz+SCGHZq7qSpXVLwei6DfrBmN7uHKeKsztKZZT3gDf3Z2Osurp4rNTVLcKBqmYKSBT7BqH72bquHi4rKF2TTxLIToB/4S6MJ5FvsnUsr/tlnrcXFZjno5y83Fg80ndAwODjI4OIjz130EaKYha6HPupnBHD3RF7FklIrlNNhpZhC/R9ITfXHBfrV+3XB4gmTyHMVSjIA3hmZ8FcOe5FI6Rlob40AyXiPe1+aB3to0GB3dxLjwxd7qF54+PxfTB5ArRehrT1HSVJAabdE80bDB1Wtt9OxZhdCtU41NzRTIaxmEjC+b9rHhNEzB+EvW5KN3UzVcXFy2MJtZeTaB35RSviqEiAKvCCH+j5TyrU1ck4vLEpbLWX700Y+vEA+2dlHmsPrBHNvjgvECBGuKlBnN2V5LbRZzsv0sphlAoGD6rzBRzJAMGuxoydFaOU2qdAZVOUJb6AA31AN9Payqua65m5RmpkEutnKAwnQmjGnCjq4U+aLKVCrGtrYywcIppl/pJLmvd2VhWKcaW6lkmcyHVp32sSHV6bopGI3jHdd2PBcXF5fNZ9PEs5TyGnBt9vd5IcQZnGezrnh22VIsl7N87KFjK1gvVl85XspqprKdYk/CQ0f4HCUjQlrrYqakoog83ZGHFuyZqbzCxOgXKJavMVNQ2NX3bvbubCPtOwF48KoWPkwKepSA18awv4lTTV2vlI/1yZSuy6qj06o3KX8MfJVyroOZkR9h4lqKXPE8vbu7GJ95pqlpkPWsHInt/YxeHOfKeJCwH/rjBUxboax7UY0MjHictUFjwV+nGjuW91LUFeKhGYJ+k3JFJVsKo2LNrafZLOp1ueZL1n69N48uLi4uW48t4XkWQuwA7gBeqvO9XwJ+CWDbNvc/3CrNVMBc1ofrGwm+tpHOS2lGaDrNidHAAKonhyKy+NVL+D19bIvtIRH61bk9T5z4Ev/07d/Ap1YIh1VGxn3kiiNEkr1YHUN0+g0M04vXYxLxFUiVW6mYeeA08DurXHuj81mfTOm6rLm5rkhq4kcpXBtAUYv09H8Xe+gwk5fKvPC9z6w4DbJKvZi8iYtXMPGTDDnC2bQVQGALw1nr2KSTbb2c4F9Ujc2/MUNfe5qy5qFc8aB6LPra04xMzYvVZrOor4uGNysfgsgnZnda682ji4uLy9Zi08WzECIC/B3wG1LK3OLvSyn/BPgTgLvvvlve4OVtSU6c+FJTFTCX9eH6R4KvpnJcj2aF5nxOc9AbI+g9C0yyLd4G/MGCfb/2td9HUdLophc9KylXithC4+XXp7jvRzvxKBkkHtJajJC3glcpYdhRYOd1nsvStTpcX6b0EtY0/MRZU3ZiO2Bh214wAyQ7znP18n0EvFlsForNpekqTqX32oWrdLZmkBImMnF69uyYs8kEVIuKOduYKGxs2+esbSYL8ciqBL+QAgEIIRCI2a/O9rnTbpBFvWKm9GpoeLPSDpE6N4+FPTA9ur551S4uLi43iE0Vz0IIL45w/isp5fHNXMvNxPPPf7LpCpjL9bO5I8EBPg2cwxlHHQf2Uz9GrdZf2sV8L+4IiwWprl/G+efvCExN81Op6ExO6nSEghR0D7rlRxIgVwnw5mSSB7YdBBaOEl87q/PCrtqzu6aoM2dNiu3HVhyRbZoBAoEsEpV4uJfM5JVl01XOn86Rvnqevo4iZc3JKe5rTzN9tYI/0otdnEKzQFVsTAkeYRIOJZy1waqzjRVFMjyVIB4qztk2pnMJPMp8naHW215lxUzp1bLszcqim8f1nkbo4uLicoPZtCEpQggB/BlwRkr5iZX2d5mnUBjF51u5AuayPlRHgieCCUZyIySCCZ6494kbNOXwFPAsIIEYUAZOAhpLheY2nMfitSznLxUEgxadnRr9/c6gDdOEkO9H8CgfwK8qeI0E5uRPcZf1rzBHD3Hlwo+v03k1v9Z5z64zdERIx7N7/vSSB1XzzA0/MUFK56tlOdtXWJOtVMB2RKyqamhaHIFJIv4oup6jUskgpU2lkkHXczz88MfmjjB6cZxQQKNcUTEtD6bloax5CAd0KoUCHbt2MlUI4/MaqEIQDrbTFvM5a4uG5kV0lRUEvyOAPWTLbYxnOsmW2wDPAmHcu7sLVTFBGkgpQRqoiknv7sUDca6DgK/5tddWqYVwvno8znYXFxeXm4DNrDzfD/wM8H0hxOuz235XSvkPm7imm4Lm8oVd1pNGI8E33nt+HGib/b0AgrO/fx34wKJ9m29O9Pl2oigXaG2V2LagUgEpJV1dQaBCWyhGeuJfYkzvoUXR0KwAE0OHqJS96HqucdW36YSL5te6Js/umqLOnDXFO686nmdFw6NqXBt7J6picsfhn6B7T3TZdBUVDa9qo1Xmq7CmpRD0W6hoznoHBxdeJ686n1+8ymzjekNaFg9bqdfAuGKm9GpZTS7zmiw1Li4uLluHzUzb+BYgVtzRZQnN5QvfXNyMDZA3xns+hDMcpJrRHMCpQqdYOp56cXOiD2fQyX9lcZPhj//4f+DFF38Wy9IxTYkQAq83wOHD78Gxexzj9ZfOI6QBokboSKOxaF3V4/jmGynX7NldddSZs6bWzuN4lNdIjd3GxPA9FErdczaRAZabBulUgg1TQVVtzFlfs+qxMUxloU2i0dpWKfibEcY3LKau2bW70wNdXFxucja9YdBl9VR/eC+fL3zzcLM2QN4Y73k16us+4AxOhdYHvI/6jXVVf2ltk2E7i5sMjxx5jM7OT3Hy5GXy+TzRaJR3vetdHDgwn+O8atG66oSL5hop19uzu7yYdNYUb4d4u9MeuRp6d3eRvpoj2VKkLB3rRyBgMZ0JNWWTOH/VZPRi7bTAKAODy7+mXrLH3PFuVEwdNH+z4k4PdHFxuclxxfNNypEjy1fAbiZu1gbIQmGUcLh7wbb1955X7Q0J4Ajz9oZfXe5FNJNmsW/fe9i37xALM3jTVH3HqxatG/Q4vhlrQrNstJgcGIxxngFGatI2RqYS9OzZseLxN2JtNySmbrW40wNdXFxuclzx7LLp3BgRuv7cGO/5WnOim0mzWN53vGrR2vBxfBr4CxplVK9kK1hPz+6NEJNOJfgdc38+sElrO386R3fLBCApV7zkShGk8K9zTN0aB9240wNdXFxuYlzx7LLp3KwNkDfOe76WnOhmJrstL8ybF62zAipZoHzpAbIzCSqmDwWVlpBFdOBPgTeBCs6QlVeo5k43W21dzpqwGm5I5vEaWc+1Va9rPKwgkHhVm67WDOOpFkBZp5i6DR504+Li4rJFccWzy6ZzMzZAVhscLatEuZyiXA7S0rJvC3nPm02zWF6YVwVrVUCPXhyf237+dI7M+Bts730D3W4FNY5PyRJtyRE1I1iKjhK8hs5ZfHPr0IC3ccZg//ENtxU0a0W5IU12K6wt7DNIhosEFODK6KoGiVSvayofpbM1i2GAYQhao1myxegaLC/1KswbPOimAZvx2bi4uLjU4opnl01n4xsg1/houQG1DY7x+MCc2N9aCSHrMxa8UWV4eqIduzhFb/8FdNvG1CNEiGKIFMTfwrT8pFN76A5fAe0ARF5nPmpPUk0PWY9q62rEVDNWlBvaZNdgbSGfpD+ew0Li83WsepBI9boivEykIDY7REVK6Ni12vOorTB7ga8Dn8P58fGeRfs2HnSzHmzWZ+Pi4uJSiyueXbYEG9cAuf6Plm+eBse1jQWvjQ3sTe6nv+vDJFsfWFAZjptXydoxAqEUFS2GUCwUIYgGJZblRxEWjljWkFY7MA1Eat7FmYB3vUkaqxVTzVhRNqvJrnZtndEZDMtLKNhCW1uNWF5mVHcttddVigDZcoBsyUAKL+99z2rPoVphruDc9ASAVmAUOIEjoKtJIssN5bl+tmQDpIuLyy2HK55dtgSnxk9x/OxxhrJDbItv4+j+o+s0wW/9Hy3frA2OzbA4NtCrlnh7+FPYtqAjeT/gVGxbYhUyZRVNi+NVy5hmEN00CCt+dMC0HPFbqXQQCF4DijiCWQPyVCuW15uksRYxtZJ/ejN90XNrO3vZSS4RNatYRXLJeiaUzDefnsARztWnB9HZ778G/AjLDbpZL7ayZ92lPubwq8i3noPsNMSTiNseQe2/c7OX5eJyXWzaeG4Xlyqnxk/x5MknSZfT9MX6SJfTPHnySU6Nn1qHow/hPEqu5foeLUcivej6wtHQN0ODYzPUVtWFUDDMEH5vjLGp43P7CEwyOT8Ck+mp/aiqhqqW0S0dW0o8QqFUTCJtD8VcHwTO4GRTV8dx7wZ+DXDEYseunUjhRRUVpPCuylagoiEX1QCuV0w5VVtzwbZGvugXnj7PN58+xQtPn19+XPhqWc246zpc73VdSHWUehbmroGGU20+AujACM6N6cY2Czb72bhsDczhV+Hbn4dyEaKtztdvf97Z7uJyE+NWnl02neNnj5MIJEgEnapw9evxs8fXofrcTOrE6rgZGxybZXFVPVcu09kSo6iNI6Wcq2CW1e2oyhTFQitDQ++mPfk2QX+RrD2JqgXBCoNi4E8O4Yu0Au/AEVlLPedrS9JwfOx79oXRym1Mz+ylWOwErn+AimJX2N49Q77oZSYfBTw33he9pkEiC739A4NHGRhcDyFbbT71AWWqdhy4c3bbo8CxdXiflVnfivqtxWZUgOVbz0EgjAiGnQ3BsGPYeus5cKvPLjcxrnh22XSGskP0xRZmEscDcYay69F41GzqxFIajQy/3gbHrTyKfHFsoBQmI1NjtMW6UEVlgUf4/OkIoxfHqZRauDL0gNOotyvGYhF35cK/4/KZ2KKGvtWurPaYPhy/7S58MT+2YdHf+z2GRu6iVGyrK6aauebfeX6MVu9FetttiiUFn9diR1eKK+OtS6q2G+69XfUgkY2Mjas2n34aeBZoA96N8zlsrE1jMeuZ+X0rMVcBDoQXVoDvZ2MFdHbaeb9a/EFnu4vLTYwrnl02nW3xbaTL6bmKM0BWy7Itvh6NR2tLnVhpZPhaGxy3+ijyRlX1u+77bR48svCaNa4Yzzcqzldojeuo0C4Whv8I5IA+2rorzJCilA7SmbzMpVLXnJiqCuZM5hxCpBGik2h0e91rfv50jlb1IlJCoeRDVW3AZmTSsfxcu3AVe8aZGDiRiRNUdcpmdGO9t6saJLLRsXGHgM+IXReTAAAgAElEQVSw8Camm7UkuFwv65X5fSuxaRXgeNIR6tX3BaiUne0uLjcxrnh22XSO7j/Kkyed6nA8ECerZUlraR6/Y70qWqtPnVjPRI3aqqdpTqEo8S2b1NFMVX01lfP1qdAuFoY6TrPaGaCTtu4ybd1F4HW23/5zc2us3qRACQApJyiXw4RCHXPneOTIY5w/naM4epodfWUquoXizeNRy5hGEI8aJ+hT0SoqZc0DQF97GkXYjE17MOW8KNhc720zEyXXg7UluLhsMptUARa3PQLf/rwj1P1BqJQRWhHu+uCGvq+Ly0bjimeXTedQ1yGeuPeJBWkbj9/x+DqlbayN9UrUWFxpzueHkFKjVJoXcZuR1LGcAF6uqr74fHK5y3z5yx/l+PH/m5aWfUuE9PqkIywWhnEcQZyt2bbQx169+bFtHZ8v77yvBF2/QijUgWVpZDIv8R///V4O7N7B7Xvfi+rbSygEluWloIFQdPq6iuTzQdK5AKbl9FeXNfB5IdlSYDzlW4X3du1549Us62z2m1wefYrJ9CX8wfb5610YhOkW0BIQKENyHCLV99kgCqWFtpJVDHFxuXGYw69CJo24NgbBILK1HRFtuSEVYLX/Tsz7cSrcs15r7vqgm7bhctPjimeXLcGhrkObKpYXs14jwxdXsG07iBAauj5GKNRBqTSJrl8FbI4de+iG+J+vxzpSez6l0iRSTsx+p1T3OCvnODcjKBc3fe4H/gmIATb1fOyFwiiKomIYl1Hn/peTBAJlstnzCDFNIODhwN5WKpUML775FA/c8QH62g9g2R78XhXdFEip4PGWMM35vwempeBVJelC0EmzaMp7W8+T/HtAL40aKatUrS8zqVd4e/jT+L0xtnftYWRqjK985bfwWzaHux8Cz2vgT4MRhZE+6BuByNEG67lOCiWnodHjcSL1VjnExeXGMOd1jkQRWhlZ0VDGhrHbygiP54ZUgNX+O93mQJcfOFzx7OJSh/VK1Fhcwfb7e9D1iwhRplQaxzQvoSigqrubELGO0Dx37p84efIyly7ZKMquVQvu67GkVM+nVJrEts/h80ksS2DbVt3jNEpHmNJO8fGP/wtaWs4TCkW54457GRxs1OS2uOnTjxN3148TkbbUxx6J9JLJvAx4MM0APp+GR/Hg9/kIB/PYdpiOjigKYRTFwLJ1Lgy9QkfrdhTFxqeG0U2LqVyOSBBU1cY0ncqz6rExTAXNjPHeDw4se72qFeNd215D8d1NKFGmrbuMI5jfBiZxMpIbN/hVrS8jE1/G44kgRATTgrZYF5NZgzNv/A2H+/4LeO8EzoJ3BmiD6Z+ByAbdkE6nHeHsnf0RUv3a5BAXlxtDrdfZ9gcQM1NQKkOxAB/4lTVVgN3cZhcXVzy7uNRlvUaGL65gB4MdmGYJy8rMVpy9+P3bCQY75l5TX8Q6lcszZ6Z55pnXCYVU9u8XXLx4bdUNh9djSYlEesnlLiPlBD6fjWUJFMVGUSSl0iTBYHLBceqlI0xpp/jWi79HX98MmYzGxESRy5e/zMjIPfzIj9wDHOf86R0LXrPzwK+zY+/XmK9Q/yHLWR6cm5+PYFk+pFSRdohgSGLjxbbLRPyH6GnzU9FBESrSI5nJXUEKJ4otUxT4kkNElByl8dsI+k3K0vE8BwIW05kQvbu76r53VTAH1ByJaBmviOALTqGVExQn4sA4bd1ncHzbOk7cfuMGv6r1pWKM41WdOD7TsgkGPPjKMSrGtBNnR+fsL0CVoBkrfp5rRtOdivOChTY/xMXlBlHjdRaRFoi0YNs25FNrFs489+eIUglhmsjpKbh2FfORDU7tcHHZYrji2cWlAesxMrxeBRsUjh79LE8//f8QDncjxPysosYi1mmae+mlE/h8PrzeILZt0NdXoVRqWaZqvNQWcT2WlIcf/hhf/vJHAbAsBUWRCCHQdS9SjuHx+JYcp5qOUBWVEyNfoDUWxTTGME2Jx+PBtm1efvll+vp66esQSzKUR8560fV/03ST4ZEjj/G1r/0+lnUVIQyikXZCvm3Y0oNmXMZGRdMlqkcipRddL+ILxkAdRjfj+JLQ1j0OpMnlPszIZT+drU7axshUgp49O+qupTb/OeDVkRLaWwpUym14fXkMPUJuKkFbdxbHylI7wKd+g1/V+uL3dmFYORRPDNWjUNYsdD2H37sLTIuZnE6umENRdBRUgsEWNszRGvA5Vg1vzY+QVQxxcblBrHPahfzu36FkMkifD+n3g2UhMhns7/6da81wuaVwJwy6uGwgR448xqOPfhy/v4Vi8Rp+fwuPPvpxjhx5bJWTCp1Jifl8Hr/fD4BpqgQC2gLBXTv17rvPfZPs9J/iWALms38/8IH/C13PUalkkNKmUsmg6zkefvhjTZ2PlAmk9GPbyuyavUjpR4hyw+PURtbliqMIkcWntuH3BVAUBY/Hg5SS1147SWrkEPFwga5EipZQCoGFaauMXhxfcX2153/X/n9L0N9PILCPZPQOpPRgWQU6Ez+FZRWYnNLxKJApn6Ni5Nnb/whGeTelQjt6TmV6rAd4gh177+Y9H3oH+488yIH3PMhDjx5qKOJHL45j2ioCm572Eq1xjWi4glnudSYx+gootg8nIzmP49+uUn94T+/uLlTFpK/zw1hWASkLqB6YyY2j6zkOvPOnyGaLaPokCBMFD16PwdB0bn2nHtaSTDhDWwzT6cQ0TOfPycTKr3W5YYjbHkFoRWS5iLRtZLmI0IpOCsZajndtFOn1IlQVIQRCVZ0/X7uxDc8uLpuNW3l2cdlgGlWwa6vSllVB14fweHQsay8nTnwJmLeNHDxocPjwbUSjUcrlMsFgEFU10bTAnOBePPWur+0ChfFDmEZq1mfrCJvDh/NUKh9fsyWlpWXfXOW6XJ5EyjEUpYxtB+duDBZTG1nn83ahlS5S0SKEIxFsOYNhSHw+Ba1k4pO9CCTligfVY9HZmmU8FUfFqrOaeRaff2fbPbz74L/l9bc/T640RjjQQ0frz9ORvJ/J6QNMpp7iysgQLe0Kd9w1QIuyhwtXdlAods2nZ6R3LBnoUq2gq2iMTb/C2at/Rb54lUikl9t3/wwtsXfR1ZrFsoUzjE9AawwuDd1DW/ISgeAUznS+YRz/dv2mxypV64shg6geyeXRp7g6/jb+YDuPvv+3OXzkMb779dO0R7wEPKCZHsYLYYoVyK7X0JbFrHqIi8tmsO5pF1KCEPW3u7jcQrji2cXlOrieaYHV/Rx7wduAD49nNx6Pj+PHfw0QBIPdhMPdDA9PUKmcYPfuvZw+nUVVbXw+wchIZK6RcXGmciCUQisl0KcSs+IZqtaAI0eOrXkiYl/fXZw582UAAoEkiuJD13McPVpfOMPCyLqe9qPkrr5IWS/jKYfRTYnHY+P1RjDLt5PKhJ2qFgLL8gAWbdE804XlRlPXz5SOx97NkbserGlcVJFS0tF2Dz3td85NDvzCn/9/TKWOU9TG8Hu76Gk/SkfbPUvyqGsF+tjMKwxPfJpkLAb0o1VSnL3yKe59xy9jmAcplBR6OiooisQ0BVG/YHT4LpRwO2fPFYiFx2hNnqe15y3i7QnqDhyZjYMb8OgMHApD8iMQWSqwK4bFlVQcUSNsJHJ9h7YsZlVDXFw2i/VKuzCHX0UCnkwOvCoyGEB6PAjDwO7b7jYSutxSuOLZxWWNrMe0wCNHHuP55z9JpeJb4EEuly8A80kYltXN5CT4/Wne//7bOXnyMmfP2ihKN48+6gj2bz59akGmsm15aE2eQ7GjwDeAAzh2gfrZv/VuBIAl53jmzJc5cODDjIy80nTlujayriN5P5nCv2Qy/RcUSjnS2RAeTwJQePD2f85MPkZ3q5PhbJoKAoiEDfJEeOHp86ho+MNZdh34Dsmec1S93Co0zJRebqzziRNf4tr0HyOI0J3sRygl0vk/RVUs2lvvWXAetQL92tRxpAwhZYRY0EYKm0K5SCr/HF1t+2mJmmgVgd8PpiVob60wmg7jK04hpEqu0E2+0M7o0OEl47+Bmji4NPjPgVGGkVbo2wmR2xte3yqbO7TF5QeJuci71jZsw0DoJiJfRIaD2C1x2PnOzRn/7eKySbji2aVpTo2fWjDI5Oj+o1sqm/lGs15TCOulX4CNEAsfhZpmJ2++eY2f//kX2Ldv6XFqBVQ4PIHfn0MVCqaSwxkq8g1gD/AHS17b6EbA4wnUPceRkVc4duwbS47RqAq/OLJuYPvP0ZnYx+tvfx5VvTq3v5U5BNJgPNVCLFQg6DcxTMHoZBSJIzr94Qzbel+hkmplRuydbex7En/4F7EKrTQSkI3GOj///CfpiMXY3us0URmmFyEEtngGSy4Uz7UV9Gr6RTX5Yjw9SaUyyunLF/F4YG/fQ0SC+5mY9iJRkFKSCEyRLceam7g4nXaEs/dFIADeAFCA6W9BRKG2St0oEnD5oS0rU2tRMQnQu7vLHY19C1IbeSf9QUhNIctlZDCIeORx5FvPITdj/LeLyybhNgy6NMWp8VM8efJJ0uU0fbE+0uU0T558klPjpzZ7aZtGoTA6O/55nrVMC6zXOAgKcjYarcpKiRjVxjKkQTJ5Fq3UTi6zE2/kMmDgDBXppV7EW+2NgBAKfn/LbDrI5abOsSq+K5XMAvFd9W4PDMbo2LXTGSoiKkjh5cCd/4x/9++f5cknL3Ds2Dc4cuSxuXOQKGRKrYynW8kWo5iWD9N2Kr7tHecwbQ+66SE31UZ1dPeuA9+ZO38pJUgDVTEbRspVqZSn6GhNIARYlkQRgpZoFE2fRMiF/k7nBsUEIBLsoSWq09cVRPXkQA4hRIVcTqGkFfj2qb/iwvAFJApe1WYmH6MlVkEuqlk0nLio6aCeAwJAEBCzcXBJnASVeepd37rV7FVQ2+RpSj9CGkxeurxxTYguW5fsNPiDyHwGkZoCXYdAAHx+p7I8+/0F3IDx37ci5vCrGP/4Rxh/+9sY//hHzlMBlxuOK55dmuL42eMkAgkSwQSKUEgEEyQCCY6fPb7yi39AWV1aRmMefvhjS9IvIAxEVpWIUSuggj4dw/bga80QajkIPIozjKN+Dm+jG4HqOa10jo3E9/PPf3LB+t77wQEe/OAh3vvBgbrCrpEIVBQ5JzoDgSymGQDFQrH9s6+Mk+w5tyYB2ZHYhW4UyOUtbAmKAuVKEVVpR1Gc6n81xSPoydGVSBFQU9y57/0gSmh6npncZVqiEbxeLygdzKS9eD1RpjLPoirgx8u+jiIBjyDiKy94/4b2ioAPzDLUfs9UIWBSL9Kumeu7GqrJIQinEo/wNp164vIDRjwJqQmUsREwTfB6Qa8gcjlHvMWTTgReLTdg/Petxpx9plxcaI9xBfQNx7VtuDTFUHaIvljfgm3xQJyh7NIf4rcK6zWFsNFAlnrbVrKDzFsT/pqFI62hURQazA9zaW1VSSanCQQ0MhmJonSTy+VWPMfrGbzS+BzmGb04b0mxLQ+J1rcReLEsCaRwUiu2NbRmLMfO3g8xkf4zAl6JboQxrQKGVeD2PT9OyQwsaBIsm1HMrIe922YoV/ZRqvwsZ6/+PRU9jeppobt1D5Ag4PcQ8EdIZa8R93qwJBiWRLVb2NaaZygFBT24vL0imXA8zhScirOpguWF7tM0+hwbsZbG1lqLSpWGVXKXH2jEbY/AU/8NKaQzWdKyEAjsZBLees75/rc/71g1/EGolBFa8YaM/76VqLXPAK49ZhNpKJ6FEP8A/JqU8sqNW47LVmVbfBvpcppEcF6MZbUs2+Kr+yH+g8R6TSGsHqve69Y+pGXxSOvGUWjg3Ag8++xv0N5eRFGCZDIS29b4yEf2kU4/yte//tVlz7Eqvi1LR9fHEKKClAqJRAdwjNohLctNBmxE1dPrD07jm/VyW2YYf8t3gIs447r/sOHrlxOP8fiDCGw08xkKpQn8agf7t3+YeHSQRGvXkhQPU4bJFXIUSl483ocY3PMQr5/5TYQo0t+dZGyiQr5ooOkltnf1g0fHqISJhWO0tYVITftJhotoRmVB4+ISIiGnOXD6W45VI6A7wjlyGWeMd3Oe5LU2ts556Is6TE1BpYKIBTFnJ9a5bE02IvVC7b8TIxZHaGWEriP9fuzObgjFIDu9/pF4LvWpmRg5h2uP2RSWqzz/T+AZIcRfAB+XUm7grFeXrc7R/Ud58qQjxuKBOFktS1pL8/gd9cXYrcJ6TCFcT+bFFPjDv7gokaJOFNosR448RlvbF3jtte+QTmtEo1He9a4jDAz0AHkOH/7Gsu/78MMf4/jxX0NRMjgjxyWxWJmuriEuX/4cO3c+QnVIy5ULv87lM7FVNaFV0zK85t+gl7rRK0US3d8mFB/F8XL3Nzy3lcRj7+4uvJfuQcq7iPRpREIGlqWQMnZz32CMiYtX8IczdCQvEg0KpBXG1KP4vBbZ2SfVPe1HyZU+S76QBfzEIhUQFfb2vAdN97Jz27zvurUtQmvEz84jO5c9Z8BJ1YgoLJwS+QRwaEmutcDxJMNCq8paG1t7d3cxeeYs5vQ00gQRDaL6BB3f+Ac4qMKhW7dZeKsy91h/I1IvuvqRNdMKBTh/nrVmrFcknssyrPPESJe101A8Syn/Vgjx98DvA98TQvwvnDT/6vc/cQPW57JFONR1iCfufWJB2sbjdzx+S6dtbDUWiymr0MrZV95PR/pXm7IyDA5GGRx8nIWtEDb1/LWLqY7D1vUigYBJR4ekq8uHxyP4/vcn2LnzReA+UhP9iOJphLwbEz+R8DX8xkmyU68Rb29hucq0cw4v4kxLVICDs79sYKRmz4UjyV988WvLisfaGLtCWSVTdgT9fbPXzB/Osr3n+/hEG7Y0CYan8Ebz2GYrM/kRsoVeOtruYXefxqtnnyESThEKdjDQ9yH6enagKFmGR1L0981WjOqMsa6tjHd0xPmxH9vJ4GCU+Wr9sSXXo16udb3kjrVaagYGY/CFNxiN96K2BTGzBh1jVxkITsHx48uKZzelY3PYyMf6rjVj83E/g63DSp5nAyjiGAqj1Ihnl1uPQ12HXLG8iK0U39esmGrMNlbjk16MbRvE43exY8cQXq9BNJrFMBTSaQOn6e0M2YmPEPBnQHiJhCfo738JU4+QunaAePtbOFYTp7K6tjWemj1GAugjNWHQ1VYkGd5JNu8hVy4jhblEPA4MXmFgsLa6Oy/idx34DkpuOyAJhTJI24dlgyEus72vhVe+/31Ov/0sMElnsp+d3T/F7r69mBaUNEkkaBGOTjIzE6At5nPGWHfPD3w5ceJLfP3v/19aY51s27mXQGSME9/4JvAAg4PphtekWU9y1VJTmyPebGPrwMhJBuiD/OwNlQLE4zDU+Iaq2Yr4DyKbftOwgY/1b1VrxlYa/nKrfgZbkeU8z+8HPgE8DdwppSzdsFW5uNwEVOP7EoHEgvi+J+59YlME9PU3eK3sk17OO1wVaYGARqXixzRVDKNCPO7HEc9ZfIpA052pdMn2s5hmAMP2otg+Tp8e47XXvkMq9TVSqUMNmtpWWuNxqtF1M9eCFCe6CAU6KNoTeNU+uhIRxtMFKvr0nHi8cuF7+OVz2HoPut1NvHOI1s55wZrsOcfwVA8tsSLSDmJJA4sxPN40w0MTnBn9H0xmtxPwtdKtlLh07W+IhH6StpZ9SAljk0FaIia6loa23iVjrF947jP0dfQiZYRgOIVXjRMLhnj5pdMMDh6sOa+Ff6cW53on288S8JbQ9GpkmLP/4sZWVZ2gq2uS978/gVPRXsaHvm0bpNOQqLlZyWad7Q24/pu4m5MtcdOwwY/1bzVrxobaYNbIrfYZbFWWi6r7PeCfSSl/xxXOLi5L2WrxfbUZxFVWN2XuEI5gTODYIBLUVjxXynKuRu45KR0GuZwN6Nx9twW8DRgovjTTUwNATeSc7eHazJs8++yzTE0VMIw82exJvvzlj/LZz/7mqtboVI7jAOSmElhYRELdpLKXmcl/k+nca/iU6bnYv/Onc4jiaSw9im4LsL2Uxm9j+Pv3cfX113jh6fNMj+0Dbxq8w+jKRSzPMIqaQ9ohhiefZVuXyj0DrdzW3YJiRQkHolydOIFlCabSAUoVD0OTQd6eCcCO3iUjrQPeLLYdwrRsTCvN6MQFJmYuMDM9yenTp6mOVF9M7+4usrkXuTD0G5y58ku88v3PMXZtinjXVZwbDCeD/ciRx3j00Y/j97cg5RX27s3wwz98L/v2PUjVh17ddwlHjzriOZ0G257//dGjDf8WqWjNZ1mvkmpk4DefPsULT5/fUpnTWyHaT9z2CEIrIstFpG0jy0WEVnQe97usmtrhL0JRnCExgbBTiXa5pVnO8/zgjVyIi8vNxmri+9YSFbZa1jJlbvG6+vruWjB2++GHD3LkiCNMV2o8q57Piy/+J/z+M3R2Sg4e7KGvzwIKQBjbt4dKuQWkgVaO4/UY2Lafs1e/