import os from tqdm import tqdm import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile from python_speech_features import mfcc, logfbank def plot_signals(signals): fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, sharey=True, figsize=(20,5)) fig.suptitle('Time Series', size=16) i = 0 for x in range(2): for y in range(5): axes[x,y].set_title(list(signals.keys())[i]) axes[x,y].plot(list(signals.values())[i]) axes[x,y].get_xaxis().set_visible(False) axes[x,y].get_yaxis().set_visible(False) i += 1 def plot_fft(fft): fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, sharey=True, figsize=(20,5)) fig.suptitle('Fourier Transforms', size=16) i = 0 for x in range(2): for y in range(5): data = list(fft.values())[i] Y, freq = data[0], data[1] axes[x,y].set_title(list(fft.keys())[i]) axes[x,y].plot(freq, Y) axes[x,y].get_xaxis().set_visible(False) axes[x,y].get_yaxis().set_visible(False) i += 1 def plot_fbank(fbank): fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, sharey=True, figsize=(20,5)) fig.suptitle('Filter Bank Coefficients', size=16) i = 0 for x in range(2): for y in range(5): axes[x,y].set_title(list(fbank.keys())[i]) axes[x,y].imshow(list(fbank.values())[i], cmap='hot', interpolation='nearest') axes[x,y].get_xaxis().set_visible(False) axes[x,y].get_yaxis().set_visible(False) i += 1 def plot_mfccs(mfccs): fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, sharey=True, figsize=(20,5)) fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16) i = 0 for x in range(2): for y in range(5): axes[x,y].set_title(list(mfccs.keys())[i]) axes[x,y].imshow(list(mfccs.values())[i], cmap='hot', interpolation='nearest') axes[x,y].get_xaxis().set_visible(False) axes[x,y].get_yaxis().set_visible(False) i += 1