From 03fe9a3f415d962dd5a7c16d075b42acbd8ea459 Mon Sep 17 00:00:00 2001 From: tsb1995 <47466105+tsb1995@users.noreply.github.com> Date: Sun, 7 Jun 2020 11:15:03 -0700 Subject: [PATCH] Remove air passenger time series --- .../.ipynb_checkpoints/model-checkpoint.ipynb | 1225 ----------------- .../model2-checkpoint.ipynb | 404 ------ .../AirPassengers.csv | 145 -- .../data/AirPassengers.csv | 145 -- kaggle_time_series_air_passenger/model.ipynb | 1213 ---------------- kaggle_time_series_air_passenger/model2.ipynb | 404 ------ .../my_checkpoint/saved_model.pb | Bin 472210 -> 0 bytes .../variables/variables.data-00000-of-00001 | Bin 249201 -> 0 bytes .../my_checkpoint/variables/variables.index | Bin 1750 -> 0 bytes 9 files changed, 3536 deletions(-) delete mode 100644 kaggle_time_series_air_passenger/.ipynb_checkpoints/model-checkpoint.ipynb delete mode 100644 kaggle_time_series_air_passenger/.ipynb_checkpoints/model2-checkpoint.ipynb delete mode 100644 kaggle_time_series_air_passenger/AirPassengers.csv delete mode 100644 kaggle_time_series_air_passenger/data/AirPassengers.csv delete mode 100644 kaggle_time_series_air_passenger/model.ipynb delete mode 100644 kaggle_time_series_air_passenger/model2.ipynb delete mode 100644 kaggle_time_series_air_passenger/my_checkpoint/saved_model.pb delete mode 100644 kaggle_time_series_air_passenger/my_checkpoint/variables/variables.data-00000-of-00001 delete mode 100644 kaggle_time_series_air_passenger/my_checkpoint/variables/variables.index diff --git a/kaggle_time_series_air_passenger/.ipynb_checkpoints/model-checkpoint.ipynb b/kaggle_time_series_air_passenger/.ipynb_checkpoints/model-checkpoint.ipynb deleted file mode 100644 index 67eab8d..0000000 --- a/kaggle_time_series_air_passenger/.ipynb_checkpoints/model-checkpoint.ipynb +++ /dev/null @@ -1,1225 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import tensorflow as tf\n", - "import pandas as pd\n", - "from matplotlib.pylab import rcParams\n", - "rcParams['figure.figsize'] = 15,6" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Month#Passengers
01949-01112
11949-02118
21949-03132
31949-04129
41949-05121
\n", - "
" - ], - "text/plain": [ - " Month #Passengers\n", - "0 1949-01 112\n", - "1 1949-02 118\n", - "2 1949-03 132\n", - "3 1949-04 129\n", - "4 1949-05 121" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Grab and look at our data\n", - "DATA_LOCATION = 'AirPassengers.csv'\n", - "data = pd.read_csv(DATA_LOCATION)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#Passengers
Month
1949-01-01112
1949-02-01118
1949-03-01132
1949-04-01129
1949-05-01121
\n", - "
" - ], - "text/plain": [ - " #Passengers\n", - "Month \n", - "1949-01-01 112\n", - "1949-02-01 118\n", - "1949-03-01 132\n", - "1949-04-01 129\n", - "1949-05-01 121" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Convert to DateTime\n", - "data[\"Month\"] = pd.to_datetime(data.Month)\n", - "data.set_index('Month', inplace=True)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Time series in numpy format\n", - "np_ts = np.array(data).reshape(144)\n", - "\n", - "# Time series in pandas format\n", - "pd_ts = data.copy()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\TSB\\Miniconda3\\envs\\myenv\\lib\\site-packages\\pandas\\plotting\\_matplotlib\\converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.\n", - "\n", - "To register the converters:\n", - "\t>>> from pandas.plotting import register_matplotlib_converters\n", - "\t>>> register_matplotlib_converters()\n", - " warnings.warn(msg, FutureWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXicZ30v/O89u6RZtM1olyVZ8iYvseM4e4CENqwlQEmhhyaFFGhf3sJbaAuHlnPa0tIDLYVC6UIhZSckFJo0bwiEJEA2HK/yJluStY32bUaj2bf7/DHzyHK0jaSZeeYZfz/XlcvSM49Gt2Q51/z0u+/vT0gpQURERERERIVJp/YCiIiIiIiIaHUs2oiIiIiIiAoYizYiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiIiAqYQe0FAEB1dbVsaWlRexlERERERESqOHHixIyU0rnSYwVRtLW0tOD48eNqL4OIiIiIiEgVQoih1R7j9kgiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiIiAoYizYiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiIiAoYizYiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiISDXhWAL90361l1HQWLQREREREZFqvvXSEF77D7/A+bF5tZdSsFi0ERERERGRagZnA0hK4C8eOw8ppdrLKUgs2oiIiIiISDWTvjB0Ajg26MGjp8fUXk5BYtFGRERERESqmfCFcWt7NQ40OvDpJ7rhj8TVXlLBYdFGRERERESqmZiPoN5Rgr/4jU5MLUTwpad71V5SwWHRRkREREREqoglkpgNRFDjsOBgcwXuPdyIB18YQN8U0ySXYtFGRERERESqmFqIQEqg1m4BAPzp63bBYtTjL/+boSRLsWgjIiIiIiJVTMyHAQC1DjMAoNpqxh+9dgee653BTy9Mqrm0gsKijYiIiIiIVDHpSxVtNelOGwDcd/M27Kyx4VOPX0A4llBraQWFRRsREREREalisdO2pGgz6HX437+xByOeEH54clStpRWUjIo2IUS5EOIHQoiLQohuIcTNQohKIcRTQoje9J8V6XuFEOKLQog+IcQZIcSh3H4JRERERESkRZO+MEx6HSrLTFddv7mtCiaDDkNzAZVWVlgy7bT9I4AnpZS7ABwA0A3g4wCellJ2AHg6/T4AvB5AR/q/9wP4l6yumIiIiIiIisKELwyX3QwhxFXXhRBwWs2Y9kVUWllhWbdoE0LYAdwB4GsAIKWMSim9AN4C4Bvp274B4J70228B8E2Z8isA5UKIuqyvnIiIiIiING1iPnzV1silnDYzphZYtAGZddraAEwD+A8hxCkhxFeFEGUAaqSU4wCQ/tOVvr8BgHvJx4+kr11FCPF+IcRxIcTx6enpLX0RRERERESkPVMLqRltK3HZzJhaCOd5RYUpk6LNAOAQgH+RUh4EEMCVrZArEStcWzZkQUr5FSnlYSnlYafTmdFiiYiIiIioOEgp1+y0uexmTLPTBiCzom0EwIiU8mj6/R8gVcRNKtse039OLbm/acnHNwIYy85yiYiIiIioGPjCcYRiidWLNpsFnmAM0XgyzysrPOsWbVLKCQBuIcTO9KW7AFwA8BiA+9PX7gfwaPrtxwDcl06RvAnAvLKNkoiIiIiICFgyo22V7ZFOW2rg9rSf3TZDhvf9IYDvCCFMAPoBvAepgu9hIcQDAIYBvCN97xMA3gCgD0AwfS8REREREdGilWa0LeVKF21TvjAaykvytq5ClFHRJqU8DeDwCg/dtcK9EsAHt7guIiIiIiIqYhO+9Yq21HWea8t8ThsREREREVHWTKY7bS67ecXHle2RjP1n0UZERERERCqY8IVRUWqExahf8fFqqwlCsGgDWLQREREREZEKJn1h1KyyNRIADHodqspM3B4JFm1ERERERKSCCV8YtaskRyqcNgumOWCbRRsREREREeXfxHwENbb1ijYzt0eCRRsREREREeVZLJHEbCCy6ow2hctmxpSPRRuLNiIiIiIiyquphQikXD3uX+GymTHjjyCZlHlaWWFi0UZERERERHm1OFjbsXLcv8JlMyOelPAEo/lYVsFi0UZERERERHk1mR6svVZ6JJAKIgEY+8+ijYiIiIiI8mqx07be9kg7B2wDLNqIiIiIiCjPJn1hmPQ6VJaZ1rzPZUsVbdf6rDYWbURERERElFcTvjBcdjOEEGve57QpnbZre1YbizYiIiIiIsqrifnwulsjAaDUZIDVbLjmY/9ZtBERERERUV5N+sLrzmhTuGxmbo9UewFERERERHTtkFJiwpdZpw1IbZFk0UZERERERJQnvlAc4VhyQ0Ubz7QREREREVHBGZ8PIZ5Iqr2MrJtMF2CZb4+0MPJf7QUQEREREdHVfn5pCrd95ll87+VhtZeSdZnOaFO47GYEown4I/FcLqugsWgjIiIiIiog3eM+/L/fPYVEUmJwNqj2crJuwrfBoo2z2li0EREREREViklfGO/9+jGUmfWotpox6Su+s1yT6U6by27O6P7FWW1F+L3IFIs2IiIiIqICEIjE8d6vH8N8KIYHf/cGtFWXFeVZrglfGBWlRliM+ozud9lSHbli/F5kikUbEREREZHKEkmJDz90Ct3jPnz5tw+hs94Bl704o+4nfWHUZLg1EriyPZJFGxERERERqeZTj1/Az7qn8Je/0YnX7HIBSKcmFuGWwAlfGLUZJkcCQHmpEUa9KMoCNlMs2oiIiIiIVPTkuXF8/cVBPHBbK37n5pbF6y67GYEiTE2cmI9kHEICAEIIOK3X9qw2Fm1ERERERCo6NuiBxajDJ96w+6rrriIM4IglkpgNRDa0PRIAnHYLO21ERERERKSOMW8IDeUl0OvEVdeVwqaYznJNLUQgJTa0PRJIFbBTvuL5PmwUizYiIiIiIhWNekNoqChddr0YAzg2Olhb4bSZMe0vnu/DRrFoIyIiIiJS0agn1Wl7pcWo+yLaHqnMndvo9kiXzYy5QBTReDIXyyp4LNqIiIiIiFQSiiYwG4iisWJ50WYvMcBk0BVnp23D2yNT989co902Fm1ERERERCoZ9YYAAPXly4sYIQRq7Oai67SZDDpUlBo39HHKVtFrNYyERRsRERERkUqUoq2hfPmZNiA9q62ICpUJXxg1djOEEOvfvISzCM/3bQSLNiIiIiIilYx60kXbCtsjgVSHabKIOm1j3hDqHCt/rWtx2ZWirXi+FxvBoo2IiIiISCVj3hD0OoGadCfplVw2c1F1l/qnA2irLtvwx1VblZl1xfO92AgWbUREREREKhn1hlBrt8CgX/lluctuwUI4jnAskeeVZd98MIbZQBRtzo0XbUa9DpVlpms29p9FGxERERGRSkY9oVW3RgJLZrUVQYepf8YPAGittm7q46/lAdss2oiIiIiIVDLqDaFxhRltCld6ntlkEZzlGpgJAMCmOm1AesB2EXwfNoNFGxERERGRCuKJJCZ8YdSvVbQVU6dtOgC9TqCpYuWkzPUUW5LmRrBoIyIiIiJSwYQvjERSrrk9sibdaSuG1MSBmQCaK0thMmyuBHHazJjxR5BMyiyvrPCxaCMiIiIiUsFi3P8anbaKUiOMelEUHabL0360biI5UuGymRFLSHhDsSyuShtYtBERERERqWBxsPYanTYhBJxW7c9qSyYlBmcDWyvaruFZbSzaiIiIiIhUMOZdv9MGAE67BdMa77SN+8IIx5KbDiEBUmfagOI437dRLNqIiIiIiFQw6g2h2mqCxahf875iiLofmE4lR26l0+ZMh7JovYDdDBZtREREREQqGPGE1u2yAUCN3az5LYHKjLbtzs3NaAOWJGmyaCMiIiIionwY9YbWjPtXuGwWeIIxROKJPKwqN/qnAygz6RcLr80oMxtQZtJrvoDdDBZtRERERER5JqXEmDezTpurCLYF9s8E0OosgxBiS8/jtJnZaSMiIiIiotybDUQRjiXXTI5UXElN1G6xMjDjR2v15rdGKlw27YeybAaLNiIiIiKiPMtkRptC66mJ4VgCI54Q2rYQQqJw2rU//mAzWLQRERERUUEamg1gLhBVexk5MZbBjDaF1ueTDc8FISW2FPev6HBZMTwXRCASz8LKtCOjok0IMSiEOCuEOC2EOJ6+VimEeEoI0Zv+syJ9XQghviiE6BNCnBFCHMrlF0BERERExWfEE8Qbv/g8Pv1Et9pLyQllsHZjeem691aVmaET2u209U+nkiPbsrA9cm+9A1IC3eO+LT+Xlmyk0/YaKeV1UsrD6fc/DuBpKWUHgKfT7wPA6wF0pP97P4B/ydZiiYiIiKj4JZMSH/vPM/BH4ovbCIvNiCcEq9kAe4lh3Xv1OoFqq3Zj//tnUjPaWqrXL1DXs7fBAQA4Nzq/5efSkq1sj3wLgG+k3/4GgHuWXP+mTPkVgHIhRN0WPg8RERERXUO+c3QIL/TNwmYxYNqvze7SelJx/5aM0xRr7BbNBpH0Twfgsplhsxi3/Fw1djOqrSacG2OnbSUSwE+FECeEEO9PX6uRUo4DQPpPV/p6AwD3ko8dSV+7ihDi/UKI40KI49PT05tbPREREREVlaHZAD79xEXcscOJe65rKNqkwNEMB2srXDYzJjW6PXJgJoDWLISQAIAQAp31Dpxn0baiW6WUh5Da+vhBIcQda9y70q8L5LILUn5FSnlYSnnY6XRmuAwiIiIiKlaJpMSfPHIGBr3AZ96+Dy6bGfMhbQ+VXs2oN5RRCInCZTdjWqPbIwdmAmhzbv08m2Jvgx29kwsIx4rv52I1GRVtUsqx9J9TAH4E4AiASWXbY/rPqfTtIwCalnx4I4CxbC2YiIiIiIrTf7wwgJcH5/C/39yJOkcJnOmh0jP+4kqQ9EfimA/F0JBBCInCabNgNhBFPJHM4cqyzxuMYi4QzUrcv2JvvQPxpETP5ELWnrPQrVu0CSHKhBA25W0Avw7gHIDHANyfvu1+AI+m334MwH3pFMmbAMwr2yiJiIiIiFbSN+XHZ39yCa/d7cLbD6VO1ihFW7FtkdxI3L+ixm6GlNorYJUQkmzE/SuuhJFcO1sk14+rAWoA/Ch9SNIA4LtSyieFEMcAPCyEeADAMIB3pO9/AsAbAPQBCAJ4T9ZXTURERERFI55I4qOPdKHUpMen37ZvMZyjWIu2jQzWVigDtid9YdQ6LDlZVy70T6eKtmydaQOAxooS2C0GnBu7dhIk1y3apJT9AA6scH0WwF0rXJcAPpiV1RERERFR0XuubwZdbi/+4d4Di8UJULxF24gyo20jZ9psyoBtbX0vBmb8MOgEmiq3HvevEEJgb4MD56+h2P+tRP4TEREREW3ZpYnU2aTX7qm56npVWXEWbaOeEIx6AafVnPHHuOxK0aatMJL+6QCaK0th1Ge37Oist6N7YgExjZ3x2ywWbURERESkqt5JP2rsZthfMcfLZNChotSIab+2CpX1jHpDqHOUQKfLbEYbAFRbzRACmNJY7H824/6X2tvgQDSeRN+UP+vPXYhYtBERERGRqvqmFtDhsq34mNNmLsJOW3BD59kAwKjXoarMpKlOWzIp03H/2S/aOuuVMJJrY4skizYiIiIiUo2UEr1TfrS7Vp7jVZRF2wZntCmcNoumOm1j8yFE4km0VmdvRpuitboMpSb9NTNkm0UbEREREalmbD6MYDSBjppVijarGdN+7RQq64nGk5haiGy40wakwki0FESiJEfmotOm1wnsqbPj/DWSIMmijYiIiIhU05sekLze9shUQLn2TcyHIeXGZrQpauxmTW2PHFBmtOXgTBuQOtd2fsyHZLI4fjbWwqKNiIiIiFSjBEl0rLE9MhxLwh+J53NZOTPiDQIAGjfVabNgeiGChEaKlP5pP6xmw+LohmzrrLcjGE1gYDaQk+cvJCzaiIiIiEg1vZN+VFtNqCgzrfh4sc1qUwZr12+maLObkZTAbEAb34v+dHKkMiw92/Y2XDthJCzaiIiIiEg1vVMLq4aQAIDTmhq2XTRFW3qwdl25ZZ07l1scsK2RMJL+6dwkRyraXVaYDLprIoyERRsRERERqUJKib4p/6rn2YAlnbYiCSMZ9YTgsplhNug3/LEuu3YK2HAsgbH5UE5mtCmMeh1219rYaSMiIiIiypXphQh84fiqyZFA8W2PHJoLoqmydFMfq3TaJn2FH0by5Wf7ICWwv9GR08/T2eDAudH5ogmqWQ2LNiIiIiJSRW86hKTduXrRVl5ihEEniqJok1Kie9yHXbWrdxbXohSwhR77/+jpUXzpmT7ce7gRr9npyunn2lvvgC8cx0j6rGCxMqi9ACIiIiK6WiASx9nReXS5vWh3WXHX7hq1l5QTStx/+xqdNp1OoNpaHAO2x+bDWAjHsavOvqmPNxv0KC81FnTs/2m3F3/ygzM40lKJv75nX85CSBSd9anv5bnR+U13MLWARRsRERFRAXj09Che6JtBl3sevVMLUFLdG8pLirdom/LDUWKE07p2JLzTVhwDtrvTgRl76jbXaQOAGpulYINIxudDeN83j6PGbsa/vPsQTIbcb+rbWWuDXidwbmwer99Xl/PPpxYWbUREREQq65/248MPnUZ5qRHXNZXj9ftqcaCpHC/0zuCrzw8gHEvAYtx4cEWh653yo8NlXbcb47SZNXGOaz3d46mibWft5jptQCr2f7IAu47BaBzv++ZxhKIJfOf3bkTVOoV4tliMenS4rDg3WtwJkizaiIiIiFR2atgLAPj++2/GziXnnfzh1EDpgZkAdm9yS10h65vy4+7O9buITqu5KBICL04soLmyFFbz5l+C19gt6JmczuKqti6ZlPjow124MObD1+6/ATtqNt9J3Iy9DQ78/NIUpJQ5346pFgaREBEREanstNuLMpN+2bwyJS59YCagxrJyatYfwVwgivY14v4VTpsZs4EoEkltJwR2j/uwewtbIwGgzVmGSV8EC+FYlla1dY+fHcePz03gE2/Yjdfsym3wyEo66+2Y8UeL4tzjali0EREREamsa8SLfY0O6HVXdwmUoq1/2q/GsnKqL50c2bHGYG2F02ZGIinhCUZzvaycCUbjGJgNYNcWtkYCWJxpp3z/CsFLl2dgtxjw3ltbVfn8ben00cHZoCqfPx9YtBERERGpKBxLoHvch+uaKpY9VmY2oNZuQX8RdtqUuP+1ZrQpimFWW8+kH1Jiy9tclSK3t4CKthNDHhzaVgGdTp2tic3p1MjhORZtRERERJQDF8Z9iCUkrmtaeQhxm7MM/dPFV7T1TflhTRel6ymGok0JIdmzxaKtqbIUJoOuYDpt86EYeqf8uL55+S8d8qWhvAQ6waKNiIiIiHLkdDqEZKVOG5DaItk/7YeU2j7P9Uq9UwtozyA5EsDiSAAtF20Xx30oM+nRWFGypefR6wS2O62LM+7UdtrthZTAoW3qFW0mgw51jhK4WbQRERERUS50jXhRYzej1rFyx6m1ugy+cBxzAe2e51pJ76Q/o/NswJJOm4ZntXWPL2BXnT0rWwg7XNaC2R55YsgDnQAONJWruo7mylJ22oiIiIgoN067vbhujRe829MhC8WUIDkfjGFqIbIsLXM1ZWYDSk16zXbapJTonth6cqSiw2XFiCeEYDSelefbilPDHuyqtW9pjEE2sGgjIiIiopzwBKIYmg2uujUSWJogWTxFW990amtfJiEkCqfNrNmibdQbwkI4vuXkSIVS7F6eUvdnIpGUODXsxfUqbo1UNFeVYnohglA0ofZScoJFGxEREZFKTo+kzrMdWCWEBAAaK0pg1IuiSpDsnVTi/jPvPDmt2i3ausdTRWq2BqQrxa5S/KqlZ3IB/kgch7apuzUSSAW0AIDbU5zdNhZtRERERCrpcnshBLC/cfUXvQa9Ds2VpUU1q613yg+LUYeG8sxDOZw2s2bPtCnJkbtqs7M9cltVGQw6sVj8quXEkAcAcH1zparrAK7E/g8V6aw2Fm1EREREKjnt9qLDZV33PFCb01pUZ9r6pvxod1k3FMqh5e2RFyd82FZVirIsnfsy6nVorS5TPYzk5LAH1VYzmiq3loiZDcU+q41FGxEREZEKpJToWieERNFWXYah2SASyeKI/e+b8m9oaySQ2h45H4ohEtfemaXu8QXsztJ5NkVHjVX1WW0nhzw41Fye0diGXKsoNcJqNhRt7D+LNiIiIiIVDM8F4QnGMopKb3OWIZpIYtQTysPKcssfiWPUG8o4OVKhxP7P+LU1+iAYjWNwNoBdWUqOVLS7bBiaDSAcU6eInfFHMDgbLIgQEgAQQhR1giSLNiIiIiIVnHYrQ7XXL9paq1MFTv+M9s+1XZ5SQkg2V7RpbYvkpYkFSJm9EBJFh8uKpFRvFMRJ5TxbgRRtQHHH/rNoIyIiIlLBabcXFqMOO2vW78C0OYsn9l85h9WRwde9lFaLNiU5ck+2i7Z0gqRa59pODnth1AvsbVg9+TTfmqtK4Z4LIlkk24iXYtFGREREpILTbi/2NThg0K//cqyqzASbxVAUYSR9U34Y9QJNFRsLr9Bu0eaD1WzYUFJmJlqry6ATQN+kOrH/J4c86Kx3wGLUq/L5V9JUWYpIPKnZlNG1sGgjIiIiyrNoPInzYz4cWCPqfykhBNqc1qLYHumeC6KpojSjYnWpqjJtFm0XJ3zYVWvbUFJmJswGPVqq1EmQjMaT6BopjKHaS2WSIPnwMTe+c3QoX0vKGhZtRERERHl2ccKHaDyJ65ozH0rcVl2GgSLYHun2BBcHIW+EyaBDRakR0/5wDlaVG1JKXBxfyPp5NkW7y6pK0dY97kMknizYom2tWW3f/NUgnjg7nq8lZQ2LNiIiIqI869pACImitboMY/NhBKPxXC0rL4bngpue66W1WW0jnhAWIvGsJ0cq2l1WDM4EEEskc/L8q1GGah9qLqyiraG8BEKs3mkLRRPoHl/AwabCWncmWLQRERER5dkptxfVVtOGzjkpYSSDM9pNx/OFY/AGY4sdkY3SWtHWPe4DkP3kSEVHjRXxpMTQbH47sCeGPWgoL0Gtw5LXz7sek0GHekfJqrPazo7OI5GUOLiBDnehYNFGRERElGfKUO2NDCVurU4nSGr4XJvyYnrTRZvVrKmQie7xBQiBjBJCN0MZUN47md+fiZNDHhwqsK2RirVi/0+7Ux3CjXS4CwWLNiIiIqI8mg/FcHk6kHEIiUIp2rR8rk0p2horttZpk1Ibke4XJ3zYVlmKMrMhJ8+/3WmFEPmN/R/zhjA+H8ahAu1WrVW0nRr2ormyFFVWc55XtXUs2oiIiIjy6OzIPABsKIQEAEpNBtQ5LOjXcOy/8mK6uWrzRVs4loQ/oo1zfd3jvpxtjQSAEpMejRUleS3aTg4X3lDtpZqrSjG9EEEomlj22Klhrya3RgIs2oiIiIjyqncqNVdrV+3GX8y3Ocs0XbS550IoLzXCbjFu6uO1NKstEIljaC64qb/njehw2dCbx1ltJ4Y8sBh1OS1Gt0JJJnV7ru62jc+HMOEL46AGt0YCLNqIiIiI8mpoNgir2YBqq2nDH9taXYb+ab9mtge+0nB6RttmOa2p4AstFG3PXJyClMDhltx2pDpcVvTPBBDPU4LkscE57G8sh3GDc/byZXFW2yti/08NpxJbDxZY4mWmCvO7TURERFSkBmYC2FZVuqEQEkVbtRUL4ThmA9EcrCz33HPBTYeQAEs6bRoII3n4uBsN5SW4qa0qp5+n3WVFNJ6E2xPa9HO80DeDN3/peYx41k4mHfOGcG7Uh1fvdG76c+Xa4qy2uVcWbR6YDIXbIVwPizYiIiKiPBqaDaClqmxTH9uajv0f0OAWyWRSYsQT2tRgbYVWtkeOekN4vm8Gb7++EXrdxovzjeioURIkN7dF0j0XxAe/exJnR+fx8DH3mvc+dWESAHB3Z+2mPlc+VJQaYTUblsX+nxr2Yl+DAyaDNssfba6aiIiIis53jg7h6e5JtZeRU7FEEiOeELZtMohje7UVANA/rb3Y/8mFMKKJ5KYHawNAeYkRBp0o+KLthydGICXwjusbc/652l2pn4m+TfxMhGMJ/P63TyCRkOist+NHp0fX3Hr7k/MTaHdZsd1p3fR6c00IgaZXJEhG40mcHZ3XZNS/gkUbERERqc4fieOT/3UOD3zjOL78bJ9mz2ytZ8wbQjwp0VK9uU5bQ0UJTHqdJsNIlDNGW9keqdMJVFsLe8B2MinxyIkR3NxWtaWuYqasZgPqHRb0bXBWm5QSn/jRWZwf8+EL77wOD9zWCvdcCMeHPCve7wlEcXRgDnd31mRj2TnVXFlyVdF2ccKHSDyp2eRIgEUbERERFYDTw14kJbCvwYG/+8klfPThLkTiyyO7tW4wXbhsdnukXiewraoU/Rqc1Ta8xcHaCqetsAdsHx2Yw/BcEPfekPsum2K7y7rh2P9v/2oIPzw5ig/f1YG7dtfg7s5alBj1+OHJkRXvf/riFBJJWdBbIxXbqsrgngsimUz98ue0W9shJACLNiIiIioAxwbnoBPAd993Iz7yazvww1OjePdXj2JOo4EbqxmaTRVbLZvcHgmkEiS1eKbN7QlBJ4D68s1vjwSuDNguVI+ccMNmNuB1nXV5+5wdLhv6pvyLRcp6TgzN4a8ev4DX7HTiw3d1AADKzAa8bm8tHj8zjnBs+S9MfnJ+AvUOC/Y1OLK69lxoqixFJJ5cLO5PDXvhsplR77CovLLNY9FGREREqjs+NIfddXbYLEZ86K4OfOldB3FmZB73fPkF9E3lbwZVrg3MBFBi1C8GamxGq7MMQ7P5i3jPFvdcEHWOki1HxTtV3h756OlRPNY1tuJjC+EYnjg7jjcdqEeJSZ+3Ne2osSIUSyybTbaSqYUw/uDbJ1FfXoIv/NZB6JYEpbztUAMWwnE8c3Hqqo8JRuP4Zc80fr2zdlOpp/m2GPuf7u6eGvbgYHO5Jta+moz/1Qgh9EKIU0KIx9PvtwohjgoheoUQ3xdCmNLXzen3+9KPt+Rm6URERFQMYokkTg17cUNL5eK1Nx+ox0PvvwnBaALv/MqvENNYgVbpikwAACAASURBVLKaodngpuP+FdurrYglJEa9m494V8PwFuP+FU6bGbOBKBIZdpWy7Qs/68WHvncKPzixfBthqkuVxL2H87c1EgD2prtfZ0bm1733U493YyEcx7+++3o4Sq8ecn7L9mrU2M344cnRq67/smcakXgSv66B82zA1bPa5gJRDM4GNb01EthYp+3DALqXvP8ZAJ+XUnYA8AB4IH39AQAeKWU7gM+n7yMiIiJa0YUxH4LRxLIhxAebK/Bnb9yFGX9Uk2e4VjI4G0DrJkNIFG3p2P/LGkuQdM8Ft5QcqagrtyCRlBhToWhNJCVGPEGY9Dr86Q+68OOz41c9/vBxNzpc1rynFO6stcFs0KErfXZrNVJKvHR5Fq/fV7vivDK9TuAt1zXg55emMLvk3OBPzk+ivNSII0t+sVLIGspLIERqVttpdypY5aCGkyOBDIs2IUQjgDcC+Gr6fQHgTgA/SN/yDQD3pN9+S/p9pB+/S2i5F0lEREQ5dWxwDgCu6rQpOutTHYQL4+t3EApdIinhngti2yZDSBSLEe8bDJ5QUyiawNRCJCudNuVM1dnR/P9MjM+HEEtIfPz1u3CwuQIfeugUfn4ptZWwb2oBp4a9uPdwU9634Rn1OuxtcKBrZO2ibdQbwow/smYB89aDDYgnJR4/kypIY4kknu6exF27amDY4tbWfDEZdKh3lMA9F8SpYS/0OoF9jYV/Fm8tmX7nvwDgTwEoexOqAHillPH0+yMAGtJvNwBwA0D68fn0/URERETLHB/0oLmyFDX25SEBbdVlMBl0uDDmU2Fl2TXmTb3g30oICQCUl5pQbTVpqmgbSZ+1ykYE/s5aG4x6kdFWwGxTzkjtqrXhwd+9ATtqbPjAt07gaP8sHjk+Ar1O4J6DDes8S24caCzH2dH5Nc86drlT37MDaxRtu+vs2FVrww9PpbZI/qp/Fr5wXBNR/0s1pWP/Tw17sbPGhlKTQe0lbcm6RZsQ4k0ApqSUJ5ZeXuFWmcFjS5/3/UKI40KI49PT0xktloiIiIqLlBLHh+aWbY1UGPQ67Kq14cK49ou2oXTc/1Y7bQCw3WnVVNHmzmLRZjbosavWjjPrdJVywT135etwlBjxzfceQWNFCR74xnF8/7gbd+5ybSlkZisONDkQjiXRs8a8ttNuD0wGHXbVLt8audTbDjWgy+3F5Wk/fnJ+AiVGPe7Y4cz2knOqubIUQ7MBdLm9mp7Ppsik03YrgN8QQgwCeAipbZFfAFAuhFBK1kYASozOCIAmAEg/7gAw98onlVJ+RUp5WEp52OnU1g8BERERZcfgbBAz/uiKWyMVnfV2nB/zaX7g9oAS91+99cKlPT2XSyvfk2wM1l5qX6MDZ0fnM464z5ah2SAMOoG6dHR8ldWM7/zeTagoM8IbjOHew015Xc9SBxpThclaxWyXex6d9XaYDGuXAG+5rgE6Afzw5Ah+en4Sr9rhhMWYvzTMbNhWVYYZfxQLkbjmQ0iADIo2KeX/lFI2SilbALwTwDNSyv8B4FkAv5m+7X4Aj6bffiz9PtKPPyO18n8UIiIiyqsr59lWf1G1p84ObzCG8flwvpaVE0MzAViMOtTYtj4rqt1lxUI4XtDzypYanguh1KRHVZkpK8+3v8GBhXAcQ3PrR9xn0/BcEA0VJVed7ap1WPC9992Ev3jzHrxmp3qNiG1Vqe7faufa4okkzo7OZxSSUmO34Nb2ajz4/CCmFiK4e6+2tkYCV3d1r5VO22o+BuAjQog+pM6sfS19/WsAqtLXPwLg41tbIhERERWrYwNzqCg1YrvTuuo9e+pTW7m0fq5tcDaIbZVlV83F2qwOlw2AdsJI3J4gmiq2NupgKSVUIt9bJN2rjC1orCjF797aqmpQhxACB5rKcdq98lm/nkk/QrFExsmWbzvUgFAsAYNO4M6d2ivalL8nR4kRrVnYkqy2Df1kSSl/LqV8U/rtfinlESllu5TyHVLKSPp6OP1+e/rx/lwsnIiIiLTv+JAHh1sq13wxv7PWDiGg+XNtQ7MBbNtiCIliMUFSI7H/qbj/7HztALCjJhVxfzbPYSTZmjWXK9c1OtAzuYBgNL7ssdPpcQCZFm13d9ai1KTHzdurls1z0wLl7+m6pvKs/KJEbdrI7SQiIqKiM70QwcBMYM2tkQBgNRvQUlWm6U5bMikxNBdEyxZntClq7GZYzQZNdNqklFkvdox6HfbU23Emj7H/vnAMnmCsoIu2A03lSCQlzq/wb+W024OKUmPG6y81GfDN9x7BX9+zN9vLzIuKUiP2NThwd2et2kvJCm1nXxIREZFmnRhKnWc7nMHA3j11dpwZzX9aYLZM+MKIxpNZ67QJIbDdpY0EyblAFMFoIiuDtZfa3+DAD06MIJGU0Oehk5LtMJVc2J8OI+lye5eF+3S553GgqXxDW1Qz+bdZqIQQ+O8/vE3tZWQNO21ERESkimODHpgNOuytX3/o7Z56O9xzIcyHYnlYWfYNzqSTI7N4tqbdmUqQLHTKbLNsFzv7GssRiCYwMJOf74ES99+cpcI7F5w2MxrKSxa3Qir8kTh6phYWEyZJe1i0ERERkSqOD87huqbydePHgSthJBc1eq5tMN2lydb2SCB1rm16IVLwhWyuirb9i2Ek+dkiOTyXvVlzuXSgybEsQfLsyDykBK4rghTFaxWLNiIiIsq7YDSOc2O+NeezLdVZl06Q1GjRNjQbgMmgQ51963H/isUwkgLvto14QgBSCYvZtN1pRYlRn9eiraLUCLulsEM5DjSWwz0XwlwgunhtMYSEnTbNYtFGREREeXdq2ItEUuKG1syKNqfNjGqrSbNhJIOzATRXlmY1xa4jXbRdLvCibXg2CKfNjBJTdocz63UCexvsOJunMJJCT45UHEinQy7ttnW5vdhWVYqKLM3Jo/xj0UZERER5d2xwDjoBHMpwu5YQArvr7BrutAXRkuWzUE2VpTAZdAUf+5/LYmd/YznOj80jnkjm5PmXGs7y2IJc2dfggE6kCjXFabc346h/Kkws2oiIiCjvjg96sKvWDtsGtpp11qdmUEXjuX+Bnk1SSgzOBrAtywN+9TqBtuqygt8emRqsnd3kSMX+RgfCsWTOA1niiSRGPaGspX/mUpnZgA6XbbFom5gPY8IXZgiJxrFoIyIioryKJ5I4OexZdz7bK+2ptyOWkAVfpLzSpC+CcCyZ1RASRaHH/scSSYx5QznrtO1rSIWR5HrI9vh8GPGk1MT2SEAJI5mHlPLKeTaGkGgaizYiIiLKq55JP4LRBA5t22DRptEwksFZJe4/+y/4251WuD1BhGOJrD93Nox5Q0jK3CUutlSVwWY25HyGn1aSIxX7G8sxF4hixBPCabcXRr1Y/PdD2sSijYiIiPKqZ3IBALB7gy8iW6vLYDHqNBdGMjSb/RltinaXFVIClwv0XJt7LpUcmatiR6cT2NvgyHmnLVdjC3JFOb922u1Fl9uL3XV2WIzZDYKh/GLRRkRERHnVM7kAo15suIjR6wR21dpxYTw/aYHZMjgbhFEvUOfIXty/oqOmsGP/81Hs7G90oHs8t2cdh+eUv8PcnM3Ltp21NpgMOpwa9uLMiJfn2YoAizYiIiLKq57JBbRWl2U0VPuVOuvtuDDmg5QyByvLjaHZAJoqSmHQZ/9lV2t1GXSicGP/h+eCMOl1qMnifLpX2tfoQDSRXOzg5sLwXBCNFaXQZ3FkQy4Z9Trsrbfjsa4xBKIJJkcWARZtRERElFc9k3501Ng29bF76u3wheOLA5u1YHAmmJMQEgAwG/Roriwt2Nh/tyeIhoqSnBY7Shcpl0O23RqJ+1/qQFM5ZvyRxbdJ21i0ERERFYiHj7txctij9jJyKhRNwO0JYodrk0WbxsJIrsT95+4Ff3sBJ0jmo9hprChBeakRZ3MYRjI0G0RzpTa2RiqU7prNYkBbjn5pQPnDoo2IiKgAxBJJ/PmPzuEPv3uqYJMAs6Fvyg8pgZ211k19/K5aO3QCmgkjmfZHEIwmchJCotjusmJgJpCXAdNAarvnC30z697nj8TRPx3IebEjhMC+BkfOOm3zwRjmQzHNhJAolA7kgcZy6DSyrZNWx6KNiIioAFye9iOaSGLUG8I3XhxUezk5cyl97miz2yNLTHq0VpdpptM2NJsK4shpp81pRSwhMZQO/ci1zz55Cfc9+PLi8ObVfP6pHgSicbz9UGPO17S/0YFLEwtb+oXH2ZF5xFYofN0ebSVHKrZVlWJnjQ137XapvRTKAhZtREREBUDpHHW4rPinZ/swF4iqvKLc6J1cgEmvw7YtvADurHdoptM2OJO7uH+FUgDna4vk2dF5JJISH32ka9Ui6cKYD19/cRDvOtKMg80bm8e3GfsayhFPSnRvspg/OzKPN//T8/jCz3qWPXYlAVNbWwyFEPjJH92B99zaqvZSKAtYtBERERWAC2M+mA06fPFdBxGIxPHFp3vVXlJO9EwuoM1ZtqUkxT31dox6Q/AGC7+wHZoNwqATaKzI3RbB7c5UMZGPom0+FMPwXBC3tlehb8qPzz+1vMhJJiU++eg5lJcY8ad378z5moBUgiQAnNtkMf+tXw0CAB58fhBTC+GrHlO6pU0aO9NGxYVFGxERUQG4MO7DzlobdtfZ8c4jzfj2r4bQX6CJgFvRM+nHztrNbY1UqB1G8uylKdz8t0/jFz3T6947MBNAY0VJTuL+FTaLEbV2S15i/5UO5/vv2I53HWnCV57rx4mhuavueeSEGyeGPPifb9iN8lJTztcEAPUOCypKjTg/uvFzbfPBGB7rGsPtHdWIJpL452cvX/X48FwQlWUm2CzGbC2XaMNYtBEREalMytS2LqUY+aPX7oDZoMP/+fFFlVeWXf5IHKPeEHZs8jybYrdStKm0RfK5nhmMz4fx3q8fw7deGlzxnkRS4nM/vYQnzo3jUB62B7a7rHmJ/T8/liqKOuvt+LM37kG9owR//MgZhKKpbZJzgSj+9scXcaSlEm8/1JDz9SiEEOisd+D8Jn4m/vPkCMKxJD72ul2493AjvnN0CO4l5wO1GPdPxYdFGxERkcomfGF4gjHsqU8VI06bGX/w6u346YVJHO2fVXl12dOrhJC4NpccqXDazHDZzKp12i5P+9HusuI1O5345KPn8RePnb8quXF6IYLf+dpRfOmZPtx7fRM+/bZ9OV+TEvufTOZ26Pi50XnU2i2otpphNRvwd+/Yj4GZAD7zZOoXDJ998iL84Tg+dc9eCJHfxMLOBjsuTSysGCayGiklvn10CAeby7G3wYEP3dUBIQS+8LMr25OH54JbOoNJlA0s2oiIiFSmdIyUThsAPHBbG2rtFvzNE905fyGeL72TqU7QVrdHAqlOj1qdtsvTfuyps+Pffucw3nd7K77+4iB+75vHsRCO4eWBObzxi8/hxJAHn/3N/fjMb+6HxajP+Zq2u6wIRhMY94XXv3kLzo35sLfhys/pLdur8bu3tODrLw7in3/eh4eOufHAba1Z+TveqM56B6KJ5OLPWSZeujyL/ukA3n3jNgBAnaME99+8DT86NYLeyQXE04muWkuOpOLDoo2IiEhlSvGxa0nRVmLS40/u3okzI/N4rGtMraVl1aXJBViMOjRVbP0F8J56O/qm/IjE8zvTLhxLYNQbwnanFXqdwJ+9cQ/+9m378HzvDF7/j8/hXf/+K5Sa9PivD96Kew835W1dSvcyl2EkwWgc/dN+dNY7rrr+p6/biZaqUnz2yUuod1jwobs6craGtexNd6rPjWV+ru3bR4dQXmrEG/fXLV77g1e3o9RkwOd+2oMxbxiJpGTRRqpj0UZERKSyC+M+tFSVwmo2XHX9rQcb0Flvx9/95BISRdBt65lcQLvLmpVBv3vqHIgn5Ya6KtkwMBOAlECb80r8+7uONOMb7z2CQCSO13XW4rE/vG3x3F2+tKeLNmULai50jy8gKVNdzqVKTQZ87t4DqCoz4VP37EXZK36O86WlqgxlJn3GHdhJXxg/OT+Jew83XdUNrSwz4fdub8WT5yfw32dSvzDhmTZSG4s2IiIilV0Y9634Il+nE3jf7W0Y9YZwbhOpeIWmd9KPHa7sbJtTzv/le4vk5XTYx3bn1efybm2vxvE//zV8+X8cgl2FlMGqMhNq7GacGcndz4kSQrK3wbHsseu3VeLYn70Wd+2uydnnX49OJ7C7zp7xv5WHXnYjkZT47SPNyx77vdvbUFlmwj+mR28053A4OlEmWLQRERGpaCEcw9Bs8KrzbEvd1lENAHiud/14+UI2H4phwhfGjiydddpWWZrqquQ5jOTyVABCAK3Vywct67PQQdwsIQSu31aBk8OenH2O86M+VJaZUOewrPh4NjqoW7W3wYEL4751z4HGE0l87+Vh3LHDiZYV/i6tZgP+n1dvRzSehEmvQ6195a+ZKF9YtBEREano0kRqO9ue+pWLtmqrGXvq7Hiudyafy8o6ZdvejpqtJUcqlK6KGp22hvISlJhyHy6yUYeaKzDiCWEyR2Ek58bm0Vlvz3sq5EbsqbcjGE1gYDaw5n0/657ChC+Md9+4vMumePdN21DnsKCxskTVgpwIYNFGRESkKqVTtFrRBgC3d1Tj5LAHgUg8X8vKup702bOOLG2PBFLfs0y6KtnUP+NftjWyUBzalpoHd3JoY922cCyBH5wYwW/920v4wYmRFe+JxBPomVxYFkJSaPam17fevLbvHB1CvcOCO3e5Vr3HYtTj3+87jM+8fX9W10i0GSzaiIiIVHRhzIeKUuOa269u73AilpB4eWAujyvLrp7JBZSa9GgoL8nac+6ps8MficPtCa5/cxYkkxKXpwJXhZAUks56O0wGHU5kWLSNeIL4zJMXcfPfPo0/fqQLJ4c9+NxPL60456x30o9YQl4V91+IOmqsMOl1OL/GubaBmQCe653Bu440w6Bf+6Xw3gYHbmipzPYyiTZMnXgfIiIiApDqtO1ZZ8vZ4ZYKmA06/LJ3Gq9ZozNQyHomF9BRY8vquaelYSTbqnJfSE34wgjFEgXbaTMb9Njf4Fj3XJs3GMXH/vMMnrowCQD4tT01uP/mFgSiCbzvm8fx0/OTV0XgA0tCSAq802bU67Cz1rZmp+2hY8Mw6AR+60j+RjIQbRU7bURERCqJJ5K4OLGwagiJwmLU40hrJZ7X8Lm2nkk/driyW+zsqLFBrxN5CyNZLTmykBzaVoFzoz6EY6vPr/vO0WH85PwkPvCq7XjuY3fi337nMG5pr8adu1xorizF118cWPYx50Z9sJkNmphX1llvx7mxeUi5fNuslBKPd43j9o5quGwMFyHtYNFGRESkkv6ZAKLxZEYzvW5rr0bvlB8T87kJmcglTyCKGX8EO2qyd54NSBWz7U5r3sJILqcHV293Feb2SCAVRhJNJBc7Yyt5unsS+xsd+Njrdl21XVWvE7j/lhYcG/Qsi80/NzaP3fX2gkiIXE9ngwPeYAxjK/xbOeX2YtQbwpv216uwMqLNY9FGRESkEqXYWCuERHF7hxMA8Hyf9rptPenkyI4sJUcupYSR5EP/TAA2iwFOqzkvn28zDm0rBwCcHPKu+PisP4JTbu+qARzvONyIUpMe//HC4OK1RFKie9xX8FsjFcrw75XmtT3eNQ6TXodf61RvnhzRZrBoIyIiUkn3uA8mvS6j7Xa7am2otpo0Oa9NKdp2ZmlG21J76uwYnw9jLhDN+nO/0uXpVHJkIUfeu2wWNFeWrhpG8oueaUiJVYs2u8WI37y+Ef/dNYYZfwQA0D/tRziWLPgQEsXuWjt0YnmCZDIp8cTZcbxqp1OVAehEW8GijYiISCUXxn3YUWuFcZ0EOyA1l+zW9mq80DeT14j7bOiZ9MNmNuRkQPHSMJJcK+TkyKUONZfjxLBnxTNdT1+cgtNmXrNrdt/NLYgmkvje0WEAqa2RQCpJUQtKTHpsd1qXJUieGPZgwhfGm14RskKkBSzaiIiIVCClxIUx37ohJEvd1l6NGX8UF9MDubUilRyZmw6V8v27ML76Ga5s8EfimPCFCzqERHH9tgpML0Qw4glddT2WSOKXl6Zx507XmmfT2l1W3LHDiW/9agjReBLnRn2wGHVoqy78glWxt8GxrNP2eNcYzAYd7trNrZGkPSzaiIiIVDC1EMFsILqhou3KuTbtbJGUUqJnciEnWyMBoKLMhHqHJeedtn4NJEcqFodsvyL6//igBwuReEZjI95zSwumFiL48blxnBudx65a+7ozzQpJZ70dE77w4hbPRFLiiXMTuHOXC1YzJ16R9mjnXx8REVERuRJCkvmWs1qHBR0uK57TUPT/jD8KTzCGDlduijYgP2Ek/dMBAEB7ASdHKnbW2FBq0i871/bMxUmY9Drc1lG97nO8aocTrdVlePCFQVwY92nmPJtC2TardNuODsxieiHC1EjSLBZtREREKlCKjF11GytmbuuoxssDc2vO4SokvekQkmzH/S+1p86Oy9OBnH5PLk/7odcJNFcWftFm0OtwXVP5sqLt6YtTuLGtMqNOk04ncP/N29Dl9mIhHNdMcqSiM71eJUHy8TPjKDHqVw1gISp0LNqIiIhUcGHMh6bKkg2n2N3R4UQknsTxwZXTAQtNz2LRlrtthXvq7UgkJS7l8Kzf5Wk/mitLYTJo46XT9dsq0D3uQyASBwAMzgTQPx3YUNHy9usbFws8rYSQKBwlRjRVluDCmA/xRBJPnpvAXbtdKDHp1V4a0aZo4/88RERERaZ7fGMhJIob2yph1As8p+K5tvlQDB//zzN49PQoovHkiveEYwn888/78LmnelDnsMBpy91ssz11qYIil1skL08FsF0DyZGKQ9sqkJRA10hqXtszF6cArB71vxKbxYh33tAEm9mQkxl7uba33oFzY/N48fIs5gJRbo0kTWPRRkRElGeBSBwDs4HFYmMjSk0GHGquwHM96p1re7p7Eg8dc+PDD53GrZ95Bp9/qgeTvjCAVODDw8fdeM3f/xyfffISjrRU4lsP3JjT2WaNFSWwmQ1bDiN59uIUftmzvBhOJCUGZgOaCCFRHGpKh5Gkt0g+e2kK251l2Fa1scLzY6/fhac+8iqYDdrrUHXW2zE0G8RDx4ZhNRvw6p1OtZdEtGmMzyEiIsqzC+M+SJl6UbkZt3dU4+9/2oMZfwTV1tx1sFZzctgDq9mAL77rOnzrpSH849O9+PKzfbi7sxZ9U35cmlzAgUYHPv9b1+Gmtqqcr0enE9i9xTCSb700iE8+eh5mgw5PfPj2qwq0UU8I0XhSU0Wbo9SIdpcVJ4Y88Efi+FX/LN5za+uGn8eo16HWkf35evnQmd7S+cTZCbz1YAMsRu0VnkQKdtqIiIjyrMud2rK2v2lz54SU6P8X+tTptp0c8uK6pnLcuasG//GeI/j5H78av3tLC57rnUYolsA//fZB/NcHb81LwabYU2dH97hvU4PH//UXl/HJR8/j1TudKDHp8dGHuxBPXNn2eVmJ+9dAcuRS1zdX4JTbi+d6phFLyGsuhGPpL0U4UJu0jkUbERFRnp12e9FQXgKXbXMdjL0NDtjMBhwdmMvyytYXjMZxccKHQ83li9daqsvw52/ag1P/69fxiz95Nd60vz6n2yFXsqfejmA0gaG5YMYfI6XE5356Cf/nxxfx5gP1+Pf7DuOv3rIXp91e/Nsv+xfvU4q2tmrtdNoA4NC2cniDMXz1+QHYLAZcn57fdq1w2Sxw2cywWQyLv+gg0ipujyQiIsqzMyPz2N+4+TQ+vU7gcEsFXlahaOtyzyMpgYPNywsAvS6/hdpSSqjL+bF5tFav3xGTUuJTj3fjwRcG8M4bmvA3b90HvU7gzfvr8OS5cXzhZz24a7cLu2rtuDztR2WZCRVlplx/GVmlFGknhjx40/46GDU0HDtbHritFUa9TjOpn0Sr4U8wERFRHs0FohieC+JAU/n6N6/hSGsV+qb8mPFHsrSyzJwcTgVbHGze2vqzraPGCoNOZBRGIqXEJ350Fg++MID33tqKv33bvsWCUwiBT71lLxwlRnz04S7EEknNJUcq2qqtcJSkRkrctfva2hqp+MCrtuO9t238LB9RoVm3aBNCWIQQLwshuoQQ54UQf5m+3iqEOCqE6BVCfF8IYUpfN6ff70s/3pLbL4GIiEg7lAj2A41bLdoqAQDHB/PbbTs17EGbswzlpYXVdTIb9NhZa8OpYe+6954Y8uB7L7vxgTva8Mk37V62lbPKasbfvHUfzo/58E/P9KF/xq+pEBKFTidwqLkcQgCv2nFtFm1ExSKTTlsEwJ1SygMArgPwOiHETQA+A+DzUsoOAB4AD6TvfwCAR0rZDuDz6fuIiIjWFU8kIeXGgyS0pMvthRDAvi1sjwSAfQ0OWIw6vDyQvyHbUkqcGvbiYFNhno26ZXsVTgx5EIom1rzv+b4ZCAH8wau3r3r27u7OWrz1YAP+6dk+zPijmizaAOD3X7Udn3zjHlRqbGsnEV1t3aJNpvjT7xrT/0kAdwL4Qfr6NwDck377Len3kX78LpHv08hERKRJf/xIF177D7/AiCfzMAmt6XJ70eGywmre2rFyk0GHg00VeHlwNksrW9/wXBCzgSgObSusrZGK2zuciCaSODqw9vfkxb5Z7K13rNst/Is3d6LamrpHa8mRihvbqrg9kKgIZHSmTQihF0KcBjAF4CkAlwF4pZTx9C0jABrSbzcAcANA+vF5APnL/CUiIk1KJCV+1j2Fy9MB3PuvL2FgJqD2krJOSomukfktb41UHGmtxIUxHxbCsaw833qU82yHVgghKQRHWithMujwfO/qoxCC0ThOuT24pX39lyaOUiP+/h0H0Fpdhv1Z+jsjItqMjIo2KWVCSnkdgEYARwDsXum29J8rddWW7XURQrxfCHFcCHF8eno60/USEVGR6h73wR+J4/dftR2ReBLv+NeXI8F/hwAAIABJREFUcGliQe1lZdWIJ4S5QHTLISSKG1srkZSpM1r5cGrYizKTHjtqbHn5fBtlMepxQ0sFnl9jft3LA3OIJSRu3V6d0XPe3uHEs3/8alWGmBMRKTaUHiml9AL4OYCbAJQLIZS9HY0AxtJvjwBoAoD04w4Ay05JSym/IqU8LKU87HRydgYR0bVOmTl2/y3b8P0P3Ay9Dvitr7yEMyPrB0toxen0UO3rslS0HWyugEEn8hb9f3LYgwNN5apG+6/ntnYnLk4sYMoXXvHxFy/PwqTX4YaWyjyvjIho8zJJj3QKIcrTb5cAeC2AbgDPAvjN9G33A3g0/fZj6feRfvwZWeynyomIaMteHphFU2UJ6hwlaHdZ8cgHboHNYsBv//tRVeaR5UKX2wuTQYedtdnpVJWY9NjX6MjL9ycYjaN7fKFgt0Yqbu9IddBW67a90DeDg83lKDHp87ksIqItyaTTVgfgWSHEGQDHADwlpXwcwMcAfEQI0YfUmbWvpe//GoCq9PWPAPh49pdNRETFREqJY4MeHGm5cs6ouaoUD3/gZrjsZtz34FGMekMqrjA7zozMo7PentUhx0daK9E14kU4tnZi4ladHZlHIikLbj7bK+2ps6OyzLTiuTZPIIoL4z7c2p7Z1kgiokKRSXrkGSnlQSnlfinlXinlX6Wv90spj0gp26WU75BSRtLXw+n329OP9+f6iyAiIm27PO3HXCCKG1uv3rJW5yjBV+87jHAsiZ9dmFRpddkRTyRxdjR7ISSKG1srEUvIxa2XuXIyPf/sYIF32nQ6gVvbq/F838yy8REv9c9CSuDWDEJIiIgKSfZ+1UdERLRJynm2G1qXnzNqc1qxraoUv+zRdmhV75QfoVgia+fZFNdvq4QQyPkWyZPDHrRWl2li3tft7dWYWoigZ9J/1fUX+mZQZtIzCZKINIdFGxERqe7lgTk4bWa0VJWu+Pirdjjx4uVZROK53QKYS13pTli2kiMVjhIjdtXac1q0pYZqe3Awy2vPldvS59qe67260H/x8ixubKvK6vZUIqJ84P+1iIhIVVJKvDwwhyOtlRBi5VTCOzqcCMUSODGYn2j7XOga8cJuMaxamG7Fja2VODHkQSyRzPpzA6lRBTP+KA5uK+ytkYr68hJsd5bhuSXn2sa8IQzMBHDLdm6NJCLtYdFGRESqGvGEMD4fXnaebambt1fBqBf4Ra92t0ieds/jQFP5qoXpVhxprUQolsD5Md+mn8MTiOITPzqLT/zoLPyR+FWPXRmqrY1OG5Car3Z04Ep39oV0miRDSIhIi1i0ERGRqpRtfWvNzSozG3B4WyV+cUmbRVswGkfP5ELWz7MplO/dywOzG/5YKSX+69Qo7vqHX+DhY2489PIw3vyl53F+bH7xnpNDHpSa9NhZoEO1V3JbezXCseTi4PEXL8+iqsykqa+BiEjBoo2IiFT18sAc7BbDui+m79ix9tDkQnZ+zIdEUuYsAMNpM6OtumzD59qGZ4O478GX8f99/zSaK0vx+Iduw3ffdxOC0Tje+uUX8c2XBlPn2dxe7G90wKChs2A3ba+CQSfwXG8qRfKFvhncvL0KugIeDE5EtBrt/N+XiIiK0rHB1Hm29V5M37Ejta3tlyvM3yp0iyEkjY6cfY4jrZU4NuhBMinXvxnAV5/rx69/4Rc4NezFX72lE//5B7dgV60dN7VV4YkP3Y5b26vwvx49jw986wQujPkKfqj2K1nNBhxqrsDzvTO4PO3H1EKEWyOJSLNYtBERkWqmFsLonwngyBrn2RR76uxw2syajP7vGplHvcMCl92Ss89xpLUS86EYeqYW1r333Og8/vr/78bNbVV46iN34L6bW6BfUjRXWc342v034M/esBvPXJxCPCk1V7QBqRTJc2PzePzMOADg1u0s2ohIm1i0ERGRao4NpM4bHWldP9FPCIHbO6rxXO80Ehl2kwpFl9ub9aj/V7pyrm39LZLHBlP3fPpt+1DnKFnxHp3u/7Z33/FVV/cfx18nm0yygQRCQgIh7IAIsgXcirNOtFqLtdpWO/21Vjvs72eXba11Va17VhE3ggKCsiHMJBBGFhkkIXvnfn9/5KKMJGTcm3sD7+fjkUcu3+/5fu/n5pDkfnLO+RzDd2cm8Nb3pnLrtKF9cpRqelIElgXPrD5AbGg/hjihcqeISG9Q0iYiIi6z4UAp/bw9GTUouFPtZw2P5EhtEzvzK07d2E2U1TSSU1br9KQtNrQfg0L8WL//1EnblpxyBob4tZuwHWvCkFAevHQU/Xw8HRFmrxobE0KQnxfVDc0aZRORPk1Jm4iIm1u3v5QL/v7F11XwTicbDh5hYlxopzc7np4YgTH0qSmS2/KOrmdzbtJmjGFKQjjr9pdiWR2PRG7JPtInpzt2lZenx9f7sp2TqP3ZRKTvUtImIuLG3tyUy8Jn15NRWMXbW/JcHY5DVdQ2kVFY2an1bEeFB/oyJiaEVW6YtNlsFvsPV/N5RhGvrs/hkU8z+dlb2/i/j9IxBsY4sQjJUVOHhVNa08ieoup22xRV1pNfXseEPrTnWk9cOHogAT6efXJ6p4jIUV6uDkBERE5ms1n8aWkmT67ax/TECGyWxZo+WDWxI5uyy7AsupS0AcxMiuSJVfuorG8i2M/bSdGd2uGqBtJyy9mWW862vNbPlfXfbErtYSAqyI8BIX7cNTuRQF/n/8qdah9VWruvhBED2t5CYYt9xDY17vQfaQNYMH4Q542Kxt9Hb3lEpO/STzARETdT29jMvW+ksXRXETecPYTfXjaKV9fn8OB7u8gurSEuPMDVITrEhoNleHuaLm84PXN4JI+tyOKrrBIuGD3QSdF1bPehSi7552psFnh6GJIHBHHJuEGMj+3PsKhABvX3IzLQt9f3NYsN9WdImD9f7Svl29Pi22yzJecIPl4enV5H2NcZY5SwiUifp59iIiJupLiyntte2MjuQ5U8cEkKt04bijGG6UmtU7tW7y05fZK2A2WMi+2Pn3fXClxMGNKfIF8vVu057LKkbUVmMTYLXr39bCYMCXWrIh1TE8L5ZFchLTbruDL+R23JKWdMTAi+Xu4Ts4iIdExr2kRE3MjvPtjNvuIanrllErdNj8eY1jfdCREBDArxO22mSFbUNrEjr4KzE7o2NRLA29ODcxLD+WJPySkLbjjLuv2ljIgO4pzECLdK2KC14EZFXRPpBZUnnWtstrEjv4LUM2Q9m4jI6UJJm4iImzhUXsfHOwtZODWOc5OjjzvXukdZJF/tK6G5xeaiCB3n88wimm0W80ZGn7pxG2YOjyS/vI59h2scHNmpNTbb2HTwCFO6kXD2hqkJrevavtp3coK/61AFjc22M6JypIjI6URJm4iIm3hxbTaWZXHz1Lg2z09PiqCyvpntfWiPsvYs3VlEVJBvt8vgz0yKBFxT+n9Hfjl1TS1fF/1wN1HBfiREBrB2X+lJ5zafYUVIREROF0raRETcQG1jM69tyOGC0QOIDfVvs800+x5lfX2KZH1TC6v2HOa8UdF4tLHmqjMGh/kzLDKAFZnFDo7u1NbZN6+eHO+eSRvAOcPC2XCgjKYTRmW35pQT078f0cF+LopMRES6Q0mbiIgbWLw1n4q6Jm5tp+IfQFiAD6MGBff5pG313hLqmlo4f9SAHt1nXko06/aXUlnf5KDIOmftvlKSBwQRFuDTq8/bFVMTIqhpbGHHCaOyW3KOaJRNRKQPUtImIuJiNpvFc2sOMCYmhEmneEM9IymSLTlHqG5o7rCdO1u6q5BgPy+mJPRspGr+yGiaWqxenSLZ2GxjU3ZZj2N3tqPr7Y6dIllQUUdBRb2KkIiI9EFK2kREXGx1Vgn7Dtdw2/ShX1eLbM+MxAiabRbr95+8XqkvaG6x8Vl6EXNHRuPdwz3MJgwJJSzAh+W7ixwU3altyyunvsnm9klbeKAvyQOCjkvatmSXA6gIiYhIH6SkTUTExZ5bc4DIIF8uHjPolG0nDg3Fz9uD1X10iuSGg2UcqW3ivJTuVY08lqeH4dzkKD7PKD5p7ZazrNtXijG4beXIY00dFs7Gg2U0NLcArUVIfL08GDnwzNhUW0TkdKKkTUTEhbKKq1m15zALp8Th43XqH8m+Xp5Mjg9n9d7er5roCJ/uKsLXy4NZIyIdcr95I6OprG9m48Eyh9zvVNYdKCV5QDD9/d13PdtRUxPCaWi2kZbTOsK2JecI42L7d+r/mYiIuBf95BYRcaHnvzqAj5cHN5w9pNPXzEyKYN/hGgoq6pwYmeNZlsWy3UXMSIrE38fLIfecOTwCHy8Plu92fhXJhuYWNh088vU+aO7u7IRwPAx8ta+U+qYWdh2qYEKc1rOJiPRFStpERFykvLaRtzfns2DcICICfTt93fSkCIA+N0VyZ34l+eV1nD+q51Mjj/L38WJ6YgTL0guxLMth923LttwKGpptfWJqJEBIP29GDQph7f5Sdh2qoKnF0no2EZE+SkmbiIiLvL4xl7qmlg7L/LdlRHQQkUG+fS5pW7qrEA8Dc0c6LmmD1imSuWV17C2uduh9T7Ruf+t6trPdeH+2E50zLJytOUdYs7e1IImSNhGRvklJm4i4vaYWG79cvIPPM3qvSqCzHa5q4Okv9nPOsHBSBnWtMIQxhumJEXyZVYLN5tzRJUdauquQyfFhDt/fbO7IKACWOaCK5Cc7C7nv7e3UtLGlwtp9paQMDCbE37vHz9NbpgwLp6nF4qV1Bxkc1o/IoM6P6IqIiPtQ0iYibu/hjzN4dX0O//7igKtDcQjLsvjV4h1UNzTz28tGdese0xMjKKtpZHdBpYOjc479h6vZW1zd4w212xId7Me42JAeJ21ZxVXc+0Yar2/MZeGz66mo+2bT7vqmFrbkHHH7Uv8nOmtoGF4ehpLqRiZqlE1EpM9S0iYibm1JWj7PrjlAeIAPGw+WUVXfdOqL3Ny7afl8uruIn543nKTooG7dY4Z9XduarL4xRfJTe0J1nhOSNoD5KdGk5ZZTXFXfrevrm1r4wWtp9PPx5PeXj2ZHfgU3/HsdpdUNAKTlltPQbOszRUiOCvT1YmxsCACpp9i4XURE3JeSNhFxW+kFlfzi7e1MHhrGP66bQLPN4sss99lUem9RFV/sOcyeoioq6po6VQijsKKeB5fsYlJcKN+ZntDt544K9mNEdBCrMvtG6f+luwoZExNCTP9+Trn/PPu+b5+nd6+K5MMfZ5BeUMlfrhnLwilx/PvmSWQVV3Pt0+soqqz/ej3bWfF9owjJsaYOa000tZ5NRKTvckzNZRERB6uobeJ7L28m2M+bx26cQKi/D0G+XqzaU8wFo50zWtMVlmVx07PrKaps+PpYP29PooN9SYoO4hcXJJMYFXjSNfe9s53GFht/vmYcnh6mRzHMT4nm8ZVZHK5q6PW1Si02i9++v4tpiRGnnPJYVFnP1pxyfjJ/uNPiGREdRGxoP5anF3Hd5M5vnwCwfHcRz391kFunDeXc5Nbkb/aIKF64bTLfeX4j1zy5Fn8fT0YNCiakX99Zz3bUzVOHEuznTYo21RYR6bM00iYibsdms7jnja0cKq/jiZtSiQryw9vTg+lJEazIOOz00u6dkXekjqLKBm6fHs+j10/gVxeN5IazhzA6JoQNB8q46NHVPL4yi+YW29fXvLkpl5WZh7nvgmTiIwJ6HMOC8YOwWfDh9kM9vldX7T9czYtrs7njpc38a0VWu31SVtPIT9/aBuDUZNsYw7yR0azeW0Jt48lFRNpTWFHPz/67jZSBwdx3YfJx56YkhPPKd6dQUddERmFVn5saeVR0sB93zBqGRw//SCAiIq6jpE1E3M4/PtvLiszDPHBJChPjvpmONntEJIWV9WQWVbkwulbb8soBuGz8IC4bN4jvzkzg15ek8NgNqSz78UzmJkfxp08yueLxr0gvqCTvSC2//yCdqQnh3Dx1qENiSIoOYuTAYJZs6/2kLb2wtQ8mx4fx56WZ/PSt7TQ0txzXZnP2ES5+dDXrD5Tx8JVjur1+r7Pmp0TT0GxjTSe3Qmix/3GgvsnGP2+YgK+X50ltxg/uz+uLpjA5PowrJsQ6OmQREZFOUdImIm7l84wi/vHZXq5KjeWmKXHHnZs9orW0+4oM16/jSsspx8fLg+QBJ085iwry44mbJvL4jakUVNRx6T/XcNMz67Esiz9dPdahIx4Lxg9ia0452aU1DrtnZ6QXVOLlYXjpO5O5d95w