hm3baFoB21aQ0o8QOqdPf4oTJ+5ddK0O0YytQ7H9XJt5k7HJNwgFkhSKGpaVR6gVDhz4aY4ceYwXnj7P/r0ZKkZwtkoqCPr8mJaKHRxGSIOhM4fp3f2PSCuGIspIRUMVERTZRaUsiPnuo+Kp4A1PUyy24fNEmM6OM50OoHpsvF5JphBoeBOTbOlHiAIej0UqOzP35EBV/Tz77LMoSpEDB+5Z8rrxmWd48c0/Yv+eMOFAF4VSju+8+WcEOh+gtbOH2mr1/OdzjIW2l+rXpZVt51IfgieecDzOQ0NOxfnxx5f1O2/UqPAtUdldhq0Q7ec+1l9n3HQLlwa4Oc8uLmuk2fi+tUaFrZbaxreq57JhDFqddeXzVzhz5ltI2Us0un3JOldqPDs1forn7TcZ2neIX7kbBpMVwn4Vp3J6APDRu+P7FIvvY/TiOKnpvfT0v0SofZR8cQJNK2BZNqWSRFVLmKYXRbFXTIVY3Gz3oQ+FGBi4A1vpZmT8uwQDfnStk2jAh+pRKFcyjIy8AjiCR9NDeL1lTDOI3xPEtGy8qk22EgfhJVdox7z4o+w9+FX8soSp7USIFgwxTjyYpFgq4fNGMAwLXyDHxKSP9vZuIiGDQslLphBACA+9u5ZOOjx/OsdtO36YM0OfYyY3gsfjx+cT2LJILNyOqYzxxhuvcODAf1ry2uef/yQoAXyRUfKVafAKVNPm5ZdfZnDwZ6nf6DmE03BZy8LK9lLf7g4Gjh1reP0Xs1GjwjNDw/S2VAh4Kmimh+lSgGJFXcYOsrBxdK0xic2yUTcNq8V9rL+OuOkWLg1wJwy6uDTBiRNf4tixh3jiib0cO/YQJ058iaP7j5LW0qTLaWxpky6nSWtpju4/umD/48f/FVJay07fWy9WM2Vu8VRAy8pg2yq2na27znoTFVV1goMHDVKlD/F2+mcIeM7TF+vDtks8c0kwUXg38BDQCcTJTmXmhFmu2ENFPEJrp5dAwELXbUol0HWBEDbhsEYiYdLd/SpOxXSptWCxlSSdNvnc5y5x+vQYrd1nKBbz5HNdaJojnL2qoKR75gS/SYDpqQFUVUNVy3g9HjweEyk0pqf2A44ArBTjJDo/Tqjrl5jJRpHec5gU2d35MMVKnnIlj1ACmFaOXDFFf/THGJnpplCOYBJpOOlw9OI4ljzMgW0fBSx0w8C2fPQkbyMYKeLxBHnrLT/1RF91KqSmBVBVx67j9/vJ5/M0bvTcNvu9Wub3XY+R3BsxKpxCie2tGVQBFVPBq9j0xwqEfLJBZbfaOJrGuVlYwZ6yDlRHy692PLzL1sW1wbg0oqnKsxBiO7BXSvmsECIIqFLK/MYuzcVla9Cocvzoox+vG9+XOX9+UUV3CCk1SqUwoVAHsPbpe+vJ4kqyM9jEhxCVuW2166xtPLMsDSGu0tJSQdPiPPvSOTp2+Hn/3tN8ZzhG2ewgEchwZvoMnZFOAFITFvlrdzjCbPax+8hZL7r+bxgb+0sgRzAIfr+NaYLPBx6PxO9vZV78LEydqGclqVTgi1+c4tixL3Jl9IcI+cpEwwHKmsVMvoymp+aaBZ0qaZnhocMk288TCpSRdoih0U5UW6WrZQLDFKRy8dl3PMTIVQCB11smEe/lXXsf49zoNylVZvB5YvzwXb/IgX0POv7mWape3cUpDCoahh3C4n7a44dBFEGGKeRthqZZkpJRS7VBc3o6SX//MAD5vEkiEaDxQJxGDZcPAseIqmG8/W1Mz+ylWOxkrc1+a5n0uBzT50YRqk4oUEbXvVQqfrA9tEdKXEnXuz7zjaMOK9hT1oHVPvlx2fq4NhiXRqwonoUQvwj8EtCKM8arD/gM4N56udwSLOf1PXbkG0uSNY595tcX7G/bQYTQ0PWxOfHcbFTYRrI4wszxGWtIOf+YuXadVevE1772+1jWRVpboaUlhpQ+Lr5yCckuAntjHEie5cz0fu7t+w7TpUmchMsslWwPk9M7lqQwZMbfoLt7mmIxSC5Xnl2b059mGHDvvQPAG8Ak8OvAf6cqgFaykrz3kV/hK1/5LVKFbN3x4rWCR7uaYMgWREMF4hGdsmZhmoJgwMKvaZw/nWNgMDZXre7f9hIVOUNP6wDdyZ0gNKK+/WAlnNHasyzn1a0+6pfCj9/7Y1wa/SR+bwwpQ1QqmWXHvVdvZlKpGLbdSyw2ihAl7rjj/TSO+6s2XNbaGR7ECVVKoJd3oPpy9PefZHj4XorFTiQqAbW++N9YHNtFdipDwP8wuWIIxSNQvSZer0GxGCTolQ0quyvbUzaC9b5pcNk8lkTU3fuTrmh2maOZyvO/Bu4BXgKQUl4QQnRs6KpcXLYQqx0ysXh/v78HXb+IEGWktJcIuPVitZnTiyPMPJ4WYAQp4w3XeeTIYzz//CepVHzs2jXuVAARFPQCI2dG6Nx5Jy2BLJPFLv7x7YMc7hvDScXYxtjwYQrFLkRNR5VEpbPtEqFrUSzLxOsNUSgUCAZ1bBtaW2Ps2zeBE3WXxIjWQP4AACAASURBVBHQ8xXolTKMG41Q72r74YZi8NtffYWuZJFEvEKxpDI0HsewA3PV12q1enT4bnraJyCoodgBtEwndHZBdwIioTnvcFd8gvYWG9Py4FEk5YpKUXOOV+sPbm+7j0jApqQ9Qzo9TmvnLg6886c43MDvXXtuU1OjaKV3sH/7T5O6eBcvXAzQuzvXQMg5DZfV9e3adhLFdzehRBlb0bH1CAInSrBY7EQVRRLRMuOp4A1s1JvP605du41WRSMeLZPJtaN4PPh8JsGAjkJfgzVcX2a5y63NVoyoc9laNCOeK1JKXcz+xBNCqOAMuHFxuRVY7ZCJxfsHgx2YZgnLylAsXpsTcOvZLLg4c/rKGy/xB1/8Yzq8ftpadtVN91gsLKPRHfT1/cSCtI1666zeHGhaBq/XwDS9RENR0rk0yCxpLT7r/1b50b3zVeJc8XzdhipfcJI77riXZ599Dp/PR0dHB8HgDLZtcO+9PTjCOQiUgQ4cQeQ8fl98A9BI8Neew3KVYIDejjypTADT8qCqNsmWEtdSXlQswKkuTk+0E/bm0LVO0hWJJQWaLjl3SZAsmoy9fYodXSmSEZVw0CAa0fF5oVxR0HUPWkVjMmUxMDhAtfId8xXYnzyI338/rW0RZxKhZUGhtCTebvG5fef5MVq9F1EVm3ypQFGzlhW4tdfAF5xCKycoTsRRQ2lkKYGhhwkE0yAN2hNFpjORG5zbPG+7UOwABcq0ECMSypHO9GFWbHxeg+Rgo6c3K2eWu7g0YiMnNbr8YNCMeP4nIcTvAkEhxPuAXwO+urHLcnHZOjQj0FbaHxSOHv1s06kRq42zq82cnj5zGuX8i/hQyUuILJPusVhYwqK0hUxgzq5QpZ7XVpYl/d0h9iWvMZZP8aH9gt7oxxhIzle+G6UweKM2gz29wA/x8ssvk8/nCYXC3H9/gB07wBlwWgY04A5qH783qiwvd92WG+IBkIx4qdYHTFMhlX2Tsen/w/D4VZ57NczDD38Mq3CIaRGhvaWAYSqYpoLfb9IVPM/k1TBtUZ1CUUUIQVtCw6MIDEugemx0FFpiBiXNsajMPeq/MgqGCd7Z/5arX6fTDcVz9fNqVS8iJRRKPryqTXtLgalMpKHArb0GWiWO11fE0COghYh1jlNKB9HL7UjhJZMPYtihJU8MNjaCbd52YSsVdFslQ5aY6sOv2mgWXEu10NnwutSzpzzORqZtuPwA4UbUuaxAM+L5d3D+1/k+8MvAPwCf3chFubhsJVYr0NYi6K43zq42c7pw7mUQPjxqgIpZWZLHvBzNZOm+c/CXOXf2jwiKOOnxVhT/BbzeDA/c10Z39EG6o7txKn1PAwNUBUujhqpkzweAJxkc7JmNWKtWCT8IfBLHqtGBI5y7Zr83//i93g3AHIWSIz41HQI+SCZWzOOdyUfpas0CFpPp01y+9pdEQnE0I0pFT/GVr/wWD97+e2zvOjAnnAG0iodki0axrONVbcoVDz7Vwqs6jY9CSCxFUCo7fu6gz1q4Vk0Hv3fhNtXjbKfxzdXoxXH62mwKJedmoLqecKBMoeype1lqr8H01H76+08iAVuP0dY9Rlt3GniC7bcP8MLT9Z8YbGwE27ztItaepjjRhVSKTBsGV6fCTUbfLZcH7uKyDG5EncsKrCiepZQ28Kezv1xcbkmWFWjrsP9KA0hWojZzWjHy2GoY0zbxq47AaTbdY/TiODOpVxiZ+DIVYxy/t4u+zg9jyCADgzHOn87RHrgNq/9js/tMEuadvPP2FnbsiLNSukH9hqrlqoQDVL2vTsU5TdOP3wslGBkHj8cRpYYJI+P4vR4s3aSRGBQYTKTixEJFprPPEvBHkTJEZ8JHWQszkxvn8uhTHNy1h0LJR778BjP556no00xmO2mNPIhp3UEoUCERMx1RagMCvKpEETCT8SHlImEb8C2sPINj3Qj4lr25UhmgUPKiemwsyzmmaSpEQzqZcn2BW21UFNJGtVXK6dsJhdPY/onZaz1fpV2P3Oal2dErNRzO2y7aum2Ecp5KNsbE8OHZ6Ds3xcJl4xC3PQLf/rzz/MkfhEoZoRXhrg9u9tJctggNxbMQ4vss422WUrq39C5bgtU2ym1FMpmzQBlN05HSj8/XQzCYbDrO7uj+ozx50hEblhrFNouYQqE74jQuNpvukc1+k7eHP43HE8GrdmJYOd4e/hSqRwIDc4/7k60PkGx9wHmRNOhr/QdgcXrlatINGlUJr+Px+3TaEc5zNogZ4G3esSvLZNnH5PQOp4FxkRh0hKJKptTKxMwIfZ19TKcNtIqFV1Xoa+9hbPoKpq1gWK8xPPW3+L1hQoEkxXKedO5vCftV7jm4CyklhiHw+SSmqVAse7AlqB7ByGQL+2vXm0w4Yh+cinPV89zdzvP/s/HN1Xvu/BMKZZP2RBGwMC2FgN/CtJWGGcO9u7tIXz1PsqVIWfNQLIawLD/TmV3k7X0LhOn1RrCtbTLgws+9tXMbdH6A7oGb69+1y82JG1HnshLLVZ5/fPbrv579+r9mv/40UNqwFbm4rILFjXLpcponTz7JE/c+cdMI6BMnvoQQGQCk9AEGhnEJ0ywSi+1s6hiHug7NZU5PbNtJ6NLrtAU6CHlXjjyr5fLoU/i9MYSIAKB4YqiKwuXRp4DHG1oe9HIHTqrGwnSD06fzfPGLD13nWPLmHr/XVjf94SzvaJ8mGB3HEfEdwDlQA1BoQ/FMsnfbMKlUheHx7kVDPOaFYiLWw7XpFIbheGtNy8YwCySi20gZu0mlP0XQH0GIMGVN4vGEEMImX36GQvFjBAMmliUolhQMQ0HiVJ+HM2G6925feAKREPR1LbSZdLdDJLRs4ku1MjyVDhMJakRCBpalkDJ2c18DcTowGOMbb/soaZVZi4nKzFQMiaeuT/p6ItiW85gvf0zXduGyeWz0pMYlUXi3PeKK85uIhuJZSumMAhDifinl/TXf+h0hxLeB/7DRi3NxWYnaRjlg7uvxs8dvGvH8/POfRFG6sO1xwML5Z2kh5QQPP/yfmz7Ooa5Dzjk/tNQf22y6x2T6Etu79mBaUKpMYdpjgEYmV+LEiS9hccipHE5/l7Gp41SMccKBHorae9l+e3r2KE66wfnzr/GFL1zCMJIbOpYcFlY3/eEM23pfwbD6kcV2QpEs8E9AB6ViHF0ITNNH3kwhAjoeT+eCY1WF4vnTORTlfZwb+hxBv4dSOUBZz2JZBfbv+Cj3PdzDp/7LMNFgJ36fjW5ItIpFOBTCo6YIh0yyeS8XhjsBSSxUJBLSKRR9JLYPMD7zDH99rE6DaJ0muOUSX2orw4WySqbs2CIaCecqHgHT+STVJCUESNloYt/aWclj7uJyq+FG4d38NNMwGBZCPCCl/BaAEOI+ILzCa1xcbgi1jXJV4oE4Q9nl7QLXk2yx3jhr2IamhahUxmYn/fmB0JrXtFrPdRV/sJ2RqTGiIS+WvIRpCQqFMrpp8ZWv/BYPvPsPULQSQxOfARki5O9CiALffvUztO/4RQ4fzlO1Vzz1VAnDSK7Cx+0MxZi3ZxwE3qz581EaVSJrq5vtHecwbQ95o0xMiYMRBdUG08CyfRTtLEKxsMwAgVAK01aXVEGrYjwePsieno8yMv0sijKFEC10tv0c8bhjWdErrcxU0ggRwetVaE/4qBgF7EqCC0OtbOvM4lFMDDtEtuShqJl07NrJ+Mwzq2oQXU3ii2JXGHv7ChMXWdZfXPU9b3Qj4I16HxeXmwU3Cu/mpxnx/Djw50KIOI4HOgv8woauyuUHnvUSr7WNclWyWpZt8cbDEK432WK9URQv2ewrCGEDfny+nSiKr+FY5kasxzWtirRCaQIhDFTVxKNKMINIafHG6f+BkCohX4hoOEFZs8gVBCgBvv71r3L48H+nKoADgUsEAnHS6StzNwQ+X3cDH/f8UAwnouwC8JfAu4E9NBrPXaW2uhkIZKloMaSikZcKUS+g9UJghHypE13REICqamhavG4VtCrGU/k4XW2DtMbfAVIiEWSLETp2OV7iHbv/BUOX/yu2DdFQgopRwLDytIR+AosIQxMQCWgUNM8Cr/BfH1tdg+hyCS61VXcL6O9IIYGRqcSy/uL1aARshhv1Pi4uNw1uFN5NTzNpG68A7xRCxAAhpcxu/LJcfpBZT/Fa2ygXD8TJalnSWpq7jW0cO1bfa3u9yRarZbmkgRMnvoSuT6MoBrbtBXQM421sO1G3qthIIK/XNa3u+9RTH8Hnc/y6muZMEZRygkymgqpGKZZVRqfeWCCKbfsStQLY55Oo6hWCQbAsgZQVLCuPx7Ovzjsf58yZaV566QT5fJ6+Pos77oizY8cYTuJG/fSOKrXVTU2L41XLGHqEilKEHWM4YvxNrLe6QA+j+oqoqsa1a3fUrYJWxThCMJ5qIRYqEPQbgKBj1058vvNcfuNV7j1o0Nv6CKfOvI5QUgjZRkvoJ2hNHPn/2Xvz6Lau+973s8+EkSDBmdQsW7JouXLiMbZjxVGa6Sa1Ezdpm3ebrjZuevMSp7e3dW/a+5pWq+27r2ndrvY2TtIpbd9NXtrEoWM1kzN4UFrHji3HkS1Lpq2JkjiTmIGDM+33x+EAkiAADqAoGd+1vGCCB2fvswER3/0739/3689LRsiaGl1XbOfCyRFGT57hwskgxcI4RrBt3phLOaLMfX5286br/nZRJbm06t4cSlMoakgpaQ7nSBXaltQXr7YRsFas1zjrjYZmtYEVo2GFd8mjlsozAFLKdD0nspFxObg5bCSsJXktbZSbeX9usLfy/BMPLEkklxu3vRpUcxp49NFPEwr14rrtWJYv2fA8HcNoW7QWlQjyWq7p/v3vo7//VykWTaQsJZUuYKIorTjOq4A+2+DoOCfp7JyxqvOJbjZr4zgQDEImA4oiMQyJaSYXjfnyy0/wne88j2EYRCIRHGeMxx83ueMOMR2UApXcO0qrm+NjV7F18xGE5hJsm8SvWqvAJwm1nMRJaRSKUYaGXkc+11q2ClpKxqUIkCoESOVtpNDZ0TNAyH0aWxUUbJ3ers1s27SJwXNXk8t3gpiTJ0QjI7S3nSKiPE3zzhj5bJxsPsKurVdxbnSYWKidUFClYLpMpkcWOaLU4lRRWnUPBRzMooZEEgo4pAqV9cWraQRcDtZrnPVCQ7NaX1zuG5OGFd6lj5rJ82sVl4Obw0bDDHnNWVnG8xMUHZOAatBUmFrR+WYb5aZx8OAdFYnkcuO2V4NqTgMzayGEQjjcCYCUHrnc8KJzlRLkfH5smmwX6O//VSBEc/OuecevbkPgx2EbOjRFY+iqR9FRyeUWtjvMuVkGAhY+wfVhmiZC+G5xigKep2BZCj6ZnY8f/vA04bCGrocA0LQgkYjJj3+cLCHPKUrDUUpRWt0s5lsYvHADO/uepK3nFUrt7dp7YSCR5sKgXwVdyjO4ktRA5h/HVgWONx1K4ung2LS3n6F4vnX2NdHICFs3v4htB1GJI1WL5vgQjreJ1+3+aVT1X5hKZnGcJlqbbdriIaKBX5yX6FiLU0Up0S8UNXTNQ0pJoej/eb8U9MXL94G+uKhFs3oxCeClTD5fCxuThhXepY8Gea6Cy8HNYaMhGt1EMjvMiJlEUzQCWgDXzjOGwtGRo6te12qV5eXGba8G1ZwGlkPkZ64rnx/Dtk8BKlIGUJQCUppks4M0NW2vep5a0NJyFWb+Aq0tLraTw3YNDKOL1tZuXjnzE3AgGCwghMTzBK6rMjqa4/jxZ+nruwkAIQS6rgA6ljVD3izK2cefOuWxZ4/A82wcR6NYNGhqKjA05AIec6mDS4ejLK5u3l7jceWPWUpqMHLcpmBPk1lPI6CG0BWVaMRiONKBzGbRMGnveBk9PoQy8Toc10VKBVXViDZNEgnuJhj4BR579hEioSS63snm9vcQj/XNqyxrmAxNHmF42tkkoHfT03E3ve3Xz861lOin8hG2dCSmNc8xwCao5ylaQX5w6OiGJKYr84G+yKiiWb2YBPBSJ5+vlWa6elvhNVBfVCXPQoj3A9+WUmaEEL8HXAf8sZTyubrPbgNgpW4ODSyNAwfu5Z/+9cPoaKhCBcdEx0Hd/YY12ZRUI6Qric9eKao5DRw4cC/9/R+lUHgFnyQqQKQskZ+5Lssawpch6ICN54VQlGY8b4RisWVNNgQHDtzLk0/8T3SlGWHoFL0xHLcIWi9tTc8zNuXLA5qiNoYh0XUHVVV58snHAejru4G2tiiJRIpUSuATZgdFcdC0KxeNpyg7GRo6zRVXpAgEihSLAU6fbiUaDeD7Ry8jHGWNsBTJLlg6uurgOCGiRhTXk6haHk232NnzNbTmzHTk+FPAZsYnJOCvgetpGEYRiUdbbDe3/tTr0TUPx1GQSHTNnef+MTRxhHOjn0HK8GxozbnRzwAfpXzsucv5sVakkKgCXOkiEEih4EhtQxLTlftAX0RU0axeTAJ4yZPPDdRMdylX8BuoL2qpPH9SSvkVIcQbgbfjdwR9Fri5rjPbIFiJm0MDlbF///v4zDMPEBg8jeJk8PQmwlftp3VP35psSmqpLJdauc004R069LtrbltXm9OATxmEkEg59/NS1yVEYdrKzkYIF8PYRjDYTipVJBBoqXlDUE7LnxwYmN1UbOnspmgXseU4it5MrPutZMefIhLehEimCIdtQiE/etq2obU1hmE4PPfc8/T1dXP77T/NF7/4fUyzON1YqOJ5cd797sUW8e9858/w/PN/wMRECFWN4boFdD1DX999wG8te93rKQMQ4etQvcPohoYlJwkEJJGAwlS2QKHYhJZ0oPd+IMLx48/ywpF/R3o24WCcnVtuoL15DwqCZMaY1SgDaKofVlJ6Z+LE2S/SHoshZRTH9TCMFoTQOHH2i8CvzM5pMdH3bf+GX45gFtqYmNxFLtfFRiSm6+UDvZZEqKpm9WISwA1EPleEDdJMd6lX8BuoL2ohz+7047uAz0opHxZCHKzflDYWlnJzuOf1S98+bqA69lz/JhJX75u3KUkUEmuyKVlOZbnetnXVnAb8hsGeeVXyYjFZttFv5uf+/l9FUQp4XgjD2EYo1EmxmKSlZQ8HDz4OzBHjf3r4m2WbXMtp+f/of3+M7guniYb8UBPLFiiKSbjrTbS0X4tAkB/7DpZsJuvE6QhO4k7/dVAUhWAwhpQWk5Mm8Hn27oV3vKM2+7ybb84Qi+3n6adfYnx8HNd1CQYVjh//a4rFbVXfi1IXkqbINl535Qdojr1hVgZw/Lmv8KUvf4lM7mzFedRCutNNBl9//nk+tONNBDUFVUtzoTCGbXWhKx6e5TdOnjjxEocP/xBVaaU11IdlZ3nx1W+yraOFgL6Foq0RCRbRVNdPHtQlU5nIvDsTmdxZYAuxkDfbWJguSDK5SpvMOds/q7AdzUizZcsPOT94E6oMzLqGDByrvKFYLx3yevhArzURqqpZvZgEcIOQz5ViozTTXfIV/AbqilrI8wUhxN8APw18SggRwL+3/JpAOTeHe15/T0PvvErUe1NSa0jIetjWVdLYLtRnFwpj5AtnKZgmv/CxbtqvuZ1fe+8nZz9vLbt341z1VtJHv42iBmgPBRfFby/V5PpW9VpOPvdvZLMXmHBslB19xK/dCfha/onBU2SkQ9v0GuQtjfZYDDPxEm77VUTVKJFQJ8fPHCVAeroJ0CfOuu4Tn1zOpaPDmL2e2sNaBunruwHPi/C9730PwzAIBAJIma66mVm4AQobNq+c/xxbuxQ6229jbOJHDI5+jrARxmPpDVI57e3U2Zd54pUgiiJnCWT/eD8JGedbL7uEVI3rd10gY6ooTNDsNeMpRaCZH//4BcbGNrF5cxFLnEQ6PUxMFhk4cz/5fBPBYA8/tfMDXLfnCjI5nZGpGKDOuzMRjW7CLE4hhUdquhBbtJJVtOz9TI1uITW6jagewfNCuFaW7b3jjIz2TktEBKkK8o311CGvhQ90tapyPYhQJc3qxSSAG4V8rhQbppnuUq/gN1BX1EKefw54B3C/lDIphOgBfru+09pYWOjm0MDqsVE2JetpW1cOpfrsQmGMYvEknrSxLI2AkGSPfoc/yo7wyQ8+AOCT4u29NMm3kzz+Q0YTr9IV381dd/0p+/fvBg7iyof5wDUGp5OvZyynEA/FSQ0M8NjAH9MV20Yk0sPQ2IsEXn6KCSNKe99e/7rdAoUSmzUpHCbSCoaepCWokDCznEi6aIwjFfCm+/48z0PTNAqFAp5nsm/f21awEluBBM888wyGYRAKhdA0G9uOYRi+pR9Qtoq9cAPUFGkhm4eh8X46229jaLwfpB/qkrOTS26QFmpvhXRpb8lTMItMZDoQ2GRHnuOmjh/S3T5KOnkBJt6KaTYT0LLYDqioRDrGgRTj4xaO08XZs36tYabRUwhJU9N2bDvFwOADBI3/k562awjoFqYTm3dnYiXNranxJNnh1wMuWS9LLNBE1GjDcfNIKdF1yehUDIm6pHxjPXXIq/WBrqmqvM5E6GISwFrG3uha3g3RTHeJV/AbqC9qCUnJCyHGgDfiJw04048NNLAqrHRTspbR2utpW1cOpeSoWLyA4zkIISgSQ2i+bZsxeIr+E/0Ac84vV8fpuPoaEoUE0VB8mjj7t+oHU5LOiOTWLT/kyXO3MJbrRp46jumJ2es0AjEcO0f25WdmybOlhghKZ978TGsKKVrYvW8//Sf6GR97ibBsIqJ7FPIWra02jiMoFk26u5u56aZr2b37kytYibuB+8nnkwSDMTTNTzccHu7BMMIkkyf41jd+j9ZYF129V2M5GZ598lNMnU0R0nII2YrEA6BgugT0GPniiL+u9gjhQDcF050drdwGaaH2NhbOYZoquiYRQhCJTNG76ccEvGsZzD1OPHaOUPirjF14E1d2hMmSJxIfoq1nBEhgmjuxrPTsmvvWgvgNnhj0draSN1MMDB4iHL6VkF5ASHM2SGXTFd0ram6dGroaXctNh+5AppghZDSjijCOqzKViSBFECnlPF1x6b+rKzftJd58F13tt83+vh465Bmsxge6pqryRSBCF5MAVhq7oeWtDZd6Bb+B+qIWt40/AG4ArgL+EV+Y9gXgtkqva2B9sJEDXOoxt7XWKK+lbd1KSH0pOSoW81i2gkUM9Kh/gBrAsLOzjZRLO7/0MxNQ0hxsIWkWECJIX/sJxnLdYCUxjDly0hFuZzCVJ1hM4kmPlJnC2rqT1gunKRaTi9ZiZqNz39e/SCSyGyH8aqoQWbq7x5Bykl/8xV1Ay/RcYHnOGPuA+wiHDyNlGtuOMTzcQy4XxbKS6JrD5s5NSBnFk7Cpqx3LDnJh/BCRYC/RUJaJtIYUDulCgfaYJBLsRUr/UYisHyM+zYzLbZAWam9DAQfHEbN+ye0dJ7A9lZC9E1M8QqIQRAaTWJ2H+JvBDn79pi20NU0w4wzyhjcMzPtsCVEAIBDoJRYKYTsSSQTLHkHg0d6SI28Wmci0z5NJ1C598TE1sZveLT8CJ4jjBNGMDAUHculeUoW22TWY1RUfPcrhv/0jHk5/G0MJE2nfRCafIGt+BgF0ThPoDesXXUNVuUGE5tDQ8taGDSMfaWBDohbt8nuBO4EcgJRyCGiq56QaqA0z2tZEITFP23p05OjFnlrd5lZ6i14IhUCgZd5t/eVi//73cdddf0og0EIuN0wg0DItgVgeEZ8h9cVich6pP3z4wZrmcPDg48Rit2GJVhy1hKC4RSw1xNbmrWxt3krKTM177ZzzyyAzASV97X0MnxrmyUMv8cK3fsgrX/07bClpmQ4gAYgYUXpCcUSghfPp88RDcT75wQd4/91/WXEtotFNWNZc2GguF+XChRCRSBS4Fp8EJ/Cr4OXf68OHH+TgwTu4775dHDx4R8ka7aOv7+Ok0xJI09Y2hqoOY1lp4k3teF4Yx/WIRXUsWyJlCF2borP1PRSsNGHDRkoP05rg/NgFOlrfgyaKdLS+h/NjFzCtCaT0ZjXiBw7cO29em67oRlMckDZSSmxHIRR0Sef9jUwwmMKxIgihcOuWWwnpIcZyFt1Ri1/Y+z/pbvos8HngILBv0WdLyhCK0kMo1EkoqOK4Hq6XIaB3EwtnKZgquuYhhAChz1rWLRfpXC/nB2/GdkIEgmlsJ8SZ89vIm+HZa0PaaIrDJs2E++/n0cSTGCJMwNEQ5y+Qz7iEjBhjU1+bd3wgGuWxQwP84NBRHjs0wMCxDRA829zuV5FLsaCqrG25Dm77gF95zkz5j7d94LIkQs6557Af+TPsL38C+5E/8yvNpUhN+BuIUjS0vGWhbbkO/e2/jf5zn0J/+29flp+XBlaGWjTPlpRSCiF8Ey0hFkaMNXCRsJEDXOo1t3polJdb2SuHtWg8PHDgXr7S/xtMFnPYWghNugjXxNq5j7v33A1QocmyH5+0xpk4O0HypSRqwMH0NHTpEDVUcJIUi6HZqrIqbT509/3z59e9r+J8y1Xqu7vHuPbaW5iJ5Z577Gdh9bnynYPd3HzzT4jFbuHpp1+iUEiya1eRHTv+Oz9+8gdkCwk0NYahC2xHYtlZmqPddLbfhgQSqYcZTRwrU/XfR8/hpqrSh4Xa28lME3nTQqIgpcTMt2JoLsG2BG3RLrqiXbNrvlSVfaEl4swGK1+IIEQe182yrfuX51W5hSzS3pykPW6iq5InvlakZ9e2mmUNfgNegbOnb53XgFcUHUiRna8r/spfQDxONmMS8SKg+fUUOXKeicBOgvoQmijiEESJxPFy4xsuzKTWqvKG0NHWGTVJMhpa3gYaWDVqIc9fnnbbaBFCfBj4EPB39Z1WA7VgIwe4PD/8PAkzQbqYpjnYTF97Hx2RjlXP7WJrlJfCWpD6GZJ16Ft/wlT6NHl02ve9jd8scduo1GQ5MHAvP/rRSc6eHUVVob0pgpXYxfb2KMViEte1luUDXWmOpUT0He+Ic9VVNyw4shm/Wn4qbgAAIABJREFUGj4flTcZdwAufX15+vriwHZgE5DhzLG7yJqfIW8mGZ7I43hZhFBpbfrPAHS13URn+2185L/tXnLetVzrQu3twLE0+WkyPT65i21XfJN8oofsaBeKkSbWOUlz+91Vzzszh5lrHU+eYVvPLrZ0f5C2+K3YzjihoEtqMsSWzkliTTauA6alsLlziomzRQbYXRNJXVYD3p8PwubNRFNNFCkQIASaBkVzVu9++53+5+uxQwMbMsykcXt9DrVIMhoSlgYaWD1qaRi8XwjxViCNr3v+fSnld+s+swaqYqMGuBwdOcrp5GkEguZgMwW7wJPnnuSazmvY1bZrVedez2jt5WCtSH01krdUk+XhwwN873un6OlxUFUP11V59VUTz8sTDkcxjBi53PCsD/RqsHiOB5mrwM4gha/9nY/Km4zngVNACIgBBeAFIMfrb/5NrB8c5+zoP5MtuLTE2ggH2jk19Chbvavobru+Zmuz5WjTS8m073vsEm87RTA0gVlo5eRPfpZo93Z2761p6HlrV+qjPJVuJmCaxCIFggEH1/HjzROpABKFcNBcFkmtuQFv61ZIJDgQvZGH898DDwxbxQrIRf+uNExcoDmUJhRwKBQ1UvkIGu7S5y+HbB4mEmBaEDSgPQ7R8JKH1+I3/VqoKteEGvTfjc1GAw2sHrVUngEGACml/J4QIiyEaJJSZuo5sQaqY6MGuPSf6Gdvx16OTRzDdEyCWpCiU+TF8Rf5xG2fWNW51zNaezm42KT+0Uc/jW23MzraQjJZBOzp3wwRDnfWuTrvO2X4aMYnzgn8OO35mNlkBI12YqEQoaBKJpdAYRuQxG/DmNFjhoAikGT33hhf+vJzhI09NEXiuK6kUABDy3Ju5CH23fi+msjiahpOffu2DtK53rknpU1qhZXXclVud+InBA2PXEElnTVQ9SLNzROEAi6x/EnAZE0jyu++G+6/n/3xXgi9hUeTPySrZIi27+add/7OvDXxPMGWzikKRQ2zqKFrHls6Epwfa60wwAJk83B+BFQVAjrYjv/z5u6yBHo9/aYvC9QoyWhsNhpoYHWoxW3jw8CvAa3AFfj3UT8HvKW+U2ugGjaKV/JCDKYGubLtSmLBGCcmTpAyUzSHmokH4msyt7XQKK811ovUL1U1zWYvoCgayeTzKEoOTXOxbW1eg1z9iLzvlOFrnAeZcZsoR/IOHLiXb33j92iPSTwPsvkEQsnzuis/Qmbq32lqPYJfcQ7iE0UP38HDT9vz6CFnJ2fPJ6VHLneiZiK1Gm16uRhpcOlunuIHh1afwrd7b4zHDnXhuOOARDdMOjvO43kGjqMTMjxGTxzm7IUULd3Xrg153LcP7rsP+vvZP5hh/64P+4R63+L3TgqJBKSUSOT0o/98zZhI+MRZn/7qmXmcSJQlz+vpN305oCHJaKCB9UEtleePATcBTwNIKV8RQnTWdVYN1IyNGOAyIyfpjnbTHe0GWCQvuRyxsDns0Uc/zaFDv4ui+NZnqhB0xneyY9N7aG6+fdlEq1LVVFF0HOdVQMfzwti2STBo4Xk2hcLLeEo3Xz72r/xTonxcd+04ynySfDc+SZ75rzL2738fw69mGJ/6GvniEAG9m96OX6Y5dhMT51yaWovAEH71uhl/v+7rmNdCGrMabfpCKztdZLhqxxRSgmmp5Ey3pqpoJRnCpiu6mTqbor0lT1NsEs8z0JQAilBI5AsohkdH2ytcOBWrOk7N2LevLFleCFXA+fE4zeHcrGzj/HgMVVR+Xen1XtlmYgTjtLWVfPVoqi/hKINyG5Z6+k1f6mhIMhpoYH1QC3kuSiktIfw/X0IIDVhGqaGB1xo2qpxkvVBKchVFxXFeRdc0etqux/WyHDv1KULGP/LCyy5f+nKEN7/lI8uOEhdSo7N5C7qW58iT/4ym6MzFm8z98ywWdbRQH0PJ0xhHv0NEvpWE4dsG3nfLfcsk0EeZCWKBzcxZ0t3HcqQEve3X09l2KzN/U8Ym/oPnT/wOL50epfX4Wa699nr6+vYzJ//wG/I2b76eY8cewDQlUgZRlBaEUJdVUa9EwKtpa0tjpMHlqh1TKIpkeDyErkk6WrKMJ6MVq6LVZAi798YY4CoSQ0fYtMm3gXO9POm8i1QUXCdIMDw1a2NXr+prubWY2TykCm2kZp3hbBz0iucpvV7TM/GsMSYnO2lrm640O66vfS6DhRsW2MB+0xsE2pbrcGA2QVC+9H0cGgEoDTSwlqiFPD8hhPgfQGi6cfCjwL/Vd1oNLAcbLShlI8pJqq3RWqYWlpLcZPJ5QCcSjpEtnkMTPTjeONlihrh2A2EjXbPmdqZqKqRGdzyK7UhsO4THGN1tYUYm95A3BxGiiKo6FAoaQqhMFKZQ9DB4DrmBZ9l+9TWAr01PDgws47r9IJZjx4Z45pmHyWQyxONB2ttf4amnAjWvXSkhGpv4D05d+DQBPYZZ6ODFFwd55ZVHaG5+jFisi76+j3Pzzfs4fPhBXnzxCwgh0XULISxsu0Bf38cXVfsrzWMpbfpN132iqra21MWip2UKCQyPB7HtuT+jkWCBbEEtSz4BcheO0dVqkc0bpPN+0t9CGcLuvWdIdfVj5drR5SYCagvxpkkSWQsPF9NsXrvq69Gj0N8Pg4N+8+DddzOgbi+7FoFoB15uHMdjngVepUbNhbKLiVyELc0p8oUkbTLkE2fXhZ6Osq8v3bDUOuZrHY0EwQYaqD+ElJWLyMKPErsHeBt+NtUjwN/Lai+sA2644Qb57LPPrvewGxozYSTxYHxelXf5VcXLF9XWqLRSXEqoVhKWAnDffbt8kisUUqmnkVKnp6ONop1DiCCetBG4xEI3EwyonB09QyDQUtUJ4+DBOygWk9MVZwXH9bDdNLoaQ1MVCsUkOVuQz48BJxBC4roqI7koWqAZpERxcmx9/8fxpMfAcz9g09DZZVz3h3jkkZf40Y+eAUDTtOm4aYvJyW1Eo1trWruHvvIlRi/8K7nCMHlrmKDeRiy8jcGR0+SLLwMgZYBQaMfsub7+9d/HcV7FMFSamz1U1cU0PaTczh/8walF72EmcxYpR5EyTkvLVfOI9AzJTiZP4OuqQ2zrvoEt3e+lvfWNcxOVNlLovPnOxfZ3Pzh0lGgoizbtbDKDaNjiwngrqurheNos4QvqeQK6w+auLJ6UuK7ChfFX+NGL3yZXGCIW2cTV1/8i+/e/j4mhT2FPdRI2QhjBJIpsRhE6rsyTNBOcO38dSI/2jpfZce1TzJfPLANHj8L990M8Ds3NkEpBIsFj7/gNRCQAoqSiPL0Wm67orup8sXCdHBmYvcsAENYtupoybGvvXjO3jQbmYD/yZ1DIzdnVAXK6iVB/+29fxJk10MClByHEESnlQi/WmqzqPHxf54a38wbERg5K2SiotkZrEXBSilJpgJQCXc9iWhZCMfA8C0QQRQR9wmu6NWtuZ6qmupbHtkM4MjMbsiGB4YnPkp4cRcpR9Gne47oqcSNLylJQFB1P98NBU2aK4LnTGKGWmq/72LEMR448gxACRVHwPA/XdZASXDeJENvxPAvXHaW//4M8+uinF1V/Dx9+kH9/6v8iFGijtakTVTlF3hokmZHkzLOACmgIYc2bj2WdJhhU6Ox0cV3/unRdoqqDwNF572E+P4aUo9Mj5hc5aszMxyfb3RhGDF3L8+q5B/A8MRtHXam66xAkW3DoiOcAF8dVCAZcHE9BConjzW9yizcVaG0pYtsKQkgmUwOcvPBlmiJBPK+bTD4xO8ddXQoKIUxLwXbDhIJ5DLUJRRgkx64G6bF184vo8SFWI5+hv98nzvHpXoTpR81K4UR6y+qMa7bAK1mnhbKLvCU4NdXGtjfuqOkcZcectrtLTaSYyheYygvSVvQ1R6ydc8/NyjNobvcbBmuwq7sY83otV70b63H5oRa3jdvwjVy3TR8v8G3rdtZ3ag3Ugo0clLJRUG2N1jK18OjIUSa6OkgfPYIqFFoCRVRVUrQtosEYtpIGzyUcuBJdE0xmCjU3vc2QviNP/jOuGMZybVzh8srQnxMNbSUceBOe93coisSygiiKg5QaAkFYSWO6ESJX306ikCBhJmjGwzDmE41K1/2Nb5xGCIlhqHieQFXBNKFQACGKFApjWNYpfLs5KBaT9Pd/lK9//ffxPJtodBP5/BiGEUMzIqSLOZJJGyFMpDyDEEWk1AEHKQOL5tPU5OK6Atf1z+95Cr4bRz/Z7AWaIluIBSOE9EGKdpxszsZ2cmU3BQs3TLYTJqB7DI33z5LnStraGTnBeCJCNGQSDdu4rsKUfQWqmMCR2jzy2dJkIZAk0gYd8SKnh59AVSO0xZsomCZTWX02Zn7be36FpiAUbQ/pGGSyBrrmEtBCBHSdQOxl9PgQrV0zhHTpRMeKGPQDUuahuRlnLIOIO6yFzrgusotpu7uprEXWTKKrCr0x8FL515SN3VLyDHTDt6erIUGwHqSuIRuZj8Z6XJ6oRfP8D8B/A47Act3wG6g3NmpQykZCtTVaq4CTWXnI9l6a5Nuxjx3C8SRuwXdLcJ0C4VAETQPXUxlJpDGtqUU2cpW0u/v3vw/T2M7I2X9h6NS3ETKAYUSQYpJXzvcDIZqa9iGEQj4/hmUNEQo6dEQlN76theHUs/zk35+kOa2hkiaTOUsstmP2WCEKSBni8OEHF1Wfx8ZSaFqIpiaLYBAsSyGfF75lmQxQLA7hV44BDFzXQlGSWFaO5ubrKRaTeN7LWJaBafrSDCHCgImiFPC8IEIU/Vcb2+a9D/m8jqKcwLZVwENKied5NDe3AIM0RbbRHpNIqZAxs6hKiNZmjakU09d2gWIxz8GDd3DgwL2LNkzpQoGulhg5cwQpZVWSV6p/zhY0kgVfTnDr3hiPHcouqrYqqsSyFWxbYzwBmfwYzdEOPA9GElmkcGY3CqOTO2nafIqgEUARBroKCJex8RBnxnp5853/L37FuRTlEx0rYjogZbbyDJBKsYlRxpRta0J4l5V2WCum7e5S+RwIDc9TQfFoj7icTQQvOxu7pQjukmmCjo0wc1Xt6upF6mpJOXwtobEelydqIc8pKeW36j6TBlaE17qzRS2otkZrFXAyTx5ydZzBY4+R8wLoqsH2lu0AeNJjfPIVWloE2dy5RX7QlUM8dgP9dGx7mIHnxzCMDnQtTrZQ5ORUgkIhS4tWxLLSBAIthMOddHSE6eg4iaaF2RK9kZPPfpfX7VQYHd3B2JgCnCeRyKIoOWZkqaraUraJMRrdRCZjMzExgpQz8gqXQMBBVVvwPP95IVx0fRuWNQToCOEhhILnWaiqh6IUsawofpDLFJ4XQQgX39u5iKJ0Ewy2L/KnfuqpX8LzLBxHouvQ3Kzwn/5TEDjF9Ve/hxOnvoiUDkIEcbw8Ugqao11MJE9Oa7PDFItJvvWN36OjpYNIUMd2wqQLBaRwOD8+RFusG00UayJ5S0kYylVbM1kNTZWoqotlqwjaSGezJFI6Uvg+KTMbhZbuaxkdK7JjUx6Jje0qSCeKrqkEolF8jXNtiY4zn6mym7HpgBRgnuZ59z03g7p9ScK75PnKNB+yb9+ypR5VYVoQ0FEUC8/zNyiOJwhq7mVnY1eJ4C4pz7AKcNsHqtrV1Y3UbQDZyIZCYz0uS9RCnh8TQvwZ/j3B4syTUsrn6jarBmrGRnS22GiotkZrFXCyUB7i6U1oToGiM/dlbllpWlquWrI5cCn99VNP/Qn7918NxBlMSSxrkqb2BC+dHCORNgCJKQGCWJZvcWYYMaLRc+RyHnfccSvPPPMMihJE0zQ6O6coFLaTyYCun8PzNDwvRCDQSyjUSbGYXKR9ntlkKEo3rptAUUykVGlqeju2nSWZ9HXGur6TcLgT2z6NlGJWglEsDiGETiBg49/E0gAXRcnx3vd+gf3737eImJW+D4HAWU6f/lMymTw9PS4dHSGOHk3yyCNH6GgS9LTfxPjUIJYdRsoCqtKLoqZm5x8IbCJotNMek2QLY0xlXkEokqDRRCKlYbsu19/6CW7fv7p/OzPV1uFXztLdOoaUMDzeRChoo2seoYDL5va38sKpf2R40kXVQ/M2bLv3xnj84U4UkrQ0+f7HE4kAiWwUW2ZZTqJj1UTF6YCUWcJ7zz0+4Z29jhrPd/Ys+7/7E7+KvXmzX9G+/37//DV4SC8LQQNsB88zQLggVTRFYjrqZWdjV5HgVkgTrClBsF6krsaUw9cMGutxWaIW8nzz9GNpt6EEDqz9dBpYCTZiUMpGQ6U1Onz4Qb7+9d/Hsk6jKA7J5AX6+z9etuGtEhbKQ6JX3Uj26HcIqEGk9GqqaC+lvw4GXwRuA+I0B1uQmk4+57C1J08ibeB4DkEBLS17OHDg3lkC2tIi2Lfvrezdu5dHH32USCSC4wiCQZ/QR6NbyWQu0NR0M76xztyYC7XP8zcZ+iJJyQyxUlUDKT2kVFAUG13fDjCraTZNDb8iXZwm1uF5spSl1vvmm3+Lm29+K/DrnD37Ko89NoHjRFDVCJlcEss9TG/Hb9LZfhtjE//B2NTXmMo8gZQBAoFNhEKdxIIhzOIUpj2IrmzHJYHtZAiHBL1bfmlNEyFV1WM86WuiO9tyqIrH8EQMT+q4ypvp3RJjPP03eN4prrpK4ZZbdnDVVS8Cu1EFDE11MZyYU05LKYlFh4DHgTS+TKMFeB1lEx2PHuXRz9+HYaUJGB50aAQiC/TfNQakzGDJ5trv/zX743ctaj6kv3/tyXN7HM6P0ByOkDWnUBQPVcBwRr/8bOwqEFxxy8+vLk2wTqSukXI4H431uDxRi9vGm9djIg00cDFw+PCD9Pd/FEVJAhJddxDCwbIsJhKCf/rXD/OZZx5gz/VvquqfvVAeom7vJZfdx7apArnccE0V7aX01x0dBn6VEfra+zh1xSnGXhilKWZiuxbSKdAUiMyS2bkxDuJXJaGpqYlCoUBTk4ZpBmfP7XmRWalH6ZjlNN+VyO3CCr5hbMOyJlGU+WRa065ECL8S7WudRVmNdXnsA3by2GNnKBSaCYVCALieSTQcY2zsa3S03Upn2030dlzH95/9LUKhidlrCwVVRpMnABvHG0YoQQx1F+FImPPnj9Qwfm3wJQ8uHfEcti3I5nWCAZe2ljxK60y09m7e+/69zAXPNDPjnBGIfBg320qpbjoaGaF3y9PTx+xjfojMYuLM/feTFUkiegwcG86dgy1bMMIra4aFCs217ilf+lGK5ma/or3WiIZhczetEwnUCY+pfIHRvCBrh9fVbWNdLPSqVJdXkyZYL1LXSDmcj8Z6XJ6oxW0jAPwssL30eCnlH9ZvWg1cythooS2V8OijnwZyeJ6Oppl4nl/pU1UPqziOTQuBwdMkrt5XNZWvrDzkgw8s69qX0l/v23c7PlmK0xXt4l23vYunIt9l4CcjBLwirS1XcOc7f6cMAZ27xX/jjTfw+OPfxXEUxsZ2zGqKr7nmHo4ff2jRmMvVfMNicv3QV77EmZP/H4oyQVi/lsnkWVw3j+cNI4RASoGiNNccFONjK/l8kmBwjqhoRpq8KcmZ3jzN8pubPzJvPSdTp0FkgCYQAaS0sdxTePmdZLNrp0HUMImGTGxb4LoqAigWNaJhi3PzGtr84Jk5/bL/uLPvSU4cecesbloTObb3juFYnZw+GifWkaCtRyk5x4LP2LQNXTTVQpECAc3fZDA+gdXTsuxm2Bks2Vyrtvqa6QXNh2ytU+NyNAzRMM3bN9EM1GZ6t3aolhS5VqhGcGuSZyyBepK61cyrFlxq1m/1Xo8G1h+1yDYexv/WPkKJ5rmBBsqhNJBkc2wzicJKo6DXB34FzgN0FEXieQACoXgYqsQSIRQnU7N/9molNEvpr/fu3U2pzrUranDXG2+FN1bz9t2H7//bz969GeBtfOMbpxkfT82rhB8+fMuKNd9LNZANHEvTEbwat/u9nB99CE0dY3PXTs6NHcXzQMoghtFLOFxeY7007qa19bNkMgUUJYymOWiaw+lhietGuP3OufXYzfz1zJMgHmtBCt0n7moAXfOwnUGu3HQjjx0aWJMKokOQaDiBKy3amycxjCKOHSKRiC9oaBuknHPGZObbfP/Z7xLUU7S3bOHq7W/DExLTU8HTyI12AyO09XiUddmYtqE74N7Iw/nvgQeGGpjeGCkr2hhBhebat3wcvvuT6enPNR9yz+XZuLwwORH0RUmRq8UsQTRNSKcgEITuLVUJ7nKI5aVI6hrWbw1sBNRCnjdLKd9R95k0cFngUgttiUY3kUwOAS6eJxBCAj6JdjwVKM4Gi5R6Q9ezur60NMInwT5Z2kpZnWtZ7Js9bu9e/7/ax6yMSg1pbnIfk1NHePXcA6hqFFXpwHVzRMOQK+wkHO6aPU+pxrp6zPY+duz47zzxxCeBKSxLkMnoFIuSu+/+vyte23337SJXCBEIDGNoAaRUkFLiejnizXch5NpUEDdd0Y2WOUNn2xhFG1w7iKF5xNsHSFulDW2LnTOOH3+W73zneUxrGx4xplKT/McL/4AI3cHmni04TgjXg/R4nLaeIcq6bEzb0O1v3wsT8Gj2GbIkiRotvHOFyZlQobm2ZTc8+SocPgxSwhveUJ9mwQ0CX6oRKBsksxaYRxC7Ns9VnKtUWF8LxHJhE6V0bZiahK/9FfbuazZ8FbqBywO1kOcnhRA/JaV8Ya0HF0K8A/grfHPYv5dS/slaj3ExcCnJFtYaFyO0pTrZWhoHDtw7q3l2HIVAwEEIsItQcA1UxSJ81X5gzhv64lXX50jwRkGldMa3XPe/OD/6EKoaRVdniGiUgNZEwhqcR55nNNZV3SGmUSxuY2ioCRAI4SKlAvOoTHnMyA5yhQ6mikO0thh4nk5AvZqu6XCUhRXElX6+1OAoAbUJTYFcwSJtmmiawc6+J4Hbp49a7Jzxk58cIZ3unF3LpkgL2Tw8/+JRtm/pAMB2ghgKLOWyUWpDt7+1j/1qr18J/q3VE9pFG63SmO+f+Zm5qvNljHLJiWvp9LFSG7nXhKdwSROlzCZRhs4jlWkJ02W4WWhgY6IW8vxG4JeFEKfxZRszCYOr+gsshFCBB4C3AueBZ4QQh6SUL63mvBcbl5psYa2x3qEt1chWtY3MDAmYcduwbfA8HccLYyoqod3X0bqnbzaV757X33NJVNdXs6FYDiqlMzoEcb0xVKVj9neaqoDcgqqOUiwmF2msa41Kf/TRTxMK9czT3tYi/ZiRHRhGjObmfbRGdbKFJNt7Pzx7TGkFsdLnq7vtbWUbxmb0sFdcOcVw2iasRTA0jbztEWyboK3nlXnvT2dnM+96145pWc1WXnopgBBds77bBdMloMdIZUY4d+4W2jtOENTzmFaIM6/8OqePB9E4Or9pbd++JW3o1hxLxHzXxWljg6AuyYmlqNFGbqFEg+FBv1Jd5XXrhbpok0uaKMXkOFKdDmYKBBCX42ahgQ2JWsjzO+s09k3Aq1LKUwBCiH8B7gIuafJ8KRCremK9Q1sqka2W3btr2sgsJVlYSLxvsLfS/7lf5+TocyhGK+6eG2nv2zt7rRslEr3W6u1aoFI646Yrunn5VA8FMwVE0VQFXRNkTQdV3UUg0LJIY33o0O/WFJW+0kj1hbKDltAe+rb/Alu79xAKjFIoamQLARyis8eV+3w99v3P8ZYbdpVtGJvRw5p2GN3IUnBc8qYKqkNbzwjHjmXmvT+JRJrPf/4Id03LKRTl8Xlrmi4UaI9JIsFestlOctlWNMVBiXTgDY4jpF2+aW2ZNnQrxhIx33Vx2ijFEqEs64G6JCeWogYbuXISDZFOI/VRaO9Z8nXrhXpJSEqbKBXTRKoqwvXwOnv8e0+X22ahgQ0JpdoBUsqz+GaiPzP9X8v0c6vFJuBcyc/np5+bByHErwkhnhVCPDs+Pr4Gw9YXg6lBmoPzLZs2ErGqN2YcJ+KhOOfT54mH4nWtuvuWaPO/sGZIVOlGRhEK8VCceDBO/4n+quctJc7hoQxTh/6Z55/4HZLJZ1AVHc/JkX/xe0wcPwZsrEj0UsInhEIg0IJhxKadRSpj4Fiaxw4N8INDR3ns0AADx9IVjz9w4F4sK02xmERKb9bB48CBe9m9N0bXpp+naKfQ1DyW7XBu7AKF4iTvfvcfcvDg49x//yscPPj4LKmNRjfNhrzMoJxtXq3HlcP+/e/j4MHHufPO/4d80SZjfpGBc3/B0PgxggGHrV2p6SS/pT9fsVCG5kiW7vgULeEpBC6Op82SKYnGxPgeNM1E0wqgOLMyi29843TF92fhmprWBOfHLtDR+h40UUQKnc6dOyhmszjedNOaECD02TmsK7Zu9aUapain0wbMSUUSifmhLEeP1m/MBdi9N8ab79zN7Xfu48137l5zlw1h5pCFHNLzkIUcwsz5xHEa8qXvI6clGkJR/KpreztiarLi69YLZecXjPjkchXQtlznJyiGIr5cQ4DXuxnRNL2Bv9ibhUJu/mbhXCNP7nJELVZ1/xX4MH6nEsAXhBB/K6X861WOXU6gKBc9IeXfAn8LcMMNNyz6/UbDessWNiLWM7SlUuVzpfrrUulN6EKa7AvfJahkkZqOKqBFzzJeDGIrBpkTz6Bu752trm8EvftKq7Irsd+qls743vd/gMOH9enfDxCNbuKud3xiyQp4rVHpM8dZVrIk7VBwxRUfA6rLVmaq892tW8hmWzCMNDnzC0h+iYBx43SSX/nPl2sX2H7lDgSSQlFFU126WlOMTDWj4c7qYXO5rkUyC7iPsbGfrfj+lFvTcrKb0ZNn6tq0VjOWiPmuq9NGzVKRo8xvsi3jib0BUZONXDlpR7wTadt+xfpiewrXID1ZaaV2xiXEuXqasGo60vMuagDJa0Jv3sAsapFt3APcLKXMAQghPgX8EFgteT4PlArENgNDqzznRcd6yxZe66hEth71XlzRRqa0Yn1m4GFQg2hKDtv2ZdD0AAAgAElEQVT1UDW/IajV8MgQwrWmiIfis+/vRtC7V9pQVMJK7beqOXUsx8mj1qj0/fvfx8DADzl27AGEkHheEEVp4fjxh/j7v4fjxx+qKFuZqc43ReKYRRfTMrBdk3Tm37h2z5vQhE9Ay32+msMKrU1vASEQ+D7O4NLWlGEi2zFPD1sqs+jcuQOI1fT+1LJm9W5aqxnl9NUfux129wN/SV1Ia01SkaPMBdBsZiaAxnetuTQIdEXStZS0o3sL+tt/u/4TrIYq0pO1kHVsqACSesWdN7AhUQt5FoBb8rNLLW3t1fEMsEsIsQO4APwC8H+swXkvKsoGZbz+nteE3vlioBLZOnvoLF9/5LMkvSIYLYidfXhbO6puZEor1oqdwdMiOI6GEM70ERqaYtETbCUQ38nBOw4CcPDxgxtC715K+Fy3iGUNoqoWrrurYpJfve23akWtZPv8+SMEg3sWNQ2++OI/EAptr9h0OFOdL5guuqbguB6q0kTRHplHQMt9vvZs/yBS3Iiu+VIFx1EQQDRiE+jqrqqHrbW6Xg11b1pbDubpq9eBtE5b8VUOZSkfQFM2VOYiYqXV140e+1xtfmtVqd0wXtV1ijtvYGOiFvL8j8DTQoiHpn9+D/APqx1YSukIIe4FHsG3qvu8lPLYas+7EbCesoUGypOtw4cf5PknHqAn1ELSLmBZaYIDT/GWHb9X9b0pld54ehM4BXJeiBYjA9iAREplEeG5GDZ95VDqIOK6rwIGqnoFqmpUbBxcbiXz8OEHZ11KAAxjB+9+9x/WxdWjHJaSpxSLuSV18DOIRjfhWDmMWJzeziCFosv41BRGsHcRAS39fB0+/CA/PPznON7/QAhBZ/xqrt7+czSFr+HscBtveo8/7u69sRVLXWrFWjetLSduuvKx60Baa5KKlA+gKRsqc5GwmuprtarrxW5eq1oVvswqtRt9M9PA2qIqeZZS/oUQ4nF8yzoB/IqU8sdrMbiU8pvAN9fiXA00UIrSprmZumSxmOTkc/8Gd/5WxdeWSm8iu28g98J3cVEQ6hbwxlBVG1XdtYgoLlfvXk6XOzP31VrM7d//Ph599NMUi8a8yuzM+cudczmVzMOHH6S//2MoSgL/z4jAcV6lv/+js+PXG0vJHzwvgmWlK8oirt37Xxg8/ZdYdpoLo5KmSJF4s0M0eCedO8trvP1r/igBI0tLrBXX9bgw8WMmksP0bbuPvuveX/PcVxpKA8sjucs5Z6169+rHrp60ViV+NVnxLQ6ggRSMBOBzBy+KS8dCrLb6ulTVtVZSXm+CXW5+M2OKsVGYGEN29l70Zr+1wIaSkDRQdyxJnoUQpVvCM9P/zf5OSjlVv2k1sBZYz+a1jdAoV4qVNs3BAunNpgxR8TaCg6fBThGN3bgkoV2O3r2cnVx//8cASSjUuyYWc7WuQSmJb4psY8+2/0xv+/UVK5m+M0QWz9OZqVT70ea5ZcRsrw5LyR+uueYejh9/aNHzpXcJWgLX43b+F86PPkTOHMZxu9nc9fPE429ckoj615yjaAkSqSJN0RABLYLlJHn+1S9x1wfr39dQSlyHJo8wPvU1Xnh5jC99OcKb3/KRFa/7cvTu1Y+dI62TwyHS43EMBSx3M7aWrkr0a67GVrXiWxxAQ+IU/C8JOWO+S8fFSkOsU/W1FlJedp2//3ns6FfBc+pCpkvHlF29KGdPo7wygBfQIRhEhMOXdKV2w0hIGqg7KlWej+C7Xwjm/hoKfNu6QWBH3WfXwIqxlmEt1ZwLNmIwzEqb5sqhvW8vd7/3k1WvZTl693L+wYXCK7P/X/q4UjJayxosJPGmNcGPjv0Rd931p7y5wpjZ7IXpZL9AybMqYNe0QfGxOieESvKHw4dvqSiL0DBpi99Ge+sbZ5+TUlbUd/vX5QE6lm0zmfAlPEIUUdW1cO+sjhniOjb5I05f+DSqGiWotxM20qvaaFXSuy+sdAe1NKbdVEEb75PWqdEoudEd6FoOxcgyMXgzxUL16PO1cy3Yx6JI+y9tglxg4wS6LEMnW65KDJSvHNdAysvFXItkEvI55I49dUnrKx1TujYoit94aznIoEQi16ShqoEG6o0lybOUcgeAEOJzwKFpiQVCiHcCP70+02tgpVirsJb/fejPeeyRP8b0BIYRxckOL/qS3ojBMKtpylrNZqBWvXu5qrBPRud/ddRaLS+H+Y2DJpZ1blHjYK2JfnPwCe/112c4dcolk7EwzRkC7SKEh+OM8xu/0Q2YQIiWlqvKVOtrbyqrtHlbSv5QTRaxEqeKaHQTyeQQfs/0jEW+g5TqijZlK8EMyR0a75+NPXc9aIrEmcqmVrzRWmo9PE/Ml2gU0sQ7U4yPTOFmgY4OiEQWrJ1PWlMjTxEMJDHtMMPnbiGX7wJpV3VvWdtq7IJI+2c/BJs75x+yxoEuy5FC1KqTXapKLE0T4XkIx0FOjMPwWZy3UBspX7DOYnIcqevgSYSi1MdqrWRMMTmODAaQkTDYNlxxNRRy/to1qrcNbHDU0jB4o5TyIzM/SCm/JYT4ozrOqYE1wFo0rx0dOcrXH/lTDDSMQBjHcxgxk3QHW+Z9SW+URrlS1NqUVU5ush6bgXJVYSnVRcettFoOCxsHT+I3Dl45r3FwefKWOcK7b98bGR7+JopiAhLTVFHVIkK42HYURUlOv6ZAJnOmTFW0tqay1aYlLkW8V+JUceDAvfT3fxRFSU5LVCSK4uB5IfL5Me67b9eaa9cXYobkFu0RdK0L8CPPC6a7qo3WUuvheGIuiCWXg3NDTJhhOrZrjBy3kefOIbb2okX0BWu3j/NnwZEBP8BlGjW5t9TTtaAml46VY7kNgLXqZMtV4zl7CjVfwGtuQgYC4LqIZBLvR19F3PSz1Un5gnUWxaIfOmIYc8esdQNfabR2sYg0DHDduTEv4YbBBl5bqIU8Twghfg/4Ar6M4xeBybrOqoFVYy3CWvpP9BP0iggjBgg0xa9KJe0CWsmX9HoGw1STkJSiWvVxqQpz2kwvIslrvRkoVxmHKCApFpOrsjArxUx1OZ3OASls+wyWFSBgdHDkyX/myk17yeQT5C0NOW3FtzRhnyO8e/fGAcEPfvA9PC+LaQpc10BROhAiNb0R0AEb100SCm1fUBWtrals+ZXxOVQn3nNOFZ4ncDzB6MkzXDhZvgmvdDMy4zAiZSdgoaoGoVB7XbTrpZghuZFgL6aVxDBa0DXBZKawqo3WUs4doyfP4EjNv5U+Pg6ahp12SY4I5GQKLR7EGThF5w17Fq3XSn2oy1Zj0wk4ZcK/fmh1TX7LDHRZbkPdIpLrSmQyDf0PQGJL2XnXpJMtU41XCgVfV6lNf41rGlJKxPCFmkj5onVWVYRl4XX1zkkn1riBb96YhgFWESHFXLT21Cjksthf/kQj3rqBDY1ayPMHgD8AHsInz4enn2tgA2MtwloGU4NgtIBbAC0EgKZoWMUM0fjOmsZay0bC1VYhF2KpCvNgapCUmarrZmCpyni551ZLuJLJEwiRRAiJqtoYhkUoYJMvWvR2HiRrfob2WIyhiSlyhZMVPKHnE969e/eyd28fft7R57nvvl1EIj2k088g5Qxh0hCiWKYquoQTAvPXeDWNn9WI94yd3EwTnuNp00RxaaeJhRuygwfvmHcHoR7a9VLMkNyO8fcwPPFZCkWYzKiY1tSqN1qL7PWOHuXC6RGE4oJUIZuDaASheBRHMn7FUNXAsuBrh/yPRgkxLFfNjkXH2dr3NPAyS+ncFxE/NQjH0mgmq2/yq8mlw8eiKvLEMHztr7BjzdC9pTyxKyW52SycOweaBoayunmXq8Z7gKosPlb6QbzVSPnCdZZdPchMsmpaX7UNRaXfl44pgyGfrLe1QSSGnBhGGRnB6+lZcWhKAw2sFyqSZyGECvyulPK/rtN8GlgjrEVYy9bmrZzZ2Ycy8BSeA6gBXKdAUJGzt6YrjQVrm7i3mipkOSwlN2kJtJAwE7M/1yslspJed21hIoSLrrt4HgSMEB4OnjfmdwN3fZTzo/+AYZwlV6CCJ3RlwjsjRfGbCG18XbCDlIEyVdEyTggkgHvm3V1wnHEyGYtYbK4/udYKa63E+8dPf5Xxqa+RM4cI6N30dtxNZ9tNFbW5M3NMp/8DzwvjupsIh30t7VLa9WTyBAcP3rFqKYdPcn+Fw4eb/HXKnVuzjdYsjh6F++9nU/t1jF17LU7W8vW10QChuIr0AphS4IxlEPEmxq64BR58mt0lpHBhNTsQSXHFtV+luV2hms59HvE7eBDM2No1+VV16fAxr7ktk0SZnEQKiTALyKWInaIhTp8AT4LnITUdNAFoq5p3uWq8DBngeEjHAVX1ZRu2jbd5W83nXUiwFxLfhdXq2Q2F6yKyGRgegoEXsW99F/r1P1eTbKV0TOfcc3ObpFwWr6cH0dbtD9aIt25gA6MieZZSukKI69drMg2sLao1r1WrCt+9527uT5wC3oA8dRysJJYS4G1vX/wlXW6stU7cK0eGbBRGx1/gQw9/qOw1VLrGpeQmr+t53az2uZaNx3KkJBcDUkqCQQchpu3khMf0fVOGxvt5Xd+fMzTeT1vTDUjhznvt/I3J0oQXYPPm6zl27AEUxSYYEAQMHU2Nosge0nlz3oarrBMC93D48MC8uwvZrA2cJ52GpqZty5Ky1Oo2MjzxWRwnhK51YbtpTl34NJJ76W2f/6dvxnUilfoBJ848gGOpeF4YIYrY9inyeQiHO8tq1zOZswiRpFhMrpmUYzVe0YBPkKcrsAObb+HCnuvRoprvHf3s0/z/7L15lJxnfe/5ed61tq6uVq9Sa5ctS5aRN7zhoOuFHWKDINxxEkiuYUJuwhDOYMhkWKaTHM49F8wdh5hl5hIgyQkQcOQlJowDFkYGLzFgW1iWLVlbSy31XtW117s988dbVV3VXdVV1V0tyXJ/z9FR99vv8jxP9fJ9fvX9fb9bu7rYGk3AkVcY6d6Atq4bZ3iSnBUEISDlN6shNZyCZCTSz9Y5j6iuZg/hb6haDE9pKop7GVDZ3DY9gdTUsrShnvWbSM8gLNtvvHMcFGnjSQNhr15w3I2qubVkGN6u2+E3P0Nks371X1XwYp2I69676Ck3qlbLFx8F1/U3EpoKgYAvvfjFD3H6LmrZKaXyefb3//yCCk1ZwYWNZmQbzwohHgJ+AGRKB6WUe5ZtVCtYdjTjKFGuKHftYXjj6pZlF+1uJJxLhjJWmtOJYwgtxJYac2g0x4XkJs26ZlRKSRRFI5F4hgcfvIOHH/7cWU3bq4d/fOhLeDKDlP67uYoCeBYoERQRpWCPAuB643heDxU/4uUqbeXmoK+vk3e+cxM7dqQoEV7Yyb5993Hw4P0I0Y+mZAgFHCQ2kWAfg31bGey+Bem8Yc7o5jghAHv3fqzq3YWOjo2kUuB5CTKZMy1VWJtxXNm7917CepCgGcNxPUwzRjBgoqo/IhLYxqEDySpph5Aax08/gKl30tXRyfCYTTb/EgCWNYKqGtTSrks5hqIMLIuUY1EoVpbp6uLQ4HWMb9qMmBrFYYAp6+e8HHmAb03+BvO4wi2Ra7hZ2QFTHvxmP4+/5Y9wziQQug6RDjB0ZNZC6+to8NBFhqcsc5NfXVRKJSwLdB1c12/Og9rWb7EeZEcnYmoCYVlIIUAz0aYCdcfdbJNhzcCREmE9WymCM5OIdAqpqWWttTRMRC6PVxrHXAJsW4iTx7BnGuiYV+KtV/AqQjPkeRV+g+AtFcckfrlgBa9SNOsosZSo8XY3Es4lQxPJkxh4RC59A4pQ5s2h0Rznyk1Cp1PEDv+Sb/7sB8VnNI6bLklJPM/Cto8BKq5r4Lon2tYktliU3FICXpCAmwbAtUAakmDAxtS6MbQBkDbh4GpOjY+gGbN/uCwriaLoVZXgeDzJN7/5K7Zvfw+nTj1GOv1PRCKDZLPjZdLbGeggFNQIB/MoSpgtaz5OwHQR4giHDkQWtCmb++5COJxm/XoP2/b4yEd+j1a8oJtxXEmnRxDhdUTDAl3X6IpqeJ5OrjDKqr5DmMqzTJ5OkRh9A463CoSO7R5F0wrknCP0rjI5M7GagjWNomQxzVhN7Xou10UkUv19vxR3jCVjzx6fjHZ1MdK1CWFJsGHi5E84av0zpgjR23cRE8cP8GD2JzAJu9Q1cMUVOLEBtIBGpEcjGPb5TnrMwZnMwJ0LNfQ1p3Ofhxab/NqFSqmE0HW/worA6y82t9WxfhNKGCIxZDqNHB4GzwXPw9HiyE0ZiDrw9T9BDBfQjHXI18lF+1qf9VCOzh5fqhEobgYsCyWbA89DHD6AHBj016XkHZ1KoIwM+64aDXTMF0K89bmORF/B2UMz8dz/5WwMZAVnF2fDXq4dTYuVmEuG8lLQ/bo307N9R/mcyjk0M8cSid637z72/LRoQ4YOyGLc9J9yInGCI9FUTelHiezNzOzHDwnRAQ8hbAwjeu4qi1S6pXQxnYZVkTSaBnnLw/Vc9Ihg45p3I4VO/+B/5vDJT2NIu6pKq6qBeTpzy0pw4MBXCAS2lSUIrnsYuAiAYEAlFFAQIkQmN4ZAUChoREIWJxt4/Fa+uxAOp1m37iSplIdprgLiHDr0UR54IMv4+ExTEplG0oZIZJB8YZrRuMLmNZ0oiiBvx4lGBaoxQ64QRks4bBh8nhOndnJq5BCaNoOUIGQQRXGJRXPMJPsIhAYZGnqs6tklDA3dhGNl6I4OEAyo5PIuU8nRs+YPPQ8VUgitU8dJWigdJgXnSQbVPvBC2HmbpKOBCnvjT7BLvRU+9CHMyR4GwwmyaUk+IwmEYNVlBiP/OtqgoW+O7GfiCIy8AP+yCdSh+g4aLTT5tRNVzW1mAFGw8Hp6IBRF5jINrd+IRGB1HyRSOM4IrBYQjEJ8BnQV1gmciSkYScGaORuIsyxXaJb0iUtvhUMvgFUAoSBS/jtVXigAikCkZ/CjTvw5iPHTAMj+1U15R0vNQJw8BkIgVw/CjXe8ashnqzaFK3h1oyF5FkKsBf4WuBG/4vxz4M+klKeWeWwrWEacDXu5djQtzkUlGRp6bIh4Ll719co5tDLHUvRyddy0wPESfO/hz3Hs8g30hnopOIUq6UeJ7AlRQMqSP6qfvNdKZbFduulKjfezZ55lmxrEdAu4RjeTmQCmSKKrNp4b4A3v/D8rnrGV7n59XpX2oYf+ApAkEs8V52jiNyDKOQ4TBq57BMs6gyINulmFQicdwXVMJ3/DaPzHpHOjeE436r7frzu3yncX1q+fJpXyyGYd3vSmazhw4DSPPfY8HR0BMplL2qIbrnxeOhNmbGqSWNcEa9e8GccJguLhWZ1Yxgy9Pa/w8pEfEQqsJZU9icDBdTVc1yMUTHDTLf+t7nMu3/ERho/dg+elyeXCIDL0xhTWb/rIosa9ZFRIIZwZG71Lp3et5JUXJzFEH4ahYBomItqNMT1GOpSHj/tkuPDQIU5muggH8gRjDrkZh6lTLnZ/H8RfmdcYV1P2s/oEPH4MDu0AcVFjJ4omm/zajbrNbc1YvxVyCDx454d9YprLIMYmfIs2TUNKB/pccAyYHIOOCtnLWZQrtEL6tHVXYb/hnYhf/NAnzqpABgIIIfD61oCmg2v7G4iZSfAk3uB6RGS276DWxqAqtvuiS2erzq8itC8ZcwWvBjQj2/gW8B3gd4qf/37x2JuXa1ArWH60uypcD0uRfTRCozm0MsfK6OUSXClwpUVYQm+ol7yT54XxF7is77Ky9KNEvqRUECKHpjmoqiSfD5JKnahyiaiHdgWBTCWOMm4XCG69ivU7r+HA+AFeigp2xnMIQGpBMg7ojsMf/uf/WYyxXpi0P/zw53CcVwAdKUHXkwQCknwestnxCoeJToLBM+RyedJZlUg4g+tN0hnaytEzf0/AjOI5q0hl4wvOrfLdBds+immu4k1vuoYdO3bw7W9/G0UJEIsJxsaUJeuGS3N33Sy53DTxVJ5o+BJev/MyYh3FdzM8FU8pEOnKYCc0PDlJyBhEV0NkrdMk0wkkAUJmx4JjiJlX4/Z9hFNj91NwRjH1AQb7PkDMPEf92BVSiEH3GN5lF+F5ElPrw5UZhOggnnSIrt/AeKdCxIyVyatGHtsLMZMLM5MDXn4ZaRhonYavyoByY9zc7+2S7Of2wtXsUm/yibbCuY/JbgKtWr9VEmz7yX/2iWk+DyXNNCpIG5HvAnPcd/A4B3KFZkjf3Mq0vPGdeE/80D/fNJGrehEdMd/iLpVDf+snAbAf+aJPxitRY2NwQRDPtiZjruB8RzPkuVdK+a2Kz78thPj4cg1oBWcHy1EVbhearcI2mkMtTXPf8DH+4RfvnXffWtHLrlfA9cBSggghCOq+1/Wp5ClMzf8DWLr+/vs/TjA4guMI8nkTITyEGGHt2sakrl1BICkJBh7KoaeYNiJcue5KflZIclgPcnHCneeW0hpptzEMG/AdOxQFLKvSYWKGXM5AygC2k2U6brBx7Vbi2WcI6hvIZk2EgKylN5SzlN5dOHDgd3j22SfYu3cvzzzzDBMTE0QiOseP55mZebpY3R9YlAVc5dw7O7diWUlS2Tw7Nt9GZ1gQCI5j6ha6oqBEnyMUM5iUl6OIHhQliy5WIQodhAwPKdP4TYL+fX/66NcJ6DN0hgfp6rydK697Lxp5urtupGfVb5XHIKVsnLa3XKiQQmwdfponJ7YSiOlsXvtmfnPkH0jM5PEKGrphYY2d4O03f6B86bzwE9NEqBJnxp69f7Exru739sjj7Nr6R9VjOhsOGsuMKoK9fz/83R4YvheuDfh780AAHMf3fsYFB7Qf/AxnUxhuCkHYhL41NVMGlw1F0ifTCb/RsVAAw0AG/N93tSrT4vAzyDVrQdURwXDdUJWmdcyLJJ7nlcZ4peHxNYVmEwZ/H/hu8fM7WEkYbBrNhoS0M0ykWSxnVXixaLUK22gOlZrmB/d9Ct2IYtS4b63oZVV1ydg64wPdlAQZAS3ARHaCmzfdXH5GKcUvldJw3USFvCHGqVO/ajjndgWBFFKjmHoIz8mTfvkZNm7/Q3Zt2MXT2tOoV1017/uqGdLueTaathnPO4wQ4LoquZzAMEpphL7DhKpaqOpFhEL95bGNjCsIRuntvIS85ZLM5ZDCaWpu+/bdx09+8iQDA3FyOYeZmQSu65HNQqEAqipwXQ/XPYyqShKJFOCRSJxmz54/Kb8uzaxbae6FQoLnXvkumzd/lP6+Y7gygxI+QSh2BJikZ43Nzmscnn1mlGw2glXoBJFBUbKs3/RH7Nt3Hz/64WdY2zdIrqAzkXyaieRjjE9/m8HeD7Iqdj2tpu0tKyqkEPmHDlEo2CBuocuA09M/wNPi2NYqbveuZ9ePn4fL98POnfPDT/pWoaXj9B05ABGvqqEv/Q//VPt7O3TSP6+hg8Z+qu0Mm28YPaeocDNh7VrEeBysMWQ0BtksSBchXXjsCM5aE/mGzeAWYCqP2Lxr8QSwwn5wbuNmXaLZ2QNToyhTk0hV9Zv7rALCsmavqVUVdmxEPlNNjBOTSMeuSgjkxjsaxo8vhniebxrjC6HhcQXNo0Y80TzcCbwfGC3+e1/x2AoaoGSVFs/Fq6zS9o/uX9R55yP2j+5n6LEh7nzwToYeG1rymCtJjRD+W/OlSuVy3nfXrvexe/dX0bSL8EtEkpTdTWrzNWRWR8jZOaSUzORn0FWd3dt2V83/yNivmXI89NBFGIYv1fC8URKJp9m3774FxxaJDBbjuWfRShCIYfgNeKYWwPEcUE0UOwX4ZP/d297NN2//JkM3DVVtNCqvLWEusY1EBlHVAK5rUCh04DgRPM8gnw8ipVl2mFDVi1FVs+peeWua6RkYnjjBTD7VRPz3LPx3HlSGh11sW6Jpfmqa5/nBdkKAYViYpoeuy+JVPjFVlAQPP/y5ptetcu6pzAled+NzhNYcpWPw14RiR/FrDDowzOVXXc7lV22lf8DBDI4DEdZv+jjv+Z072Lv3XlZF+8lbBbKFw0gJngyQzLzC8TNfZyb5FEgbKSVIG01xGNwysOA4zxYGtwygKQ5Im157E1f0fYrr1t/NO933s2vjdT4J3OMbLG3dEaVv8yak0NFEARmK0rem3/eEPnXKP7eoXa77vb1qk0+w43H/RS19vHt3xZn78RsM41SHqpyb34vOyV9jP/JF7O//OfYjX/TJWz1UuJmgKGheNyQ6IG9BTww0A54YhlAQbt4ChgqqCZoC+3+48L3roUTY4/Hqxs39+2eJZi5TTTRP/hpx6a2IyUm/za8UtiIFclX3LNk2g9XPMoPgOT4xDoYhNQ2u7d9D06ueAaC/9ZPo7//v6G/9ZN1GRJHPIHMZpOeVGzLFpbfWna588VFkkdQLRfHDbAJhf8znANq6q6rXIxh+VTU8rqA1NOO2MQysbJ0WgWbt4Jo973xDM17RrWIpVdil3neuM0Npfjtch5H0CBOZCXRF57Nv/Ow8H2nFWIXrZDgdP0yvmQe0clhGI/1yM37E9VDpTtEb6uFk8iRCWkitg3guvqCOvZkQkUpNty9pcRHCxTA2oygGphljaOix8jsGc+dw2WUf4uDB+1ueWzo9guclyOc18nkdTUtjmi5C+JIRKf2GTk2TxTTiUkVXwfPAso41vW7z5z4MbAEuLn7lMfw6gwUoXHnNdq68ZgDfcm2oasz9ay5lMvUsCA1F6EjAlXkMLcpzr3yXXVe/EY08DgH6Nq9b0HlkOVEKfCmNZXDLAH2bi2mAQYGTlfQdeYWtSvHnY46kYl6UN8A75v/M1/3evv0LENvawEFjD/4atxiqsgxoucpZI9hFc7rgP07BN7/qH/iPO7GvDeD/TBX/FGsG0sotTutbSdihSkcubwhXVY+lY8P0JDz4ZeTFO8DUEQiwbTAMvL7VEI76xLkyNdEwkKt6fYLc2ePrvPGJrDh8ABSBjNj+c1q03KunF6+L81BjfNatA1bMp6sAACAASURBVFdwzrDitrGMaNYO7mzYxi0HmiX9rUhSmiF0i8Fi7lupmQ7oAW7eeHPV2Cvn7267huwLP8FUM1guGKpWjMTejKoa8zS+leTFZSe/df3nef7A/1PXj7geKslJyIgyEIiRzI2TCoYQjzxIJx57nh8mUaEDLmnKE4mXECKBZQ0QiayvSWxL1zz88Odw3cO4roGub0JRDPDybF//Bzz+0P4F57Bv3w0Lei1Xjql0jqLoCJEvyl9AUbxy0IvrCiwrCkhMM4nnVUdhF+MTm163+aT+BUp+xFNnghje1UhnFS4ZPCNI9+octcI9IpFBEqkTSKaQuLhSB0x0NYJlB0hlDnHzbVvLr/3YkeOMHPGJ69kk0ZWBLw4mApvxo8fo27yJm2/bCkPfaVsoSUOv7QWbAxcZqrIMaLmhrZlgl/XrwT3pV5xLcF0wFkkAF0pivLR3Vtd8+hRqKgOqitQ1v8pbsJHd3Ygev8AgwG9gVDVEqiI10bZRTp3wkwyvvq1qUyE8DylUlNOn8NaA6Ii1RGZbJp4rGuMVnEOsuG0sI5q1SjsbtnHLgWZIf6vV6aVUYeeikpApio5lTbV834U01aX5Tx48QPrlZ9CkRSTkUrAFoKPrG4rNdF5VhbsWeekNXMrv/s5DLZOoueQkFhnksm3v4uDB+zGCvjSlUt8NVDXKpVIn8LxRZmYKxGKX1CS2pYp85XqGg4NccdEddEavxZEaAhsln0XI+b9SGnkt19K5W9YUiuIBFlKaZeIMpf89hLCwbYrk2cb/deagKE5RftP8ulWTuq3A3cxMOqj59RhhB2EcJxHfSj7eB4zSvfo0c8M91q69mlcOf4VwREMXBgiJ52WIBNczPj1OJDJYl7jCpvYR6AV0rwAjR0b910noxUYvHcfzj2/dEW17KMniY8QXGaqyHGi1ytnMGu7eDXvvAWn5Mg7X9Su/3bHFEcCFCHtnuKxrJpv35RlSIizbl1v09CCmJpHhaJVeV2oGsjI1sVAoBp7EfBeRR75Y3lTIYjOk1FTE9AR0xJaVzK5ojFdwLrHitrGM2L1tN5/e+2nGT41TcAqYmklfuI/PX/n5eeedDdu4dqMZ0t+oOl2rKn377V+oW6lqtoo9l5D5ukuJ61otxzwvNP/jzz+NcugpEAaO3k06VyBguMhi4mAicRpF6ayyrGtIXlrEXHIyNHRT3UZAoOpr0egmCoWusvyi2ef89KFDCGmX5zA++R8cPX03QiRw3Xixce9Py9cthHqNi/m8BkyhKHls28TzLABc10CIAiCIRt/JxMQzQLrYqKnieV28611/1fK6zWIncBtK4QmEkaBg6+iaQbjjFLYTIBsP0r06jh9NPotTp36FlOswlSy2F0dRDAwtQsGexHVDvOWWP2/7az8PcxrVavkn+1INk8p6vUSbdf44R6Ek83EZ8Nf4G6NeYBD/T1Ybfy822GiU0WqVs5k13LkTkfpt2P9DX6phBKE75ntDL6D1rYsFCLvocuD+v0EKiah4Z0YGTcTUBHLdFqRd4c9clE3w5D+DGZ1NTYSiHd20f4OKTYXs7kU5fQqpKFAo1A6SaTOkbiBOHQcp8To7IdwBj34LJ/1lsB3QVOTqtYjr3vua1R6fV44kFxBW3DaWCftH9/PVX36V50afw5MeESOCqZml7KUqnM+2cQuhGdK/UHV6oar00K7H5j2vlSp2PUJWiyQuNqBk97bdfP4HX8NAQy0262UdnViHi+vmsKwOhMgjRLrKsq4heVkiGum7S1/LZsexrNNAgVzOX4dmNxNz53D89P/0/Yu1cFFq4aAocR5++HMN71lvvLad4bbb/qbq3QMAIeyq16ldATPVeIFkfBuWJxCAbqSJRM4Q7TzO9MRO4C7m6m7T6RHWdG/F0DWy+XEK9gi2l0NVPa645C/Ztet9PP7Q/mV97RfSvZZdF+ZazVHD+eMchZLMYj/wED6BPgVMAAngs7RN7zxno+EoU8i998Dznb5dXM8GmDwxq/tNz7RW5WxiDbUb34OzfkO11nex5GYBwq4BdjSKKOQhm0cKAeEgUtf9anIhBwPryv7MJdjFcJe6m4aKTYWIxHy5xtgZ/2vB8IK65aWQuqpQlS3bIT6OeuYMnm2jzCQR+QIAXjjoy0zSf4dz62sv6e98cyS5kNAMeb4TuBf4v/HFhE+w4raxIEok7+XJl1ndsRqBIO/kuWr1VRiqUbMR8Hy0jWuEZkh/rer0kekjjKRG+OADH8RUTa5afRWKUBo2SrbSWNls42E9a7yFIrkr59+nm6QkxXcWAnQYGvm8ga7bCGEjZYC5lnVNkZcW8I1vfIIXXvg7FCWD54URIoxlJevqu/04bQvbPoofKS4AwZ49f8rDD38Oz5slp0BNYjp3Dnn7FVQliO0qxfvpeJ5s2LgHC+vRm5F8lPTbkCeRSPPww5+bN4/WSfYwlrcaPA0UF9uKEJ++CFPPcXT4BjZcsbXmPAw9j+OGMPQeDL0H202iq1HW9PhhKO1+7ecPewHdaxHzrOZw0BSHvs3r2jOGtqCyWbDUuBnH16O3Ke6+YqPhRPMQzIGrQKYAk2dQXngWb/Vq6OqDQs4vfLg2pHLNNbQtgGWrBi5E2Fev990suvtmK8SOg1RVX6Kx7lJfhlExpkbSiHlfV3VY1Q033oG+wHyWSurmadDTKaShocQTvnuL5jdrK7aDFwoisln/mtcYYbwgwmfOU6y4bSwDSiTPci2iZhQh/DrTwcmD7Nqw67xvBGwFjUj/3Or0kekjPHnqSa4fvJ5EPoGUkidOPsEb1r2B/kj/go2SrTRWNtsgWKtCnbNzPPzIFxh41//SsMLdHdtMpOI5MzNjSKliWUFisSsA5mme20levvGNT3Dw4N8ghIbnBREij6YlyWZTwOaa+u4HH/wUrjuGT5wpBrr0AONYVprOzqspFBJFv2RBMLh6nuf24Ja3VM1BVQWKohCfyVWMTrD05r36KG18pHQRIlGcSxrXnUBKBU3bXB7zoUNP+jrwplMc19PZP0z6zFZcD1BcdMXBKsRq2svt23cf2ew4U3IETY2givWoqoHrptm05g/K5HjZiWs93athwNAQDA+zdf16uHY3I1I/L5w/aqPFZsFm5RdVj5jdaMhQElARmuobiSsO0tAQ6RR0D8ySjmB4XnW2VZyramCZ6AbCeKsHERNnEAULb8NG2Hi5H3wyZ0zceMeCPs2LcsmgDaRujgZdFApI3YB0DiHwNd2+Mb3/sWU13bh4QckczkNHkgsFzbht/D2+u0ai+HkX8CUp5Ur1uQ5KJK8z0EnOzhHUgwS0ADP5mSU3AjbS/J6LsJWFMLc6PZIa4frB69nas5XT6dPk7BwBLcDByYP0R/oXXJ9WGiubJWS1KtQJO0fAKzRV4Z77HCkVFMVG1zeWz5lL2n2SsqnKKmyx5OWFF/4OIbRihRukDOA4IISDacbqOlzs2fMBhJBIGcAwNlAonAa0IpH2fbBzucMANbXTQ0Pvq5qDpmxmOvk8li3wSbmLotgNG/egCUeGOihtfHK548Vn6mia7yls2yaWNVrewBw48GU0zUVKyGQErttPINA3zwWlVJ32vKNcemmBS7bcRMy8BUMRKEYKx7yWrRdHq86Nx58lHMoQDoYIGB3oGuStl1G8S7ho3Z8y0H01fZt9wt3O174maulejxzxiYRplnXQW793N1srdNDnHUZNOP4IjFn+PLZvh36Dms2CTei8a6Jyo1HU70ungBA2Yirp62VtZ/b8NpGOSuIoUwm/uS6XQ/7o6zhv/+NlI2pVRNfKIbdcCpfeil5s/JN1yKz+1k82jCVvuYq5VFI3R4MuTRMKedA1pOchSh3GRd9qVKWpxsULTuaw4kiybGhGtrGzRJwBpJRxIcSVyzim8xbNEtMSydvWs40nTz0J+FG8hmosqRGwkeZ3OXyX642jFYJeWZ2+88E7y9Xj0vqYqkkil2joS9xKY2WzhGxuhTqXGyfgnkbV4fgD3yZyyTX0bN9Rt8I99zmGsaHoFGEgpVeXtNf0yV0EfKlGdYCBlAaKkqvbAFhKRKyct2UdQ0oFKY2KMz2EqK4cV0pfKucgY58oVqoz+A1eCp4Xa6pxrzSmVnXKpY1PPl9AypIeGvxqt1psKoR8fpxIxKFQAMcRKIqHrp8hnwfbzgA+Ea604zOMdRw+HGRs7N953et+w/BwlqNHPRTlR2U5S6nqHQqlCQQMJDZ5u4AnNfpWbUPIAbpX/RZ9m6ut6Nr12tdELd3runV+5XkBHfR5hf374Xsn4d1J6OuARBaeewyuvQi6Pj///CZ03jVRudEY0MHOolgFpGmApiBsF+F5uKmEb7u2BNJRWc0UY6PIgUGkY/vyCU0F00TJ5pDLTNTqEt2zXaFcIqmbJxeJdKCk0nhdMZSZJJQ1zwbCsnxrvSaaMC80mcOKI8nyoRnyrAghuqSUcQAhxKomr7ug0AoxLZG8rkAX1w9ez3OjzzGdn+bNm9/Mf339f100kW2k+T0bYStLJeiV1eOByAA3rL2BZ888ixCCrmDXgo2SrTZWNkPIKivHrlvAcY5gaJJ4IYKq5si+8BMmAXXjmroV8bnPmautXaqrx0LwNc75cuUZQAgLzwvXPH9WI/wyQsQpFPrp6NhQrphr2oaKs5WyPVwJ9byxa21W2tO4Vx+RyCCOlWFVrBdN9XBchWwug+P6YS4lj2hNG8V1QUpBKUQFXDRtFCG28alPXYrrHkYIF8/zf7V53mGSSY9cDsbGEmQyYYRQEeJJ7r//KWAVgUAfudxxAoaORAPpAQVsR2dsagRNsfnQR+dro5cdc3Wvd94Jvb3V58zRQZ9X2LMHMlvgl2th+0swMAOjUfjuIPxJjZ/1JnTeNVGx0RDDJ6HHQmoa6Aa4Htg5PN1ATI0jNX3RpGNeNXNyAmVkGE9VfVs3TUM6DjIU9GUT54KoneUK5VJJ3Ty5SPcA3iXXweQJPHXYl9vYDigKXituGxeYzGGxspoVNEYzJPhLwBNCiPvwSzrvB2ps/y9stEJM55K8t1/89rbIJxppfpcjbGVulXksPbYkgj63emyqJpf0XMLlfZfzr4f/lX/6zT8x2DHIR6/5KO/bMZ94tbuxspL0JRJPAzoog9hqFqloqB7EX3wCdeDWpt8xWLyvbevwE/z+Bs/LI6WBEBaK4rB9+/yxVjZHdnZeTDo9XPZ49ivmk6jqbMUcwoCgUEg0pUU+m/MGuHzHRxg+dg8Fu5u8fRJFKISDHaSzGVzFRtPWUSgk0HVJoSAIBCTg4nnFniJNks1O4lfLDUwzi6raOI5HIODhebPv/EajGbJZFdcNIYSFaZ7BdaMIUUBRTDzp4KcQOgihI2WGjWs2Ft01zl4QypFClsdzScYci37N4I3BKFuaCew4n1Aiw+MKjBf15Z7nR3/XgHNZH9IYBVX6FoDZKNqJXHPzK240NMD++48h8jmEZSGDQbxV3Yhsxm82a+AcsRDmVjNl/2rEyRMo6SyyqxPpOAjXxetffc6I2tmuULaD1C1Lmt8FKHNYST1cHjTTMPgPQohfArfgdwDtllK+uOwjO8/QKjFthuS1Kn9opPltRhPcyjNrVZl/fPTH3Lqp+u2vVgj6zoGd3Lb1Nu595l5GUiMMdgxy9cDVfOWXXyFqRFkdXk0il+BTP/GrwbUI9GJRb+4l0nfXXRcTDq/2Nb9WmonsJHnXISTzvGPrbex5aQ/3PH1P01rydlqo1Rv7hz/8Jb7xDarcNrZv/xAf/vCX5t3DlyWMkc+fIZczMYw1GMa2qojtuRVzaF2L3C7c/4PvcvzId1CUSTyvh41bfpf3/M4d5a/HzKtx+z7CqbH7sZ0cHlkMtYOujk6mkgk8zyYUijEzoxMM2oAf7a2qFCO8IRhcQz7/MlLquK6KongEg2654q4o/v+eB4bhksspxdCWApZ1EjDxPBWh2EjPAaGiiALhUJCBVW/CkcsUhFIDRwpZvp+aIKJo9Ko6Kc/l+6kJ3v++97DlC8XvhzaEniw7WiD7zslfQ08O4kUHE9UFYxwnINF2tzi/gXV+ql6ROJVS9uRSmwTnNrdFYniDEuXoEUS+gAwF8fpXIyIx//nngKg1IrPL0UTXiNSdi8a9FZnDCpqFkHPflz2P8frXv17+8pe/PCfPHnpsaB4xLX0+dNNQy/erJKaV+t2F5A+Nrlnq15uZ848O/wiAt1/89nnrcItyWUOyWGsM33vhe8QCMVZ3zDbuJXIJYsEYj/3hYy2v7WLWDvxwkbkOHYVCAhuN8WsvLV87vP8Zcod+TZ9u0h3bzJarfnuerV3i0KFylbeyanv77V9omXyWxq4MTyCPHgQrgSMl3aFuDEVtipj7Vec7cF2DUkOfHx++Ec9zufvuw4tZ1rajROCzmaN0RS1UZTW6Mggig6JkWb/p42UC/fhD+31yWnSzGZ/8Bacn9iDEJPGsWV6Tj30sRmfnTFG64euiVRWyWYhE3sjMzH58nbbENHOYJjjO7LlC+ORZVSGd7iye66GqDlKuQdOm6AwbOOTAM4iEIuzc/AEM4/eQohi9LG2k0P3462XCtxOjpDyXDkUtHyt9/ofD4627UZwrVDYAVpL9Gg2A9iNfhFwG4UqYnIR8Hmlq0DuA/t6/bOmxJXmFDISridONdyyJtJXHWFHNlLkMuDbCttr+vGbRLDldrnVpOLZH/w6RzfoSGlVBhkKIWz+07GtzQbltrGDJEEL8Skr5+rnHX3Pa5cWi3SmAe17ag+M6PD/2PDP5GToDnayJrFlQ/tBI89vo661qomtV268YuIJHjz1KPBevWofX2+t58Gfz/ZKh2gqs1hgKboGcnat6TtSMMpKa78m82EpuM3Ov59BRuOjq8rWTBw+gHHoKA42UlUHEnybx031MFTqJXnYrccPXgPf9x4t1U/4ajXnuPCf7e1GsNMqhp/CEAUKl24yDl0LRLmnCds1/rk+cwZcX+HpmyzpJLHZNU2vYLtR7Hfftu6+YSpimq9PF8hRw8qAHMPQePA+OH/kOfk5TtWfy+OQvODpyL9FIiFhMJcp+nn32f8U0T6AoBTIZBdP0UBSfCGcyCpomsawkhrEG2z5atBjU0XUbVYV8HhxHIxh0UBS/aR9shHBRlAFUNUQo1EciUSDhOXR1bGBVbBs7L34blvuGWeKMb0sXVJP89KFDZZeNdks5xhyLXlWvOhYWCmOOdR6EnrSAVhIOS1VdRYFIxD9WmYDXApZLH1q3mnnjHcjxV+BXP0HJZPDCYeTVb1rQH7ldaMVV4lw00cmn/wUlMeNHgRt+dLmSmMF7+l+qnnkuKuIrWAGskOem0e4UwOfOPMfRxFGCWpCoGSVn53hh4gWydrbhOJp1tpiLVqUntWQgAS3Amza/ia5gV9U67Pn6x5oii7XGEAvESOaTVceShSSDHbONafXCTKBx/HOzc6/n0PHt+L+xNtAJQPrlZ0AYqNIhoiVwPAXpCjqUNLkDjxISb6Jr4xqmk8dY17Oj6nm1QlrmotY8k/t/5etqhQFakIA9iuOqSClROFO2Y1uImKfTI4SDWzDNMxiaie0qpNIzuF627B7RLA4dSFZZrTVDAkvXzMw8zkvHv4JjqfNex4cf/hyKEsfzdITizw9y5J2jGHoPyDCKOqsHrfRMPj2xh2gkxOBqnZR1CkM1GRiYYWrqMwwM2CQSOrlcZRCJheM4uG4Sw4gCG7GskyiKJJXqQtfjuK6JlAb5fIpwGAoFAWgoSi+gcMM1nyVmXj1vHX760KEiqZ+FrmSJdeTIx4PFhMFZKQfQ8nrWQr9m+JVmMVt5zkiPfs1Y4KrzFM2S/TZrVMvEqeQb/c/3LrlSX4+UA763ct8avBKpPvwMTt9FdSvA7SKKLRHic9BEJ86c8tMPtSJF0TSklIgzs7r3C85WbgWvKjTj8xwGclJKTwixFdgG/EhKaTe49IJDO5vVEoUECgpB3bcZC+pBCk6BRCHR4MrFoxWfZKhfba8l8/iHJhP9ao1he/d2nhp5ikQuQdSMkiwkSVpJPrNrtjGtXtx2M5XcVuZeq+lt72MvlK9V7BSeFsZ04nhSwfEEitBQVRfPNUi//Azrt32QMfQFU/7qodY8FTVEWJkiI9YAoKkutkvR/cG3ZGpEzDvCG+iJSgpWlKw1jCIKrOrsIJnZ1JKM5NCBJONHjyGkNo8E1iN8ldccP/0Apt5JV0cno/F01evopxFqgI70XIQi8e1aU/6NRAbPmyVFlZ7JQkwSi6mkrFMINU1nZwrHUZiacli/XkNKCxDk8wZ+dLiDpl3Eu971V+XNUix2TbkKXp3a2Ekg8Fuoarq8qbp8x0foDVyK49lV6zA51ouQeTYOTJPKaEylooBKT1eaiXjYb2gDQMfx4MzhE6iq19J61sMbg1G+n5oA/IpzbjLNQDpB36TKT3PJ9la6FxNKsgwQl94KP/175OgZyNsQ0BGhQG2NarNjXqxv9AKoVc20H/li0wS27USxFUJ8LprohGh4/EKzlVvBqwtKE+fsAwJCiEHgUeC/AN9ezkG9FhAzY3jSI2fnkFKSs3N40iNWQbbajd3bdhPPx4nn4njSK/sq7962u+b5pWp7V7CLU8lTdAW7uOuGuwBfD33ng3cy9NgQ+0f3E4kMFh0aZlGLLNYaQ2+kl8+88TPEgjHOZM4QC8b4wpu+UNUs6HsoV//hb6aSu9i517vW1TpwnRya6qEqBopQEMLDcTVQTRQ7xUx+hp7L3uhLPgoJstlREolnsKwDZLPj7Nt3X91n1ZpnT8cgIHGdHCCxXYEQEkNVynZsjYj5tg2/R85K4kqVkLkThdU4rk04kGNo6KYFx1SJkSOjOJ7mk0AhQOg4nsbIkdGmrinYo0jC2I4kGvQ3jtWvo//HMZNVEEhQJCCRMo2iZNm45Xer7r11R5Sbb9tKPGtS4EUcr0AolMXzBLmcpKPD5MYbBzDNAB0dTnmz4XldvOtdf8WuXe9jaOgx7r77MENDj5U3Eh/+8Je4554E/+N/2NxzT4JPf/phbrnlo0Qig6TTIxw/8h1Gp35VtQ5SuqzSjwAqx0dXAYKNA9MI6RFPBXFktX2gRKN/VaLl9ayHLWaI93f00qGozEwm2R6fomtCx8uGEdIn5YcOJBvfqBFK5DIeryaX+/cv/d4tQotrcCAJjgRT9f8/kPSPL3bMlb7RijL78Z497R38zKRPWCtRh8DKFx8th5gIRfEDVgJhn0A2gHPy19iPfBH7+3+O/cgXfSLe2eMT4ErUIcTi0lv9+O5cBul5yFwGkc805Ztc89lNQK4eRNi2b+Enpe9IYtvI1RW/41pYvxWsoN1oRrYhpJRZIcSHgL+VUn5BCPHscg/sQsfqjtUciR/hxMwJANZG1/K6/tdxcffFy/bMxUhP5lbb6/k8v/mq3+a5n30FWDjRb6ExfOLGT9QdR7Nx2+2ce61rx9ZvInT0OVShowgQqsCTHkm3A0GBghLAyce56z2fJXHoEPff/2eY5mlMEwoFE8guKDepNU8dD0tbj+4myBdSIDroMpII4aJpvvShcq1raYrX9FwN/AlnJvaQLbyC406iKWvo6tjI8MSJpiUwvrTApLIuJNHQyM87tzSOrlABKXtY07sbUx/AdpM4bpRgQGUmP/s6ZrM6jvOK74Rhq6TSgnBIoiphIML6TX9U5bZRiVtu+ShPP/0HuG6SeNxFCEEgoHH99avZsGEtb33r69m//+fE4x2Lcj6ZK6fRtSyvnPwKnifo67nRf+2CeTTFA6EDOlPpAFMpG6no5B2zrM8uQeD4lXW0ptazGWwxQ2wxQ/x0XxIhO1CEXtyP+JXukSOjS68+LzaUpBWUqsTPPQeJBMRicMUV86vFe/ag5aMwWeHMkY/PH0srY67wjXaieT+6u98GK404+ev2SQJaqeguUjpRr2LNxdf4kpHSfRZwlVisFnwp1XJx7XuRqW9CNutHb2saMhZDXPve2ZMuQFu5Fbx60BR5FkLcAPweUOqOW9FKLwH7R/dzMnkSx3N82YCElJUiWUg2VQldCpYqPanXeHckmOL227/QlK3ZYsbQbNz2QljK3MvX3lSdRodrgLoexcviuVm6dr6NPyrKWvYdOgRMUSiYxQqxg+eNoigDdeUm9eb5vnd/EZjVYytKP0DRjq2/vNb1tOHX7vgs/d3X0t9zI88d/AS220fQiJG3vJYkMJVNeiUIHBwCVedVjsM1BxEizdGRe1nVeSvTM4+iKQrZXGge8a9MKbRsBWsmyu7dXy3PbWjoproNo9PTJl1deUAUXTI8FMUCtrNjh8GOHX/MHXcMzRtnM02oc+U0mXwWV47y0ok/5/TEdazp3c3gJZtJZasb9kpEuH/LxrI+2yfLDpriMJboROA0XM9W0comp2UsNpSkWZSqxI4DR4/61d/paQiH58sn5o5lbAxefBFOn/Y/L5HtVsZctMpzNgQhOAmo4AowtbZqaluyRVskUawrbZg8ATfeUZMQ19VWtzjnpcgqtHVX4dxarLjX0Xiv2Mqt4FyiGRL8ceAvgPullAeEEJuBny7vsC5c7B/dz8f+v48xnhknrIfxpIfruUTNKIPRwbYGgCwHajXe5Z08D7z0AMOrh1l/0018sA2BMAD/+NCXeHTv3+IWplHNVVyycReFxPA58RyuREkXXUm8NvZsn0e89u69F19yYOKX/3SkBNeNk07rde9durbWPGvNtzSOhx76CxxnAkXpnKcNf+nEPzHYexWOB5Y9StAcQNcEU6kciOabGff96ut0RTIooo/eVe+mv/taNMWhb/O6qnMryWYqX2CgqxPbTTAW/x6G2oHtxZmctglFtsx7Hes5cSzUMOqv9XqE0OjrO01XV5xUCn7+c5sNGwwgzuzef3Y+zTahpis0/dnsOFlO0hXtREpw3CTDY19lXd+HcOV1VdeViHClPrvUGFhas1qkeu56topmNzmLwlJDVxpp6iOQ2QAAIABJREFUj0tV4uefh2DQ/5fLwcgIXH55dbW4cixjY/DEE74uds2aaq1yK2MuxnbLi3OAinDxifzqdUhVtE1T20pFd9FEcYGKdS1C3FZt9RIbDRsR9mbWb8V2bgXLhWZCUn4G/KzYOIiU8ijwseUe2IWIkuRhPDNOT7CHglsg7+R5w7o30Bvu5VSydoLW+YS5jXej6VH2ndhH1IwuKq67Hv7xoS/x7//2f4EaRDFiuHaGF1/aw1ve8Zd84Lb68o6ziUaJeun0SDE2u5Q+B75bQ35BuUkrSX1zCWAqNYyUebLZMKFQH+AT41TmBH2bffIWDQ+SysaZTutI4QCNJTCVz4mnVxEyEpyZ/BoAV1733nlSgEqyKYXD8OgxDHMETRXo6uvIuycZXHeSt71NcMklLwBbgZ0MdL+F/3TVzjLBHOj2E+YaNYyWnpfJKBw+vJVwOE139zi2nQC68Ilz9fdjK02olXIayzoNeMRn0nREokRCXaQysPdXD/CfrrrB93SuQYS37ojWkUzMJ9VLlVZUOpG0k5QDZXIJ1A9dqUeQm2nGK1WJZ2YgWlyHQMD/fG61uHIsL77oE2cpYfv2amlGM2MuoWSV94u/hYLjk/eBAd8Kz/Oakko0S9iaregu2kavxYp1W5vwzoKsYqH1W3HjWMFyomHDoBDiBiHEi8DB4ueXCyG+uuwjuwBRkjz0hfsouAWCepCAFuDg5MEFXS/OJ8xtvHv2jC9/v2r1VShCoSvYRVegiz0vLa255tG9fwtqEFUPI4SCqodBDfrHXyWIRAZRlBhCuJSCNYQoIKVo2h6uJFW4666Lazb2VRJAIRQ8z2+g8QkexY99Ylxqrrv06t9ndPokeWsSKb2ydGKhMVU+RwqPjC0Yi1scHP77mkRvbgNpJn+CRDLNxLSNq42x+aIxQiGNJ588hl8Vvpvjh39ZdOWw/fCTiia3Rg2j856XiXD48CrOnLkKGGIucYbWmlBvueWj5QZQKAAS28mTzkYYTSRIW5J46gh9mzchhY4mCkih07e5sWtG6XV54207ufm2rW1xxNi6I7qosTTGfti5B+5JwrufB7nfJ6mV5Heh5rxmmvHWr58lyvmizCSfnyW9ldXiEtHt6vKlGp2dcMMNPtmFWbJded6pU/PHPBc7d8LmrbBxPWzcOOsh3YD8lQlbLlNN2JpslFsI2rqr0N/6SfT3/3f0t36yKQLYcrNfG5vwltJo2A60vclyBSuoQDOyjXuAtwIPAUgpnxdC7FrWUV2gKEketvVs48lTTwJgqibjmfElBa6cTcxtvLNci10bdtEf6S+f00pcdz24hWkUo9p5RNGCuIXWww/OFWb1y/1ImUAIX4+7Y8efVlU260VvNyMrSM+xCDTNNVjWEYTIIaVXVxuuqgFyuZfJ5cAwNjVMPpz7HFhY6jFXuy1Erjy+np5JHEdDVVVSqRR+ZRhk9tc43o3z7NxGjow2bBhdjCa+lSbUSjlNLgcgMIzNBIN9VdeVqsv79t3Hz/beS3rf0qPZK3GkkOXxXJIxx6JfM3hjMMoWM1Tz3PqV7sViP3A30AWrdsLNM3BzHNhN1eZkoea8ZrTHpSrxmjXwwgtQKPgV34suWjhWPBKZJdslVJLtFoNiFiOVON/s01quWLexWrzQs8+KnKLNTZYrFesVVKKpxj8p5UlR7bvoLs9wLmyUJA8DkQFuWHsDL02+xHhmnL5w35JlDmcTlY13pQjvSrSjiq6aq3DtjF9xLsJzcqjmqgWuOr9QS788l0TVcy+564a7mpIVRCKDJJPH8LyZYlXbRMoOhHDIZM7M00xXEvLOzmvKJLMRGhHNWo13lQ2kUgZR1RjBYB+BwEsUCiaFQp6Ojo7i3ToJGnZd54lG5LiRVrwWmiHcteYF/nWKYtTcoCw10KcejhSyfD81QUTR6FV1Up7L91MTvJ/eugS6JTT0Qd6Dv9Ep6Ya7Ko5XnLcQQW5Ge1yZMJjNzrptXHzx/DFVykCuvRb27YOf/Qx27fKlHguR7Qbz13bvxqnTVFcX5yBQpBFaafZrZsOwWFlK6Tr70W8hkkno6YGuvmUhp87JX0MijnL6NDIURHb3IiKxpTVZrvhHr6ACzfg8nxRCvAGQQghDCHEXRQnHClpDpeShL9zH5f2X8/o1r+fLb/vyq4Y4z8VS/JMXwq23/G/g5nDtDFJ6uHYG3Jx//FWEko/wB+/6F7jpJr4d/7eyNzZUu5fMlb00IytYu/ZqhBhBiDxS6giRR9MSXHbZh+Z5F8N8mYdpxjCMaLHhrj4qZQtzpR4lslgoJOaRxZKH8u7d3wAUCoUEuZyBbWexLItrrilFg8+Qs/Si88QsSk1uu3a9j9tv/wKmGSOTOYNpxti+/T3s3XtvWdJS+by586732sy9Z2UFfqF5LXTdYte4ER7PJYkoGh2KiiIEHYpKRNF4PHe2vJuHgc45F3YWj1egJLuoRIkg797t3zse96vJpY93z/l9sXMnDA3BAw/AY4/5/w8Nza8cV1a5V6+Gm27yddJPP91YmtHE/LW41ppUogX/5PMR2rqrfBeOYNiPOA+G4cY7yvNerCyl8jpRyIOQKFOTkE22JKdoBuVnhSOgCCjkUUaGkVOjzclGVvyjV9AEmqk8/zHwN8AgcAr4d+BPlnNQFyraHfF9PmC55lRqCqx027j1rf/HedMs2AxKcoxf/uJh5ImDdCkKqtnN8c3buTt+lLtuuGvB2PD1TcgKTp36FbC2KAspFBsUY8Xj89Gq/KKESmKYSLwE5IEge/feSzY73rBCXnn9K6+coqcniRAazzzzDIqSYfv2HkToKjTFqdvkVtlI2a7q7lznlIce+gv27r2XW2756IKV/4XI+WLXuBHGHItetdqlJSwUxhxrSfcFmvRBXo+vT6+oGjNTPF6BhZrzKqvKpUp06fhiUFnlHhuDgwd9mYcQraUetsm7+kKwT1uoUr3YqmzVdbYNhol0XcTUBERibSWnlc/yzCBiegKZy0E6BW//47Y3Wa7gtYlm3DYm8T2eyxBCfBxfC72CFtHOiO/zBcs1pw/c9olXFVmuREmOoQxP0HHiBfIS4q6ky05hHHoKuJ49XXsWjA2/5ZZ31JUVlMheMvkLPC+EonTgeSBEAdeNk0gUao5rKWEzJbLok9YBDCNKoZDw/a65qOrcWmSx8vpMppvBwRxSJvn3f3+SZPIzXHfd67GsZJXzxER+Pz/5wZ+R/la17GWpce2VqEfETTPJxReHCAZHyecDTE72IGVjErzUQJ966NcMUp5Lh1DLxzLSo18zlnRfoEkf5N34mmfwK84z1LIAbEiQW9QeL4iSDMSyfJu6QAAMwyfPrURqt8m7uqzzffpfECePgRB+Wl5LdzmP0YQspZaso+o6w/DDTxwXbAfJYb9K3FO94WzHGEVHDDpiSM+D1HTTTZav9g3QCpYfiw07+d9ZIc8reI2hXmNfLZTkGDPH9pGXIFUTVXqkPZeYZiKPHmR442o+ft3HuftJn5B0BjqZyc+Um0dL956r4wXKZM8nzllMM0k+byBlACEKCJHlU5+6FM+zq0jnUsNmapHWXM7AdYcJhWabRi0riaLo80JN9u69FyldpqammZ72NdqK0kk8/q9cd90nqprc9u27j58/+Oma1eVWq7uHDvikfGbmcY6NPMB4/ChmsLduhTkUyhEOJ3FdQaEQQtdt1q07yeHDsZokuFIbrSg6ljW5qDUujbO0eRjcMlBejzcGo3w/NQH4FeeM9Eh7Du8Idy10y+bQlA/yTuAufI3zMH7Feb4FoH9qGwnyQihVuV9+GUw/qp5CwXfcMM3mK8f15m+avlykrg68NoRjIddtKpOvC6bhrEFVtm6ioWb45wXDyEAQdXIaEKApyEIeJZXG23b9WRljIyzaFnAFryksljxfMBvpFbw20QoRLp1fr7Gv1nUlOUbKTiFVA096KELB8RxQo2AlWN+5vqHspZbn89DQTWWy57qDwEt4HqiqjeNoCOEhhIdlnaCz8+qakoZWGusqUYu0dnX1IcQJ1q3bj5QRRkaC5HJxQKCqRhXxdZwpFKUAqEipAzZSjtWslC9UXW6lgbEjvIErLroD8BiLf4v+7k7W9G3npeMjPPjgp3DdHJ2dF1c9e3Awx8yMRjbrYBh5TNMkl7OIRse58srPV507t3LtN2AKXNeq2bRZD4cOJItWfVoxHdC36gPfYm6LGeL99Fa5bbwj3NWeZsGmfZB3UpMsnyuUqtwf/KD/eSwGV17pW9V5XvOV41rzP3rU94w2jPqe1DVwITeczavKTo8hpqeQ0U7sR74I6UTtubu2b1sHiFwWGTARlo3UdTADeN0dfurhcoxxEZXjxSQqruC1hcWSZ9nWUaxgBUvAchNhmK0kW67FvhP7mMnPYKgGX/vl1/jau7427/ySHMPTO4jIFAknjyclmqLiOjksxSw3VbYqe6kksKFQH8nkYRTFQ9MkjqPjeRIokWhlnqShlRCWuZhLWsPhNL29CfL5ToSIkssluPjiAp4XIZ+fT3yFOIHr6hh6iI5IEEPTyNsp0mm/UbCS9DrOKQxjQ9XzS9Xl2277bwtKWirJbMiwOT76/xLriAAe44kjSHJ0d4XI5lVcN0cqdaLKsaS316Krq49rrrmGZ555hlQqRUdHB2972yYuuaR67SpJfjY7jmWdRogcllVg9+5vNL3WI0dGEVKradVXqj5vMUPtIctz0W4t8tnEzp3w7ncvLfWw1vwHB/3Kc6s66PPQcaNdqKrKnhlGTE+BqiKSM5BJIdJZvE1bqqu+ZhBSuXIcuMhmkeEQ3oY+3wEDmgqfWdQYVyrHK1gm1CXPQogUtUmyAII1jq9gBWcd9YjwbVtv44WJF2oS6kqHC6D8/56X9tQlscMzw+iKzlOnniKgBYiaUXJ2jh8f/TH7R/fPu273tt2+5nnTdvSXn6JD1Uk6FqZU0HF4y1s/s2id+FwC63lhpMzjOAFisSuYmXkaKRWknNXCtqNhDebbu0UiJ8lkPG666S3s2LGjeFacL3/5H5maqtaQGkYU2xbomsqqzgCeJ7CcHIqAgZ4B7v/Bd/n5U7MyjZmZ0zjOUbJZpZyWWKouL1RBr6zMA3SEYxh6lrH4cyhCL/4L4Hk2oWCSfCGPEGmE0JDSQIg8U1MWl1zSxY4dO6rmVd0s56O0mclmx7Hto/hVdRNFybXUxOhLNcyaVn1nBWdLarEcaCVBsB7mzv/OO6Gvr/qcZnTQF3jDWakqa9/3aUQi7lePVRVcF+F6iJFhiFb8nBTnXr6OL/quG0tcn4Us815tleOVGPFXH+qSZyllR72vrWAF5wtqEeHJ7CR/ve+vuWnjTTUryws5XNTD+s71/OjwjwhoAYK6v3cUQtAd7K5JustyjK49vOTkCZw8xmbTozu2ecmBGXMJrKrGgFNI2YmUHlIqKIqNps1WbdvRsAbzZR+xmGDnzjdXEEyATnp7Dc6cSc6TVThOhP6ujXgygeNlUUQAVfRjahs4fuQ7c2QaG7DtV7CsEwSDPTW9nWut41xpSS7v0t3Zyeh0DkPXURUDoQg8T6BrGrpuI+W6KscS217F5ORpfMK8QHMcs5sZP9VRBXw5iucFCQajTTcxOgQQ2MXrfZSs+tqNumErDb2ezxPUGme7K+dN6cDn47XScCbOnELqOkIr0ghNwwsFUDJ53Fym7tzbsT6LDTI5H0nqSijLqxP/P3vvHt3WeZ75/vbGnQB4kUiCEi1KFnSXIku+xZYjVZGTunZba6KoajNndSXjdLra1JPVOeMkp9OmhzNZkzNx3HOyetymK2c19Uw706lGZWzX0ySNrSpkIjnxTaYlUbJEXShS4k0kQQDEfe/zx0eAAAiAuAOkvt9aWjQ3N/b+9gZlPfvF8z5vsbYNyQqjUOtDtY61FJmE8PDsMBEtkrWynCvhIhtHth3hb/r/hlW2Vei6TjAaJBgL8kjnI1lFd8KOcbDEi0wjXcA6nRu4555PMzz8znw29HrC4UkMhsxDPLLR23uC1177Y8LhawAoympMpsZFTYeporUbISqT8bB7937eflvE5SXbKnbt+jy+qT6i0fVYTU5impdYzEfbqn/B6OR3UnKtbbZ2dF0nHL5ekHc4vTI/GwgQjEQwm+3omo5OBC0WwxecRouFMZk0YjErTueexDF0XePCheuISnPu5rj4w4yY6mgBIihKDLN5fUEV/053B+NXr2WN6isXWYetXJ7B/cKfCLFYgMe36iQPRklfZ3d3+c5TZDX7rrENKBlan4xGNJtFVN2zXHs57k++vvIUsawaUXweaG5NiFT9jb8k4vx7iEVrJqZXskd+JSPFs6QoD3A1jpWJ9IlvDa42PGZPihCemJugzd6W8rrkynLcUhHfnpxwkY3dHbv5xMZP8N7t95gNzdJkbWLvmr1YDBbW2MoUsVQAS/mW0+/TUqKzt/cEPT1fQFVnABOKEsFqHSEcvo3BsDlHjnLm+LKdO7/K4cMfZlzD3333r5iYehl/8BYWUwfrOz5H++qHuTXeQzh8M6VabTBYaG7+KN3dp/K+N+mV+VB4kis3Ymxct4uYFmBqdoi50AQKJvwBA5qmoGmL7SEWy0bEw0Fu4vejp+e3UNUAmmbDbF6PzdZOKDSTd8Vf+JrvTUnbaN+4LuuI7VzJHLlIHrYCJKLv+q4M4C5D1nFFOHECXnwRRkZETvDOnbBxo/hZpdZZgg98udkGikFf04l68wa6oizYNiIRtK71mJ74Us7Xlnx/8ozMS67oKtcuiiZFZxOKakePRlBnPOhzAfR7t9au4pt2LbpvBmVyHGVujgjfrIvquGQxUjyXgWpWWitxzmI8wNU4VjqZ8niVS1e45bsXdt2fEMImg4nONMGSXFkudrDLFx78QuLBIF/RXSsKbQoU0+/8aJoJMGEwhIjFFFRVJxwepbl5T2K/1ONmjy87cGB3xjXs/einGb96P1HNmFJh3eD+lwy/+YdAcTF6yRgMVgKBSwQCYDbfy+NP/kfujEW4dPGbgI6uN+PzB4lEIyjKWmA8qz0kH5IzrG22xkQGdqHHSY7qy8VSyRy5yDpsBU1UWJMpIuu4YJayipw4AV/+spgcuGYNnDsHP/0p2O2wY0dl17mcfeAVRnn40+je74rM5lAI3WhEb25GefjTlT95Hr7yRRVdTRc2k/nBLMrUhPg+FgNVrV3Fd/5a9GgEZWwEg8ePripodpu0cNQxUjyXSKUrrdU4ZzEe4GocK51s0WXrpwI4bC0MeYYwG8xsXbWVn9/6OYPTg+zp2IPVaF0kcosZ7LISJ0TGEdYCjbjfVlU1NE1BVTUURcTIZbcgFBZflq3C+rGd97HaZSo6Rg9SH7Camh5KCGGAT/3aZ+jtNdHT85soio6uW7FYNmKztTM35yzYHpJOqTGAhZBPMkc2sg5bQRXWhGITK4ohlwUjLlpffFEI5+b5TyQaG8Hvh5//fEE8V3qdkkUY191P9HEhUvUqe4jz8k2nV6fNZohEhNAHMVhHUdDj+eDxY5U5FWUpn7Wy43H0N/4SdcaDEoqAAoqmo0ajaNEIutUuLRx1iBTPJVLJSmu1zlmMB7gax0on22CMiP823Qe7Ew8Va5xreNz2OGdHz/LGtTf4xMZPlO1hZiVOiAThE56ZuQXEABVNU1FVDV1X5n285Ws6hOwV1lJi9GDhAUvTwng8/fMNgCqvvfbHiWOfPPnioozoYuwhmSh1/flSSjJH1mErm7ZDzz+KndI9vvHq8NmzMDMjhOyePaU3FOYzFntkRFSc47S2QiAg1qZpOb3IWRsjJWWhVvaUvHzTadVpfVUb6vANdLMZXdNQVAUlHEHrWLvw96jMqSj5NAMa191PxPn36HMBlLkQutkAViu6qorq+Dr3iog5XGlI8Vwilay0VuucxXiAq3GsdJYajJH+ULHGuSYh5GsteNM9yPHmu7j95uI7P8Z68xpOypPIUeiaVNWEphkwGoNoGsRiKiZTjHBYxWzuKMqCUAvEtRiJRK4hIuPMQIRY7DK9vSfKMmWxHiglmSPrsJXW9Zk9viCqwbGYGByiqjA1BQ0NpTcU5jMWu7NzQbADOBxiH5sNhoezepGzNkbSJgV0nVJIGsZSwn1RddpoQmtuAmczeKfQ29eCzwMGkxjfXYFUlLybAWNR9Hu3ot0chGhUJJjouqiOr6CYw5WEFM8lUslKa7XOWU47QiWtDUuJnlo8yORDJq/2K698mRszN/hR7H3UoQlsg2eJKkbGUTD4bheUD1zqmlTVSDh8A7M5SCwmYu40zUAw2J5I22hoaK6YBaGciAr6WyxExoGY9mdOGRID1bFXVIpSkzmyDlvJ5PHt7hYV4fffF4LVZhOV31u34L77SmvU6+riw9lmRtbvwNhkIuqJ0HnjAlu6VGC+KfLXvoox4iF6a4bO0z9iy/g7EI0K4X40+3uW0hg5NoZzYABCQfosVtwbdxS+5uUS47dMKXdkW6bqtJJWnY7efDfl5/q6HXDhDSJn/q48NpR8B+bEfc+r21BvDQuBreugKisy5nAlIMVziVSy0lrNc5bTjlApa8NSoqcWDzL5kM2r/cbJ/5eWJw7judaLrpoxGG2YtAgz0RBrbM0Z84GzVbCLXZOmhRNV2mhUVC1V1cWRI8/XjZgs5JrFA9ZniMXMCA93DEWJYTJtSPFrl26v6Ce1SfII1RxbXWgyR0nEq8Mej/AbA1it4vt8G/WyCM8PHz7C+K0xlJBG1BNGMcL4jp2w1gXnZxkfuIiihYj6QWl2MH7sGPz3CFt+7dGcwhmSGiPHxuD0abDZsFssjJkMhVfM8/Fm56Ae84XrjUpEti1VnU7+eVy86+XMW85zYE6iSm61o3V0okyMooTCaF0bUD76afm7UodI8VwitWgiq9Q5a5EaUihx0RNf60vT/8jJU+c4su1ITR5k8iGbVzs2c5UmaxPeiBfNKP7nalSNhKLBjM152SrYsHSFOl2AzsxcwmxuRtMuYzbHiMUMRKMmFEWsLd/BHpWm0Gs+cOAor732x8RiN1CUCLpuwWRaj8FgpqGhedH+xdGPiOdrAe5B5Fy/gEgdqa6ArohYTic+LKSpSVScbTYIBhd80WazqE5nq8jmEJ4jUSuKowXmplDCIYioRHUDI+euw+VRFIMGEVCcDgCiFpWRX3uGLd6fL7nsRGPkwIBYs9WK32zCFY6ItRRSMc/Hm50FOQQjN/EHC/XCWfSGBvTV7SjO+b+rVRxrXgnxnu9AmJQqeTiA7t4OOx7HJH8/6hYpnstALZrIyn3OWqSGFEuutdZjGkY2r7bBsgpP0INmckI0AEYbUS2KxWjN2JyXrYK9lNDNJEBVdZJYbByjUSMWU1EUDYslSChkK9so7+TzF1stL+aaf+VX/mPieivjae5BCOf4JxwtSdvr6+9KWYgPC+nshA8+4MPm3YzsP4hxXSvRCR+dF95mi2U6e0V2Xnh+2LSLkdXrMW40Eb0ToPPEzzA++FGiNifKhvkEjZs30cMKxjYnaDGi18ZRmhf+3uihGMZVNji/dLU70RgZCmK3WPCbTfjMZp66fKPwaLt8vNlZkEMwspP8YKE3NEA4hHprGG0tQkBX0++br8WiAAoZCHM3ZIOvJKR4lgC1SQ0pllxr7T7YXXfrzebVfvzQv+FHwfdR792O88ZZXKtbcNqbCPojzMze4dChZ1OOk62CvZTQzSRAAwEFi0XE0SmKBkm5DeVM1SilWg7FXXMue095bC9DiIpzMk3z21cgScNCPlQ3MP6xx1DmNKJBUJrsjH/iE3DtKlvUkcwV2aEhPuz8KOPuTSjBGNHZMIrdzHjzBmK6aHQEE0xMgNGIYjcTnY0A4vj4fLBKiBrFYiA6Fcgrli7RGGmxMmYy4ApHeOryDdzTs4VH2xU5qlvsV35RtlJIfrDQW9uF31fRUe6MoxtN1fX75mmxKBQpilcmUjxLgPpttsvEclor5BZz943284rx+2zo2MX48NsEfB4c1nVs2/UMHat/MeU46RXsQGCcUOgGoNHdfTAhttPFYSYBqigqkYgRTTNhtQaIxSAUsqCqsbxHeecjQguvHKd6idvbm5iens2YsJJrDZk8zaUK+Tjnz3t5772/ZHo6iNPp5KGHHmLnzrUI73Px96quSJ7o19kJzz4L3d2MvPohih5ZyJe+dImo0cjI6vVsmZ5/oEmvyHZ1MeJchxKMQUhDQYG5MFG7GUVXMBiiovExFEJx2jBaDbSPiBHx4xvuJRqNoUejKA1mjGaF9kvvwrNH8roMt6VBNAfGbSMFjNlOochR3WL/LKLMYM1td1lGFO3pTnqwUBzNouI8P11Pt9mrOtY8X4uFRAJSPEvmqddmu0xUe63lED/ZGtR2d+zmjm4laLtNbPMWgniw0oSZTYsGXiRXsGOxENHoIKoKRuNGQqEZenp+D9Cx2damiEODwTo/bjrp42/dgK4baG5+iLm5cSKRWyiKGC29VLNgISK0sMrxYi/xv/gXDfzN31wlFEqt2rvdjxcshIu1vaRf++uvn2Hjxjmammz4/QFOnfonTKb72LLlxZLuVd2QPtFvZkZ8DxjNW1LzpS0W9LmwsFJMz2/zeMBiWRCGFgvGDoWoPywiuKJRiEbRnR0YVJ32jfONj20OoncCtN8aEVVsgHN+RtZuwrjKRnTcS7tvjC3PPl2YyCxhzHaxx0gRk6oRxedJFWWz03B+FoKNRTUglko5GxhL8nSnPVgojmZ0gwndZl9yxHe5KcRiIakcy6W5VornZUQlG/rqtdkuE9VcazXET0y9xQ3t5xiwYqGRCAFu8DM2qQ8DWxL7JVewZ2Z+Bpgwm9fT0NAOQCBwGWCROIzFwokpe3EBCg5AJxSawWZrxWAwEw7Pcvjw0ikbhYjQpbK5U1nsJd6yZS+//usu/uf/nEip2hcjhIu1vcT58Pws75z+L7Q3biXoMWJ13KS5eYqZGSszK7TrAAAgAElEQVQvvzzHl7+8+O9iOQT7kpQ7Qi19ol/864svEv3fv5OaL223o0yOEb0yBX3/LITg7KyI2TKbEykd0TtzwoIRCAlhvWYNSoOZKKaFxsf+IPzhH8L4OITEflva29nyuUOZr6eQ645H8MVf861vFX6v8hzVvUhMhgLo6BCLgHfeBnA1iDFIUQ2IpVLuBsa49YJYBOXmLTHBz2BA//nfL2lXqLdq71IWi+Ui7JYry6m5Vq31AiT5ceL8CX7z5d/k+PnjDE4NcvnOZV448wL9o/1lOX48waPF1sLw7DAttpa6bBaE6q41WfwoiorF0pxIoygXN7UPcRocmLChoGDChtPg4Kb24aJ9Dxw4Snf3KYzGe2hqeiAhnAEUJYaIZ1tAxNFFOHz4eSyWZvz+21gszRw58mccOfLnKdvyEc4gRKjZnJrykE2EHjr0LOHwLKHQDLquJYatpPu5BUMI73AyTezc6aS7+xQvvHCZ7u5THDhwNLGGublxZmbO4vH8jEDgGjMzF7Ou2+HoTDxExMnX3/3h+VnGr15D08eJRGxEI1ZC3i18eHEXo6NbGR/3ZHxdIfeqKOJJFtNpDXv9Jfx/YWRkIZIuTmMjjIzQ6e7AqEZBj6D7fDA7hdFpovP1l+HCBXjrLRFj53YLQaiq0NJC552bGJ0W2LIRff16aDBjVKN0ujtSz6PrMDcHo6NiIMulS/Dh4r8HRV13vq/p7xdV82eeEV8LvJf6hTfQ5328iqqKRsHmNnA0Yzr2DUxPfAnjuXFh/0im0CbGIsm0Pt1qF6KwGDyTEAmj3hoWnyiYzaDrqDeuCzGUA+O6++Gxz4jKs3dKfH3sM1mFUvTmu0R++E0ix79C5IffXPL45SQh7AL+VGFXxTWsdMr+u1lBZOV5GdA/2s/Xer+GgkJbQxvBaJBz4+fY1b4r0dBXjqp0vY+erkWUXqnVymSy2T/Ohi7weONe5ogRjMWwGgw0GM28Mfde1mNlqujqumHRfnFxmM02Ukz1M1c1OdM1Hj78fJ4DSboQn/0nNWXhAboWHVdVTXi9N9D1McQkQROKEgJCiUmC6ZQyWXBkcBRFN2JQ24nEZlFijYBKo83GuGcyqwAvrPKeP4n7MfQBjpiVQ7F9HFBbylPBTJ/oB6Ka3NmZmi89d5voHQ/tZ0+zxTIBGzeK/T74ALZvTznkFscU/OxNRn7p09lzqXt6hEhXVVi/fiFL+mtfgy1bUq+nmOi4fF5TYp4zkF+DYCkNiKVSQgNjpsorTa0ogwPoBoOw5QC6oqBbzWLfJSqG+TbU1boqWcnUFFnRnmcZNddK8ZwntcxA7rnYQ0SL0NbQhqIo2Ew2AIZnh7EYLcsuZq6Y+1irayyX+Mll/2hpa+b01IdsNa5nldnCVDjE2dAgLW3Zc4kzCcFkK0Ylx05nE6HZfMiHDz9Pd/epPI58BOF5BlGB9gDT/OxnXYuOGw5PoqrTiEmCRiAKgKp2ZLVElDJZUAg+C2vbjnB1RHzqoGtOTKZAzntciVHgKb9Lc0ZCliivzL0Ok3CgdWfpFcxnn014nGlsFIJ4dhb+SKw5YbPY++tgMokx3YoispR1XVSMf/hDMVq4qUkIabOZLe0qW57ekv28Q0Oi6m21imOBeP3ExGJRPDQkzn3q1MKwlq1bc1/3UnFz/f3wxS8K20h7u1i3yyV+VsjDSD6pDaU0IJZKkakS2cQrmx9COX8W3WJG13WIxVCiMbQ1nWUVPTWP/KuQsKv1Q0FdUaHEk0ogbRt5EBdu04HpFOFWLsvEUgx5hmizi4pzHKvRysTcBF1NXSnRbaqi0mJrocXaQs/FnqqsL19KuY+1usbCbAfZyWX/OLLtCLeUm5w1necdyyBnTee5pdzkyLbsiQIHDhwtqxWjEDKde/v2T3Hu3F+i6yMEAtcJBidTrrG39wTd3Qd57rnNdHcfpLf3RIYj70YMGmkBhue/Psf3v/8Pi+6dzbYWUNB1C4oSRvi/N+JwdC0ZY5duAcmHKFYUorS3PsbGzmcxGRrRmCASbch5jzPdq1Lfk5TfJasNS8yIWTNz0veW2KHUCubRo/D886LyfPu2+Pr884sn+gUCQuxevAjXr4tIubk5IZpnZ4W4nZsTAvfqVSEYc9HVJYSy1bqwLRiEtrbFothigd5esYbGRvG1t1dsz3V8T5q9Jn6v4hXn8XFobRXHO31aTCcs8GFE2fE4StCPHvCjaxp6wI8S9IsqbZx4A2JLCwwPi69VahbMa30ZyPaROpM30Lo2iLTLSASMRrS194DJXF7R45kUYjWZalYlm1qFkEumDMJuOVkVKk2xv5u1QFae86DWGchdTV0EI0HOT54HhHD2BD2YDCaObDvCt372LUyqiVPXT+EJemiyNrF19da6i27787f/nEuTlwjHwjRZm9jWui0hgJe6j7WKpyulWplMLvtHsRMjy2nFKJTkc8croSKtwwJECIevAmC1tjIzc6mApsvdpA8ayXbvAgEDNtu9KZ8KhEIzZcuoTqbT3cH41WtENWhbvY/21Q9jVKO0b7x3ySl/S40C//D8bMqY7U53R85jptyPtla4eROzbsBnnhXVy3JUMI8ezT3+ur8fNE2I44YGIZivXxdJGl1d8LGPCVEdH+nd2ZlqjcjU6HfkCHzvewuV5GBQ/Nm0afHDgK5nXle27ZC72hu3dLS3L0xRBBgYEI2P6efP0ayYd2pDng2I5aboVIkclVfl0V9fGG1dqca/Clcll7JOVKy5cRlZFSrNcko8keI5D2qdKxxPl9jZupMR3wgT/glMqomv7v8quzt2YzFYOHX9FI2WRhotjQQiAXpv9HJww8GqrC8f+kf7ef3q66yyrUqs8czwGR7pfCSv+1hKPF2plpulxE8+LGX/qIbfvFJ5w/FKaCAwBfNJDLoOodAtVNUMBDCbXUUnTmS7d2bzvYtSRCphUwFSvb7ZPLtFEG9EVHTjfARchPGr14DsojzlftgdsG4d4YmbOAJmWN9SeAxbMfT0wIMPwttvi8mAmgZGoxDRjz0GHR3CyjEwIPzTP/vZQuNdLk/xV78qPM4TE6LivGkTGAyLq9bhMBw4IBoK42J7zx6xPRu54ua+9S2xnm3b4MwZsb/FIirR6Q8jefii630wRlHra2qFO6Pg84pEDYsFHE5Y3VEV0VPJZI58rBMVu8ZlZFWoBvX+dyeOFM95UOsM5OTKpNVk5eMbPp4iAHUyV1uyba8FPRd7WG1bDZDi2z47epYnNz+55OuLjafL5JX+2l//HuunAhDxVG1oRSW8r4VQyci9eCU0FltLJHJ1vvhnQFUD8+LWWlLiRLZ7d/jw80DpnwrkS8LrW0bijYiJoSOYiGosyvhOZtH9MEYJr7bz5OHn4cDRhbSI+YxldF2IykKj2XJFwQ0NCWHb2LhQYVZVuHED+vpENXp2VghMs1kI6RdeALt9cdPe5KTwGm/cKM7z1a/CuXO5I+jiDXcHDy5sm54WudS5yFbtjR+vowMefVRcU9z7nG6nKKZZsQByVUBr2ljWuh713HvoZiO6yQyhIKrXh7b1o0DlRU8lBXouP3U0/vMK3fN6i+uT5IcUz3lQDxnIuSqT4ViYA+sPcOnOpYRtY0/HHsKxHFWYHFSiOXLIM8Sejj28OfwmIKwnuq4zFZzK6e2NU6y1IdlyM+ob5dI7vbQNX+G6YmLD6q1VG1pRLvtHsVQybzheCW1oaJ+3vKYOXDl58sWSmi6Xund1O2wkDzyePq7feplQZBSLqYO1bUdoW70PI8Gsr8l5P5KrovGGOvGiwpIjlqquJovNjg4RLffjHwvxqihw8ybEYkI4GwwiLePSJbhyBXbtgh07RDPe2JhI54hGF9b46qtLrzHfhrt8s6CTj9feLh46pqczr2OpxsMSyFUBBWrbWDZ5A62jA8XvEw9jFivaKgdM3qj8ueepmEDPZp0YvQnTlb3ny8mqIFlAiuc8KFa4VYt4ZTzZpjEdmGaNbYkqTAYqlWoRX+O+dfsYmBzAE/RgNpj55MZP5n3cYqwNccvNqG+UM8Nn6Bq5iaaYCOg6w94R1jWuSzS1VVqExe0f8YeTl6b/kZOnzi27yL10kiuh2QaulFp1L4d1pt7o7T3Bxet/hsXUhMnoIhKb5erIi6iqzupVH8v52qz3I7kqeurUQl7zpUsLVdp8KqRLVVfTxet787GKH5tf9/e+J0S0zwcPPSSymi0WIeg9HtGMt2+fsHWoqhCs85nQea0xn4l/hcTOFTJBsIIxczkTJaD2aROrXNCa9P8RTVsZ3txs1olQEL1pVcXv+XKxKkgWkOI5T+o5A/nItiP8+5P/nonhCUKxEBaDhTZ7G1/f+/WCj1Wp5sh49b7F2sKB9QcS1fvfffB3iz5mPsRF+8XJi1gNVuxE8WPAZDBhVI1MzE2yvil3QkM5We6Re5nItzJcq6p7vXLy5ItEwwZanE1EojrRWCNGVWVy5lV2P1TgvYlXWP/bf4O1a0VlN96sBwspE/lWSJeqrqaLzbgHOR7ttm2baCb0eMTgFL9fVKFXrRI2EkURQ1UmJoRXetu2zOdZ6npzVZQLtVfk28B35MiiSYi0t8N/+k9Lv3Yplmoeq2Vj2Qr25mazTuhmS20TPiR1ixTPKwRl3jEZtzknvi+QSjVH1qp6Hxft4/5xWm2t+DFi1CPYTI0YVSOhaLBsIjIfapXcUmnP9VKV4WIrx5VqcqwH4p8GjE77aLTZsFkNzAUauHH7cmHe6uQK69q1C5Vdk0mkVcDCNLt8K6T5VFeTxWZ3t9g/zvbt8IMfgNcrhLKui5/7fCJ5w2aDW7fEf69dK6wfmc6TSSRDfhXlCtorFqV65Er5KISlBGoNxetK9uZms05w4Y0l77kccHJ3IsXzCqDnYg8bWzbywNoHEtumA9NFCbJKNkfWonofF+1f/MEXGfePY+hcR9foMIoeIxIDC3pVG/eWe+ResRQjgivZ5FgPJH8a4Al68QRF1J7F1lbYgZIrrNu3i7SIuGCdnR9HvmdPYTF2hQ7xSN/fbBbivaNDZEUHAuBwiCqzxyPW9vjj8IUvLIzMTj9PNttFpqbD+H1IFs+l2iuyVbd7esT48QcfXNh3ejq31SRP7/WSArWG4nWle3MzWSeikPOeywEndy9ySMoKYMgzRJO1KWVbsYLsyLYjTAenmQ5Mo+ka04FppoPTeTX11Su7O3bzp7/0pzy49kF2P/xJHB/5RSKKETXio9W5riKDRLLR1dSFJ5g6qKFayS3FDggplbgIDoVmUkRw5kEpC+QaLLMSKNcAHoaGFirL8bSIpiYhnA8ehF/4BTG8opBBHIUO8ci0/44dQiTee69I3zCZxJ94nJyi5D5P8kNB3A/d0gJvvrlwvXGamhgM+nlpZpRvfPg+L738PxgcuyV835cvC29u/OFhqWEtsCDcp6dThXt/f+r9Tjp/1op2rmOlYVx3Pzz2GVHp9E6Jr499BuO6+3P+rFoY192P6YkvYTr2DUxPfGnFC8Sl7rkccHL3IivPK4ByVovrvTmyWFKuq9PL5h3/uqoj1uPUQ3JLtSk26aOSTY7VZjD0Pn2BAcaiGi6jyn7b9vJ9GpBeYe3oED7cj39c2CkKId90ikyke4bjVo5YDNavhzt3hPfZbhf+6FAo8+viZLNd6LqoICdVlAdNKscPHMAxPkbbT0/jbW7i+Kd/mWNWK+6TPxbn3bMn/wzsXH7pQivaBXqvczWPycay6pPznssBJ3ctUjyvAMotyOq5ObIU6uG68nk4qURUYC0pVgSX0uRYT17pwdD7HPeex6FCm0HBq2kc957nGGVKESnUYpGNQtIpClmX2SwEr8slPNj79oltS2UyZxOpjzyy4K+ev96++7bh6OrCeWEAbDacigrhKH2/sA+3pohjFPIgkcsv/fu/X9j9rqT3WlJbVnATpSQ3UjyvAMpdLV5p4q3eyCXia5XGUUmKFcHFNjnWm1e6LzCAQwWnKlxyTkUBNPoCA7gt95V+gmwxa7AwLCWfKnK5h3/E1/Xnfw6vvw6rVwvhazbnJ+6zPRQ899zCuuavbexj+2hrawfPm4mEEXs4wpjdVpxQzVVdLiTWbqljSYoiU5MeVHaYSSZWchOlJDdSPK8QylVVrWfxdjeI+lqlcUDlqrXFiuBibQ2VHAhTDGNRjTZDavqNXVEYi2qlHTiXxaKYKnKhFdJ8LB67d8Nf/EXqvmvW5GefWEqkJr3eNTOKV4vhbGoS1W2rFb/ZhMsfKE6oLlXNzzfWLp9jSQoiU5Oe/sZfioSp5ta8GvfKlZCx0psoJdmpiXhWFOWbwK8CYWAQ+Fe6rs/UYi2SVGop3nJRz6K+nNQqjaOS1dpSvL3F2BrqzSvtMqp4NW2+4izw6zouYwn92kuJ42KqyLkqpOlCedcuMQkwX3FeiNgs4nX7bY0c907Aju3Yf3oav8WMz2zkqXc+KE6oFlpdrtaxJBkHyXDrBqCgrFl6mEm5EzKkD/3upFaV5x8Bf6DrelRRlG8AfwB8pUZrkSRRK/G2FMWK+uVWra5kVGAuKl2treaEwLIMhCmlcS6N/bbtHPeeBzTsioJf1/Fp8JR9e8HHSnw6MPQBjpiVQ7F9HFBbFovjYny22Sqk+/cvFupf+5oQ0OWyeBRD0nvk7uri2NFP0XePi8sf24f/zjiOmVn6PrINPvUp3LsqJ9yrfqy7nUxNejENRddJSdvO0riXc4pjGUSwzH2+O6hJVJ2u6/+k63p0/ts3gXty7S+pHrWMUstFMXF88Wr1dGA6pVrdP7o4IqpeyCcqsLf3BN3dB3nuuc10dx9cFPm21M8z4fONYDanDuZYrskWJUfAFRAtlg9uy30cc+7EqapMxHScqsox586C/c4pkX9zRkLGKK/MvU7v5HmxQ7I47upamCoYJ5N9ob9f+KKfeUYI0aefXhwbd+7c4si4SETsk0w1m+AyvEfu5/+E/cNjOFqacW/ZwcaP7sN7YD/HO5oZDM1VZ12SytPUKprykjGo6Ma0WmC2xj3PZMWmBiaq2gF/alX75rslH1tSX9RDzvMzwPez/VBRlN9WFOVtRVHenpiYqOKy7k7qNee5GFGfXK1WFZUWWwst1hZ6LvZUerlFE2/+bLG1MDw7TIutJcWaslRmcrGZyg5HJ+HwbMq2ak5eLCcHDhzl8OHnsVia8ftvY7E0F5blnS1fuKf43xu35T4+1/wbfKX1X/K55t8oqlEwJffaasMSM2LWzJz0vSV2SBbHR44s5BpnyzjO9JDw6qtin+9+V4jqeBU7Pde4rU2M1k6mmk1wWd6jvisDOFQjTtWAqig4VQMO1UhfYHbpY0rqhujNd4n88JtEjn+FyA+/mSI+lR2Pi9HZAT+6pomvDQ3Q0JCyTQn6E42EKWQS32VKyJC5z3cPFbNtKIryOtCR4Ud/qOv6K/P7/CFiiM9/y3YcXde/A3wH4MEHHyzTDFRJNuo157mYOL56taAsRa7mz2z2itde+2NOnnyRmZmfASqxmDUxWCT+ulzisZCmvlrFwBVy3pJsItksD2fPFpZeUWZSvNxtrXDzJmbdgM88u3h6YD4+23x90Zm80J2dMDOTeTJgNcjyHo2h0aak1oTsispYNFyddUlKZilPcqYmPSWebnHhDbg9BOEQusUKF94gSqqXuaIJGTL3+a6hYuJZ1/VP5Pq5oiifBX4FeFzXdSmK64h6yENOpxhRX23/cDVEZaZmuFgsRCx2hVDIjKLo6DpEIleZm4OGhva87Bf5NvVVOgYu2z2savxcJrE4OAjXrsH69fTaZjl5+f/D983/G4drC4ee/j+q8vCQ4uW2O2DdOsITN3EEzLC+ZbE4Xspnm68vOpMX2miEr35VWDpq0QSXpbnRhYpX13AqhsRmv67hMpqrsy5JyeTjSc7WpBcFmP5b9ObVQrRmaAasaEKGzH2+a6hV2sYvIRoEf0HXdWlGk+RFoaK+mtP8qiXuVNWEx/MOiqKh6xYslrWEw0OAGYulmUDACkTQdQPh8C0aGtrztl/kU62tZGNhrntY1fi5TGLx3DnYuZPe2C1eCbyB2WTGHnEQmrxZtQzpRZ8OGKOEV9t58vDzUMy5880fzlXFPlrma863UTNLc+P+Tds5rol2Grui4tc1fFqUp+wti48hqc/mthKqt/k2A1YqIUPmPt891Mrz/CLgBH6kKMpZRVH+okbrkKxglvIPl5MUP+q8XcJsbuTkyRfLdo7e3hOEw5OoagRdV4EwkcgVjMYgZvM6ACyWtShKDNCB0JLNcoU2F1aysTDXPaxqQ2NcLCY3zt17L2zaxEnfW5g1MxZsKCYTlpBS9vc5GyV7udPJxxcdZ/duYVlJ9kKXkcHQHC9dep9vXOnnpa3rGfzIjtyNmpneo+eew73rPo4523CqBiZiEZyqgWPONtyWhrKutyokN3N2dxfdsJqNum1uK8WTXMFmwHwwrrsfHvuMqDx7p8TXxz5T+wcSSdmpSeVZ1/VNtTivpPLUWzRctSwo1cgWPnnyRWy2tcRirYTDt1CUEJpmQtOM2GxWAGy2dgBCoRuAjsXSnDVTuZhqeVli4LKQ6x5W8rwZSbc8dHfD9DQ+1Ytdm69qRaNgsVY1laTskX92O/T2ivHZjzxS/CjuEhg89z7HR4dwDAzQFgrj3bCe4x/ZyjFVxX2V7PF3WWwpbkvD8hTLyZR7VHoGKh3ZViwlVW/rwDYhc5/vDuSEQUnZuFsGmWSiGuIuLi4VRaWhQYhkXdfweC4nkjLM5kZU1YzB4FqyKlmMFaKYaYGZfMzx8yRvy3UPi51SWDbmbQKOmJWQMYQlZhTiec2avN7nWjVZZiVZnP3qry40/JXIYGiOvsAsY9EwLqOZ/bbG3EK2v5++t0/jaGnC6Z8DgwHnlUHY5KZv/Vrcd2aqF39XT5R7VHom6rS5rRRPsrRNSKqFFM+SslGv0wmrQTXEXTZx2dy8lUOHni14gl8x1fJCpwVmqm739PweoGOzrU2peG/f/ikGBr6XWEf6PTQYrAQClwgEwGy+tzTLQqHM2wQOfSfAK7M/AGMD5o5O4TvO4+Ghas2O2Uj3Eo+NFSbOkl9vsYhK9eioSNxoboY9exg8+imOdzTjUI20GUx4tRjHvRMcI4dtoqeHsYd20haJgdUqHkiMRuzDI4zt3J53/F3Bor3eKWbITaHUQZU2G8VWb+txXHZd+solJSPFs6RsLNdouHJQygjqfMkl0Iv5OL/Yanmmc2WrrGaqbgcClxP/nfx1ePgdDh9+ftE9BBLis6npocR1V53duznw4v+E5Gu1LP0+V7XZMROZLAA/+hE8npaBm02cxV8fjcKlSyJ5BKCxEVatgqkpsNvp+/lpHB/bh7PdBZBIvOgLzGYXskNDuO7bitdixtnaKvzLBgN+g4prcgquXhWxeM88k2ggHNy6KUUobzCYORPyFibaS6WMEygzkm8zZwms1CptPdkmyj0KXFI/SPEsKRu1Gi1dL1R6BHW5BXomMR4I3CIWC/Pcc5vzthfkqqxmqm4rSgxdV1K2xSveme5hd/fB2orPNAp9n6vhh89JJgvA6tUit3pN0rqyibOeHiGcz5+HyUloaBD7Tk5CezsYDDAywpirFcPVqww22vFpMRyqgXsMZua0WPa1dXWx/9wljj/6AKxqwQ74Zz34bFaeGrgizjM+DqEQnD/P4O1hjj/3b3Csbk0I5b+eG+deoxWnUYj1vER7KVTBj5x1VHoZc7TLUaWVVdXc1KuvXFI6UjxLykY1o+HuVsop0NPFuKqaAAWDwYzN1pq3vSBXZTVTdVvXDYuOkaviXXPxWSJVb3ZMZ2gITCY4dUqIsKYmWLdOiOd8hpwMDcHIiLBVxGLCtqEoIqFjchLWrwePB5Nq4GxrE3Zdw66ohHSN/vAceyzzwiFTtfbIEdwvvMAxoG/XVsZamnCFIzz10D7cP/8LMcWwsVGsMRikb10Hjvf7cX7ik4AQyjEdJmIR7sGaWHJFB6NUw4+cz5CbMlBKlVZWVfOgTn3lktKph/HckhVCNaPhJOXhwIGjdHef4oUXLtPQ0I7NtqbguL1cMXKHDj1LODxLKDSDrmuEQjOAA7CnbMsVp7fcR4dnuge5rncRpUaWmc0iUSMQEEI0EBBV5L17F0W9ZRRnXV1CxFqtC75kRREV52BQ/GlqgnAYjKa0F+sL15A+CjxeWX36adxvnOJzX/5jvvLNP+NzjW24d90Hb74JTifYbOJ8NhtjnWuwX72acoYm1cDMfLZznIoORsk0rrzcfmSoeDxgqchR1HlQwVHgktoiK8+SslKP0wnvZgpJeSi2wpursprNapJpWzkTPuqJkuw25bAIKErm7a2tQpQtweDRT9Fn0Rlrb8U1OcX+772G+6J/YYdAADZtIhKLcl9DIzcVNWHb2GS2EkHPXq399rfB74f77oMDB0QF/NVXYcsW0ZSYhmtyCq/NhjP5MgwmfHoMrxarzmCUKviRlwWyqrokK9VXLpHiWSJZsRSa8pCPvSCTGF9K3GazmuRrP6lGM2alKdpuUw6LQCgkhOmlSwu2jT17xPYlGAzNiQSNQx+n7dQpvBYLx3/nX3HsxD/gfv8cuFxC1G/ejGvnR/C2trJHXbDleLUYq1VD9vSIf/gHsbZM1/fII/DjHwvxb7VCMMj+k30c/73PQ5JQNqoKv+ls53osnGgifMreUrlmwSr4keud6M13YWYa9dYt9AYb+uo2FEezrKqmUY/pH5LyIMWzRLJCKTTlYSkRnE2MHz78fMaUjHKK20o3Y9Yt5Ygsi1dKDx5c2DY9ndosmIW+wCwO1Yhz6zZobsE5MAChIH2/9VncG3ekCPj9oTmOeyeADKOxs1VrdT27BeL3f19YSiYmxL4WC26DmWMbttGnGsovlPNN0KiSH7keyNQQCAivs90hLDuhIOrIEFprEEVVZVU1jXpK/5CUDymeJUD9TQaUlE6hNvRIf3oAACAASURBVIylKry5xHh396m7U9xWmnJYBIqplM4LybE9W2hDhe3bRZXZ5SIUCfN+JMCY2Ybr0vvs/8EbuN8/h7uri2NHP0XfPa7FwjbbGh55BDweBjeup2/9WsbsNmENWd2Me/du+PrXFwla967duAu/k7kp1B6TZbrhSiJbQ6BuMicSJDSLDWVqAj0QAJ8XnvwdWVWV3BUoegZfWb3y4IMP6m+//Xatl7HiSJ4MmJySIZv9ljfd3QcX2TDi33d3nyr4eM89tzkx4TCOrmv4/bd54YXL5ViyJJ1kUZcsOguNRSsklzjpnC8dfAQvOs4ZD+zbx9TqVZwN+bGrKg/NBvC/+w4+q0XYON7rF6keX/0qHM3wIJVpDcDgX7/E8Y/vw6GD3esTFesHH+BY1+bqDTqZH7+e8pBy+bJIGdm4sXxZzpXOhy4jkR9+EwL+hZg1QA/4UYavo7u3iypzfLumgXcK07Fv1GKpEknFUBTlHV3XH0zfLtM2JCmTAVVFpcXWQou1hZ6LPbVemqQESk55SGO5p14sS+IWgXxSMZY6Tr7JDUk+6/1Dt/E5nXibm9AGBrgcCQA6m0021IEBnIEgjuER+vbshLY24U/+2tfyTwTZvZu+3/osDhScN4dRR0dxemZxXL5C3/XFD2SDoTlemhnlG5NDvDQzymBorrD7kI30BI2xMfjgA5ExnVyJjl9XMQko2RJHCk1PqRaeSdHklozFJqw2MkFCcpcjbRuSu3oy4EqmGkNVllPqxbKlHBaBQiqeST5r9/Qsx85fpq9rDWNoRHSd+8x2VhlNogo+O4s9GmWso10I56Ym4VFOb2jMYYsYW9tCG5tgbFyM+o5GsV8YYGxoCP6fb8MXvgC7d4vmRe/E0pMEi6nupttjBgZAVcUQGFVNbWSE4hJQqpEPXU6yjO/W19yDEvTLBAnJXY2sPEvoaurCE/SkbLubJgOuZJJznEv1JR84cJTDh5/HYmnG77+NxdLM4cPPS69zPdPfD7/zO0JAfv/7wlaxVMWzq0sI43nc07N87tSbfOXsh3ysoQmzYT5No6kJ/H78jU5cd6bFtmBQVKDTGxqThWNcjLa0QE8PLqMZ/+AVkecci8HwMP4GGy6vD957L7HWRPOiakBVFJyqAYdqpC+Q9GlIsdXdI0fEvtPTYvjL+Lj4um3bwj7xRsYc15KTauVDlwllx+NCJAf86JomLBtBP8pHPw2PfUaIau+U+PrYZ6TXWXJXISvPEjkZUJI3d23qxXIkLiQvXYJV83m8b74J+/YtiL1MFc8cDYb7bY0LiRrbt+O/OYTPZOSpt87CnTui6hwfatLfv3D8HKkh+22NHI+GwenAfvkK/kYnvqZGnvrpW2Lwyvxax559hjZD6hCWRZMEi63upidotLfD2rXQ0bGwT7xRs9gElGWWD71kzJoUy5K7GFl5lsjJgBLJSiQuJMNhIWhtNpGXPDCQW+zl8Fm7LQ0cc7bhVA1MrG7B+cCDHPvb7+H+xx+KBrtwGIxG6OxMrfimVbOBhHB0Wxo4du02zlkvE047zlCYY98/ifvKtcRYbl5+Gdf/+j7+M6eFH3meRZMES6nuJvvC//RPxXXEK9HxqvSRIzmvJSfp1e3kY9YpxnX3Y3riS5iOfQPTE1+S1WWJZB5ZeZYAcjJgPsg4P8myIl4hbWoSUwDj4tnjWVrs5fBZuy0NCx7jWzPC99rQIMSm2Syqzo2N4r/jFd8l4vLcH/8E7niVXNfFMYJBscbeXmhsZP+Ul+Ntq+Hdd7Df/wD+ttbFkwSLre5m8knnynIuZkjKXZQPLZGsdGRUnUSSBzLOrzYMhuboC8wmcoP32xqrF1+23InHr4VCcOaMEM5xYbp1a3GpHdnOMS9wUZQFoX7ggKhcf/e7Yt8lGvkGz71P39m3GPN5cXl97PfM4f7RSZidFQNeXC4GWxrpa29hrHUVroc+uvj3oZhov2Jfs0wi5+5WMg14kZXz+qSe36tsUXVSPEuWFbWq/naf6mY6ME2LbaGiFf+++2B3xc9/N5KcrpA8se6Ys00K6HxIFoXBIJyd9yV/8pPwu79bHrH3zDOiut3buyCadV0I3vjY7e7uJQ+T8l5PTOIfvIIvGubYd/87btfa1GmImpYqyjNddyHCNlPGc/z7PNYuqT/iA150qz01EUQ2NtYd9f5eZRPP0rYhWTYkV3/vabyH6cA0L5x5oSrVXxnnV32S0xUAnIohsV2K5zxItwk8+WT5K6Rxm8S2baK6DUI8m835WRnmSXmvXS6cLhdoMfo0Bfc/n0nduQTLSUbKMQJdUlfoF95ITEEEwGYX0XoX3pCNjnXGcn2vpHiWLBuSh7kAia89F3sqLp67mroWVZ5lnF9lGYuGl05XkOSm3GOk06u6u3bBq6+KKu0jj4jq9tRUYdXt/n7Gxq7RdmtUiNb5UeB2RWVsx3bo+UexXyH+4kJYZikYkjzwTIqR4slYbGK7pL5Ypu+VTNuQLBuGPEM0WVM76bNVf/tH++k+1c0zrzxD96lu+kdLm+J1ZNsRpoPTTAem0XSN6cA008Fpjmyr3075UujtPUF390Gee24z3d0H6e09UfU1uIxm/LqWsm1RuoKkemTKUH71VXj6aSE8IxFR3f7P/xlcLvjWt5aevjd/TNfkFP4GG1y5An/3d/Daa/gnxnG1u8ozYTEXyzAFQ7IETa1yCuJyYZm+V4buZeTp+s53vtP927/927VehqRGvDf6HjPBGWwmMTJ2zDfGT4Z+wvDsMKO+UVZZV+FyuBL2DoB2ezszwRlOXj+Ju8WNy+Eq6twuhwt3i5vrnuvcnL1Jh6ODz+/9/IpsFuztPTE/SVDHZmslHPZw4cJr2GydrF+/o2rrcCoq74V8gIIJBd+85/kp+yox4U5SGP398O1vw3/9r2L4yKpVQuTmu298CEhLi2gMtM2PbvZ6hUg+fFjs91d/Jba3t8PMDJw8CW535nN9+9sAOL0+3rNbQFEwAT5NwxcM8JSxgVUfuY/BRx/m1cc/xg8f3M2Vlkacilq+3wGXS6zv+nW4eVNkO8sUjGWNbrGhXHtXfPxvMEJwTgx4eeBp1KY1S71cUkXq/b36D//hP9zu7u7+Tvp22TAoWTYke56D0SC9N3oBOLD+AFajNZF+0XOxRzb3lUB390FCoRkslubEtvj33d2nqroWmbZRJgpJlMi27+ys2FdN+sAyvXkvW/NdOCxEanoTX1LD4WDrKvo+9jBjq1twjdxmfwTcMRj8gy/LxlFJ3iSSG24PQTgEFit0rKurBAdJKssxbUN6niXLhvgwl56LPbxy8RUaLY3sXbOXDsfCFLB4Eods7isen28Euz31id9sbsTnG6n6WlIyhVcq1Yg9K2TyXtq+gxvX09e+Z+EBZnwa9/T8SOx0b3Cm5rtgEN54A375l1NHZj/33ILf2OPBreu4X/7Boqg72TgqyZd4cgNWO7juWUhuqCMxJlmMcd39dd0cmAnpeZYsK3Z37Kb7YDd71+zliU1PpAjnuEDuaurCE0ydACab+/LH4egkHJ5N2RYOz+JwdNZoRSuYTD7i5Ml85TrHyy/Dj38Mp07B6KjYni1RImlK32BLI8d3bsbb6KTNH8CLzvHNXQw2ORZ7g/v74epVOHEi9Txnz8Lq1UKMq+qCMO/pWfAbm81CNAcCQmxv25YQ5mPRMHYl9Z8q2TgqyYR+4Q30+eQGRVVRbHZ0q11UNSWSMiLFs2RZkksgL5fmvnpoysvEoUPPEg7PEgrNoOsaodAM4fAshw49W+ulrTySq7zpwrIcxMW5xbIgUM+cEcI2W6JE0vjpvvVrcYTDOL0+1I4OnPc/gAOFvlXO1Oa9+Hk6O8WkwZkZOH0aPvxQZEvv2ZN6jrhwj8fp3X+/SOkAkdphsSSEuWwcvXuI3nyXyA+/SeT4V4j88JuiklwInkmR1JDMMkhukCw/pHiWLEtyCeS4vaPF1sLw7DAttpa6mwQYb8oLhWaw29cQCs3wyitfrgsBfeDAUQ4ffh6LpRm//zYWSzOHDz/PgQNHa720lUdSlTdBOTOG4+L8/vuFoB0ehlu34B/+QVSJMyVKJKVPjNlt2Ge9QnTHI+Qe3cfYLz8p/M1xy0f8PJs3w2OPQXMzRKPiXJ/4hJhumIzHw+B9u3hpZpRvrG3mpf/r/2Tw5b8XaR2RSIow329rxKdF8WoxNF3Hq8XwaVE2GMzi9ZNDvDQzymBorjz3TFITEpaLgF9ElwX88NO/LUxAL9PkBsnyQ3qeJcuSZP9z3KqRnH6xu2N3XYnldE6efBGzuTHRlBf/evLki3UhUg8cOFoX61jxVDpjOO5BnphY2KaqooEvW7N40nAV161RvG2tOPfuTaRlZKz6JnudXS7xJ95M+IUviKo0JBoQB80Gjj/1OLFwkIlYhAshP32rLPzmv/siB9MyX92WBo7RltI4+hGTjTMhLw7VSJvBhFeLcdw7wTFkE2Gcem7CykQ5hmUoOx4X0+ogdVrdA09XaNWSuxUpniXLlnoXyLmop6Y8SQ05cmSRsCzrEJC4OB8YEAJ97dqFhjy3O3PDICSGq+yfH5uNasSu64mki6fsLZnPk+khIC7Gv/Y1+Ju/gbk5+v7t7xL7oJ9re3ZjttloVo349Bh/7R1nndm6SACnN46+NDOauYnw+mXcf/u94psvq9G8WQVSGueSq7iPUXcCOi7y1Qtn0Rsa0Fe3ozjnk36WsFxkekDgsc8IwT2/jQeerrtrlix/pG1DIqkBsilPAiwIy0oNAYlbMMbHhY84uSEvD3uI29LAMWcbTtXARCyCUzVkjojLMmhk8OinhLUiPMNL2+9lcON6aGlhbG0HE1oMfWSE6WCAm9EQvliMgKbRF5jNvJgkMjYRTkwydv6D4psvq9G8WSWWS+NcslVDb2iAcAj11jC6d0bskMNykc3mAWB64kuYjn0D0xNfyiicS/ZWS+56ZOVZsuLp7T3ByZMv4vON4HB0cujQszW3JBw69Oz8IBJRcQ6HZwmHZ3nyyT+q6bokNaDcI7TTj/3cc/DFLwoB3d4Oe/dCRweDBuh7+hcZmxzKmaGdV1xgktUjXrUd/NfPcLyjGYcWo+0np/HaGzj++f+NY8dfxTUxxft7dxGwNWAIBDA5nYR1HXSNK+FA7nMhpk96tVii4gzgH7yCKxTJL44vmXi1+ZVXRFPl3r0LzZv5vL4eWSYjj5OtGnpruxDOio5yZxzdaMppuSjW5rGcqvKS+kWKZ8mKJt6YZzY3pjTmATUV0PFzJ4v6J5/8o6qtqR4fKCQVYvdu+NM/TRl8MmiA4x/ZgmPH9vJ5htMeAvpmRnFoMWGt8HpxhkJgMNC3/1H2953hlcO/RAwwRyJoAIqIoPNpsSVPtd/WKOwksDA4JRrmqdE7qTsuVV1PHgij6+LPmTPw6KNi0mA5mzerSVOrEIVxYQn12TiXJPIVRzPaWlAmx1Hm5tBt9tyWiyIfEMrhrZZIpHiWrGjquTGvVk159fpAIakgaZXhvqd/EceO7TjbRRNgOQaPDIbm6Lt+mbGh67gGr3GlfTUbx+8IEWqxQCiE3etjrKMd99UbdF29ztDG9YQsZixAs2pAUZRFdoxMZGoifOrabdzXbxbWfJkcFdjcLGwtVitcvCjWXc7mzSqybBrn0kS+4mhGN5jQbXZMT3ypoNcC+T0gLJOqvKS+keJZsqKRjXmLqecHCkkFSaoMj00O0WYwpfy4lMEjg6E5jg9dxvHuO7TNBfCGQ9xuacI6O8s9U1NgEufyW8y4RkYhEGDvW+/RGopw56MP4zMYcagGVqtG1pmtS5xNsMhO8vFPwDvzzZfBoBjOcucOfPKTosKcyXqRnBKyfbvIprZYRKxf3MNdrubNKmJcdz/Rx6j7xrlSRH7Rr10uVXlJXSPF8wqif7Q/Jbotnnl8N+NwdBIKzSQEIsjGPPlAIcnoGS5m8Mi8X7jv3jU4QkGcBqOwaESjbLg9zrUN62n6cBD7mjX421rxxSI89Wd/CYrC/rkIxx9+GPeq1gXrhRZlv62x4OsZDM3R19XO2B/9O1w/f4v9/+W/4wZ4/HHhY46PA08X0MkpIS4X7NsH7843j7W0COG83PzO8yyHkceliPxiX7tsqvKSukaK5xVC/2g/L5x5gRZrC/c03sN0YJoXzrxQd8NBqo1szFuMfKC4y8gQv7Z/66aEZzgUizEYDTKrxXjA4mAwNJeXdWPw3Pv0vX2asYd2crmjjW0/ewvnnSmIxcDhoHN8kqDFjHNqmrF7N+C6NcpTv/E53J/9AgBu4FhoLtV6YW8p2DYyOB+n51CNtLW1413VwvF/+wWOXR7CPZ2U3JGp8S89KtBshq1by5t4IslJKSK/mNcul6q8pL6R4nmF0HOxhxZrCy024feLf+252HNXi+daN+bVI/KBYmUymCZE99sacV+6stAQlxS/5n7uOY5t3cQr3ju8F/LTaDBwv9mOSVXzahwcDM1xfHQIR0sTbZEY1zWN/j272fP+eVaNjUM0ir/RyearN/jcD07B7fnq7hL5zcXQF5hNzXyemITW1fStX7sgnrM1/mVICVnO1eZCWW6DVMrFcqjKS+obKZ5XCEOeIe5pvCdlW5O1iSHPMuwULzNyWl4q8oFi5ZFSfU1Oz/jn13HHG+IgJX7N3d3NqsAsj8yFcV4YEM1xTU2wYzt9RktOUdsXmMVx5w5OswWAzVMezq5u5vLGLh6amMRvNuEzGXmq9wx0dlbUOzwWDaf6tw0G7AMXGWtpglOnRKa1xZK98a+SUYF1jIxsK4y79UFDkhkpnlcIXU1dTAemExVnAE/QQ1fT8usUlyzw4flZRgZHMRIkipVOdwdbdhbuCU1HPlCsLBZVX+PpGc123E1NqTsnVWHHxsdo++lpMXGwsRGCQew/Pc3YY/uguSP1dUn2j7HPHKYtEgUdsFpZFQhx350ZBpxOJu5dj8sf4Kk3foLbYIbNmys6qS/Fvz02Bl4vfqMB19QMzM3Bj38spil+/espr8tYqb+LRnvLyLb8kQ8aknSkeF4hHNl2hBfOCO9ek7UJT9DDdHCaz+9dfp3ilWA5NlN+eH6W8avXUHQjUSwoRBi/eg24tywCWlJDyjwGelH1lfn0jLUd8O6FrPFtrgsDeJubcMbj4axWkYhxYQC23Je63iT7h2tyCm80gnN2FlatYqq5kSuNDkDH9fAj7N+wGffv/H7R11MIKZnPAwP4O1yi6v0/vgeRiHgoWLcu5f5mrdSXknO93JCRbXkjHzQk6cjx3CuE3R27ee7R52ixtTA8O0yLreWubxaME2+mnA5MpzRT9o/W99jdkcFRopoRFBOKooBiIqoZGRkcrfXSJKVQgTHQLqMZv66lbPPrGq6uDRnHZnPkCAD733wHn9POcKOd9zpa+ecNnZxd38mGDwdTT5Cch6yq7B+4gk8FbzjInTk/Z1uc+G1Wtq124W1r5bh3gsHQXNHXUygWVN4P+jjdsZqI1cqxwWHcm7bC4cPwxBMQCqXsn1ypVxUFp2rAoRrzGg2+YmhqFRFtycjItsx4JsWDRTLyQeOuRlaeVxC7O3ZLsZyB5dpMKawaFpSkbTpGjARrtiZJifT3p47K3rZNDOOAksZAZ5y4p0V5asPmnA1xbqudRwcG+evHHiCmKjQHg7ROz3Lm/t2sS07dSM5DHhvDffo0xzZvpO/B+/jJvm3YQ2E2tzSyan7oCpQ2cCXfynxyBXmfrRH/1Cw+URNcIMOgk6yV+iJzrpcjMrKtAGQ2tCQNKZ4lK57l2kwZxYpCBFj4R14hSpT8hkhI6ox4xXl8HFpbxTS7+Cjo9vaSxkBnnLgXj33L1RB35AjX3/4pe26M4EQRFdpAAO9j+1LFb3Ie8sAAWK24b97CPTnN2AN7abszjXrHA/PiuSQhmmYRSVTmM8THLfJ6uzfBu+/Q196C+86MEM4ZmhXLlnO9jJGRbfkjHzQk6UjxLFnxLNdmyk53B+NXrxHVRMVZIYpRjdK+cV2tlyYphrj1ob1dCGfb/MfAFy/mToPIk6Ji33bvZsyq05actrF3L/a29lTxm5yHPDMj8pBDIdi7F5c/gNfpwDl5J7F7SUI02SICKQkh6eJ5UQXZ5cJ+/wOMDV2H4b6s0XNZK/X2Fu4mZGRbfsgHDUk6UjxLVjzLtZlSNAXem5K20b5xnWwWXK7ErQ/xMdAgRPP4eE3HQLvaXXhbWxPVWwC/FksVv8l5yIoi/jz6KHR0sP/GLY5v7oK2Vuy6XroQTbaIxMmS05yxgtzWisvlgk8eznqKnJV6iSQD8kFDkowUz5IVT7yZMjlt4/N7P1/Xfuc4W3Y2SrG8UohbH+JjoAcGFrzPNZhoF49quxyaYzQW5l6jlbUmS3bxG7d/xKvQFgtoGu6rNzg2PEzfb32WsVgkoxAtKBYu2SISJ4NvGUqrIJdjQItEIrk7UXRdX3qvOuHBBx/U33777VovQyKRSAon2cvb1LTgx62BcD7lneKvvePEdGhSDVhQuKNHWWO0sMlsSxG3g+fep+/KAGNouFDZv2k7bk3JO2ovuakvWeAec4pYuEXCengM9/N/kvd9utvzmiUSSeVQFOUdXdcfXLRdimeJRCKpEmXOdy6GwdAcX78jLBAOxUAYnbCuscFoZZ3ZyueShqMMnnuf41fO49DBjoIfHZ8CxzbtxL3rvsTxconXl2ZG8Y6PpUwx9O7YjrPdlagcLxLWozO4T3yv4PskhbREIikn2cSztG1IJBJJtYgLwLiA7ulJ3V4F+gKzRHWdZtWIoiiJMMTJWQ/ma+/D376SEKx9Vwdw6CSGqDhRQNfouzKAe9d9eQ0byTXFsK+dzJMR73Hh7u4u6Lrk4BOJRFItpHiWSCQ1p7f3BCdPvojPN4LD0cmhQ8+uzPHhBcSwVYqxaJhm1UgYPSGczXMBPFOT7J2cSlnX2C9/nDZzajSiHYUxxECWrGPBk2Luck0xvNzkxKfF8OsaBkDXIYaOoigFV43zWYtEIpGUAzlhUCKR1JTe3hO88sqXCYVmsNvXEArN8MorX6a390Stl1Z+0ib1Jf47XoGuAi6jGSsqo9Ew18NBbkdC3PHNYlAU9o9Pi3WFw3DpEq4PzuG/fQv8/sTr/ei45v/pGIuGsSup/4ykZzzHpxh6zSY0nw/v+Bi+mWk2/OBHjPq8+PQYqq5zOxpmLBZG0zVMilLwlMJ81iKRSCTlQIpniURSU06efBGzuRGLpRlFUbFYmjGbGzl58sVaL638DA2JJrhkssSwVYoNBjM3YyEcigEzMKfF8JjNfHJwGPf0LIyNiSg9XWf/W+/js5jwTowL4atr+BTYv2k7kGMseFLMndtq59iZ93BOTTMRCuD0zHLsf73OdfcG7j13AYIhprQYZkVBRWFGj7HZZCt4XHbKWsbG4NQp/P/0Q1w/OV3S6HOJRCJJR9o2JBJJTfH5RrDb16RsM5sb8flGarSiClJADFuluB4Ls93cwB0tik9TWasaWH3lBkE9JnaYnyAI4A5FOXZ9lL5GG2OhAC7gqUtXcb/6OnR1sf/opzje0QzkiIo7cgT3Cy/gfu37wpehKBAMcuKzv8Faf4CGy1f5yY7NAJgVBYtqYJXRhKbrBVWNE7F1k5PYT5/G39yEb3ULT515D3r+sSapJhKJZGUixbNEIqkpDkcnodAMFktzYls4PIvD0VnDVVWI5El9yTFsVRyQMhYN02mysE5Z8DJr93QxFl9L2gRBt8GM2xuBn74hGv5aWhj8yA76OlYz9uEHWEwfIbJ6FRPEMg8biQ9Y+exnhXhubob778cV0/E6HawaHafrvo8Qmq8aW+atF4VOKUwMPvnJGcbaW3FFYjx1fhB3jAVrjBTPEomkDEjxLJFIasqhQ8/yyitfBkTFORyeJRye5ckn/6jGK6sAyZP64jFsGcZHV5KsU/l2fgT6ryyaIAgIkT8zA+vXM7hxPcd3bsYRDtM268U/eAXf6gcTuc0Z2b0bDh9OqbonTyZcZzDzftgPKLjNVrxabHEFO0fMX0pEncfD0Skvbo9v4bVVtsZIJJKVjcx5lkgkNeeuSduoA5YaWpJ1mMvsLOzezUv378BrNuEMR0QleXYW76/+Ck7VkJoRncfwk0GzQUwmXN3C/9/e/UfHdZ/3nX8/984PDIABAZAgKIqkKNOULMmhfliyLTu0HVtxEzUbp9ocbtLEjeo02fqkTryJk7Tx2bPuntPWrt1k0ybb1nUdtYq3qeoqcbvZNo5Ty6Ei2U70izYl2zIlGpZFgiAJkIMBMDP33mf/uDPDwU8OQBAzID6vc3AIXMzc+d4rEXzmwfN9nmy980cNX9yjeYUBMydufu3863nyCaZxjrw4ltZww6WgfZXt70Rka9OQFBGRreIyw1guO0xkqec/+ihMTvKxH3knI+XZdLf53Bz09JC8/e1MxDV+fce+5vnXc/gJH/nIolrxEyEc/b7X8fgb7yRrxsFsgeFMFsbHKT39FEWMB194uaOTHEVkc9OQFBGRraCNXtIH8r0r9z4+dGhRoHkicI5+9Qle3NbPycEiB0+dYXh2Fu68c1F98rI9l9cw/ARIg+09ey6tZWiAT935OqaCtBVd3oxSXOOungGGR0fpu+sNjI+dhFeOrlgao4mEIrIWCp5FRDar1gxxLpfWKj/5JOTzcNddl3pJQ3PD3FoCxhOVGR7ZNUj/97+F1730Esd2bOPZfddz++tuIbdjx6L65PGoykiYnXeOK+q5vKBLyeduvpHv9ffSFyf0WkDVnZInfKMyw1sy29Ia7tFR+MH3rHxNmkgoImugPs8iIptRI8M8OQnZLHzpS/DYYzA7m9YiP/FE2u8YmhvmGgFjKYnnBYyXG0bSzCTvHGXHm+/ljv0H6Rsd5YX+HopBuGizYDv9n1dyojLDQ1On+djZMR6aOs2JH/8b6XVOTkKS8PzwAH0zs+SHtzMYZsDSf8xORRW+CM95mAAAIABJREFUMnuRL89e5HxUW/G6WrPjgRnFIFx1b2kR2ZoUPIuIbEat0wq/+c20jdzAQNpizizt1fzCC+lj672k1xowLpzeN5zJck9PkYO5Ag8O7lqUqT1cGGA6iSglMYl7s3vG4cLAZS9ryQB/1yAnfu1X0smH//W/wvQ0HqTrKQQhO8O0L/Qc6R6eu3J9ZINg6TcGx47BRz7C+GP/g74/P3rpDQaaSCgi7VHwLCJbWz2Y4n3vS//cLNPoWqcVXriQBss9PWnJxtxcmn2emrqUsX3ggTWPsF5tJvlAvpcjxRGKQchEXFsyO72cZQP8LOmY8Le9jVsrMTP5PBfOnuHUTJnxuMYczs4gy5sKA2zP5pZ+Y9CSrR91S6+pJUO/2t7SIrI1KXgWka2rtfShdXPdZgig9+1Lg2ZIg+i5ufTjuuvSHs2Nfs1DQ83NgmsppzhRmeF8VOPLsxf5yuxFztaqbWWSD+R7eXBwF7++Y1+zhd28UoxlSiqWDfDHTjYz7e/51kmGahHnB4rMViuEDiGGAeej2vzntb4xaMnWHx47xXSxSGlwG8kLL6wqOy4iW5uCZxHZulpLHxqb6xrT6LrdAw9cyirffHPah/nixfTzfD7989/9uzSbXu80sdpyikYJRTYIuCvXB8AzlTK1JGlmkhfVJy8RFK+m1nrZAP/V05cy7cBcGIIZmShiRybL3myefBgwFlXmP6/1jUFLtv7A5EWOHH+RIsYEyaqy4yKytanbhohsXQtaoAGbZxrdwmmFb397mmmuVNLs8xLt2ZojrFu6bSwap91iXsu5IGR7tj6dMAibgXM7HSuWbV03e7H5uEYXkBcrM5yOq9yY6WF3Nt/sEX3/VDkdrFKfcFjJhtxwdpJaPk8VZ0+Y57txhcm4RuJ+6XmtUwoXdO04MHmRAy99J/36x/7muv2nEZFrm4JnEdm6FgRTQHNz3aawRD/my7lsj+cW42fGGXn+hfSebNsGt9xC386dzVKIdoJiuHzrutYg/ECuQE8t4BvVMt+qzZKzgFtzvfCud8FT/4yjO++gv1JhcHqGCk5+eBgs4ILH3Jjp4VwSMRHXln5j8MADaVkOzJ9U+LM/u6p7KCJbm4JnEdm6FEyljh3jxBe/wNHBPsZ372J0334O12D0q09QGtpGcWAgrad+4gnKb30LoztHgfb7OY9m6hnrenAN80sqFgbhfUFIYCF9QcA9PUXKnvDIrkGO/NqvMH7qJCOvnmZfGHL84Gugt0DWYTKpMZrJ8oFtu5d/c7AwW7/CABURkeUoeBaRrUvBVBo4P/wQj/zAW+h3GDk3SensOR4p9nFveZYn9+2BapU+M8r5HNNjY9x/w0Hg8kFxw+HCAI+UJgDmjetulFQsDMLHogp9ZkzHMccqZaaTmKwZn9s1zOieUUpJzHAQcltUYyyqMJVEDIXZ9mqW15CtFxFppeBZRLa2rR5MPfooR+/6PvoxirUa9PRQnJuDl7/DyT17OXL8RY7esJvxvgKj0zPc/4U/58B9/xNw+aC44XK11guD8OkkJpqbY7oyR//5SfrCDJWREZ7qifm5/ChPRiUABsMM2SBgOom02U9ENoyCZxGRTWQt47VXNDbG+FvvZKQ8e+lYPk81m+Xx63cy3t/LaHmWH3/+xKXNdXULg+IsRp6Az5bOMjo7f20La60bXToazzsb1yCbp88CsrNznJmbYcfsHPkwA1GEnXqVget2c7KvypFi+5seRUTWm4JnEZFNot3uFquybx+jZ89T2jZAsVrjfCHPNweLvHLrAQpzFcLZWUrZDI8c3MeRV17hwAMPzHt6IyhuXdugBSuubeF1lD3BY6eWJEwQc/DFlzi3eyd5dxyo5nNUgVtefInxbUOr2vQoIrLe1OdZRGSTWOt47RU98ACHn/4a0zivFHv5+vA2zvQWyOTyFPsHeGHPddRmZ+jHOPp3fmbZEpfVrG2px+7O9jCcyfLjxR0Mj58hn8RM9BaYLOTJxzG3nZ0if+GCJgCKSMcp8ywiskm0291iVQ4d4sB7H+TIF7/Av7j9JpJsBvr6Gc3l6Q0zVHoLjO2+nkP5Psbj2rKnaXdtJyozPD6TTkbsD0L2ZfIMZ7L0WcCLlRlORRX6R3Zw+9irPHXjXqbyeRKg4jDU38v9mgAoIh2m4FlEZJNot7vFqh06xIFDh7ju7BiHwizHKmUq9Sl/OYzpJL7s61xubScqM3yudI6n5qapekKfBVTMOF4tcxt9ZIN0w+GuIE/xwGupHXuWsBYRhiEzmQzFKMKv231l1ykisg4UPIuIXIF138C3gna7W6x1bY0AeF8mz/FqOT3oTtZs3ussdd6V1vZY6TwPl85wLo7IAHmMc0nEDjN6zHixNsu+bJ7+IKTPAhgdZeyuOyieP8/2iXOU+/t4087dlIZ3LBrAIiKy0VTzLCKyRo2Nb6UknreB70Rl5qq83oF8L0eKIxSDkIm4RjEIl23Rtpa1HS4MMJ1EZIOAW7PpOS8mCQezhebrPFY6zz8+N8Zj5SlerVX4bnWuGTQvtTaAh0tnADB3cJjBGbCAWU+oulNz50hxhNfmCpTrGe/pQg+5PXuo3nSQ/uv3wOjolZeoiIisA2WeRUTWqN3x1OuptdNEIwP82dLZRZnldte2MIt8b77IybjKeBLzpnpGufX1Hi6doZo4VU+YjNMhJTdlejg6e5EHB3ctuu6Hpk4TuTMYZCgHCZE7niRMkRBawFA2w8Fsofm81uz1tMcAHMwWgHUqURERuUIdDZ7N7EPAx4ERdz/bybWIiKzWWjfwrUepx+Xa1rWztqXO8WRUWjabfXT2IrNJwmwSE1pAjwVU3flWbZZsGC56PMC3q7PMJQkn4zkyGLMeEwMO9ADlJOZsXONEZWZe3+himGE6itmf6WEwzFBK4hVLVERENkrHgmcz2wv8IDDWqTWIiFyJtWzgW69ezZfLLLezttVmzsejKrE7mJExAyAHzLgzncRLXuupqELWAqo4CRD5pe/vyGS5OddLNgiar7lUZl3DUESkm3Qy8/xbwK8Bn+vgGkRE1my1G/hgnUo9jh1jfPxlRl49Ddu2wS23LKoJbmdtrdnp81FaglGKI8xsyWx4FqOcxFRxKiQULCABMpa+xlLXuj/Tw8lojpyHlJOEadLNNvf2DLA/n5ZjnKtVeXxuelEmfj2HoWzkxk4RubZ1ZMOgmf0o8D13f66Nx/68mf2Vmf3VxMTEBqxORKQ9q9nA1zAeVRcFmqvaCHfsGHziE4yePU95x3aYm4MnnoDx8UWZ5TwBz81N88TsRWpJsmhto5kcZU84H9U4Xk3b0+XMyJot2lx4ojLDRFyFNOHMHM6kx1Q94WCmwMElrvnFygxn4xrVJGEmcfJBwHCQYTjINgPn81GN56plsmZXbdPlRm/sFJFr21XLPJvZF4BdS3zrw8BvAO9u5zzu/kngkwB33323X+bhIiIbarXZ0Svu1fzoozA0xOEzkzwysgPM6APKJ77N9PZB7u8bmlca8pbCAN+rVTheLXP+QsRrc4Vm1rWRnR6rVcjWo+Iqzm3ZS6UUkGaQH5+5QOIJOTeqOAFp3XIVZ84TDi8YXnKiMsPpOH1DMBxmqZJuMtyVyXPOI0pJTDWO+fJciVlP6CFgKo4YzmSbr7lemeFObOwUkWvXVcs8u/t97v76hR/AS8CNwHNmdhLYAzxtZksF2iIi15RGO7hSEpO4NzfCLQw+lzU2Btu2cWDyIkeOv0ixWmNi+xDFibPNzHJrsDgVR5yM5gAoxdG8rGsjcz4dx5yJa5yOqoSeBtGNiX+NjC3AhTgt2cgRkMPIOAS1iMlT34N/9a/SrHjd0dmL3JjpAag/Jz3vOY94b3EntSTh6WqZqidcF2QIg3Rgyvmotu4t6a442y8i0mLDa57d/WvAzsbX9QD6bnXbEJGtoLWjxJo2wu3bB5OTMDTEgcmLHJi82Pz6BGlruC+UJ9keZLgh28NYVCFnabBb9qSZfW3NuuYCI0eGfgup4hyvltmf6bk08S8I6Q9CJqiSdmF2BhInLl0kwAjCDEd3DnHgE5+AD30IDh1iPKqyO5unNwgZiypMJzH9FlIMM+zN9fBH5fNkMQoWErXUTH+jMkMYGDV3Hpo6vS61yVdtMqOIbEnq8ywissGuaCPcAw/AJz6Rfr5tG1y4AJOTnPi59zVLNbYHGaY95ni1TM2doSBDFae/Hjg3sq4nKjP8i8lX0/ZzHpMEzkCQoQqcjOa4LpNvBrX7Mnm+U5uj5gkxEMc1rNDD8GyFwbkK4zuGYWgoLSs5dKgZsA5nss1SjFISU0sSHilNMBnX2GYhQeBMxBEAGYdTScQwGW7P9a25E8lCa9nYKSKynI5PGHT3/co6i4i06dChNLs7NASvvJL++aEPcXTPaLNU44ZsT/PhlSRhur6xb18mD6RZ1yzWDGJ3BBmGggxTScz5uEa/hVyXyc+b+DecyfKaME9EWuscm5GYMdXTQ2xwqtjLx37knTx043WcqMwsW54C0B9kGAqz1AwGwiwjYYbZxDmTRBQs4I58P9uzuXrGO9OsvV6rtWzsFBFZjjLPIiKbzaFD6UeL8bNjZByerc4yncRkMNydxi7rGxcMG8kTNIPYiicMBFnyQUjeAg7kCtSStAvHU5VpBoKQA5kezntEjjR4xiFMEhILeGloG2955TQznvDHdx/ikfFvsyfM887ebcwZ88pTPls6y6AF7MvkOV4tA9BvIUmQEGLcletrZqph5drk1bSfW8+2dyKytSl4FhG5BmQxnq1O0xeE9NWHkpQ94c2FAd5T3L6oxro1iH167iITDok7VY95tToHFrA9k+G1YZ4zHvFMpUwpidgd5sgFARfiOapzc8zmsgTuRFHE03uvw3oKuDsnozk+U6ryU8URfn3HvuY6R2cvlXPcRh9jUYXJpMZQmGVfJk82mP8L0eVqk9dr2IyIyGopeBYRuWbYkl8vlXUdnc3xSnWOsVqFyTjGAcdxjGlPyLnzai3mtFW5PdfHrfk+vlieIh8E9AQhhd4+cHi5NkcYRXxj9yjWU6AaGIYTYhjwH6fPck/vpYxwa/3xYJghGwRMJ1mOFEcA2q5NVvs5EemUjtc8i4jIlavhHMr1kq8HnYk7PcDTlWkemjq9aCDI/jDH89UZJpIqBQvIBwExMGAhUX2CYE99s+Bz1TLVOKY/CJjxhIonuDuV3gLe28vg0HZmBorEgREAhhGaUbCAWpLMq1lu1B/XkoQnZi/y3Nw0+fo/RaupTVb7ORHpFGWeRUS6zFpGSTe6W9yR7W9ODMRgu2WWLGk4GVe5JdfLM5UyMQl5C4nMKXtaLx3jmBk5h4o7347muCPfz9m4xmQSMZ3E5IKAG7M99AYBpSRmyiMygGMUSIep9AXhkgFthYTbe/qbGebW9bWTOVb7ORHpFAXPIiJdZK21vK3lEN+pzTWP35DtaZY2PDw1zpTHnI1rlJOY12d72ZfNU/GEvAWcqlWY9IgCRoIRu5O4kwEuxjHvGd4OsCiwb5z7L+YukgB9GIlB5M5N2cKigPZKSy5OVGYWbWbMh6Haz4nIhlDwLCLSRdYaWLYOXzmXRM0hKY3OFWerFf6yOs11mRzDFlL2mL+slBgKMkzXg+esO0E9cN4ZBMyQTgfcUd/M1xo0/3hxx7z1fGT0Rv5g8jT/cfos1SShj4CbsgUGs5lF0xPHoyojYXbesUoc89zc9GWz7a1vLu7K9fHtaI5nKmXe0NOv9nMisiEUPIuIdJGlAst2a3lbSx5KSdwMwAGer82SN6MYpD/2B4KAUhwzmUTsDfOcTSJmSHhNmOMiCYEFXB+E7AizzHhMjbRX80rZ8J8Y2sU9vQPzguz9YY6jsxf5bOlsMyheWHJxPqpxrDpDXxBcNts+781FELI9m2teqwJnEdkICp5FRLrIetTyLjVRr+wx1weXgvKKQx6YA8aTiF4LuCnTwy2Ffg4XBvhc6RzPV2coRxVCYG8m31Y2vDWAX64E5d58kSejUnN9L9ZmAedgtkBgtuL5r+TNhYjIelC3DRGRLrLcZL6FpQ8rWaprxZ4wTxJcamU3k8TUgDzGjdk8Q5kMr8QV/mx6kt+7MM7xapkbMnneUhig4s5LtVnOR7Xm89sJWFuzxIFZc2Lgybg6b33lJKYH4/nqDM/OTXM+qi17/tFMrjn1sEEbBUVkIynzLCJyFaylYwbMr11uHWqy2pKEhV0r9oc5PnnhNBDRR0CVhBjoNePl2hw1T6gBOYxCzcDgZDRH5M5ckjCTxPxFfIEdmSwxkDXjYLaw4nWulCVurO9EZYZvVWeIgX4LqHjC8WqZGzM97Mn1sNBSWXVtFBSRjaTgWURknV3p9LurMUr6HcVhAP6ofJ6zcY0QI8GZrQfNjTHeVZyTUYXtlmHWE75bq9BbD7anHS7UYvoJKAQhJ32Wf37+e1RxqknCydoc36rM8LODuziQ722rBOXo7EX2Z3o4Gc1RxclhVIGXozl+ctvOJe/NSm8u1vqmRUSkXQqeRUTW2dWafnelgeE7isPszfVwdPYif3hxgqo7MekcQm95nAFnPKIR8s6S0CigCEgD7H5zzsURJY+5PpunPwip4rwSVXh4apz9+QIvVmY4HVe5MdPD7mx+ySzxeFTl+myeviBkLKowncT0W0j/ChsAl3tzoZHdIrIRFDyLiKyzq7GpbaXAEBb3Xr5ccJl40gyajUsBdAJkMRwnYv7A76D+kTWjGGY5WZ0jh5GvT/rLY8x5zFOVabZncxzIFeipBbwczTGH89pcYVEJSiM7PZzJNtvqLewU0i6N7BaRjaDgWURknV2N6XfLBYafK53jZHWWV+MaVXdyZjw9c5Ff2r5nxTZv2SAkSBJm6kFyY/e4ATHpYJRGOYfRurvcmPOEsWoaENdwJqMaQy2BbwjNde7N9TCYyVIMQh4c3LXoutazhlmdOERkI6jbhojIOluPjhkLjUdV+mz+j+w+C/jqXIkTUYXYnR4gdudEVOHfT42veI6RMAtm9BIQkGZSQhpZ5zRoDkjb2RlpRhogwqkCtXqhhwOvxlXO16pUPGGWhJ2rCGCX6gyy1mEn6sQhIhtBmWcRkXW2Xh0zWi2XzZ6KIwpm5ING6QSQxByrllc8x825XmaShOkkJu9GQvoPwt5MjnKScD6JiHAqLc8PSIPotHzDGK1PKqziTCQRfWQYCkL2Zud3ybhcALteGyTViUNENoKCZxGRq2C9O2YsFxg26pBbBUDNF55h/jkGwww35wq8HM2xK8yxvZ4truEcr5TpSWC6fq5G5rlxym0EjGRzFIKQ2SRmMqpRxnlTYYD9YY4nKyVKSbzmALbTbf5ERFai4FlEpANWGyAuFxierM7xaq2CuRMCMVB1Z3d2caZ34Tn25Hr4/sIAT1fKPF+dAeDWXC89BJQsYJsZ7k7FnRoJIUYhCBgMMxTqNc2FICTKOLuDTLOmudHRYy0BbDe2+RMRaaXgWURkg601QFwqMPzJ4gi/O3WKyJ3IHTOjJwj5yeLIsgF6a0/kT02d4ntRjT5La52frUxTiiMqntBLSMaMwIysG/1BwHCQYSKJaAxbKZMwmyS8t95Herl1tksdM0Sk2yl4FhHZYOsZIC4cfrIjzPJjfWk/50dKE8SJMxHXeL5S5ujMFO8t7mw+5+jsRaaSmL4gaLabMzdmkyQt0TBrTh3sDwN6gpA766UZra/33uJw85xXSh0zRKTbKXgWEdlg6x0gvmOJ4PWhqdPEifNyNEfOAgaDDNMe83DpDHvrY68fn7nAmahGwYxtQYbeMCSH0WOGWUCPBfRagAFldwaDsJm9Xq9geaGr0eZPRGQ9KXgWEdlgGxEgjkdVJuIaObuUVe4n5EIS87nSOSokZM3IktZIn46rZGMjJh2Ccluul4Ew06yFviPfx3uK26966YQ6ZohIt1PwLCKywTYiQBzN5Hi+UmYwuPRjvoqzLQh5vjrD7T39HMwGlOKIqTimWh/BncPIWIYKCe8pbueX83vXbU3tUMcMEel2Cp5FRDbYRgSIhwsDHJ2ZYtpj+gmp4lQ9YXemh3JUoc8CgkzIXT1F/mLmAlUHx7gum+fmXC/ZIOjYJj11zBCRbqYJgyIiHXAg38vhwgCjmRzjUZWjsxc5UZlZ1/O/t7gTgAtJTA5jf6aHTGDcmuttTuIbzmQZymQ5kO3hlnwv9/ZuYziT1SY9EZFlKPMsItIBre3qQoevzF7kT8uTvCHfv261xe8oDi/qudwYEd5aNpI1o5wkHMzkm8/VJj0RkaUpeBYR6YBGu7pakvBCbYacBRQt4MXa7KqGgsD8gStZDEgnBTaC5cbwklatZSMHswUm4irZICBxv2qb9NY6OVBEpJsoeBYR6YBGu7pj0WyzI4aTBq79QabteuOFGexnq2XAuT3Xt+LwlYV1xQsD2/Wuwb7SyYEiIt1CwbOISAc02tVNJzF99VZyVZz+IFxVvXHrwJUT1Vn6gvRc342r3JHtbz6m8edyWd+rvUlPkwNF5FqhDYMiIh1wuDDAdBKRNaPqCRVPqHrCvkx+VfXG41G1GXxP1zcG5jCmkxhIa5pfrGd9S0k8L+u7nhsUV7POBm1KFJHNSMGziEgHHMj3cqQ4wsFsgYtJ2vni1mzaIm46iZob+y5nNJNrds7oD+ot6eoZbEg3/jVKQYpBSGBGMQibpSEbpXWdDdqUKCKbkco2REQ65EC+l1/O986rN94ehEvWGy+32a514MqeMMex6gzgvDbXUy8LiZqlIK02OuuryYEicq1Q8Cwi0mGXqze+3Ga7RueMmSTmjnwfkHbbaATiR2cvXvVx4JejyYEicq1Q8Cwi0uUut9munc1+3ZD11eRAEbkWKHgWEelyjbZ2rVZTdtFO1lc9mEVE2qPgWUSkyzXa2l1J2cVKWV/1YBYRaZ+6bYiIdLlGW7tSEpO4NzcCttuR43Jay0I61Y1DRGSzUPAsItLlGm3tikHIRFyjGIQcKa5fVlg9mEVE2qeyDRGRTeBqbrZbqizke7UK55KIj50dUw20iEgLZZ5FRLa4hWUh363O8UJ1hrzDq7UKj5Wn+MfnxnisdL7TSxUR6TgFzyIiW9zCspBzScTeMMdZj6jibKu3yHu4dGZDR3qLiHQjlW2IiMi8spCPnR3j1VqFnAXk67XQ/YRMJVGzt7SIyFalzLOIiMwzmslxIYnJYc1jVZzBIKNNhCKy5Sl4FhGReQ4XBggNpj3G3al4QtUTRsLsho70FhHpRgqeRURkngP5Xt5b3AnAVBKRw7gx00MY2Lr1lhYR2axU8ywiIkuO5/6N7fs0sltEZAEFzyIiW9yy47mLIzw4uKvTyxMR6Soq2xAR2eI0nltEpH0KnkVEtjiN5xYRaZ+CZxGRLW40k6PsybxjZU/UWUNEZAkKnkVEtriF47lLScx0EqmzhojIEhQ8i4hscQvHcxeDkCPFEXXWEBFZgrptiIjIvPHcrZZqYaegWkS2MmWeRURkSY0WdqUkntfC7kRlptNLExHpGAXPIiKyJLWwExFZTMGziIgsSS3sREQWU/AsIiJLUgs7EZHFFDyLiMiS1MJORGQxddsQEelinex2cSDfyxFG5r3+/X1DV/311eFDRLqZgmcRkS7V6HbRH2Tmdbs4wsb1YF6uhd3V0g3XLCKyEpVtiIh0qa3Y7WIrXrOIbC4KnkVEutRW7HaxFa9ZRDYXBc8iIl1qK3a72IrXLCKbi4JnEZEutRW7XWzFaxaRzUXBs4hIlzqQ7+VIcYRiEDIR1ygGIUeK1/bGua14zSKyuajbhohIF9vobhfdYCtes4hsHso8i4iIiIi0ScGziIiIiEibFDyLiIiIiLRJNc8iIqKR2CIibVLmWURki2uMxC4l8byR2CcqM51emohI11HwLCKyxWkktohI+1S2ISLSJTpVOjEeVRkJs/OOaSS2iMjSlHkWEekCnSyd0EhsEZH2KfMsItIFWksnAIoWNo+3k32+kqz14cIAj5QmgDTjXPaE6STi/r6hNV6NiMi1S5lnEZEuMB5V6bP5P5LbLZ240qy1RmKLiLRPmWcRkS4wmslRSuJmxhnaL5240qw1aCS2iEi7OpZ5NrMPmNk3zey4mf3TTq1DRKQbHC4MMJ1ElJKYxJ1SEjOdRBwuDFz2uVeStRYRkdXpSObZzH4AeA9wyN0rZrazE+sQEekWB/K9HGFkXt3y/X1DbWWDryRrLSIiq9Opso33Ax919wqAu5/p0DpERLrGWksn9oc5Hp45Q+TOYJBhJMwSBqYNfyIiV0GnyjZuAg6b2VfM7Etmdk+H1iEisqmdqMzwZKXE/kwPg0GGC0nMy9Ec9+aLqmEWEbkKrlrm2cy+AOxa4lsfrr/uEPBm4B7gETN7jbv7Euf5eeDnAfbt23e1lisisik1NwtmQvbSA0ApiTkZq95ZRORquGrBs7vft9z3zOz9wKP1YPmrZpYAO4CJJc7zSeCTAHffffei4FpEZCvTdEARkY3VqbKNPwLeCWBmNwE54GyH1iIismlpOqCIyMbqVPD8aeA1ZvZ14A+An1mqZENERFZ2JS3uRERk9TrSbcPdq8BPd+K1RUSuJVfS4k5ERFZPEwZFRDY5TQcUEdk4HZswKCIiIiKy2Sh4FhERERFpk4JnEREREZE2KXgWEREREWmTgmcRERERkTYpeBYRERERaZOCZxERERGRNil4FhERERFpk4JnEREREZE2acKgiMgGOlGZmTdK+3BhQNMBRUQ2EWWeRUQ2yInKDI+UJiglMSNhllIS80hpghOVmU4vTURE2qTgWURkgxydvUh/kKEYhARmFIOQ/iDD0dmLnV6aiIi0ScGziMgGGY+q9Nn8H7t9FjAeVTu0IhERWS0FzyIiG2Q0k6PsybxjZU8YzeQ6tCIREVktBc8iIhvkcGGA6SSilMQk7pSSmOkk4nBhoNNLExGRNil4FhHZIAfyvRwpjlCNwThcAAAKq0lEQVQMQibiGsUg5EhxRN02REQ2EbWqExHZQAfyvQqWRUQ2MWWeRURERETapOBZRERERKRNCp5FRERERNqkmmcRkS6mcd4iIt1FmWcRkS6lcd4iIt1HwbOISJfSOG8Rke6j4FlEpEtpnLeISPdR8Cwi0qU0zltEpPsoeBYR6VIa5y0i0n0UPIuIdCmN8xYR6T5qVSci0sU0zltEpLso8ywiIiIi0iYFzyIiIiIibVLwLCIiIiLSJgXPIiIiIiJtUvAsIiIiItImBc8iIiIiIm1S8CwiIiIi0iYFzyIiIiIibVLwLCIiIiLSJgXPIiIiIiJtUvAsIiIiItImBc8iIiIiIm1S8CwiIiIi0iYFzyIiIiIibVLwLCIiIiLSJgXPIiIiIiJtUvAsIiIiItImBc8iIiIiIm1S8CwiIiIi0iYFzyIiIiIibVLwLCIiIiLSJgXPIiIiIiJtUvAsIiIiItImBc8iIiIiIm1S8CwiIiIi0iYFzyIiIiIibVLwLCIiIiLSJnP3Tq+hbWY2AXyn0+voUjuAs51exCak+7Z2undro/u2drp3a6P7tna6d2tzrdy3G9x9ZOHBTRU8y/LM7K/c/e5Or2Oz0X1bO927tdF9Wzvdu7XRfVs73bu1udbvm8o2RERERETapOBZRERERKRNCp6vHZ/s9AI2Kd23tdO9Wxvdt7XTvVsb3be1071bm2v6vqnmWURERESkTco8i4iIiIi0ScGziIiIiEibFDxfY8zsA2b2TTM7bmb/tNPr2UzM7ENm5ma2o9Nr2SzM7ONm9g0zO2Zmf2hmg51eUzczsx+q//38tpn9/U6vZzMws71m9kUze6H+c+2XOr2mzcTMQjN7xsz+306vZTMxs0Ez+2z959sLZnZvp9e0GZjZ/1b/e/p1M/sPZtbT6TVdDQqeryFm9gPAe4BD7n4b8IkOL2nTMLO9wA8CY51eyybzp8Dr3f0Q8C3gH3R4PV3LzELgd4EfBm4FftLMbu3sqjaFCPgVd78FeDPwC7pvq/JLwAudXsQm9NvAf3f31wG3o3t4WWZ2PfCLwN3u/nogBH6is6u6OhQ8X1veD3zU3SsA7n6mw+vZTH4L+DVAO2hXwd0/7+5R/csvA3s6uZ4u90bg2+7+krtXgT8gfbMrK3D3U+7+dP3zEmkQc31nV7U5mNke4K8Dn+r0WjYTMxsA3gb8WwB3r7r7VGdXtWlkgIKZZYBe4NUOr+eqUPB8bbkJOGxmXzGzL5nZPZ1e0GZgZj8KfM/dn+v0Wja59wH/rdOL6GLXA99t+foVFASuipntB+4EvtLZlWwa/xdpUiDp9EI2mdcAE8Dv1UtePmVmfZ1eVLdz9++R/sZ7DDgFXHD3z3d2VVdHptMLkNUxsy8Au5b41odJ/3sOkf5q8x7gETN7jasf4eXu228A797YFW0eK907d/9c/TEfJv31+mc2cm2bjC1xbMv/3WyXmfUD/xn4oLtf7PR6up2Z/Qhwxt2fMrN3dHo9m0wGuAv4gLt/xcx+G/j7wP/e2WV1NzMbIv1t2o3AFPCfzOyn3f33O7uy9afgeZNx9/uW+56ZvR94tB4sf9XMEmAH6TvoLW25+2Zm30f6F/05M4O07OBpM3uju5/ewCV2rZX+nwMws58BfgR4l96oregVYG/L13u4Rn+lud7MLEsaOH/G3R/t9Ho2ibcCP2pm9wM9wICZ/b67/3SH17UZvAK84u6N33B8ljR4lpXdB7zs7hMAZvYo8BbgmgueVbZxbfkj4J0AZnYTkAPOdnRFXc7dv+buO919v7vvJ/2heZcC5/aY2Q8Bvw78qLvPdHo9Xe4vgYNmdqOZ5Ug30vyXDq+p61n6rvbfAi+4+292ej2bhbv/A3ffU/+59hPA/1Dg3J76z//vmtnN9UPvAp7v4JI2izHgzWbWW/97+y6u0Y2WyjxfWz4NfNrMvg5UgZ9RJlCust8B8sCf1jP3X3b3v9vZJXUnd4/M7O8Bf0K6C/3T7n68w8vaDN4KvBf4mpk9Wz/2G+7+/3VwTXLt+wDwmfob3ZeAv93h9XS9eonLZ4GnScv4nuEaHdOt8dwiIiIiIm1S2YaIiIiISJsUPIuIiIiItEnBs4iIiIhImxQ8i4iIiIi0ScGziIiIiEibFDyLiNSZ2XSn17BaZnbSzHZ0eh2rYWb76y012338XjN72cyG618P1b++4eqtUkRkaQqeRUQ2CTPbkr353f27wL8EPlo/9FHgk+7+nc6tSkS2KgXPIiIrMLMRM/vPZvaX9Y+31o+/3cyerX88Y2bFJZ77t8zsmJk9Z2YP14/dYGZ/Vj/+Z2a27zLHHzKz3zSzLwIfM7PtZvb5+mv+a8BaXu+Xzezr9Y8P1o/tN7MXzOzfmNnx+nML9e89ZmYfM7Ovmtm3zOxw/XhoZh+vX+8xM/tfW17jV1uO/8P6sT4z++P6dX7dzP6XJe7FG+rffxL4hZbjy77WAr9FOr3sg8D3A/+s7f+IIiLrSMGziMjKfhv4LXe/B/ifgU/Vj38I+AV3vwM4DMy2PsnMbgM+DLzT3W8Hfqn+rd8B/r27HwI+A/zzyxwHuAm4z91/Bfg/gMfd/U7S8d6NIPsNpFPQ3gS8Gfg5M7uz/vyDwO+6+23AVP06GjLu/kbgg/VzA/wscKF+zffUz3Wjmb27fq43AncAbzCztwE/BLzq7re7++uB/77Effw94Bfd/d4Fx5d8rYVPdvca8KukQfQH3b26xGuIiFx1Cp5FRFZ2H/A79dHQ/wUYqGeZ/wL4TTP7RWDQ3aMFz3sn8Fl3Pwvg7ufrx+8F/p/65w+TZlFXOg7wn9w9rn/+NuD36+f8Y2Cyfvz7gT9097K7TwOPkgb1AC+7e2O09VPA/pZzP7rE8XcDf6t+zV8BtpMGze+ufzxDOoL3dfXjXwPuq2exD7v7hdYbYWbb6vfoSy3X17Dcay3lh4FTwOuX+b6IyFW3JevnRERWIQDudffZBcc/amZ/DNwPfNnM7nP3b7R83wBv4/zLPab1eLmN59gSxxoqLZ/HQGGJ78Vc+jfBgA+4+5/MewGzvwb8E3f/14tePM183w/8EzP7vLv/nwvWttx1LvlaS5z/DuAHSbPqj5vZH7j7qZWeIyJyNSjzLCKyss8Df6/xRT2Iw8wOuPvX3P1jwF+RZmFb/RlwxMy21x8/XD/+BPAT9c9/Cnj8MscX+vP69zGzHwaGWo7/mJn1mlkf8DeAo6u71KY/Ad5vZtn669xUP+efAO8zs/768evNbKeZ7QZm3P33gU8Ad7WezN2ngAtm1sim/1Qbr9VkZka6YfCD7j4GfLz+OiIiG06ZZxGRS3rN7JWWr38T+EXgd83sGOnPzD8H/i7wQTP7AdKM7fPAf2s9kbsfN7N/BHzJzGLSUocH6+f7tJn9KjBBWqfMCscX+ofAfzCzp4EvAWP113vazB4Cvlp/3Kfc/Rkz27+G+/Ap0hKOp+uB6wTwY+7+eTO7BXgyPcw08NPAa4GPm1kC1ID3L3HOv12/vhnSgHnF11rw3J8Dxtz9T+tf/9/Ag2b29pZSEBGRDWHu7fxWUUREREREVLYhIiIiItImBc8iIiIiIm1S8CwiIiIi0iYFzyIiIiIibVLwLCIiIiLSJgXPIiIiIiJtUvAsIiIiItKm/x8/zmjcYXBrSgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 864x864 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12,12))\n",
"\n",
"plt.scatter(X_pca[y_pred==mapping[0], 0], X_pca[y_pred==mapping[0], 1], color='red', alpha=0.5,label='0')\n",
"plt.scatter(X_pca[y_pred==mapping[1], 0], X_pca[y_pred==mapping[1], 1], color='blue', alpha=0.5,label='1')\n",
"plt.scatter(X_pca[y_pred==mapping[2], 0], X_pca[y_pred==mapping[2], 1], color='green', alpha=0.5,label='2')\n",
"plt.scatter(X_pca[y_pred==mapping[3], 0], X_pca[y_pred==mapping[3], 1], color='black', alpha=0.5,label='3')\n",
"plt.scatter(X_pca[y_pred==mapping[4], 0], X_pca[y_pred==mapping[4], 1], color='khaki', alpha=0.5,label='4')\n",
"plt.scatter(X_pca[y_pred==mapping[5], 0], X_pca[y_pred==mapping[5], 1], color='yellow', alpha=0.5,label='5')\n",
"plt.scatter(X_pca[y_pred==mapping[6], 0], X_pca[y_pred==mapping[6], 1], color='turquoise', alpha=0.5,label='6')\n",
"plt.scatter(X_pca[y_pred==mapping[7], 0], X_pca[y_pred==mapping[7], 1], color='pink', alpha=0.5,label='7')\n",
"plt.scatter(X_pca[y_pred==mapping[8], 0], X_pca[y_pred==mapping[8], 1], color='moccasin', alpha=0.5,label='8')\n",
"plt.scatter(X_pca[y_pred==mapping[9], 0], X_pca[y_pred==mapping[9], 1], color='olive', alpha=0.5,label='9')\n",
"plt.scatter(X_pca[y_pred==mapping[10], 0], X_pca[y_pred==mapping[10], 1], color='coral', alpha=0.5,label='10')\n",
"plt.title(\"PCA\")\n",
"plt.ylabel('Les coordonnees de Y')\n",
"plt.xlabel('Les coordonnees de X')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}