3t6Sx8JnNlBW04hlWTy75gDXPrUWL0/DO3ee0+Upi90xOT6MID8vlqd3rorkEyuzWLe/jN8uGMWwyMB2240cGMybd0zt8tYMIiIijqKkTUTcRm5ZLfe+0TpV7Q9XjMaY45Ob6GA/Rg4MZmVm94pNOFJabjmjBwXj49X+j9GLxgxk2b2zuHTcIA6W1vLrS1IYHObv0DguHTcIgPfSene0Lb2gksSoQHy9PPnRvCQevX4CaXnlXP6vL1n00mZ+/8Fu5iRH8cEPZjA6JqRXYvL29ODc5CiW7S6isdnWYdsjNY3847O9XDx2INdM1AiaiIi4NyVtIuIWGppbuPvVLdhsFk/clIqf98lT1aB1iuTm7CNUurD0f1OLjR35FYwffOpqfKEBPvzt2vFsvn+eU0abYvr3Y3J8GO+m5ffqWr+MgipGHlPY4rJxg3h90RRqG5v5PKOYX16UzNMLJ/Z64Y7Lxg3iSG0Tq/Z0PBr78c5Cmlos7pw17KQ/DoiIiLgbJW0i4hb+8GE62/Iq+PM144gLb79Ix5wRUa2l/zu5bskZMguraGi2MW5w50eQwgOdV91xwfhB7Dtc02sbbR+paaSwsp7kAcevUUsdEsrHP5rJ0ntmsGima5KhmcMjCQ/wYfHWvA7bvZuWz7DIAEZpyqOIiPQBStpExOXe23aIF9dmc/v0+FNWGEwd0p8gPy9WunB/srTc1iIkEzox0tYbLho9EC8Pw5JemiKZXtiaHI5so4R8ZJAviVHOLTjSEW9PDy4dN4jl6cVU1LU9GnuovI4NB8pYMD5Go2wiItInKGkTEZfKKq7mvre3MzEulF+cUHK9LV6eHsxMimTlnmKXlf5Pyy0nLMCHwWHO2Si6q0IDfJg1PJL30g5hszn/a5Je0Fo5Mnmg65KzjlyZGkNjs42PdhS0ef59e7XNy+zrAUVERNydkjYRcZnaxma+/8pm+nl78q8bUvH27NyPpFkjIimqbPg6eeht23LLGT+4v1uN0iyYEENhZT0bDpY5/bkyCiqJCPQhKsjP6c/VHWNiQhgWGcDiLfltnl+Sdojxg/sz1AF75YmIiPQGJW0i4jL/+Gwve4ur+cd1ExgQ0vkEYPbwSABWuKCKZFV9E1mHqxkX27/Xn7sj80ZG4e/j2StTJNMLK9ucGukujDFcmRrLhoNl5JbVHndub1EVuwsqWTBeo2wiItJ3KGkTEZdZtquImUmRTE+K6NJ1UcF+jBoUzCoXrGvbnleBZcH4Ie6VtPn7eHFeSjQf7Sg4Zbn7nmhusbGnqPqkIiTu5vIJMQAs3nr8aNuStEN4GLh47EBXhCUiItItStpExCXyy+vYX1LDjC4mbEfNHhHJ5pwj7RabcJajRUjGxfbO3mNdsWB8DBV1py533xMHSmpobLa59UgbtG6FMCUhjMVbv9kKwbIslmzLZ1pihNtO7RQREWmLkjYRcYk1e1sTixlJkd26fs6IKFpsFmt6ufR/Wm458REB9Pf36dXn7YzpSRGEBfiwJK3ttVyOcHRbgeQB7p20AVw5IZYDJTVfJ9pbc8vJLatjwfgYF0cmIiLSNUraRMQlVu8tISrIl+HRgd26fvzg/gT7ebGyF9e1WZZFmr0IiTvy9vTg4jEDWZ5eRG1js1OeI6OwCm9PQ2JU9/qtN104ZgC+Xh5fT5FcsjUfHy8Pzh8V7eLIREREukZJm4j0OpvN4susEqYnRXS7AqOXpwczh0eyIvMwTS3OW8N1rEMV9RyuanDbpA1aE5X6JhurnTQCmV5QybDIQHy83P/XR5CfN/NTonl/2yHqGlv4YHsB80ZGEeTn7erQREREusT9f+uKyGln16FKjtQ2dXs921FXpcZSUt3AO1vyHBRZx7bZp9m5c9J21tAwgv28WLa7yCn3zyiocvv1bMe6KjWWI7VN/OGj3ZTWNGpqpIiI9ElK2kSk163Oal3PNi2xZ0nb7BGRjBvcn39+nuXUiolHpeWW4+Pp4babSkPrFMk5yVF8nlFMi4M32j5S00hhZT0j3fj1n2hGUgQRgT68vC6HID8vZo/o3hpKERERVzpl0maMGWyMWWGMSTfG7DLG/Mh+PMwYs8wYs9f+OdR+3BhjHjXGZBljthtjUp39IkSkb1mzt4TkAUE9ruBnjOGeeUnkHanj7V4YbUvLKSdlUDC+Xp5Of66emDcymrKaRrbmHOn0NQdKanhy1T6uePxLUn+/jAMlNSe1Se9DRUiO8vL04NJxrXuyXTR6oNv3nYiISFs6M9LWDPzEsqyRwBTgLmNMCnAf8JllWUnAZ/Z/A1wIJNk/FgFPODxqEemz6hpb2HTwSI+nRh41e3gk4wf35zEnj7Y1t9jYkV/h1lMjj5o1IhIvD8Oy9I6nSOYdqeWvn2Zy3t9WMecvK3n44wyaWywam2387v1dJ7VPL6wC6FPTIwGuO2sI/j6eXDt5sKtDERER6ZZTJm2WZRVYlrXF/rgKSAdigAXAC/ZmLwCX2x8vAF60Wq0D+htjtIupSCdZlkVOaS1ZxdXHfew/XP31flN92foDpTS22JjezVL/Jzo62pZfXsdbm3Mdcs+27Cmqpq6phQlutql2W4L9vJmSEM7yDta1tdgsbvj3ev61IotQfx8euCSFNb+Yw/s/mM6P5iaxIvMwn52Q9KUXVBIR6EtkkK+zX4JDjRgQxO7fXUDqkFBXhyIiItItXl1pbIwZCkwA1gPRlmUVQGtiZ4yJsjeLAY5955RnP1Zwwr0W0ToSx5AhQ7oRusjp6d20fO59Y1ub565MjeGRb43v5Ygca83eEnw8PZg8NMxh95w1PJIJQ/rzr8+zuHpirFOmwH2zqbb7J20A81OiefC9Xew/XE1C5Mnl+ZftLiKnrJbHb0zlojHH/13t29OG8samXH77/m6mJUbg59369cworOxT69lEREROF51O2owxgcDbwD2WZVV2UKa7rRMnDQ9YlvU08DTApEmT+v7wgYgDWJbF018cIDEqkB/OTTru3Np9pby2IYfLxg1i9oiodu7g/tZklTBpaCj9fByXWBljuHfecG5+bgNvbspj4ZS4bt2nrrGFXYcqSC+opLHl+B9LS3cVEurvTVy4vyNCdrq5I6N48L1dLE8vYlEbSdtzXx4gNrQf548acNI5b08PfnPpKG56dj3PrN7P3ecm0dxiY09RNd8+Z2gvRC8iIiLH6lTSZozxpjVhe8WyrHfsh4uMMQPto2wDgaM73OYBxy4ciAUOOSpgkdPZuv1lpBdU8serxnCZvXjCUeePimbDgVLuf3cnn947E3+fLg2Uu4XiynoyCqv4+QUjHH7vGUkRTIwL5fEVWXxrUudG26obmvlw+yHScivYlltOZlFVhxUXF4wf1O195XpbbKg/IwcGs3x3MYtmDjvu3M78CjYcKOP+i0fi6dH265meFMGFowfw2IosrkiNpaahmcZmG8kDNNImIiLS2075rs+0vkN5Fki3LOuRY069B9wCPGz/vOSY43cbY14HzgYqjk6jFJGOPfflAcICfNrcS8rXy5P/vWIM1z69jr8v38svLxrpggiPt3hrHsWVDdwxa9ipG9M6ygYw00Hr2Y51dLTtpmfX88bGXG6eOvSU1/zkzTSW7ioi2M+LcYP78/2RwxgX25/RMSFtjgQG+fatRHn+yCgeW5FFWU0jYQE+Xx//z5cH8ffx5JpJHRfm+NXFI1mRWcz/fpjOeaOigb5XhEREROR00Jl3INOAhcAOY0ya/dgvaU3W3jTGfAfIAa6xn/sIuAjIAmqBWx0aschpKqe0luXpRdw9J/HrNUQnOjshnOsnD+bZNQe4bNwgRseE9HKU39iZX8HP3tpOs80ipJ83100+9drUNXtLCAvwIcVJb/ynJYZz1tBQ/rUii29NGtzu1xFaKycu213EopkJ/M+FyX1mBK0r5qVE8+jnWazIKOaqibEAFFfV8/62Q1w/eTAh/bw7vD421J/vz07kkWV7KKqsx9vTMKyNqZYiIiLiXJ2pHrnGsixjWdZYy7LG2z8+siyr1LKsuZZlJdk/l9nbW5Zl3WVZ1jDLssZYlrXJ+S9DpO97/quDeBrDTadYj3XfBSMJ9ffhl4t3OHzz5M5qaG7hJ29uIyzAh6kJ4TywZNfXhTraY1kWq7NKOGdYOB7tTMnrqaOjbUWVDbyxseNKkq+uzwHglnOGnpYJG8DoQSFEB/uy/JgqkK+sy6Gxxca3p8V36h6LZiYwJMyfTdlHGBYZiI9XZ3aKEREREUfSb18RN1BV38Sbm3K5ZOxAooM73nA6xN+bBy9NYXteBS98dbB3AjzB35btJbOoij9eNZbHb0wlMsiXO1/eTEl1Q7vXZBZVcbiqwWH7s7Vn6rBwJseH8fjKLOqbWtps09Dcwhsbc5k7MpqY/v2cGo8reXgY5o2MZtWew9Q3tdDQ3MIr67OZmxxFfERAp+7h5+3Jry9JAXDaCKmIiIh0TEmbiBt4a1Me1Q3N3Da9c6Mfl4wdyJwRkfzl00zyy+ucHN3xNmeX8fQX+7jurMHMSY4iNMCHpxZOpKymkR+8upXmlrY3uF6zt3U9m6P2Z2vPsaNtr23IabPNRzsKKK1p5Oap3asy2ZfMS4mmtrGFtftLeX9bASXVjdzayVG2r+8xMopfXpTMt6cNdU6QIiIi0iElbSIu1mKzeP6rg0yMC2VsJ/cAM8bwuwWjsSx4cMlOJ0f4jdrGZn7y5jYG9e/H/fYfDoFgAAAbRElEQVTRF4DRMSH84YoxrN1fyp+WZrZ57eq9JSREBvTKyNbUYeGcHR/G4yv3tTna9tLabOIjApg2zLmjfu5gakI4/j6eLNtdxHNrDjA8OpBpieFduocxhkUzh3X6/6eIiIg4lpI2ERf7PKOYnLJabuvi6MfgMH9+MDeR5enF7DpU4aTojvfHjzM4WFrLn68eR+AJlRSvnhjLzVPjePqL/Xyw/RDFVfUs3VXIwx9ncO1Ta1mTVcKMxN5Lku6dP5zDVQ28sv740bad+RVsySnnpilxTltb5078vD2ZmRTJ25vz2F1QyW3T4k/bNXwiIiKnKyVtIi723JoDDArx43x7SfWuuHFyHH7eHry8LtsJkR3vy6wSXlibza3ThjJ1WNsjNfdfnMLEuFB+8NpWJv/hM+54aTPPrN5PfVMLC6fEsaiTWwM4wpSEcKYmhPPEyn3UNX4z2vbS2mz8vD242l5N8UwwLyWahmYbof7eXD7h5O0kRERExL31rU2HRNxMU4uNFpvVYWn5juw+VMna/aXcd2EyXp5d/xtKiL83C8bF8O7WQ9x34chTlnDvru155dz16hYSIgP4xQXJ7bbz8fLgiRtT+cdne4mPCGDCkP6MGhTS7a9PT907fzjfemotr6zP5vYZCVTUNrFkWz6Xj49x2tfKHZ2bHIWftwcLpw51WV+IiIhI92mkTaQHfvrWNi7555p2qxR2ZOPBMu5+bQv9vD257qyONznuyMKpcdQ1tfD25rxu36MjGw6UccO/1xPk58Xz3558yjf9UcF+/OGKMdw+I4GJcWEuTRImx4cxLTGcJ1fto7axmbc251LfZGPhGVCA5FhhAT6s+OlsfjQ3ydWhiIiISDcoaRPppvqmFj7dVURWcTX/WpHV6esq6pr45eIdXPPkWhqabPz75kn09/fpdhyjY0JIHdKfl9dlY3Pwvm2r9hzm5ufWEx3sy1t3nMOQcH+H3r833DtvOCXVjby0NptX1ueQah/9O9MMDOmH5xmwhk9EROR0pKRNpJu+2ldCXVMLSVGBPLFyH5mFVR22tyyLj3cUMP+RVby+IYfbp8fz6b0zme6AfcsWTo1jf0kNX+4r6fG9jvpkZyHffWETCRGBvHHHVAaEdLx/nLuaNDSMGUkR/PXTPRwoqeHmqUNdHZKIiIhIlyhpE+mmZbuLCfT14uXbzybIz4tfLt7R7khXbWMzd768hTtf2UJkkC9L7prO/ZekEODrmGWlF40ZSFiADy+tdUxBksVb87jr1S2Mignmte9OISLQ1yH3dZV75g2nscVGeIAPF44Z4OpwRERERLpEhUjE7TQ223hi5T4q65tOOjdzeCSzhjt3c+bOsNksPksvYtbwSKKD/bj/4hR+8tY2Xt2Qw01Tjl8vVdPQzG3Pb2TjwTLuuzCZ26fHd6voSEd8vTy59qzBPLVqH/nldd3eC23f4Woe+XQPH+4oYEpCGM/cctZJpf37oolxoXx3RjxJUUH4eqkQh4iIiPQtff/dmJx23tt2iL8t30OAj+dx+0k1tdh4ce1BXl80hYlxYa4LENieX0FxVQPzUqIAuDI1hne25vHHjzOYnxJNdHDrVMLqhmZu/c8GtuSU8/frJnDZuEFOi+nGs4fw1Kp9vLo+m5+d336Fx7YcKq/jH8v38t8tefh6efDDcxP5/pzE06rS4K8uTjl1IxERERE3pKRN3IplWTy35gDDowNZes/M45K2itomLvvXGu58eQsf/HA6UUGuW2O1fHcRnh6GOSNakzZjDH+4fAzn//0LfvPeLp64aSKV9U3c8twGduRV8M/rJ3DRmIFOjSk21J9zk6N5Y2MuP5yb1KkRpYq6Jv752V5eXJcNFtw8NY675iT2+emQIiIiIqcTrWkTt7L+QBm7Cyq5dVr8cQkbtO5J9uRNE6mqb+buV7bS1GJzUZSwPL2ISXGhx1V9HBoRwA/nJvHxzkLe3pzHwmfWszO/gsduSHV6wnbUwqlxlFQ38snOwk61//l/t/HclwdYMG4Qn/90Fg9eOkoJm4iIiIibUdImbuU/Xx4g1N+bKybEtHl+5MBgHr5qDBsOlvG/H6X3cnStcstqySisYn5K9EnnFs1MYER0ED95axvpBVU8ceNELhjde4UvZiRGMDTcnxc7UZBk3+FqPt1dxF1zEvnzNeOIDe175fxFREREzgRK2sRt5JTW8unuIq6fPKTDtVQLxsfwnenx/OfLg7y7Nb8XI2y1PL0IoM2kzdvTgz9ePZbEqECeWjiReW20cSYPD8NNU+LYnH2ErTlHOmz7zOr9+Hh6cMs5Q3snOBERERHpFiVt4jZeWHsQT2NYODXulG3vuzCZs+PDuO+d7ew+VOn84I6xbHcRSVGBxIUHtHl+/OD+LP/xLOYkR/VqXEdde9ZgIgJ9+c37u9vdgqC4qp63t+Rz1cRYTYcUERERcXNK2sQtVDc08+bGXC4aM5CBIacuV+/t6cFjN6TSv58Pd7y8iZqG5l6IsrUYyvoDZb0+gtYVQX7e/M+FyWzLLee/W/LabPPCVwdparHx3RkJvRydiIiIiHSVkjZxC//dlEtVQzO3Thva6Wsig3x55FvjyC2r48PtBc4L7hgr9xTTYrOYN9J9kzaAKybEkDqkP3/8OIOKuuP3u6tpaObldTmclxJNfETbo4UiIiIi4j6UtInL2WwWz391kAlD+jNhSGiXrp06LJz4iADebmdEydGWpxcTEejD+MH9e+X5usvDw/C7BaMpq23k78v3HHfujY25VNQ1ccesYS6KTkRERES6QkmbuNyKzGIOltZy27T4Ll9rjOHKCTGsP1BG3pFaJ0T3jcZmGyszipmbHI2nhzn1BS42OiaE6ycP4cW12WQWVgGtG5Q/u+YAZw0NJbWLCbKIiIiIuIaSNnG55748wMAQv26Xxr/cvj2AsytJbjhQRlVDs1uvZzvRz84bQZCfFw++txPLsvhoRwH55XUsmqlRNhEREZG+QkmbuFRGYSVfZpWycGoc3p7d++84OMyfs+PDeGdLPpbVdrXEnjia7Px6yU78vD2Ynhjh8OdwltAAH3563gjW7S/jg+0FPLVqP8MiA5jrosqWIiIiItJ1Xq4OQE5WUdvEjc+uI6u4+qRzIwYE8+Jtkwnp5+2CyBzv5XXZ+Hp5cP1ZQ3p0n6tSY/n529tJyy3v8rq49liWxZqsEv68NJPteRUkRgXy9MJJ9PNpfw85d3T95CG8tiGH+97eTk1jCw9fOQaPPjC9U0RERERaKWlzM5Zl8ct3d5BRUMXNU4fi7fnNm+vGFhsvrc3mx2+k8e+bJ/X5N961jc0s2XqIi8YMJDTAp0f3unDMAH69ZCfvbMl3SNK2NecIf/okk7X7S4np348/Xz2WK1Nj+8RathN5ehh+e9korn5yLZFBvl9PJxURERGRvkFJm5tZvDWfD7cX8LPzR3DXnMSTzsdHBPDAkl388/MsfjQvyQUROs6H2wuoamjmurMG9/heQX7enDdqAO9vP8SvL0nBx6t7Uy33FFXx56WZLNtdRHiADw9cksKNU4bg69W3RtdONGloGL++JIXY0H74efft1yIiIiJyplHS5kZyy2p5YMkuJsWF8r12yrEvnBJHWk45f/9sD2Nigzk3ue8UxTjR6xtzSYgMYHJ8mEPud2VqDO9vO8SKzGLOH9W1oia5ZbX8bfkeFm/NJ9DHix/PH85t0+MJ9D19vkW+M73r1TlFRERExPVUiMRNtNgsfvxmGgB/u3Z8u9PwjDH84YoxjBwQzD2vp3GwpKY3wzzJGxtzmPfIKj7dVdil6/YUVbE5+wjXnTUYYxwz5XBGYgQRgb6804U922oamnlwyU7O/etKPtxewHdnJPDFz+fww7lJp1XCJiIiIiJ9l5I2N/Hkqn1sPHiE3y0YxeAw/w7b9vPx5KmFEzHG8L2XN1Pb2NxLUR6vrKaRhz5MJ7u0hkUvbebOlzdTXFnfqWtf35CLt6fhytRYh8Xj5enB5eMH8XlGMUdqGjt1zVNf7OfFddlcPTGWlT+bzS8vGtnj9XUiIiIiIo6kpM0NbM8r52/L9nDx2IFc0ckiEYPD/Hn0+glkFlVx39s7nFLq/lT+tmwPtY0tvHf3dH52/gg+yyhm7iOreGV9NjZb+/HUN7XwztY85qdEExHo69CYrkyNpanF4oPth07Z1rIslqTlM21YBP935VgGhvRzaCwiIiIiIo6gpM3F6hpbuOf1NCKDfPnfy8d0aargrOGR/PS8Eby37RDvbHHuxtInyiys4pX12SycEsfIgcHcNSeRpffMZExMCL9avJNvPbWWvCO1bV67dFch5bVNXNfDMv9tSRkUTPKAIN7uxNcjLbec7NJaLhs/yOFxiIiIiIg4ipI2F/vjJxnsL6nhr9eMI8S/63uv3TlrGONiQ/jrp5nUN7U4IcKTWZbFQx/uJsjPmx/N/aaCZXxEAK/cfjZ/uWYcmUVV3PTMekqqG066/vUNucSG9nPaJtVXpsaQllvO/sMn73N3rCVph/Dx8uCC0V0rWiIiIiIi0puUtPVQZmEVNz6zjkc+zWTXoYouTVP8al8Jz391kG+fM5RzupnAeHgYfnFhMocq6nlpbXa37tFVKzKLWb23hHvmJZ20/ssYw9UTY3n+1rMorKznluc2UFXf9PX5gyU1rN1fyrWTBjttn7kF42Pw9DC82MHXo7nFxgfbC5ibHEWw3+mxUbmIiIiInJ6UtPWAzWZx3zvb2XTwCI+tyOLiR9cw408r+P0Hu9lwoKzDdV3VDc38/L/bGRruz88vGNGjOM4ZFsGs4ZE8tiKLirqmU1/QA00tNh76IJ2EyABumhLXbruJcWE8cdNEMgurWPTi5q9HAV/fmIuHgWsm9XxvtvZEB/txVWoMr27Ioaidwihf7SulpLqBBZoaKSIiIiJuTklbD7yxKZetOeX835Vj2PCrefzxqjEkRQXy0tpsvvXUWm58Zj0VtW0nUX/4MJ1D5XX89Vvj8PfpeWn5X1yQTGV9E0+u2tfje3XkpbXZ7C+p4f6LR+Lt2fF/nzkjovjLNeNYu7+Ue15Po76phf9uzuPc5CgGhPg5Nc675yTRYrN4YmXbX48laYcI8vVi9ogop8YhIiIiItJTStq6qbS6gYc/zmByfBhXTIghItCXa88awn9unczmX8/j9wtGsSm7jKue/Oqkghyr9hzmtQ05fHdGAhPjHLOxdMqgYC4fH8Nzaw5QWNG5svtddaSmkb8v38OMpAjmdDLZuXxCDA9cksInuwq55sm1lFQ3OKUAyYmGhPtz5YQYXtuQc9I2BPVNLSzdVcgFowfg5+3p9FhERERERHpCSVs3PfxxBjUNzTx0+eiTKj4G+XmzcOpQXrztbIor67ni8a/YkVcBQEVdE7/473aSogK5d/5wh8b04/nDsSz4+/I9Dr0vtE6L/OHrW6ltbOHXl6R0qcrlbdPjuXtOIjvyK4gO9mX2iEiHx9eWu89NpNlm8cQJo4+fZxRT3dDM5Z3cXkFERERExJWUtHXDxoNlvLU5j9tnJDA8OqjddlOHhfP2nefg4+nBt55ay+cZRfz2/V0crm7gr98a5/BRnsFh/tw0JY43N+WSVVzlsPtalsUDS3ayem8Jf7hidIevuT0/OW84/3NhMr9fMBqvU0yrdJS48ACunBDDq+uPH217d2s+kUG+TEkI75U4RERERER6QklbFzW12Lh/8U5i+vfjh3MTT9k+KTqIxXedw7CoAG5/YRPvbMnn+7OHMTa2v1Piu/vcRPx9vPjTJ5kOu+dTX+zntQ25fH/2MK7t5tRGYwx3zBrGeaN6t7z+0dG2J1ftB6CitomVmYe5dOwgPJ1UvVJERERExJGUtHXR818eJLOoigcvTel0AZGoID/eWDSV80cNYHJ8GD84N+nUF3VTWIAP35uVwKe7i9icXdbj+320o4CHP87gkrED+el5Paty6Qpx4QFcMSGGV9ZnU1xVzye7CmhssalqpIiIiIj0GUraumD13sP8bfke5iZHMT8lukvXBvh68cRNE3nzjqn4eDn3y37b9Hiignz5zXu7aW6xddg270gttzy3gb8szWRH3vH7zG3JOcK9b6QxMS6Uv1wzzmn7qjnb3XNaR9ueWrWfd7ceIj4igLGxIa4OS0RERESkU3pea/4MUFrdwEMfprN4az4JkQH8ro3iI+7E38eLBy5N4e5Xt/LC2my+Mz2+zXaWZXHf2zvYcKCMNVklPLYii5j+/ZifEs2UhDB+tXgn0cF+PL1wYp+usjg0IoDLx8fw8rpsGlts/PDcJLfuPxERERGRYylp64BlWbyzJZ+HPtxNdUMzP5ybxPdnD+sTCczFYwbyTnI+f/00k/NHRRMb6n9Smzc35bImq7W4yEWjB7I8vYiluwp5dUMOz391kJB+3vzn1rMID/R1wStwrB+cm8i7aflYFlymqZEiIiIi0ocoaWvHwZIafvXuDr7MKmVSXCj/d+UYkrpRNdFVjDH8bsEo5j/yBQ8s2cWzt0w6bnSpsKKehz5IZ0pCGNefNQQPD8M1kwZzzaTB1DQ0s3pvCfERAQyLDHThq3CcoREBLJwSR3ZpzWnzmkRERETkzKCkrR0Pf5zB9twKHrp8NDdMHtIn13PFhvrzk/OG89CH6Xy4o4BLxraOMFmWxa8W76DJZuOPV4096bUF+HpxwejerfLYG35z2ShXhyAiIiIi0mVK2trxm8tGYQxEB/u5OpQe+fY5Q3k3LZ/fvLebGYmRhPh78962Q3yWUcz9F48kLjzA1SGKiIiIiEgHVD2yHQNC/Pp8wgbg5enBw1eOpaymgYc/yaCkuoHfvLeLCUP6c+u0tguUiIiIiIiI+9BI2xlgdEwIt02L55k1B9h9qIKahhb+fPVYbS4tIiIiItIHnHKkzRjznDGm2Biz85hjYcaYZcaYvfbPofbjxhjzqDEmyxiz3RiT6szgpfPunT+cmP792JZXwY/mJZEY1XeKqoiIiIiInMk6Mz3yeeCCE47dB3xmWVYS8Jn93wAXAkn2j0XAE44JU3oqwNeLf94wge9Mj2fRzARXhyMiIiIiIp10yumRlmV9YYwZesLhBcBs++MXgJXAL+zHX7QsywLWGWP6G2MGWpZV4KiApftSh4SSOiTU1WGIiIiIiEgXdLcQSfTRRMz+Ocp+PAbIPaZdnv3YSYwxi4wxm4wxmw4fPtzNMERERERERE5vjq4e2VZlC6uthpZlPW1Z1iTLsiZFRkY6OAwREREREZHTQ3eTtiJjzEAA++di+/E8YPAx7WKBQ90PT0RERERE5MzW3aTtPeAW++NbgCXHHL/ZXkVyClCh9WwiIiIiIiLdd8pCJMaY12gtOhJhjMkDHgQeBt40xnwHyAGusTf/CLgIyAJqgVudELOIiIiIiMgZozPVI69v59TcNtpawF09DUpERERERERaOboQiYiIiIiIiDiQkjYRERERERE3pqRNRERERETEjSlpExERERERcWNK2kRERERERNyYkjYRERERERE3pqRNRERERETEjZnWrdVcHIQxh4FsV8chJ4kASlwdhLiM+v/Mpb4/s6n/z2zq/zOX+t714izLimzrhFskbeKejDGbLMua5Oo4xDXU/2cu9f2ZTf1/ZlP/n7nU9+5N0yNFRERERETcmJI2ERERERERN6akTTrytKsDEJdS/5+51PdnNvX/mU39f+ZS37sxrWkTERERERFxYxppExERERERcWNK2s4gxpjnjDHFxpidxxwbZ4xZa4zZYYx53xgTbD8+1BhTZ4xJs388ecw1E+3ts4wxjxpjjCtej3SNI/rfGONvjPnQGJNhjNlljHnYVa9HusZR3//HXPvesfcS9+XAn/0+xpinjTF77D8DrnLF65GucWD/X29vv90Y84kxJsIVr0e6piv9bz831n5ul/28n/243vu5mJK2M8vzwAUnHHsGuM+yrDHAYuBnx5zbZ1nWePvH9445/gSwCEiyf5x4T3FPz+OY/v+LZVnJwARgmjHmQmcGLQ7zPI7pf4wxVwLVzgxWHOp5HNP3vwKKLcsaDqQAq5wYszjO8/Sw/40xXsA/gDmWZY0FtgN3Oz1ycYTn6WT/2/v5ZeB7lmWNAmYDTfZr9N7PxZS0nUEsy/oCKDvh8AjgC/vjZUCHfzk1xgwEgi3LWmu1Loh8Ebjc0bGK4zmi/y3LqrUsa4X9cSOwBYh1cKjiBI7ofwBjTCDwY+AhhwYoTuOovgduA/7Pfk+bZVnahLcPcFD/G/tHgH2EJRg45Mg4xTm62P/nAdsty9pmv7bUsqwWvfdzD0raZCdwmf3xNcDgY87FG2O2GmNWGWNm2I/FAHnHtMmzH5O+qav9/zVjTH/gUuAz54cpTtKd/v898FegtpdiFOfoUt/bv98Bfm+M2WKMecsYE92L8Ypjdan/LctqAu4EdtCarKUAz/ZivOJY7fX/cMAyxiy1f5//3H5c7/3cgJI2uQ24yxizGQgCGu3HC4AhlmVNoPWv6q/a5zy3NYdZJUj7rq72P/D1FIrXgEcty9rfyzGL43Sp/40x44FEy7IWuyZccaCufu970Tqq/qVlWanAWuAvvR+2OEhXv/e9aU3aJgCDaJ0e+T+9H7Y4SHv97wVMB260f77CGDMXvfdzC16uDkBcy7KsDFqHwzHGDAcuth9vABrsjzcbY/bR+heYPI6fDheLpkj0Wd3o/032S58G9lqW9fdeD1ocphv9fxYw0RhzkNbfH1HGmJWWZc3u/eilJ7rR95tpHV09mrC/BXynl8MWB+lG/xv7sX32a94E7uv9yMUR2ut/Wt/jrTo69dkY8xGQSus6N733czGNtJ3hjDFR9s8ewP3A0SqBkcYYT/vjBFoXne63LKsAqDLGTLHPa78ZWOKS4KXHutr/9n8/BIQA97giZnGcbnz/P2FZ1iDLsobS+lfYPUrY+qZu9L0FvE9rYQKAucDuXg5bHKQbP/vzgRRjTKT9FvOB9N6OWxyjvf4HlgJjTWulaC9gFrBb7/3cg0baziDGmNdo/YUbYYzJAx4EAo0xd9mbvAP8x/54JvA7Y0wz0EJrJaGjC1nvpLUaUT/gY/uHuDlH9L8xJpbWCnIZwBZ7xd/HLMt6pvdeiXSHA7//pY9xYN//AnjJGPN34DBway+9BOkBR/W/Mea3wBfGmCYgG/h2r70I6bau9L9lWUeMMY8AG2md/viRZVkf2tvpvZ+LmdY/nomIiIiIiIg70vRIERERERERN6akTURERERExI0paRMREREREXFjStpERERERETcmJI2ERERERERN6akTURERERExI0paRMREREREXFjStpERERERETc2P8Dp73iIi5pDPIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(pd_ts)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Split up our dataset\n", - "split_time = 100\n", - "x_train = np_ts[:split_time]\n", - "x_valid = np_ts[split_time:]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Naive Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3xc53Xn/88d9DYoRBuAYK8gCLCKVLMlUbbVbJVYsSw7tuWiFNm7zm+TOPltsskva2+yvyRO1oktx1VWbLlElqxOyaQkmxQligUsIEGCJAii996Bmbt/3BmKokASuM9FI77v10uvCw4GBw9sDjHnPs85x7JtGxEREREREZmZfNO9ABEREREREbk0JW0iIiIiIiIzmJI2ERERERGRGUxJm4iIiIiIyAympE1ERERERGQGU9ImIiIiIiIyg0VP9wIAMjMz7UWLFk33MkRERERERKbFgQMHWm3bzhrrczMiaVu0aBH79++f7mWIiIiIiIhMC8uyzl3qczoeKSIiIiIiMoMpaRMREREREZnBlLSJiIiIiIjMYEraREREREREZjAlbSIiIiIiIjOYkjYREREREZEZTEmbiIiIiIjIDKakTUREREREZAZT0iYiIiIiIjKDKWkTERERERGZwZS0iYiIiIiIzGBK2kREREREZor2ShgdMgoRCtmcbu7xaEEyEyhpExERERGZCXqa4N+ugR/e7nzs0i8P1nLr13/L3z53nGDI9nCBMl2UtImIiIiIzAS1b0NoBOoPwXdvgcYyV2H2nm0nymfxgzfO8oXH99M7NOrxQmWqKWkTEREREZkJavdBVCx89mWwQ/CDD0HFyxMOU1rdwc0rs/jqPUX8pqKFjz66h9qO/klYsEwVJW0iIiIiIjNB7X7ILYaCzfCFV2HeMvjpA/Dmt8Ae3zHHrv4RzrT0sX5BOp/cupDHHtpMXecA93xzD6XVHZP8A8hkUdImIiIiIjLdgqNQXwrzNzl/9gfgoRdh1Z3w8l/AC/8PBEeuGOZwbScA6wrSALhxeRZP/9F1JMZG8cB33uL5I/WT9iPI5FHSJiIiIiIy3ZqPw0g/zN/8zmOxSXD/43DDH8P+H8BP7oeBzsuGKa3uxLKgeH7q+ceWZafwq0eup3h+Kl98opRv7DyFPc6dO5kZlLSJiIiIiEy32n3ONbLTFuHzwa1/A3d/C6p2w/c/4IwFuITSmg5WZKeQEh/zrsczkmL58ee3cN+GfL7+6wr++OeHGBwJevszyKRR0iYiIiIiMt3qDkBiJqQtHPvz6z8Bn/oV9LXAd7fBuTff8xTbtjlU03n+aOTF4qKj+Kf7S/jTD63kV4fq+eT39tLWazYTTqaGkjYRERERkelWu885GmlZl37Oohvg8zshMQMe/wgc+um7Pl3V1k9n/wjrF4ydtAFYlsUjNy/jW5/YwNG6Lu751hucatIg7plOSZuIiIiIyHQa6IDWivcejRzLvKXw+R2wYCv86g9g5/+EUAjgfHfI9QvSrxjmjrUBfvH71zI4EuK+b+3hNxUtRj+CTC4lbSIiIiIi06nuoHMdT9IGkJAOn3wKNnwadv0jPPkZGO7nUE0nSbFRLMtOHleYkoI0nnnkeuZnJPLZx/bxH29WuVm9TAElbSIiIiIi06l2P2BB3obxf01UDHz4/8AHvwbHn4XH7qSqqpKSgjSifJc5YnmRvLQEnvyDa7lpRRZ/9cwx/ubZY4wGQxP/GWRSKWkTEREREZlOtfsgezXE+yf2dZYF130RHngCu+Ukf9/+ZT44r3nC3z4pLprvfGoTn79hMY/tqeLzj++nZ/DKM+Fk6ihpExERERGZLrYNdfshf6P7GKvu4PhtvwBsPnn89+HkSxMOEeWz+Mu7Cvlf965l96lWPvrom9R29Ltfk3hKSZuIiIiIyHRpr3QakVw4VNuFPX153D30P7HnrYCffhze/JarOA9uWcCPPnsNDV0D3PPNN843N5HppaRNRERERGS6nB+qbZa0ldZ0EJ+RR8znXoJVd8LLf3HZIdyXc/2yTJ76o+uJj4niz548YrQu8YaSNhERERGR6VK7H2KTIWulUZhD1Z2sK0iH2ER4/1ecByNdKV1Ylp3M/RsLON3SS9/QqNHaxJySNhERERGR6VK7D/I3gC/KdYjGrkHquwZZXxAeqp21CqJiodFsl6wo349tQ3lDt1EcMTeupM2yrDTLsp60LOuEZVnllmVda1lWhmVZv7Ys61T4mh5+rmVZ1jcsyzptWdYRy7Im0LtURERERGSOGBmApjLjo5GHaiJDtcNJW3Ss042ywSxpW5OXCsCxeiVt0228O23/B9hu2/YqoAQoB/4c2Gnb9nJgZ/jPALcDy8P/PQw86umKRURERESuBg2HITQK+eMcqn0JpTWdxEb5KMy7YGRAbrET37Zdx83xxzEvKZayui6j9Ym5KyZtlmX5gfcB3wewbXvYtu1O4G7gR+Gn/Qi4J/zx3cDjtuMtIM2yrIDnKxcRERERmc3ONyExTNqqOynM8xMXfcERy0AJDLRDd53ruJZlsSY/VTttM8B4dtqWAC3ADy3LKrUs63uWZSUBObZtNwCEr9nh5+cDNRd8fW34sXexLOthy7L2W5a1v6WlxeiHEBERERGZdWr3QdpCSM6+8nMvYTQY4mht1ztHIyMCJc614bDBAmFNnp+Kph6GRoNGccTMeJK2aGAD8Kht2+uBPt45CjkWa4zH3rMva9v2d2zb3mTb9qasrKxxLVZERERE5KpRe8B4l+1kUw8DI0HWFVyUtOWsActnXNdWlJfKaMjmVFOvURwxM56krRaotW17b/jPT+IkcU2RY4/ha/MFzy+44OvnA/XeLFdERERE5CrQXQ/dtebz2ao7AdiwIP3dn4hNgnnLPdlpA1TXNs2umLTZtt0I1FiWFRkesQ04DjwLfDr82KeBZ8IfPwt8KtxFcivQFTlGKSIiIiIiOPPZwJOkLTM5lvnpCe/9ZKDEuO3/goxEUuKiVdc2zaLH+bwvAT+xLCsWqAQewkn4fmFZ1ueAauD+8HNfBO4ATgP94eeKiIiIiEhE3X5nllruWqMwh2o6WFeQhmWNUaEUKIajv4C+VkjKdBXf57NYnefnWL122qbTuJI227YPAWMduN02xnNt4BHDdYmIiIiIXL1q9ztt+aPjXIfo6h/hTEsf922YP/YTcouda8NhWPaet+3jtibPz8/eriEYsonyjdW+QibbeOe0iYiIiIiIF4KjUF9qPlS71qlnW39xE5KIQDhpMzwiWZSXysBIkLOtakYyXZS0iYiIiIhMpebjMNJv3DnyUHUnlgVr56eO/YSEdEhbYN6MJD/SjER1bdNFSZuIiIiIyFTyaqh2TQcrslNIiY+59JMCJcZt/5dlJRMX7VNd2zRS0iYiIiIiMpVq90NSljNY2yXbtjlU0/neodoXyy2B9jMw6H6XLDrKx6rcFHWQnEZK2kREREREplLdfsjfBGN1fBynqrZ+OvtH3jtU+2KRuramMtffC6AwL5Wyui6cnoMy1ZS0iYiIiIhMlYEOaK0wPxpZ3QHA+ouHal8sUOJcDY9IFuX76R4cpbZjwCiOuKOkTURERERkqtQdcK4eDNVOjotmWXby5Z+YkgtJ2ebNSPKcZieqa5seStpERERERKZK7QHAgrz1RmEO1XRSPD91fHPTAiXGbf9X5aYQ5bNU1zZNlLSJiIiIiEyV2n2QvRri/a5DDAwHKW/ovnITkohAMbScgJFB198zPiaKZVnJStqmiZI2EREREZGpYNtOExLDeray+i5GQzbrC65QzxYRKIHQqDMfzsCafD9ldToeOR2UtImIiIiITIX2SqcRSb75UG2AdePdacsNd5A0PCK5Ji+V5p4hmnvc79iJO0raRERERESmwvmh2oZNSGo6KMhIIDM5bnxfkL4I4lI9aEbiHOnUEcmpp6RNRERERGQq1O6D2BTIWmkUprS6c/xHI8GZBxcoNm77XxhO2o4raZtyStpERERERKZC7T7IXw++KNchGrsGaegavPJQ7YvlFjsDtoOjrr+3Pz6GhfMSVdc2DZS0iYiIiIhMtuF+aDpmfDTyUE1kqPYEk7ZACYwOQtspo+9flJeq45HTQEmbiIiIiMhkazjsdHD0YKh2bJTv/FHFcQuEm5F4cESyur2froERozgyMUraREREREQmW6QJiWHnyNLqTgrz/MRFT/CI5bzlEB3vWTMS1bVNLSVtIiIiIiKTrW4/pC2E5CzXIUaDIY7UdU78aCRAVDTkFHnS9h/gWL3q2qaSkjYRERERkclWu9/4aOSJxh4GR0KsXzCBzpEXinSQtG3Xa8hKiSPHH6e6timmpE1EREREZDJ110N3Hcw3PBpZ4wzVXj/RzpERgRIY6oKOKqN1OM1ItNM2lZS0iYiIiIhMptr9ztW0c2R1J5nJscxPT3AXIDfcjMT4iKSf0829DAwHjeLI+ClpExERERGZTLX7ICoWctcahSmt6WBdQTqWZbkLkF0IvmjzZiT5qYRsONGoI5JTRUmbiIiIiMhkqt3v7HJFx7kO0dU/QmVLn7smJBEx8ZC1yrjtf6SDpOrapo6SNhERERGRyRIchfpS86ORtYb1bBG5xcY7bflpCaQmxKiubQopaRMRERERmSzNx2B0wLwJSXUHlgXFpklboAT6mqGn0XUIy7Ioyvdrp20KKWkTEREREZkskaHaxklbJyuyU0iOizZbTyDcjMR4yHYqJxp6GAmGzNYj46KkTURERERkstQegKQsZ7C2S7Ztc6jG5VDti0WaoXhQ1zYcDHG6udd8TXJFStpERERERCZL7T6nns1tx0fgbGsfXQMj3iRtcSmQsRQazXfaQM1IpoqSNhERERGRyTDQAW2nIH+jUZjSaqcJybqCdC9W5RyRNDweuTgziYSYKMrq1IxkKihpExERERGZDHUHnKtp58iaTpLjolmWnezBonCakXRWO0mlS1E+i8I8P8e10zYllLSJiIiIiEyG2v2ABfkbjMKU1nRQUpBKlM/9Ect3yY00IzGvaztW30UoZHuwKLkcJW0iIiIy/VpPQ0eVUQjbttlX1U7/8Kg3axIxVbsPslc7dWQuDQwHKW/oYZ1pq/8LBUqca6NZ0laUl0rfcJBz7f0eLEouR0mbiIiITJ++Nnj+j+Gbm+E/P+M6TFldF/d/+03u//abfG/XWe/WJ+KWbTs7bYat/svquwiGbNZ7Vc8GkJQJ/nzjnbbCPD+AhmxPAcNBDyIiIiIuBEdg3/fh9f8FQ73hbnZHYWQQYuLHHaa1d4h/fPkkP99fw7ykWOYlxXKopnMSFy4yTm1nYLDTuJ6ttNqpO1vnRefICwVKjJuRrMhJISbKoqyum7uK8zxamIxFO20iIiIytc68Bt++AbZ/BfI2wB/ugVv+EkKj0Hx8XCFGgiG+t6uSm//xdZ48UMvnrl/Mq39yE+9fkaVudjIzRIZq55sP1S7ISCAzOc6DRV0gt9jpbDnc5zpEbLSPFTkp2mmbAtppExERkanRfhZe+Us48TykL4IHnoCVdzjzqyK7aw2Hrti04TcVLfztc8c409LH+1dk8Vd3FZ7vqleUn8pTpXU0dw+S7R//jp2I5+r2Q2wKZK00CnOoppPNizI8WtQFAsVgh6DpGBRc4zrMmjw/O8qbsW0by2AWnVyekjYRERGZXEO9sPvrsOffwBcN2/4HbH3k3ccg0xZCfNplj2udbe3jay8cZ0d5M4vmJfL9T2/illXZ73qjWJTvDPwtq+/iFiVtMp1q9zk3IHxRrkM0dA3Q0DXozVDti0WakTQcNkraivJT+cX+Whq7BwmkJni0OLnYuJI2y7KqgB4gCIzatr3Jsqy/Ab4AtISf9v/atv1i+Pl/AXwu/Pz/Ytv2yx6vW0RERGY624Yjv4Adfw09DVD8ANz61+Afo/bFspw3kfWH3vOp3qFR/vXVU/xg91nioqP4i9tX8ZnrFxEX/d43w4V5fiwLjtZ2c8uqnMn4qUSubLgfGsvghi8bhTl0fqj2JCRt/nxIyDDuILkm0oykrltJ2ySayE7bzbZtt1702D/btv2PFz5gWVYh8ACwBsgDdliWtcK27aDZUkVERGTWqDsIL30Fat+GvPXwu49f+W5+oAT2fhtGhyE6llDI5qnSOv739hO09Azx0Y3z+bPbVpKdcukdtOS4aBZnJlGmGhuZTg2HwQ56MlQ7Nsp3vkujpyI3SgybkawOODdKyuq7uLVQN0omy2Qcj7wb+Jlt20PAWcuyTgPXAG9OwvcSERGRmaS3GXb+f1D6E0jKgru/CSUPgm8cvc8CJRAchpZySkcW8DfPHedwTSfrCtL47qc2jXu3oSgvlX1V7YY/iIgBD5uQrMn3j7mr7IlAMbz16PkbJW4kxkazJDOJY/XdHi9OLjTe7pE28IplWQcsy3r4gse/aFnWEcuyfmBZVmR4RD5Qc8FzasOPiYiIyNVqdBj2/Cv860Y4/HO47ovwpQOw/pPjS9jA2ZEDfv7s89z7rT3Udw7wT/eX8NQfXjeh42Fr81Np6BqktXfIzU8iYq52n1OnmZzlOsRIMMSRus7JORoZkVscvlFywijMmrxUjqlr66Qab9J2vW3bG4DbgUcsy3of8CiwFFgHNAD/FH7uWG1j7IsfsCzrYcuy9luWtb+lpWWMLxEREZFZoeIVePRapzPkgmvhj96CD34V4sd/pGtoNMijR0L02gmM1h7iD29aymt/chO/s3E+Pt/EOtKtyY8M/NWdf5kmdQeMj0aebOxhcCTE+gUeDtW+WGCdczWsayvK91PfNUh737AHi5KxjCtps227PnxtBp4GrrFtu8m27aBt2yHguzhHIMHZWSu44MvnA/VjxPyObdubbNvelJXl/i6EiIiITKOyp+CJ+52PP/EkfOIXkLlswmG+8uQR/vfLFdQlrOCjea185bZVJMe5q+JYkxfuIKk7/zIduuqgu858qHZ4SPz6ydxpy1gCscnGdW2R15zmtU2eKyZtlmUlWZaVEvkY+CBQZllW4IKn3QuUhT9+FnjAsqw4y7IWA8uBt71dtoiIiMwIJ16A5Fz4wzdh+QdchRgNhthZ3sz9G+ezct0NxLUdh+Co6yWlJsSwcF6ikjaZHnX7net803q2DjKTY5mfPokdGX0+yF0LDR51kNTu9qQZzy2sHODp8AyUaOAJ27a3W5b1H5ZlrcM5+lgF/D6AbdvHLMv6BXAcGAUeUedIERGRq5BtQ9VuWHSD6yYGAMcbuukZGuXGFVlgrYPRQWg9CTlrXMcsyk/lcHinQmRK1e6HqFgnGTJwqKaTdQXpkz+wOrcYSn8ModD4608vkpYYS35agpK2SXTFpM227UqgZIzHf+8yX/M14GtmSxMREZEZre0M9DY6SZuBtyrbANi6OAOGLhj4a5K05aXywpEGOvuHSUt0n1CKTFjtfqcTanSc6xCd/cNUtvTxOxvme7iwSwiUwNv/Du1nIHO56zBF+X41I5lE7tJpERERkapdztU4aWtnSWYS2f54mLcMYpLGHLI9EWvzI3VtuvMvUyg4AvWlxq3+D01FPVtEoNi5elDXdratj94h90eb5dKUtImIiIg7596A5Bwn0XIpGLLZd7adLUvmOQ/4osI1NqZvIJ0aGw3ZlinVfBxGB4zr2Q7VdGJZUDwVSVvWKuc4pwevOduG8gbdKJkMStpERERk4i6sZzOouTle79SzbV2S8c6DgRKnBXnIfUl8epJTY3NUx7VkKkWGapt2jqzuZGVOiusOqhMSFQPZhR60/Q93kNRrblIoaRMREZGJa6+Engbv6tkiO20AeetgpB/aThvFXpuvgb8yxWr3Q1IWpC1wHcK27XATkinYZYsIFDsdJO33jFYet+yUODKTY9WMZJIoaRMREZGJq9rtXBeaJW17z7axODOJHH/8Ow8Gws1IDOvaivL9VLX10z04YhRHZNxq9zu7bAa7z2db++gaGGH9gqlM2kpgoB26al2HsCyLNXmplClpmxRK2kRERGTiqnZDUrZRt7lgyGbv2fZ3H40EyFwJ0fHGNTbvHNfSm0iZAv3t0HbKg/ls4SYkC9K9WNX45IZvlBgekVyT5+dUUw9Do5r25TUlbSIiIjIxHtWzlTd00zM4+u6jkQBR0ZBT5F3SpmYkMhXqDjpXw86RpTUdJMdFszQr2YNFjVPOGrB8nnSQHA3ZVDT2erQwiVDSJiIiIhPTXgk99bDoeqMwkXq2LYvnvfeTeeucN5ChkOv4mclxBFLj1YxEpkbtPsCC/A1GYUqrOykpSCXKN8lDtS8UmwiZK5y6NgNF+U7XVt0o8Z6SNhEREZmYc28410U3GoV5q7KdRfMSyU2Nf+8nAyUw3AMdZ42+x5q8VMqUtMlUqN3ndGGMS3Edon94lBONPawvmMKjkRG5xcY7bQXpiaTERWvUxiRQ0iYiIiITU7Xb6ZCXucJ1iGDI5u2zbe89GhkRWOdc60tdfw9wOkhWtmrgr0yy4X7nZsZisxsZu0+1EgzZXLv0Eq+LyRQocXbQ+1pdh/D5LArz/OogOQmUtImIiMj4eVjP1j1WPVuERwN/i/I18FemQOXrMDoIK24zCrOzvJmUuGg2L8q48pO9Fih2rh7UtZU3dBMMuR8fIO+lpE1ERETGr6MKuutgoVk9296z7QBsubhzZER0rNMcocGs7f/acDOSo7U6riWTqOIliPMbvS5CIZudJ5p538osYqOn4S16rjdJW1G+n8GREJUtakbiJSVtIiIiMn6R+WzG9WxtLJyXSCA14dJPCpQ4byBNBv7648lKiVONjUyeUAgqXoaltzg3G1w6UtdFa+8Qt67O9nBxE5CQBmkLPWj7H+naqt1tLylpExERkfGr2g2JmZC10nWIUMjm7bPtbB2ra+SFAiUw2OXs7hkoyvOrGYlMnoZS6G2ClbcbhdlZ3oTPgptWTFPSBs4RScOdtqVZScRF+/Sa85iSNhERERkfr+rZGrvpGhhh69Ir1O1EmpEYvolcm5/K6eZeBoY18FcmQcXLzoyzZR8wCrOzvJmNC9NJT3K/W2csUOKM9Bh0v0sWHeVjVUDNSLympE1ERETGp/McdNc6SZuBvZXherYr7bRlF4Iv2rwxQn4qIdtJFkU8d/IlmH8NJLnv+FjfOcDxhm62rc7xcGEu5JY416YyozBr8vwcq+/CNjjaLO+mpE1ERETG53w9m1nS9lZlGwsyEslLu0w9G0BMPGSv9qwZiY5riee66pwasJWGXSNPNANMXz1bRCCctJk2I8lLpXtwlNqOAQ8WJaCkTURERMarajckznPa8bsUCtm8XdXO1kt1jbyYB81IAqnxZCTFKmkT71Vsd64rzOvZFs5LZGlWsgeLMpCSA8k50GDajMQPwDE1APKMkjYREREZn6o3nJbmBvVsJ5t66OwfufLRyIjAOuhvg65a19/TsiyK8lM5WqfjkeKxiu2QvsioMU//8Ch7zrSxbVUOlsFryzO55s1IVuamEOWzKNNrzjNK2kREROTKOs5BV7Unrf7hMvPZLuZRM5KiPD+nmnoYHFEzEvHIcB9U/sbZZTNItnadamV4NDT9RyMjAiXQcgJGBl2HiI+JYnl2snbaPKSkTURERK7Mw3q2gowE5qcnju8LcovAivKkrm00ZHOysccojsh5la9DcMi8nq28iZT4aDYvHueNjMkWKAY7CM3HjcIU5qmDpJeUtImIiMiVeVTPtnc889kuFJPgHD0z3WmLNCPRnX/xysmXIM4PC65zHSIUsnn1RAvvX5FFTNQMeVvuYTOS5p4hmnvc79jJO2bI3w4RERGZ0c7thoXXgc/9W4eK5nA925IJtkYPlED9IaNmJPPTE0hNiFEzEvFGKASnXoGlt0C0+7lqR+q6aO0dYttMORoJkLYQ4lOdrpgG3mlGot02LyhpExERkcvrOAedHtSznQnXs030GFhgHfQ1Q0+j6+/tNCPxqzGCeKOhFHqbYKV510ifBTetmEFJm2V50oykMJK06UaJJ5S0iYiIyOWde8O5GteztTM/PYGCjHHWs0WcP65lVtdWlJfKycYehkdDRnFEOLkdLB8s/6BRmB3lzWxamEF6kvvdukkRKIGmYxAcdR0iJT6GRfMStdPmESVtIiIicnlVb0BCOmStdh0iMp9t3K3+L5S7FrA8qWsbDoaoaFIzEjFU8RIUbIFE981D6joHKG/onllHIyNyi2F0EForjMKsyUtVHalHlLSJiIjI5VXtcuazGdSznWrupb1vePxDtS8UlwyZyz1rRqI25GKkqxYaj8IKs66Rr5Y3AbBtdY4Xq/JWZHfbtK4t309N+wBdAyMeLGpuU9ImIiIil9ZZDZ3nPJvPtnWiTUgiAuucZiQGFmYkkhIXzVHV2IiJiu3O1bCebUd5M4vmJbI0K8mDRXksczlEJ0CDaTMS50bJcR2RNKakTURERC6tyqt6tjby01zUs0UESqCnHnqbXa/B57MozFMzEjF0cjukL4bMFa5D9A2N8uaZNratzsEyGMw9aXxRzoxEw93tdzpI6kaJKSVtIiIicmnndjv1bNmFrkPYtjOfbYubo5EReeucq+GbyLX5qZQ3dDMaVDMScWG4D87+1tllM0i2dp1qZTgYmpn1bBG5xc7xyJD710pmchy5/ng1I/GAkjYRERG5tKrdHtazuTwaCeFmJJh3kMxPZWg0xOmWXqM4MkdVvg7BIVjxIaMwr55oIiU+ms2LDG5kTLZAMQx1Q2eVUZg1eX7NR/SAkjYREREZW1ctdFR5cjQS4FqTpC0+FTKWGte1RZqRHK3Vm0hx4eRLEOeHBde5DhEK2bx6ooX3r8giJmoGvxU/P2rDtBlJKmdaehkYDnqwqLlrBv9NERERkWnlUT3b3sp28tMSmJ+eYLaeQInxG8jFmUkkxkbpuJZMXCgEFS/Dsm0Q7X6u2uHaTlp7h7h1JnaNvFB2IfiizTtI5vkJ2XCiUa85E0raREREZGxVuyA+DbLXuA5h2zZvVbaxZXGGecOFQAl0VUN/u+sQUT6LwoBfHSRl4upLoa8ZVph1jdxZ3kyUz+KmlVkeLWySRMc5sxk92t3WEUkzStpERERkbB7Us51u7qXNtJ4t4nwzEvM3kcfruwmGbPzoMhYAACAASURBVPM1ydxR8RJYPlj+AaMwO8qb2LgwnbRE97t1U2bhdc6/AwY3SvJS48lPS2D7sUYPFzb3KGkTERGR9+qqg46zntWzeZK05RY7Vw/u/A+MBKlUMxKZiJPboWArJLpvHlLb0c+Jxh5uncldIy+04VNO45XDP3UdwrIsHthcwBun26hq7fNwcXOLkjYRETcajsB/3Ae1B1yHsG2bX+yr4fM/2kf/8KiHixPxwLlIPdv1RmHeOttOIDWeggzDejZw3iynLfSk7T9AmWZHyXh11kDTUVh5m1GYV084cwa3zfR6tojcIpi/Gfb/EGz3O9O/u7mAKJ/FT9+u9nBxc4uSNhGRibBtePu78L1tcGYnlP3SVZjeoVG+/PND/Nkvj7CjvJnDNXrzKDNM1S6nY2NOkesQtm2zt7KNrUvmeTdAOFBinLQtzUoiPsanIdsyfhXbnathPduO8mYWZyaxNCvZg0VNkY0PQdupd27kuJDjj+fW1dn854FahkbVRdKNcSVtlmVVWZZ11LKsQ5Zl7Q8/lmFZ1q8tyzoVvqaHH7csy/qGZVmnLcs6YlnWhsn8AUREpsxAB/z8k/Din8CSm50CbRddtcrqurjrG7t47nA9X7hxMQDHG/TmUWaY8/VsUa5DnGnppbV3mK0mQ7UvlrfOObY50Ok6RHSUj9VqRiITUfEypC+GzOWuQ/QNjfLWmTZuWTVLjkZGrLkX4lKd3TYDD25ZSHvfMC8fa/JoYXPLRHbabrZte51t25vCf/5zYKdt28uBneE/A9wOLA//9zDwqFeLFRGZNjX74Nvvc+62fvBr8PGfwYIt0Hh03EdGbNvmsTfOct+39jA4EuJnD1/Lf7+zkKyUOI6r/bjMJN310F7pQT2b07zAk3q2iMjsKMM25EV5TjOSkJqRyJUM98HZ38LK28Fgx3jXqVaGgyG2zZZ6tojYRCh5AMqfhb4212FuXJZJQUYCT+w95+Hi5g6T45F3Az8Kf/wj4J4LHn/cdrwFpFmWFTD4PiIi0ycUgt3/Aj+8zfll/dlX4LovOt30ctfCYKczgPgKuvpH+P3/OMDfPHecG5dn8uJ/vZFrFju7D4UBv3baZGaJzGdbaFjPVtlGrj+eBRmJHiwqLBDuIGnYjGRtfiq9Q6NUtakxglzBmdecZhwrzOrZdpY3kRIfzeZFHu48T5VND0FwGA79xHUIn8/igc0LeKuynTNqAjRh403abOAVy7IOWJb1cPixHNu2GwDC18htg3yg5oKvrQ0/JiIyu/S1whP3w46/hlV3wu//FuZvfOfzkU52jUcvG+bAuQ7u+MYuXjvZzF/euZrvfXoTGUnvtHouzPNzurmH4dHQZPwUIhNXtcs5DpW71nUIZz5bO1uXeDCf7UJJmeCfb1zXtibfD0CZdrnlSipecl4PC69zHSIUsnntZDM3rcwmJmoWtpTIXu10zjzwmFFDkvs3zSfaZ/HTvWpIMlHj/VtzvW3bG3COPj5iWdb7LvPcsf5lfs//u5ZlPWxZ1n7Lsva3tLSMcxkiIlPk7C549HrneufX4f4fQULau5+TXQhY0FQ2ZohQyObR18/wu//+Jj4fPPkH1/H5G5e85w1sYcDPSNDmdLPuPMoMUbXbeYNqVM/WR2vvkLdHIyMCJcaz2pZnpxAb5dPAX7m8UAgqXoFl2yAqxnWYQ7WdtPYOz55W/2PZ9BC0n3GOirqUnRLPB9fk8OTBWgZH1JBkIsaVtNm2XR++NgNPA9cATZFjj+Frc/jptUDBBV8+H6gfI+Z3bNveZNv2pqysGT4RXkTmjlAQXvs7ePwjEJcCX9gJmz83dh1DXDLMWzpmbU1r7xCfeWwf/3v7CW4ryuWF/3IjJQVp742Bs9MGakYiM0R3g/PGzLDV/96zTu3LlslI2vLWQdtpGHT/momN9rEqkKKkTS6v/iD0NTv1bAZ2ljcR5bO4acUsTtoK74b4NDhg2JDkmoV09o+wvUzDtifiikmbZVlJlmWlRD4GPgiUAc8Cnw4/7dPAM+GPnwU+Fe4iuRXoihyjFBGZ0brr4Ucfgd/8PRQ/AA+/fuXjYblr33M8cs/pVm7/P7vYW9nG1+4t4t8+vh5//KXv0C6al0RCTJSakcjMcH4+m3kTkhx/HIvmeVjPFnG+GcnljyZfyZq8VMrqurANjnvJVe7kS2BFwbJbjcLsLG9m08J0UhPd79ZNu5gEWPcglD8Pve5PyV23dB4L5yXyhI5ITsh4dtpygN2WZR0G3gZesG17O/D3wAcsyzoFfCD8Z4AXgUrgNPBd4I88X7WIiNdO/Rq+fQPUl8I934Z7H3V20q4kdy10VMFgF6PBEF9/5SSf+P5e/PHRPPPF6/nEloVXrOeJ8lmsCqRwvEF3/GUGqNoFcf53ajZdcOrZPJ7PdqFIMxIPhmx3D45S0z7gwaLkqlTxMizY6gx2d6m2o58TjT3cOlsGal/Oxs9AaAQO/dh1CJ/P4uPXLODtqnZONfV4t7ar3BWTNtu2K23bLgn/t8a27a+FH2+zbXubbdvLw9f28OO2bduP2La91LbttbZt75/sH0JExLXgCLzyV/CTj0JKwNldW/fx8X99+I1t25lSHvzeXr7x6ml+Z8N8nvvSDazK9Y87TGHAz/H6bt3xl+lX9YZxPdvZ1j5aeiapng0gJQeSc43r2orCzUg0r03G1FkDTUdhxYeMwrx6wqkgumU217NFZK10usoeeMyp93PpoxvnExNl8cTb2m0br1nYvkZExCMd5+AHt8Geb8Cmz8Hnd0DWionFyCkC4HtPPkNZXRdf/90S/vH+EhJjoycUZnXAT/fgKHWduuMv06inEdpOedDq35nPtmXxJLY2z1tnvNO2MjeFaJ9FWb2SNhlDxXbnusKsnm1HeTOLM5NYmjWO0xuzwabPOidMzr7uOkRmchy3FQX45QE1JBkvJW0iMjcdfwa+fSO0VjidIe/6unNefwKGR0N87bfttNp+1sXU8NyXbuC+DfNdLed8MxLVtcl0qtrtXI3r2drIToljcWaSB4u6hECJ8/oddj9nLS46ihU5akYil1CxHTKWQOZy1yF6h0Z560wb21ZdBbtsEas/DInzYL9pQ5IFdA+O8sIRtb4YDyVtIjL3/OYf4Befgsxl8Ae7YM09Ew4xEgzx4Hff4ru7q+j0r+QDGc1Gd1FX5aZgWeogKdOsavfMr2eLCKwDOwSNY4/cGK+1+WpGImMY6nVa26+4fezuweO0+1QLw8EQ266GeraI6DinIcmJF5zdeZe2LslgSVYSP9l7zsPFXb2UtInI3DIyAG/8C6y8Ax7aDumLXIXZfbqV/ec6+Oo9RSxbey2+lnKnPs6lxNhoFmcmaadNpte5N5ymC1ETO957oaq2fpp7htiyZBKPRsI7HSQNj0gW5fvp6B+hvmvQg0XJVaPyNQgOw8rbjMLsKG/GHx/NpkXpHi1shtj4ENhBKP0P1yEsy+LBaxZwsLqTE4363XclStpEZG45vQOGe+GahyE61nWYF440kBIfzf2b5ju7EsFh56iWgcKAXzttMn16mpy/wx4cjQQmrwlJhD8PkrI8aEaSCsDRWh2RlAuc3A5xqbDgWtchgiGb1040c9PKbGKirrK33POWwuL3wYHHnfmmLv3OhvnERvvU/n8crrK/QSIiV1D2FCRmwqIbXYcYGg3y8rFGPrQml7joqHdmuRnOjCrM81PbMUDXgPsdOxHXznlXz5aVEseSyaxnA+fIWqDEeKdtdcBPlM/imJqRSEQoBKdehuW3QpT7uWqHajpp6xtm29XQNXIsGx+Crmo486rrEOlJsdxRlMvTB+voHx71cHFXHyVtIjJ3DPc7heWFHzE6/rX7VCs9g6PcWRxwHpi3DKLjzZO2gNOMpFy7bTIdqt6A2BTILXEdwrZt9la2T349W0SgBJrLnWPPLsXHRLEsK1lt/+Ud9Qehr8W4a+SrJ5qI8lnctOIqTdpW3eXsdps2JNmykJ6hUZ4/rIYkl6OkTUTmjlMvw0g/rLnPKMzzRxpITYjhhmWZzgNR0ZBdCI1HjOKqg6RMq6rdxvVs59r6aewenNxW/xcKrHPqapqOG4UpUjMSudDJl8CKgmXbjMLsLG9m08J0UhPd79bNaNGxsO4Tzs3Q7nrXYTYvSmdZdjI/0cy2y1LSJiJzx7GnISnbGRzs0uBIkF8fb+K2NbnvrlHIXevstBm86ctOiSczOU51bTL1epuh9eTsqWeLON+MpNQoTFG+n9beYZq6hzxYlMx6FdudGxiJ7m8+1Hb0c6Kxh1uvpq6RY9n4aefGyUHzhiSHazp1TPkylLSJyNww1AsVr0Dh3eCLch3mNxUt9A5dcDQyInctDHRAd53RMgvz/Nppk6l3fj6b+1pPcJK2zOQ4lmZNcj1bRNoCSEg3rmtbG25GonltQmc1NJXBCrOukTvLmwGu3nq2iIwlsORmOGjekCRODUkuS0mbiMwNFdthdACKzI5GvnCkgfTEGK5betFOQmSulQd1baeaexgeDRnFEZmQc29AbPI7O1cu2LbN3rPtbF2SMTX1bPBOM5J6sw6SqwN+LAvVtQlUvOxcV5rVs+0ob2JJZhJLDOZ3zhqbHoLuWjj1a9chUhNjuLM4wDOH6ukbUkOSsShpE5G54djTkBKAgq2uQwwMB9lR3sRtRQGiL27fnFMIWJ50kBwJ2pxu7jWKIzIhHtSzVbf309A1yJapOhoZEVjnNCMZdX+0MSkumqVZyTqaJU49W8ZSyFzuOkTv0Ch7K9uv/l22iJV3QHIOHDBrSPKJLQvoHRrl2cPu6+OuZkraROTqN9jt3AEsvAd87v/Ze/1kM/3DQT588dFIgLgU55iIaTOScAdJ1bXJlOltgZYTntWzXTvZQ7UvFiiB0IiTuBkoyvNTVqfX3Zw21ANVu4x32XZVtDAcDLHtaq9ni4iKgfWfhFOvQFet6zAbFqSzMidFRyQvQUmbiFz9Tr4EwSFYc69RmOePNJCZHMs1l+qMF2lGYmBxZhLxMT7VtcnUOfeGczWsZ9tb2U5mcixLp/o4WN465+rBkO3G7kFaetSMZM468xoEh43r2XaUN5OaEMOmhekeLWwW2PBppxHXwcddh7Asiwe3LOBoXZeG3Y9BSZuIXP2OPQ3++TB/s+sQ/cOj7DzRxO1jHY2MyF0LHVXOzp5LUT6LVbl+jjfoF5ZMkardEJNkXM/2VmUbWxZP0Xy2C6UvhrhU42YkRZFmJDoiOXdVvAzxqc5RYZeCIZvXTzZz08qsS/+uuBqlL3RGJBx8HILua9LuWZ9PfIyPJ94+5+Hirg5z6G+TiMxJA51wegesMTsaubO8mcGR0Hu7Rl4o0oyk6Zjr7wNOXVt5Q49mRsnUOF/P5n6WVE37APVdg2yd6qOREG5GUmzcjCQyJ7FMd/jnplDImeW57Faj18Khmk7a+oa5ZdUcqWe70MaHoKfB+d/RpdSEGD5cnMczh+rpGRzxcHGzn5I2Ebm6nXzRqXcxHKj9wpEGslPi2LzoMm9Kc9c6Vw86SHYNjFDfNWgUR+SK+lqhpXz2zWe7WKDEuVkSdP8mzx8fw+LMJO20zVV1B6CvBVaY1bPtLG8iymdx04o5mLStuM1p+LXfrCHJg1sW0D8c5JlDakhyISVtInJ1K3vKmeWUv8F1iN6hUV472cwdawNE+S5z9CslFxIzzZuRhO/4q65NJp1H9WxvnW1jXlIsy7Knqb15YJ1Tt9pywijMGjUjmbsqXgIrCpbfahRmZ3kzmxelk5rofrdu1oqKhvW/55xu6XB/vHFdQRqrA35+srdaJ04uoKRNRK5e/e1Q+ZrTgMSgzmZneRNDoyHuutzRSHC+R26R8U7bqtwULEtJm0yBSD1bpJmHC7Zts7eynS1TOZ/tYuebkZgP2a7rHKC9b9iDRcmscnI7LLjWGdbuUk17Pyeberh1rnSNHMuGTzm/Cw/+yHWISEOS8oZuDtV0eri42U1Jm4hcvU48D6FR466Rzx1uINcfz4YF4/hlnrvWaT1ucEwrMTaaxfOS1IxEJl/VbliwxaiGp7ZjgLrOgek7GgnOXK3YZOO6tvPNSDRke27prIbmY7DSrGvkzvImgLnT6n8saQWw7ANQ+mOj34P3rMsjMTZK7f8voKRNRK5ex552OssF3O8idA+O8NuKFu4sDuC73NHIiNxi55hW6ynX3xNgdZ5fs9pkcvU2Q/NxWHi9UZg9Z1oB2LJ4GpM2n8957Zl2kMxTB8k5p6sOXvqK87FBPdveyjZ+8EYVS7KSWJyZ5NHiZqlND0Fvk1NT7lJKfAwfKcnjuSP1dA2oIQkoaRORq1VfK1T+xvho5K+PNTEcvELXyAt52Iykpn1Av6xk8pQ95VxX3WkU5tnD9Sycl8iKnGmqZ4sIlDivO4N246mJMRRkJGinbS4YGYTf/AP82yY4vRO2/Q/IXDbhMHWdAzzyxEE+9p23GA2G+OrdRZOw2Flm2QfAn+9JQ5LBkRC/Kq3zaGGzm5I2Ebk6lT8HdhCKDLtGHm0gPy2B9QVp4/uCecshKs6zZiQntNsmk+XwT53dqezVrkM0dA2w50wb96zLn756toi8dTA6AG1mu9xr81PVjORqZttw/Fn45mZ47avObLEvvg03/rcJhRkYDvIvOyrY9k+vs+N4E1++dTk7/9tNXLcsc5IWPotERTvDtitfg/ZK12GK56exNj+VJ9SQBFDSJiJXq2NPw7xlkOP+rmdX/wi7TjlHI8f9hjQqGnIKjXfa1gTCHSSVtMlkaDkJDYeg5AGjML8qrce24d71+R4tzEBkOLjhEck1ealUt/fT1a9d7qtO03F4/CPwi99zaiA/9Sx87MeQvmjcIWzb5vkj9dz69d/wLztOsW11Dq/+yU18+dYVJMRGTd7aZ5sNv+d04zzgviEJOLttJ5t6OFjd4dHCZi8lbXPB6LBTZFu915lD4lLf0ChnWnrZc7qVus4BDxco4rHeZqja5cxmM7j7//LxRkaC9pW7Rl4sd62TtBncGcxKiSMzOVYdJGVyHP6Z84aq6KOuQ9i2zdOltWxcmM6imVDDk7kCohOMm5GsDTcjOaa6tqtHfzu88Cfw7euh4Qjc8Y/w+7tgyfsnFOZ4fTcPfOctvvhEKf6EGH728Fa++eAG8tMSJmnhs5g/z5nbdugnzvtQlz5SkkdyXDQ/UUMSoqd7AWLAtmGwy5k+310fvjZAT/27r30tQOTNowX/pRQyFp8PEwrZtPYN0dQ1RGP3II3dgzR1OdfGrnf+3DP0Tp3AqtwUtn/5fVP784qMV/mzYIeMu0a+cKSBgoyE82/ixi23GA4+7rwuU93tQFiWxeqAmpHIJAiF4Oh/wtJbIMV9l7tj9d1UNPXy1XtmSA2PL8q5YWK80+bscpfVd+mo22wXHIUDP4TXvua8X9r0Wbj5v0NixoTCtPcN80+vnOSnb1eTmhDDV+8p4uPXLLj83E5xGpKcfMHp5OyyVCEpLpq71+Xx5IFa/vquNXNz/l2YkrbZwLbh+DNQX3pBcha+jvS/9/kJGc4djpSAc1wkJQ/8AYaIIe65P+Klp37Is/F3n0/GmnuGGA29e0cgymeRlRxHTmo8S7OSuH7pPHJS48n1x3OktovH9lRR095PQUbiFP2PIDIBZU9D5kqjWp2OvmHeON3K529cMvFanQubkbhM2sCpa/vh7iqGR0PERutghHjk3BvQVQO3/o1RmKdL64iN8k18J3oyBUqcWr1QyOko6cK85DjyUuM5qrq22e3sLtj+59BU5gyPv+3vnTmaEzAaDPHjt87x9V9X0Dcc5FPXLuKPb10xpxOHCVl6C6QucBJng/ryB7cs4Cd7q/nlwVo+e8PiK3/BVUpJ22xQ+Tr856chKhZScp0kLFDsbDv7A05yFknSUgIQEz9mmL979hifCOWTVvMqFf5byE2NZ+vSeeT648lNjSfHH3/+48zkuEveQdqwIJ3H9lSxs7yJz1w/d188MkP1NDpvSm/6c7OjkccaGQ25OBoJkLPGuTYeNZr7UxjwMxwMcaall9XhGjcRY0d+BrEpsPIO1yFGgyGeOVTPzauySEuM9XBxhvLWwb7vQvsZyFzuOkxRfirH1EFyduqshlf+0rnZnboAfvdxWP2RCf8+2H2qlb99/hgVTb3csCyT//HhQlbkpEzSoq9SvijY+Cl49avQdgbmLXUVZk1eKiUFaTzxdjUPXb9o+pseTRMlbbPBW9+CpCz4ctklE7Ir6RoY4Rf7a3hf5o3c0vlLdj6yAeLdvQlclJnEkqwkdp5oVtImM8/xZwDb+Gjk80caWDQv8fxRqQmJS4GMJcYdJCPf+3h9t5I28cbIABx7Bgo/ArHuT0rsPt1Ka+8Q966f7+HiPBBpRlJ/yDhpe+V4Ez2DI6TEa1dlVhjuh93/DHu+AVjOMcjrvgQxE6s3q27r56svHOeV400UZCTw77+3kQ8W5szZRMHY+t+D1//e2W374Fddh/nENQv4s18eYV9VB9csntjx1quFztvMdC0VcOoV2Px51wkbwM/3VdM/HGTRdb8DoRE4s9NoWbeuzuGtyjZ6BtVdS2aYY09D9hrIWuk6RFvvEHvOtHJXcZ77X9SRZiQGFmcmEx/jU12beOfECzDcA8UfMwrzdGkdqQkx3Lwqy6OFeSRrFcT5nRMqBjYuTAdgz5k2DxYlk8q24eiTzry13/7/ztzBL+2H9//ZhBK2vqFR/uHlE9z6z79h9+lW/vRDK/n1H7+fD63JVcJmIiUXVt4Oh56A0SHXYe4qCZASF80Te895uLjZRUnbTLf3287Mp02fcx1iNBjiR3vOsWVxBkvW3wIJ6XByu9Gytq3KZiRos+tUq1EcEU911UH1m8a7bC+VNRKyGf9A7bHkroWOszDoPuGK8lmszPWrg6R458jPnaG3i250HaJ3aJSXjzVyV3GAuOgZ1uI8KsZ5037iOaOOdVsWZ5CRFMvzRxo8XJx4brgPfvRh+OXnIHEePPQSfPQHkDqxHeCjtV3c8k+v883XznDn2gCv/rebeOTmZcTHzLC/37PVxoegv82Zn+pSYmw0927I58WyRjr63L+2ZzMlbTNZf7tTUF18PyS7v5v58rEm6joH+NwNi50ZUss/6OzehYKuY25cmE5qQgw7yptcxxDx3PFnnKsHXSOXZiWxKtegfiG32Lk2HTNaS2G4g6QGi4qx3mY4vRPW3u+6SQfAS0cbGBwJcd+GGTCbbSxr7nM6BVa+5jpEdJSP24py2VnexMCw+9+VMskOPu6Md7n9H+Dh12Hhda7C/N1L5QRD8Ms/vI5//tg6clPdn2ySMSy5GZJznZ1+A/dtmM/waIjfnmrxaGGzi5K2mezAY053yK1/ZBTm+7srWZCRyLbV4dbOK26DgXaoedt1zOgoHzevzOL1ky0EQ3ozKTPEsaecHa7MZa5DNPcMsvdsG3eaHI2Ed3eQNFCY56drYIT6rkGjOCKU/RLsoPFA7adL61g4L5ENC9I9WpjHltwE8WlQ9pRRmLvWBugfDvLayWZPliUeC47Cm9+CBdfCloedphculNV1sedMG1+4cfH5Y7HiMZ/PeV2e/Y3T2dWltfmppCbEsHuOnvJS0jZTBUfg7e/C4ve/04nOhdLqDg5Wd/LQ9Yve6Qa5bBv4oqHiJaMlbludQ3vfMKWaUi8zQWc11O5z7rIb2B4+Gmncxjwl4BzXMWxGUhh4pxmJiJHDP3MadRiMwmjoGuDNyjbuXZ8/c+t8omNh9V1w8kUYcX+zY8uSeWQmx/KCjkjOTOXPQlc1XPtFozDf21VJUmwUD1yzwKOFyZiW3uwckWwqcx0iymdx/bJ5vHG6dU6ePlHSNlMdf8YZjn3tI0ZhfvBGFSlx0dy/qeCdB+NTYeH1UPGyUez3r8wi2mex84TuQsoMcOxXztW0a+ThBlbkJJu3drYsT5qRrMpNwbKUtImh5hPQcAiKzXbZflVaj23Dvetn6NHIiDX3wlC3UdOtKJ/F7UUBdp5oom9o1MPFiTHbhj3/6nTpXXm76zD1nQM8f6SBj21eQGqCuoROqsXvd66GTYKuX5ZJfdcgZ1v7zNc0yyhpm4lsG978JsxbBss+4DpMQ9cALx5t4GObC0iOu2i6w8rboeUEtJ91Hd8fH8M1izPYqbo2mQmOPQ156yHD/RiKxq5B9p1r567iPG/WlLsWmsudYzwuJcVFs3heEuXqICkmjvwMrChY+1HXIWzb5unSWjYuTGfhvCQPFzcJFr8fEjKcfxcM3FUcYHAkxKu6OTmzVL8J9QedG9suj0UCPLanCht46PpFni1NLsEfcLq7GtSaAtywLBNwxo7MNUraZqKat51/jLb8gVGx+I/2nMO2bT593aL3fnLFh5xrhVkXyVtWZVPR1EtNe79RHBEj7Wed14zhLtuLRxuwTbtGXii3GIJD0HbKKMzqPL/a/ot7oRAc+U9YegskZ7sOc6y+m4qm3pm/ywZOF8nVH4aTLzmz6VzatCiD7JQ4nj9S7+HixNief3OS8pIHXYfoGRzhp3urub0ol4IM9zMLZQKW3ATn3jQ6trwgI5H56Qlzsq5NSdtM9NY3nSOMJR93HaJ/eJSfvl3Nh9Zc4h+jjCWQudL5hWbg1nBzE3WRlGl13JujkS8cbWB1wM/SrGQPFgXkFDlX02YkAT/V7f10ay6iuHFuN3TXGjcgeepgHbFRPvN6z6lSdB8M98KpX7sOEeWzuGNtgNdOttCrI5IzQ9sZp15x8+eMBsT/fF8NPUOjfOHGJR4uTi5ryc0wOgC17hvhWZbFDcsyebOyjdGg+6Yms9G4kzbLsqIsyyq1LOv58J8fsyzrrGVZh8L/rQs/blmW9Q3Lsk5blnXEsqwNk7X4q1JntTPHYuNnIM79G8dfHqyja2DEafN/KStvg3NvOK2RXVqUmcTSrCR2luvoiEyjsqcgfxOkuS8kr+8c4MC5Dm/fkGYud+YsDhRzUAAAIABJREFUetSM5ERDjxerkrnm8M8hNgVW3uE6xGgwxLOH67l5VRZpibEeLm4SLbwBEjOdrrIG7ioOMDwaYsdx3ZycEd78prOTuvkLrkOMBkP88I0qrlmUQUlBmoeLk8tadL1zTNuwru2G5Zn0DI5ytM79+9fZaCI7bf8VKL/osT+1bXtd+L9D4cduB5aH/3sYeNR8mXPI3n8HLLjmYdchQiGbH+4+S8n81Mu3r11xO4RGnbk9Bm5dncPes230aBdApkPbGScpKjLrGvniUadD3J1rPUzaomKcTn0etP0HOF4/t35BiQeG+53GVoV3G+1K7DrdSmvvEPdtmNjQ4mkVFQ2FH3Gabg27b1qwYUE6uf54DdqeCfra4NBPoPhjkJLjOsyLZY3UdQ7whfdpl21KxaXA/M3GSdt1S8N1bXPsiOS4kjbLsuYDdwLfG8fT7wYetx1vAWmWZc2SsxTTbKjHGRRZeDekuv/F+HpFM5WtfXz2hsWXb8lccI1zJtywrm3b6hxGgja/rZhbLx6ZISJ30QvvNgrz3JEGivL9LMr0uMFCpIOkQXvi7JQ45iXFqq5NJu7kizDcAyUfMwrz9ME60hJjuHml+5q4abHmPmfeqUG3ZJ/P4s7iAL+taKFrQDcnp9X+78PooFGbf9u2+d6uSpZkJrFt1Sz7+3w1WHIT1JfCgPtxURlJsazJ88+5ZiTj3Wn7F+DPgIsPj34tfATyny3Ligs/lg/UXPCc2vBj72JZ1sOWZe23LGt/S8vcnGz+HoeecFoUm7b5311Frj+eO660Y+CLguUfhFOvGHW327AgjbTEGHWRlOlx7FdQsNXoRkdNez+Hazq96xp5odxiZzZNj/u79JZlUahmJOLGkZ+Df75zVNCl3qFRXjneyF3FAWKjZ1kp/MLrIDnHuIvkncUBhoM6IjmtRgbh7e84XbWzV7kO8/bZdo7UdvHZGxbj883QWYNXsyU3gR2Cs7uMwtywLJOD1R30D8+dWtMr/utrWdZdQLNt2wcu+tRfAKuAzUAG8JXIl4wR5j23mG3b/o5t25ts296UlZU1sVVfjUJBeOtRmH8NzN/kOsyJxm52n27lU9ctJCZqHL9cV97m3O2o3ef6e0ZH+bh5ZTavnWwmGJp7ww5lGrVUOIM6PWhAAh4fjYzIXetcPWhGUtHYy8gcK7wWA73NzvH34vuNOhG/dLSBwZEQ966fRUcjI3xRzi78qVdgqNd1mPUFaeSnJZz/t0KmwZGfQ18LXPclozDf3VVJRlIsvzObjvpeTeZvgthkT+raRoI2b59t92Zds8B4/hW/HviIZVlVwM+AWyzL+rFt2w3hI5BDwA+Ba8LPrwUumOTMfEC9cq+kYjt0nIWtf2gU5ge7zxIf4+PBa8bZkGHpNvBFQ4VZF8ltq7Pp6B+htNr9drfIhB17GrCMj0a+cKSBkoK0yWn7nLPGuZo2I8nzMxwMcabF/RtPmWOOPgl20Hig9tOldSyal8iGBbO0YcOae50jdQalAJblHJHcdaqFrn4dkZxyoZDTgCR3LSx+n+swZ1p62VHezCe3LiQh1v18NzEQFQOLbjBO2jYvyiA22sf/Ze8946M6k/Tt63Qr55yzBEoITAYJMMEBA7YxzuM0juM0411P2An7e3fnP3F3ZnaCc8A5YBvbOOBElBFCZIQQKOeAcs6tPu+HR7IxFiCd00Lq1nN9adPdKkpYfXTqqbvu2juFJJIXLNpUVf2VqqphqqpGAbcAO1VVvX14Tk0RQ1PrgRNDX/IxcOeQi+QioE1VVXk0dSGynhESlsRrNIdo7Oxjy7Earp8TNnp3LycPiEyDfH1zbcum+2NnUNguXSQlF5PcD4T8yUN7h6yssYuc6jbWjUeXDcRnzDvaIp02gJM1UiIpGSXHN0HwLF1SsprWHvaVNLF+duj5Z6QnM+GLwD3YIou2BwZVvjx52kKJSUZN0XZozIfFPwYdP4cbM0pxsDNw5+JICyYnGTMxy6G5WDima8TJ3si8SG/2TCEzEj3i9DcVRckBcgA/4PdDz38GlABFwAvAw7oynArUHoeyPbDwAeF2pZE3syroN5m5O+08Nv8jEX+VuBg2l2j+uz2c7FkQ7SPn2iQXj/pT0JBnMWnkmvHcPTVsRqKDaD9XHO0MsmiTjI76PKjN1t1l23KsGlXFOhZqnwuDAZLWi31tvdo/PymhnkT4uEgXyYkg81/gHqLLJbips4/3D1dx/ZxQ/NwcL/wFkvEjZrl41NltS4vzI+90Bw0dfXozsgrGVLSpqrpbVdV1Q/+9UlXVFFVVZ6iqeruqqp1Dz6uqqj6iqmrs0OuHxiNxmyLrGbB3hTl3aQ7RZxrk9axylsf7Excwxv1u01eLR53dtlWJgRTWd1LR1K0rjkQyKnI/BMWgqzsNQho5J0LMq4wbQTPFoUif9j1rdkYDCUHu0oxEMjqObxL7kFJu0BxCVVU+PFLNvEhvIn0t7Kp6sZmxAQb7IF/7KMCwRHJvUSMtXf0WTE5yXmqzxcH2ogeFtE4jr2eV02cyc+8SafM/4fgngFuQ/rm2OGH9n1k8NbptVmYDZYN01MGJzTD7NnDWPi/wSXYtjZ1951+mfS58osUHSOdc22WJwjp3u+y2ScYbVRULtSPTdO3qKWno5GRtO2vHwzXyTIbNSOpydYUZdpBUdawPkEwBzGY4/i7ErQI37ZbmuTXtFNZ3ct0cK+6yDRM6T4wg6Fy0vTYlmEGzyhe5UiJ50ch8UhhX6DjY7h0Y5PV95axMCBj7wbbE8iiK6LaVpIvrlUZmhHri6Ww/ZebaZNE20Rx8EQYHYOGDmkOoqsrGjFKmB7p9c+owZqavhvJM6NW+vDfS15W4ADd25MmiTTLO1OVCU6Huhdpbj4+ja+SZWNBBsrV7gNq2XgskJbFZyvZAe7VYQKyDD45U42A0sC5lnA81LgYGAySvF26aPa2awySHeBDt5/rNtUMyzrRVwYn3RcGm42D7gyPVNHX1c/9S2WWbNMQsh+5GqNd+mGk0KKTG+pJR2DglDjNl0TaRDPSKRZHTV4NvrOYwWSXNnKpt5560CyzTPh/xV4HZJIZ9dbAqMYD9Jc2090p3Lck4kvuBkH7plEZ+eryW+VHeBHk6WSixc+ARIhbZW8BBEqQZieQCHH8HHNwhYa3mEKZBMx9n17AyIQBPF+2StElF8gYwD0DeVs0hFEVhbUowmcWNNHZOjTmaCWX/s+JxkfaDbbNZ5cWMEmaEerAoxsdCiUl0E3OpeCzepStMWpwfNW29lDZ2WSCpyY0s2iaSnHfF0t3F+rxaNmaU4uPqwHo9g+Jh88VNZcGXunK5LDEQk1llT8HUaFVLJgBVFfNs0cvAVWNnGSis6yC/rmN8FmqfjaJYxIwkPsgDRUHOtUnOTX83nPxIrMGw1z6nuadIFCU2IY0cJnQOeEXod5GcFYxZhS9OSInkuNLbDodfFT/LXqNcYzQCu/LrKWno4v6lMdbrgGqLeISAX7zF5tqmgkRSFm0TharCvqchcAZELdUcpqyxix15ddy2MAInex07RwxGmHaFWEA6qH27/OxwL7xc7KWLpGT8qM0Wph46XSM/PV6LosBVM4IslNgFCEqBupO6Pl9ujnZE+brKTpvk3OR/Bv2dMEufNPLDI9V4udizIl77TNykQ1HEdaNkF3RrX8gbH+hOrL8rnx6XK2jHlaOvQ1+7RZZph3g6sWa8ZfCSsRO7QozmmLR3rSN9XQj1ciZDFm2ScaNkNzScgkUP69o58kpmGXYGhTsWWWDnSPxq6GmBqgOaQ9gZDayID2BXfj2DZtvXF0smgNwPxUL4xKs1h1BVla05tSyM9iHAY5ylkcMEzRTudU2FusIkBXvITpvk3GRvEoYbkUs0h+joHeDL3NOsmxmMg52N3SYkbxCjAHmfag6hKArrZoawv7SZ+g45XzouDJqEs3ZkmuiQaiSnqo2skmbuTovG3mhjP8u2QMxyMPVApfb7TkVRWDrNj8ziJpu/75Q/wRNF1tPg6g8zrtccoq1ngHcPVXL1zBDL3HjGrgKDvS5LZBBzbS3dAxypaNGfk0RyJqoq5tliloOL9tmE/LoOiuo7x9818kwsZUYS4kFFc7ecG5V8n446KN4JM28Sxhsa+fzEafpMZjbMCbNgcpOE4Fli2f0JfS6S62YGo6rweY6USI4LJ7dAWyUsflRXmBf2lODmaMfNC8ItlJjEokSmifl0C+xr6+g1cbxKu8mQNSCLtomgsVDIEOffB/bai613D1bS3T/IPVps/kfCyQOi0qBA3762ZdP9sTMo0vpfYnlqjkBrhTgt18HW47UYLqY0EsBvGhgd9ZuRBAszkrxa7TvfJDbKic2gDsIsfQu1PzxSTbSfK7PDtbv1TVoURbjOln4NXdrlVNMC3YkPdJcukuOBqkLmE+Ab9+0eWQ1Ut/awNaeWWxeE4+FkI2Y6toaTB4TNE5JlHaTG+gK2P9cmi7aJIOsZMDrAvHs1hzANmnkls4yF0T7MCPW0XG7Tr4LGAmgq1hzCw8mehTE+7DhVb7m8JBIQrm+KERLW6ArzVW4dC6N98XNztFBio8BoDwEJcPqErjCJQ0XbKSmRlJxN9iYIvgT84zWHqGntIau0ifWXhNquaUPydaK4PfWxrjBrZwZzsLyZ03IFh2Up3wu1x2DxI7o6xi9nlALwwzQLHWxLxoeY5VBzVIznaMTXzZGkYA+bn2uTRdvFprsZst+GlJvAzV9zmC9z66hu7bFcl22Y+KFTLZ3dtlUJgRTVd1LeZPsWrJKLSMlucSrn7K05RH1HL/l1HSybrv3zp5lhB0kd+2QCPRzxcXWQZiSS71J/SnRxdXbZthyrRlXhOj1uxJOdwBngO023i+TaIYnkZzmy22ZRMp8EF1+YdavmEO29A2w6WMnalGBCvbS7qEouAjErQDVDWYauMEum+XGkvJXufu1mX5MdWbRdbI68CgPdum3+X9pbSoSPC5clBloosSG8o8A/UXfRNpyX7LZJLEZPqziNi75UV5h9xU0ApMX5WiKrsRE0UywT7dA+B6MoijQjkXyf7E2iCz3jBs0hVFXlwyPVzIv0JsLXxYLJTTKGXSTLMqBT+++oWH83EoM9pIukJWkshILPh8ZHtBdb7xyopLPPJJdpWwNh88DBzSLW//2DZg6UjsIZ9uTHkP4XXa6VE4Es2i4mgwOw/3lx0xmYrDnMscpWDpe3cHdaFEbDOMhX4lcLC9beNs0hInxdmBbgxo48OdcmsRDle8VpXMxyXWH2FjXi6WxPcogFZcWjxYJmJPl1HQwMmi2QlMTqMZsh5z2IW6VLwZFb005hfadt7WY7FzM2iOvJyY90hVk3M5gjFa1Ut/ZYKLEpzr4nxezv/Ps1hxgYNPPS3lIWxfiQEjYB13nJ2DDaC0MSnUu250f54GA0XHiuTVUh/X/gxPtiVMmKkEXbxeTkR9BRI2z+dbAxoxR3RztunDdObkjTVwtL5KLtusKsTAxgf0mzdLmTWIaS3WDvIhbBa0RVVfYWNbE4xnd8DjwuxPBhjQXMSPpNZkoapPxYApTtgfZqmKlvN9v7R6pwMBpYl3IRXVUnioBE8E/Qv2h7ptj99Zk0JNFPV6PoGM+6Rdfhw2c5tdS29coumzURsxyai4XRmEacHYzMjfQmo6jp/G8s2Q11J8TMpJXN7cqi7WKhqrDvKfCJFUusNVLb1sNnObXcPD8cN0c7CyZ4BmHzhZ48X79E0mRW+bqgwUKJSaY0JekQsRjstJ+MlTd1U93aMzHSSAAnTyFBtkCnDeBkrfZuuMSGOP4OOHpAwlrNIUyDZj7JrmFVYgCeLlPEaS95g1CVtGsvuCJ9XUkJ9eRTOdemn4MvgqlXl82/qqq8sKeEGH9X21oMb+vELBePJem6wiyZ5sep2nYaO88je9z3JLgGiNUoVoYs2i4WlQeEXfmih3S5Ib2aWY6qqtyVGmW53M7GYBSFZeFXYsGlRuZEeOPtYi/n2iT6aa+FxnyI0TfPtrdYyCZS4/wskZU2hs1IdBDj54qDnUGakUigv1uoOJKu0TUDtKewkcbOfts2IDmb5PWAahEXyezKViqbuy2T11RkoAcOvCCUPv7TNYfJKmnmRHU79y+NwTARagqJNgISwS3QIvvaADKLz9FtqzspVGQLHwC7i+gebSFk0XaxyHpKnLLrcEPq7jfx9oEKrkwOItxnnIfEp6+G3lao3K85hNGgsCI+gF359Zjk7I1ED6Vfi8eY5brCZBY1EezpRIyfq+6UNBM0E5pLoE/7njU7o4GEIHdpRiIRazD6O2GmPtfID45W4+1iz/Kp1J3wj4eAZN2LttemCInkVtlt0072JmHSZIFl2r6uDlPr8MEWUBTx+71kt5jR1UhKqCceTnZkFJ5D4bXvKbBz1rVyayKRRdvFoLUCTn0Cc38Ijm6aw7x/pJq2ngHutbTN/0jErgSDvXBx0sGqxEBauwc4UmHbW+ol40zJbnD2gcAUzSHMZpXM4kZSY/0mdv9UUAqgihM/HSQFe3Cyph1Vx/oAiQ1wfBN4hotBfo109A7wVe5p1s0MwcFuit0WzLgOKrOgrVpziHAfF2aFe8lF21oxm8XNdPAsiFqiOUxRfQc78+q5Y3EkTvZGCyYouSjELBeFe32u5hBGg0JqrB8ZhY3f/93YcRpy3oXZt4GLj65UJ4opdnWeIPY/Byiw4AHNIcxmlZczSpkZ5sncSO07qkaNk4e4eOqca1s23Q97o8KOU9JFUqIRVYXSdIheqktafLK2nZbugYmbZxvmGwdJnWYkIR60dA9wul0u9p2ydNRB8U5IuVHXZ+PzE6fpM5mnhmvk2SRvEI8nt+gKsy4lmJzqNsoapTnQmCn8CpoKIfUnuowhNmaU4mhn4I5FkRZMTnLRiFkuHvVKJKf5UdPWS1nTWXLlA88LF3edZoATiSzaxpu+DjjyOiRdC55hmsOkFzRQ0tjFvUuiL16XIP4qcSFtKtYcwt3JnoXRvuzIk3NtEo00FQtnvJjlusJkDs2zpU3kPBuAR6hYDq7XjCR4yIxEzrVNXU5sFrb1Ohdqf3ikmmg/V2aHe1koMSvCN1ZIlnW6SK6ZKSWSmsl8AjzCxH2SRho6+nj/SDXXzw3D1836ZpUkgEcI+MVbZF8bQMaZ1v/9XXBwozBr8o3VFX8ikUXbeHPsLehrE9aiOtiYUUqghyNrhrTzF4XpV4pHnYu2VyUGUFTfSXmTPIGUaKB0t3jUuVR7b1ETcQFuBHo46c9JD4piETOSBFm0SbI3QfAlYjZLI9WtPWSVNrH+ktCJlQ1PJMnXQdVBXXbjoV7OzInw4lMpkRwbNUehPAMWPSj2dWnk9axy+k3mizM+Ihk/YpYLR1cdS6+jfF0I9XL+7lzbsbeET0Pqj3WnOJHIom28OfwKhM4TG981UtHUTUZRI3cujsLeeBH/l3lHgX8i5Ouca0sIBGC7dJGUaKFkt5jZ8dG+c6ffZOZAaTNpsRMsjRwmaCbUn9TlzurmaEeUr4s0I5mq1J0UElsd5lYAW45Wo6pMbeOG5OvEY65OieTMEE7VtlPc0GmBpKYImU+KdRVz7tIcoqd/kDeyyrksMZBYf+2+AZJJQMxyGOgWhygaURSFJXF+ZBY3MWhWwTwoZiZD50H4QoulOhHIom08aa0UN2bJ63WF2V0gip2L2mUbJn41VOyDHu1GIhG+LkwLcJNzbZKxYx6E0j2iy6ajC3C0ooWegcGJtfo/k6AUsY+oqUhXmKQQD1m0TVWObwLFCDOu1xxCVVU+PFrN/ChvInzH2ZF4MuMTDSGzIVefi+SalGAUBWlIMlpaK4Usdc6dYo5eI+8fqaK5q5/7l8oum9UTlSaua8W7dIVJm+ZHR6+JnOo24bDbUiq6bFauJpBF23hSvEM8xl2uK0x6fgORvi5ET4RN+fSrwGwSey10sCoxkAOlzbT3DlgoMcmU4PRxIWmIWa4rzN7iJgwKLIqZLJ22YTMS/XNt5U3ddMjP1dSisRAOviQk7G7+msNsOlhJUX0nN8zVPm9tMyRvEFK95lLNIYI8nZgf6SOLttGy/1nxuPBBzSHMZpWXhkzaFkRbpyOg5AycPCF0ru65ttQhVc3eokaxTNsrEhKvtkCCE4ss2saTwm1iuFbHvEHvwCCZxU1cOl37L2ZdhM0DF1/dc22XJQZgMquk559jd4ZEMhLDF+7oZbrC7C1qJCXMC09n7TMTFsVvOhgdLOIgCZB3WvvON4mV0dcB79wOdg6w5i+awxyrbOW/Pspl2XR/bpgbbsEErZRhRYxOQ5K1M4PJr+ugsE5+Js9LQ4FYpp1yA3hp//l7bV8ZJY1d/GhZ7NSdybQ1YldAzRFdCi8/N0cSgz2oy/1a7Bte9DAYrH8NhCzaxovBAShJh7hVutqxh8qErGvCijaDEaZdKQpQHfM3syO88XF1kBJJydgoSRdzle6BmkN09pnIrmydPPNsIAbuAxIt0GnzBKQZyZRBVeGjR6CxAG54WbMjcWNnHw+9cZhAT0f+dcslGA3yZhevCAibr7touyolCEVhchqStNeK2Z4+fQXlobJmPjhSpT3AoAm2PAgOLnD57zSHKW3s4s9f5LEi3p81KUHa85FMLmKWC1fcsgxdYZZO8yO1/m1UJ0+YfbtFUptoZNE2XlQegP4OmKZTGllQj4PRwOKJvOGMXy0kapVZmkMYDQrL4/3Zld+AaVD7tnvJFMLUBxVZuqWRB0qbMJnVb2yAJw3DDpI6lmMHejji4+ogi7apQua/4ORHcNlvIUabm6pp0Myjbx2huaufZ2+fi5eLg4WTtGKSrxPdbx1rbgLcnVgY7cOnx2smz+J7s1nYnT+1AL78NWz9qaYwbT0D/OqDHG54dh+Pv5vNp8drtOWT+U+oPgxr/6b5QG7QrPKz97JxMBr48/UzZZfNlgidB/auUKJvrm1VUDeXKwepjLkFHG3DoEYWbeNF0XYw2OmWdaUXNLAg2gcXBzsLJaaB2JVCyqVbIhlIW88ARyq0t7wlU4jKA2Dq0XxzOszeoiYc7QzMuRhL6cdC0EzoboSO05pDKIpCUrA0I5kSlOyG7f8NSet12Vb/zxd5ZJU08+frU0gO8bRYejZB0rBEUp8hybqZIRQ3dJE/GSSS9Xnw8lWw9XFhtrLgR3D8HbEuYpSoqsrW47Vc9n/pvHOwggeWxTA7wotffZBDZXP3hQOcSV0u7PqT+LfWYaKzMaOEw+Ut/Pba5Ilf4yKxLHYOwpBE51zbnJq3GcTAFod1lslrEiCLtvGiaJuwFnXS/kuxprWHgrrOiZNGDuPoDlFLIF9f0bZ0mh/2RkVKJCWjo2S3cJGKTNMVZm9RI/OivHGyn2R69sAZ4lGnRDIx2J38ug7ZwbZlWith8z1iFvLapzRL7j/JruGFPaXctTiS62ZL85Hv4RkK4YvghD6J5OoZQRgU+DR7AiWSpj7Y9Ud4dgk05sP6Z+DOj2D1nyByCXz6+Kg6ijWtPdz36iEeeesIgR6OfPzoEn69JpF/3TIbVHhs01EGRnvtGRyADx8EZy9Y+3+av7XCug7++lUBVyQFsv6SKbyqwpaJWSHclVsrtX19dzP22W+yz2UFX5TbThdWFm3jQcdpcSMWd5muMOkFwrTj0vgJLtoApq+GpkJdshF3J3sWRvuyXRZtktFQmg6hc3RZQTd29pF3uoPU2EkmjQQIGira6nTOtYV40G8yU9Iol9fbJAO98O4d4ob35jc0y3zyT3fwH+8fZ16kN79Zm2ThJG2IGRugPhca8jWH8HNzJDXWj605tRMjkSzbC8+kQfr/CMnno4fgkh+IYt9ghA3Pi27G5rvB1D9iiEGzyst7S7n8/9LJLG7iP9cmsuXhNGaEioPocB8X/rghhSMVrfxze+Ho8trzNyE/Xfd3cNU28mEaNPOz97JxdTDyh+tSpCzSVolZLh5L07V9/eGXYaCbmsR7OVnbTmOn9mXdkwlZtI0HxTvFo96iLb+BEE8npgVMAi3u9NXiUe+i7cQAihu6KJM3mJLz0dsO1Ud0z7NlFjcBTL55NhBdeK9IaUYiOTeqCp/9VFjRX/cs+E3TFKatZ4AH3ziMq6MdT982Bwc7+av/nCReAygWcZEsbewi92J+Lnta4eOfwCtrYLAPbn8frn8BXM+6/nmGio5tbTbs+O33wpyqbWfDM5n89pOTzIvy4at/X8Z9S2OwM3735+bqWSHcPC+cp3YXkVnceP7cao7B13+BlJt0Wa8/93UJ2VVt/G79DPzdHTXHkUxyAhLBNUCbRNLUB/ufh5gVJM5OBb69F7B25JV7PCjcBm6B3+5i0sDAoJm9RY1cGu8/OU6SvCMhIMkic22A7LZJzk/5XlAHxVJtHWQWNeLhZPfN6fCkY9iMRAcx/q442BnkXJstcvgVOPoGLPs5JKzVFMJsVvnpu8eobO7mmdvmECDnf86PR7CQZOss2lYnB2E0KGzNuQgSSVUV+T61QPy8pP4EHs46/8FxwlqYf7/YYVUo9rD2Dgzyv1/kcfUTGVQ1d/PPWy7hlbvnE+5z7sXr/3VNEtF+rvz7O8do7hq5a4epD7Y8BC5+sOZ/NX+bp2rb+cf2AtbODGbdzBDNcSRWgKKIQ9uS3cJIZyzkbIbO05D6KCmhnrg72bG38AKHClaCLNosjXlQdNpi9Vn9HylvoaPPNPHzbGcyfTWUZ0JPi+YQ4T4uTA90Y8epegsmJrE5SnaDnTOEL9AVJqOokUUxvpPX0jxoppAc93VqDmFvNBAf6C47bbZG1SH4/Bfixnv5rzSHeXJXEdtP1fP/XZ3EvCi5fHhUJK+HhjyoO6k5hLerA2lxfuPvItlWBW/fAu/9ENyD4IFdcMXvwMH1wl97xe8gIBm2PMiBnFNc+Y+veXp3MdfNDmXHTy/l2ktCL3ho7OJgxxO3zqala4BfbM4e+Xvd/WeoPwmMRZ/2AAAgAElEQVTXPAHO2gyh+k1mfvpuNp7O9vzu2hmaYkisjJjl0NUgfnZGi6qKtRYBSRC7CqNBITXWl4yixsnj5qoDWbRZmuojwh5/mv55NjuDQupkknXFXyW6H0U7dIVZlRjIwbJm2noGLJSYxOYoSYeIRWCnXf5S0dRNVUsPaZPpM3Q2QSmAOrZfSiMw7CBpC7+UJEBnPbxzB7gHw4YXNC+F3ZVfz9+3F7Bhdih3LIq0cJI2TNK1oBh0d9vWzQymsrmHnOo2CyV2BuZByHoWnloIpV/DFX+A+3ZC8KzRx7B3pm3tc/R3t9P77v0YVDNv3beQv9w4a0yrIJJDPPnVmgS2n6rn1cyy775YdQj2/kPsyZp+xehzO4sndxVxsradP16Xgo+rXFMxJYhZLh7HIpEs3ilmUhc/+k3jZEmcH9WtPZQ3jdHpdBIiizZLU7RdXOxjVugKk17QwJxIbzyc7C2UmAUInSvkDbolkgGYzCpfDxmtSCTfoaMOGk7pnmfbOzRjMfmLNsRwvg6SQjxo7uqnrt02hq2nNIMmeO9u6GkWxiMu2rpj5U1dPPb2URKDPKRhw1hxCxCOybkf6tqjeGVSEPZGha2WXrR9+gRsvBy++A9xuPVwFqQ+CsbRrwZSVZUtR6tZ8dppfjtwB8uMOXy16Ljmg+IfpkaxKiGAP36W923Xf6BHuEW6h8CVf9QUFyCnqo2ndhWxYXYoVyTLJdpTBs9Q4Zg7lqJt35NiPCnlhm+eGr4H2FNk/RJJWbRZmqJtQ8WNdhlKfUcvuTXtk0saCeK0d/qVYmZv0KQ5zCXh3vi4Okjrf8nIDLtF6dzPllHUSKCHI7H+o5AJTRSeYeDkpd+MJEQ4bJ6sHYcTfcm3NBWLDocO+kyD599ttf2/oDwDrv4XBM/U9Hf09A/yo9cPoygKz90xF2eHSbbuwhpI3iAck2uOaA7h6WLP0mn+fJxdY5mVHAM9Ylff85dCSzlcvxFu2yxmzsdAZXM3d718kH975xgRPi7c/vD/B0nXYr/791B1WFNqiqIMdejsefTtI3T3m2Dn78W/4bVPal5/1Gca5KfvHcPPzYH/ujpZUwyJFROzXMy4n8Pl9DucPiE6bQt/9B2VTrSfK6FezjYx1yaLNkvS1STkkXGX6wrzdYH4wZp0RRuIubbeVqjM0hzCaFBYER/ArvwGuVtK8n1K0kUhE6TthhWE+cK+4ibSYv0md4dBUSxiRpIQ5A5IB8lxpeoQPDEHnkmFU59o7sA8saOIpf+7iwdeO0TB2cuXT7wvTooX/Ahm3awpvqqq/PKD4+TXdfCvW2ef10RCch5mbAB7Vzi4UVeYm+eHU9vWy3a9c9xlGfD0Ysj4O8y8BR49KLoJY7i+qarKC1+XcPnf0zlc1sxvr0nm/YdSSQzxhKv/KeS4798j3Hs14OPqwD9uvoTSxi5effttMVs0716I1a48+vu2QgrqOvmf62fi6TKJlEeSi0PMchjohqoDF37vvqfA3gXm3v2dpxVFIS3Ol8ziRgbN1j1CIIs2S1KyC1Atsp/N392R5BDt+6nGjdgVYHSwiPV/W88Ah8u1m5pIbBBVFZ226GWa53gA8k530NzVP7mlkcMEzYS6XF3da3cneyJ9XaSD5Hhy6hMw2IlO2zu3w4urxAHDGPki9zShXs7sK25i9T++5qfvZovOW91J+OhRiFgMV/xec5qvZJbx0bEafnZF/OQ8+LMWnDxh1i3Cia67WXOYVQkBhHo583pWmfZcuprgjaEC7c6PYf1TmtQ8nxyv5Q+fnWJJnB/bHr+Uu1KjvjVpcvaG618Uy4y3Pq75UCI1zo/HloZwVfHv6HINg8v/n6Y4AEcqWnj+62JumR/O8vgAzXEkVkzUElCMF5ZIttdCzntidnKEz0ZanB/tvSZOjMd86UVEFm2WpHAbOPtAyCWaQwyaVfYUNrBs2iSx+j8bR3eIWgp5W3Vp/ZdN98fBaOCrk1IiKTmD5hJoq9Qtjcy0hnm2YULngKlXV/caYGaYF/tLmukz6ZPvSc5BwZcQmSrmh655UsxevnYNvHYtVI9OUlbe1EVRfSf3Lonm61+s4L6lMXx6vIZr/7aVppduZNDBDW58RSw+1sCB0mb+sPUUlycF8tClsZpiSM5gwf1i39mR1zSHsDMa+MHCCPYWNVFU33HhLxiJwy+BqQdueVvztVFVVTbuKSHGz5Xn75hHiJfz998UsUg4lea8B9mbtOUK/Nj8BhGGeh7pvJfKLm23mT39g/zs3WyCPZ35zdpEzblIrBwnTzFydKGi7cBzYDbBoodGfDk1VtwLZFj5XNuoP02KohgVRTmqKMqnQ3+OVhRlv6IohYqivKMoisPQ845Dfy4aej1qfFKfZJjNULwDYlfq6hBkV7XS2j3ApfGT+IQ06RpoKdVlnuDmaMfSaX58nlOL2crb1RILMnxhjl6uK0xGUSMx/q4EeVrBTqr4NUIOevBFXWFunBtGU1c/n+ectlBikm9oKRfmONNXC7OHOXfAjw/DlX8S0tYXVgq3x4aC84bZmSckcqsSA/B2deDXaxLZ/bNlvOnzEh69tdzZ8Qh/29dGe+/YnXXr2nt5+M0jRPi48LebZmGYrGsurImARHFIeXCjrlnGW+aH42A08Nq+8rF/sakfDrwo1ggFJGjO4UhFC9lVbdydFnX+n42lj0PkEtj6U2gsGvtfVLIb46EX6brkPg6TxE82HWVAwxjEX77Mp6Sxi7/cMBP3yWTIJrn4xCwXB2O95+iS9XXCoZfE0nafmBHf4u/uSEKQOxlWPtc2liOQx4BTZ/z5f4C/q6o6DWgB7h16/l6gRVXVOODvQ++zfU4fF/skpumbZ0vPb8CgwNLJ3CFIuFq0q3O36AqzJiWYmrZejlW1WigxidVTmg4eoeCrvUvQbzJzoLSZtNhJ/Bk6EwcXIek49Qm012gOsyTOjxg/V17dV2ax1CRDFH4lHqdd+e1z9k6w+GH4yTHRnSjeCU8vhC2PCInZCOzMqyfG35VI32/NcYKznyKxI5O2S/8fXgnLeGJnEcv+dxfPpRfTOzC6QqHfZOahNw7T3W/iuTvmTi7XYWtnwf3QVvHtz4AGfN0cWTcrmPcPV9Ex1oI89wOxKHjxw5r/foCNGaV4ONmxYU7Y+d9oMMKG50W3d/PdYjH2aOltFxJf3zjc1/6OP25I4WhFK//Yfv7DjLPZX9LEy5ml3Lk4cnKtPZJMDDHLQTVD6Z6RXz/2pijoUn983jBLp/lxuLyFnn7rVaOMqmhTFCUMWAu8OPRnBVgJbB56y6vA+qH/vnbozwy9vkqZlDo/C1O0XTzGrtQVJr2ggVnhXnhP5j0krr4QvRRObtElkbwsKRB7o8JnlrZDllgn5qGLcsxyXYvps6ta6e4ftA5p5DDz7xUn+Ydf0RzCYFC4Y3EkRytayamybt3+pKPgC/CJBb+477/m5AHLfwmPZcPCh4S07Ik58MWvoOvbU93OPhP7S5pZlXDGbE7BV7DrjzDrVvxWPMJTP5jDpz9ewqwwL/70eR7L/7Kbt/ZXXLBT8btPT3KkopW/3jiLaYHulvquJQDxa4Vl/YHndYW5c3EUXf2DfHi0evRfNLwo2C9edNo0UtXSzRcnTnPrwghcHUexFsAzFK59ShxG7xjDTNpXv4H2alj/LNg7c/WsEG6eF87Tu4vJHKUsravPxM82ZxPh48Ivr9LeWZTYEGHzhSnQSBJJ86D4jIQtgPAF5w2TFudH/6CZg2XaZ1QnmtF22v4B/AIY/s3hC7Sqqjo8OV8FhA79dyhQCTD0etvQ+7+DoigPKIpySFGUQw0NNrCvq2i7WGrppn1Ytrmrn+yqVusYHk9aL+aPdLjeeToLO+TPT5yWS4ElUJcjdlNF65tn21vUiEGBxTHfu+xMXnxiRJf+8CujszY+B9fPDcPFwchr+8oslZmkv0scJkxfff73ufrB6j/CT47AzJth/7Pwz1mw60/Q205GYSP9g2ZWJgSK9zeXwAf3QdAMWPf3bw4qZoR68uo9C9j0wCJCvJz49Yc5XPH3r/kku2ZEKfl7hyp5PaucHy2LYU1KsKW/e4nRDubdIzqpWuSCQ1wS7sWsME9e21c++t935ZmicFr0kK6DrFczy1AUhbsWR43+ixLWwoIHhJtp4bYLv79wm5j9S/0JhM//5un/uiaJGD9X/u2dYzR1Xrhr96fPT1HV0sNfb5yFi8Po985JbBg7B4hKG7loO/UJtJZfsMsGsCDaB3ujwl4rnmu7YNGmKMo6oF5V1TMnrUe6eqijeO3bJ1T1eVVV56mqOs/f3wqKlPPR0wqVB3Rb/e8pbEBVJ6nV/9kkDkkkT+qXSFa39nCsUkokpzzfzLMt0xVmb1EjM0I9rc8eesED0FkHpz7WHMLDyZ7rZofycXYNLV3aiz/JGZSkCzOK6VeM7v2eYWIv1cP7IW4VpP8Z/jmLgYwn8HUyMy/KG/q7xQwciligbf99U4hFMb68/1AqL945DwejgR+/fZSrn8xgd379Nzf9J6rb+M2WE6TG+vLzK+Mt+E1LvsPcu8Bgr3vu9M7FURTVd7KvuGl0X5D1tHB1nKlt/QOIDu+mg5VcNSNoZPOR83H57yAgWSzI7jjPrGxPC3z8Y/BPhBW//s5LLg52PHHrHFq7B/j55uPnLVgzCht5I6uCe9OimR+lfdetxAaJWS52/rVVfff5fU+Cd7Q4ZLgALg52zInwZo8Vz7WNptOWBlyjKEoZsAkhi/wH4KUoyvAxSBgwPIxRBYQDDL3uCVhvL3I0lKaDOmgRq39vF3tmhnlZKLFxxNVPWLHm6pNIXj4skcyREskpT0m6kAF5aO8WdPWZOFrR+o1TlFURu0r88rHAjWGfycy7h0aeq5KMkYIvwMEdIlLH9nX+0+Gm1+D+XajBs7j69JNss3sc++w34JOfiDUPN2wE76hzhlAUhcuSAvnssaX8/eZZtPcO8MOXD3Lz81nsyqvnR68fxs/VgSdunY2dUZpBjxtuAZC8XszO9HVqDrN2ZjA+rg6jmzttLhUuzfPuEXOvGtl8qJKOXhP3Loke+xfbO8ENL4lu84c/EhL2kfj8l9BZD9c9852lxsMkhXjw6zUJ7Myr55XMshFDtPcO8IvN2cT6u/IzeQAhOZuY5eLxzDUrFfuh6iAsenjUBoBL4vw4Wds+qq7vZOSCV3lVVX+lqmqYqqpRwC3ATlVVbwN2ATcMve0u4KOh//546M8Mvb5TtXXtW+E2cPQUuluNmM0qXxc0snSa/7d7UyY7yeuhuRjqTmgO4elsz5I4Pz7LkRLJKY2pDyr2fXth1siBsmZMZpUl1jTPNozBAPPvE/8OtdqdWeOD3FkY7cPrWeVWv0h0wlFVYUARt1KzDT+hc8hZ+Qq39v8G3INERyLnPVj5n6M+6DMaFK6bHcaOx5fzu2uTKWno4u5XDtLQ2cezd8zF1+37N8oSC7PgAehrh5x3NYdwsjdy8/xwtp2so7q15/xv3v+cuBGdf7/mv2/QrPJyZhlzIryYHeGtLUhAAlz1Z6GEyPzX91/P2wrHN8Gyn0HI7HOGuSs1issSA/jTZ3nk1nx/5vb3n57kdHsvf71xFk722h24JTZKQBK4+g/tQx4i81/CeXn2baMOs2SauDfIHG23e5Kh52juP4DHFUUpQsysbRx6fiPgO/T848Av9aU4yVFVKNohdqcYteuvT9a209jZZx3SyGESrgbFYBEXyerWHrKlecLUpeogDHTr3s+2t7ARBzuDkKBZI7NvAztnOPiCrjB3pUZR1dLDriGLeYlGTh+HjtrvukZqYGdePVlqMuo92+DmN8XC4SWPjzmOg52BOxZH8fUvlvOfaxN59vY51qHMsAXC5kPQTDjwgi51yW0LIwB4a/957P972+HoG5C8QZfyYGdePeVN3dyjpct2JnPuEnPsO38HVYe+fb6rCT55DIJSYOnPzhtCURT+94ZZeLva8+O3j9Ldb/rmtZ15dbx7qIoHL43VXlxKbBtFEYe6JbvF56+pWBwYzL8XHFwv8MXfkhLqibuTndXOtY2paFNVdbeqquuG/rtEVdUFqqrGqap6o6qqfUPP9w79OW7o9ZLxSHzSUH8KOmr0W/0XCDOWZdZUtLn5C4mkThfJK5KCpERyqlOSLg4AItN0hdlb3MTcCG/rPal19oaZN8Lx98SciEYuTwok0MOR17I07IWSfEvBl4Ci+/q+M6+e2eFe+Lo7QeI6SHtMdFY14uJgx31LY741NZGMP4oium31J6F8r+YwYd4urEoMZNOBSvpM57AeP/o69HdYwOa/hBBPJ1YnB+mKg6LA1f8ULpqb7/l2X9ZnPxUz/dc9N6pOtI+rA3+/+RJKG7v4749zAWjt7ueX7+eQEOTOY5dN05enxLaJWSFWa9WfhKxnwGgvPpNjwM5oYHGML3sKG61S3SVF8Hr5xupfux0viP1sM0I98He3MplL0npoKhIfIo14utiTFufHZzm1VvkhkliA0nQImQPO2rsGTZ19nKpt/0b+YLXMvx9MPXD0Tc0h7I0GblsYydcFDZQ0aJ/BmfIUfAGhc3W5Ate393K8qo1VibLAsnpSbhAHKwd0dsIXR9HU1T/yQaV5UDiPRqSeV254IXJr2sgqaeau1CjLzDs6e8H1LwojiE8fhxMfQO6HYt1FYPKow6TG+vHI8jjePVTFx9k1/PfHuTR39fPXG2fhaGelh22Si8OwEufEB6ITnXKjkJyPkSXT/Khu7aG8qdvCCY4/smjTS9E2obX1DL3we89Be+8AhytarEsaOUziNRaTSFa19JBTLSWSU47ediG50SmN3FciNOqpsVZk9T8SwTMhYrEwJDnX4P8ouGVBOPZGhddlt00bnfVQfQSm65NG7s4XKooV8doLP8kkwd4ZZt8ubMbbay78/nOQFudLjL8rr2aO8NnM2wqtFcLmXwcvZZTh4mDklgURuuJ8h4iFYpH8ic2w5SFxoJH2b2MO89hl05gT4cXP38tmy7EaHl0Zx4xQT8vlKbFNPMPAdxrs/Yc42Fz8qKYwwzPvGVYokZRFmx76OqF8n27XyL2FjQyaVS6dboW/1N38haRNt0QyEDuDwlYpkZx6lGcK91UL7Gdzd7QjxRZ++c+/D1pKoXiH5hAB7k5cNSOYzYer6OozXfgLJN+lcBug6i7aduTVEezpRGKwXHptE8y7F1QzHHpZcwhFUbhzUSTHKls5XnXWupusp8ErclQW5ueivqOXT7JruHFuGJ7OFl59svRxiFoqft+vf0bTLL+90cA/b5mNg52BGaEePLJihKX1EslIxCwHs0mo2wKTNIWI9nMlxNPJKufaZNGmh7I9YB6wiNW/u5MdcyKsdKA8eT00Foj5Po14uThIieRUpTQd7JwgfKGuMHuLmlgY42sb1ueJ14BbIBx4XleYu1Ij6eg1seVYtYUSm0IUfAHuwcJ8QiN9pkH2FDayMiEARcdyZMkkwidaFPKHXwGT9l2I188Nw9XByGv7zui2VR8R7rELHxy1hflIvJFVwYDZzA/TdBqQjITBCLe9B48eBH/t1vzhPi589e/L2PTAYuxt4ZotuThMXy0e0x7THEJRFNLi/MgsbrI6h2X5SdFD4Tawd4WIRZpDqKpKekEDS+L8rPdmc1giqXPR9tqUYCqbezhR3W6hxCRWQUm6+AzZO2kOUdncTUVzN0virFwaOYydA8z9objGNGv3cpoT4U1SsAev7yuXhyFjwdQPxbtg2hXChEEjB0qb6e4fZGWCFaooJOdm/v3QVQ+nPtYcwt3JnuvmhPJxdg3NXUPFX9YzYifg7Ns1x+0dGOTNrHJWJQQQ7Td6V70xYe8M3pG6wwR7OuPmqN11WzIFmXYZ/NsJ3eMUDy2P5YOHU7GWDVvDWGmVMAlQVTHPFnPpiMskR0tBXSe1bb3WOc82jFuAkEjqnGu7IllKJKccnfVQn6tbGplZLGQOada4n+1czL1bnGof3Hjh954DRVG4KzWSvNMdHChttmByNk5FpnDvGz7V1ciOU/U42hmsc9m75NzErgSfGN2d8DsXR9FvMvPOwUoxI5f7Acy5A5w8NMf86Fg1TV393DMeXTaJZDLgFa47RIy/G7H+blangJBFm1aaisWwcJxO18gCsUfp0ngrLtoAkq6FxnzdEslUKZGcWpR+LR51npplFDUR4O5IXICbBZKaJHgEQ+LVQ/bf2l2urpkViqez/XdlWJLzU/AlGB11/VyqqsrOvHrS4vxwdpCueDaFwSC6bZX7oTZbc5jpge4sjvHljaxyzAdeFM6RY7QwPxNVVXkpo4yEIHcWW7shk0Qi+R6yaNOKpaz+CxqID3Qn2NPZAklNIInXAIrubtvalCAqmrvJrZESySlByW5w8oTgSzSHUFWVfcWNpMb6Wt2p2QWZf7/YiXRis+YQzg5GbpoXxpe5pznd1mvB5GyYgi8hetmYlraeTXFDFxXN3VIaaatc8gOwd9Ft/3/n4kiaWlsxHdgozEd8tHfI9hY1kV/Xwb1Lom3vWiiRSGTRppmibeAbp+sC29Vn4mBpi/V32QDcA791kdTBFUlBGKVEcmqgqmKeLWqprqH7/LoOGjv7bUsaOUxkKgQkCxmWju7z7YsiGVRV3jpQYcHkbJTGImgu1u0auTOvDoAVsmizTZy9YOZNkLMZurVLjy9PCuRutywc+lth8SO6UtqYUYKfmwNXzwrRFUcikUxOZNGmhYEeKMuAuMt1hdlX3ET/oNm659nOJHk9NORBfZ7mEN6uDqTG+kqJ5FSgpRTaKoSFrw4yCm1wnm0YRYEF98HpHKg8oDlMpK8ry6f78/aBCvpN2ne/TQkKvhCP067QFWbHqXoSgtwJ9bJyFYXk3My/X+yLOvam5hB2Ctxv/yU55iiKnVM0xylu6GRXfgO3L4rEyV7KcSUSW0QWbVoo3wumXotY/bs4GJkX5W2hxCaYYYmkBVwky5ukRNLmKUkXj7pNSJrE3hVbvTlOuQkcPfWbHqRG0dDRxxe5py2UmI1S+CUEJOlyx2vrGeBQeQurEmWXzaYJmgERqXDwRTBrPAwp3olPTxmvmNfwepb2TvjLe0txMBq4fZF+V0eJRDI5kUWbFop2iL1SUWmaQ6iqyu6CelJjfXG0s5FTMfdAIefS7SIpJJKfSYmkbVOaDu4h4DdNc4iBQTP7S5pIsxWr/5FwdIPZt8HJj6CjTnOYS6f5E+nrwmuZZZbLzdbobRPL3nV22b4uaGDQrMp5tqnAgvuhpezbOfexkvU0uAVB8nW8f7iKrj7TmEO0dvfz/uFqrr0kBD837W7WEolkciOLNi0UboOoJWJXiUbKmrqpbO6xHWnkMEnroeEUNORrDuEjJZK2j9ksnCNjLtW1B+t4VStd/YOk2bql+vz7wDwAR17VHMJgULhjUSSHylvIrWmzYHI2RPFOMJt0W/3vzKvH28WeS8JtREUhOTeJV4uiS0snvD4PinfAgvv4Qeo0OvpMfHi0esxh3j5QSc/AIPcskTb/EoktI4u2sdJSBk2FuqWRu/OHrP6n29hJbJJlXCTXpART1tTNyVopkbRJ6k5Ad5NuaWRGYROKgu3bW/vGCqfaQy/B4IDmMDfODcfJ3sDr0v5/ZAq+AmdvCJuvOcSgWWV3fj0r4gMwWtvmVsnYMdrDvLuFOVlT8di+NutpodqZew9zIryYEerBa/vKxnRYOTBo5tXMMlJjfUkM1r7fTSKRTH5k0TZWinaIRwvMs8X4uRLh62KBpCYR7kEQsVj3XNuVUiJp25QOzbPp3M+2t7iR5BAPvFwcLJDUJGfBA9BRC3mfag7h6WLPdbND2XKsmrZu7cWfTWIehMKvxLXdaKc5zLHKFlq6B6Rr5FRi7g/BYCcOVUZLVxMcfwdm3QKuYl3JnYujKKjrZH/p6N0oPz9xmtPtvdwru2wSic0ji7axUrQdvCKE3b9GegcGySppYpmtSSOHSV4P9SehoUBzCB9XBxbH+PJZzmkpkbRFStLBbzp4aLem7u43cbSixTZdI0di2uXi2nPgRV1h7lgURe+AmfcOV1ooMRuh+gh0N+qWRu44VY/RoNju9V3yfdyDhBHX0dehv2t0X3P4JWFotvChb566ZlYIXi72vLavbFQhVFVlY0Yp0X6urIiXhwQSia0ji7axYOoXN5txl+uaw9lf2kzvgNk29rONhIVcJNekBFPa2MWp2g7L5CWZHJj6hQOrTmnkgdJmBgZV259nG8ZgFLNt5RlQl6s5TFKIB/OjvHk9qxyzWR6IfEPhl6AYIXalrjA78+qZH+WNp7O9hRKTWAULHhBGNjnvXfi9pn5x+BK7CgISvnnayd7IzfPC+TK3jtq2nguGOVLRQnZlK3enRWGQUlyJxOaRRdtYqMyCgS790sj8BhztDCyOsdE5HI9giFike67tyuRAKZG0RaoPwUC3bmlkZnETDkYD86N8LJSYFTD7DjEDc1Bnt21xFOVN3aQXNlgoMRug4AsIXwgu2n+eqlt7yDvdIV0jpyIRiyBwhijGLqQOyf0QOk/D4oe/99LtiyIxqypv77+w/f9LGWV4ONlx/ZwwrVlLJBIrQhZtY6FoOxjsIXqprjDpBfUsjPG17QWYSeuhPhcaCzWH8HVzZFGMj3SRtDVK0kExCAdWHewtamROpBfODjb8OTobFx+YcQNkb4KeVs1hVicH4e/uKO3/h2mrFgvMp1+pK8zOPGEwtTIh0BJZSawJRRH2/3U5UJF17vepKmQ9BX7xotN2FuE+LqyMD+CtA5X0m869+62qpZvPT9Ry64IIXB21z2BKJBLrQRZtY6FwO0QuBkd3zSEqm7spbuiyPav/s0m6RjxawEWypLGLvNNSImkzlKZD8CXCpU8jzV39nKxtnzrSyDNZcL/oVGa/rTmEg52BHyyIYHdBA+VNo5zBsWUKvxKPOufZduXVE+nrQqy/qwWSklgdKQh3tOQAACAASURBVDeCkyccfOHc76nYB7XZsOihc45Z3JkaRWNnH5+fOLfK5LV95SiKwl2pUTqTlkgk1oIs2kZLe43oHFnANRKw/aLNIwTCF1nERdKgICWStkJfJ1Qd1C2N3FfchKpC6lQxITmTkEuEJf3BF8W+O438YGEERkXhjSxp/0/Bl8LkxT9ec4ie/kH2FjWyIj4ARcfMs8SKcXCFS26Hkx9Bx+mR37PvKXFgNfPmc4ZZGudHlK8Lr51jNUdXn4m3D1Rw1YwgQry074uVSCTWhSzaRosFrf7DvJ2nxkls0rViH1djkeYQfm6OLIz2ZauUSNoG5ZliebFOE5K9xY24OdoxK8zTQolZGQsegKYiKNmlOUSghxNXzgjinYOV9PQPWjA5K2OgB0p2iy6bjmIrs7iRPpOZVYlynm1KM/9ecY07/Mr3X2suhbytMO8ecDj3uh+DQeGOxVEcLm/hRHXb915/71AlHb0muUxbIpliyKJttBRtA/cQCEjSHKLfZCazqJFLp/tPjZPYpGvF48kPdYVZMzOYkoYu8uukRNLqKU0Ho6MY2tdBZlEji2J8sDNO0UtY0rXg6g8HziPDGgV3LY6ivdfER8eqLZSYFVKWAaYei8yzuToYWRA9hYxxJN/HN1Y4TB96GQbP2oV44PkhF9j7LxjmhrlhONsbef2sbpvZrPJyZhmzI7yYE6FdYi6RSKyPKXrHM0YGTVC8G+JW6TqJPVzeQlf/oO1LI4fxDIWwBZD7ka4wq4clkselRNLqKUmHiIVgr13SU9XSTVlTN6lTcZ5tGDtHmHOXcDxs0S5vnB/lTUKQO6/tK5+6neyCL8DeBSK1G+OoqsrOvHqWTPPD0W4KGeNIRmbB/cId8tQn3z7X2w5HXofkDcJh+QJ4OtuzfnYoW45V09rd/83zO/LqKW/qlsu0JZIpiCzaRkP1Iehr0y2N3F1Qj71RmVpzOMnrhZtWU7HmEP7ujiyI9pESSWuns0H8LOiURmYWNQFMnaXa52Le3cKF89BGzSEUReHOxVGcrG3ncHmLBZOzElRVzLPFrAB7J81hTtV2UNvWyyrpGikBca/gHfXdTvjRN6C/Y0Sb/3Nx5+JI+kxm3j1U+c1zL2WUEuLpxOrkIAsmLJFIrAFZtI2Gou1i6WrMcl1h0vMbmBfpg9tUsucdlkjm6pNIrk0Jprihi4K6TgskJZkQyr4WjzHLdYXZW9yIn5sj0wPddKdk1XiGQcIacXo/cOFFvOdi/ewQ3J3szml6YNPUn4K2St3SyF35wup/ecIUUVFIzo/BCPPuhYpMOH0CzIOw/1mISIWQ2aMOkxjswYIoH97IqmDQrJJb08a+kibuSo2autJwiWQKIz/1o6FwG4QvAGcvzSHq2nvJO93BpfFT7Je6Z5hwutPrIjkjCEWBrdJF0nopSQdHT2H3rxFVVdlb1ERanO/UmAu9EAsegJ5mOPGB5hAuDnbcODecz3JqqW/vtWByVkDBF+Jx2hW6wuw4VcfMME8C3LV36yQ2xuzbwc5J2P/nbYXWcmHzP0buTI2kormb9IJ6Xsoow9neyC3zI8YhYYlEMtmRRduF6GyA2mNink0H6flTxOp/JJLWi8W1OiSSAe5OLIjykdb/1kzJbrFQ26i901xQ10ljZ9/U3M82ElFLwT9BGBzokA7fsTgSk1nl7QOVF36zLVHwJQTPGtWM0blo6uzjaGUrKxOka6TkDFx8xN624+/Cnr+BVyQkrB1zmCuTgwhwd+RfO4r4JLuGG+eF4eliPw4JSySSyY4s2i5E8U7xaAGr/0APRxKCtC/mtlq+cZHUZ0iydmYwRfWdFEoXydGhqsJERyemQbP+WcKjb4iTZh372XoHBnlyl1gfkRrnqy8fW0FRYP594mCp+rDmMNF+riyb7s9bB8oZGNS++82q6G6GqgO6F2rvzm9AVZHzbJLvs+B+GOgWn8+FDwrZ5BixNxr4wcIIjlW20j9o5u40aUAikUxVZNF2IYq2CWvtoFmaQ5gGzewpbJg6Vv9n4xUOofN0SyRXS4nk2Nj9J/hLLJz8WHMIs1ll/dN7ufrJDEobu8YewNQPW38GHz0C0cvgkh9oyqOmtYebn9vHJ9k1/Ptl0wnzPveOoynHrFvAwV1023Rw1+JI6tr7+Cq3zkKJTXKKtoNqhmk6rf7z6/F3dyQ5xMNCiUlshuBZEL5QfD5n3645zA8WRGBvVFiVEEC03xTY8SqRSEZEFm3nwzwolmrHrgKD9n+q7KpW2ntNXDp9CstnktdDbbZYLqqRAHcn5kuJ5Ojo64SsZ8Up77t3wGc/h4GxzyulFzZworqdgtOdrPvXnrHt8+o4Da9eLWY6Fj8Kt38IjmPvNO8rbuLqJzIobujiuTvm8thl08Ycw6ZxdBfFcO6HQs6tkeXxAYT7OPPqvjKLpaYbU5+u72mYxs4+egfOWiBe8IU4kBuDMcTZDAya+Tq/gZXxARgMU/BATnJhNrwAd30MTtqL+gAPJ966fxF/2pBiwcQkEom1IYu281F7TAz567X6z2/AoMCSqWxR/o1EUl+3bW1KMAV1nRTVS4nkeTm+SaypuONDWPSI6MJsvAwai8YU5pW9ZQS4O7Lt8WUkBnvw2KZj/Mfm4/T0D57/CysPwHOXwunjcP1GuPIPY55lU1WVF/eUcPvG/Xi52LPlkTSulDbXIzP/PhjshyOvag5hNCjcvjCSA6XN5J1ut2ByGjH1wavXwD9nCRMbjRTVd7Dir7tZ/9ReGjr6xJODJtFpm3alrgO5g2XNdPSZWJk4hQ/kJOfHOxJC5+gOMz/KhwAPaXQjkUxlZNF2Pop2AArErtQVJr2ggTkR3lN7eNgrAkLnQq6+ou2qYYnk8dMWSswGUVXY/5zoIESmweo/wq2boK0Knr9UDMaPguKGTtILGrh9USSRvq5semARj6yI5d3DlVzzZAYFI80Wqioc3AgvrxF7r+7dBik3jPlb6Okf5N/eOcbvt57issQAtjySRlzAFLf4Px/+08X+u8OvCIWARm6aF46jnYE3syosl5sWVBU+fRwqs4Shw5s3Qv4XYw7T1j3Afa8ewt5ooLypm5ue20dNaw9U7ofeNv1W/3n1OBgNU/tATiKRSCQXBVm0nY/CbeKEzFW76UFjZx/Hq9qmpmvk2SStF91LPRJJDyfmR0qJ5Hkp2QWNBWLwfXiGMv4qeDADglLgg/thyyPQf/4Ztdcyy3AwGrh1gbCXtjMa+PmVCbx2zwJauvu55skMNh2o+NakZKAXPn4Utj4udrE9sBuCZow5/Yqmbq57ei8fZ9fw8yvjeea2ubg7TeEDj9Ey94di51jJbs0hvF0duGpGEFuOVX9fTngxyXoGjr0Bl/4H/OhrCEyCd24b02oD06CZR946QnVrDy/cOZfX711AY0cfNz67j7bsT8BgD7ErdKW5I6+ehTE+uE6l3ZsSiUQimRBk0XYuupuh+pBuaWRGYSPA1NvPNhIWcpFckxJEfl0HRfVy0faI7H9OzOokX/fd5z3D4K5PYdnP4dib8PwKqDs5Yoj23gE2H65i3axg/N0dv/Pa0mn+fPbYUuZGevPLD3L4yaZjdNaXwctXCZfIZT+HH7wDzt5jTn13fj1XP5lBbVsvL/9wPo+siJOzQqMlYa34Nz/6uq4wN80Lp6PXxBcnJqibXbQDvvoNJKyDS38pOm13fgxhC+D9e8XP2Cj4w2enyChq5A/XpTA30od5UT68df8iuvtNNB39hO6QRZpmLIcpa+yipKGLVdLqXyKRSCQXAVm0nYuS3cJZTEfR1tTZxwdHq/F1dWBGiKflcrNWvCMhZI7uubarUoJRFGS3bSSaisXuqXn3gJ3j91832sHK/xSzbj0t8MIKIak7y9J/86EquvoHuTt1ZHvpAHcnXrtnIT+7YjqNOdsZeHoZgw0FcPObIv4Yra1VVeWpXUXc/cpBgj2d+OTRJSyPlzfDY8LOEWbeLBb5djdrDrMoxpdwH2feOTgBO9sai2Dz3RCQBNc99+28mZMH3P6+6OB+9AjsP79T5jsHK3h5bxn3Lonmpnnh3zyfEubJB7eGEEMVT1bHcqK6TXOqO/PqAVgprf4lEolEchGQRdu5aCoGFz8xhzUG+kyDfJ5Ty32vHmLhH3fwdUEDN88Pl92CYZLXQ81RaCnTHCLQw4l5kd6yaBuJgy+KgmnePed/X+wKeGgvRCyGTx6DzfdArzCfMJtVXt1XxtxIb1LCzn3YYFTgUeeveMvxT7Qpbqzp/m9ebk4e8063jt4BHnzjMH/5Mp+rZ4bwwcOpRPhKS39NzL5DGJIcf0dzCINB4aa54ewraaK8ScOaB630tMLbt4DBDm55CxzPmmF0cBGzmQnr4POfw57/GzHMwbJm/nPLCZZN9+dXVyV87/Xo5r0AHLJfwK3PZ3H4/2/vvsOjqvI/jr9POiUhhFDS6L0mEKpgAQsKCirFhqgouNbVte5PXeuurm0t2EAFQQXsiggqgiA99BJASiChCySUAGnn98cdkJKEyU0kE/J5PU8eZu69c+bM44mZ7z3nfL+b3AW4v6zeScMalTVWRUTkjDht0GaMCTHGzDfGLDXGrDTGPOU5PsoYs9EYs8TzE+85bowxrxtj1hljlhljip82qTSc9yDct8KrGQNrLUtS03n86xV0/PdU/vbxIpalpTOkaz2m/P1cHup56heHcqvElkhGsXr7ftbv0hLJY47sd5aOtbgSQr3Isli5BtzwJfR4wvnv8W432LKI6Wt3sml3Jjd1qVvwa7MOwhe3wpR/YppeRpV7fiO2UTxPfbeKoWMWkp6Z5VWX1+08QN/hs/g5eSeP927Oa9fEUzFI+4Ncq9XSSUCzaMwps6dF0S8xFj8Dny9MK8HOFSIv11n6uHcjDBzrzMrnJyAY+o+CVv1h6lMw9ekTPmfa3kxuH7OQuKoVeePaBAL88/kTt3YyVGvE/+64isjQYG4YOZ9Z6/4oUncPHMlh3sbdWhopIiJnjDczbUeA7tbaNkA80NMY08lz7kFrbbznZ4nn2KVAI8/PUODtku70GRNYodDTW9MPMXzaOi585Vf6Dp/FhKRUzm1UndG3dGD2I9159LJmNKnlfs/EWalqXedLZbGzSEYBMGmZZtuOWToOjuxzEpB4y88Puv0Dbp7kpEF//2K2Tn6FmqFB9GxZQOC3ZwO8fzGs+MIJ+AaMoWrVCEYOTuTx3s2ZvmYnl70287QzGFNWbqfv8FmkZ2YzdkhHhnStVz6Lz5e0hEGwc6Uzo+1SVJUKnNu4Op8vTCM3z33w57WfnnBS8Pd6Gep0Kfxa/0Bn6WTbwTDzZZj8COTlcfBIDrd9tJCs3DxGDE6kSoV8ktccOQApv0HjS4gOr8D4YZ2oHVGRm0ct4OdV3hcV/+33XWTnWroraBMRkTPktEGbdRydzgj0/BT2V7wP8JHndXOBcGNMVPG76hsys3L4clEa14+cyzkv/MKLU9ZQrVIwz1/VigWPXcjr1yZwXuPq+d/hFUfzvrB1Eezd5LqJWlWcJZLfa4mkIy/PSUAS0w5iE4v++tqd4PaZHKh9ATekv8OnYa8TeCT91Ot+/xneO98pH3DD507A5wm0jDEM6VqPL/7WhQB/Pwa8O5fh09aRd9KX/tw8y0tT1jBszEIaVK/Ed3d3pXMD9xla5SSt+kFASLETkgxMjGNbxmFm/F784taFWvwxzHkTOgxzMmB6w88fLn/NqUE47x3st3fz4IRFrNm+jzeva0uD6gWUh9gw3Vk+6kn1XyM0hHFDO9G0Vii3j13Id0u3evX2U5N3EhYSQLs6RU+2IyIi4oZXkYUxxt8YswTYCfxkrZ3nOfWcZwnkq8aYo1kPYoDjd7CneY6VWXl5ljnrd/PAZ0tp/+zP3D9hKZv3ZHJP90b8+uD5TLi9M9d0qE2Y0pJ7p0Vf598SWiK5QUskYf0vsPv3os2ynaxiBC9UeYJnc2+k3t458E5X2DTHOWctzHgJPu4HVWo76fwLSNLTOjacifd0pWfLWrw4ZQ2DP5x/rKhxRmY2Q0Yv4M1p6xiYGMf4YZ2JDi98RluKKKSKswx5+eeQlem6mR7NahJRKYgJf2VCks3zYOLfnQQjl/y7aK81xinaft7DmCVjuXTt4/xfz4aFl1dZOxmCw5y9nB5VKwXx8a0daVu7KveOW8yEpMI/b16eZdqanZzXpIZuzomIyBnj1V8ca22utTYeiAU6GGNaAo8CTYH2QATwsOfy/NY3nTIzZ4wZaoxJMsYk7dr1F9/JdWnjHwd5+cc1dPvvNK4dMZfJK7bTu3U0E4Z15tcHLuC+ixpTp1ql0u5m2VO1LkTFl0AWSWf5nhKSAPPegco1nVlMlzIOZfPF4i1ktL4VM+RH8A+CUb3g1//C+Bvgl2ecWZwhP0JE/lkljwoLCeTNaxP495WtmL9xD5e9PpPxCzZzxfDfmLXuD567siXPX92KkMCiZZkULyUMcpbKJn/ruomgAD+uTIjh5+Qd7D5wpAQ755GR5oyrKrHQ70Mns2lRGcOkyJv5d/a1XO4/l1u2POHUC8xPXp5Te7NhD2eJ5XFCQwIZfUsHzmkYyUOfL2PUrIJrSS7fksEfB7K0n01ERM6oIt0mtNamA9OBntbabZ4lkEeAD4EOnsvSgLjjXhYLnLLmxFr7nrU20VqbWL2679Uwe+WntVzw0nSGT1tHgxqVee2aeBb834W80K81HepFKBtkcbXoC1sWQvpm101EValAuzpV+X55KdWT8hV/rIN1P0HiEAgIct3MZ0mpZGblMrhLXaeo/LAZzn+nac/Bmh/gkv/AVSOcLH5eMMZwXcfafHPXOYSFBPDwF8s5nJ3LuKGdub5jHe1f+yvV7QpV63ld06wgA9vHkZ1r+WrxlhLqmEdWJoy7DrIPORkhK0a4ambl1gz+MWEpSTGDyO75ImbtZPhkQP6F47cvhQPbodEl+bZVIcifkYMTubh5TZ78bhXDp63L97qpq3fiZyh8Rk9ERKSEeZM9sroxJtzzuAJwIbD66D4143zz6gus8LzkW+BGTxbJTkCGtbbMTYV0axTJI5c2Zc6jPfjolg70iY+hQpBmBUrM0Rmh5Z8Xq5nLWkWRvG0fa3fsL4FOlVHz3wO/QEi82XUTuXmWj+ZsokPdCFrGeNL8h4TB1e9D/9Fwy2TofMex/WtF0bRWGN/d3ZVn+rTgu7u7ah/QmWAMJNwAKTOdxDEuNa4ZSnxcOBOSUotcyqFA1sI3d8C2ZdDvA6jexFUzu/Yf4bbRSYRXDOSdQe0I7DQU+r7tfOYxV8Hhk2qwrZ0CGGh0UYFtBgf4M/z6tvSJj+bFKWv47+TVp3zuX1bvoG3tqlSt5P4GiYiISFF5M9MWBUwzxiwDFuDsaZsIfGyMWQ4sByKBZz3XTwI2AOuAEcAdJd7rM6B93QhuP68BNcNCSrsrZ6eIelDvXJg/AnK8Sw+fn77x0QQH+PHBbwUvZzqrHd4HSz6Gllc7KfxdmrZ6J5v3ZHLTOXVPPGGMM9sW1yHf13mrYlAAgzrXpUaofp/OmPjrwPiVyGzb2h0HWJKaT2IaN2a8BCu/gouegsYXu2riSE4ut49dyJ7MLEbcmPjnuIq/zllquWUhjL4cDu7+80Vrp0Bse6gUWWjbgf5+vDIgnms7xPHW9PU89d2qY8l0duw7zIot++jeTEsjRUTkzPIme+Qya22Ctba1tbaltfZpz/Hu1tpWnmM3HM0w6Vkyeae1toHnfNJf/SGkjOpyD+zf6nyBc6la5WD6tYvly8VbjiW7KFeWfAJZB6Dj0GI18+HsjURVCeHi5jVLqGNS6sKioeFFzhjJzXHdTO/WUVQI9D9tgg6vJH8H056F1tc4v/8uWGt5/OsVLNy0l5f6t/lzZvioFn2d4ty71sCoy2DfNti/w8lY62WQ6O9n+PeVrRjStR6jZqfw8BfLyM2zTFu9E0Cp/kVE5IxT6ispPQ0vhOpNYc4bxSoEPKRrPbJz8xgz130JgTIpLw/mvwuxHZxU/y6t3bGfWet2M6hzHWXDO9u0HQT7t8H6qa6bCA0JpFfrKL5buo3MLPfBH9tXwJfDICbRSdfvck/jh7NSmJCUxj3dG9K7dXT+FzW+GK7/3El28uGlkPS+53hPr9/HGMNjvZpxT49GfLYwjXvHLWbKyu3EhFegSU3V3xQRkTNL39Ck9BgDne+E7cth46+um6lfvTI9mtZkzJwUDmXlllz/fN26n539Sh2HFauZUbNTCA7w45r2tUuoY+IzGl0CFSNh0UfFamZAYhwHjuTwvdti9gf/gE+vdfZJXvMxBLpbJjtj7S6e/X4Vl7Soyd8vbFz4xfW6wY3fwKE98OsLEBYDNVsW6f2MMdx/UWP+eVlTJi7bxrQ1u+jetIaS6IiIyBmnoE1KV6sBUKkGzH6zWM0MPbc+ezOz+WJRWgl1rAyY9w6ERjk1uVzKyMzmy0Vp9I2PIUKJFc4+AUHQ5hqnPtkB96VV2tetSv3ISnyW5OL3KycLxg+CgzudZYuhtVz1YcOuA9z1ySIa1wzllQHx3mXwjU2Em753ymG06u96dm/ouQ14pm9LggL8uLxNAbN7IiIifyEFbVK6AkOgw1AnZf3OZNfNtK9blTaxVXj/t43HkgacUYf3wcYZMPdtJwW/S9szDjN5xXbGzEnhwJFClqLtWusseUscckrNqaIYn7SZw9l5Tpp/OTu1vRHycmDZONdNGGPonxjH/JQ9RStmby1MegA2z4Y+w51SEi5kHMrm1o+SCPD3Y8SNiVQKLkJNt1qt4P5k6PGEq/c+alCnOqx48hI61HNXnkBERKQ4XFQzFSlh7YfAzJdhzpvOFzsXjDHc2q0+d3+6mJ+Td3BxC3d3872Smw07VsKWJNiyyMlUt2sNx2rIV3oFbpsK4YUvN9x3OJvlaRksSU1naWo6S9PS2bHvz2QqU1fvZOSNifnvM5v/nlP8ut1N7j9GnmX07E10rBdB8+gw1+2Ij6vexNn3uGgMdL7L9WzT1e1ieOnHNUxISuORS5t696L5I2DRaOh6v1OY3YXcPMs9ny5m8+5MPr61I3ER3tUJPIFfyZRrCQrQfU4RESkdCtqk9FWMcFJ1Lx4D3Z+AUHcZDC9tWYuY8AqMnLmx5II2a519Y0eDsy0LYdtSyPUEVxUjnSVYLa92ZhGCw2BsP/h4AAyZAiFOZrusnDxWb9/H0tR0FnuCtPW7/iwAXD+yEl0aRNImtgpt4sJZviWDJ75ZyZPfreSZPi1P3ENzOMPJCNiyH1R2X+D35+QdbEk/xOO9m7luQ8qItoPg27shbYHr8g01QkO4oEkNvliUxgMXNz590poN02HyI9D4Uuj+uKv3BHj+h2R+XbuL/1zVio71q7luR0REpCxT0Ca+ofOdkPQBLBgB3R9z1USAvx+3dK3HMxNXsSQ1nfi48KI3cmCXkxr8aIC2ZSEc2uucC6wIUfHQ4TYnW2NMO2c27aSZCzvwIxh7NbveH8g7sS+wKO0Aq7buIys3D4DIysHEx1XhyoQY2sSF0zomnCoVT1zimFC7Klv2HuLdGRuoW60St3ar/+fJxWMh+2Cx0/yPmpVCTHgFLmymNP9nvRZXwg+POAlJilFzb2D7OH5O3sG0Nbu4qLDyEHtTYMJgiGwMV48AP3czVF8tTmPEzI0M7lyHazsoUY6IiJRfCtrEN1RrAE17wYKR0PU+CKrkqpmB7eP4389rGTFzA8OvK8L+mSWfwPT/QPpm57nxgxrNodnlTorymHZOeQL/gn9l8vIs//xqOZOWH+GS7Ft4cdd7NN/5L1ZGPcTN59SlTVw4beLCia4S4lX2uYd7NmXznkyem5RMXERFLmlRC/JynaWRcZ0gOsH7z3eS1dv3MWfDbh65tKnS/JcHwaFO4LbyK+j5PARXdtXM+U2qE1k5mPELUgsO2vJyndT+1sK1nzrv7cLm3Zk89tUKOtaL4LHezV21ISIicrZQ0Ca+o/NdsHqiE0B1uM1VE5WDA7iuQ21GzNxA6p5M7/a/7E2Bifc5QVmHoU6AFtWmyIHjhKRUxi1I5fI20SQ2vJvd20Lot+h1+rU8zwlEi8jPz/DKgHi2jpjLveMWM2FYZ1ofnOP0t8e/itze8UbPTiEk0I9r2scVqx0pQ9oOgiVjYdXXkHCDqyYC/f24ul0MI2duZOf+w9QIzSd1/2+vQupcuGoERNRz9T45uXncN2EJfn6GVwfGE6gbCyIiUs7pL6H4jtqdnFmtuW85d+tduumcuvgZw4ezUk5/sbXww8Ng/J36UV3uhjpdihyw7TmYxfOTV9OhbgSvXxPPwPa1qdb7KWev289POjMcLlQI8mfkjYlUqxTMkNFJHP7tLQiNdmYAXdp7MIuvFm/hyoQYwisqzX+5EdcRqjVyEpIUw4DEOHLzLF8u2nLqyS2LnBnrllc7KfZdenv6ehZu2suzfVsSHV6hGL0VERE5OyhoE99hDHS5y0n8sWaS62aiqlTg8jbRjF+wmYxD2YVfvGaSU8Pq/EegSqzr93z+h2QOHM7hmb7HJQ3x84M+bzlLGb8cBqnzXbVdPTSYUTe3Jzp7EyGpMziccHMx0/ynKs1/eWSMM9uWOtcpGeFSg+qVaV+3KhMWpGLtceU1sjLhy6FOTbReL7vOUrk0NZ3Xpv7OFW2i6RMf47qfIiIiZxMFbeJbml7uJPcoZrHtW7vV42BWLp/O31zwRVkHnVm2Gs2h099cv1dSyh4mJKUxpGs9mtQ6af9OYIhTUDgsGj69FvZsdPUejWqG8k6jJI7YQO5bF0+2J6lJUeXk5jFmzia6NKhG01pK81/utLkW/AKcTK3FMCAxjg1/HCRp094/D/70OOz+Hfq+BRWqumo3MyuH+8YvoXpoMM/0aVmsPoqIiJxNFLSJb/EPgE53OrMBqQtcN9MiugrnNKzGqFkpZOUUEODMeBEyUqHXK65nrnJy83js6xVEBgbL7wAAEm9JREFUVwnhnh6N8r+oUjW4/nOnwPEnA/7MRlkUh/YSlfI1W+J688OGbB7/esWJsxxeOprm/ybNspVPlWtA456w9FOn3qBLvVpHUTk4gPELUp0Dv//kJBHqfBfUP991u/+elMzG3Qd5eUCbUzKqioiIlGcK2sT3JNzg1Deb80axmrm1W3227zvMxGVbTz25czXMfgPir4c6nV2/x6jZKazevp8nLm9BpeBC8vpENnRm3PZshPGDICeraG+0eCxkZ1K/1/3ceUEDxi1I5d0ZG4rc3w9npRBbtQI9lOa//EoYBAd3wdoprpuoGBTA5W2i+H7ZNg7s2Qbf3Ak1WhSrHtu01TsZO3czt3atR5cGka7bERERORspaBPfE1wZ2t0Myd85mRJdOr9xdRrVqMyImRtPnJWyFiY9AEGV4aKnXbe/LeMQr/60lguaVOeSFl4EQXXPgT7DIWUmfHev0w9vHE3zX+cciGrNPy5qQu/WUTz/w2omLd/mdX9Xbd3HvI17GNy5Lv5+7vYbyVmg4YVQuZZzI6AY+ifGcSg7h/Txdzizx1e95ywHdmH3gSM8+PkymtYK5YFLmhSrXyIiImcjBW3imzoOczI6zn3bdRPGGG7rVp/kbfuYvX73nyeWTXACpwv/BZXc39F/dmIyOXmWp65o6VXdNQDaDITzH4Wln8CMl7x7zdrJTv24jsMApxTAS/3b0K5OVe4bv4RFm71bbjlq9kYqBPozIFFp/ss1/wCIvxZ+/xH2b3fdTEJcOHeFzyV2xy/Q4wmo5W4PmrWWR75czr5D2fzvmniCA/xd90lERORspaBNfFNYNLTq56Qnd7MHzKNPQjSRlYN57+hSwkPp8OP/ObXY2t7kut1f1+7i++XbuOuChtSu5kUtuOOd9zC0HgjTnoVln53++nnvQFgsNOl17FBIoD/vDWpHzbAQbhudROqezEKb2HMwi6+XbOWqtjHaKyTOEkmb69REdMns3ci92SOZnduc3+vf6Lqd8QtS+WnVDh7q2UTJcURERAqgoE18V+c7IfsgJH3ouongAH8Gd67Dr2t3sXbHfvjlWcjc7SQf8XM3/A9n5/Kvb1ZQL7ISQ8+rX/QGjIEr3nCWO35zB2yaU/C1O1bBxhnQ4VZnhuQ41SoH8+HN7cnJs9z04XwyMgtOLPHp/M1k5eQpAYk4qjVwxt/isd4v0z1ebg58OQz/gEAezruD8Un51GzzQsofB3l64iq6NKjGLee4K8QtIiJSHihoE99Vq5WTiW7+e0VP3HGcGzrVISTQjx9+/MHJcNf+NoiOd93eu79uIGV3Jk/3aeF+KVdAMAwc65Q3GHcd7F6f/3Xz3oGAEGg7ON/TDapX5t1B7di8J5Pbxy7MN1Nmdm4eY+duomvDSBrVDM2nFSmXEgbBnvWwaXbRX/vbq5A2H7/er9KyWXO+XLyl4CytBcjJzeO+CUsI8DO8PKANftpnKSIiUiAFbeLbutwN+7fBii9cN1G1UhAD2kbT/ff/kFsxErr/n+u2Uv44yPDp6+jdOopujaq7bgeAihFw/WfOzNvH/SFzz4nnM/c4++9aD3CuLUCn+tV44erWzNmwm39+tfyUUgA/rtzBtozDmmWTEzXvA0GhRa/ZtmUhTP8PtOoPrfoxoH0cew5mMTV5R5GaGT5tPYs3p/Pcla2IqlKhaH0QEREpZxS0iW9r0MMpfj37DXfLuDzuDZ9FK78N/BB9t1NOwAVrLU98u5Igfz8e793cdV9OEFHfKQWQkQbjroecI3+eW/QR5ByCDsNO28xVbWO5t0cjPl+YxvBp6044N2r2RmpHVOSCpjVKps9ydgiqCK2uhpVfw+F93r0m6yB8ORRCo+AyJ5HOuY2qUysshAlJqV6/9ZLUdF7/5Xf6xkdzeZtoN70XEREpVxS0iW8zxtnbtnMlbJjmro0DO6k293mSQxJ4bH1TMrNyXDUzecV2Zqzdxf0XNaZmmLvU5vmq3Qn6vgWbZ8M3dznBaW6Os5Szbjevs/L9/cJGXJkQw0s/ruWbJc4eoxVbMliQspcbO9dRmn85VcKNzo0Bb2eyf3zMWcp75dtQIRwAfz9Dv3ax/Lp2F9szDp+2icysHO4bv4SaocE81cddxkkREZHyRkGb+L5W/aFyTZj9prvX//QEZGeS2/NF0g/l8MXCtCI3ceBIDk99t4pmUWHc2LmOu34UplU/pzDx8gkw/XlYMwkyUo+l+feGMYbnr25Fh7oRPPjZMhak7GHU7BQqBvnTX2n+JT8xbZ2ZbG+WSK6dAkkfQJe7oN65J5wakBhHnoXPF55+tu3Z75NJ2X2QlwfEU6WCMpmKiIh4Q0Gb+L6AYOgwFNZPhR0ri/balN9g6adwzj20aJNIfFw4I3/bSG5e0ZZavj71d7bvO8yzfVsS4P8X/dp0+wfE3wC/Pg8/PARVakPjS4vURHCAP+8OakdM1QoM/SiJb5du5eq2sfpyLPkzxklIsmWhk6m0IAd2wTd3Qs2Wzs2Fk9SuVpHO9asxISmNvEJ+t6Ym7+CTeZsZ2q0+nRtUK4lPICIiUi4oaJOyIfEWCKwIc4Z7/5qcLPj+H06Gxm4PHCu2vWl3Jj+t8j5pwurt+3j/t41c0z6OdnWquui8l4yB3q86sxj7t+Wb5t8bVSsF8eFN7QHIysljcJe/YGZQzh6tB4JfYMGzbdbCd/fA4Qy46j3nJko+BraPY/OeTOZu3J3v+T8OHOHhL5bRLCqM+y9uXFK9FxERKRcUtEnZUDECEm5wsinu3+7da+a+BbtWw6UvOkkXgEta1CQuogIjZ27wqom8PMtjX60gLCSAh3s2ddt77wUEwYAx0PMFpzSBS3UjK/HJbZ147Zp4GtZQmn8pRKVq0LQXLB13YiKcoxZ95CzXvfBJqNmiwGZ6tqxFaEgAExacukTSWssjXyxj3+Ec/jcw3n2pDBERkXJKQZuUHZ3+Bnk5MO/d01+bngq/vgBNekGTnscOB/j7ccs59UjatJdFm/eetpkvFqWRtGkvj17ajKqVgorTe+9VCIdOtx8LNN1qFhVGn/iYEuqUnNUSBsGhPbDmhxOP714Pkx+FeudBx78V2kRIoD994qP5YcV2Mg6dWOj90/mp/Jy8k4d7NqVJLd1EEBERKSoFbVJ2RNSHZr2dZAhZBwu/dvIjzrKuS58/5dSAxDjCQgJOO9uWnpnFf35YTbs6VenXLrY4PRfxbQ0ugLDYE5dI5uY46f39A6Dv2+B3+j8XAxNrcyQnj2+Xbj12bOMfB3lm4iq6NozkZtUKFBERcUVBm5QtXe6Bw+mw+OOCr1k7BVZPhPMecvaznaRScADXd6rD5BXb2bw7s8Bm/jtlDRmHsnm2b0v8lC5fzmZ+/hB/Hayb6tQMBJj5MmxJcvZZVvFuxrZlTBjNosKOLZHMzs3j7+OXEBTgx0v92+j3SERExCUFbVK2xHWA2A4wdzjk5Z56PisTJj0IkU2g810FNnNTl7r4+xk+mLUx3/OLN+/l0/mbualLXZpFhZVU70V8V8L1gIUln0BakrO8uNUAaHm1100YYxiYGMvyLRms2rqPN39Zx9LUdJ67siW1qpRgbUMREZFyRkGblD1d7oK9Kc5s2sl+ewXSN0Gvl52kHgWoGRbC5W2imZCUSkbmiftvcnLzeOzrFdQIDea+i5TlTsqJqnWdvWuLxjjLIsOi4bIXi9xM34QYggL8eGbiKt6cto6rEmLo3Tq65PsrIiJSjihok7KnaW/nC+bJxbb/+B1mveakMK/X7bTN3NatPplZuXw8f9MJx8fO3cTKrft4oncLKgcXPeW+SJnV9kbI2Ax7NsCV7zhJcYoovGIQl7SoxZwNu6kVFsKTfQrOOCkiIiLeUdAmZY+fP3S6E9Lmw+Z5zjFrYdIDEFABLnrGq2aaRYXRrVEko2alkJWTB8DOfYd5+ce1dGsUyWWtav1Vn0DENzXt7SwtPv9RqNvVdTM3dalLjdBgXhnQhrAQFXYXEREpLgVtUjYlXA8h4TDnDef5yi9hw3To8TiE1vS6mVu71Wfn/iPHst09NymZIzl5PN2nJcYoaYKUM4EhcOc8OP/hYjXTrk5V5v2zBx3rVyuhjomIiJRvCtqkbAqqBIm3QPJE2LYUJv8TouKdY0VwbqNImtQMZeTMDcxa9wffLNnK7ec3oF5kpb+o4yI+roRuVuimh4iISMlR0CZlV8dh4BcAo6+AAzug9yvO0skiMMZwa7d6rN6+nzs+XkSdahW54/wGf1GHRURERESKTkGblF2htaD1AKduW+ItENPOVTNXxEdTPTSYjEPZPHlFC0ICixb4iYiIiIj8lZQaT8q28x5ykpD0eNx1E8EB/jx9RQvW7jjABU1qlGDnRERERESKz1hrC7/AmBBgBhCME+R9bq39lzGmHjAOiAAWAYOstVnGmGDgI6AdsBsYaK1NKew9EhMTbVJSUnE/i4iIiIiISJlkjFlorU3M75w3yyOPAN2ttW2AeKCnMaYT8ALwqrW2EbAXGOK5fgiw11rbEHjVc52IiIiIiIi4cNqgzToOeJ4Gen4s0B343HN8NNDX87iP5zme8z2M0oiJiIiIiIi44lUiEmOMvzFmCbAT+AlYD6Rba3M8l6QBMZ7HMUAqgOd8BqBiPSIiIiIiIi54FbRZa3OttfFALNABaJbfZZ5/85tVO2XjnDFmqDEmyRiTtGvXLm/7KyIiIiIiUq4UKeW/tTYdmA50AsKNMUezT8YCWz2P04A4AM/5KsCefNp6z1qbaK1NrF69urvei4iIiIiInOVOG7QZY6obY8I9jysAFwLJwDSgn+eywcA3nsffep7jOf+LPV2KShEREREREcmXN3XaooDRxhh/nCBvgrV2ojFmFTDOGPMssBh433P9+8AYY8w6nBm2a/6CfouIiIiIiJQLpw3arLXLgIR8jm/A2d928vHDQP8S6Z2IiIiIiEg5V6Q9bSIiIiIiInJmKWgTERERERHxYQraREREREREfJiCNhERERERER+moE1ERERERMSHGV8ooWaM2QVsKu1+5CMS+KO0OyFSDBrDUtZpDEtZpzEsZZ3G8JlTx1pbPb8TPhG0+SpjTJK1NrG0+yHilsawlHUaw1LWaQxLWacx7Bu0PFJERERERMSHKWgTERERERHxYQraCvdeaXdApJg0hqWs0xiWsk5jWMo6jWEfoD1tIiIiIiIiPkwzbSIiIiIiIj5MQVsBjDE9jTFrjDHrjDGPlHZ/RE7HGPOBMWanMWbFcccijDE/GWN+9/xbtTT7KFIYY0ycMWaaMSbZGLPSGHOv57jGsZQJxpgQY8x8Y8xSzxh+ynO8njFmnmcMjzfGBJV2X0UKYozxN8YsNsZM9DzX+PUBCtryYYzxB4YDlwLNgWuNMc1Lt1cipzUK6HnSsUeAqdbaRsBUz3MRX5UD/MNa2wzoBNzp+X+vxrGUFUeA7tbaNkA80NMY0wl4AXjVM4b3AkNKsY8ip3MvkHzcc41fH6CgLX8dgHXW2g3W2ixgHNCnlPskUihr7Qxgz0mH+wCjPY9HA33PaKdEisBau81au8jzeD/Ol4YYNI6ljLCOA56ngZ4fC3QHPvcc1xgWn2WMiQV6ASM9zw0avz5BQVv+YoDU456neY6JlDU1rbXbwPlCDNQo5f6IeMUYUxdIAOahcSxliGdp2RJgJ/ATsB5It9bmeC7RdwrxZf8DHgLyPM+rofHrExS05c/kc0xpNkVEzgBjTGXgC+Dv1tp9pd0fkaKw1uZaa+OBWJyVO83yu+zM9krk9IwxvYGd1tqFxx/O51KN31IQUNod8FFpQNxxz2OBraXUF5Hi2GGMibLWbjPGROHc+RXxWcaYQJyA7WNr7ZeewxrHUuZYa9ONMdNx9meGG2MCPLMV+k4hvuoc4ApjzGVACBCGM/Om8esDNNOWvwVAI0+2nCDgGuDbUu6TiBvfAoM9jwcD35RiX0QK5dk78T6QbK195bhTGsdSJhhjqhtjwj2PKwAX4uzNnAb081ymMSw+yVr7qLU21lpbF+e77y/W2uvR+PUJKq5dAM9dhv8B/sAH1trnSrlLIoUyxnwKnA9EAjuAfwFfAxOA2sBmoL+19uRkJSI+wRjTFZgJLOfP/RT/xNnXpnEsPs8Y0xonUYM/zo3xCdbap40x9XGSmkUAi4EbrLVHSq+nIoUzxpwPPGCt7a3x6xsUtImIiIiIiPgwLY8UERERERHxYQraREREREREfJiCNhERERERER+moE1ERERERMSHKWgTERERERHxYQraREREREREfJiCNhERERERER+moE1ERERERMSH/T9vRknLXO4KQQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Naive forecasting\n", - "naive_forecast = np_ts[split_time - 1:-1]\n", - "plt.plot(naive_forecast)\n", - "plt.plot(x_valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "41.72727272727273" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Calculate our Mean Average Error as a baseline\n", - "errors = naive_forecast - x_valid\n", - "abs_errors = np.abs(errors)\n", - "mae = np.mean(abs_errors)\n", - "mae" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dense Model Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Utils\n", - "\n", - "def window_dataset(series, window_size, batch_size=32,\n", - " shuffle_buffer=1000):\n", - " dataset = tf.data.Dataset.from_tensor_slices(series)\n", - " dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True)\n", - " dataset = dataset.flat_map(lambda window: window.batch(window_size + 1))\n", - " dataset = dataset.shuffle(shuffle_buffer)\n", - " dataset = dataset.map(lambda window: (window[:-1], window[-1]))\n", - " dataset = dataset.batch(batch_size).prefetch(1)\n", - " return dataset\n", - "\n", - "def model_forecast(model, series, window_size):\n", - " ds = tf.data.Dataset.from_tensor_slices(series)\n", - " ds = ds.window(window_size, shift=1, drop_remainder=True)\n", - " ds = ds.flat_map(lambda w: w.batch(window_size))\n", - " ds = ds.batch(32).prefetch(1)\n", - " forecast = model.predict(ds)\n", - " return forecast" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "3/3 [==============================] - 0s 82ms/step - loss: 271.8661 - mae: 272.3661 - val_loss: 505.8083 - val_mae: 506.3083\n", - "Epoch 2/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 264.9019 - mae: 265.4019 - val_loss: 484.3098 - val_mae: 484.8098\n", - "Epoch 3/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 252.7449 - mae: 253.2449 - val_loss: 459.5409 - val_mae: 460.0409\n", - "Epoch 4/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 240.2713 - mae: 240.7713 - val_loss: 445.2593 - val_mae: 445.7593\n", - "Epoch 5/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 234.7380 - mae: 235.2380 - val_loss: 439.4569 - val_mae: 439.9569\n", - "Epoch 6/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 232.3914 - mae: 232.8914 - val_loss: 434.1690 - val_mae: 434.6690\n", - "Epoch 7/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 229.5039 - mae: 230.0039 - val_loss: 428.0587 - val_mae: 428.5587\n", - "Epoch 8/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 226.1541 - mae: 226.6541 - val_loss: 420.4857 - val_mae: 420.9857\n", - "Epoch 9/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 221.9135 - mae: 222.4135 - val_loss: 410.7528 - val_mae: 411.2528\n", - "Epoch 10/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 216.5273 - mae: 217.0273 - val_loss: 398.2069 - val_mae: 398.7069\n", - "Epoch 11/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 209.5912 - mae: 210.0912 - val_loss: 382.1219 - val_mae: 382.6219\n", - "Epoch 12/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 200.5868 - mae: 201.0868 - val_loss: 361.0789 - val_mae: 361.5789\n", - "Epoch 13/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 188.9043 - mae: 189.4043 - val_loss: 332.4605 - val_mae: 332.9605\n", - "Epoch 14/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 172.7329 - mae: 173.2329 - val_loss: 293.5743 - val_mae: 294.0743\n", - "Epoch 15/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 150.6249 - mae: 151.1249 - val_loss: 239.6270 - val_mae: 240.1270\n", - "Epoch 16/500\n", - "3/3 [==============================] - 0s 18ms/step - loss: 119.5182 - mae: 120.0182 - val_loss: 163.1781 - val_mae: 163.6781\n", - "Epoch 17/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 75.0523 - mae: 75.5523 - val_loss: 62.0292 - val_mae: 62.5292\n", - "Epoch 18/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 29.5400 - mae: 30.0355 - val_loss: 87.7864 - val_mae: 88.2864\n", - "Epoch 19/500\n", - "3/3 [==============================] - 0s 19ms/step - loss: 48.2491 - mae: 48.7487 - val_loss: 125.9318 - val_mae: 126.4318\n", - "Epoch 20/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 57.6143 - mae: 58.1143 - val_loss: 90.4777 - val_mae: 90.9777\n", - "Epoch 21/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 33.2537 - mae: 33.7454 - val_loss: 51.3877 - val_mae: 51.8832\n", - "Epoch 22/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 26.7287 - mae: 27.2281 - val_loss: 63.7683 - val_mae: 64.2683\n", - "Epoch 23/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 35.8266 - mae: 36.3216 - val_loss: 58.0335 - val_mae: 58.5335\n", - "Epoch 24/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 27.6385 - mae: 28.1216 - val_loss: 50.9082 - val_mae: 51.3875\n", - "Epoch 25/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 24.6842 - mae: 25.1842 - val_loss: 62.9936 - val_mae: 63.4859\n", - "Epoch 26/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 28.3220 - mae: 28.8167 - val_loss: 61.9798 - val_mae: 62.4798\n", - "Epoch 27/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 26.2102 - mae: 26.7068 - val_loss: 50.7160 - val_mae: 51.2160\n", - "Epoch 28/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 22.5669 - mae: 23.0600 - val_loss: 49.6758 - val_mae: 50.1758\n", - "Epoch 29/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 24.4321 - mae: 24.9220 - val_loss: 49.2939 - val_mae: 49.7939\n", - "Epoch 30/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 23.1372 - mae: 23.6315 - val_loss: 49.9636 - val_mae: 50.4636\n", - "Epoch 31/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.6659 - mae: 23.1559 - val_loss: 52.5233 - val_mae: 53.0233\n", - "Epoch 32/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.9460 - mae: 23.4310 - val_loss: 49.7654 - val_mae: 50.2647\n", - "Epoch 33/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 22.3227 - mae: 22.8192 - val_loss: 48.2324 - val_mae: 48.7324\n", - "Epoch 34/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 22.2731 - mae: 22.7657 - val_loss: 47.9464 - val_mae: 48.4464\n", - "Epoch 35/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.3831 - mae: 22.8741 - val_loss: 47.6719 - val_mae: 48.1719\n", - "Epoch 36/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.0527 - mae: 22.5487 - val_loss: 47.6310 - val_mae: 48.1310\n", - "Epoch 37/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.3382 - mae: 22.8329 - val_loss: 48.8708 - val_mae: 49.3708\n", - "Epoch 38/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 21.9270 - mae: 22.4125 - val_loss: 47.1424 - val_mae: 47.6424\n", - "Epoch 39/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 21.8263 - mae: 22.3203 - val_loss: 46.5738 - val_mae: 47.0738\n", - "Epoch 40/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 21.9597 - mae: 22.4534 - val_loss: 46.2974 - val_mae: 46.7974\n", - "Epoch 41/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 21.6622 - mae: 22.1520 - val_loss: 46.2643 - val_mae: 46.7643\n", - "Epoch 42/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 22.0928 - mae: 22.5886 - val_loss: 46.5074 - val_mae: 46.9889\n", - "Epoch 43/500\n", - "3/3 [==============================] - 0s 16ms/step - loss: 21.3585 - mae: 21.8580 - val_loss: 45.4746 - val_mae: 45.9721\n", - "Epoch 44/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 21.4842 - mae: 21.9802 - val_loss: 45.2174 - val_mae: 45.7174\n", - "Epoch 45/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 21.3711 - mae: 21.8637 - val_loss: 45.2161 - val_mae: 45.7161\n", - "Epoch 46/500\n", - "3/3 [==============================] - 0s 23ms/step - loss: 21.2700 - mae: 21.7659 - val_loss: 46.5541 - val_mae: 47.0541\n", - "Epoch 47/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 21.3453 - mae: 21.8391 - val_loss: 45.4600 - val_mae: 45.9600\n", - "Epoch 48/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 21.1439 - mae: 21.6319 - val_loss: 45.3669 - val_mae: 45.8612\n", - "Epoch 49/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.9301 - mae: 21.4204 - val_loss: 44.5570 - val_mae: 45.0570\n", - "Epoch 50/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.9137 - mae: 21.4112 - val_loss: 43.6219 - val_mae: 44.1196\n", - "Epoch 51/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 20.9056 - mae: 21.4037 - val_loss: 43.5163 - val_mae: 44.0163\n", - "Epoch 52/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.7782 - mae: 21.2708 - val_loss: 43.8434 - val_mae: 44.3434\n", - "Epoch 53/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.5193 - mae: 21.0175 - val_loss: 43.6874 - val_mae: 44.1874\n", - "Epoch 54/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.4962 - mae: 20.9962 - val_loss: 43.1953 - val_mae: 43.6953\n", - "Epoch 55/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.3569 - mae: 20.8524 - val_loss: 43.0371 - val_mae: 43.5371\n", - "Epoch 56/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.3203 - mae: 20.8173 - val_loss: 43.1354 - val_mae: 43.6354\n", - "Epoch 57/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.4946 - mae: 20.9881 - val_loss: 44.3989 - val_mae: 44.8989\n", - "Epoch 58/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.3857 - mae: 20.8857 - val_loss: 42.9665 - val_mae: 43.4665\n", - "Epoch 59/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.2082 - mae: 20.7028 - val_loss: 41.3625 - val_mae: 41.8612\n", - "Epoch 60/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.1148 - mae: 20.6113 - val_loss: 41.5026 - val_mae: 42.0026\n", - "Epoch 61/500\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 11ms/step - loss: 20.0211 - mae: 20.5187 - val_loss: 43.2069 - val_mae: 43.7047\n", - "Epoch 62/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 20.0685 - mae: 20.5667 - val_loss: 42.7780 - val_mae: 43.2549\n", - "Epoch 63/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.7746 - mae: 20.2746 - val_loss: 41.1488 - val_mae: 41.6488\n", - "Epoch 64/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.4789 - mae: 19.9751 - val_loss: 39.9085 - val_mae: 40.4085\n", - "Epoch 65/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 19.8853 - mae: 20.3800 - val_loss: 39.9053 - val_mae: 40.4053\n", - "Epoch 66/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.7656 - mae: 20.2585 - val_loss: 41.1507 - val_mae: 41.6507\n", - "Epoch 67/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.4631 - mae: 19.9609 - val_loss: 41.0337 - val_mae: 41.5337\n", - "Epoch 68/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.2458 - mae: 19.7441 - val_loss: 39.9247 - val_mae: 40.4247\n", - "Epoch 69/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.2395 - mae: 19.7385 - val_loss: 38.9186 - val_mae: 39.4186\n", - "Epoch 70/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.3983 - mae: 19.8928 - val_loss: 39.7305 - val_mae: 40.2305\n", - "Epoch 71/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.0110 - mae: 19.5035 - val_loss: 39.9783 - val_mae: 40.4783\n", - "Epoch 72/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.1222 - mae: 19.6220 - val_loss: 40.0905 - val_mae: 40.5905\n", - "Epoch 73/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 18.9902 - mae: 19.4902 - val_loss: 39.0536 - val_mae: 39.5536\n", - "Epoch 74/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 18.7837 - mae: 19.2693 - val_loss: 38.5736 - val_mae: 39.0736\n", - "Epoch 75/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.7511 - mae: 19.2363 - val_loss: 38.4372 - val_mae: 38.9372\n", - "Epoch 76/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.6280 - mae: 19.1121 - val_loss: 38.9946 - val_mae: 39.4946\n", - "Epoch 77/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.6835 - mae: 19.1806 - val_loss: 39.0065 - val_mae: 39.4861\n", - "Epoch 78/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 18.4926 - mae: 18.9872 - val_loss: 38.1479 - val_mae: 38.6479\n", - "Epoch 79/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.3852 - mae: 18.8801 - val_loss: 37.4041 - val_mae: 37.9041\n", - "Epoch 80/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.3213 - mae: 18.8059 - val_loss: 37.5607 - val_mae: 38.0607\n", - "Epoch 81/500\n", - "3/3 [==============================] - 0s 9ms/step - loss: 18.2718 - mae: 18.7639 - val_loss: 37.8740 - val_mae: 38.3740\n", - "Epoch 82/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.1646 - mae: 18.6609 - val_loss: 37.9984 - val_mae: 38.4984\n", - "Epoch 83/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.1353 - mae: 18.6335 - val_loss: 37.8383 - val_mae: 38.3383\n", - "Epoch 84/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.0452 - mae: 18.5438 - val_loss: 36.8255 - val_mae: 37.3253\n", - "Epoch 85/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.8956 - mae: 18.3945 - val_loss: 36.6914 - val_mae: 37.1914\n", - "Epoch 86/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.3186 - mae: 18.8141 - val_loss: 37.3418 - val_mae: 37.8415\n", - "Epoch 87/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.6991 - mae: 18.1915 - val_loss: 34.9576 - val_mae: 35.4576\n", - "Epoch 88/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.1341 - mae: 18.6273 - val_loss: 35.0580 - val_mae: 35.5580\n", - "Epoch 89/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.5359 - mae: 18.0238 - val_loss: 37.1074 - val_mae: 37.6072\n", - "Epoch 90/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.5872 - mae: 18.0816 - val_loss: 38.0691 - val_mae: 38.5691\n", - "Epoch 91/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.6661 - mae: 18.1650 - val_loss: 36.0530 - val_mae: 36.5530\n", - "Epoch 92/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.1835 - mae: 17.6716 - val_loss: 33.9970 - val_mae: 34.4970\n", - "Epoch 93/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.6034 - mae: 18.0928 - val_loss: 34.3608 - val_mae: 34.8608\n", - "Epoch 94/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.3103 - mae: 17.7935 - val_loss: 37.7342 - val_mae: 38.2342\n", - "Epoch 95/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.5027 - mae: 18.0026 - val_loss: 36.7959 - val_mae: 37.2959\n", - "Epoch 96/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.0857 - mae: 17.5775 - val_loss: 34.3730 - val_mae: 34.8730\n", - "Epoch 97/500\n", - "3/3 [==============================] - ETA: 0s - loss: 19.1238 - mae: 19.611 - 0s 10ms/step - loss: 17.2126 - mae: 17.7044 - val_loss: 32.9452 - val_mae: 33.4330\n", - "Epoch 98/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.2318 - mae: 17.7153 - val_loss: 34.6835 - val_mae: 35.1748\n", - "Epoch 99/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.8614 - mae: 17.3483 - val_loss: 36.6522 - val_mae: 37.1378\n", - "Epoch 100/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.3502 - mae: 17.8424 - val_loss: 35.1961 - val_mae: 35.6961\n", - "Epoch 101/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.8471 - mae: 17.3378 - val_loss: 34.6734 - val_mae: 35.1734\n", - "Epoch 102/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 16.5688 - mae: 17.0639 - val_loss: 32.1836 - val_mae: 32.6748\n", - "Epoch 103/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.9663 - mae: 17.4598 - val_loss: 32.4516 - val_mae: 32.9516\n", - "Epoch 104/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.5369 - mae: 17.0333 - val_loss: 36.0674 - val_mae: 36.5674\n", - "Epoch 105/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.0327 - mae: 17.5302 - val_loss: 36.1704 - val_mae: 36.6704\n", - "Epoch 106/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.5939 - mae: 17.0920 - val_loss: 32.8386 - val_mae: 33.3386\n", - "Epoch 107/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.6553 - mae: 17.1535 - val_loss: 31.5060 - val_mae: 31.9889\n", - "Epoch 108/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.5042 - mae: 16.9990 - val_loss: 33.1242 - val_mae: 33.6242\n", - "Epoch 109/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.1900 - mae: 16.6787 - val_loss: 33.6231 - val_mae: 34.1122\n", - "Epoch 110/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.1753 - mae: 16.6708 - val_loss: 33.0998 - val_mae: 33.5998\n", - "Epoch 111/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.2847 - mae: 16.7735 - val_loss: 32.2187 - val_mae: 32.7187\n", - "Epoch 112/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.0797 - mae: 16.5720 - val_loss: 33.2867 - val_mae: 33.7867\n", - "Epoch 113/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.0323 - mae: 16.5299 - val_loss: 32.4003 - val_mae: 32.8967\n", - "Epoch 114/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.9859 - mae: 16.4697 - val_loss: 31.4558 - val_mae: 31.9558\n", - "Epoch 115/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.9755 - mae: 16.4663 - val_loss: 31.3526 - val_mae: 31.8526\n", - "Epoch 116/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8411 - mae: 16.3298 - val_loss: 32.8375 - val_mae: 33.3375\n", - "Epoch 117/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8607 - mae: 16.3526 - val_loss: 32.5154 - val_mae: 33.0154\n", - "Epoch 118/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.8319 - mae: 16.3224 - val_loss: 32.3623 - val_mae: 32.8623\n", - "Epoch 119/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.9133 - mae: 16.4119 - val_loss: 32.2506 - val_mae: 32.7506\n", - "Epoch 120/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.8105 - mae: 16.3001 - val_loss: 30.3848 - val_mae: 30.8669\n", - "Epoch 121/500\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 11ms/step - loss: 15.7665 - mae: 16.2566 - val_loss: 31.5247 - val_mae: 32.0247\n", - "Epoch 122/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.7876 - mae: 16.2771 - val_loss: 34.1970 - val_mae: 34.6970\n", - "Epoch 123/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8239 - mae: 16.3205 - val_loss: 29.7869 - val_mae: 30.2848\n", - "Epoch 124/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.9011 - mae: 16.3986 - val_loss: 28.9909 - val_mae: 29.4909\n", - "Epoch 125/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8517 - mae: 16.3455 - val_loss: 30.7543 - val_mae: 31.2543\n", - "Epoch 126/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.5239 - mae: 16.0134 - val_loss: 34.1309 - val_mae: 34.6309\n", - "Epoch 127/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.7893 - mae: 16.2857 - val_loss: 30.1250 - val_mae: 30.6233\n", - "Epoch 128/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.3611 - mae: 15.8502 - val_loss: 28.4716 - val_mae: 28.9716\n", - "Epoch 129/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.0946 - mae: 16.5899 - val_loss: 28.5204 - val_mae: 29.0204\n", - "Epoch 130/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.7102 - mae: 16.1992 - val_loss: 31.5259 - val_mae: 32.0259\n", - "Epoch 131/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.3707 - mae: 15.8659 - val_loss: 29.9592 - val_mae: 30.4472\n", - "Epoch 132/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.2737 - mae: 15.7658 - val_loss: 28.3643 - val_mae: 28.8641\n", - "Epoch 133/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.3008 - mae: 15.7899 - val_loss: 28.7894 - val_mae: 29.2894\n", - "Epoch 134/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.1524 - mae: 15.6482 - val_loss: 30.1518 - val_mae: 30.6473\n", - "Epoch 135/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 15.3034 - mae: 15.7975 - val_loss: 29.6749 - val_mae: 30.1725\n", - "Epoch 136/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 15.0980 - mae: 15.5870 - val_loss: 30.3176 - val_mae: 30.8175\n", - "Epoch 137/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.0165 - mae: 15.5116 - val_loss: 28.1953 - val_mae: 28.6764\n", - "Epoch 138/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.1979 - mae: 15.6835 - val_loss: 27.6566 - val_mae: 28.1566\n", - "Epoch 139/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.1651 - mae: 15.6626 - val_loss: 29.0283 - val_mae: 29.5283\n", - "Epoch 140/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.0798 - mae: 15.5734 - val_loss: 29.3383 - val_mae: 29.8264\n", - "Epoch 141/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 14.9361 - mae: 15.4313 - val_loss: 27.4836 - val_mae: 27.9836\n", - "Epoch 142/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 14.9442 - mae: 15.4325 - val_loss: 28.3182 - val_mae: 28.8182\n", - "Epoch 143/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.7955 - mae: 15.2919 - val_loss: 30.7510 - val_mae: 31.2491\n", - "Epoch 144/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 15.1375 - mae: 15.6374 - val_loss: 29.7002 - val_mae: 30.1981\n", - "Epoch 145/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.8991 - mae: 15.3927 - val_loss: 27.1630 - val_mae: 27.6513\n", - "Epoch 146/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.7542 - mae: 15.2471 - val_loss: 27.6312 - val_mae: 28.1167\n", - "Epoch 147/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.5373 - mae: 15.0353 - val_loss: 30.2205 - val_mae: 30.7103\n", - "Epoch 148/500\n", - "3/3 [==============================] - ETA: 0s - loss: 17.0996 - mae: 17.586 - 0s 10ms/step - loss: 14.9651 - mae: 15.4599 - val_loss: 29.5434 - val_mae: 30.0390\n", - "Epoch 149/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.9066 - mae: 15.4036 - val_loss: 28.7087 - val_mae: 29.1977\n", - "Epoch 150/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.6904 - mae: 15.1818 - val_loss: 26.7065 - val_mae: 27.2065\n", - "Epoch 151/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.5668 - mae: 15.0590 - val_loss: 26.9992 - val_mae: 27.4989\n", - "Epoch 152/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 14.2906 - mae: 14.7808 - val_loss: 28.6841 - val_mae: 29.1602\n", - "Epoch 153/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 14.5521 - mae: 15.0520 - val_loss: 28.3887 - val_mae: 28.8703\n", - "Epoch 154/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.5371 - mae: 15.0309 - val_loss: 26.9168 - val_mae: 27.4012\n", - "Epoch 155/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2325 - mae: 14.7125 - val_loss: 26.4789 - val_mae: 26.9789\n", - "Epoch 156/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2306 - mae: 14.7230 - val_loss: 26.2296 - val_mae: 26.7251\n", - "Epoch 157/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2055 - mae: 14.6994 - val_loss: 26.4162 - val_mae: 26.9162\n", - "Epoch 158/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.1233 - mae: 14.6037 - val_loss: 26.7106 - val_mae: 27.2050\n", - "Epoch 159/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.1513 - mae: 14.6509 - val_loss: 26.2702 - val_mae: 26.7702\n", - "Epoch 160/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.0933 - mae: 14.5728 - val_loss: 25.7251 - val_mae: 26.2251\n", - "Epoch 161/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2326 - mae: 14.7241 - val_loss: 25.9112 - val_mae: 26.4102\n", - "Epoch 162/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9938 - mae: 14.4826 - val_loss: 25.8764 - val_mae: 26.3760\n", - "Epoch 163/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9258 - mae: 14.4081 - val_loss: 25.7677 - val_mae: 26.2677\n", - "Epoch 164/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9365 - mae: 14.4278 - val_loss: 25.7941 - val_mae: 26.2941\n", - "Epoch 165/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.9082 - mae: 14.4004 - val_loss: 25.5379 - val_mae: 26.0379\n", - "Epoch 166/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.7699 - mae: 14.2561 - val_loss: 26.1703 - val_mae: 26.6693\n", - "Epoch 167/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2743 - mae: 14.7743 - val_loss: 27.4281 - val_mae: 27.9280\n", - "Epoch 168/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.8726 - mae: 14.3636 - val_loss: 25.3624 - val_mae: 25.8624\n", - "Epoch 169/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.6295 - mae: 14.1056 - val_loss: 24.9379 - val_mae: 25.4379\n", - "Epoch 170/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.8635 - mae: 14.3519 - val_loss: 25.2571 - val_mae: 25.7571\n", - "Epoch 171/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.6091 - mae: 14.1021 - val_loss: 25.7598 - val_mae: 26.2459\n", - "Epoch 172/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9167 - mae: 14.4151 - val_loss: 25.4713 - val_mae: 25.9483\n", - "Epoch 173/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.7429 - mae: 14.2412 - val_loss: 25.3295 - val_mae: 25.8043\n", - "Epoch 174/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.6755 - mae: 14.1702 - val_loss: 24.7941 - val_mae: 25.2941\n", - "Epoch 175/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4613 - mae: 13.9426 - val_loss: 25.0830 - val_mae: 25.5649\n", - "Epoch 176/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.5731 - mae: 14.0710 - val_loss: 25.5703 - val_mae: 26.0697\n", - "Epoch 177/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4171 - mae: 13.9110 - val_loss: 24.7032 - val_mae: 25.2032\n", - "Epoch 178/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.3789 - mae: 13.8668 - val_loss: 24.3128 - val_mae: 24.8128\n", - "Epoch 179/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.3512 - mae: 13.8412 - val_loss: 25.4260 - val_mae: 25.9260\n", - "Epoch 180/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.3688 - mae: 13.8645 - val_loss: 26.1222 - val_mae: 26.6222\n", - "Epoch 181/500\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 10ms/step - loss: 13.5694 - mae: 14.0694 - val_loss: 25.8322 - val_mae: 26.3154\n", - "Epoch 182/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.2000 - mae: 13.6992 - val_loss: 24.1472 - val_mae: 24.6472\n", - "Epoch 183/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4243 - mae: 13.9072 - val_loss: 23.8955 - val_mae: 24.3892\n", - "Epoch 184/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.0042 - mae: 13.5026 - val_loss: 25.4790 - val_mae: 25.9790\n", - "Epoch 185/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9159 - mae: 14.4128 - val_loss: 28.5987 - val_mae: 29.0987\n", - "Epoch 186/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.5712 - mae: 14.0610 - val_loss: 24.1575 - val_mae: 24.6534\n", - "Epoch 187/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.3716 - mae: 13.8569 - val_loss: 23.7050 - val_mae: 24.2049\n", - "Epoch 188/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.2427 - mae: 13.7220 - val_loss: 24.5271 - val_mae: 25.0270\n", - "Epoch 189/500\n", - "3/3 [==============================] - 0s 9ms/step - loss: 13.1849 - mae: 13.6804 - val_loss: 27.2852 - val_mae: 27.7852\n", - "Epoch 190/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4474 - mae: 13.9412 - val_loss: 24.7319 - val_mae: 25.2319\n", - "Epoch 191/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.8934 - mae: 13.3921 - val_loss: 23.4282 - val_mae: 23.9282\n", - "Epoch 192/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.8833 - mae: 13.3780 - val_loss: 23.4374 - val_mae: 23.9126\n", - "Epoch 193/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.8670 - mae: 13.3577 - val_loss: 24.2055 - val_mae: 24.6851\n", - "Epoch 194/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.9455 - mae: 13.4392 - val_loss: 23.8033 - val_mae: 24.3033\n", - "Epoch 195/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5873 - mae: 13.0811 - val_loss: 24.5168 - val_mae: 25.0168\n", - "Epoch 196/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.7155 - mae: 13.2154 - val_loss: 24.3160 - val_mae: 24.8159\n", - "Epoch 197/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.6164 - mae: 13.1046 - val_loss: 23.5825 - val_mae: 24.0824\n", - "Epoch 198/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5246 - mae: 13.0162 - val_loss: 23.2989 - val_mae: 23.7989\n", - "Epoch 199/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5449 - mae: 13.0365 - val_loss: 23.5102 - val_mae: 24.0057\n", - "Epoch 200/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5623 - mae: 13.0530 - val_loss: 23.5566 - val_mae: 24.0554\n", - "Epoch 201/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.3288 - mae: 12.8123 - val_loss: 22.8634 - val_mae: 23.3439\n", - "Epoch 202/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.6252 - mae: 13.1189 - val_loss: 22.9295 - val_mae: 23.4295\n", - "Epoch 203/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5140 - mae: 13.0104 - val_loss: 23.4423 - val_mae: 23.9394\n", - "Epoch 204/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 12.4381 - mae: 12.9298 - val_loss: 23.1390 - val_mae: 23.6390\n", - "Epoch 205/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.2462 - mae: 12.7399 - val_loss: 22.5807 - val_mae: 23.0807\n", - "Epoch 206/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.6462 - mae: 13.1349 - val_loss: 22.8647 - val_mae: 23.3647\n", - "Epoch 207/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.4039 - mae: 12.8931 - val_loss: 25.0346 - val_mae: 25.5346\n", - "Epoch 208/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5314 - mae: 13.0235 - val_loss: 23.3902 - val_mae: 23.8899\n", - "Epoch 209/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.1288 - mae: 12.6203 - val_loss: 22.2594 - val_mae: 22.7430\n", - "Epoch 210/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 12.7364 - mae: 13.2315 - val_loss: 22.4439 - val_mae: 22.9439\n", - "Epoch 211/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 12.1403 - mae: 12.6304 - val_loss: 24.4633 - val_mae: 24.9633\n", - "Epoch 212/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 12.3521 - mae: 12.8416 - val_loss: 23.1292 - val_mae: 23.6169\n", - "Epoch 213/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 11.7764 - mae: 12.2669 - val_loss: 22.1143 - val_mae: 22.6143\n", - "Epoch 214/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.4722 - mae: 12.9703 - val_loss: 22.0392 - val_mae: 22.5392\n", - "Epoch 215/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.3456 - mae: 12.8430 - val_loss: 23.6137 - val_mae: 24.1137\n", - "Epoch 216/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 12.2469 - mae: 12.7366 - val_loss: 23.5710 - val_mae: 24.0710\n", - "Epoch 217/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.2427 - mae: 12.7362 - val_loss: 22.2466 - val_mae: 22.7466\n", - "Epoch 218/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.9867 - mae: 12.4813 - val_loss: 22.4064 - val_mae: 22.9064\n", - "Epoch 219/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.7876 - mae: 12.2822 - val_loss: 22.6816 - val_mae: 23.1816\n", - "Epoch 220/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.6494 - mae: 12.1382 - val_loss: 23.2191 - val_mae: 23.7186\n", - "Epoch 221/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.8760 - mae: 12.3710 - val_loss: 22.5545 - val_mae: 23.0545\n", - "Epoch 222/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 11.5640 - mae: 12.0553 - val_loss: 22.1304 - val_mae: 22.6304\n", - "Epoch 223/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.7733 - mae: 12.2692 - val_loss: 22.0229 - val_mae: 22.5229\n", - "Epoch 224/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.7202 - mae: 12.2202 - val_loss: 22.4809 - val_mae: 22.9809\n", - "Epoch 225/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.6541 - mae: 12.1474 - val_loss: 22.6033 - val_mae: 23.0880\n", - "Epoch 226/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.3586 - mae: 11.8457 - val_loss: 21.8460 - val_mae: 22.3460\n", - "Epoch 227/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.9701 - mae: 12.4633 - val_loss: 21.6155 - val_mae: 22.1155\n", - "Epoch 228/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 11.7680 - mae: 12.2612 - val_loss: 22.4829 - val_mae: 22.9693\n", - "Epoch 229/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 11.4631 - mae: 11.9514 - val_loss: 22.2543 - val_mae: 22.7543\n", - "Epoch 230/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.4029 - mae: 11.8874 - val_loss: 22.1904 - val_mae: 22.6904\n", - "Epoch 231/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.3520 - mae: 11.8395 - val_loss: 21.7819 - val_mae: 22.2819\n", - "Epoch 232/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.4524 - mae: 11.9376 - val_loss: 22.1132 - val_mae: 22.6132\n", - "Epoch 233/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2629 - mae: 11.7553 - val_loss: 22.1095 - val_mae: 22.6095\n", - "Epoch 234/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2789 - mae: 11.7637 - val_loss: 22.0426 - val_mae: 22.5426\n", - "Epoch 235/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2404 - mae: 11.7320 - val_loss: 21.8242 - val_mae: 22.3242\n", - "Epoch 236/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2075 - mae: 11.6967 - val_loss: 22.0701 - val_mae: 22.5679\n", - "Epoch 237/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 11.2869 - mae: 11.7650 - val_loss: 22.1825 - val_mae: 22.6594\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "keras = tf.keras\n", - "\n", - "# Create Windowed Datasets\n", - "window_size = 20\n", - "train_set = window_dataset(x_train, window_size)\n", - "valid_set = window_dataset(x_valid, window_size)\n", - "\n", - "# Simple Dense Model Forecasting\n", - "model = keras.models.Sequential([\n", - " keras.layers.Dense(10, activation=\"relu\", input_shape=[window_size]),\n", - " keras.layers.Dense(10, activation=\"relu\"),\n", - " keras.layers.Dense(1)\n", - "])\n", - "\n", - "optimizer = keras.optimizers.SGD(lr=1e-5, momentum=0.9)\n", - "model.compile(loss=keras.losses.Huber(),\n", - " optimizer=optimizer,\n", - " metrics=[\"mae\"])\n", - "early_stopping = keras.callbacks.EarlyStopping(patience=10)\n", - "model.fit(train_set, epochs=500,\n", - " validation_data=valid_set,\n", - " callbacks=[early_stopping])" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXxV93nn8c+5ulrQhvYNhAQCIcQiFoGxsLENxmsSx0kdO4njNXHSOuk002mTzqSdTtq0adNkstvj1HbsJLazNN5is9hgMJuNJMwisQihBbTvK2i9Z/44ulgYLVfibpK+79fLryPO/Z17HrWRdJ/z+z3PzzBNExEREREREfFPNl8HICIiIiIiIqNT0iYiIiIiIuLHlLSJiIiIiIj4MSVtIiIiIiIifkxJm4iIiIiIiB9T0iYiIiIiIuLH7L4OACAuLs5MT0/3dRgiIiIiIiI+UVhY2GSaZvxIr/lF0paenk5BQYGvwxAREREREfEJwzAqR3tNyyNFRERERET8mJI2ERERERERP6akTURERERExI8paRMREREREfFjStpERERERET8mJI2ERERERERP6akTURERERExI8paRMREREREfFjStpERERERET8mJI2ERERERERP6akTURERERExI8paRMRERER8RctZTDQ6+soxM8oaRMRERER8Qed9fDTdfDs7dbXIkOUtImIiIiI+IOqQ+Doh5oj8ItNUFfk64jETyhpExERERHxAwPnDtFPIHs3/hpMBzxzK5Rs93VY4geUtImIiIiI+IHO0oMUOdJ46C3Yv+l3ELsQXrwPDv4cTNPX4YkPKWkTEREREfG1wQHCmo5TZCxiSXIEj/6xig82vwBZd8L2v4M3/jsM9vs6SvERJW0iIiIiIj5mNhQTZPbQl7SaXz68jqTIEB76TTElN/wMrvs6FDwDv7kHLrb5OlTxASVtIiIiIiI+VlO0F4DkZRuJCw/mV49eQ5DdxgPPFFCd+w246+dQsQ+e3mJtCyAzipI2EREREREfaztzkCYzknUrVwKQGhPK84+so7tvgC88/T4tmffAA69AdyP8YjNUHvRxxOJNStpERERERHwssvkI5cFLiIsIuXRuSXIk//lALlWtF3n4l/l0J6+HL+6E0Bh4/hNw5EUfRizepKRNRERERMSHGhrqSB2sYjAl94rXrlkQy08/u4rjVW38+W8O0zd7PnzxbZi3Hl75Cuz8J3A4fBC1eJOSNhERERERHzqRvxuAlGXXjfj6LUuT+NdPLefdkkb+x++P4giOgvv/CKsfhL3/AX94CPoueC9g8Tq7rwMQEREREZnJ2s4cwIFB6rINo465d+08mrv7+Pdtp4kND+IfPpaN8fEfQVwm7PgWtJ2Hz74IEUlejFy8RTNtIiIiIiI+0tM/SEzrURpD5mOEzB5z7J/fkMEjG+bz7P4Kfr77LBgG5H0V7nsBGk9bDUrqjnspcvEmJW0iIiIiIj5ysLSJ5ZTiSFkz7ljDMPjWnUv45MoUvrf9NC8dOme9kHUHPLINMOHpW+H0Vs8GLV6npE1ERERExEeOHCsk2ugiLmv0pZHD2WwG37snhxsy4/mfLx9ne3Gd9ULyCvjSLojPhBc/Cwd/7sGoxduUtImIiIiI+IBpmnSesfZbC0y7xuXrAgNsPHH/albMjeJrL37Ae2XN1gsRSfDQm5B1J2z/O23CPY0oaRMRERER8YGTtZ2k9ZykPyAU4hdP6NrQIDvPPrSWeTGhfOm5Ak7UdFgvBIXCDd+wvq4+7OaIxVeUtImIiIiI+MDOk/WsspVizlkNtoAJXx8dFsTzj6wjPMTOg88e4lzzUNv/+CwICIK6Y26OWHzFpaTNMIwowzD+YBjGKcMwThqGca1hGDGGYbxlGMaZoWP00FjDMIwfG4ZRahjGMcMwVnv2WxARERERmXr2njxPtu0cQRNYGvlRKVGzeP6RdfQPOvjCM+/T2NkL9iBIWAK1StqmC1dn2n4EbDNNMwvIAU4C3wR2mqa5CNg59G+A24FFQ/89Bjzh1ohFRERERKa4xs5eHDVHsDMIc3Kv6r0WJUbwzENraejo5aFnD9HZ0w9JK6D2KJimmyIWXxo3aTMMIxLYCDwNYJpmn2mabcBdwHNDw54DPjn09V3A86blPSDKMIxkt0cuIiIiIjJFvXO6gZVGqfWPuVeXtAGsnhfNz+9fzem6Th57vpD+hBVwsQU6qq/6vcX3XJlpWwA0As8ahvGBYRj/aRhGGJBommYtwNAxYWj8HOD8sOurhs5dxjCMxwzDKDAMo6CxsfGqvgkRERERkalk58l68oLLMKPSIDxh/AtccNPiBL53zwoOljXzw+IQ62TtUbe8t/iWK0mbHVgNPGGa5iqgmw+XQo7EGOHcFfOypmk+ZZpmrmmaufHx8S4FKyIiIiIy1fUODLL3TBOrA85iuGGWbbi7V83lb29bzDOlYZiGTXVt04QrSVsVUGWa5vtD//4DVhJX71z2OHRsGDY+ddj1c4Ea94QrIiIiIjK1vVfWQkRfI1H9DTB3rdvf/5EN8wmaFUFdYKpm2qaJcZM20zTrgPOGYTg3j9gMnABeAx4cOvcg8OrQ168BDwx1kVwPtDuXUYqIiIiIzHS7TtazLnBo42sPJG0hgQHcvWoOh3pScShpmxZc7R75NeA3hmEcA1YC/wJ8F9hiGMYZYMvQvwHeBMqAUuAXwF+4NWIRERERkSnKNE3ePtnAHTHV1l5qScs9cp/P5KZyfDANW2cNdDd55B7iPXZXBpmmeQQYacHt5hHGmsDjVxmXiIiIiMi0U1LfRXXbRdaklFpt+e3BHrlPdkokv4ldCh1g1h7FWHjFx3aZQlydaRMRERERkav09sl6AhgkvuOER5ZGDpezdiMAdacPefQ+4nlK2kREREREvGTXqQbuTGzFGLjolv3ZxnLb2iyqzHgaS5S0TXVK2kREREREvKC5q5fD51q5K26osbqHk7bIkEBaIpcQ2XaSi32DHr2XeJaSNhERERERL9h9uhHThNW2UgiLh6g0j98zOiOXdKOWHYfPePxe4jlK2kREREREvGDnqXoSI4OJaj0Gc3LBMDx+z7lLrgGg8NBej99LPEdJm4iIiIiIh/UNOHi3pIk7Fs7CaCrx+NJIJyNlJQC2+mOUNXZ55Z7ifkraREREREQ87FB5C129A3w8rtY64eHOkZdEJDEYGs9yWwW/K6jyzj3F7ZS0iYiIiIh42Nsn6wm221hungEMSFnltXsHpKxk3awq/lBYRf+gw2v3FfdR0iYiIiIi4kGmabLzVD0bFsYRWFsICUsgJNJ7ASSvYE7/OTq7OnnnVIP37ituo6RNRERERMSDShu6ON9ykU2L46G6wGv1bJck52AzB1gfVs9v8897997iFkraREREREQ8aOfQ7NYtyd1wsdXqHOlNSSsA+Oy8Nt453UB9R4937y9XTUmbiIiIiIgH7TxZT3ZyJAntx60T3mpC4hSdDsGzyQurxmHCHwrVkGSqUdImIiIiIuIhrd19FFa2cvOSBKjKh6AIiF/s3SAMA5JXENl6gmvmx/C7gvM4HKZ3Y5CroqRNRERERMRDdpc04DBh05JEK2mbswpsAd4PJGkF1Bfx2dxkKpsv8H55i/djkElT0iYiIiIi4iE7TzYQFx7MioRAqC/2/tJIp+QcGOjh9uQuIkLs/Db/nG/ikElR0iYiIiIi4gH9gw72lDSyKSseW90xcAz4MGmzmpEENxbzyZVz2FpUR/vFft/EIhOmpE1ERERExAPyK1ro7Blgs3NpJHi/c6RT7CKwh0DtUe5dm0rvgIPXjlT7JhaZMCVtIiIiIiIesPNkA0EBNq5bGGftzxaVBuHxvgkmwA6Jy6DuGMvmzCY7OZKXtGfblKGkTURERETEA3adauDajFjCgu1QVeC7pZFOySug9hiYJvetS6W4poOi6nbfxiQuUdImIiIiIuJmZxu7KG/qZvOSBOiogY5qmOujpZFOyTnQ2w6tFdyVM4cgu43fFWi2bSpQ0iYiIiIi4ma7TjYAsCkrwZplA9/PtCVZzUioO8bs0EDuWJbEyx9U09M/6Nu4ZFxK2kRERERE3Oztk/VkJUUwNzrUakISEARJy30bVEI22OxQexSAz6xNpbNngG1Fdb6NS8alpE1ERERExI3aL/RTUNlqLY0Ea6YtaQXYg30bWGAIxGdZdW3A+vmxzIsJ5SXt2eb3lLSJiIiIiLjR7pIGBh0mm7ISYXAAaj7w/dJIp6QVl2babDaDe9em8l5ZC5XN3T4OTMaipE1ERERExI12nWogNiyIlalR0FAMAxd934TEKTkHuhug01oS+enVc7EZqCGJn1PSJiIiIiLiJgODDnafbuTGxQkE2IwPN9X2m6RtqBnJ0Gxb0uwQblycwO8LqhgYdPgwMBmLkjYRERERETcprGyl/WI/N1+qZyuEsHhrY21/4GyGMlTXBnDv2lQaOnvZU9Loo6BkPEraRERERETcZOepBgIDDK7PjLdOVOVb9WyG4dvAnIIjICYD6o5eOrUpK4G48GBeytcSSX+lpE1ERERExE12nqxn/YJYwoPtcLEVms/AnDW+DutyyR82IwEIDLDx6TVz2HWqgYbOHh8GJqNR0iYiIiIi4gYVTd2cbexmc9bQ0sjqQuvoL50jnZJzoO2clVQO+UxuKoMOkz8ervZhYDIaJW0iIiIiIm6w81QDAJuXJFonqgoAA+as9l1QI0lyNiP5sK4tIz6ctenR/C7/PKZp+igwGY2SNhEREfG9plJorfB1FCJXZefJejITw0mNCbVOVOVDwhKrjsyfJOdYx7pjl52+d+08ypq6ya9oHeEi8SUlbSIiIuI73c3wp6/Dz9bC7x/ydTQik9bR08+h8hZrQ20A07Rm2vyl1f9wYXEQOeeymTaAO5YnER5s56X8cz4KTEajpE1ERES8b7Af3nsSfrIKCp8b6mZ3HPrVBEGmpndLGhlwmB+2+m8+Cz1t/lfP5pScc1kzEoDQIDufWJnCm8dr6ejp91FgMhIlbSIiIuJdZ9+BJ6+Dbd+AlNXw5wdg07fAMQANJ3wdncikvHWinujQQFbNi7ZOODfVnuOHM21g1bU1n4G+7stO35ubSk+/g9eP1vgoMBmJkjYRERHxjpZyeOnz8KtPwkAP3PcCfOFlSMiClJXWmNojvo1RZBJO1nbwp2O1fDwnhQDb0H5s1QUQFAHxi30b3GiSV4DpgPriy06vmDubrKQIfqs92/yKkjYRERHxrN4u2Plt+Nk11izb5n+Av3gfsu78cMPhqDQIibpiuZaIv3M4TL71ShGzZwXy9ZszP3yhKt/qGmkL8F1wY3E2I/nIz5xhGNy7NpVjVe2crO3wQWAyEpeSNsMwKgzDOG4YxhHDMAqGzv2jYRjVQ+eOGIZxx7Dxf2cYRqlhGKcNw7jVU8GLiIiIHzNNOPpb+Gku7P0+LL0bvlYA1/81BIZcPtYwrA+RNZppk6nlD4VVFFa28s3bs4gOC7JO9l2AuiL/bELiFDkHZsVc0UES4JMr5xAUYNNsmx+xT2DsTaZpNn3k3P81TfM/hp8wDCMbuA9YCqQAbxuGkWma5uDVhSoiIiJTRvVh2PoNqDoEKavgM89D6rqxr0nOgfefhIE+sAd5J06Rq9Da3ce/bj3J2vRo/mz13A9fqD0K5qD/NiGBDx+UjDC7HR0WxK3Lknj5g2q+eXsWIYF+Ols4g3hieeRdwEumafaaplkOlALj/JYWERGRaaGrAV59HH6xydp37a6fwRd3jZ+wgfUBcrAPGk96PEwRd/i3bafo6Bngnz65DJuzlg38vwmJU/IKaDhpPSj5iHtzU2m/2M+OE/U+CEw+ytWkzQR2GIZRaBjGY8POf9UwjGOGYTxjGMZQqxzmAMPnUquGzomIiMh0NdAHB34CP1ljLYnM+yp8rRBW3Q82Fz9upKyyjqprkymgsLKVl/LP88iGdLKSIi9/sSrfqtMMj/dNcK5KWjH0oOTUFS/lZcQyN3oWvy/QEkl/4GrStsE0zdXA7cDjhmFsBJ4AMoCVQC3w/aGxxgjXmx89YRjGY4ZhFBiGUdDY2DjxyEVERMTnTNOk58RWeOJa2PEtmHct/MV7cMs/Q0jk+G8wXPR8q9uekjbxcwODDr71ShFJkSH81fDmI07Vhf69NNIpeahr6wh1bTabwR3Lk3m/rIWLfapy8jWXkjbTNGuGjg3Ay8A60zTrTdMcNE3TAfyCD5dAVgGpwy6fC1yx0YNpmk+ZpplrmmZufLyfP4UQERGREb37ylOE/O4+Klsu8KOkf+FHid9hZ2ME9R09mOYVz2zHZrOpGYlMCc8frORkbQf/++PZhAV/pEVEezV0VE+NpC1mAQSFj/qg5NqMWPoGHRRWtno5MPmocRuRGIYRBthM0+wc+voW4NuGYSSbplk7NOxuoGjo69eAFwzD+AFWI5JFwCH3hy4iIiK+1NnTz4Wjr9JsxPCjzOc4WnOBsp0lOHO1uPBgls2JZFnKbJbNmc2yOZHMiZqFYYy0KGdIcg4UPA2DAxAwkX5pIt5R39HDD94q4YbMeG5blnTlgOoC6+jPnSOdbDZIWg61V860AaxLj8FuM9h/tonrFsV5OTgZzpXfhonAy0O/YO3AC6ZpbjMM41eGYazEWvpYAXwZwDTNYsMwfgecAAaAx9U5UkREZPr5xbtlfN4sxpaxkR981lpw0907wMnaDoqq2zle3UFxTTt7zzQx6LAyuajQQJalzGbpsGQuLSb0wyYOKSutjbebTkPiUl99ayKj+qc/naBv0MH/+cTSkR9AVBVAQJCVDE0FSSvgg1+Dw3FF/WlYsJ2VqVEcONvso+DEadykzTTNMiBnhPNfGOOa7wDfubrQRERExF81dfXy1r79/HdbGyzZdOl8WLCd3PQYctNjLp3r6R/kVF0nRdXtFNe0U1TdwbP7KugbdAAQHmwnOyWSRzakc9vwDX+VtImf2XumkT8dq+XrN2eSHhc28qCqAmvG2B7s3eAmKzkHDv0/aDkLcYuueDkvI5afvlNKR08/kSGBPghQYGL7tImIiIgA8NNdpax2FFvV8enXjTk2JDCAlalRrEyNunSub8DBmYZOiqs7KKpp553TDXzzj8fZ/Hc3ERgYZtW1rfych78LEdf19A/yD68Wkx4bypdvWDDyoMF+qPkA1jzk1diuSvIK61h7dOSkbWEcP95VyqGyFm7OTvRycOLkiX3aREREZBo733KBF94/xz1xlRCeCLELJ/weQXYbS1Nm85m1qXz7rmV8685s2i70835F+1CNjTpIin956t0yypu6+fZdy0bfbLrhBAxcnBr1bE7xWdZyzlF+5lbNiyLYbmP/2SYvBybDKWkTERGRCfnh22cwDJPl/cetWbaxGou46IbMeEKDAthaVGst16o7Bg6VxIt/qGzu5qfvlHLnimQ2Zo7R9dy5qfZU6BzpFBAICdkjtv0HCLYHsDY9hoOqa/MpJW0iIiListN1nfzxgyq+vjqAgO66cZdGuiokMICbshLYXlyHIzkH+i9Ac6lb3lvkapimyT++VkygzeDv78wee3BVAYTFQ9Q87wTnLskrrA6So2zTcW1GLKfqOmnq6vVyYOKkpE1ERERc9h87ThMebOeB5CrrRJp7kjaA25cl0dTVR5Ej3Tqh/drED2wvruOd0418fUsmSbNDxh5cVWDNsrlh9tmrknPgYgu0V4348oaFVrt/zbb5jpI2ERERcUlhZStvnajnKzdkEFrzHoQljNi4YLJuWpxAsN3GK1XhYA9RXZv4XHfvAP/n9RNkJUXwUF762IMvtEDzmalVz+aUNNS1dZQlkstSIokItqv1vw8paRMREZFxmabJv207RVx4MA/npUHFPrfVszmFBdu5ITOeN4obMROXKWkTn/vxzjPUtvfwnbuXYQ8Y52Nz9WHrOGcKJm2JS8GwjfozZw+wcc2CGA6qGYnPKGkTERGRce0paeRQeQv/bfNCQrvOQWcNpG9w+33uWJ5MfUcvjRFLrA+QDofb7yHiitN1nTy9r5x7c1NZkxYz/gVV+YABc1Z7PDa3CwqFuEyrrm0UeRlxVDRfoLrtohcDEyclbSIiIjImh8Pk37edZl5MKPeunQeV+60X0q93+702LUkgMMDg0MW50NcJreVuv4fIeEzT5FuvHCc8xM43bs9y7aKqfKsLY3CEZ4PzlKQVY85u5y2MBeBAqWbbfEFJm4iIiIzpT8drOVHbwV/fkkmQ3WYtjQyLt57Mu1lkSCDXL4rnD7VDbdVrPnD7PUTG81+Hq8mvaOXvbs8iJixo/Av6LlgPM+a7/0GG1yTnWDPo3SMnZZkJEcSGBakZiY8oaRMREZFR9Q86+P6O02QlRfDxFSlWS3AP1LMNd9uyJPZ3xOGwjb7hr4intF3o41/fPMnqeVHcsybVtYvKdsNAD2Te5tHYPCp5hXUc5WfOZjNYnxHLgbPNmKNsDSCeo6RNRERERvXb/PNUNl/gG7dlYbMZ0FoBHdWQ5v56NqdbshMxbYHUz8qAWrX9F+/69+2nab3Qxz9/crn1v3lXlGyF4EiP/lx4XNLYSRvAhow46jp6KGvq9lJQ4qSkTUREREZ0sW+QH+08w7r0GG5cPLRcsWKfdfRAPZtTVGgQ12bEkt+bill7dNQNf0Xc7YNzrbx46BwP5c0nOyXStYscDijZDhmbwO7CUkp/NSsKotJGbfsPkJcxVNemJZJep6RNRERERvTsgXIaO3v529sWYziXQlbsg9A4iF/s0XvfviyZ9y6mYvS0W7N7Ih426DD51itFJEQE8/UtE9h/sPYD6KqHxbd7LjhvSR67GUlabCgps0PU+t8HlLSJiIjIFdov9PPk7rPcvCSB3PShdudeqGdzumVpIsXmfOsfqmsTL/jVwQqKazr4+49lExES6PqFJdutPc4WbvFYbF6TnAMtZdDTMeLLhmGQtzCOg2ebcTg0A+5NStpERETkCk/sOUtn7wD/49ZhM2ptldBRZSVtHhYXHkxk2goGCFDSJh7X0NHD93eUcP2iOO5cnjyxi09vhbnrICzWM8F5U1KOdawvGnVIXkYsrRf6OVk3cmInnqGkTURERC5T197Ds/vLuXvlHLKShtX1XKpn83zSBrBlRRqnHXPpriz0yv1k5vrOmyfpHXDw7buWfbgU2BXt1VYN2OIp3DVyuOShpG2s/doy4gDU+t/LlLSJiIjIZX686wwO0+TrWz6yD1vFPgiNhXgXNxu+SrcuTaLIMR+bmpGIB71X1syrR2r4yo0ZzI8Lm9jFJdusY+Y0qGcDiEiE8ESoHb0ZSdLsEBbEh6kZiZcpaRMREZFLypu6+W3+eT5/TRqpMaGXv1ix32pp7uF6NqfEyBA6opcya6AN2qu8ck+ZeV4/WkNEsJ2/uDFj4heXbIPodI835vGqpLGbkYC1RPL9smb6Bx1eCkqUtImIiMgl399xmmC7jcdvWnj5C62V0H7Oo63+R5KweB0ADSXve/W+MnMUVLSyOi2akMCAiV3Y1w1le6xZNi89yPCK5BxoPAX9PaMOycuIo7tvkGNV7V4MbGZT0iYiIiIAFFW386djtXzxuvnERwRf/qKX69mcctdvZMC0ca74oFfvKzND+4V+Ttd3sjY9euIXl+2Gwd7pU8/mlLwCzEFoODHqkPULrKYrav3vPUraREREBIB/336a6NBAvrhxwZUvermezWlOXAxV9lTMmiNeva/MDIXnWgA+3NZiIk5vheBImJfn5qh8zIVmJDFhQWQnR6quzYuUtImIiAgHzjbxbkkjj9+0kMiR9qiq3AdpeWDz/keH3vjlpPedoaql2+v3luntUHkrgQEGOXOjJnahwwFndkDGJrAHeSY4X4lKg5DZVlfMMeRlxFJQ2UpP/6CXApvZlLSJiIjMcKZp8u/bTpM8O4T716ddOaC1Etq8X8/mFJ+5jnijnXcPH/fJ/WX6KqhoYdmc2cwKmmA9W+0H0FUPi6dJ18jhDMO1ZiQLY+kbcHC4stVLgc1sStpERERmuB0n6jlyvo2v35w5cjOGyv3W0cv1bE4xGVYzksqiAz65v0xPPf1WI421k1oauQ0MGyy6xf2B+YPkHKgvhsGBUYesmx9LgM3QEkkvUdImIiIygw06TL63/TQZ8WF8avWckQdV7IdZ0RC/xLvBOSUtx8QgpLGIuvbRO9qJTMTx6nb6Bh3kpk2iCUnJVki9BkInkfBNBUkrYKAHmkpGHRIebCdn7mz2qxmJVyhpExERmcH+eLiK0oYu/ubWxdgDRvlYULHX2p/NB/VsAASH0x+VwTJbBduL63wTg0w7+RVWE5I1E03a2qug7jhkTrOukcM5m5GMW9cWx7Gqdjp7+r0Q1MympE1ERGSG6ukf5IdvnyFn7mxuXZo08qC2c9BW6bN6Nqeg1NWstFfw5vFan8Yh00dBRSsZ8WHEhgePP3i4km3WcTrWsznFLQL7LKgdJ2lbGMugw7yUAIvnKGkTERGZoX7z/jmq2y7yjduyMEbbHLjCt/VslyTnEG82U1ZRTmNnr29jkSnP4TApqGiZfD1b9HyIy3R/YP7CFgBJy8ZtRrJ6XjRBdhsHSlXX5mlK2kRERGag7t4BfvZOKdcviiNvYdzoAyv3WfVsCdneC24kKSsBWGqUs+OElkjK1TnT0EVHz8DE92fr64byd61ZttEedEwXSSus5ZEOx6hDQgIDyE2LZr+akXickjYRmXEaOnqobrvo6zBEfOoPhVW0dPfxVzePM1tQsc+39WxOScsBuC68mq3HlbTJ1XEu51ubPsF6trLdMNgLmbe6Pyh/k7wCejugrWLMYXkZsZys7aClu887cc1QStpEZEYZdJjc94v3uP7fdvEXvynkg3PaX0ZmHofD5Nn95ayaFzV2E4b2Kmit8P3SSLA2+43JYGNYNQfLmmnVB0S5CgUVLcRHBDMvJnRiF57eCsGRMC/PM4H5E2czknHr2qyZ+vfKNNvmSUraRGRGeetEPWWN3WzJTmTfmSbu/vkB7nnyADuK63A4TF+HJ+IVu041UNF8gUevmz/2QH+pZ3NKziG9v5RBh8lbJ+p9HY1MYfkVraxNjx69lnMkDgeUbIeFm8Ee5Lng/PKtIxcAACAASURBVEVCNtjs43aQXDFnNuHBdvaXqvW/JylpE5EZ5Rd7y5gbPYuffW41B/5uM//wsWxq2np47FeF3PyDPfzm/Up6+gd9HaaIRz29r5yU2SHcNlrHSKeKvRASBQlLvRPYeJJzCOqqIjuqn61F6iIpk1PTdpHqtovkpk2wnq3mA+hugMxp3DVyOHuwtTdjzZGxhwXYWDc/hoOqa/MoJW0iMmMUVrZQWNnKF6+bjz3ARniwnUeum8+ev7mRn3x2FWHBdv7Xy0XkfXcXP3y7hOYudaiT6ae4pp2DZc08mJc++r5sTv5Sz+Y01Izk/nlt7Cttov2i9oaSiSuotJbFT7hzZMlWMGywaIsHovJTaXnW74ELY7f0z8uIpaypm9p21Yt7ip/8FhYR8bz/t6eMqNBAPrM29bLz9gAbH89J4bWvbuClx9azKjWKH759hrzv7uJbrxynvKnbRxGLuN8z+yoIDQrgvnXzxh7YXg2t5f6zNBKsbnbADRHV9A+a7DqlJZIycQUVLYQFBbAkOWJiF57eBqnrIXQS2wRMVasfsBqvHH1xzGF5GVZdm2bbPEdJm4jMCGWNXbx1sp4vrE8jNMg+4hjDMFi/IJanH1rL2/99I3evmsPv8qvY9P3dfPlXBRRWDnvSWHsMfvUpqCr00ncgcvUaOnt4/WgN96yZy+xZgWMPrnTWs23wfGCuCo2BqDRSLpaQFBnCm+oiKZOQX9HK6rTo8Weah2s7D/XHYfFtngvMHyUtg7lroeBZMEev+85KiiA6NJD92q/NY5S0iciM8J/7ygkMsPHAtekujV+YEMF3P72Cfd+8ia/etJD3y1v49BMH+dTP9nHilf/A/M/NcHYnFP2XZwMXcaNfv3eOfoeDhzaM04AEhurZZkPiMs8HNhHJORi1R7ltWRJ7Shrp6h3wdUQyhXT09HOqrmPi9Wwl26zjTKlnG27Nw9B85sMHOSOw2QyuzYjl4NkmzDGSO5k8l5I2wzAqDMM4bhjGEcMwCobOxRiG8ZZhGGeGjtFD5w3DMH5sGEapYRjHDMNY7clvQERkPE1dvfyhsIpPr55DfETwhK5NiAjhr29ZzIFvbuK7d6TyVy3/RPaRf+IgK2gLz8AxTlctEX/R0z/Ib96rZHNWAvPjwsa/4FI9W4Dng5uIlJXQWs7HMkPpG3DwzqkGX0ckU8jhylZMcxL7s5Vsh+j5ELfIM4H5s6V3Q/Bsa7ZtDHkZcdS091DZfMFLgc0sE5lpu8k0zZWmaeYO/fubwE7TNBcBO4f+DXA7sGjov8eAJ9wVrIjIZDx/oIL+QQdfvH7BpN8jtP4D7iv8PNebBZxc/g2+F/2PvNmWRm/V0TGXjIj4i9eO1NDc3ccj47X5B+iogZYy/6pncxraO2pV4DniwoPVRVImpKCilQCbwcp5Ua5f1NcN5e/C4tthIlsETBdBoZBzH5x8DbpHX/6YlxELwP6zav3vCVezPPIu4Lmhr58DPjns/POm5T0gyjCM5Ku4j4jIpF3oG+D59yq5eUkiGfHhE38DhwP2/RCevQ0MA+ORHSz59P/kj49fh5G8nFkDHXTUV7g9bhF3Mk2TZ/aXk5UUwbULYse/wLk/W5of1bM5JVsdJAPqjnLbskTeOdXIxT5t0yGuya9oYVlK5Ki1zSM6+47VjCNzhtWzDZf7MAz2wZHfjDpkflwYSZEhHFAzEo9wNWkzgR2GYRQahvHY0LlE0zRrAYaOCUPn5wDnh11bNXRORMTr/lBYRduFfh7bOIlZtu4meOEeePt/Q9ad8OV3Ye4awGpacm3eTQDs3vO2O0MWcbv9pc2cquvk0evmu7aZcMVeazlU0nLPBzdRYXEQORdqj3L7smQu9g+yp0RLJGV8fQMOjpxvI3cyrf6DZ1vt72eqhCVW58zCX466usQwDPIWxvLe2WYcDq1AcTdXk7YNpmmuxlr6+LhhGBvHGDvSX4Mr/j9nGMZjhmEUGIZR0NjY6GIYIiKuG3SY/OfeclbNiyI3bYL1C+V74YkN1vHOH8A9z8Gsy5fTpGevxYHBuZOH6OzRflHiv57ZX05ceBCfWJni2gUV+6wPqP5Wz+aUnAO1R7hmfgzRoYFsLVIXSRlfUU07vQOOidWzORxQsgMWboaAcTquTne5D0PLWWup6CjyMuJo7u6jpKHTi4HNDC4lbaZp1gwdG4CXgXVAvXPZ49DR+ZirChi+CdJcoGaE93zKNM1c0zRz4+PjJ/8diIiMYltRHedaLvDljQtcm10AcAzCO/8Kz38CgiPgSzth7aMj1zEEh9M/ez4Zg+U8f7DSvcGLuMnZxi52nWrg/vVpBNtdSMI6aq0PZv7U6v+jUlZCcyn2/i5uyU5i58kGege0RFLGll9ubduyZiKdI2sOQ3eDVc8202XfBSFRUDh6Q5JLdW1q/e924yZthmGEGYYR4fwauAUoAl4DHhwa9iDw6tDXrwEPDHWRXA+0O5dRioh4i2maPPXuWdJjQ9mSneTaRR018NwnYM93YcV98NjucZeHBc/NYU1wFf+5t4xutR4XP/Ts/nKC7DbuX5/m2gWX9mfzwyYkTkPNSKg7zu3Lk+jqHWDfGTU/kLHlV7QyPy5sYl2ET28FIwAW3uy5wKaKwFmw8nNw8k/QNfIquZSoWcyPC+OgmpG4nSszbYnAPsMwjgKHgDdM09wGfBfYYhjGGWDL0L8B3gTKgFLgF8BfuD1qEZFxHCpv4WhVO49ev4AAmwuzbGfegievg5oP4JNPwt1PQLALjUuSlpMwUMvAhXZ+/Z5m28S/tF3o478Kq/nkyhTiwl38oFqxF4IjIWmFZ4O7GkPNSKg9Sl5GHBEhdm20LWNyOEwKK1smvlS+ZDvMW29t7C6w5iFw9MORX4865NqMWN4va2Fg0OG9uGaAcZM20zTLTNPMGfpvqWma3xk632ya5mbTNBcNHVuGzpumaT5ummaGaZrLTdMs8PQ3ISLyUU+9W0ZMWBD3rJk79sDBftjx9/CbP4OIZGt2beVnXb/R0Afbz8xr5xd7y9TFTvzKi4fOc7F/0LU2/04V+/27ng0gIhHCk6D2CEF2G1uyE3nrRB19A/qQKCMra+qi9UI/ayfShKTtPNQfh8xbPRfYVBO/2OoqW/hLq95vBHkZsXT2DnC8ut27sU1zV9PyX0TEL52p72TnqQYeuDaNkMAxPni2VsIzt8GBH0Puo/DFtyE+c2I3S1wGwAPzO2jq6uPFQ+euInIR9+kfdPDcgQo2LIwlKynStYs666D5jH+2+v+olJVQexSA25cl09EzwMEy1dHIyPIrWgHInUgTkpJt1jFT9WyXyX0EWiugfPeILzu3FVHrf/dS0iYi084v9pYRbLfxwLXpow868So8eT00lVidIT/2A2u9/kRFJEFoHGl9Z1m/IIYn95ylp1+zbeJ7W4vqqOvo4dEJzbLts47+XM/mlJxj/fz2dXP9ojjCggLYpo22ZRT5FS3EhgUxPy7M9YtKtkHMAohb5LnApqIlH4fQWCgYuSFJbHgwWUkRHFTS5lZK2kRkWmno6OGVD2q4J3cuMWFBIw/a8z343QMQtxC+sheWfnLyNzQMq1lJ3XH+ctMiGjp7+X3B+fGvE/Eg0zR5el85C+LCuDEzYfwLnCr2+X89m1PySjAdUFdESGAAm5Yksr24XnU0MqKCilZy06Nd7yTc22W1ts+8feTuwTOZPdhqSHLqDWt2fgR5GXHkV7Soq6sbKWkTkWnllwcq6Hc4+OJ1o2ym3X8R9v8QFt8BD2+D6PSrv2nScmg4ybXpkeSmRfPE7rOqrRGfOnyulaPn23h4Qzo2VxrxOFXut5ouBNg9F5y7ODtIDi2RvGNZEi3dfRwaausu4lTf0cO5lgsTq2crewcG+2DxbZ4LbCpb8zCYg/DBr0Z8OS8jlt4BB4cr27wc2PSlpE1Epo2u3gF+/V4lty1NIn20JTClb0NfF6x7DOyjzMRNVNIKGOzDaD7D1zYvoqa9h/86XOWe9xaZhKf3lRMZYufT4zXiGa6z3lpuOBWWRgJEpkBYPNQeAeCGxfGEBNq00bZcoeBSPdsEkrbT2yB4Nsy71kNRTXGxGTB/IxQ+b+1v+hHXLIghwGao9b8bKWkTkWnjt/nn6egZ4EsbR5llAyj6I4TGQfr17ruxcy+3uuNsXBRHztzZ/Hx3Kf1apiU+UNV6gW1FdXz2mnmEBk1gxqxyCtWzgbVkLTnn0kxbaJCdmxYnsK24DofD9HFw4k/yK1oICbSxNMXFhjwOB5zZDotuhoBAzwY3la15GNrPwdldV7wUERLI8jmz1YzEjZS0ici0MDDo4Jl95axNj2b1vFG6g/VdsArLsz/h3uVfsQvBHgJ1xzEMg7/cvIjzLRd59UiN++4h4qLnDlRgGAYPjtWIZyQV+yEoApJyPBKXRyTnQMNJa9kzcPvyZBo7eyk81+rjwMSfFFS2sCo1msAAFz/21hyG7kZ1jRxP1ses2e5RGpLkZcRy5Hwb3b0DXg5selLSJiLTwhvHa6luu8hjGzNGH3RmO/RfgKWfcu/NA+yQkA11xwDYlJXA0pRIfvZOKYN64i9e1NU7wEuHznPH8mRSoibYDbVi39SpZ3NKXmnV1dSfAKyfvaAAG9u0RFKGdPUOcKKmg7UTafV/eisYAbBws+cCmw7sQbDy89bD0I4rH1LmZcQx4DA5VKE6U3dQ0iYiU55pmjz1bhkL4sPYnDVGp7zilyEswdo42N2GOkhimhiGwdc2LaS8qZs/HdNsm3jPHwrO09k7wCMb0id2YVcDNJ2eOksjnS41I/kAgPBgO3kLY3nrRD2mqQcmAh+ca8VhTrCerWSb9QAjdALXzFRrHrQenBy+siFJbno0QQE2tf53EyVtIjLlHTjbTHFNB1+6fsHonfJ6u6BkB2TfBbYxNtyerKTlcLEVOqoBuCU7icWJEfxkV6nqa8QrBh0mzx6oYPW8KFaNtkR4NJf2Z3Njrac3RM2DWdGX6toAtmQncq7lAiX1XT4MTPxFfkUrNgNWp7n4M9F2DuqLIFNdI10SswAW3ASHr2xIEhIYwOq0KA6oGYlbKGkTkSnvqXfLiAsP5u5Vc0YfVLINBi7CMjcvjXRy7mtVdxwAm83gq5sWUtrQpW524hU7T9ZT2XyBR0fb7mIslfshKPzDmaupwtmMpObIpVM3L0kE4K0T+rkTKKhoITslkvBgF5f9lmy3jotVz+ay3IehowrOvHXFS3kZcRTXdNB2oc8HgU0vStpEZEo7VdfBnpJGHspLIyRwjBm04pchIhlS13smkMRswLiUtAHcsTyZjPgwfrLrjGbbxOOe2V/OnKhZ3Lo0ceIXT8V6NqfklVYzkoFeABIjQ8hJjeKtE/U+Dkx8rX/QwQfn2shNm0ir/60QkwFxizwX2HSz+A4IT4TCKxuSbFgYi2nCe2VaInm1lLSJyJT21LtlzAoM4P71aaMP6umwngBmfxJsHvq1FxxhLRMZakYCEDA023aqrpO3TuoDpHhOcU0775W18GBeGnZXO+Q5dTVC46mpV8/mlJwDjn4rcRtyS3YiR6vaqWvv8WFg4msnajq42D/o+qbavZ1QsVezbBMVEAir7oczO6D98j1KV8yNIjQoQK3/3UBJm4hMWbXtF3ntSA33rk0lKnSMjbJPb4XBXlh6t2cDcjYjGebjK1JIiw3lJ7vOqDGCeMzT+8oJDQrg3rXzJn5x5X7rONXq2ZxSVlrH2g+XSG7JHloiqYclM1r+UNfCXFc7R559Bwb7VM82GasfBNO0atuGCQywsW5+DPtLVdd2tZS0iciU9cv9FThMk0evmz/2wOKXIXIuzF3r2YCSlkNrhTWzN8QeYOPxmxZSVN3B7tONnr2/zEgNnT28frSGz+SmMnvWJDYCrtgHgWFTr57NKXo+BM++rBnJooRw0mNDtURyhiuoaGVeTCiJkSGuXVCyHUJmW0uFZWKi06wtEg4/D4OX78u2ISOOs43d1Hdo5vtqKGkTkSmps6efF94/xx3Lk0mNCR194MU2KH0blnpwaaSTsxlJffFlp+9eNYe50bP40U7Nton7/fpgJQMOk4fy0if3Bpfq2SaR8PkDw4DkFZc1IzEMgy3ZiRw820RnT78PgxNfMU2TgsoW12fZHA5rL8+FN0/dnwVfW/MwdNZa/3cc5tqMWAB1kbxKStpEZEp68dA5OnsHeGzjOJ3yTr9p1bu4e0PtkSQtt44fWSIZGGDjz2/M4Mj5NvZpiYi4UU//IL9+/xybsxJJjwub+Bt0N0Hjyalbz+aUnGM9LBn8MEHbkp1E/6DJnhLNcM9EFc0XaOrqc72erboQuhshU/Vsk5Z5m9Xwq+DyhiTZyZHERwTzxrFaHwU2PShpE5Epp2/AwTP7Kli/IIYVc6PGHlz0R2svpzmrPR9YRBKExl3WjMTpz9bMJXl2CD/WbJu40atHqmnp7ht/ifBopno9m1PySqtutfHUpVNr0qKJCQvSEskZKr/cqmdb6+pMW8lWMAJg0c0ejGqaC7DDqi9Yq1taKy+dttkM7lkzl12nGqhpu+jDAKc2JW0iMuX86VgNdR09fHljxtgDL7RA2TtWAxJjlE233ckwIGnZFTNtAMH2AL5yQwb5Fa28V9bi+Vhk2jNNk6f3lbMkOZL1CybQ0nw4Zz2bs5nHVHWpGcmHdW0BNoNNWQm8c6qB/kGHjwITX8mvaCE6NJCM+HDXLji9DeZda23WLpO3+gHrb+Hh5y47/dl18zCB3+af901c04CSNhGZUkzT5Kl3y8hMDOfGxfFjDz71J3AMeL5r5HBJy63W44NX1tHcuzaV+IhgfrLrjPfikWlrX2kTJfVdPHrdfIzJPpSo2Afzrpn6NTwxGdbm4MPq2sDqItnRM8Chcj0omWkKKltZkxbj2s9G2zloKIbF6hp51aJSYeEW+ODXl/0dTI0J5fpF8fw2/zwDeogyKUraRGRKefdME6fqOvnS9QvG/2Nc/LLVWS7Zi7MISSusZVpNVyZmIYEBfHnjAg6cbaagQh8i5eo8va+cuPBgPp6TPLk36GqAhhOQtsG9gfmCzWb97A2baQO4flEcwXablkjOMI2dvZQ3dbu2NLK9GrZ+w/pa9WzukfswdNVbNeXDfG7dPOo6enhHnZQnRUmbiEwpT717loSIYD6xMmXsgd1NULbHe0sjnUZpRuL0+WvSiA0L4se7Sr0Xk0w7pQ1d7D7dyBfWpxFsD5jcmxT90Tpm3em+wHwpOcf6uRvWbjw0yM71i+J460S9aklnkMJK5/5sYywb7u+BPd+Dn+ZC6U7Y/A8Qt9BLEU5zC7dA5JwrGpJsXpJAQkQwL7xfOcqFMhYlbSIyZRRVt7O/tJmHN8wf/4PqydfBHIRlXugaOVzsIggIHrEZCcCsoAC+tHEB75Y0cuR8m3djk2nj2f3lBNltfH79JDbTdjr6ojU7lbDEfYH5UspKGLgIzZfPcm/JTqS67SInajtGuVCmm/yKVoLtNpbNibzyRdOEE6/Bz9bCO/9s7S321UNw/V97P9DpKsBubbZd9g60lF06HRhg4961qewuaaSq9YIPA5yalLSJyJTxo51niAi287lrXPigWvwyxC6ExGWeD2y4ADskZo860wZw//o0okID+alq22QSegcGee1IDR9bkUxcePDk3qTxNNQegZz73BucLzk3B//IEslNWYkYBloiOYMUVLSQkxp15cO9+hPw/Cfgd1+waiAfeA3u/TVEp/skzmlt9ResbpyFlzckuXdtKqCGJJOhpG0mGOizimzPvW/tQyIyBRVWtvLWiXoe27iA2bPGaZrQ1QAVe6292by5NNIpabmVtI2yHCs82M6jG+bz9skGiqrbvRycTHX7S5vo7B3g4yvGWSI8lqMvWR+olv2Z+wLztbhMsM+6ohlJfEQwq+dFK2mbIS70DVBU03F5PduFFnjjf8CTG6D2GNzxH/DlvbDgBt8FOt1Fplj7th35jfU5dMjc6FBuWpzAb/PPq6vrBNl9HYBcBdOEnnZr9/mOmqFjLXTWXH7sbgScHx4N+MsPIGaSe/qI+IBpmvzbtlPEhQfziCv7UZ18DUyHd7tGDpe0Ag4/b/1czp4z4pAHN6Tz1N4yfrqrlCe/sMbLAcpU9saxOiJC7GxYGDe5N3A44PjvIWMTRCS6NzhfsgVYD0w+MtMG1hLJ7249RXXbReZEzfJBcOItR861MegwrXq2wQEofBbe+Y71eSn3Ebjpf0HoJLfIkInJfRhOv2F1ch5WqvC5dfP44vMF7DzZwG3LknwY4NSipG0qME2aDv2e6PYiAjprL0/S+kdYEzwrxnrCEZFsLReJSIHIZLCHwMtfhpJtsP7Pvf99iEzS7pJGDpW38O27lhIW7MKvraKXIW6x72p1hjcjGSVpiwwJ5OEN8/nxzjOcqusgK2mE2guRj+gbcPDWiTq2ZCcSZJ/kYpnK/dB+Hm7+R3eG5h+Sc6xaPYfD6ig5xJm0vX2ingfz0n0Xn3hcfkUrhgFrKYanvgX1Rdbm8bd919pHU7wnYxPMnmclzsOSthsXx5M8O4QXDp1T0jYBStqmgNMHX2fxji/Rjx1HRDKBUXMgeYU17RyZbCVnziQtIhkCQ0Z/s70/UNImU4rDYfLv204zLyaU+9a6UMvWWWd9KL3xm75ZGgmQuNQ61h0fc9+fRzak8/TQbNtPP7faS8HJVLb/bBMdPQPcuXySbf4Bjr0EQRGw+A73BeYvUlZC/i+g5SzELbp0OiM+nAXxYbylpG3aKz97kufDnyT8xf1WwvCZ52HJJ3z392AmswXAmgdg1z9D81mIzQDAPtSQ5Idvn+Fc8wXmxYb6ONCpQTVtfs7hMOl450c0M5vrjOdY1vo9fpn1JI5PPwu3/QvkfQ2W/xmk5VlLHsdK2AAyb4WK/dCjLloyNbx+rIaTtR389S2Zrs0snHgVMH23NBIgOAJiFozaQdIpKjSIB/LSeeN4LdVtF70UnExlbx6rJSLYznWLJrk0sv8iFL8K2Z+AoGn4QcnZjOQjdW1gzba9V9ZM+8UrN76XaaDvAo6d/8x3ax7hmoECaxnkVw9B9l1K2Hxp1RfAZrdm24a5d20qNgNezD/no8CmHiVtfm7Hu++ytr+Axqz7ef3rN5OXEcs/vn6CB589RF17z8TfcPHt4OiHszvdH6yIm/UNOPj+jhKWJEe63nSh+GVIWArxiz0b3HiczUjG8enVczBN2KPNRmUc/YMOdpyo5+bsxMnvzXbqDejrhBX3ujc4fxGfBcGRULb7ipduyU5kwGGy+3SD9+MSzzFNOP4H+Gkutr3fY4cjl923bIUb/hYCVb/ocxFJ1mfPIy/AQO+l08mzZ7EpK5HfF5ynb0ANSVyhpM2PdfUO0PXuz+gjkMUf+ysSIkN45qG1fOfuZRRUtHLL/93Dq0eqJ/amc9fBrGg4vc0zQYu40W/zz3Gu5QJ/e9tibDYXnpS2V8O5g76dZXNKWg6t5ePOamfEhzMnahZ7SvRBUsZ24Kw1S3T71dSAHPuttelt+vXuC8yfBARam4Wfev2yjnUAK1OjiQsPYoe6SE4ffd3w3Mfhvx6F0FjezH2Gv+z/Gsuzs30dmQy35mG40GztnzrM56+ZR1NXnzq7ukhJmx97+q1C7hjcTWfm3RjhCQAYhsHnr0lj63+7noUJ4fy3l47w1RcO03ahb5x3GxJgh0W3wJkd4Bj0YPQiV6e7d4Af7Sxl3fwYbsyMd+2iE69aR79I2lZYx/riMYcZhsHGzHj2lzar/bGMaevxWsKCAtjo6s/DR3U1QOlOWH7PZU06pp2ln7I6BZa9c9npAJvB5qxE9pxupHdAf/+mhcPPW9u73P49eGw3b7TPZ07ULJJna4bNryy4CcKTrJn+YTZmxjMnahYvHKr0UWBTyzT+rT21nWu+QP/7zxJq9BK7+a+ueD09Lozfffla/ubWxWwrquPWH77LnhIXl1dl3gYXW+D8ITdHLeI+z+4vp6mrl2/cloXhaj1C8R+tGa64hZ4NzhXDO0iO44bMeLp6Bzhc2erhoGSq6h90sL24js1LEgkJnOTSyKL/AnNwem2oPZIFN0JIFBT98YqXblmaSFfvAO+VtXg9LHGzwQE4+HOYdy1c8ximYSO/ouXy/dnEP9hs1s9l+R6rs+uQAJvBfWtT2V/aTEVTt8/CmyqUtPmpf33jGPfbttM77/oPO9F9hD3AxuM3LeSVxzcQGRLIg88c4h9eLeJi3zhPEBdutopCS7Z6IHKRq9fa3cf/21PGluxE1qS5+Ae47RxU5VtP2f1BRDKExo7bjAQgb2Esdpvh+oMXmXHeL2uh9UI/d1xN18ijL1mNOny1FYa32INgycfg9JvQf3nt94aFccwKDOCtE3U+Ck7c5uRr0H4Orv0qAOdbLtLQ2Wvtzyb+J+Mma4lkfdFlpz+zNpUAm8GLh9SQZDxK2vzQgbNNBJ56nSSjheDrvjbu+GVzZvP6167j0evm8/zBSu788V6OnG8b/YKQ2ZC2AUq2uzFqEff5+e5SuvoG+JtbJ9BMpPgV6+gPSyPB6lbmYjOSyJBAVqdFK2mTUb1xvJbQoABuXDzJpZENp6D2CKyY5rNsTkvvht6OK5puhQQGsDEzjrdPNGCapo+Ck6tmmnDgJ1aX3sW3A5BfYc2erlXS5p/m32AdP9IkKDEyhJuXJPD7wiotWx6HkjY/M+gw+fZrxXwleBuOmIWwcItL14UEBvD3H8vmhS9eQ0//IJ9+4gD/962S0WtkFt8OjaegpdyN0YtcvZq2izx3sJJPrZpLZmKE6xcWvwwpq6ytL/xF0nJoOGkt4xnHDZnxFNd00NA5ia6wMq0NDDrYUVzHpqyEyS+NPPYSGAHWFjEzwfwbYFaM9XvhI7ZkJ1HX0cPx6nYfBCZuce4g1ByGax+39gIDCipbiAyxsygh3MfByYgik63urh+pNQX43DVptHT3sb1YDUnGWhpbOAAAIABJREFUoqTNz7yUf47QhsNkm6XY1n9lwsXieQvj2PpXG7krJ4Uf7TzDp584QGlD15UDM2+1jiXqIin+5UdvnwETvr5l0fiDnVrKrT/g/jLL5pS0AgZ7ofnMuENvGGousbekydNRyRRzqLyF5u6+yW+o7XDAsd9DxiYYamo17QUEwpKPw+mt1t50w2zKSsBmoI51U9mBn1pJec7nLp3Kr2glNz3GtU7D4hsLboTKg1csW75+YRypMbN44X01JBmLkjY/0n6xn+/vKOFvZ7+NGTIbcj47qfeZPSuQH9y7kic+v5rzLRe488d7+eX+chyOYUtBYhZA3GLrD5qInyht6OT3hee5f30ac6MnsPHvCT9bGumUuMw6urBEMjs5krjwYC2RlCu8WVTLrMAAblw8yYSrch90VE3/BiQf9f/ZO+/4qKr0/7/vTHonHZIQSEhIoZMQikAEaYKCXbGtChYsu2vZ/tum67bv6ror6lrBtesKoiBKDb2EnhBIr6SH9D5zf3+cJBJaZiaTzCRz3q8Xr0vu3HPmgVfmzn3O+TyfZ8zN0FoPGVu6nfZ2dSBuhLdM2gYqlVmiXjH+oa4G8VUNrWSW1RMnTUism7Brob0JCrsb4Wk0CndNGc6B7KrLbzRIACOSNkVRtIqiHFMU5ZuOn9coipKjKMrxjj8TOs4riqL8S1GUTEVRTiqKMqmvgh9s/GtbBi6NRSS07EOZ/CNw7N0W/6KxQ/nuJ7Ou3JB79ELI2yuskSUSK+D/vkvHxcGOx68NN25gypcQFAdew/smMFPxjQCto0FmJBqNwqxIX3ZnlKPTy1obiUCnV9mcUsqcKH+cHUyURp74FBzcYfT15g3O2gm9Blx8havsRcyPCeBMSR0FVY0WCEzSK/avFjup8Su7TiXLeraBwYgZQqZ9UV0bwG2TQ7CThiRXxZidth8DaRede05V1Qkdf453nFsERHT8eRh4vfdhDn6yyutZuy+XF4P2o6DAlIfNMm9nQ+4XbxpLcu55Fr2yi7LajsQtchHo20XfHonEwhwvqGZzagkrZ4bh4+Zo+MDKLJEUjbES18gL0doLpz4DdtpASCTPN7bJWhtJF4dzq6iob2HRWBMbarc2iv6FMUu7diVsBq0dxNwoTLdau9uJz4sJAJCNtgcaDZVw/EMYdwe4B3SdTs47j4NWw9ggTwsGJ+kRR3cIjr9s0ubn7siC2ED+d7SQ5jZpSHI5DEraFEUJBhYDbxtw+VLgfVVwAPBSFKUXHsW2wQvfnMbHvpVrajeKL1fPYLPNrSgKyxOGs/7xGdS3tPPy1o76mpApQhMu69okFkZVVf767Rl8XB14aKaRRiKdq+gxS80fmDnodJA0wKluZoQfigJJZ6VEUiLYdKoYJ3sN15oqjTy7CVrrYPwd5g1soBB7M7Q1XuKWHOrjSmSAm7T+H2gkvwPtzV02/50czq1iXLCn6UY9kv4jLBHOHYOmS/uSLk8YTnVjG9+mFPd7WAMBQ3fa/gn8DLjYivBPHRLIlxVF6VwaDwIKLrimsONcNxRFeVhRlGRFUZLLy237AWXn2TJ2nC3npchUNK11wg2pDxgd6M7dCaF8ejifjNI64bgUMR8yvjfI3U4i6St2Z1SwP7uSJ+eMws3RzrjBqeshZKpZFzrMSuA40ZumrucvIW9XB8YFe5GUXtYPgUmsHb1e5duUEhIj/XE19nPRyclPwSNYSAVtkdDp4BZwBRfJAA7nnqe6sdUCgUmMpq0ZDr0pXLX9o7pON7XqSCmqkf3ZBgphiaDqIWf3JS9NC/NhhI8LHx2UEsnL0WPSpijKEqBMVdUjF730SyAKiAe8gZ93DrnMNJcsMauq+qaqqnGqqsb5+ZnYd2YQ0KbT8/w3pwn3cWJ6xecQPAWC4/rs/Z6aG4Grgx1/+faMODF6oVjtKDzcZ+8pkVwNvV7lr5vPEDzEmbsSjKxJK08XjTqtzYDkQgLHiqMREsnjBdXyQVJCct55yutauH6ciWKV+jIhfx93m9FOxIMGjVbswmd8Dy3dDQ7mxQSi06tsPyMXSQYEJz+FhnKY3r1/7YnCatp0KvHShGRgEBwHDm6XlUh2GpIczj1Pemld/8dm5RhyF58B3KgoSi7wCTBHUZQPVFUt7pBAtgDvAVM6ri8EQi4YHwycM2PMg4oPDuSRVd7ASxNKUM7nwNTH+vT9vF0dWHXtKLadKWN/ViWEzwWNHaRLF0mJZdh4qpjUc7U8PS8SRzsjpS2p6wDFeqWRAAGx4miAGQmIpE2vwp5Maf1v62w6VYyDnYY5USZKI099AarOdhpqX4nYm4Sk7qJSgHFBnvi7O0oXyYGAXi8MSALHwshZ3V7qNCGZHCqTtgGB1h5GXHPZpA3g1snBOGg1crftMvSYtKmq+ktVVYNVVR0B3AlsV1X1ns46NUVRFGAZkNIxZANwX4eL5FSgRlVVKU69DFUNrby8JZ2ZEb6MK/pISFiib+zz931gxgiGeTrx4qY09A7uEDoDzsq6Nkn/06bT84/vzxIV6M7SCZeoqHsm9Ushf/Kw4rJZJw8YMtLgnbbxwZ54OtvLujYbR0gji0mM9DNeMtzJyU9g6PhuUjKbJGQquA+9RCKp0ShcFxNAUnq5ND6wdjK3QsVZmPYkKN0FXYdzzxMZ4IaXi4OFgpMYTVgiVGVB9aWJmY+bIwvGBPKlNCS5hN7oJT5UFOUUcArwBV7oOL8JyAYygbeAVb2KcBDz8pZ0Glp1vDBVRcndAwkPC7erPsbJXsuzC0ZzqqiGr0+eg9GLxM2wKrvP31siuZBPDxeQW9nIcwtGozW2IWpZGpSfsW5pZCedZiQGYKfVcE2EL0np5agGmJdIBifHCs5TWtvC9aY21C47A8Un5C4bCGlozDLRr625tttL82ICaGzVCeWJxHrZ9y9wH3aJS7BOr3I077ysZxtohCWK4xV225ZPGU5tczvfnJR7PhdiVNKmqupOVVWXdPx9jqqqY1VVHaOq6j2qqtZ3nFdVVX1cVdXwjteT+yLwgc7Zkjo+PJjHPQnDCU1fC/auMOn+fnv/ZROCiB3mwd82n6UlbH5HUHK3TdJ/NLXqeGVbBnGhQ0yTf6WuA0XTL7vTvSZwnFgUaTFMoz870o+yuhbOlEhNv62y8WQJDloNc6NNlEae/ET0Qxp7q3kDG6iMuRl0LXC2eynA9HAfXB200vrfmik+Abm7YeqjQlrXQeH5RlasPUxdSzvTw30sGKDEaPyiwC3wiknb1DBvwvxc+ehgXv/GZeXYaGWyZVFVlT9+k4q7kz0/neoJKV/AxLvB2avfYtBoFH51fTRF1U2sPYP4AMm6Nkk/8t6+HMrrWvj5oigUxchdNlUVDbVDZ3Tr1WO1dJqRlKYadPnsSGHOlJQuJZK2SKc0clakL+5O9j0PuHQCOPkZjJoLbiYmfYONoDhRgnBRo21HOy2zR/uxNa0UvWxqb53se1UYV3QsbLfr9Ly9O5t5L+3iYE4Vv1kczfVjrFgiL7kURRG7bdlJ4n51ycsKy6cM52h+NWnFtZe8bqvIpM0CbDldyt7MSn56XQReqe+Drg0SHu33OGaM8iVxtB+vbs+kOWwe5O2DZtnUV9L3VDe28vrOLOZG+RNviqylNBUqM6yzofblMNJBMsDDiahAd1nXZqMcL6ymuKbZdGlk7m6oLRINiCUCjQZilwk3zabqbi/NiwmgvK6F44XVVxgssRg1hZDyP5GwOXtxqrCGZa/t5YWNaUwP92HL07NZMTMMjbHyeonlCUuExgoou/xi5i2TgnGwk4YkFyKTtn6mpV3HnzalMcrfjbvjAkSjyMiF4BNukXh+uSia+pZ2Pq6OBX27KPaVSPqY15OyqG9p57mFo02bIPVLIf0aCNJIAI9hopG9gQ6SALNH+5GcV0VDi+yhaGt8e6oYe63C3GgTd5FPfgoO7hC12LyBDXRibwZ9G5zZ2O30taP90WoU6SJpjRx8A4DGSSv549enWbp6D2W1Lbx29yTevj+OIC9nCwcoMZmw2eKYteOyLw9xdWDx2KGsP1ZEY6v8HgSZtPU7a/bmklfZyP9bEoN96hei6e40y3m1jA505/a4EP6S4o7OaQikf2exWCS2QUlNM2v25nLThCCiAj2Mn0BVRT3byFng6mv+APsCRTHKjASERLJNp0qDBBtDVVU2nSphZoQfns4mSCNbG+H0V6INhr18oO1G0CTwGn6Ji6SXiwNTRnjLpM3aaK6FI2spDV7AvHdzeHdvDssThrP1mdlcP3ao8bJ6iXXhMQx8R1+xrg1gecJw6lra+fqE7BwGMmnrV8rrWvj39kzmRvkzO8IX9r8GAWNgxEyLxvX0vEg0GjuS7eNEA1KdXNGQ9B2vbEtHr6r8dF6kaRMUnxCmHgPBNfJCAsdC6WmDP19xod64OGhlXZuNcbKwhqLqJhaNCTRtgrOboLUexktp5CUoirhvZO+AxqpuL82PDSCzrJ6cigYLBSe5mLr970JLLSsyp+PqqOV/j03jhWVj8TClzlNinYRfK0pz2lsu+3Jc6BAi/N2kRLIDmbT1I//33Vla2nX8enG0WFkoT4Opqy7pOdLf+Hs4sXJWGGsro6HpPBQesmg8ksFLVnk9nyUXcndCKCHeLqZNkrpONISPvsG8wfU1geOEe11lhkGXO9hpmB7uy870Mmn9b0NsOlWMnUZhfoyJSduJT4ThRug15g1ssBB7sygFOPNNt9PzYoQUdcvpEktEJbkAvV7lw31Z1CX9m0NqNAvmLeSbJ2cyOVTa+g86whKhvQkKLv/cqSgKyxOGc6KwhpQi6bkgk7Z+IqWohs+OFHD/tBGE+bnBgdfA1Q/G3GLp0AB4ZFYYqc7xtGOHela6SEr6hpe+T8fRTsMTc0aZNoGqinq2sERwGWBf4EaakYCoayuoaiK3srGPgpJYE6qqsimlmBmjfPF0MWE3oa4UsrbDuNuF8YbkUoaOF83uU7q7SAYPcSF6qIeUSFqY9NI6bvvPfg588y7DqCB0yc94Yk4EDnby93lQEjpD1KdfRSJ588RgHO00fHRI7rbJT0E/oKoqf/z6NENcHHhybgRUZAgZYvwKsHeydHgAuDra8fD88ezXRdFw6pueB0gkRnKysJqNp4pZMTMMXzdH0yY5dxSq88Vq+UDDNwK0jsaZkUR0WP+fLeurqCRWREpRLQVVTSw21TUy5QtQdTBeNtS+IooiXGdzdkFDRbeX5sUEcCTvPJX1l5dqSfqO5jYd//fdWRb/azfZZXX80W8Hqs8oAiYvs3Rokr7EyQOC44Rk+Qp4utizZNwwvjpWRL2NG3PJpK0f2HiqmEO5VTw7f7QoLD/wOmgdIO4hS4fWjTviQjjhMg23umzayjMtHY5kkPG3zWfxdnVg5cyRpk9yZqNYlYu63nyB9Rdae/CPgpIUg4cM93FhpK+rrGuzETalFKPVKF1SPaM58QkMnQB+Jrqy2gqxN4nkNm1Dt9PzYwLQq7DtjFwk6U/2ZVaw8J+7eHVHJjeMH0bSHQ4MqUlFmfa43DG2BcIS4dwxUZ5zBZYnDKehVceG47ZtSCI/DX1Mc5uOP286Q/RQD+6IDxHFzyc+hrG3g5ufpcPrhp1Ww4S5YoX2xNaPLRyNZDCRnFvFnswKViWGm9YsuJPsnWJVznmI2WLrVzodJI2oUZsd6cf+7Eqa23R9GJjE0gjXyGKmh/swxNXB+AnK0sQurtxl65mAMeATcYmLZOwwD4Z5OkmJZD9RXtfCM5+dYPnbBwH4cEUCL90+AY+j/wEXHxh/l4UjlPQLYdeCqofcPVe8ZNJwL6IC3fnoUF4/BmZ9yKStj3lrVzZF1U38dkkMWo0CR9dCW6NFbf6vxoz4yRTYhaI/u5m65jZLhyMZJLy3NxcPJzuWJww3fZKmarEaN3K2+QLrbwLHiWaidYabHcyO9KO5Tc/h3KqeL5YMWE4X15JX2Wh6Q+0Tn4hd6DG3mjewwUini2TuHqgvu+C0wnUxAezOKKepVS6SmANVVSmpaWZvZgVr9+Xy269SWP7WARJe3Er8n7by1fEiHr82nM0/mcWMUb6ifCT9247yEdmywiYIjgMHt6vWtXUakqQU1XKysLr373l6AyT9/YquldaKnaUDGMyU1jbz2s4sFsYGMi3cB3RtcPBN8dAZEGvp8C6Loig4xi5m4vH/8Pq2kzy1eLKlQ5IMcIqqm9icWsKKa0bi4tCLW07eXrEaF5ZortD6nwvNSDwMezhPCPPGwU5D0tlyZkZY1+68xHxsOiWkkQtiTXCN1Ovh1Ocwaq7VKTisljE3w66/iZ52U1Z2nZ4XE8D7+/PYk1lhukzVBmnT6cmvaiSzrJ6s8npxLKsnq7yhWx2Su6MdYf5uXDPKj1H+blwX7U9EgPsPE+1/VdT+xq+8zLtIBiVae2FIcoUm250smxjEnzed4cMD+Yy71cv091NVSPor6HUw61nT57EAMmnrQ/7x/Vna9Xp+eX2UOHH6K6g7B0tetmxgPeA/eSmceI2cg+spuSaWQE/rMEuRDEze35+LqqrcOy20dxNl7wR7FwiON0dYlqFzsabkJETON2iIi4MdCSO9SUov5zd9GJrEcnQ21J4a5o23KdLI3N1QWwTz/mj+4AYr/tHgFyUkkhckbQkjfXB3tGPL6RKZtF2BxtZ2vkstIbOsIzkrbyCvsoE23Q+y70APJ8L9XbllUhDh/m6M8nMj3N8Nf3fHKzfFbqgQO8bj75SLD7ZGWCJkfCeMxrwur8jxcLLnhvFD2XDiHCtmjuye7BtD9k4oTYEbX7V4yy1jkUlbH5F6robPjxSy4pqRhPq4isx+/2rwDocIwx7WLEZwPDonbxIbj/KP78/y99vGWzoiyQClsbWdTw4VsCA2kOAhJvZl6yQ7CYZPAzsTHmqtBSdPGDLCKNt/EBLJFzamUVTdRJCXlAwNNs6U1JFT0cAKU016Tn4Kjh4Qtdi8gQ12Ym+GnX+G2uKunW8HOw2JUf5sSytDp1dFWYOkG099fIytaWXYaRRCfVwI93NjfkwA4X5ujPJ3I8zP1bTa5cNvQ3szTHvC/EFLrJuwRHHMToJJ917xshUzw/g2pYSFr+zmzvgQfjov0ng36v2vgqu/aI0ywJA1bX2Aqqr8aWMans72PHFthDhZcEjYlU99zPrdkDRatKMXMN/+BOuO5pFWXGvpiCQDlHXHiqhpauOBGb1wjATxUFVxFsIGcD1bJ51mJEYwO1KsOu+SLpKDkm9PFaNRME0a2dooVBwxN8oaIGOJXQaol7hIzosJoLKhlWP5V3azs1V2ni1ja1oZT8+L5PQfF7LtmUTevC+Ony2M4pbJwYwP8TItYWtrgkNvQeRC8Is0f+AS68Y/GtwCrlrXBhAZ4M7OZxO5J2E4nxwuIPHvO1m9I9Nwo67S05C5FRIeBjsTWw9ZECvPHgYm28+UsS+rkp/MjfihQeqB1WKVfaC4IUUuxFlXx0zHbP787RlLRyMZgKiqypq9ucQO8yB+RC/dHnN2iWNYYm/DsjyB46AqG1rqDB4yyt+NYZ5OJJ2VSdtgQ1VVNp4qJmGkj2n9C89shNZ6GCddI43GbzT4x17SaDtxtB/2WkW6SF5Em07P89+cZqSvK4/ODjdvw+sTnwiTJrnLZpsoivh+z94panSvgo+bI39YOobvfzqLaeE+/P27s1z7fzv58mghen0Pzsz7V4Ods9W13DIUmbSZmTadnj9tSiPM15W7p3bU8FTnQ9rXMPlH4Ohm0fgMJnwOaOz56fAsdqWXsztDPixKjGNPZgUZZfU8MGPklWsYDCV7Jzh7Q8BYs8RmUQLHAqpY8TMQRVGYPdqPvZkVtOmu/oUmGVhkdNQEXT/WhF02gJOfgGeIKOSXGM+Ym6DgANQUdZ3ycLJnapgP358uRTWiPcdg57/788gqb+A3i6PNm7Dp9eJheuh4GHGN+eaVDCzCEkXiXpZq0OXhfm68dV8cnzw8FT93R57+7AQ3vLqHfVkVlx9QVwKnPoOJd4OLt9nC7k9k0mZmPj6UT3Z5A7+6Php7bcd/78H/AApMediisRmFkweMuIYxDfsJ8XbmxU1n0PW0giGRXMB7e3PxdXPghvEmWph3oqqQkwQjZ1q/tNgQuhwkTxo1bHakH3Ut7RzLN4PdscRq2HiyGEWBBWNMSNrqSiFrO4y9bXB8NixB7M3ieHp9t9PzYgLIqWggq7zBAkFZH5X1Lby8NZ1ZkX7MifI37+QZ30NlBkx/asAZQ0jMSFiiOPYgkbyYqWE+rF81g1funEB1YxvL3zrIirWHySy7SM1y6E3h4j7VOltuGYK8y5uRmqY2Xt6SzrQwH+ZGd9zUWurg6H8hZil4Bls2QGMZvQhNZQa/n+FEWnEt644V9TxGIgFyKhrYfqaMuxNCcbTT9m6yyizhjBeWaI7QLI9HkGgObmRd2/RRvmg1CknpZT1fLBkwfJtSTPwIb/zdTXDpTflCtMGQDbVNxydcSJYvarR97WjxHS7rSAUvbUmnsVXHb5dE9145cTH7/g0eweI5SWK7eAwD39FGJ20AGo3C0glBbHtmNj9fGMXB7CoW/HM3v1l/ior6FmhtgMPvCLMmn3Dzx95PyKTNjKzekUl1Uxu/XnzBTe34R9BSA9Met2xwphC5AIA5ylHGB3vyj+/PGl7sKbFp1u7LxV6rcPfUXjTT7iRnpzgO5KbaF6IoJpmReDjZM3n4EJLkQ+SgIbOsjvTSehb3pqH20AmiNktiOrE3QeFhUcrQQYi3C2G+rvLzBpw+V8vHh/K5b1ooo/xNtFm/EueOQd4emPqo6NclsW3CEiFvn8lNr53stTyWGM7O54RZyceHhFlJ0mevQHM1TH/SrOH2NzJpMxP5lY2s2ZvLrZOCGRPk+cMLR9ZAUJzo+D7QGDIC/KJR0jfzq+ujKa5p5p09OZaOSmLl1Da38XlyATeMG2ba7sHFZO8UNTveYb2fy1oIHAdlp0HX3vO1FzB7tB8pRbWU15n2hSaxLjadKkFRYKEp0sjS00JiO1DMrayZ2JvEMbW7RHJWpB8HsitterFSVVX+8HUqXi4O/GRuH7g67ntVtKuYdL/555YMPMISoa1RLKL0ggvNSqaHeRGavoYUJYIvy4N6NiuxYmTSZib+uvkMWo3CswsuWPGsLhAPZrHLLBdYbxm9EPL3kzBUy3XRAby+M4vKevnAKLkynycX0tCq673NP4BeBzm7xS7bYKp1CBwr+hFVZho1rNP6XxoDDQ42nSomLnQIAR4mLG6c/AQULYy5xfyB2RreI2HYREjt7iI5e7QfLe16DuVUWSgwy/NtSgkHc6p4Zn7kD27Y5qK6QMhSJ90n6uglkhEzxH0ta4dZpgv3c+PN+FJGaEr52vVWnv78JDeu3sP+rEqzzN/fyKTNDCTnVrHxVDGPzA7r/uWbtU0cR82zTGDmIHIR6Nshcyu/WBRFU5uOf23LsHRUEitFp1dZsy+HuNAhjA327HlAT5ScFJKGsMTez2VNdJmRGCeRjBnqga+bg5RsDQKyyus5U1LHojEmSCMrMuDwu0LC7uZn/uBskdibhVSv6gc1ydSRPjjYaWz289bcpuNPG9OICnTnzngzSN0v5uAb4pjwqPnnlgxMnDwhaLJJdW1XZP+r4BXKz3/yLP+8YwJV9a3c9dYBVqw9TFPrwNpFl0lbL9HrVZ7fmEaAhyMPz7pIvpWxRRTXDuR6g+A4cPGB9M2M8nfjrikhfHgwn+zyektHJrFCtqWVUlDVZJ5dNvjhxj1ylnnmsxZ8I0HrYLSDpEajMCvCj13p5dLNdYDz7aliABYZa/XfUgef3gN2DnD93/sgMhulUxFzgSGJs4OWhJHeNmtG8taubIqqm/jdDbFoNWZWOpSni2baY28FrxDzzi0Z2IRfC+eOQpMZnJILDkHBQZi6Co2dHcsmBrH92UR+vjAKR3stzg69NErrZ2TS1ku+PnmOEwXVPLcgChcHux9e0LVBdhKMmjuwZV0aLUQsEAmorp0fz43E0U7DP7akWzoyiRXy3t5chnk6sSA2wDwTZieBXzS4m2k+a0FrD/7RRu+0gZBsnW9sI6Wopg8Ck/QXG0+VMGm4F0M9nQ0fpKrw1eNQkQ63vjfwHImtGa/hEBx/iYvkrAg/MsrqKapuslBgZqS2WPRDa6nr8dLimiZe25nF9WMDmRbuY944dO2w/lFwcIF5z5t3bsnAJyxRuOLm7un9XPv+LXbvJt7TdarTrGT18km9n7+fkUlbL2hu0/G3zWeJHebBzRODur9YcAha6yBiAEsjOxm9UEjUCg7g5+7IXVOG831qCecbWi0dmcSKSCuuZX92JfdOG4Gd1gy3lvYWyD8w+KSRnXQ6SBrZvPeaUb4oCjYr2RoM5FQ0kFZcy/XGukbu+xec/gqu+wOEDRI3VWsi9iax+12Z1XVq9mghPx3Qu216vbA7Xz0FvvsVbHymxyF//fYMOlXll4uizR/Pvleg6Ags/sfgW5CT9J6gOLB3hexe1rVV5cCZbyDuQXB0M09sFkYmbb3gnT05FFU38evF0Wgulg5kbgWN3eCQdYXPEVKu9M0A3DQpiDadysYOeY9EArBmby5O9hrummImqUvBIWhvGrwPp4HjoLEC6kqMGubj5si4IE+ZtA1gNnVJI41I2rJ3wtbfQ8yyAW9bbbXEdEokfzAkifB3Y6in08BN2srOwHuLYOPTwmxlyiNw8lPRLuIKHMmrYv3xczwyK4wQbxfzxlOaCjv+LP6vpYmO5HLYOQhDkt7WtR14XZiaTHnELGFZAzJpM5HyuhZe25HJvJgApof7XnpB5hYISRDbsgMdR3cYcQ2cFUlbzFAPIgPcWC+bbUs6qGpoZf3xIm6aGIyXi4N5Js3eKW64oTPMM5+1ETBGHE2RSEb6cSz/PDWNbWYOStIffJtSzIQQL4K8DJRGVhfAFw+KWsilqwe25N6a8QxU6sE3AAAgAElEQVSCkKmQ8oNEUlFEHemezAradXoLBmck7S2w40V44xqoOAvLXof7voKFf4bQa+Cbp7vtKHai16v84evTBHo48ViimZsQ69pg3aPg7AWLXzLv3JLBRdi1wl25usC08Y1VcOy/ombSw8Q+mFaITNpM5OWt6bS06/nloqhLX6wrEQ9io67r/8D6isiFUJkBlVkoisKyiUEk550nv7LR0pFJrICPD+XT0q7ngRkjzDdpThIETRq8VtCBHUlbqWl1bXoV9mRWmDkoSV+TX9lISlEt1xtqQNLWDJ/dKx547/hg0Mh8rJYxN0NZKpSf7To1e7Qfdc3tHC8wgzFCf5C7F16fAUl/FZLPJ5JhwnKR7Gu0cPObYjfjiwegvXuZwxdHCzlZWMMvFl1Up28Odv9DyE+XvAyuZq6TkwwuwhLFMSfJtPFH3hP93qY9Ya6IrAKZtJnA2ZI6PjmUzz1TQwnzu8wXaNZ2cRxsSRvA2W8BWDpB1PB9dVzuttk6bTo9/92fx8wIXyID3M0zaXMtFB0dvPVsIHbhvUJN2mkbH+yFh5MdSellfRCYpC9Z33HPNMjqX1Vh0zPCiv6mN8A3oo+jkxB9I6B0MySZEe6LZiDUkTZVw4anYM31oGuBe/4Ht7wFrhepgTyDxI5t8QnY9oeu03XNbfxt81kmhw5h6YRh5o3t3HHY9XcYeztE32DeuSWDD/9ocPU3TSLZ3gIH3xS7dZ2Lo4MEmbSZwJ82peHmaMeP517hCzRjC7gF/NCLaTAwJBT8Y7rq2oK8nEkY6c2640WoRhopSAYX36aUUFLbbN5dtry9oOpEU+3BTKcZiZHYaTXMjPAjKb1cfv4GEDVNbbyzJ4c5Uf6G1QodWQPHPoBZz0HU4j6PT4KQUoXO6Ja0ebrYM3H4EOtN2lRVxLt6ivh9mf4UrDpw9YXjqMUQv1L0sMrYCsCrOzKpqG/hdzfEoJhTgtveAusfAxdfuP5v5ptXMnhRFLFom71TGOkYw6kvoL4Epg+uXTaQSZvR7Dxbxq70cp6aG8EQ18vU7uh1YqctfIBb/V+OyIWQtw+azgNw08QgsssbOCWtx22a9/bmMNLXlcRIf/NNmr0T7JwhZIr55rRGAseJupIW4/sezo70o7S2hbOlPdt3S6yDt3dnU9PUxjPzI3u+uDAZvv2ZePBO/GXfByf5gdhlUH4GSk93nZod6cepohoq61ssGNhlqCmEj++Ez38E7oHw8A6Y/zw4uPY8dv7z4B8L6x8lPy+Hd/fkcNvkYMYFe5k3xp1/gbLTcOO/wXmIeeeWDF7CEqGhXPzuGIqqirYW/jHiOXyQIZM2I2jX6XlxUxqhPi7cN23E5S8qOirs8SMGkTSyk9GLxO5H5jZAOJ85aDWsP3bOwoFJLMWx/PMcy6/m/mmhlzqo9obsJBg+FewczTenNRI4FlCN+1LqYFaksCJPOmulq/+SblTUt/DOnhyWjBtK7LAeDKrqy+DTe8F9KNz8lqhDkvQfMUtB0XTbbZsV6YdqTXWkeh0ceANWJ0DOLpj/J1ixHYaON3wOe2e49V1oqafu44dw1MJzC0ebN87CZNj7T9EnK3K+eeeWDG7CEsXRGIlk1nZRkzrticG3cYJM2ozi0+QC0kvr+eWiKBzsrvBfl7lV3OzDru3f4PqDoMlC3tAhkfR0tmdOlD8bTpwbWK5aErPx3t5c3B3tuDXOTDb/AHWlUJ42uOvZOumUUJecNH6opxNRge7WK9mSdOP1nVk0t+n46bwedtl07fD5A9BUJYxHXLz7J0DJD7j5C8fk1HVdfRTHBnkyxMXeOj5vJSnwzjzY/HOxuLXqgJCCaU0wDvGPIn3Sr4ltPsJbEQfwd3cyX5xtTcIt0n0YLHjRfPNKbAPPIOGYa0zStv9VUZ409tY+C8uSyKTNQOqa23jp+3SmjPBmQexVXL8yt3QkN4Pwi1ajhcgFomZP1w7AsolBVNS3sDer0sLBSfqbkppmNp0q5ra4ENwczegy1ukWNVj7s12IZzA4eZlU1wZCspWce56GlnYzBya5LJVZYofDSM5VN/HfA3ncOjmY8MuZV13I1t9B3h644V8wdJyJgUp6TezNwjH53FEAtBqFmRF+7EqvQK+3UB1pW5Po1ffmbDifB7e8A3d/IWrOTZ1Sp2dV2lh2aqczNWc1FB4xX7zbXxD/h0tfHRztjyT9T1iiqHG/yOX0spSkiJ22hEcGrUpHJm0G8vrOLCobWvnNkugrF+g2VAp55Kh5/RtcfxK5UMg/Cw4AcG2UHx5OdrJnmw3ywYE8dKrKj6aPMO/E2UkikQm0gQdWRTHZjARE0taq03MgWy6a9DmFyfDvSfD6dEj7umsHxhD+vT0DVHjqSuZVnaT8T6wUT3kExt/Ry4AlvWLMzWDvCoff6To1K9KPivoWThfX9n88uXvgtWmw52UYdyc8cVjsJvRSAvbBgTwyyxtQb3gFxX0o/O9B4d7bW/L2idqiuIcgfBAqjyT9Q1iisO4vPNTztftXg70LTH6gr6OyGDJpM4DC8428vSeHmyYGXb1AN3sHoA4uq/+LCb8WtA5d1v+OdloWjxvG5pQSudpvQzS36fjoUD5zowIY7mOAC56hqKrYaRs5y3bqeALHQWlq1+61MUweMQQXB611SLYGO2lfg8ZO7LR9eg+8PVcsMPRATkUDnyUXsjxhOMFDrvJZKT0NXz0Bw6fB/BfMGLjEJJw8YfydwomusQqAWRHCOn9XRj9/3hoq4YOOBO2+DbBstVnUPFUNrby8JZ2ZEb4kjo+AW94WzYw3Pm3UosQltDbA+lViB3DeH3sdp8SGGXENKNqeJZK1xXDqc1E7ORiVbh3IpM0A/rb5LArw3IIeCnQztoCzNwyb0C9xWQRHdxgxE85s7Lqp3zQxiKY2HVtOl1o4OEl/seH4OaoaWnnQnDb/AFXZUFNgG9LIToImQXtz1+61MTjaaZke7iOTtv4g/TsInS7qh258VdRevn8jvL8Uiq4sKXt5SzoOWg2PXzvqynM3VcOnd4v7621rRONjieWZslL0Ozv6PgD+Hk5ED/Xof/OfI+9CexPc+bFZ740vbTlLQ6uO3y7psPgfPlU4lZ76HE58YvrEW34H53Nh6WuyGbykdzh5ipKjnpK2Q/8BfTtMfaxfwrIUBidtiqJoFUU5pijKNx0/j1QU5aCiKBmKonyqKIpDx3nHjp8zO14f0Teh9w/H8s+z4cQ5Hp4VxjAv5ytfqNdD1jYInzP4dwhiboTzOV3mCXGhQwjycmadlEjaBKqq8u7eHEYHuDMt3Me8k3femEcmmndea2b09UIOevhtk4bPjvQjr7KR3IoGMwcm6eJ8njDHiVwozB4m3QtPHoEFfxbS1rfmCLfH8vRuw9KKa/n65DkemDECP/cr1Fjo9bDuEajOh9vfF7btEuvAP1osUh5+p6uWcXakH0fyzlPfX8qS9lY49LawL/ePMtu0acW1fHQwn3unhhIR4P7DCzOfhtBrYOMzUJFp/MTZO+HwW+LhecQMs8UrsWHCEsXCWPMV2ku11EPyu6Jpu3dYf0bW7xiz0/ZjIO2Cn/8KvKyqagRwHnio4/xDwHlVVUcBL3dcNyBRVZUXNqbh5+7Io7PDr35xyUnRTyJiENezdRJ1g9iuTl0PgEajsGziMPZkVlBeZ2U9bCRm50B2FWdK6nhgxgjzNmAFIY30CAKfHj5vgwkHFyHpSPsaao1vnzG7oz+e3G3rQzK+F8eIBT+cs3eCaavgqeNidyJrO7yWAOsfFxIz4B/fp+PmaMcjs67y+7z7/4Qj78K/iJ0OiXUxZSXU5Hf9DsyO9KNdr7Kvv6z/U78UjYKnrTLblKqq8sevT+PpbM9Pr7vIzVSjhZvfFLu9XzwgGmMbSnOtkPj6jIK5vzVbvBIbJywRVD3k7L7868c/FAnd9Cf7MyqLYFDSpihKMLAYeLvjZwWYA3zRcclaYFnH35d2/EzH63MVsz/Z9Q+bTpVwJO88z8yLxLUnd7zMreIYPqfvA7M0rj4wciacXt8lkVw2IQidXuWbk7Jn22Dnvb05DHGxZ9nEIPNOrO+4KYclDsr+Klcl/iGxkn9kjdFDh/u4MNLXVSZtfUn6ZvAOB9/LSBydPCDxF/DjE5DwmJCW/XsSpZ//lKNpGTw6OxxPF/srzPs97HgRxt8F8Sv69t8gMY3Ri4Vl/aE3AZgcOgRXB23/1LV1Ngr2HW3WRsHfpZawP7uSp+ePvvzvpmcQLF0tFqO3GVGT9v2vobYIlr0hesBJJOYgOF6YAl1OIqnXic9I8BQImdLvofU3hu60/RP4GdDZjMsHqFZVtVMfUAh0PsEFAQUAHa/XdFzfDUVRHlYUJVlRlOTycut72Ghu0/GXzWlEBbpzmyE9qDK3iqaWbv59H5w1ELNM1B91uN5FBLgTO8xDukgOcvIrG9mSVspdU4bjZG9mGXDpKdGbaqQN1bN14h0mdumPrDHM2vgiZkf6sT+rkuY24+3oJT3Q2iAWEyIXXv06V19Y+CI8dRTG3YFf6hp2O/2ElbpPL+/GV5UNX66AwDGw5GXbW6gYKGjtIO5BsZNakYmDnYZp4b7sPFuO2huzDkPI2ycSp6mPme33o7lNxwsbxbPNXfFXebaJWgxTHhZuphlbep44Y4uo/Zv+FITEmyVWiQQQu74jZlw+aUv7GqrzbGKXDQxI2hRFWQKUqap6YaX15e4eqgGv/XBCVd9UVTVOVdU4Pz8/g4LtT9buy6WgqonfLI5Bq+nhZtlUDQWHBrfV/8VEd0gkT6/vOnXTxCBOFNaQVV5vwcAkfcna/bloFYV7p5neF+iKdNWzzTL/3AOBKQ9DfSmkbTB66OxIP5radCTnnu+DwGyc7CRhRhE537DrPYPZG/t75rX8lTL/a3DY8zd4ZbxYDW5rFte0NooaOBTRQFvuSlg3k+8HjX1X3ensSF8KzzeR09d1pAdeA+chMM587R/e3p1N4fkmfrskBjttD4+A854H/1jRILuu5MrXNZ2HDU+CXzRc+yuzxSqRdBGWKHr+1RR2P7//VRgyUiwy2ACG7LTNAG5UFCUX+AQhi/wn4KUoSqdmMBjo1MUVAiEAHa97AlVmjLlfmBw6hEdmhXFNh8XvVclJAlU3uK3+L8bVV1ixpv4gkbxh/DA0Cnwld9sGJfUt7Xx2uIBFY4cy1LMPHjKzk4QMyGOo+eceCITPFV8+JhiSJIR542CnISm9rA8Cs3HSN4ODOwyfbtDlqqry9+/O0uQRzrCHP4OVO4QK47tfwb8ni92Ir58SbR5ufQeGjOjb+CW9x80fYpeJ2pmW+q460l19KUmuyhEuzXEPirpXM5Bf2cjqHVksjA1k+igDnm3sneDWd8Vu87pHhIT9cnz7C6gvg5teH7RNjSUWJixRHC9ss5J/EAoPw9RVg98AsIMekzZVVX+pqmqwqqojgDuB7aqq3g3sAG7tuOx+4KuOv2/o+JmO17erfa4hMD9xI7z55fXRhl2csQUcPYXu1paIXQZVWVCaAkCAhxMzRvmy7nhR38tGJP3O/44UUtfSzgPmtvkHUeyev/+HG7MtotGIuqb8/VB80qihLg52JIz0ZmtamfzsmRNVFQYUo+YYbMO/Na2M4wXV/Pi6CBzttKKlw33r4f6vhTPkhidF3duc39jWQt9AZ8rD0FILpz7rnzrSg/8RD6LxK80yXUV9C/e9exAHOw2/Xmzgsw0Ix8pFfxFKiH3/uvT1Mxvh5Ccw61kYNtEssUokl+AfA65+Hf2QO9j3L+G8PPFuy8XVz/SmT9vPgacVRclE1Ky903H+HcCn4/zTwC96F6KVo6qQuU30TtH2YFYy2Ii6ARRNl4skCEOSgqomjuZLmdZgQq9XWbMvl/EhXkwaPsT8b1B4GNoabas/2+WYeDfYOQvLbCO5cfwwcioaSM6Tnz2zUXIS6oq7u0ZeBb1e5f++O8tIX1dumRTc/cWRs2DFVrjjQ9Fw+Jqn+yBgSZ8RHA+B4+DQW6CqzIrw5UB2Vd/UkTbXwrEPIPZmsygPGlraeXDNYUpqm3n3R/GEeBu5czfpflHHvv15KEy+YOJK+PrHEDgWZj7b6zglkiuiKGJRN3uneO6uzBILBvEPgYOrhYPrP4xK2lRV3amq6pKOv2erqjpFVdVRqqrepqpqS8f55o6fR3W8nt0XgVsNZWlQd842rP4vxs1PSCQvcJFcMCYQJ3sN649JF8nBRFJ6OTkVDeZvpt1JdpJYAAi18b4+zkNg3G1w8nNRJ2IEi8cNxc3Rjs8OF/RRcDZI+neAYvD9/euT5zhbWsfT8yIvXy+kKBC9BGb8WOysSgYOiiJ228pOQ95eZo/uwzrSY/+F1jqz2Py3tut59IMjpJ6rZfXySUwONWHRTVHghleEi+YXD/7QL2vTM6Km/6b/yIbwkr4n7FrRWqvsNBx4HbT24jNpQ8hvjd7SZfVvPjveAUXMMqjMFB8iwM3RjnkxgXxz8hyt7VfQv0sGHO/uzcHf3ZFFY/qo3iwnCYZNAmevvpl/IBG/Etqb4NiHRg1zcbDjhvFD2XiquP8a/w520jdD0GSDXIHbdHpe2pJO9FAPFo+10brMwc7YW8XCyqG3mBrmg4O2D+pI9To4+Iaooeyl3FCvV3nuixPszqjgzzePZW50gOmTOXvBLW8LI4hvnoaULyF1nWh3ERDbqzglEoPoVOKkfCl2osfeJiTnNoRM2npL5hahtfU0c8+qgUL0jZdIJG+aOIzzjW19W6Qt6Tcyy+rYnVHBvVNDcbDrg1tGc62Q3Ni6NLKToeNg+DRhSHKlwv8rcFtcCI2tOr45IXe6e019GRQdhUjDpJFfHCkkr7KRZ+dHounJcVgyMLF3hon3QNrXuDSXET9yCLvSzdxk+8xGqM4XNv+9QFVV/rQpja+On+O5BaO53ZDWRT0xPEE0kk/5AtY/JhY0Zvyk9/NKJIbgGQw+EbD3n2Jhc9oTlo6o35FJW29oqYe8/bZdTO7mJyRtF0gkZ0b44e3qwLrj0kVyMPDu3lwc7DQsTxjeN2+Qt0+4r9pif7YrEb8CzudA1jajhk0M8SLC343PkqVEstdkbAFUg5K25jYdr2zNYNJwL+ZE2UivTlsl7iFQ9ZD8HrMj/ThbWkdxTZP55j/wGniF9trC/M1d2byzJ4cfTR/BqsRwMwUHzHwaRswU3/fLXre9Wn6JZQlLBH27ULcFxFg6mn5HJm29IXc36NtsO2kD4SJZkS7q+wB7rYYbxg1l6+lSapvbLBycpDfsOFvGJ4fyuXVyMD5ufWTlnJMEdk4QktA38w9Eom8EtwA49KZRwxRF4Y74EI7mV5NZVtdHwdkI6ZvBfagwn+iBDw7kUVLbzHMLolBkk+zBjfdIkcgfWcOscE8Adptrt63oqHCPTXi0Vxbm/ztSyJ+/PcOScUP57ZIY8/5OarRw9+fwxGHwG22+eSUSQ4hcKI4zfmzZOCyETNp6Q8YWsHeF4VMtHYll6ZRIXtBoe9nEIFra9WxOuUpDTolVk1Fax1MfHSN6qAe/McYi2liyk8RnyN6p795joGHnAJN/JO4xVcZ5OS2bGISdRuFTaUhiOu2tkLUDIuYLE4arUN/Szms7s5gZ4cu0cJ9+ClBiUeJXQkMZoyt3EODhaD7r/wOvi56AE+8xeYodZ8r42f9OMmOUD/+4fXzfSHXtnWFIqPnnlUh6IuI6+EmKzZZTyKTNVFRV1LOFzZbNJN38hUTygrq2CSFejPBxYb1stD0gqWpo5aG1yTjaa3nrvjhcHPpIAlNfBmWpUhp5OSY/IFa1D7/T87UX4OvmyHXRAXx5tIg2nTQDMon8fcK9r3NV9yq8uyeHqoZWnpkvdx1shvA54B2GcvgtZkf6sTujnPbeftZqz0HqlzDpXnDyMGmKY/nnWfXhUaIC3XnjnsmiT6BEMtjwMkN95gBFJm2mUpklioVH2ahr5MXELIWKs10SSUVRWDYxiP3ZlZTUNFs4OIkxtLbreeyDI5TUNvPWfZMZ5uXcd2+Ws0scbXTV7Kp4DIXoGzrsvxuNGnpHfAiVDa1sSzOzs52tkP4daB17/L2sbmzlrV3ZzI8JYEKIdD61GTQasdtWcJAl/uXUNrdzorCmd3Mefls4R5poYZ5ZVs+Daw7j7+HImgem4O5k37t4JBKJ1SGTNlOxdav/i4m+EVAuabStqrDhhNxtGyioqsrvNqRwMKeKv90yjol90Uj7QrJ3gpMnDJ3Qt+8zUIlfKXoipXxh1LCZEb4EeDhKQxJTSf9ONMPuoWnrG0nZ1Le2y102W2TCcrB3IaH8SzQKvZNItjZC8rvCfMR7pNHDS2qauf/dQ2g1Cu8/OAU/dxtX/0gkgxSZtJlK5hbwGWXSDXZQ4h7wg4tkByN8XZkQ4sU62Wh7wLBmXy4fHypgVWI4yyb2cRsLVRX1bCNm9qroflATOh38Y4UhSYc7qyHYaTXcOjmYnWfLKK2VO91GUZEJVVk9ukaW1TazZl8OyyYEMTrQvZ+Ck1gNzl4w7nYc075kRpC2dy1uTn4CTedh2uNGD61pauP+dw9R3djKmgemEOpz9YUGiUQycJFJmym0NUHuHhg1z9KRWBexy6D8DJSd6Tp108Qg0oprOVNSa8HAJIaQlF7O89+cZn5MAM/2x87B+RyoyRcWvpLLoygwZQWUnIKCQ0YNvW1yCHpV9A+TGEH6ZnGMmH/Vy17dkUm7TuUn10X0Q1ASqyR+JbQ3sdJtHycKqznf0Gr8HHq9MCAZOl70ZzSC5jYdK9cmk11Rz5v3xTEmyNP495dIJAMGmbSZQt5eaG+WVv8X0ymRvGC3bcm4oWg1CuvlbptVk1lWzxMfHWV0oAcv3zGhf5oDZyeJozQhuTpjbwdHT6Pt/0f4upIw0pvPkwtQjdils3kyvgP/mKu64xVUNfLxoXxujw+ROxu2TOAYGD6dhMp1oOrZnWmC9X/WdtEyZ+rjPTqVXohOr/LUx8c4nFfFS7dPYMYoX+PfWyKRDChk0mYKmdtEX6kRMywdiXXhHiDkXBfUtfm4OTI70o+vjheh18sHR2ukurGVFWsP42in4e3743B17KdmqTlJ4D4MfOVOxVVxdIOJd8Ppr6Cu1Kihd8SHkFvZyKGcqj4KbpDRXCOavfewy/bKtgwUReGpOfJ31+aZshLHunwWO6eaJpE88Bq4BULsTQYPUVWV36xP4fvTpfxuSQw3jB9m/PtKJJIBh0zaTCFjC4y4RvQqkXQnZhmUp0H52a5TyyYGUVzTzEH54Gh1tOn0rPrwKOeqm/nPvXEE9aVT5IXo9cI5Mmy2UavLNkv8CtC3wdG1Rg1bNGYo7o52fCoNSQwjazvo269q9Z9ZVseXRwu5f1oogZ6yt6DNE30DuAXymPN2dqWXG7erXXYGsrYJCbSdg8HD/rk1g48P5bMqMZwfzZB19RKJrSCTNmM5nwuVGVIaeSViLnWRnBcdgKuDVvZsszJUVeX3G1LZl1XJX24Zy+TQPnaKvJDSFGislNJIQ/EJF061ye+Crs3gYc4OWm6YMIxNp4qpbTZ8nM2S/j04D4Hg+Cte8tKWdJzttTyWOKofA5NYLVp7iHuA2MaDONfncaakzvCxB14Tqp3JDxo85IMDebyyLYPb44J5boF0LZVIbAmZtBlL5jZxlEnb5XEPFMXUF9S1OTtoWTAmkE0pxTS36SwYnORC3t+fx4cH83l0djg3Twru3zfP6ahnk/3ZDGfKw1BXDGe+MWrYHXEhNLfp+eZEcR8FNkjQ6yDje3Fv115eIpxSVMOmUyWsmBmGt6vhOyOSQc7kH6Fq7LhHu9Vw6/+GSjj5KYy/E1x9DBry7ali/t9XKcyN8ufFm8aiSJWCRGJT9FPxyiAicyt4DRd2/5LLE7sMvv0ZlKeDXyQgXCS/PFrEjjNlLBo71MIBSnZnlPPHb05zXXQAP7PEam12EvhGgoesxTCYiHni3nPobaPqX8YFezI6wJ1PkwtYnjC8DwO0Xs6U1JJb0YBGUdBqFDSKgkajoFUUNBrQKgoeFceJbqwg12cmdYU14nzXNWLMXzefwcvFnhUzpSRNcgHugSjRN3Ln6e94Mq2AR2eH9zzmyLvC0CzhMYPe4kB2JT/+5DgTQ7x4dfkk7LRyzV0isTVk0mYM7a3iYXP8nbIO52pE3wjf/lzsts3+GQDTw33xc3dk3bEimbRZmKzyelZ9eJQIfzf+eWc/OUVeSHurcGCdcHf/vu9AR6MVtW1bfgulqRAQa9AwRVG4PT6E5785zdmSOpvqKaaqKu/uzeVPG0/Tkw/S03afEaHVsHSzEzXsueJ1v1gUhbuTvZkjlQx4pjyMe+qXBBV+TUPLNVc3dGpvFYsv4XPBP6rHqY/kVbFibTLDfVx490fxODvIvpYSiS0ikzZjKDgAbQ1SGtkTHkNh+FRR19aRtGk1CkvHD2Pt/lyqG1vxcpHSIktQ09jGyrXJOGg1vHVfHG795RR5IUXJ0NYopZGmMPFe2PEiHH4blrxs8LCbJgbxl2/T+Cy5gP+3JKYPA7QeWtp1/L/1KXyWXMiC2ACe7HB61OlVdKqKXq+iV8XPelVl/MbnqbebxEtzEjvOgV5Vu17X6VXstBoWjQm07D9MYp0Mn0qDVxR3V21hf+ZzXBd7ld+T1HVQXwLLVvc47cHsSh5Yc5hADyc+eChBfndKJDaMTNqMIXMraOxh5ExLR2L9xCyDzT+HiowuS/dlE4N4e08OG08Vc3fClXsgSfqGNp2exz86SsH5Rj5aOZUQbxfLBJKdBIpGOLBKjMPFG8bcCic+gbm/A2cvg4Z5uzowLyaAdceK+PnCKBzsBre0qryuhUc/OMKRvPM8NWcUP7ku8uo7yjVFcD4NrvsDc6MD+i9QyeBBUXCY/ggxm37KvuPbIPYKSgJVhQOrwXe02Gm7CvsyK3hw7WGCh7jw0YoE/D2kW6lEYssM7m9uc1c5Sp4AACAASURBVJOxFUKngaPtyItMJuZGcbzARTJ2mAcR/m7SRdJCPP/NafZkVvDiTWOJH+FtuUBykmDoBOHSJzGeKSvFTuWJj40adntcCFUNrWxLM67X20AjpaiGpa/uIfVcDa8un8jT80f3LAHO+F4cr2L1L5H0hP2EO2jQuDEy+yqfzfz9UHwCpj521TKLXenlPLDmMKHerny8cqpM2CQSiUzaDKb2HJSlSmmkoXgMg5Cp3VwkFUVh2cQgDueep6Cq0YLB2R7/PZDH+/vzeHhWGLfFhVgukJZ6KDwspZG9YdgEYUl/+G3R785AZkb4MdTTaVD3bNt4spjb3tiPCnzx6HSWjDPQ6Cb9O2Hy4ict1CW9wMGVvJBlzGrfR0Fe9uWv2b9aLFiNu+OK02w/U8qKtcmE+7nx8cNT8XN37KOAJRLJQEImbYYirf6NJ2ap6MdVkdl1aukE8RD11XG529Zf7M2s4PcbUpkb5c/PF/Zc9N6n5O0TzYtlf7beMeVhqMyE7B0GD9FqFG6dHMyu9HKKa5r6MLj+R69XeWlLOo9/dJTooe5seOIaxgR5Gja4rQmyd4pdNmkwJeklHjMfw17RUbnrzUtfrMqBMxsh7kFwuLw8/fvUEh757xFGB7rz0coE2VpCIpF0IZM2Q8ncAu7DwN82ivjNQsxScTy9rutU8BAXpozwZt2xIlS1Bzs3Sa/JqWhg1YdHCfdz5Z93TkDb306RlwSUBFpHYVQjMZ2YpeDqB4feMmrYbZND0KvwvyOFfRRY/9PQ0s6qD4/yr20Z3Do52Pididw90N4EkQv6LkiJzRA8agwHtJMYkfsZ6C5qaH/ozQ4X2JWXHfvtqWJWfXiU2GGefLBCmo5IJJLuyKTNEHTtkLUTRs2VK7HG4BkEwVMg9atup5dNDCKrvIHUc7UWCsw2qKxv4aG1h9FqFN65P946bMqzk2B4Atg7WzqSgY2dI0y6H9I3w/k8g4cN93FhWpgPnyUXou/JA38AUFDVyC2v7+P70yX8ZnE0f791HI52Rtqhp28GexcIlcY4EvOQGXoXXrpK2i787muuhaP/hdibhcPyRWw4cY4nPj7G+BAv/vvQFDydreB+LZFIrAqZtBlCUTK01EhppCnELoPSU1CZ1XVq8dihOGg1rJOGJGalXafnSF4VL29J55bX9zHlxW0UVDXyxj2TLecUeSH15eJ3QUojzUPcA8KFM/kdo4bdER9CflUjB3Iq+yiw/uFQThVLV++lqLqJd38Uz4qZYSjGLqqpqqhnC7sW7KXRg8Q8BE5aQp7en8Y9b/xw8tgH0FoH01Zdcv2XRwv5ySfHmBw6hPcfnGIdC2wSicTqkEmbIWRuBUULYYmWjmTg0SmRTP1BIunpYs+1UX5sOHGOdp3hRgqS7qiqSm5FA//dn8vD7ycz8Y9buOX1/fx7ewbtepVVieGsf3wGU0Za0CnyQnJ3iWNYoiWjGDx4BkPU9WL1vs3wGrWFYwJxd7Lj8+SBK5H85FA+d799AC9ne9Y/PoPE0f6mTVSWBjUFUhopMSvTIvz5WJ2HZ9lhKEkBvQ4OvgHDp8Owid2u/exwAc98foKpYT6seSD+6k25JRKJTSPvDoaQsQVCphjcE0lyAZ7Bwunu9HqY9WzX6ZsmBvFdail7syqZHelnwQAHFjWNbezNqmB3RgW7M8opPC8e1oOHOLNk/DBmRvgyPdzHOmshspPA0VPY/UvMw5SHIe1rSPkSJl6hL9RFONlrWTphGJ8nF/L7G2MHlAyrXafnhY1prNmXy8wIX169axKeLr2IP32zOEbMN0+AEgng6mhHZtAyWko+x/HwW6IfW3UezH+h23UfHcznV+tOMTPCl7fui8PJ3khpr0QisSlk0tYT9eVQfBzm/MbSkQxcYpbB978WEkmfcACujfLHy8Wejw7myaTtKrS26zmWf549mRXsyqjgVGE1ehXcHe2YGu7DI7PCmBnhR6iPi/HSsP4me6doqK2Vtx2zMWIm+EUJg4MJyw2uub0jbjgfHMhnw4lz3Dt1YDS6r25s5fGPjrI3s5IV14zkF4uisNP2UiyS/h0MHX/ZGiOJpDfERYezrnA6d5z4FOXccfAKhajFXa+v3ZfL7zakMifKn9funiQTNolE0iPy6aknsraLo6xnM52YpSJpO/0VzHwaAEc7LcunDOeNpCwKqhqto+bKSmhq1fH5kQKSzpZzILuShlYdGgUmhHjx5JwIZkb4Mj7EC/ueHlhVVchyrCFJOvaBWGme9rilIxlcKArEr4BNz0LREQiOM2jYmCAPood68HlywYBI2jLL6lixNplz1c387dZx3G6OXoONVVB4CGY91/u5JJKLmB3px7Ob53Nn+06x8Lvgz8I5Enh7dzYvbExjXkwAq5dPwsFOVqpIJJKekXeKnsjcIqy1A8dbOpKBi1cIBMV1a7QNcO+0UBRFYe2+XMvEZYUcyK5k0Su7+O1XqWSW17NsYhBv3DOZY7+dz5erZvDTeZHEjfDuOWED2Pln+Hs4nN7Q94FfifZW2PgsfPU4jJwldoMk5mX8neDgLnbbDERRFG6PC+ZkYQ1pxdbt4rr9TCnLVu+jvqWdjx9OME/CBqJWWdVDhKxnk5ifqEB3yt1Gk+UUKz6fE+8B4PWdWbywMY3rxwby2t0yYfv/7d13eJRV2sfx70mnBQidBEikdwKhgyAKAqKCFAEBxYIiuLqWtezrFtvqWthdRREbCCKggigiilSldxTBUKVIb1ITkpz3jzMqgUASMpOZgd/nunKReeodfAxzzznnvkUk5/Tb4kIy0l1T7cpXQ4j+qvKkdlfYtdo1F/UoV7QAneuWY8Ky7RxLSfNjcP539NRp/jr5e3qPXESGhXF3NmXuI1fxbLe6dKxTNvfrjlKOwaIRcPoETOwP0x6B06d8E/z5HN0No6+HpW9B86HQbzJEFsnfGC4HkUVcMrx2spvOnUNdG8QSERrChKXbfRjcxbPW8uasdfxl9EwqxhRkytBWNKrkxaI6ydPdB3JnFYYQ8QZjDFdWK8XQU/eSPuAziIrm1ZkbeGH6em6oX57/9U7M2YdvIiIe+o1xIbtWwcmDmhrpDb832s482jawZTxHT6VdUs1+c2v2+r10GDaPD5ds485WCXz1wJW0qFIybxddM961qeg/GZoNcaMw71wD+zd6J+jsbF8Cb7aB3Wug+ztw7bOBMU3zUtX4TkhPhRWjc3xK8UIRtK9dhk9X7SQlLd2HweXe8ZQ0Hhi7mIZzBjA/6s9M6nSa2GJe7O2XnuZG2qpeqw/kxGeurFaKdaeKszojgVe+/omXZyRzU2Isw25ukPf1mCJy2dFvjQvZOBMwULmdvyMJfsUqQmwjWJs5aWtYsTgNKhRj1IKtl0Sz39w4eDyVB8avZOCopRSODOOTwS34vy61KBCRxwXp1sLiN90IQqWW0PE56DMejuyAkW1gzUTv/ADnu/fSd+C9zq7v1R0zoG4P391PnFLVXP+75aPcDIEcujmpAodPnGbGj3t8F1subd1/nG7Dv6NV8nM0DkkmIrokURN6w0/TvXeT7Yvh1BGV+hefal2lJMbAQxNX879ZG+mVFMeLPesTGhLgRaNEJCApabuQDTMgtiEUKuHvSC4Ntbq60cszpkiCG23bsv84c5L3+imw/GWtZeqaX2j/ylymrtnFn66uytQ/tSKxYnHv3GDzbNifDE3v+aOaYPVOcM93ULYuTLoLPh0Cqce9c7/fnD4Fnw2FLx50vdgGzYGydbx7Dzm/Rre5nmOb5+T4lJZVShJbrEDATJGcvX4v17/2He2PTqZn6Fxo8yjm7m+hTC2YcItrbeANydMhJBwqX+Wd64lkoXihCOrHFWPL/uP0bVqR52+qp4RNRC6akrbzOXEQdi7T1Ehv+n2K5JRMmzvXLUeZ6Ejem781/2PKZ3t+PcXdY5YzdNxKyhcrwOf3teLB9tWIDPNiuefFb7q1OrW7Zd5eNA5uneqq5a36AEZeBXt+9M49j+yA9zq5KpFXPgJ9J0ABLyWhkjM1rnN/5yvH5PiU0BBD90ZxfLdxPzsP57xBt7dlZFhenbmB20cv5YbC63mY96FGF2jzGBSMgQGfQVwT+OQO94zlVfJXEN9SayzF5x7tWIO/X1+LZ7vWIUQJm4jkgZK289k8x1UWU9LmPcUrQfmG56xrCw8NYUDzeL7dsJ/kPUf9FJxvWWuZsHQb17wyl7nJ+3i8Uw0m39uCmuWivXujA5vcG9Kk2yEs8tz9oWGu52D/yXDyELx1lZtSZ/MwNXXLt2792v4NcPMH7voh6jmU78Iiod7NsP4L96FTDvVsFAfAx8v8s6706KnT3DN2OS/PSObOmuk8k/YypnQt6PbmH+vNoqKh3yduBHfKEFic80qZ5zi4Bfb/BNU6eiN8kQtqXrkEA1smBH4fTREJeErazufAJihY0q3DEu+p3RV+WQmHtmba3KdJRSLDQi7J0bbtB0/Q/50lPPrJ99QsF830B67k7jaVfbMQfenbLmFKuv3Cx1W+CgbPh4rN4fP74ePb4VQuS79bCwuHw/s3utGQu2ZBzS4XH7vkXWJ/V5BkzYQcn1IhpiAtK5fko+Xb831d6ca9x+g6fD4z1+/l6WvjeOLIU5iQMOg9DiILZz44oqBbm1mjC3z5CHz7ysXddMPX7s+qHfIWvIiISD7K9l2jMSbKGLPEGLPaGLPWGPNPz/ZRxpgtxphVnq8Gnu3GGPM/Y8xGY8waY0xDX/8QPtHmEfjzDxox8LbzTJGMKRRBt8RYJq3YwaHjqX4IzPvSMyzvfreFDsPmsWr7YZ7pWofxdzUjoWQh39ww5aibOla7GxQpm/3xhUtDv0lw9d/cf483W8POFTm7V+px+ORO+OoJqNHZJWylquUtfsm7snVcAZoVY3I1etozKY4dh06ycPMBHwaX2ddrd9N1+HwOnTjN2IFJ9N/5FObQFrh5rBuVz0pYJPQcBXV7wsx/wsyncj9KnDwdSlSFEpXz/DOIiIjkl5x81J8CtLPW1gcaAB2NMc08+x6x1jbwfK3ybOsEVPV8DQLe8HbQ+SbciyWmxSke795UnlVFEmBgywRS0jL4cOm2/I/LyzbuPUrPEQt4auqPNL0ihq//fCX9mlXy7ZqG1eMh5VdXgCSnQkKg9UMwcJorg/5OB1j4+oXfCB/c7I774ROX8PUao7VBgSSxP+xd60a0c+ja2q4XYH4UJMnIsLwyI5lBY5aTULIQn9/Xiuab/+tK8F/3MlRqceELhIa7qZMNb4VvX4bpj0FGRs5unnIMtn6nqpEiIhJ0sk3arHPM8zLc83WhjzZvBN73nLcIKGaMKZf3UOWSUasr/LICDv2caXP1skVoWaUE7y/4mdPpOXwTFmBOp2fw2qwNdP7vd2zef5xhN9fnvdsaU96bPaaykpHhCpDENoK4pNyfX7EZ3PMtVG0PXz0O4/tmvS5qwzcwsq0rPNLvY5fwaa1GYKnbA8KiclWQJCo8lK4NyjN97W6OnDjts9COnDzNXe8v438zN9CjURwf3dOc2C2TYOFr0ORuVwEzJ0JC4fr/uh6Ei0fA5/flrNXB5jlu+qiSNhERCTI5WlRjjAk1xqwC9gIzrLWLPbue9UyBHGaM+a3qQSxw5se1OzzbRJzaXd2fZ02RBLi9ZQK7fz3F9B9253NQeXciNY2eIxby0tfJtK9dhm8ebEO3xLj8WYC+aRYc2JC7UbazFYxxa4k6Pu/aXYxoBT8vdPushXkvwQc9oGhFV85fRXoCU1RRNw35+48h9USOT+uZVIHUtAymrN7pk7CS9xyl6/D5zE3ex9M31ubFHvWI2rUMpj7gCoxc+1zuLmiMa9re5lE3LfiTOyE9m4QzeTpERru1nCIiIkEkR0mbtTbdWtsAiAOaGGPqAI8DNYDGQAzwqOfwrN6hnjMyZ4wZZIxZZoxZtm/fvosKXoJU8Xgo1+CcKpIAV1UvTXyJgrw7f8u55wUway2PT/qe1TsO89/eDRjetyElC2dRvdFXFo+AwmXcKGZeGAPNBsMdX0NoBIy6Dub+Gyb0g1lPu1GcO76GmATvxC2+kdjfTZVd91mOT6kTW5Ta5aN9MkXyy+930XX4fI6eSmPcXc3o3zwe8+tO91wVjYMe77nKprllDFz1BLR/CtZOggn9Xb/ArGRkuA8jqlztpliKiIgEkVyVr7PWHgbmAB2ttbs8UyBTgPeAJp7DdgAVzjgtDvgli2uNtNYmWWuTSpUqdVHBSxCr3RV2LofDmdevhYQYbmsRz8pth1m57ZCfgsu9d+dvZcqqX3i4Q3VubJDPA8v7N8LGGZB0B4RFeOeasQ3h7nnuv9PsZ+GnL+Haf8FNb7kqfhLY4ltB8YRc9zTrlVSBtb/8yvQfdrPz8ElOnc7BlMMLSM+w/Hv6egZ/sIJqZYow9b5WNEmIcSOA4/vC6ZOuImTBmDzdh5b3Q+eXIPlLGNcr68bxu1fDsd1QVVMjRUQk+GT70aYxphRw2lp72BhTALgGeMEYU85au8u4uV9dgR88p3wGDDXGjAeaAkestbt8FL8Eq1pd4Zt/uClcrR/MtKtHUgVe/jqZ9+ZvJbFi4DdoXrT5AM9NW8e1tctwb1s/VKRbMhJCwiFpoHevGxUN3d+BmjdAdHmo0CT7cyQwGAOJntHRg5sh5oocnda1QSzPf7mee8Yu/31bkcgwShaJpGThCEoWjqSE588/vjyvi0RSKCL09+nAh0+k8qfxq5iXvI8+TSrwjxtquyby1sKUe2HXGug7EUpV987P3OQuiCjk+riNuQlumeimiv4m+SvAuHWbIiIiQSYn81HKAaONMaG4kbmJ1tqpxphZnoTOAKuA3xbTTAM6AxuBE4CX30nKJSEmARKuhCVvQfOhmUaICkeG0atxBUYv2MoTnWtStmiUHwO9sF1HTjJ03AoqlSjISz3r538D1VO/wqoPoE53V8Lf24z5Yw2iBJcGfd0o6cqxrspnDhQtGM70B1qzYc8x9h9L8Xylsu9YCgeOpbBh7zEWbk7h8HmKlUSFh3gSu0j2/nqK/cdSeK5bXfo2rfjHQfNegrWT3ZTGal7uldagL4QXdOvbRl8P/SZDoRJuX/JXENcYCpX07j1FRETyQbZJm7V2DZCYxfZ25zneAkPyHppc8lr8yRW2WDsZ6t+cadetzeN5d/4WxizayiPX1vBTgBeWkpbO4LErOJmazvhBzSgS5Yd1MqvGQeoxaDoo/+8tgS26PFRp756Rtk/keM1YpRKFqFTiwr0EU9MyOHg8NVNit/9YCvuPutcHjqdSILwgr/VtSKNKZ4yWr/scZj8D9Xq7//99oXZXl7hN7A+jOkP/T8GEuIq17f7PN/cUERHxsYtY+S3iJVWugVI1YOGrUK9XptLxFUsUpH3NMoxbvI372lUlKjzwmpz/8/MfWbX9MCP6NaRKaT/0KcvIgCVvQlwTV+pf5GwN+7tiH5tmerXMfURYCGWLRuVuFHz3DzDpbohNcuX6fTkqXa0D3PIxfNgb3uvkfr8AVOvou3uKiIj4UK4KkYh4lTHQfAjs/h62zD1n98CWCRw6cZpPV/qmBHleTFi6jXGLtzG4bWU61vFTG8KN37j1Sk3v9s/9JfBVvRYKloQV7/s3juP74cM+bp1k7w8gPB+mPCe0hgFT4ORBmPsCRMdCmTq+v6+IiIgPKGkT/6rbCwqVhgWvnbOr2RUx1CwXzXvzt+Jm3QaG1dsP8+SUtbSqUpKHO3ipiMLFWDwCipRzPblEshIWAfV7u/5kx/zUWiUt1ZXiP77X9QEsUjb/7h2XBLd94dph1O2pRvAiIhK0lLSJf4VHQZNBrmT93nWZdhljGNgynp/2HGXBpgN+CjCzA8dSGDx2OaUKR/Jqn0RCQzxvAk/9ClvmwaI3XAl+X9uX7Ka8Jd2hnlNyYQ0HQEYarBmf//e2FqY9DNsWwI3DXSuJ/Fa2Ljy4LsfFWERERAKRkjbxv8Z3QFgBWHjuaNsN9ctTolAE7wVAs+209Azu+3AlR46fYHSnCIr/+D58ei8MbwrPV3TV6qY/5tbQnNV/zuuWjHTNrxvd5tv7SPArVd2te1wxxiVR+WnJW7BiNLR60DVm95eQUPclIiISpFSIRPyvYIwr1b1yDLT7GxQp8/uuqPBQbmlakVdnb2Tr/uPEl7xwVTuvs9atG9u5ghXzZ/DQrhU0iPiZ0MmpnthLuilYdbq7UYTIaBjbAz7oBXd8lblPlLecOuIqAtbpAYXVmF5yoGF/+Ow+2LE0//rtbZ7jPsSo1gnaPZk/9xQREblEKWmTwNB8CCx7F5a+dU5Z7n7NKvHG3E2MWrCVf9xQ27dxHNvnSoPvXP7H18lDANSxkewtUoPQeoNctcbYRlCs4rnrZG4eA2NvgokDXAU7b09fXDkWTh9XmX/Judrd4MvHXEGS/EjaDm2FibdCyWrQ/S0I0aQOERGRvFDSJoGhRGWocR0sfRta/Rki/hhRKx0dRZd65flo2XYe7FCNaF/0Q1s1Dub8649pjSYESteCmtezu0gd7pkN4WVr8cGglhCWzRvQK9q4kuZThsDUP8MNr3qvAEJGupsaWaEZlD+nfaJI1iKLuMRt7WTo+DxEFvbdvTLSXWl/a6HPh+7eIiIikif6+FMCR/OhblRr1bhzdt3eMoHjqel8tGyH9+97aKtLrgrEQIdnYOCX8PgOGDyfI+1foc/y6uyMrMxr/RoTkV3C9pvEftD6YTflc/5/vBfrhq9dvCrzL7nVsL9rxP7jp769z3fDYPsiuO4liEnw7b1EREQuE0raJHBUbOYa7y563X1af4a6cUVJqlScUQu2kJ7hxWIK1sKXj4IJdf2jWtwHlVpARCEyMiwPTVzF9oMneP2WhpSJzmVvqav+6ta6ffMPN8LhDYtHQJHyUPN671xPLh8VmkKJqq4gia/sXOFGrOt0dyX2RURExCuUtEngMAZaDHWFP36ads7u21slsP3gSb5Zt8d79/xpmuth1fYxKBqXaddrszfyzbq9PNmlFo3jY3J/7ZAQuPF1N5Vx0t2wfUneYt273hV3aKwy/3IRjHGjbdsXuZYR3pZ6AiYNcj3RrntZPdFERES8SEmbBJYa17viHlk02+5QqwyxxQp4r/x/6nE3yla6FjQbnGnX7PV7GfZNMjclxjKgeaWLv0d4lGsoHF0ePuwDB/MQ+5I3ITQSGg28+GvI5a1+HwgJc9N2vW3Gk3BgA3R9HQoU9/71RURELmNK2iSwhIZBsyFuNGD70ky7wkJDGNC8Eos2H2TtL0fyfq95L8KR7XDdK5lGrn4+cJz7x6+kZtlonu1WF5PXEYNCJVwVyYw0GNfr92qUuXLyEKweD/V6uuuJXIzCpaFaR1j9IaSf9t51N8xwRYSaD4Ur2nrvuiIiIgIoaZNAlNjP9Tdb+Oo5u3o3rkiB8FBGzd+at3vsXQ8LXoUGt0Cl5r9vPpGaxt1jlmOM4c3+jSgQ4aWGvCWruBG3g1tgQn9IS83d+SvHwukT0EQFSCSPEvvD8X2Q/JV3rnd8v6uUWrq2+rGJiIj4iJI2CTyRhd0UwHWfu0qJZyhaMJzujWKZsuoX9h9LubjrWwvTHoaIwtD+qTM2Wx775Ht+2nOU//VJpEJMwTz8EFmIbwk3Doet38Ln97s4cuK3Mv+VWkK5et6NSS4/Va6BwmXdBwF5Za17lk8egptGuunAIiIi4nVK2iQwNb3bVXRc9MY5u25rkUBqegbjFm+7uGuvmegSp2v+DoVK/r753flb+Wz1LzzcoTptqpW62MgvrP7N0PZxWD0O5r2Us3OSp7v+cSrzL94QGgYN+rj2EUd35+1aK8fC+qlw9d+gbB3vxCciIiLnUNImgSm6PNTt4cqTn7UGrErpwrSpVooxi34mNS0jd9c9eRi+/ivENoKGtwGw72gK45ds47lp67i2dhnubVvZSz/EebR5FOrdDLOfgTUfZX/84hEQHQfVr/NtXHL5SOwPNj3Lnog5dnCzK+QT39qtQxURERGfUdImgav5EDh9HJa9d86ugS3j2Xc0hS++/yV315z1DPbEARbU+Ct///xHOgybS+Nnv+GxSd9TtXRhXupZP++FR7JjDNzwqpvuOOVe+Hnh+Y/d8yNsmQdN7nQjJCLeUKKye/5Wjs35NN0zpae5NhYhYdBthGtvISIiIj6jf2klcJWt6yrRLRl5TuGOK6uWonKpQrz73VZsNm86j546zaz1e3h7wiQylr7N6NPt6fvFKSYs206Z6Cj+0rE6nw5pydT7WlEkKp/6n4VFws1jXXuD8X3hwKasj1s8AsKioOGt+ROXXD4S+8PBTfDzgtyf+90w2LEEurxyTn9DERER8T59dC+BrcV9MLY7/PCJW4fjERJiuK1lAk9++gPLfz5E0hnNr0+mprPs54Ms2HSAhZsO8P3OI9iMdKZEPM2vYcU42epxPqpRifpxxYgI8+PnFgVj4JaP4O1r4IOecOc3bttvThx06+/q9cq8XcQbat0I0x5xPdviW+b8vJ3LYc6/oG5PN4VZREREfE5JmwS2yle75tcLXoX6vd3UQo/uDWN5cfp6Rs7bTFqGZcGmAyzadICV2w9xOt0SFmKoX6EYg9tUplv6dCov2Qxd32ZwvUQ//kBnibnCtQIYfQOMvwUGfOpG4QBWvA9pJ1XmX3wjoiDU7Q6rJ0Cnf0NUdPbnpB6HSYOgSDnonMNCOiIiIpJnStoksBnj1rZNGQKbZ0Pldr/vKhgRRp8mFXlz3ma+/nEPIQbqxBbl9pYJNK9cgsbxMRSKDINje+HVlyHhysAcGajYDLq+Dp/cAVOGutLpGemuWXF8a1XlE99JHADLR7mR7KSB2R//9f+5qby3fgYFivk8PBEREXGUtEngq9sTZj4FC17LlLQBDG5bmYIRYdQqH02ThBiKFshiTdqMv7nG1J1fzjRSF1Dq9nA96WY97UbfytSGI9uhMjataAAACM5JREFU47/8HZlcymIbupHslWOyT9qSv4Jl77opywlX5k98IiIiAihpk2AQFglNBrmEZs9al9B4FCsYwf3XVD3/uVu/g9UfQuuHoFS1fAg2D1o/BAe3wNzn3fSzohWhWid/RyWXMmNcQZKvHneVSsvUyvq4Y/vcaHeZOtDuyfyNUURERFQ9UoJE0u0QXhAWDs/5OWmp8MVDrkJj64d9F5u3GANdhrlRjKO7VOZf8ke9myEk3I22ZcVa+PxPcOqIm7r725pLERERyTdK2iQ4FIyBxH6umuLR3Tk7Z9HrsG89dHrRFV0IBmER0GsMdHwBGt/l72jkclCoBNS4DlaPh7SUc/eveB9+mgbX/CPTKLeIiIjkHyVtEjyaDYaMNFj8ZvbHHt4Oc1+A6tdB9Y6+j82bChSDZvcET6IpwS+xP5w8CD99mXn7gU0w/XFIaANNB/snNhEREVHSJkEk5gqo2cUVQ0g9fuFjpz/mpnV1ej5/YhMJZpWvgui4zFMk09Ncef/QMOj6BoTonwsRERF/0b/CElxa/AlOHYaVH5z/mOSvYP1UaPMXt55NRC4sJBQa9IWNM+HIDrft25dh5zK3zrJorH/jExERucwpaZPgUqEJxDWBRcNdL7OzpZ6AaY9AyerQfGj+xycSrBJvASysGgc7lrnpxXV7QZ3u/o5MRETksqekTYJPi6Gup9n6qefu++4VOPwzXPeyK+ohIjlTPN6tXVsxxk2LjC4PnV/0d1QiIiKCkjYJRjW6uDeYC17LvH3/Bpj/X1fCPKG1X0ITCWoNB8CRbXBwM3Qb4YriiIiIiN8paZPgExIKzYbAjiWwbbHbZi1MexjCCkD7p/0bn0iwqtHFTS1u+zjEt/J3NCIiIuKhpE2CU+ItEFUMFr7qXq+dBJvnwNVPQpEyfg1NJGiFR8GQxdD2UX9HIiIiImdQ0ibBKaIQJN0O66bCrtUw/Qko18BtE5GLZ4y/IxAREZGzKGmT4NX0bggJg9E3wLE90OUVN3VSREREROQSoqRNgleRslCvl+vblnQ7xDbyd0QiIiIiIl4X5u8ARPKkzV9cEZKrn/R3JCIiIiIiPpHtSJsxJsoYs8QYs9oYs9YY80/P9gRjzGJjzAZjzARjTIRne6Tn9UbP/njf/ghyWSseD93egALF/R2JiIiIiIhP5GR6ZArQzlpbH2gAdDTGNANeAIZZa6sCh4A7PMffARyy1lYBhnmOExERERERkYuQbdJmnWOel+GeLwu0Az72bB8NdPV8f6PnNZ79VxujcmQiIiIiIiIXI0eFSIwxocaYVcBeYAawCThsrU3zHLIDiPV8HwtsB/DsPwKU8GbQIiIiIiIil4scJW3W2nRrbQMgDmgC1MzqMM+fWY2q2bM3GGMGGWOWGWOW7du3L6fxioiIiIiIXFZyVfLfWnsYmAM0A4oZY36rPhkH/OL5fgdQAcCzvyhwMItrjbTWJllrk0qVKnVx0YuIiIiIiFziclI9spQxppjn+wLANcA6YDbQw3PYrcAUz/efeV7j2T/LWnvOSJuIiIiIiIhkLyd92soBo40xobgkb6K1dqox5kdgvDHmGWAl8I7n+HeAMcaYjbgRtt4+iFtEREREROSykG3SZq1dAyRmsX0zbn3b2dtPAT29Ep2IiIiIiMhlLldr2kRERERERCR/KWkTEREREREJYEraREREREREApiSNhERERERkQCmpE1ERERERCSAmUBooWaM2Qf87O84slAS2O/vIETyQM+wBDs9wxLs9AxLsNMznH8qWWtLZbUjIJK2QGWMWWatTfJ3HCIXS8+wBDs9wxLs9AxLsNMzHBg0PVJERERERCSAKWkTEREREREJYEraLmykvwMQySM9wxLs9AxLsNMzLMFOz3AA0Jo2ERERERGRAKaRNhERERERkQCmpO08jDEdjTE/GWM2GmMe83c8ItkxxrxrjNlrjPnhjG0xxpgZxpgNnj+L+zNGkQsxxlQwxsw2xqwzxqw1xtzv2a7nWIKCMSbKGLPEGLPa8wz/07M9wRiz2PMMTzDGRPg7VpHzMcaEGmNWGmOmel7r+Q0AStqyYIwJBYYDnYBaQB9jTC3/RiWSrVFAx7O2PQbMtNZWBWZ6XosEqjTgIWttTaAZMMTzu1fPsQSLFKCdtbY+0ADoaIxpBrwADPM8w4eAO/wYo0h27gfWnfFaz28AUNKWtSbARmvtZmttKjAeuNHPMYlckLV2HnDwrM03AqM9348GuuZrUCK5YK3dZa1d4fn+KO5NQyx6jiVIWOeY52W458sC7YCPPdv1DEvAMsbEAdcBb3teG/T8BgQlbVmLBbaf8XqHZ5tIsCljrd0F7g0xUNrP8YjkiDEmHkgEFqPnWIKIZ2rZKmAvMAPYBBy21qZ5DtF7Cglk/wH+AmR4XpdAz29AUNKWNZPFNpXZFBHJB8aYwsAnwAPW2l/9HY9Iblhr0621DYA43Mydmlkdlr9RiWTPGNMF2GutXX7m5iwO1fPrB2H+DiBA7QAqnPE6DvjFT7GI5MUeY0w5a+0uY0w53Ce/IgHLGBOOS9g+sNZO8mzWcyxBx1p72BgzB7c+s5gxJswzWqH3FBKoWgI3GGM6A1FANG7kTc9vANBIW9aWAlU91XIigN7AZ36OSeRifAbc6vn+VmCKH2MRuSDP2ol3gHXW2lfO2KXnWIKCMaaUMaaY5/sCwDW4tZmzgR6ew/QMS0Cy1j5urY2z1sbj3vvOstbegp7fgKDm2ufh+ZThP0Ao8K619lk/hyRyQcaYD4G2QElgD/B34FNgIlAR2Ab0tNaeXaxEJCAYY1oB3wLf88d6iidw69r0HEvAM8bUwxVqCMV9MD7RWvuUMeYKXFGzGGAl0M9am+K/SEUuzBjTFnjYWttFz29gUNImIiIiIiISwDQ9UkREREREJIApaRMREREREQlgStpEREREREQCmJI2ERERERGRAKakTUREREREJIApaRMREREREQlgStpEREREREQCmJI2ERERERGRAPb/pG1O+OrXFfkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Get our predictions\n", - "dense_forecast = model_forecast(\n", - " model,\n", - " np_ts[split_time - window_size:-1],\n", - " window_size)[:, 0]\n", - "\n", - "plt.plot(dense_forecast)\n", - "plt.plot(x_valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "23.682121" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# MAE for validation set using a simple Dense model (already much better than baseline)\n", - "keras.metrics.mean_absolute_error(x_valid, dense_forecast).numpy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# RNNS using Pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd_ts" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#Passengers
Month
1949-01-01112
1949-02-01118
1949-03-01132
1949-04-01129
1949-05-01121
\n", - "
" - ], - "text/plain": [ - " #Passengers\n", - "Month \n", - "1949-01-01 112\n", - "1949-02-01 118\n", - "1949-03-01 132\n", - "1949-04-01 129\n", - "1949-05-01 121" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "data = df.values" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training Mean Is: 218.36\n", - "Training Std Is: 73.84842855470927\n" - ] - } - ], - "source": [ - "SPLIT_TIME = 100\n", - "train_mean = data[:SPLIT_TIME].mean()\n", - "train_std = data[:SPLIT_TIME].std()\n", - "print(\"Training Mean Is:\", train_mean)\n", - "print(\"Training Std Is:\", train_std)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "standardized_data = (data - train_mean) / train_std" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAFlCAYAAABx1aD0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXRkZ3kn/u+tXaVatFSVdrWklnrf1G5323gZvGCDPRhITBJIiPNLCMkkISQQMglDhjDJZIGE8xsmgUAcEiAQlgAGjAGDAe92b1Lvi7q1lXaVVFWqRaXa3vmjdNXqbi2l0r236pa/n3M44Wi59XZbJvXoed7vIwkhQERERERERKXBUOwDEBERERER0TUs0oiIiIiIiEoIizQiIiIiIqISwiKNiIiIiIiohLBIIyIiIiIiKiEs0oiIiIiIiEqIqRgv6vF4RFtbWzFemoiIiIiIqOhOnDgREEJ4V/pcUYq0trY2HD9+vBgvTUREREREVHSSJA2t9jmOOxIREREREZUQFmlEREREREQlhEUaERERERFRCWGRRkREREREVEJYpBEREREREZUQFmlEREREREQlhEUaERERERFRCWGRRkREREREVEJYpBEREREREZUQFmlEREREREQlhEUaERERERFRCWGRRkREREREmkmkMrg6HS32MUoaizQiIiIiItLMV44O4w2feBZnRsLFPkrJYpFGRERERESaGZyJIyuAj373HIQQxT5OSWKRRkREREREmpkIJyBJwPGhIL5zaqzYxylJLNKIiIiIiEgzE3MJ3N5Riz1NLvz1UxcRT6aLfaSSwyKNiIiIiIg0MzmXQGNVBT7y5t2YmEvg0z+7WuwjlRwWaUREREREpIlMVmAqsoB6lw23ttXgkf2N+Mxz/fDPxot9tJLCIo2IiIiIiDQRiC4gkxWod9sAAH/60A4YJQl/9dSFIp+stLBIIyIiIiIiTUyEEwCAeleuSGtwV+B3Xr8V3z87gZeuBop5tJLCIo2IiIiIiDQxLhdpi500APjNuzvQXF2Bj37nPNKZbLGOVlJYpBERERERkSYm524u0mxmI/7HQztxaTKCH1+YLNbRSgqLNCIiIiIi0sTEXAJmo4Qau+W6j9+1zQsAGJphgAjAIo2IiIiIiDQyEU7A57TBYJCu+3ilxYgKsxHTkYUinay0sEgjIiIiIiJNTIQTaFg26iiTJAlepxXTURZpAIs0IiIiIiLSyMRcAnUrFGkA4HNa2UlbxCKNiIiIiIhUJ4TARDixFL9/I6/TiikWaQBYpBERERERkQbmEmnMpzIrjjsCuSKNnbQcFmlERERERKQ6eZF13SqdNJ/TivB8CgvpjJbHKkkmJR4iSdIggAiADIC0EOKQEs8lIiIiIqLyMLG4I22tThoATEcW0Fxt1+xcpUiRIm3RPUKIgILPIyIiIiKiMjG5TieNRdo1HHckIiIiIiLVja9XpDlyH+e9NOWKNAHgaUmSTkiS9J6VvkCSpPdIknRckqTj09PTCr0sERERERHpwcRcAh6HBRbTyiWIz7XYSeOuNMWKtDuEEAcBvAnA70qSdPeNXyCE+KwQ4pAQ4pDX61XoZYmIiIiISA8m5xKrdtEAoKbSAkkCpuZYpClSpAkhxhb/7xSAbwE4rMRziYiIiIioPIyvsSMNAMxGA2rsFnbSoECRJklSpSRJTvm/A3gAwNnNPpeIiIiIiMrH5FwC9askO8q4Ky1HiXTHOgDfkiRJft6XhRA/UOC5RERERERUBhKpDGZjyTU7aQCLNNmmizQhRD+A/QqchYiIiIiIypB8z6wuj05a/3RMiyOVNEbwExERERGRqtZbZC2TO2lCCC2OVbJYpBERERERkarGw/MAsO64o89pQzKTxdx8WotjlSwWaUREREREpKrJxU5aPuOOADAVSah+plLGIo2IiIiIiFQ1EV5ApcUIp3XtSAyvY3Gh9Ws8PIRFGhERERERqWpibh51bhsWE+FXJXfSXuu70likERERERGRqibWWWQt87nYSQNYpBERERERkcom5xbWXWQNAE6rCVaTAVMs0oiIiIiIiNSRzQpMzuXXSZMkiQutwSKNiIiIiIhUFIgtIJ0VeXXSAMDHIo1FGhERERFRKZicSyCZzhb7GIqbDOcKrnw6aUAuPIQR/EREREREVFQnhmZx18d+in9+vr/YR1Hc0iLrPDtpHHdkkUZEREREVFT+2Tje84UTSKazGAzEin0cxcmLrPPupDlsCMZTZdlVzBeLNCIiIiKiIplLpPDr/3YMqUwWjW5bWaYajocTMBkk1C4uql6PHMM/Eyu/v4t8sUgjIiIiIiqCdCaL9365BwOBGP7pV27BjgZXWY75Tcwl4HNaYTSsvcha5l0s5qbmyu/vIl8s0oiIiIiIiuAvnjyPZy9P4y/fugev6/TA57SWZSdtci6R9300IHcnDXhtL7RmkUZEREREpLHPvzSIz788hN+8qx2/dLgVQC56fia2gHSmvO5ijYc3VqTJ447TURZpRERERESkgQvjc/jod8/h/p11+JM37Vz6uNdphRDATCxZxNMpbzKcQF2eoSEAUFvJThqLNCIiIiIiDfX6Q8gK4CNv3nXdPS2vM1fIlFNxEkmkEEtm0LCBTprFZEC13fya3pXGIo2IiIiISEOjwXkYDdJNhYs85ldOxclEOPdn2UgnDeCuNBZpREREREQaGg3No95lg8l4/Vtxn7P8Ug0nNrgjTeZz2likERERERGRNkaCcTRVV9z0cTnVsJwSHuVOWoP75j/vWrxlmnSZLxZpREREREQaGg3Oo3mFIs1qMsJdUV53seQiTR7lzJc87iiEUONYJY9FGhERERGRRlKZLCbmEmiuWrmz5Cuzu1gTcwlU282wmY0b+j6f04qFdBaRhbRKJyttLNKIiIiIiDQyEU4gK7DiuCOQ6ziV05hfbpH1xkYdAS60ZpFGRERERKSRkeA8AKC52r7i531OW1kFh4wE59G4gfh9mddRfiEqG8EijYiIiIhII6OhXJHWtM64YzncxcpmBQZnYmjzVG74e5c6aVEWaUREREREpKKRYBwA0FC1cnfJ67Qimclibl7/d7Em5hJIpLJoL6BI85XhYu+NYJFGRERERKSR0eA86lxWWE0rB2lci+HXf8LjYCAGAOgooEhzVZhgMRrK4u+hECzSiIiIiIg0MhqaX3XUEbjWQSqH8JD+xSKt3bvxIk2SpKUY/tciFmlERERERBoZCc6jaZXQEODaPrFy6CANBGKoMBtR59x4cAgAeFikERERERGRmrJZgfHwyousZT5n+aQaDgRi2FJrh8EgFfT95bYzbiNYpBERERERaWAqsoBURqw57uiwmmAzG8qiOBkMxNBRwKijjOOORERERESkKjnZcbVF1kDuLpbPadP9nbRUJovh2XhByY4yr8OK2XgSqUxWwZPpg2JFmiRJRkmSeiRJelKpZxIRERERlQt5R1rLGkUakBvz0/udtJHgPNJZgXaPo+Bn+FxWCAHMxpIKnkwflOykvQ/ABQWfR0RERERUNkaCuSKtcY1xRyBXnOi9kzYQiAIA2j2rh6Ssx+tYXGit87+LQihSpEmS1AzgYQCPK/E8IiIiIqJyMxKcR02lBXaLac2v8zr0fxerf3oxfn8TnbRy2hm3UUp10v5/AH8MYNWBUUmS3iNJ0nFJko5PT08r9LJERERERPowGlo72VHmc9kQSaSRSGU0OJU6BmdicFeYUW03F/wMuUjTe8FaiE0XaZIk/VcAU0KIE2t9nRDis0KIQ0KIQ16vd7MvS0RERESkK6PB+JrJjjJvGcTwDwRiaPdUQpIKi98HWKRt1h0AHpEkaRDAVwDcK0nSvyvwXCIiIiKisiCEwGhoPq8izVcGY34D0zF0bCLZEQCsJiPcFWbd388rxKaLNCHEnwohmoUQbQB+CcBPhBC/sumTERERERGViZlYEolUds34fZnPaQMA3RYn88kMxsIJtG2ySANy3bSJsH6L1UJxTxoRERERlQT/bByBqD4Lk/WMLiY7Nlevn3ao9zG/wRk5NGTzRVqXz4FLk5FNP0dvFC3ShBA/E0L8VyWfSURERETlb3IugYc/+Tz+4snzxT6KKuT4/XzGHWsrLTAaJN2OOw4GlCvS9jS5MTQTR3g+teln6Qk7aURERERUVEIIfOibZzCXSC91nMrNaCgOAHmNOxoMEjwOi26DQ/oVLtIA4NxYeNPP0hMWaURERERUVE/0juKZi1OotBgxXcbjjk6bCe6K/CLpfU6bbu+kDQRiqHNZUWldex9cPvYuFmlnR1mkERERERFpYmougT//znkcbK3C2w+16PYe1npGgvklO8p8Tv0utB4IxNBWu/kuGgDUVFrQVFWBs6NzijxPL1ikEREREVFRCCHwoW+dxXwqg4+/fT98LiviyQxiC+liH01x+S6ylnmdVt120gYDMXR4lSnSAGB3o4udNCIiIiIiLXzn1Bh+fGESf/TANmz1OuB15FINyy3hUQiB0eB8XsmOMp/TipnYAtKZrIonU144nsJMLKnIfTTZ3iY3+gMxRBKvnfAQFmlEREREpLmpSAIf+c45dLdW4Tfu7ABwLXq+3Iq0ufk0IgvpDY07el02CJHbr6YnA0vx+w7FnrmnOXcv7fzYa2fkkUUaEREREWlKCIEPf+ss4skMPv7oPhgNEgDA49D3frDVjGwg2VHmWyxY9ZbwOBCIAgDaPfl3DdezpzFXpJ15DY08skgjIiIiIk1dmYri6fOT+P17O9Hpcy59XC5MpqP66h6t59oi640XadNRfe1KG5iOwSABLTXKFWlepxX1Lttr6l4aizQiIiIi0tSFiQgA4L6dddd9vKbSAkkqw07aBhZZy7x67aTNxNFcbYfVZFT0uXua3DjLcUciIiIiInVcmYzAIN287NhkNKDGbim7O2mjoXnYzAbUVFry/p6lIk1nBetAIKpoaIhsT5MLV6ejZZn8uRIWaURERESkqcuTUbTVVsJmvrnb4nHodz/YauRkR0mS8v4eq8mIKrsZUxH9jDsKITAwHVOlSNvb5IYQwPnx10Y3jUUaEREREWmqbyqCTt/K6X9eHS9xXs1oaGOLrGV6W2g9HVlALJlRqZOWCw95rdxLY5FGRERERJpZSGcwOBPHtjrnip/3OMpv3HEkGN9QsqNMbwut+wNy/L7yRVqdywav0/qaSXhkkUZEREREmhkMxJHJCnTVrd1JE0JofDJ1xJNpBOOpDSU7ynxOm66CQwZVLNKA3MjjuVGOOxIRERERKeryZC7Zscu3cifN67RiIZ1FtEwCIkYLSHaU+XRWsA4EYrCYDGgs4M+ajz2NLvRNRTCfzKjy/FLCIo2IiIiINNM3FYVBAjq8K3dbym2h9UgBO9JkXqcVyUwW4fmU0sdSRX8ghi019qXl5Erb0+RG9jUSHsIijYiIiIg00zcZwZZVkh2Ba9HzgTJZaD0SkjtpG1/u7HPZAOinYB0IqJPsKNvbnAsPOTdW/vfSWKQRERERkWb6pqKrJjsC5ddJGw3Ow2yU4FssPjfC69DPrrRMVmB4Jo72VTqkSqh32VBbacGZERZpRERERESKSKazGAzEsG2V0BBgeSet9AuTfAzNxNBcbYehgBFAn0su0kp/V9o/PXsVyUwWexej8tUgSRL2NLlfEwmPLNKIiIiISBODMzGks2LV0BAAqLZbYJDKp5N2aSKC7ausG1iP3H0r9YTHp86M4+M/vIS3HGjEw3sbVH2tvU1u9E1FkUiVd3gIizQiIiKiIosn03ilfwafefYqfnJxstjHUc1SsuManTSjQUKtQ19LnFczn8xgYCaGHQ2FFWkOqwkVZmNJ/12c8ofw/q/14mBrFf725/dBktQJDZHtaXIhkxW4OBFR9XWKzVTsAxARERG9Fj19bgI/vTSNXn8IlybmkF1MWW+pqcC9O+qKeziV9E3mkh23elcv0oDcvbRyGHe8PBmBEMCOeldB3y9JEnyu0l1oPRaax7u/cBwehxWf/dVDq4bBKGnP4jjlmdEwDrRUqf56xcIijYiIiEhjoXgSv/XvJ+CwmnCgpQpvuKcTB1qr8HxfAJ9/aRAL6QysJvXf8GqtbyqC1hr7um/mvU4rpsugSLs4kYuK31FfWCcNyIWHlOKdtNhCGu/+/HHMJzP40ruPLAW+qK2pqgJVdjPOlfm9NBZpRERERBrr9YcgBPCZd92C1231LH18bj6NrAD8s3F0rnFvS6/6JqN5/bm8DiuuTOp/nO3iRAQVZiNaazYevy+rc9twtsQKkkxW4H1f6cXFiTl87tduxbYC79wVQpIk7H0NhIfwThoRERGRxnr9IUgSsK/5+nGttsUdU/3TsWIcS1XJdBYD6yQ7yjxOCwLRJIQQGpxMPRfHI9he7ywo2VG21VMJ/2y8pIIyvnlyBD++MImPvHk3Xr/dp/nr72504/JkBKlMVvPX1gqLNCIiIiKN9QyHsM3nhMN6/VBTe22uSBsIlF+RNiQnO+ZRpHkdViQzWczNpzU4mTqEELg4MYedBYaGyLrqnMiK0ircX+6fgcdhwa/evqUor9/hrUQqIzAeKr0xUKWwSCMiIiLSkBACp0ZC6G69OfTAbTejttKCwZnSeUOulMuTUQBYM35fJu9Km47q9034VGQBwXiq4Ph9mVzU9k2Vzvhn73AI3a3Vqic5rqalOjc+OjwbL8rra4FFGhEREZGGBmfiCMVTqybTtXsqS6propS+qQikPJIdgVwnDQCmI0m1j6WaC+OLoSENhSU7yto9lTAaJPQtFrnFFowl0R+I4WBrddHO0FqbK9L8QRZpRERERKSAnuEgAODACp00IPemvBzHHfsmo2itsaPCsn5qpWepk6bfhMdLi3u8NpPsCABWkxFbau0l00nr8ed+flfqBGul3mWD2Sixk0ZEREREyuj1h1BpMa469tfmqcRUZAHRBf3ex1pJ31QEXb71u2jA8k6afou0ixMRNLhtqLJbNv2sbT5nyXTSeoZDMBok7Gt2F+0MRoOEpqoK+FmkEREREZESev0h7GuugnGVxL+OxYTHwTLqpqUyuWTHrjzvZ7krzDAZJF0vtL4wPoftm+yiybrqHBiciWEhXfyEx5PDQexscMJuKe4mr5YaO4s0IiIiItq8RCqD82Nzq446AkC7t/wSHodmYkhlRN6dNINBgsdh1W0nLZXJ4up0FDvqN3cfTVYqCY+ZrMiFhrQU7z6arKXGDn9wvtjHUA2LNCIiIiKNnBsLI50V6F4lNAQA2sowhl9OdtzI0mOv06rbTlr/dK4o3Wz8vkwubvumijvy2DcVQSyZwcEtxbuPJmuptmM2liy7sWDZpos0SZJskiQdlSTplCRJ5yRJ+qgSByMiIiIqNz3DIQCrh4YAgM1sRFNVRVkVaX2T0byTHWUeh0W3nbSLE4vJjgp10jq8lTBIQN9kccNDTg7lfn6Lmewoa61ZTHgs05FHJTppCwDuFULsB3AAwBslSbpNgecSERERlZUefwhNVRXwOW1rfl2bx47+MirSLk9F0FKdX7KjTM+dtAvjEZiNEjoWR1c3y2oyoq22sujhISeHg6iptCwVSMXUUlMBoHx3pW26SBM58k+MefE/YrPPJSIiIio3vcOhNbtosnZPJQamoxCiPN5SXZmM5n0fTeZxWBGIJpHN6u/v4OLEHLZ6HTAblbtZ1FXnwOUix/D3DAdxsLWqaEusl2MnLQ+SJBklSeoFMAXgR0KIV5V4LhEREVG5mIokMBqaX/M+mqzd48BcIo1gPKXBydSVymTRH4jmnewo8zqtyGQFQvP6+zu4NBHBzk0usb5Rl8+JoZl40RIeQ/Ekrk7H0F0Co45ALgHUaTWxSFuLECIjhDgAoBnAYUmS9tz4NZIkvUeSpOOSJB2fnp5W4mWJiIiIdKNXvo+WR5Emx/APBEpjN9ZmDM3EN5TsKPPodFdaKJ7EeDix6SXWN+qqcyCTFUW7q9jjz/38FnOJ9XKSJJV1wqOi6Y5CiBCAnwF44wqf+6wQ4pAQ4pDX61XyZYmIiIhKXq8/BJNBwp6m9ZcAty0WacWOXFeCHHaxkWRHINdJA/RXpF2cyP15ldqRJpOXnxfrXlrPcAgGCdjfXBpFGpC7l8Y7aauQJMkrSVLV4n+vAHA/gIubfS4RERFROen1h7CzwQWbef3wjObqCpgMEgZn9F+kXZ3OFRVbfRsL0ZA7aXoLD7k4nkt2VHrcsdgJjz3DQeyod6HSWtwl1su1Li60Lpe7m8sp0UlrAPBTSZJOAziG3J20JxV4LhEREVFZyGQFTo+E8xp1BACz0YDWGntZxPAPz8bhdVpht2zszb1eO2mXJiOotpvhWzy/UmxmI7bUVhZlV1pWXmJdIqOOspYaOxbS2TV/Rj773FV899SYhqdSxqZLYSHEaQDdCpyFiIiIqCxdmYoiupDe0Jvcdk9lWYw7+mfn0VJdseHvc9lMsJgMuuukXRiPYEe9S5UExC6fA5eL0Em7Mh1FZCFdEvvRlmuREx6DcfhcN6+1EELgUz+7igd21eHN+xu1Pt6mKHonjYiIiIhu1usPAsgvNETW7qnE4ExMlxH0y/mD8aU30xshSRK8DquuOmnZrMCliQh2NCh7H03WVefA4EwcyXRWleev5uRQ7uf34JYSK9Kqcz9Xq91LGwjEEIqnSq64zAeLNCIiIiKV9fpDcFeY0e7J/15Wm6cSiVQWE3MJFU+mrlQmi7HQ/NKb6Y3yOK2Y1lEnbXg2jvlURvFkR9m2OmdREh5PDgdRbTejrbb4S6yXa17s0PpnV054PLmYqFpqxWU+WKQRERERqaxnOIQDLRtbAizH8A/q+F7aeCiBrMil8BXC67DoqpMmJzvuqFc2NETWubjGoE/jpdY9wyF0t1aXxBLr5WxmI+pc1lU7aT3DQTitJnR6N7b+oRSwSCMiIiJSUWwhjcuTkQ2NOgJAu3cxhl/HRZo/mHvzXMi4I5ALDwlEk0oeSVUXJ+YgSRtfN5CvrV4HDBJwWcMY/vB8Cn1TURwssdAQmZzwuJKTwyEcaK2CwVBaxWU+WKQRERERqej0SBhZARzY4JvcOqcNFWajrhMe5TfPBY87OqyYjS0go5N7eRfHI2ivrUSFZf01C4WwmY1orbHjioadtN6lJdalOTLYUr1ykRZdSOPSxFzJnns9LNKIiIiIVCS/od61wb1ZBoOENk+lvou0YBxGg4QG983Je/nwOq3ICmAmpo+Rx4sTc4ovsb5RV51T005az3Awt8R6g51grbTU2DE+l7gpTOX0SAhZgZJbG5AvFmlEREREKhqcicNmNhS0N6vdY9f1nTT/7Dwaq2wwGQt7y+mVF1pHSn/k8cpUBIMzcdyickhFl8+BwUBMs4THY4Oz2FbnhKOEllgv11JjhxDAaOj68JAeOTSkhZ00IiIiIrrB0EwcW2oqCwpdaPdUYng2jlRG28h1pfiD8YJHHYFcuiMAXSQ8fvWYHyaDhLd2N6n6OtvqnEhnBQZnCi/ef3B2Am/71IsIxtYufoOxJF7pn8U9O3wFv5baWuVdaTeMPJ4cCmKrtxJuu7kYx9o0FmlEREREKhqaiWFLgdHl7R4H0lmBkeDKEeOlLrfIuvAi7VonrbSLtGQ6i2+cHMX9O+vgcWy8Y7oRcsJjoUutr0xF8P6v9aJnOIQnT4+t+bVPn59AJivw8N6Ggl5LC3Jy6PKERyEEevwh3d5HA1ikERERUZH854kR/ODseLGPoapsVmB4Nr6JIi2X8DgQ0O4OklLmkxkEogsFx+8D+umkPXNhErOxJH7x1hbVX6vT54AkAX0F3EuLLqTxW188AbvFiLZaO57oXbtI+96ZCbTW2LG7UZ2VAkqoc9pgMRqWkkSBXPd6NpbU5RJrGYs0IiIi0lwyncWHnziD3/73k/jEjy5DCH2k923UZCSBhXQWW2rzX2K93LUibeWI8VI2ssn4fQCotBhRYTaWfCftq8f9qHfZcPc2r+qvJSc8bnRXmhAC//0bpzEQiOGT7+jGL97aihNDQQzPrPyzFYon8dKVAB7a21By+9GWMxgkNFdXXDfueHI4CAA4uEWfoSEAizQiIiIqgrNjYSRSWexudOGTz/ThD7/ai4V0ptjHUtzQ4hvgQjtp1XYz3BVmXXbS5M5G8ybGHSVJgsdpKelO2nh4Hs9dnsajtzTDqNE+ri6fc8OdtH99cRDfOz2ODz64A6/b6sFbDjQCAJ7oHV3x658+N4l0iY86ylpq7PDPXhsJ7hkOwWE1ocunbtKmmlikERERkeaODcwCAP7t/zuMDz64HU/0juFdjx9dN8hAb4YWwx3aCuykSZKEdp3G8Mtvmjcz7gjk7qVNl3An7T+PjyArgF84pP6oo6yrzoGBDSQ8Hh+cxV89dQEP7KrDb/+XDgBAY1UFjrTX4Ine0RU72d87M46WmgrsaSrdUUdZS03FdXfSTg4Hsb/FrVnRrAYWaURERKS5Y4Oz6PBUwuu04nfv6cQn39GN3pEQfu7TL+k6cv5GQzNxmDaxJwwAOjyVGJjW39+Jfza3esC7ySANj8OKQBE7aSeGZvHpn11FdoWF2tmswNdO+PG6rbVoLbBbWojtiwmP+RTv05EF/M6XTqK5ugJ/9wv7rxtdfFt3E/qnYzgzGr7ue0LxJF7UwaijrLXGjvB8CuH5FOLJNC5ORHR9Hw1gkUZEREQay2YFjg0GcWtbzdLHHtnfiC+/+whC8SR++fFXy+aO2tBMHC019oL3hAG5e2lj4QTmk/oaB/UH42iutm/6Tb7XWdxO2r+9NIS//cFF/O+nLtz0c/lK/wz8s/OaBIYsJ3e3To+E1v3av3rqAuYSKXz6V26By3Z9HP2b9jbAYjTgiZ7rA0SePq+fUUcASwmi/tk4To+EkckK3S6xlrFIIyIiIk31TUURnk/h1vaa6z5+qK0Gf/TgdoyG5nUbOX+jodnY0h6nQrV7c6OS/Tq7l5aL39/cqCOQG8sLxnNdkmIYCERhMRrwLy8M4B9/euW6z331uB8umwkP7q7X9EwdHgccVhNOj4TX/dqXrgbw4O567Gy4eWzRXWHGvTt8+M6pMaSX7eJ76sw4mqsrsLfJrei51dKybFeaHBrSrdMl1kPJh+wAACAASURBVDIWaURERKSpo4O5+2iH22pu+tzuxtybwnNjc5qeSQ1CCAwF4mjb5BicHH5wZUpnRVowvqlkR9mexULh7Oj6BYnShBAYDMTxi7e24G3dTfi7py/jiy8PAgDC8RS+f3YCb+1ugs1s1PRcBoOEPU2udTtp4+F5TM4toLtl9a7SW7sbEYgu4KWrMwByf64XrwTwsE5GHYFlRVowjpNDIXR4KlFdaSnyqTaHRRoRERFp6tjALOpc1hUDJbbXOWGQgPPj+i/SgvEUIgtptBYYGiJr89hhkICrOirSwvEUIon0phZZy/YtFmmn8hjtU1ogmkR0IY2t3kp87NF9uH+nD//zO+fw7d5RPNE7imQ6q2lgyHL7m6twYTyyZnhIz3Du7+zAGvezXr/dB5fNhCd6cimPT5+fQCoj8JBORh2BXEfQXWHG8Gwcvf4gDuh81BFgkUZEREQaEkLg2OAsbm2rWfG39BUWIzq8Dpwvg07a4FKy4+YKFavJiLbaSvTpqEjzL+1I2/y4Y3WlBa01dpz2a99JW/pn6KmE2WjAP7zzIA631eADXzuFT/3sCnY3upY6fVrb2+xGMpPFxYnV/13p9YdgMRmwa4VRR5nNbMRDexvwg3MTiCfTS6OO+5r1Meooa6mpwEtXZhCI6nuJtYxFGhEREWlmJDiP8XACh9tvHnWU7Wpw4UIZdNLk+P1Cd6Qt1+lz6KtIm938jrTl9jW7b0og1IKcqikvFbeZjXj8sUPY2eDC5NyC5oEhy+1vznWL1rqX1jMcxO5GFyymtd/yv7W7CfFkBt84OYoXdJTquFxrjR39i2mXLNKIiIiINuDY4n20W1e4jybb1ejCaGgeobi+d6YNzcQhScoUKl11DgwGYkhl8tuLVWxyJ02pWPr9zVUYDc1rHsU/MBODySChqepaR9BpM+Pzv34YH354Z9FGHQGguboC1XbzqvfSUpkszoyGcWCN+2iyw201aHTb8DdPXdDdqKNMHq21W4zYVuco8mk2j0UaERERaebY4CxcNhO21zlX/Rp5NEvv99KGZuJocNkUCZXo9DmQzoql7lyp88/Ow11hvinyvVDy6F0+kfNKGgzk0jlvXKFQU2nBu+/q0DwwZDlJkrCvuWrVTtqliQgSqSy68+gqGQwSHjnQhFgyg6aqCuzX2agjcC08ZH9z1aZWXpQK/f8JiIiISDeODsziUFsNDIbVR6nkqHC930sbmolhyyZDQ2RywmPfpD5GHnPJjpu/jybb3eSGJAGnNL6XNhCILY06lqL9zW5cnowgnkzf9Lkef66gXSvZcbm3dTcBAN60p153o47AtSLt4Bb9h4YALNKIiIhII4HoAq5Ox9YcdQRyy4t9TmtZdNKUuI8GAFu9DkgSdHMvzT8bVyTZUeawmtDpdWjaSctmBYZm4mgr4SJtX3MVsmLllRW9wyHUVlrQnOeuuu31TvzLY4fw3nu7lD6mJnY1uFDvsuG+nXXFPooiWKQRERGRJo7L+9Ha1x+/2t3o0nUnLZJIYSaWVKyTVmExorm6QhdFWjYr4A/OK7IjbTl5tE8IoehzVzMZSWA+lSntIq1lcT2B/+bitccfRHdr1Ya6YvftrIPbrsyIqta8Tite+dB9ZREaArBIIyIiIo0cHQjCajJgb9P640i7Gl24MhXFQjqjwcmUNzSTC85QqpMGAJ1ehy4WWk9HF5BMZ9GSZwcnX/tb3JiJJTEamlf0uasZWEwKbFeo0FaDz2lDg9t20720cDyF/ulYXqEhVJpYpBEREZEmjg3O4kBL1bpx4ACwq8GNdFbo5g7WjYZnlS/SuuqcuDodRSarTSepUEvx+yp00oC1I+eVNBjI/TnaPMr+OZS2t8l90xiovPj7QEt5dJVei1ikERERkeqiC2mcGwuvuR9tuV2N+g4PGVzakaZcF6bT50AynV0qgkrV0iJrBe+kAcDOBifMRkm7Im0mBovJgEa3sh1Bpe1vqcLgTBzheGrpYz3DIUjStXFI0h8WaURERKS6k0NBZMXa+9GW21Jjh91i1G14yPBMHB6HBQ6rSbFndvlyu59KfeTRP5sbR8w3sCJfVpMRO+pdmoWHDARiaKu1r5lEWgrk9QTLl333+oPo9DoUW4FA2mORRkRERKo7NjgLgwQc3JLf+JXBIGFng37DQwYVjN+XbV0s0ko9PMQ/G4fPaVVlh9i+ZjfOjISR1WDkM1ekle59NNm+xTue8oijEAK9/hC6W3kfTc9YpBEREZHqjg7MYneje0OdpV0NLpwfn9PkDbnShmbi2KLwnSyXzYx6lw19UxFFn6u03I40de5x7Wt2I7KQxoDKS70zWYHhmXhJ70iTue1mtNXalzqMQzNxBOMp3kfTORZpREREpKqFdAa9/lDeo46yXY0uRBfSGAlqk+anlEQqg/FwQvFOGgB01ZV+wqN/dl7xZEfZtfAQdUcex0LzSGayJR2/v5y8ngAAev1yaAg7aXrGIo2IiIhUdXE8goV0FofaNvab/V0Ni+Eh49oERSjFr0Kyo6zTlyvStNoVtlGpTBbjYeV3pMm6fA7YzAac8qv7MyEHv+ihkwbkOozj4QSmIgn0DAdhtxixrc5R7GPRJrBIIyIiIlVdnsyN5+2od27o+7bXO2GQ9JfwqMaONFmnz4F4MoOxcELxZythPJRAViif7CgzGQ3Y03hz5LzSBgP6KtL2L3bNTvvD6PWHsLfJDZORb/P1bNP/9CRJapEk6aeSJF2QJOmcJEnvU+JgREREVB6uTEVhMRrQusHuis1sxFavQ3cJj2rE78u6fLlCt2+yNO+lyfH7zTXqxdbva67CubE5pDNZ1V6jPxCD3WKEz2lV7TWUtLvRBYMEHBuaxfnxORxgaIjuKVFipwF8QAixE8BtAH5XkqRdCjyXiIiIysDlyQg6vJUF/WZ/V6P+Eh6HZ+Nw2kyotisff17qMfzyqKdanTQA2N/ixkI6i8sqLjofDOTSOSWptOP3ZXaLCV0+J75xYgSpjEA3Q0N0b9NFmhBiXAhxcvG/RwBcANC02ecSERFReeibiqKrbmOjjrJdDS6MhRMIxpIKn0o9gzNxbKm1q/IGv7rSAo/DUrpFWjAOo0FCg9um2mtoER4yOBNHu0e9QlMN+5rdCERz/54wfl//FB1WlSSpDUA3gFdX+Nx7JEk6LknS8enpaSVfloiISJee75vG98+MF/sYqootpjNu8xUWYrCrMRceckFHI4/DKuxIW26r11Gyu9L8s/NoqqpQ9T5UW60dLpsJp0bUCQ9JZ7Lwz+ojfn+5fYv30hrcNtS51CuSSRuK/RskSZIDwDcA/IEQ4qb/JRVCfFYIcUgIccjr9Sr1skRERLr1sR9cwvu+2ovRkL4i5jfi6nSumOgqMGnuWsKjPoq0dCaLkeC84jvSluuqc6BvMqJZwmMwlsT3z4yv+3qZrMC5sTBaVLyPBgCSJC1GzqvTSRsJziOdFbpYZL3c/mY3AHbRyoUiRZokSWbkCrQvCSG+qcQziYiIylkqk8WlyQiS6Sz+/ulLxT6OauR7Q4WOO9Y6rKh32XRzL20slFD9DX6Xz4m5RBrTkQXVXmO5z788iP/2pZP47um1u75ffnUIV6dj+IVDLaqfaW+zG5cmIkikMgV9vxACPcPBFQvPAZ0lO8p21LvQWmPHfTvqin0UUoAS6Y4SgH8BcEEI8YnNH4mIiKj8XZ2OIpnOosNbiW/1jOLcmL52geWrbyoCi9Gwqc7SrkYXzumkSJOTHVtViN+XdWocHiIvR/7It8+uWhhOzSXwsR9cwp2dHjyyv1H1M+1vdiOdFQV3WJ8+P4m3feolfOWY/6bPyUWaXhZZyywmA57743vw87c0F/sopAAlOml3AHgXgHslSepd/M9DCjyXiIiobMmdoY8/ug/uCjP+5vsXi3widfRNRgtOdpTtanDhynS04K6JloYW0w3V7aTlijQt7qUJIXDKH8KR9hrEkhn82RNnV+w+/a8nz2Mhk8VfvHWPJomIexfDQ86NFvbLjX9/ZQgA8Mln+m76uRqcicFpNaG20rK5QxJtghLpji8IISQhxD4hxIHF/zylxOGIiIjK1bmxOdjMBhxoqcbv3dOJ5/sCeO5y+QVr9U1Fljo/hdrV6EImK9CnYuT6Wi5OzOHw//4xvnFiZN2vHZiOwWoyqLpfy+u0wmUzoW9K/V1p/tl5BOMpvOVAE97/hm34wbkJfO+GsJtnL0/jydPj+N3Xd2o2ItjotsFdYS6okzY8E8fzfQHc2enBeDiB/zg6fN3nBwIxtHv1E79P5YmryImIiIrg3FgY2+tdMBokvOv2LWiursBff/8islltwiC0EE+m4Z+dx7YC76PJroWHFGck9MUrM5iKLOADXz+FT/zo8oqdJCEEHn++H194eRDdrVUwGNR7gy9JErrqnJoUrT3+IIDcbrJ339mO/S1V+J/fPodANDf2mEjlumsdnkr89us7VD+PTJIk7C5wDPbLR4dhkICPv30fbu+oxT/+9CriyfTS5wcCMd2FhlD5YZFGRESkMSEEzo/NYfdivLzVZMQHH9yOC+NzeKJ3tMinU87Vqdzdnq5NdtJaa+yotBiLFh7SNxlBtd2Mt9/SjE8+04c//GovFtLXRuTC8RTe88UT+MvvXcA9O3z4zK8cUv1MnV7HUnKmmk75w7CZDdhW54TJaMDfPboP0UQaH/n2OQDAP/zkCoZn4/jLt+2B1WRU/TzL7W504eJEBOlMNu/vSaaz+PpxP+7bWYcGdwU+8MA2BKIL+MLLufHHhXQGY6F53d1Ho/LDIo2IiEhjI8F5zCXSS0UaALx5XyP2Nrnxdz+8pIu7V/m4PJkbxys02VFmMEjY2eAqWgz/5ckIttU58bFH9+GDD27HE71jeNfjRxGMJXHKH8LD//d5/PTiFD788E589l23wG03q36mrjoHAtEkZlVe8n1qJIQ9jW6YF+8UdtU58Qdv6ML3zozjk8/04TPPXcXPdTfhdVs9qp5jJbsaXUims7g6Hcv7e354bgIzsSTeeaQVAHCorQav3+7FPz17FZFECv7ZOLICultkTeWHRRoREZHG5GJDHuMDcoXInz60A2PhBD7/0mCRTqasvqkozEYJWxRIOtzV6MKF8Yjm46BC5O7CbatzQpIk/O49nfjkO7rROxLCw598Ho/+00sQAvjab9+Od9/Vodk9Ji0SHlOZLM6OhrG/5fq9W++5qwP7mt34xI8uw24x4UMP71TtDGvZ3ZjbC7aRZNQvvzqM5uoK3N11bWfvB96wHaF4Cp97YRADAfWDX4jywSKNiIhIY+fG5mCQcnuNlnvdVg/u2e7FP/z0CqIL6VW+Wz/6JiPo8DiWujCbsavBhehCGv5gXIGT5W88nEBkIY1t9de6gY/sb8SX330EyUwW/2WbD9/7/TtxsLVa03PJ3Um5W6mGSxMRLKSzOHBDkWYyGvB3b98Pj8OKj7x5FzwO9UJS1tLhqYTVZMh7DPbqdBQv98/gHYdbYVx2Z3BvsxsP7q7D48/3o3fxDp7edqRR+WGRRkREpLHzY3Po8DpQYbn5Ds9v3tWBSCKNV/tninAyZfVNRdFZt7n7aLJdi6OhWt9Lk4ugbTfcqzvUVoNXP3Q/Hn/sEKrs2ke1N7ptqLKbcWZEvTCVUyO5/Wg3FmkAsK3OiaMfug8/d7B4O7lMRgN21DvzDg/5j1eHYTJIePuhm8/8/jdsRzSZxj8/P4Bqu7ko/0yJlmORRkREpLHzY+Hr7qMtd3BLNWxmA164EtD4VMqaT2bgD8axzbe5+2iybXVOGA2S5vfS5ATFlRIqjSomOK5HkiR0t1Th5HBQtdc45Q+hptKC5uqKFT+vZoJlvnY15u4qrpS4uVwilcF/nhzBA7vr4HPabvr89nonHtnfiGQ6y9AQKgks0oiIiDQUjCUxFk5cdx9tOZvZiFvbavCizou0q9NRCJELuFCCzWzEVm+l5p20S5MReBxWVJfgYuODrdXom4oiPJ9S5fmn/GHsb3aX9L6wXY1uhOdTGA3Nr/l13z87jlA8hV8+smXVr3nffV0wGiSOOlJJYJFGRESkIbkTJIcerOTOTg8uT0YxNZfQ6liKWxoTVKhIA3L30rTvpEWwvV65P4OSuhfvwZ3yhzb0fZFECp97YQBv+9SLeGWVsdroQhqXpyI3hYaUmt15jsF++dVhtNXacXtH7apf0+F14PHHDuG993YpekaiQrBIIyIi0pCcRLdrlXFHALijMxdn/uJV/XbTriU7KteV2N3oxng4oXrsvCybFeibiqJLoZFNpe1vcUOSkPfIY/90FH/+nXO47a+ewf968jzOjITxf37ct+LXnh0NQwiUfJG2o94JScKa99IuT0ZwbDCIdx5pXXdE857tPnbSqCSwSCMiItLQ+bE5NLhtqFljfG5XgwvVdjNe6NNveEjfZATtnkpFkh1lcmF7QaNu2mhoHvFkZsX7aKXAaTNje50TPcNrd9KmIgn82r8exb1//yy+9OoQHtxdj+/83h14/wPb8HL/zIoJkb2L3bn9zaVdpNktJnR4Ktcs0r5y1A+L0YBHb2nR8GREm8MijYiISEPnxuZWvY8mMxgkvK7TgxevBNYNRChVanSgdi7+vW1kL9ZmyMVLqY47AkB3axV6hoNr7o/7lxcG8EJfAH9wfxde/JN78YlfPIB9zVX4pVtbYTEZ8IWXB2/6nlP+EFpr7Gv+MqFU7Gp0r1q4Z7ICT54ew+u3e3XxZyGSsUgjIiLSSCKVwdXp6KrJjsvd2enBxFwCV6djGpxMWfPJDIZn44qFhshqKi1ocNs0Cw+5vJjs2Fmi445A7l7aXCKN/sDqS62fuTCFIx01+IP7t12XbFhTacEj+xvxzZOjmEtcHz5yyh8q+VFH2e5GF0ZD8wiuMAZ7dGAWU5EFvHl/YxFORlQ4FmlEREQauTgRQVbkfvO/njvle2k6THlcSnZUobjRMjykbzKCepcN7gqzJq9XCHmJ9slVRh6HZmK4MhXFfTvqVvz8Y7e3IZ7M4BsnRpY+NjWXwFg4gf3N6/+clgK5M71SN+27p8dgtxhx306f1sci2hQWaURERBqRO0D5dNJaauxorbHrcl9a35TyyY6yXY0uXJ2OIZHKKP7sG12eiijeDVRah6cSLpsJPauEhzxzYQoAcP/OlYu0vc1udLdW4YsvDy2NTJ5aXJDd3aqfThpwc3hIKpPF98+M4/6ddbBbTMU4GlHBWKQRERFp5NxYGE6badXlwDe6o9ODV67OIJ3JqnwyZfVNRmEyKJvsKNvV4EImK1YMu1BSJivQNxnF9hINDZEZDBK6W6txcmjlTtozFyfR5XOgtda+6jMeu70N/YEYnl/8hcApfwhGg7TmmohSUuuwot5lu6nD+uKVAILxFEcdSZdYpBEREWlEDg3JdznwnZ0eRBbSOD2qTVCGUi5PRtHmqYTFpPzbjF157sXaLP9sHAvpbMkmOy7X3VqFy1MRRG64VzaXSOHV/lncu86o35v21sPjsOALLw0CAE6NhLCj3gmb2ajWkRW3q9F1U6DMd0+Nw2kz4e5tniKdiqhwLNKIiIg0kMkKXJyY21B34vattZAk4MU+fY08XpmKqDLqCAAt1XY4rCbV76XJnbpSH3cEcvfShABO+a8vUp67PI10Vqw66iizmox45+FW/OTSFIZmYroKDZHtvmEMNpHK4OlzE3jj7npYTfopNolkLNKIiIg0MBCIIpHKrrnE+kY1lRbsbnTp6l5aIpXB0GxctUREg0HCzgan6p20vqlcWmKXDjppB1qrVlxq/ZMLU6i2m5fCRdbyziNbYJAk/MWT5zGXSONAie9Hu5E8BntpIldcP3t5GpGFNB45wFFH0icWaURERBo4t4HQkOXu6PTg5HAQ8WRajWMpTk52VKuTBuTekF8Yn1tzN9hmXZqIoKmqAg5r6QdOuGxmdHod1xVpmazATy9N4Z7tPhgN64/X1rtteOPuevx4MWhEf520XIda/vfsu6fGUFtpwe0dtcU8FlHBWKQRERFp4PzYHCxGAzp9Gyte7uz0IJURODowq9LJlNW3uFtMjfh92a5GF2KLu9jUcnlSvZFNNRxsrUbPcGhp+fnJ4SCC8dS699GW+9XbtwAA7Bbjhn9Oi625ugJOqwnnx8OILaTx4wuTeGhvA0xGvtUlfeJPLhERkQbOj89hW70D5g2+aby1rQYWk6Go+9IW0hn82RNn8bVj/lWj7xfSGfzLCwP46HfPwWkzod2jfLKjbFdDrmui1r20dCaL/umYLkJDZAe3VCE8n0J/ILf8/McXJmEySLh7mzfvZxxur8GeJhcOtdXk1X0rJQaDhJ2NLpwbm8OPL0wikcoy1ZF0rfR7+ERERDonhMC5sTncX8BCXZvZiENbqvHClRkVTpafowOz+OIrQwCAv/7+BbzjcCvedfsWNLgrkMkKfLt3FH//9GWMhuZxZ6cHf/KmHaokO8q66hwwGiScH5vDQ3sbCnqGEAJfO+7HgZZqbK+/vhgbmo0jmdFHsqOsW15qPRTEVq8DP7kwhSMdNXDZ8l/ELUkSvvQbt0HS6a/wdze68JWjfny7dwz1LhsObVn/Lh5RqWKRRkREpLKxcAKzsWTBe6fu6PTg4z+8hEB0AR6HVeHTre/YYBAGCXj8sUP4ylE//unZq/jMc/14cHcd+qdjuDgRwZ4mF/7m5/firq78OzeFspmN6PI5Cu6kZbMCf/7dc/jCy0NoqqrAD//w7uvunl2ekJdx66dI6/Q64LSZ0OMP4Uh7LfqmonjH4dYNP8dtz7+oKzW7GlyYT2Xwk4tTePed7TDorBtItJxOf1dCRESkH6f9uUXD+5oLK9Lu7MzteSrWyOOJoVnsbHDh3h11+OyvHsKzH7wHv3FnO17oCyCezOCT7+jGd373Tk0KNNmuBldBCY+ZrMCHvnUGX3h5CA/trcdYeB5/+/2L133N5ckoJAm6updlMEg40FKFk0NB/PjCJADgvgI6t3q2/JcgTHUkvWORRkREpLJTI2GYDBJ2Nmws2VG2p8kNp9WEV4sQHpLOZNEzHLpudKylxo4PPbQTPf/zATz7wdfjkf2NmnctdjW6MDGXwEx0Ie/vSWey+ODXT+Erx/x4772d+Md3HsSv39GOL74yhJeuXiuAL09F0FpjR4VFX/u1ulurcXkygu+cGkOnz4EtterdCyxFnT4HzEYJW2rt2NtU2C9EiEoFizQiIiKVnRkNYUeDEzZzYW/6jQYJh9qq8Wq/9vfSLoxHEE9mcKitZsVzSVJxRsp2LRa8+Y48pjJZvO8rvfhmzyg+8IZt+MAD2yFJEv7oge1oq7Xjv3/jNGILuTUHfZMRVdMp1XKwtQpZAfT6Q6+5LhoAWEwG/MadHfiD+7uK9nNJpBQWaURERCrKZgVOj4Sxb5PLgY901OLqdAyBDXSOlHBsMNe9O9RWWiEMclcyn5HHVCaL3/nSSXzvzDj+x0M78d77upY+V2Ex4mOP7sdIcB4f+8FFJNNysqN+Rh1l3S3X/hndv7OuiCcpnj950w68rbu52Mcg2jQWaURERCoanIkhkkhjf4H30WSH23OdLK33pZ0YCqKpqgIN7gpNX3c91ZUWNFVVoHfxvt9anrkwiR+dn8SHH96J37y746bPH26vwWO3t+HzLw/hq8eGkc4KXYWGyNx2M7Z6K1FlN6NbZ8uoieh6LNKIiKhoslmBdCZb7GOo6vRIGAA23Unb2+SG3WLUdORRCIFjg7Ml10WTvW5rLV7un0EmK9b8uuf7AnBYTXjsdW2rfs0fv3E7Wmvs+PPvngegr2TH5T744Hb8+Zt3c4kzkc7x32AiIiqaT/3sCo781TM4s1jIlKNTIyHYzAZ0bTIp0Gw04JYt1ZqGh4wE5zEVWVjxPlopuLPLg1A8te7I44tXArito2bNReJ2iwkfe3QfMlkBgwR0ePUZuvHGPQ14a3dTsY9BRJvEIo2IiIrmB+cmMBNL4p2Pv4KTw8FiH0cVp0fC2NPoVqSzcbitBpcmIwjFkwqcbH1L99FKdCnw67bmVhO8sMZqAv9sHIMzcdyxuMZgLbd11OL37unEvTvqCg55ISJSAos0IiIqirlErgPyi4daUFNpwbsef7Uo6YVqSmeyODe2+dAQ2ZGOWgiRWy6theNDQThtppId/fM6rdhR71xzf5wcrX9nHkUaAPzRg9vx+GOHFDkfEVGhFCnSJEn6nCRJU5IknVXieUREVP5ODAaRFcBbuhvxtd+6HfVuGx7716N4oa84C5vVcHkyikQqi/0tyuxs2tfshsVk0KyYPT44i4Ot1TBqvANtI+7o9ODo4CwSqcyKn3/hygx8TquuFlMTESnVSfs3AG9U6FlERPQa8MrADMxGCd0t1ahz2fDV37odbbWV+PXPH8NPL04V+3iKOD2SSx5UarGuzWxEd0uVJvfSwvEULk9GcWuJhobI7uz0IJnO4sTQzd3FbFbgpSsB3Nnp4d4sItIVRYo0IcRzALTNBCYiIl17tX8W+5urUGHJ3f3xOKz4j9+8DdvqHHjPF4+jbzJS5BNu3qmRMJw2E9pqlQuhONJRi3NjYUQSKcWeuZITw7n/t37LltIMDZEdbq+BySCteC/t4kQEM7FkXvfRiIhKiWZ30iRJeo8kScclSTo+PT2t1csSEVEJii2kcXY0jCMd1xcA1ZUWfO6xW5HKCDx9frJIp1POmdEQ9jW7YVBwXPBIew2yIndfTE3HB4MwGSQcKPF9W5VWEw62Vq94L03+GIs0ItIbzYo0IcRnhRCHhBCHvF6vVi9LREQl6ORwEOmswOH22ps+53PZsLvRhecu6/sXeolUBhfHI4qFhsgOtlbDbJRUX2p9fDCI3U3upU5nKbuj04Mzo+GbUi9fuBJAp8+BeretSCcjIioM0x2JiEhzr/bPwmiQcMsq0e53dXlxcjiI6EJa45Mp58L4HNJZgf3NytxH6bvWzwAAIABJREFUk1VYjNjXXKVqeMhCOoNTIyHcWqLR+ze6syuXevny1Wt/JwvpDI4OzOad6khEVEpYpBERkeaODsxiT6MLDqtpxc/f3eVBKiN0Hcl/enFBt9KdNCB3D+v0SBjxpDpF7NnROSykszhU4qEhsn3NVXBYTXjx6rWRx57hEOZTGY46EpEuKRXB/x8AXgawXZKkEUmSfkOJ5xIRUflJpDLo9YdwpOPmUUfZLW3VsJkNeF7HcfynRkLwOKxoUGHU7kh7DdJZgZ7hUMHPmI4s4I++fgof/e65m+LrTwzpIzREZjYacFtHDV68cq2of/FKAEaDdNO9RyIiPVj5V5gbJIR4hxLPISKi8tfrDyGZyeJI++pvnq0mI27rqMVzffq9l3Z6JIz9zW5Vot9v2VINgwS82j+z4U6REALfPDmKv/jeecQW0khlBF7pn8Wnfvkg2j25FMpjg0G01drhdVoVP7ta7uj04McXpjASjKO52o4XrgSwv9kNl81c7KMREW0Yxx2JiEhTr/bPQpKAQ21rdzju6vKifzqGkWBco5MpJ7qQxtXpqCqjjgDgtJmxp8m94X1p/tk4fvVzR/GBr5/CVq8D33/fXfjcrx3CeHgeb/6/L+DJ02MQQuDkUHDdfz6lRr579tKVGcwlUjjlD/E+GhHpliKdNCIiony9OjCDnfUuuCvW7nDc1ZV7g/1CXwC/dLhVi6Mp5sxIGEIA+1qUDQ1Z7kh7DT7/8hASqQxs5vUTGL/4yhD++qkLkAB89JHdeNdtW2AwSOj0OfG9378L7/3ySfzel3vw1N5xzMSSOKST0BBZp88Bn9OKF64EUGU3IysYvU9E+sVOGhERaSaZzuLkcDCve0JdPgfqXFZd3ks7PZK7K7avSb0i7XB7LZLpLE7517+X1j8dxZ89cRYHW6vxwz+8G4+9ru263W1NVRX46m/djvfc3YGnzkwAWL/TWWokScIdnR68eCWA5/sCqDAb0d2qr0KTiEjGThoREWnmzGgIidTa99FkkiThri4vfnR+EpmsgFHBhdBqOz0SRlNVBWod6t3pOtxWA0nKJWWuFcIC5HaeAcBH37IbzdX2Fb/GbDTgQw/txG0dNegZDmGrt1LxM6vtjk4PvtUzim/1jOJIRw0sJv4umoj0if/rRUREmnmlP3eH6tY8uzR3dXkQnk/hzGhYzWMp7tRICPtVHHUEALfdjB31rrzupZ0YCqLKbkaHZ/3C694ddfjAA9tVCTxR2x2duWI1upDGHVs56khE+sUijYioxJwYCuJN/+d5Xe8IW83RgVl0+Rx5d5jk4IfnL+sn5XE2lsRIcF610JDlbuuowfGhWSTT2TW/7sRwELe0Vuuy8NqIBnfFUgeQ99GISM847khEVEKePD2G93/tFJLpLL5xcmTdMTY9SWeyOD44i7cdbMr7e2odVuxpcuH5vgDee1+XiqfbOCEERkPzuDodw2Q4gfFwAhNz87g6FQMA7GtWt5MGALd11OJfXxzE6ZHQqnfIQvEkrkxF8bbu/P/e9ezB3fV48vQ4dtQ7i30UIqKCsUgjIioBQgh8+tmr+NgPLuHQlmpYzQa8eGUGQoiy6X6cH59DLJnBkfaNFZ53dXnxz8/1I5JIwVnEnVfRhTRO+UPo9YfQM5z7v4HownVf43FYUOey4S0HGnFQg9CKI+25e2kvX51ZtUiTF17forO0xkJ94IHt+P37uq4LRiEi0hsWaURERZbKZPHhb53FV4/78cj+Rnzs0X34+okR/NkTZzE0E0dbHveI9ODVxfto+YSGLHdXlwef/tlVvNI/izfsqlPjaOtaSGfw+o//FIFoEgDQ4anE3V0eHGitwo56FxrcNvhcVlhN60fhK6nKbsGOehdeGZjBe7Fyp/HEUBBGg4T9GoxflgKjQYLRoO0/ByIipbFIIyIqokgihf/27yfxwpUA3ntvJ97/hm2QJGnpLtYLVwLlU6QNzKDdUwmfy7ah77tlSzUqzEY83zddtCLtxFAQgWgSH354J95+Swvc9uJ19G50e0ctvnx0CAvpzIpF4omhIHY3ulBhYeFCRKQXDA4hIiqif/jJFbx0NYCPP7rvukS9tlo7mqoq8OIV/e0IW0kyncWr/bP/r737Do+yStsAfp+Z9EZ6SA9JCCQkkELv0gREAbGuqGtZu666frvyrevqqlvcteDaP7E3RKSIWGgiHRISSCWF9N57mcyc748JmJCQOhXu33V5ybzlzJMc3jBPzjnPwfRB7I92IWsLJaYHuxp1v7QDWVWwUAjcNDXApBI0QFs8pE2lwanC3hUwO9UaJBXWGWTqJRER6Q6TNCIiI2lu78TnxwuwLMob10/273FOuzGvGw7nVEOtkUaKUHeO5Vajsb0TC8YPbyRszlgP5FY1o7CmRceRDc6BrErEBrrAwdr0JqBMG+MGIYCjfVQDzShrRKtKfdmsRyMiulQwSSMiMpJN8YVobOvEXbPH9Hl+Vqh2j7DUEvPaI6wvu9LKYWupxJyxwyuLPjesqxS/EUbTqpvakVLcgLnDjF3fRtlZIsLbCUdyeidpCfnaTayZpBERmRcmaURERqDWSLx/KA+xAc4XnYo2M+TXdWnmTEqJXWnlmDPWHTaWw1sXFeLhAJ9RNtibUaHj6AZ27vs/Z6yHwd97sKYHu+FkQS3aVOoex+Pza+E9ygY+zrZGioyIiIaDSRoRkRHsTi9HQU0L7podfNFrPBytMX60o9mvS0spbkBpfduIin4IIbA4wgsHsyvR2qEe+AYdOpBVBWc7S0T66n/fs+GaHuyG9k4NThXW9Th+Mr8WsRxFIyIyO0zSiIiMYMPBXPg62+LKCf0nLrND3XEir/cIiTnZlVYGhQAWho+sMuPiiNFoU2lwIKtSR5ENTEqJA1mVmBXqDqUJ77s1Nahrv7Ru69JK61tRXNeKOBYNISIyO0zSiIgMLLmoHsdza3DHrCBYKPv/MTxrrDs6OjWIz6s1UHS691NaOSYHucLV3mpE7UwLdoWjjQV2pZXrKLKBZVU0obyh3WTXo50zys4SE3ycehQPOZmvHVWbHMQkjYjI3DBJIyIysA0Hz8LeSokbpvgPeO3UIFdYKoXZrksrrGlBRlkjluhgfzNLpQILxntiT0aFwSpe/pKpHbWbbcLr0c6ZPsYNJwvqzo+6JuTXwsZSgXBvJyNHRkREQ8UkjYjIgMrq27DjdClumOIPJ5uB99uyt7ZATICL2a5L+6lr1EtXm1AvjvBCTXPH+aqF+nYgqwohHvbwNYPCG9OD3dDRqUFigXYELaGgFpP8nGE5wGgtERGZHv7kJiIyoI+P5EEjJe6Y2XfZ/b7MDnVHSkk9aps79BeYnuxKK8M4L0cEutnrpL15YR6wVArsSivTSXv9aVOpcSy32qSrOnY3ZYwrFF37pbWp1EgtrmfpfSIiM8UkjYjIQFo6OvHZsQIsiRiNADe7Qd83K9QdUvYsCmEOaps7cDy3RmejaADgaGOJmSHu+CmtHFLqd8pjQn4t2lSa83u0mbpRtpaY4DMKR89W43RRPTo1kkkaEZGZYpJGRGQgm08Wo75VhbvmDH4UDQAm+Y2Cg7WF2a1L25tRAY0ElgxQwXKoFkd4Ib+6BVkVTTpt90K/ZFXCUikwbYybXt9Hl6YHuyKxoO789NgYVnYkIjJLTNKIyOSo1Bqs+yYZ+84YfuNifalvVeH1vVmY5O+MyUMc3bBQKjA92M3s1qXtSivHaCcbROl4f7FzI3O6qPK4Kb4Qz2xPRUenpte5A5lViA1wgb21xYjfx1BmhLihQ63BZ8fyEexhP+KKmkREZBxM0ojI5Pzr+wx8cbwA7x/MNXYoOvP8jjRUNXXguZUTIMTQ99uaHeqG/OoWFNa06CE63WtTqbE/sxKLIjyH9fX2x8vJBpP8nc8XJRmuU4V1WPdNMj48nIf7P03osRddZWM70kobMDfMPNajnTM5SLsuraqpg/ujERGZMSZpRGRSvjtdivcO5sLZzhLHztagpaPT2CGN2L4zFdiUUIR75wZjop/zsNqY3bVPl7mMph3KrkKrSo0lEaP10v6SCC+cKqxDeUPbsO5vbu/EoxuT4OlojXXLxmNPRgV+93E8Wju0idq57/McE98f7UJONpaI7Bq55Ho0IiLzxSSNiExGdkUT/vj1KcQGOOOl6yehQ63BsbM1xg7rvNL6VuzLqEBaSQNqmjsGVbiioU2FdZuTMdbTAb9fNHbY7x3i4QAvJ2v8klU57DYMaVdaORytLTA9WD/ruZaMcMrjs9+mIr+6Ga/cGI1754Xgxesm4mB2Fe748Dia2zvxS1YlXOy0hTjMzbnvOZM0IiLzZT4T7Ynoktbc3on7P02AjaUSb9wSCxc7K9hYKrA/sxJXjPc0dngAgP/ZdLpH8Q4rCwVGO9kg2MMeTywZd34Eo7sXdqSjorENb986C9YWymG/txACi8K9sPlkEZraO+FghHVS7+zPgYVSgTtnBfU7hVGtkdidXo754z1hZaGf3wWGejogyM0Ou9LKsXZ64JDu/e50Kb6KL8JDV4RiWldCc8Nkf1hbKPD4V6dw2/vHUVDTglmh7lAqdDtV0xB+OzMIno7WCPV0MHYoREQ0TEzSiMjopJRY900yciqb8Mld0+A9Srtx8PRgN+zPNI2RI5Vag/j8GqyY6I3lUd4oq29DWUMbyurbcDinGivfOITfzQnGo4vGwsZSm4ztz6zExvhC3DcvBNH+w5vm2N2qGF98dqwAP6WW4dpYvxG3NxRqjcSru7PQqlIjraQB/7g2qs8ErE2lxrPfatffXanjqo7dCSGwOMILHx7OQ2ObCo6D2BgcAIrrWrHum9OI9nfuNbK5MtoXVkoFHv4iEZ0aiblmsj/ahXycbXH3nGBjh0FERCPAJI2IjO6jw3nYfqoE/3PlOMwK/XUN0LwwDzz7bRryq5t1thnycKWWNKBNpcGySG2S1l19iwov7EzD2/tz8GNqGf55bRTCfZzw5ObTCPGwx6MjmObYXVyAC/xcbLE1qcTgSVpOZRNaVWpMHeOKzSeLUFLXirfXxmGU3a/JUW5VMx747CTSSxtw37wQLI/07qfFkVsyYTT+70Au9mdWYsVEnwGvV2skHtuYBLVGYv1N0bBU9k4yl0V54x0LBTYczMXCcNMYwSUiossP16QRkVEl5Nfi+e/SsSjcC/fPC+lxbv447YfkX0xgNC0+T7s2bnJQ73U+o+ws8eJ1k/DZ3dOg1kjc+O5RrH7jEMob2vDv6yedH1kbKYVCYGW0Dw5mVaKicXgFM4YrpbgeAPD8qki8cuMkxOfX4Nq3DqGgWltt8ttTJbj6vwdRWt+KD347BU8uGw+FnqcKxga4wM3eatDr0t7en4PjuTV4dmVkv0n/wnAvfP676XBzsNZVqEREREPCJI2IjKaqqR0PfnYSPs62eOmGSb0+1Ae52SHA1Q4/nzGFJK0W/q628HKyueg1s0Ld8cOjc3D37DHIrWrGPXNDEKvjMuiron2hkcCOU6U6bXcgycX1sLFUIMTDAatj/PDpXdNQ1dSB1W8ewmMbk/DwF4kI83LAzkfmGGwNoVIhsDDcE3vTK3qUz+9LfYsK63dnYXnUaKyJ9TVIfERERMPFJI2IjEKtkXjki0TUtnTgrbWxGGXbe02REALzwjxwOKca7Z39fwjXJykl4vNrMTnQdcBr7aws8NSKCMQ/tRh/WjpO57GM9XLEBB8nbE0q1nnb/UktbkCEt9P5QhrTgt3wzQMzYW9tgS2JxbhnbjA23jsDPs62Bo3rmkm+aGzvxN6M/jc+35lSig61BvfPC9X5vm1ERES6xiSNiIzipZ/O4HBONZ5fFdlvmfN5YR5oVakRn1drwOh6yq9uQVVTe59THS/G1d5Kb8nA6hhfnC6qR05lk17av5BGI5FaUo+oC6pXhng44NuHZ2PHw7Pxv8vD+1zjpW8zQtzg6WiNrYn9J61bEosR7GGPSF8nA0VGREQ0fDr5F1UIsVQIcUYIkS2EeFIXbRLRpWtXWjne/DkHN08NwPWT/fu9dkaIGyyVwqhVHuPztQniYEbSDOHqST5QCGDbAImJrpytakZzh7rPLQZG2Vr2edxQlAqBayb5YN+ZCtS1dPR5TXFdK47n1mB1tC9H0YiIyCyMOEkTQigBvAFgGYAIADcLISJG2i4RXZryq5vx+FdJiPIdhb9ePfCPCntrC0wJcsV+I65Li8+rgZONBcaayL5TXk42mBnijq1JJYPaUHukUku0RUOMmYz1Z1WML1RqiZ3JZX2e39Y1NXRlNNeiERGRedDFSNpUANlSyrNSyg4AXwJYqYN2iegS09qhxn2fnoRSIfDmLbGDrno4L8wDZ8obUVrfqucI+xafX4u4QBe9VyscilUxviioacHJgjq9v1dyUT2sLRQmk6ReaIKPE0I9Hfqc8iilxNbEYsQFuiDAzc4I0REREQ2dLpI0XwCF3V4XdR0jIurh9X1ZyChrwKs3RsPfdfAfmOeN024qbIxS/LXNHciuaMLkINOY6njOlRO8YG2hOD9KpE/JxfUY7+0ECyOsORsMIQRWx/jieF4NimpbepxLL21EZnkTVkUPvI8aERGRqdDFv7h9/Wq51/wbIcQ9Qoh4IUR8ZaXxy2kTkeHtSivH7FD38/ufDdY4L0eMdrIxyrq0hPPr0XRbSn+kHG0ssTjCCztOl0Kl1ujtfTQaibSSBkSZeMGNayZpk7BtSSU9jm9LKoaFQuCqQWx2TUREZCp0kaQVAei+8t8PQMmFF0kp35VSTpZSTvbw8NDB2xKROaloaENmeRNmhboP+d5zpfgPZFWhU48JSV9O5NfAUikwyd/ZoO87GKuifVHT3IEDWfpLXvNrWtDY3tmrsqOp8Xe1w+RAF2xNLD6/Tk+tkdiWVIJ5YR5wtbcycoRERESDp4sk7QSAsUKIMUIIKwA3Adiug3aJ6BJyKKcKADB7GEkaoJ3y2NjWicRC/a/B6i4hrxaRvqMGvX7OkOaGecDFzhJbEnv9XkxnUoq1RUP62ybBVKyK8UVWRRPSShsAAMdyq1HW0IZVMZyBT0RE5mXESZqUshPAQwB+BJAO4CspZepI2yWiS8vBrGo421kiwnt40+ZmhbpDqRAGrfLYplLjdFE9ppjYerRzrCwUuGqiN3allaGlo1Mv75FSXA8rpQJhXo56aV+XroryhoVCnC8gsjWxGPZWSiwK9zJyZEREREOjk1XgUsqdUsowKWWIlPIFXbRJRJcOKSUOZVdhVoj7sCskjrK1RIy/M3anlxuk7DygTVA61BrEmdh6tO6WRXqjTaXBwawqvbSvLRriCCsL0ywa0p2LvRXmj/PE9lMlaOnoxPfJZVga6Q1bK9MbBSUiIuqP6f+rS0RmL6eyGWUNbcNaj9bdtbF+yChrxM8GGk07kWeaRUO6mxLkCkdrC+xJr9B521JKpBTXm8VUx3NWxfigvKEdf9+Zjsb2TqyKYcEQIiIyP0zSiEjvDmWPbD3aOdfF+cHf1Rb/+ekMNBr9j6Yl5Ncg2N0ebg7Wen+v4bKyUGDuOA/syajQ+feksKYVDW2mXzSku0XhXnCwtsCnRwvg4WiNmSEj+ztHRERkDEzSiEjvDmZXwd/VdsSbCVtZKPDowjCkljTgx9QyHUXXN41GIj6/FpODTHcU7ZxF4Z6oampHcleRj4FIKZFZ3oj1u7OwbP0BzPrnXtS1dPS6LqVE216kiZff787GUomlkaMBaMvyK01oA3IiIqLBYpJGRHrVqdbgaE71iEfRzlkV44sQD3u8vCsTaj2OpuVUNqGuRYXJgaZZNKS7+WGeUAhgT3p5v9cVVLfg3z9mYOHL+7HklV/w6p5M2FoqUFrfild3Z/W6Prm4HpZKgXGjTb9oSHc3Tw2AvZUSN0z2H/hiIiIiE2Rh7ACISLuHWENb7+p8QW52sFCa9+9SThfXo7G9c8Tr0c5RKgQeWxyGhz5PxLenSvRWXj3+3CbWZjCS5mJvhbhAF+xOr8DjS8b1eY1KrcFN7x5BeWM7pge74o5ZY3BlhBc8nWzw1NZkfHI0HzdPDeiRkKUU1yPMyxHWFuZVeCMu0AWpf1tq7DCIiIiGjUkakZFlVzRh6au/oLOPUaHpwa74/O7pw66IaAoOdVUd1OXaoOWR3gj3zsGruzNx1URvWOohkT2RVwM3eyuMcbfXedv6sDDcC//8PgMlda3wcbbtdX5ncilK6tvw3m2TsSiiZ0n6Pyweh29PleJvO1Lx6V3TIIQ4XzRkScRoQ30JRERE1IVJGpGRbTiYC6VC4N/XT4RS8WuycaasAW/sy8FX8YW4aWqAESMcmYPZVZjg4wRXeyudtalQCPxhcRju/jgemxOKhv39aWhT4XRhPbIqGnFhjnwouwpxgS4QwjwS5EXhnvjn9xnYm1GBtdMDe5yTUmLDwVwEe9hjwXjPXve62FvhsUVj8cy3afgprRxXThiN4rpW1LaoEOlnPkVDiIiILhVM0oiMqKa5A9+cLMK1sb5YHePX45yc6I34vFr84/sMLIrwgrsJVxi8mJaOTpwsqMWds8bovO2F4Z6Y5O+M1/ZkYXWs76Cm5NW1dGDH6VIkFdYhqbAOOZVN6G/Ltb4SGlMV4uGAQDc77Ekv75Wkncirxemiejy/KvKio7Jrpwfi8+MFeP67NMwL80BKVxGSSB/zKRpCRER0qWCSRmREnx/LR3unps8kRgiBF1ZHYtn6A/j7znS8fEO0ESLs6ZfMShzKqcIfrxw/qKp5x3NroFJLna1H604IgSeWhOHWDcfx5fFC3D4zaMB7HvjsJA7nVMPFzhIxAS64ZpIPov2dEe7t1GuzZoUAHG0sdR63vgghsGC8Jz47VoCWjk7YWf36433DwbNwtrPEmli/i95voVTgr1dPwC3vHcOGg7lo7VBDqRAI92aSRkREZGhM0oiMpL1TjY+O5GNemAfGevVdPS/U0xH3zg3B6/uycV2cn1H3fCqsacGDn51EY3snrJWKixao6O5QdhWslApMCdJPhcTZoe6YNsYVr+/Lxg2T/WFrdfHRtIyyBhzOqcYfFofhoQWhZjONcSgWhXvhg0N5OJhVhSUTtGvJ8qub8VNaOe6fF9Lv9wcAZoW6Y0mEF17fm40QT3uM9XSAjaV5FQ0hIiK6FJh32TgiM7bjVCkqG9tx1+z+pwI+tCAUAa52eGpLCto71QaKrqdOtQaPbkwCACyJ8MJre7OxN6P/cu8AcDC7GnGBLgMmB8MlhMAfloxDZWM7Pj9e0O+1Hx/Jh7WFAmunB16SCRoATAlyhaO1BfZmVJw/9sGhPFgoxKBGGgHgqasioJYSKcUNiDSjTayJiIguJUzSiIzgXCGHMC8HzBnb/+iYjaUSz62KxNmqZryz/6yBIuzp9X3ZSMivxfOrI/HazTEI93bCYxtPobCm5aL3VDW1I720AbMH+PpGauoYV0wPdsU7+3PQpuo7ia1vVWHLyWKsjPaBiw4LmJgaKwsF5o7zwJ6MCmg0Eg1tKmyKL8SKiT7wcrIZVBsBbnb43RztLw6imKQREREZBZM0IiM4crYaaaUNuHPWmEGN6swL88CKid54fV82cquaDRDhrxLya7TFOWJ8sTLaFzaWSry9NhYaKXHfpwkXTYwO51QDgF7Wo13okQVjUdHYjq/iC/s8/3VCEVpVatw2I0jvsRjbonBPVDa2I7m4HhuPF6K5Qz3gaO2FHrwiFPfNC8FVE731FCURERH1h0kakRG8fzAXbvZWQ9qI+ekVEbBWKvD0thTI/koS6lBDmwq//zIJvi62+NvKCeePB7rZ45UbopFa0oBntqf2ee+hrCo42lgYZDRmRogb4gJd8PbPOejo1PQ4p9FIfHIkD5MDXS6L6XvzwzyhEMCPqWX48HAepo1xHfLXbWdlgSeXjTfLiqJERESXAiZpRAaWW9WMPRkVuGV64JCKMng62eD3i8biQFYVkgrr9Bjhr57emoLS+jasvymmV6XDRRFeePCKEHx5ohBfnShEVVM7dqeV4z8/nsHa945hS1IxZgS7DaoK5EgJIfDIwrEoqW/D5pNFPc7tz6pEXnULbhvkmixz52JvhbhAF2w4mIviutYhj6IRERGR8bG6I5GBfXAoF5YKBW69YC+rwbh5agDW787CR4fzEBPgoofofrU1sRhbk0rw+OIwxF7kvR5fPA5JhXX40zenz+83plQIjPNyxHVxfvitAROjuWPdMclvFN78WVsJ01Kp/R3Ux4fz4OFojaVd1Q4vBwvDvXAirxZBbnZYGO5l7HCIiIhoiJikEQ2BlBLNHWo4WA/v0alr6cCm+CKsjPaBh+PQp5LZW1tgTZwfPjuWjz9fFTGsNgZjf2Yl/rT5NKYEueDBK0Ivep1SIfDaTTF4ZXcm/F3sEBPggkhfpx57dBmKEAIPLxiLuz+Ox7akElwX54e8qmb8nFmJRxaM7bUP2qVsSYQXXvwhA3fPCTbISCYRERHp1uXzqYVIB75OKELcc7uQUdYw5HvPVjbhno8T0KpS484RTEG7dUYgVGqJLwcoOT9cu9PK8buP4hHi4YC318YN+CHfzcEaz6+Kwr3zQjB1jKtRErRzFoZ7IsLbCW/sy4ZaI/Hp0XwohcBvpgUYLSZjCPZwwIE/LcAtl9nXTUREdKlgkkY0BJtPFqG9U4M/b0mBRjO44h0qtQZv/pyNpesPIKOsAS9dPwnh3k7DjiHEQ1u2/7NjBVCpNQPfMATfJ5fivk8TEO7tiM9/Nw1uZlY4Qrs2LRS5Vc3YFF+Ir+ILsSzKe9Dl5y8lvs62l+x+cERERJc6JmlEg1TZ2I7juTUYP9oRCfm1Fy333l1KcT1WvXEIL/5wBgvHe2L34/OwJs5vxLHcPiMIZQ1t2JU28IbSg7UtqRgPfZGISf7O+OTuaXC2M8/9xJZEjMY4L0f8ZVsKGto6cfuMoa/9IyIiIjImJmlEg/RDahk0EnjNjxImAAAX80lEQVTlxmhMG+OKf3yfgaqm9j6vlVLitT1ZWPnGIVQ0tuPttbF4a20cPHU0onPFeE/4udjio8N5OmnvqxOFeHRjEqYGueLjO6fC6YJKjuZEoRB4cEEoVGqJCG8nxAXqt8AKERERka6xcAiZhE+P5ve5SfPkQBcsizKNDXV3ni5FsIc9xo92xAurI7Fs/QH8/bt0vHxjdI/rpJR4bkc63j+Ui1XRPnj2mkiMstNt0qNUCNw6PRD/+D4D6aUNw54+ebayCS/9lInvkksxN8wD794aN6RtAUzVVVHe+DmjAldH+3DKHxEREZkdJmlkdKkl9XhqawpsLBWwUPw6uNup0WDDwVx88NspuGK8pxEjBKqa2nEstxoPXhEKIQRCPR1x79wQvL5PW+59Zqg7AO3GyU9vT8GnRwtwx6wgPL0iQm9Jwo1T/PHyrkx8fCQf/7g2akj3VjS0Yf2eLHx5ohDWFgo8siAUDy4IhbWF+SdogDaJvTB5JiIiIjIXTNLI6N4/mAc7KyWOrFuIUba/jji1dqhx7VuH8ejGJOx4eDb8Xe2MFuMPKdqpjsu7jeo9tCAU20+V4KmtKfj+0TmwUCjw5ObT2JRQhPvmheBPS8fpdRTH2c4Kq6J9sTWxGE8uHT+o0bqWjk68uS8HGw7mQqXW4JZpAXh4wVi9lfInIiIioqHjmjQyqoqGNmw/VYzr4/x6JGgAYGulxNtrY6GREvd/loA2ldpIUQI7k0sR7K6d6niOjaUSz62KxNmqZryxNxuPf5WETQlFeHTRWL0naOfcOiMQrSo1NiUMXMQEAJ7bkY7X92VjUYQXdj8+D39bGckEjYiIiMjEMEkjo/rkaD46NRJ3zOp737BAN3u8fEM0Uoob8Oy3qQaOTquqqR1Hz1ZjeZR3r8RrXpgHVkz0xmt7s7EtqQR/XDoOjy4KM9g6qEjfUZgc6IJPjuYPuCVARUMbNicU4ZZpAfjvzTEIcrc3SIxERERENDRM0sho2lRqfHasAIvCvfpNGBZHeOGB+SH44njhoMre69qPqb2nOnb39IoIhHs74ZmrI/DA/FADRwfcNjMI+dUt2JXefzn+DYdy0anR4J65wQaKjIiIiIiGg2vSyGi2JBajprkDd83uexStuz8sGYdTRXX4y9YUTPBxwgSfUQaIUGtncinGuNsj3Nuxz/OeTjb4/vdzDBbPhZZFjkaIhz3+sTMd88d59Fn8o6FNhc+PFmBZlDcC3TiCRkRERGTKOJJGRiGlxIaDuYj0dcK0Ma4DXq9UCKy/KQYudla4/9OTaG7vNECUQHVTO47kVGN51GiTLeVuqVTg6asnIK+6BR8cyuvzms+OFqCxvRP3zwsxbHBERERENGRM0sgo9mdWIruiCXfNHjPo5MfdwRov3TAJBTUt+C65VM8Rav2YWt7vVEdTMS/MAwvHe+K/e7JQ0djW41ybSo33D+Vidqg7In0NNwJJRERERMPDJI2MYsPBXHg6WuOqKJ8h3TczxA1j3O2xOaFIT5H1tDO5FEFudogY5mbRhvTUigh0qDV48YczPY5vSSxGZWM77p/PUTQiIiIic8AkjQzuTFkjDmRV4faZQbCyGNpfQSEE1sT64lhuDQprWvQUoVZNcweOXKSqoyka426PO2ePwdcJRUgqrAMAqDUS7/5yFlG+ozAzxM3IERIRERHRYDBJI4N7/2AubCwVuGVawLDuXx3rByGAzSf1O5r2Y2oZ1Bpp8lMduzu3MfUz21Oh0Uj8lFqG3Kpm3DcvxCwSTSIiIiIaYZImhLheCJEqhNAIISbrKii6dFU1tWNLUjHWxPrB2c5qWG34OttiRrAbvjlZDCn73xtsODrVGnxxvAAv/ZSJIDc7TPAx/amO5zhYW+CPV45DUmEdtiYV4+39OQhys8PSyNHGDo2IiIiIBmmkJfhTAFwL4B0dxHLZUqk1uPeTBBzOqep1boy7Az69ayrcHKyNEJnufZ1QhI5OzUU3rx6sNbF++MOmUziRV4upg6gOORhSSvyYWo4Xf8zA2cpmxAY4428rI81uBGpNrB8+PVaAv2xNQXOHGi+sjoRSYV5fAxEREdHlbERJmpQyHYDZfYg1Na/tycLejArcNMUfo2wtzx9XayQ+PpqPR75MxMd3TjP7D9pSSnx1ohBTg1wR6ukworaWRY3G09tSsDmhSCdJ2rGz1fjnDxlILKhDiIc93rk1DksivMzy77ZCIfDM1RFY/eZhuDtYY02sn7FDIiIiIqIh4GbWRnY8twZv7MvGdXF++Oeaib3Oh3k54o+bT+OVXZl44spxRohQd07k1eJsVTMeuCJ0xG3ZWVlgWZQ3vksuxTPXTICtVe8NnAcjo6wBL/5wBnszKjDayQb/WhOFNbF+sFCa93LNmAAXPL0iAr4utrCxHN73hoiIiIiMY8AkTQixG0BfC1r+LKXcNtg3EkLcA+AeAAgIGF7BiEtNfasKj21Mgr+rHZ65ZkKf19wwxR8J+bV4fV82YgKcsTDcy8BR6s7GE4VwsLbA8ijdrI9aE+uHrxOK8FNaGVZG+w7p3qLaFry8KxNbEovhaG2BJ5eNx29nBl1SCc2ds0c2pZSIiIiIjGPAJE1KuUgXbySlfBfAuwAwefJk3Vd7MDNSSvx5SzLKG9rw9f0z4WB98a54duUEpJTU47GNSdjx8BwEuNkZMNKekgrr8PsvE7F2WiDumBU06BGnxjYVdiaXYlWML+ysdDOAO22MK3ydbfF1QtGgk7Q2lRr/+fEMPj6SDwjgnrnBeGBeKEbZWQ58MxERERGRAZj3nC4ztvlkMXacLsVji8MQ7e/c77U2lkq8vTYOAHDfpwloU6kNEWIvKrUGT24+jdK6NrywMx3XvnUY6aUNg7r321OlaFWpceMUf53Fo1Bo90w7mF2F0vrWQd3zwaE8vHcwF6tifPDzE/Oxblk4EzQiIiIiMikjLcG/WghRBGAGgO+EED/qJqxLW15VM/66LQXTxrjivnkhg7rH39UOr94UjbTSBjy9LUXPEfbtg0O5yChrxGs3x+C/N8eguLYVV//3IF766QzaO/tPHDfGF2KclyMm+Y3SaUxr4vwgJbAlsXjAa6WU2JJYhLhAF7x43ST4ONvqNBYiIiIiIl0YUZImpdwipfSTUlpLKb2klFfqKrBLlUqtwe83JkGpEHjlxughVWxcMN4LDy8IxVfxRdiZXKrHKHsrrmvFK7uysCjcE1dO8MLVk3yw+/F5uGaSD/67NxvL1x9Aakl9n/dmlDXgVGEdbpjir/NqiYFu9pgS5ILNCUUD7pmWXtqIzPImrIr20WkMRERERES6xOmOBvbO/hycKqzD36+NGtZIzqOLwjDOyxH/+iEDHZ0aPUTYt79uSwUAPHPNhPOJlou9FV6+MRof3jEFze1q3PLeMWSVN/a6d+OJQlgpFVgdM7TiHoO1JtYPOZXNOFXUd5J4zrakYlgoBK6ayCSNiIiIiEwXk7QhqmvpwJ0fnsAz21Nx7Gw11JrB10A5U9aI9XuysGKiN1YMM1FQKgSeXD4e+dUt+PxY/rDaGKqfUsuwO70cjy4aCz+X3kVL5o/zxMZ7p8NSqcDaDcdQWNNy/lx7pxpbEouxeIIXXO2t9BLf8onesLVU4uPDeRe9Rq2R2JZUgnlhHnqLg4iIiIhIF5ikDdHfvk3D/sxKfH68ADe+exTT/r4b675Jxi+ZlVCpLz6y1anW4IlNp+BkY4lnL1Juf7Dmh3lgZogbXtubjYY21YjaGkhzeyee2Z6K8aMd+y3pHuhmj0/umorWDjVu3XAMFY1tAIBdaeWoa1Hhxsm6KxhyIScbS9wyLQDbTpUgv7q5z2uO5VajrKENq/Q0mkdEREREpCtM0oZgd1o5vkksxoPzQ5D4l8V4/TcxmBbshm1Jxbjt/eNY+fqhi1YZfOeXs0gursdzqyLh5mA9ojiEEFi3LBw1zR14Z3/OiNoayKu7M1FS34YXVkfBcoBy++NHO+GDO6aivKEdt204jvpWFTaeKISvsy1mh7rrNc575gZDqRB4c1/f34+ticWwt1JikRnvM0dERERElwcmaYNU36LC/25JxvjRjnhowVjYW1tgxUQfvPGbWJz8y2KsvykaBTUtWPXGoV4FNDLLG7F+dxauivLG8ihvncQT5TcKK6N9sOFgLsrq23TS5oXSShrw/qE83Dw1AHGBLoO6Jy7QBe/cGoecyibc8t5RHMyuwnVxflAMoUDKcHg62eDmKf7YfLIIRbUtPc61qdT4PrkMSyO9YWt16WxWTURERESXJiZpg/S3HWmobu7Av6+bBCuLnt82G0slVkb7YtN9M6AQAte/fQR7M8oBaKc5/s+mU3CwscCzK0c2zfFCTywZB40GeGVXpk7bBbRr7x76/CRc7Czx5NLxQ7p3bpgH1t8Ug7QS7R5q10/203l8fblvfggUQuCtn3uOpu3NqEBjeydWxbBgCBERERGZPiZpg7A3oxybTxbhgfkhiOpnn69wbydsfXAWgj3scfdH8fj4SB7+70AuThXV49lrJsB9hNMcL+TvaofbZgRiU0IhzpT1rqo4XCq1Bvd/ehJFta14a23csDZ7Xh7ljTd+E4s/Lw/vs9iIPniPssV1k/2wKb6ox+jilsRieDhaY2aIfqdcEhERERHpApO0AdS3qrDum2SM83LEQwtCB7zey8kGX907AwvGe+Lpban4948ZWDphNFZM1M00xws9tCAUDtYW+NcPGTppT0qJv2xNwZGz1fjnmihMCXIddlvLorxx95xgncQ1WPfPC4FGSrzdtVavrqUDP5+pwDWTfIa0Jx0RERERkbEwSRvA8zvSUNXUgX9fPxHWFoNbz2RnZYF3bp2Mu2ePQZC7PZ5bFanzTZzPcbazwoNXhGJvRgUO51SNuL33DuTiyxOFeOiKUFwba5hpirrk72qH1TG++OJ4ASoa2/BdcilUaqm3PdqIiIiIiHSNSdpFaDQSHxzKxaaEItw3LxgT/ZyHdL9SIfDUigjs/cN8eDjqdprjhW6fGQRfZ1v87du0frcBAIDiulb89oPj+M+PZ5BSXA8pf93nbVdaOf7+fTqWR43G44vD9BqzPj14RShUag3+75ez2JZYghAPe0zwcTJ2WEREREREg2Jh7ABMUU5lE9ZtTsbxvBrMDfPAIwvHGjukftlYKvHXqyNwzycJ+OBQLu6ZG9LndVJK/PHrUziRW4tfMivx+r5s+LnYYumE0YjyG4V13yRjou8ovHR9tN6rMepTkLs9Vkb74uMj+Wjv1OCJJWF6G8kkIiIiItI1JmndqNQavPvLWazfkwUbCwVevG4iro/zM4sP+EsmjMaicC+8sisLy6O8+yzW8cXxQhzKrsYLqyOxLNIbu9PK8X1KKT46kgeVWsJ7lA3+77bJl0SZ+gevCMXWpGIAwMpoTnUkIiIiIvPBJK1LclE9/rj5NNJLG7AscjSeXTkBno42xg5rSJ5dOQGLX96PZ7an4b3bJ/c4V1Tbghe+S8PMEDf8ZmoAhBC4YYo/bpjij4Y2FQ5kViHS1wmeTub1NV9MqKcDbp4agOqmdvi7Gqa6JBERERGRLjBJg3Ya4Lotp1HV1I6318ZhaeRoY4c0LL7OtnhsURhe2JmOH1PLcOUE7dchpcS6b5IhAfxrzcReI4NONpa4Sk/VJ43p76ujjB0CEREREdGQMUkDIITAf2+Ohaud1bD2BDMlv50VhM0ni/DM9lTMCnWHg7UFNp4oxIGsKjy3KpKjSkREREREJo7VHbuMcbc3+wQNACyVCvz92iiUNbThlV2ZKK5rxfPfpWNGsBtumRpg7PCIiIiIiGgAHEm7BMUGuODmqQH44FAujufWQK2R+NeaiWZdsZGIiIiI6HLBkbRL1J+uHA9XeyskF9fjyWXjEeDGaY5EREREROaAI2mXqFF2lnjt5hj8klmFW6cHGjscIiIiIiIaJCZpl7CZIe6YGeJu7DCIiIiIiGgION2RiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhAgppeHfVIhKAPkGf+OBuQOoMnYQNCD2k/lgX5kH9pP5YF+ZB/aT+WBfmYdLtZ8CpZQefZ0wSpJmqoQQ8VLKycaOg/rHfjIf7CvzwH4yH+wr88B+Mh/sK/NwOfYTpzsSERERERGZECZpREREREREJoRJWk/vGjsAGhT2k/lgX5kH9pP5YF+ZB/aT+WBfmYfLrp+4Jo2IiIiIiMiEcCSNiIiIiIjIhDBJAyCEWCqEOCOEyBZCPGnseOhXQgh/IcQ+IUS6ECJVCPH7ruOuQohdQoisrv+7GDtWAoQQSiFEohBiR9frMUKIY139tFEIYWXsGAkQQjgLIb4WQmR0PVsz+EyZHiHEY10/91KEEF8IIWz4TJkGIcT7QogKIURKt2N9PkNC67WuzxinhRCxxov88nKRfvp318++00KILUII527n1nX10xkhxJXGifry1FdfdTv3hBBCCiHcu15fFs/UZZ+kCSGUAN4AsAxABICbhRARxo2KuukE8AcpZTiA6QAe7OqfJwHskVKOBbCn6zUZ3+8BpHd7/S8Ar3T1Uy2Au4wSFV1oPYAfpJTjAUyCts/4TJkQIYQvgEcATJZSRgJQArgJfKZMxYcAll5w7GLP0DIAY7v+uwfAWwaKkfrup10AIqWUEwFkAlgHAF2fLW4CMKHrnje7PiOSYXyI3n0FIYQ/gMUACrodviyeqcs+SQMwFUC2lPKslLIDwJcAVho5JuoipSyVUp7s+nMjtB8mfaHto4+6LvsIwCrjREjnCCH8AFwF4L2u1wLAAgBfd13CfjIBQggnAHMBbAAAKWWHlLIOfKZMkQUAWyGEBQA7AKXgM2USpJS/AKi54PDFnqGVAD6WWkcBOAshvA0T6eWtr36SUv4kpezsenkUgF/Xn1cC+FJK2S6lzAWQDe1nRDKAizxTAPAKgD8C6F5E47J4ppikaT/wF3Z7XdR1jEyMECIIQAyAYwC8pJSlgDaRA+BpvMioy6vQ/iDVdL12A1DX7R9DPlumIRhAJYAPuqamvieEsAefKZMipSwG8B9of3tcCqAeQAL4TJmyiz1D/Jxhuu4E8H3Xn9lPJkYIcQ2AYinlqQtOXRZ9xSQNEH0cY8lLEyOEcACwGcCjUsoGY8dDPQkhVgCokFImdD/cx6V8tozPAkAsgLeklDEAmsGpjSanaz3TSgBjAPgAsId2is+F+EyZPv4sNEFCiD9Du6Tis3OH+riM/WQkQgg7AH8G8HRfp/s4dsn1FZM0bfbt3+21H4ASI8VCfRBCWEKboH0mpfym63D5uaHtrv9XGCs+AgDMAnCNECIP2inDC6AdWXPumqoF8NkyFUUAiqSUx7pefw1t0sZnyrQsApArpayUUqoAfANgJvhMmbKLPUP8nGFihBC3A1gB4Bb5615U7CfTEgLtL6lOdX228ANwUggxGpdJXzFJA04AGNtVMcsK2kWj240cE3XpWte0AUC6lPLlbqe2A7i968+3A9hm6NjoV1LKdVJKPyllELTP0F4p5S0A9gG4rusy9pMJkFKWASgUQozrOrQQQBr4TJmaAgDThRB2XT8Hz/UTnynTdbFnaDuA27oq0k0HUH9uWiQZnhBiKYA/AbhGStnS7dR2ADcJIayFEGOgLUpx3BgxEiClTJZSekopg7o+WxQBiO36N+yyeKa4mTUAIcRyaH/rrwTwvpTyBSOHRF2EELMBHACQjF/XOv0vtOvSvgIQAO2HmeullH0tOCUDE0LMB/CElHKFECIY2pE1VwCJANZKKduNGR8BQohoaAu8WAE4C+AOaH9px2fKhAghngVwI7RTshIB3A3tugs+U0YmhPgCwHwA7gDKAfwVwFb08Qx1JdmvQ1u5rgXAHVLKeGPEfbm5SD+tA2ANoLrrsqNSyvu6rv8ztOvUOqFdXvH9hW2SfvTVV1LKDd3O50Fb7bbqcnmmmKQRERERERGZEE53JCIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhPw/FOTzZPRYQq0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(standardized_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "def windowed_data(data, start_index, end_index, history_size, target_size):\n", - " data = []\n", - " labels = []\n", - " \n", - " start_index = start_index + history_size\n", - " \n", - " if end_index is None:\n", - " end_index = len(dataset) - target_size\n", - " \n", - " for i in range(start_index, end_index):\n", - " indices = range(i-history_size, i)\n", - " data.append(np.reshape(data[indices], (history_size, 1)))\n", - " labels.append(data[i+target_size])\n", - " \n", - " return np.array(data), np.array(labels)\n", - "\n", - "def univariate_data(dataset, start_index, end_index, history_size, target_size):\n", - " data = []\n", - " labels = []\n", - "\n", - " start_index = start_index + history_size\n", - " if end_index is None:\n", - " end_index = len(dataset) - target_size\n", - "\n", - " for i in range(start_index, end_index):\n", - " indices = range(i-history_size, i)\n", - " # Reshape data from (history_size,) to (history_size, 1)\n", - " data.append(np.reshape(dataset[indices], (history_size, 1)))\n", - " labels.append(dataset[i+target_size])\n", - " \n", - " return np.array(data), np.array(labels)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "HISTORY_SIZE = 10\n", - "TARGET_SIZE = 0\n", - "\n", - "x_train, y_train = univariate_data(standardized_data[:SPLIT_TIME],\n", - " 0,\n", - " SPLIT_TIME,\n", - " HISTORY_SIZE,\n", - " TARGET_SIZE)\n", - "\n", - "x_val, y_val = univariate_data(standardized_data[SPLIT_TIME:],\n", - " SPLIT_TIME,\n", - " 44,\n", - " HISTORY_SIZE,\n", - " TARGET_SIZE)\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(90, 10, 1)\n", - "(0,)\n", - "(44, 1)\n" - ] - } - ], - "source": [ - "print(x_train.shape)\n", - "print(x_val.shape)\n", - "print(standardized_data[SPLIT_TIME:].shape)\n", - "\n", - "# TOSO FIX X_VAL EMPTY DATA" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/kaggle_time_series_air_passenger/.ipynb_checkpoints/model2-checkpoint.ipynb b/kaggle_time_series_air_passenger/.ipynb_checkpoints/model2-checkpoint.ipynb deleted file mode 100644 index 63bb045..0000000 --- a/kaggle_time_series_air_passenger/.ipynb_checkpoints/model2-checkpoint.ipynb +++ /dev/null @@ -1,404 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "import numpy as np\n", - "from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator\n", - "from matplotlib.pylab import rcParams\n", - "rcParams['figure.figsize'] = 15,6\n", - "from tensorflow import keras\n", - "from tensorflow.keras.layers import LSTM, Dense, Dropout" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Data Prep" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Month#Passengers
01949-01112
11949-02118
21949-03132
31949-04129
41949-05121
\n", - "
" - ], - "text/plain": [ - " Month #Passengers\n", - "0 1949-01 112\n", - "1 1949-02 118\n", - "2 1949-03 132\n", - "3 1949-04 129\n", - "4 1949-05 121" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Grab and look at our data\n", - "DATA_LOCATION = 'AirPassengers.csv'\n", - "data = pd.read_csv(DATA_LOCATION)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#Passengers
Month
1949-01-01112
1949-02-01118
1949-03-01132
1949-04-01129
1949-05-01121
\n", - "
" - ], - "text/plain": [ - " #Passengers\n", - "Month \n", - "1949-01-01 112\n", - "1949-02-01 118\n", - "1949-03-01 132\n", - "1949-04-01 129\n", - "1949-05-01 121" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Convert to DateTime\n", - "data[\"Month\"] = pd.to_datetime(data.Month)\n", - "data.set_index('Month', inplace=True)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Split into Train/Val sets\n", - "split_value = 100\n", - "train, valid = data[:-12], data[-12:]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\TSB\\Miniconda3\\envs\\myenv\\lib\\site-packages\\pandas\\plotting\\_matplotlib\\converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.\n", - "\n", - "To register the converters:\n", - "\t>>> from pandas.plotting import register_matplotlib_converters\n", - "\t>>> register_matplotlib_converters()\n", - " warnings.warn(msg, FutureWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhV1bk/8O8iCWEGCYEkTAFkFGIIAQEFBQ2IA4jlquCA0mrrVJVqHe6vrXpttbW21F6lWitV61gVQfSqiCggIWFMJEwJgUACMkTmMcP6/fGe3UwnyRn2ePL9PA/PTs7eZ5+VQZ/zzbvWu5TWGkREREREROROzZweABEREREREdWPoY2IiIiIiMjFGNqIiIiIiIhcjKGNiIiIiIjIxRjaiIiIiIiIXIyhjYiIiIiIyMWinR4AAHTq1EknJyc7PQwiIiIiIiJHrF279qDWOt7fOVeEtuTkZKxZs8bpYRARERERETlCKVVU3zlOjyQiIiIiInIxhjYiIiIiIiIXY2gjIiIiIiJyMVesafOnrKwMxcXFOH36tNNDsU2LFi3QrVs3xMTEOD0UIiIiIiJyCdeGtuLiYrRt2xbJyclQSjk9HMtprVFaWori4mL06tXL6eEQEREREZFLuHZ65OnTpxEXF9ckAhsAKKUQFxfXpCqLRERERETUONeGNgBNJrAZmtrXS0REREREjXN1aHNSaWkpUlNTkZqaioSEBHTt2vU/n589ezage9x2223YunWrxSMlIiIiIqJI5to1bU6Li4vDhg0bAACPP/442rRpgwcffLDGNVpraK3RrJn/7Dtv3jzLx0lERERERJGNlbYgFRQUYPDgwfjZz36GtLQ07N27F3fccQfS09Nx3nnn4cknn/zPtRdddBE2bNiA8vJydOjQAY888gjOP/98jBo1Cvv373fwqyAiIiIiIq/wRKXt/vsBX9HLNKmpwJw5oT1306ZNmDdvHv72t78BAJ555hl07NgR5eXlGDduHKZNm4ZBgwbVeM6RI0dw8cUX45lnnsHs2bPx6quv4pFHHgn3yyAiIiIiogjHSlsI+vTpg+HDh//n87fffhtpaWlIS0vD5s2bsWnTpjrPadmyJSZNmgQAGDZsGHbu3GnXcImIiIiI3OvUKWDbNqdH4WqeqLSFWhGzSuvWrf/zcX5+Pv7yl78gOzsbHTp0wE033eS3bX/z5s3/83FUVBTKy8ttGSsRERERkau9+CLwy18Ca9fKdDiqg5W2MB09ehRt27ZFu3btsHfvXnz++edOD4mIiIiIyDsKCoDKSuDeewGtnR6NK3mi0uZmaWlpGDRoEAYPHozevXvjwgsvdHpIRERERETeUVICNGsGrFgBvPUWcOONTo/IdZR2QZpNT0/Xa9asqfHY5s2bMXDgQIdG5Jym+nUTERERURM1bBjQqRNw6BBQXAxs3Qq0bev0qGynlFqrtU73d47TI4mIiIiIyDklJUD37sBf/wrs3Qv8z/84PSLXYWgjIiIiIiJnlJUB+/cDXbsCF1wAzJolXQi3bHF6ZK7C0EZERERERM7Yu1eaj3TtKp8//TTQqhVw331sSlINQxsRERERETmjpESORmjr3Bl44gngiy+ABQucG5fLMLQREREREZEzaoc2ALj7bmDwYOCBB2TjbWJoIyIiIiIih/gLbdHRwPPPAzt3Am+84ciw3Cag0KaU6qCUel8ptUUptVkpNUop1VEptVgple87nuO7VimlnldKFSilcpVSadZ+Cda45JJL6myUPWfOHNx11131PqdNmzYAgD179mDatGn13rf29gZERERERE1SSQnQvLm0/K/ukkuA2Fhg+3ZHhuU2gVba/gLgM631AADnA9gM4BEAS7TWfQEs8X0OAJMA9PX9uwPAXFNHbJPp06fjnXfeqfHYO++8g+nTpzf63KSkJLz//vtWDY2IiIiIKDKUlABJSYBSNR9XCkhIkEYl1HhoU0q1AzAWwD8AQGt9Vmt9GMAUAK/5LnsNwDW+j6cAeF2LVQA6KKUSTR+5xaZNm4ZFixbhzJkzAICdO3diz549SE1NxaWXXoq0tDQMGTIEC/wskNy5cycGDx4MADh16hRuuOEGpKSk4Prrr8cpzsslIiIiIhIlJTWnRlbH0PYf0QFc0xvAAQDzlFLnA1gL4D4AXbTWewFAa71XKdXZd31XALurPb/Y91iN77hS6g5IJQ49evRoeAT33w9s2BDAUIOQmip7QNQjLi4OI0aMwGeffYYpU6bgnXfewfXXX4+WLVti/vz5aNeuHQ4ePIiRI0di8uTJULX/OuAzd+5ctGrVCrm5ucjNzUVamidnixIRERERmW/PHmDoUP/nEhOB/Hx7x+NSgUyPjAaQBmCu1noogBOomgrpj7/0UmeTBa31y1rrdK11enx8fECDtVv1KZLG1EitNR577DGkpKTgsssuQ0lJCfbt21fvPZYtW4abbroJAJCSkoKUlBRbxk5ERERE5GpaN1xpS0wEvv/e3jG5VCCVtmIAxVrrLN/n70NC2z6lVKKvypYIYH+167tXe343AHvCGmUDFTErXXPNNZg9ezbWrVuHU6dOIS0tDf/85z9x4MABrF27FjExMUhOTsbp06cbvE99VTgiIiIioibryBHg5MmGQ1tpKXD2rDQracIarbRprb8HsFsp1d/30KUANgFYCGCm77GZAIzFXQsB3OLrIjkSwBFjGqXXtGnTBpdccglmzZr1nwYkR44cQefOnRETE4OlS5eiqKiowXuMHTsWb775JgBg48aNyM3NtXzcRERERESu56/df3UJCXJktS2gShsA3AvgTaVUcwCFAG6DBL73lFI/BrALwH/5rv0UwBUACgCc9F3rWdOnT8e11177n2mSN954I66++mqkp6cjNTUVAwYMaPD5d955J2677TakpKQgNTUVI0aMsGPYRERERETu1lhoS/T1Mty7F2isB0aECyi0aa03AEj3c+pSP9dqAHeHOS7XmDp1KuRLEp06dUJmZqbfa48fPw4ASE5OxsaNGwEALVu2rLN1ABERERFRkxdoaGOlLeB92oiIiIiIiMxjhLakJP/njemRbPvP0EZERERERA4oKQHi4oAWLfyf79JFNtlmaGNoIyIiIiIiBzTU7h8AoqOB+HhOj4TLQ1v1tWRNQVP7eomIiIioCWsstAGyro2VNveGthYtWqC0tLTJBBmtNUpLS9GivvIwEREREVEkKSmpfz2bISGBoQ2Bt/y3Xbdu3VBcXIwDBw44PRTbtGjRAt26dXN6GERERERE1iorA/bvD6zS5uvK3pS5NrTFxMSgV69eTg+DiIiIiIjMtncvoHVgoW3fPqCyEmjm2kmClmu6XzkRERERETmjsT3aDImJQHk5UFpq/ZhcjKGNiIiIiIjsFWho415tABjaiIiIiIjIbsFU2gCGNqcHQERERERETUxJCdC8OdCpU8PXGaGtie/VxtBGRERERET2Mtr9K9XwdZweCYChjYiIiIiI7BbIxtoA0Lo10LYtQ5vTAyAiIiIioiYm0NAGyBRJhjYiIiIiIiKbaB18aOOaNiIiIiIiIpscPgycOhV4aEtIYKXN6QEQEREREVFdxcWyr3TE2bNHjpweGTCGNiIiIiIil/nsMyA5GXj5ZadHYoFA92gzJCYCJ04Ax45ZNyaXY2gjIiIiInKR3FzguuuAigqgoMDp0VgglNAGNOl1bQxtREREREQusWcPcOWV0uW+S5eqmYQRxQhtSUmBXc+92hjaiIiIiIjc4Phx4KqrgEOHgE8+Afr1i9CcUlICxMUBLVoEdr1RaYvIb0ZgGNqIiIiIiBxWUQHMmAHk5ADvvQekpkohKiJzSjDt/gGGNgDRTg+AiIiIiKipmz0b+Phj4IUXgCuukMcitmlisKGtY0cgJoZr2oiIiIiIyBkffgg8/zzwwAPAXXdVPZ6YKFMmI65pYrChTakmv1cbQxsRERERkYNWrABatgSefbbm4xE5K7CsDNi/P7jQBkRw2TEwDG1ERERERA7atQvo2ROIiqr5uNFcMaKyyt69gNYMbUFiaCMiIiIiclBRkYS22iKy0hbsHm2GhASuaSMiIiIiImc0Ftoiaq+2UENbYiJw8CBw9qz5Y/IAhjYiIiIiIoecPAkcOOA/tHXoAMTGstIGoCrB7ttn7ng8gqGNiIiIiMghu3bJsUePuueUisC92kpKJInGxQX3PCO0NdEpkgxtREREREQOKSqSo79KGxCB/TdKSiSJKhXc8xIS5BhR34zAMbQRERERETkkkNAWUWvadu0CuncP/nkR2ZUlcAxtREREREQO2bVLWv0b7f1ri7hK29atQL9+wT+vSxc5RtQ3I3AMbUREREREDikqArp1A6Kj/Z9PSgKOHAFOnbJ3XJY4dEi6rvTvH/xzY2KATp24po2IiIiIiOxVX7t/Q0TNCty2TY6hVNqACCw7Bo6hjYiIiIjIIYGGtohY12aEtlAqbQBDGxERERER2au8XJop+mv3b4ioStvWrbKAr1ev0J7P0EZERERERHYqKQEqKhqutBkNSiIiq2zbBvTuDTRvHtrzExJkc+3KSnPH5QEMbUREREREDmis3T8ge1DHxERIaAu1c6QhMREoKwN++MG8MXkEQxsRERERkQMCCW1KSYHJ82vaKiuB/PzwQxsQIQk2OAxtREREREQO2LVLjg2taQMiZClXcbHsWxBqExKAoY2IiIiIiOxVVAR07gy0bNnwdRER2sJt9w9IyRFoknu1MbQRERERETmgsXb/hqSkCAhtW7fKkZW2kDC0ERERERE5oKio8amRgGSV0lLgzBnrx2SZbduANm2qglco2rSRfwxtRERERERkNa1lTVsglTYj53h6VqDROVKp8O6TkMDQRkRERERE1jtwQPpyBBPaPJ1Vtm0Lbz2bITHR4+k1NAxtREREREQ2C6Tdv8HzG2yfPg3s3BneejZDYqLsSt7EMLQRERERkStt3w4cPOj0KKxhtPsPptLm2b3atm+X+aBmVNoGDQIKC4Hjx8O/l4cEFNqUUjuVUt8ppTYopdb4HuuolFqslMr3Hc/xPa6UUs8rpQqUUrlKqTQrvwAiIiIiijxFRcDQocBDDzk9EmsEU2mLjweaNfNwpc2MzpGGtDQJgDk54d/LQ4KptI3TWqdqrdN9nz8CYInWui+AJb7PAWASgL6+f3cAmGvWYImIiIgo8lVWAj/+MXDsWFW4iTRFRUDbtkCHDo1fGxUFdOni4dBm7NHWt2/490rz1YPWrQv/Xh4SzvTIKQBe8338GoBrqj3+uharAHRQSoXR25OIiIiImpK//Q1YsgRo3z5ye04Y7f4Dbabo6b3atm6VOZ7t2oV/r6Qk2ZGcoc0vDeALpdRapdQdvse6aK33AoDv2Nn3eFcAu6s9t9j3WA1KqTuUUmuUUmsOHDgQ2uiJiIiIKKJs3y5TIidOBG68MbJDWyBTIw2JiR5e02ZW50hAUm5aGrB+vTn384hAQ9uFWus0yNTHu5VSYxu41t/fC3SdB7R+WWudrrVOj4+PD3AYRERERBSpKiqA224DYmKAV16RoHLokMc3la5HKKHNs5W2bdvMWc9mSEsD8vKkK2UTEVBo01rv8R33A5gPYASAfca0R99xv+/yYgDdqz29GwCv/l2AiIiIiGzyl78Ay5fLsVs32UcZAPbtc3ZcZjt2TMJosKHtwAGgvNy6cVnihx+kBahZlTZAQlt5ObBxo3n3dLlGQ5tSqrVSqq3xMYAJADYCWAhgpu+ymQAW+D5eCOAWXxfJkQCOGNMoiYiIiIj82bIFeOwx4OqrgVtukceM0BZpUySDafdvSEqSpomeC7BGExKzK21Ak1rXFh3ANV0AzFeySjIawFta68+UUqsBvKeU+jGAXQD+y3f9pwCuAFAA4CSA20wfNRERERFFjPJyYOZMoHVr4OWXq5pzRGpoC6bdv6H6Xm1d63SLcDGj3b+ZlbbkZGm7ydBWRWtdCOB8P4+XArjUz+MawN2mjI6IiIiIIt7ixUB2NvD661VBDWBoq84IbZ5b17ZtGxAdDfTqZd49jWYkTSi0hdPyn4iIiIgobN99J8fJk2s+3tnXmzwSQ1tMTM2A2hjPhratW4HeveULNtPQoUBuLlBWZu59XYqhjYiIiIgctWmTrNlq377m482bA3FxkRnauncHmgXxTrxLFykweS60mdnuv7q0NGkrunmz+fd2IYY2IiIiInLUpk3AoEH+zyUkRGZoC2ZqJCCFqvh4j+3VVlkJ5Oeb24TE0MSakTC0EREREZFjtGZoC5Tn9mrbvVv2UrOi0ta3r3SuYWgjIiIiIrLW7t3AiRNNJ7SdPSvBq0mENqNzpBWVtqgoIDUVWL/e/Hu7EEMbERERETlm0yY5NhbatLZvTFYqLpavJZTQlpTksdBm7NFmRaUNkCmS69fLNMwIx9BGRERERI4JJLSdOgUcO2bfmKwUSrt/Q2KiBNiKCnPHZJmtW4G2bYNrkxmMtDQp0+bnW3N/F2FoIyIiIiLHbNokrf3j4vyfj7S92ozQ1qNH8M9NTJSi0oED5o7JMkbnSGO3dLM1oWYkDG1ERERE5JiGmpAAkRvauncP/rme26tt61Zr1rMZBg4EYmMZ2oiIiIiIrKK1bLPV1EJbYqJkjWAlJcnRE6Ht1Clg1y7r1rMBsg9CSgpDGxERERGRVb7/Hjh8uGmFtu3bgV69QnuuUWnzxF5tv/udpPL0dGtfJy1NQlukdKqpB0MbERERETnCaEIycGD913TsCERHR0Zo0xrIyZHiUCiMAOv6StvbbwNPPQXMmgVccYW1r5WWJsl/505rX8dh0U4PgIiIiIhqOn4cWLsWyM6WQHPVVU6PyBqNdY4EgGbNgC5dIiO07d4NHDkSemiLjZUQ6+rQlp0N3HYbMGYMMHeudU1IDEOHynHdutBLmB7A0EZERETkAm+9BSxZIu95N22q2nqqR4/IDm3nnCOhrCGRssF2To4czz8/9Hu4eq+24mJgyhQZ5AcfAM2bW/+aQ4bIRtvr1gE/+pH1r+cQhjYiIiIih23bBtx4o1RRLrgAmDYNGDEC+PJL4E9/kp4OLVs6PUrzGZ0jGyvGJCR4ZB1XI4zQNmRI6PdITHTp9+LECQlsJ07IL258vD2v26IFcN55Ed+MhKGNiIiIyGGrVsnxm2+AwYOrHj96VI75+aFPqXOzTZuAqVMbvy4hITLek+fmAr17y37ToeraFcjLM29MpqisBGbOBDZsAD7+WEKUndLSgE8/lUWDVk/HdAgbkRARERE5LCsLaNOmbkMOo1v6tm32j8lqBw4ABw82vJ7NkJAA7N8PVFRYPy4r5eSENzUSkG3P9uypCvSu8N57Mh3y2Wetbzziz9Ch8gsSCXNo68HQRkREROSw7GzpjB4VVfPxvn3luHWr/WOy2ubNcgw0tFVUAKWl1o7JSidOmFMxNb5fxvfPFb76CujQAbj/fmde39jAu6DAmde3AUMbERERkYNOn5YKzAUX1D3Xpo1Mh4vESlsgnSMNkbBXW16ezN4Lt9JmfL+M758rrFwJjBolrT6d0Lu3HAsLnXl9GzC0ERERETlowwagrEwaj/jTv39kVto2bZK1XV27Nn5tJIQ2MzpHAtLVPjbWRaHt8GEZzOjRzo2hZ08JjAxtRERERGSFrCw5+qu0AbKubetWqdJEkkA7RwKREdpyc6Vympwc3n2iooABA1wU2rKy5Jdz1CjnxtC8OdC9O0MbEREREVkjO1u2taqv4tSvnxQzDh60d1xWM0JbICIhtOXkyHo2M2YQDhrkotC2cqV8UfWViu3SuzdDGxERERFZIyur/iobUNVjIZLWtR06JBtE1+6WWZ82bYDWrb0b2rSWSlu4UyMNgwYBO3dKcxPHZWZKGg1nHwMzMLQRERERkRVKS4Ht2xsObUbb/0ha1xZM50hDQoJ3Q9uuXcCRI+bttWeE3S1bzLlfyCoqZJNBJ9ezGXr3ll+QkyedHoklGNqIiIiIHJKdLceGZpYlJwMxMZFVaQumc6TBy6HNrCYkBte0/c/LA44dc3Y9m8HoILljh7PjsAhDGxEREZFDsrOlEUd6ev3XREcDffpEVqVt0yagZUtp+heoSAhtQ4aYc79zz5XfC8fXta1cKUe3VNoAKV1HIIY2IiIiIodkZUnVpLHlQP37R1albfNmmeIXTFMOL4e23FwJ3m3amHO/mBiZNut4aMvMBLp0kX0InBbhe7UxtBERERE5QGuptDW0ns3Qrx9QUCBLiCJBMJ0jDQkJ0sDkzBlrxmSlnBzzpkYaXNFB0thUO5B9G6wWFyd//WBoIyIiIiKzFBZKI5JAOqX37w+cPQsUFVk/LqsdOyaNOUIJbQCwb5/5Y7LSiRMSuM1qQmIYNEhmAp4+be59A7Z/v3xhbpgaCUhw7NOHoY2IiIiIzNPYptrVGR0kI2GKpNHxMNTQ5rUpkhs3SlXVikpbZaWDvxOZmXJ0S2gDIrrtP0MbERERkQOys6UZx+DBjV9r7NUWCc1IQukcCXg3tJndOdJgfP8cmyKZmSmL64YNc2gAfvTuLd0jKyudHonpGNqIiIiIHJCVJe93o6MbvzY+HmjfPjIqbZs3y3v9YHtXeDm0tW0bXKfMQPTrJ41cHAttK1cCaWlAixYODcCP3r1lvqjXfkkCwNBGREREZLOzZ4H16wNbzwbIcp3+/SOj0lZYKIEtkLBaXefOcvTa+/HcXFnPFkynzEDExkrrf0dC29mzwOrV7poaCQTWQfLVV4GXXrJnPCZiaCMiIiKyWW6udEEMZD2boV+/yKi07dhR9d46GM2bS4NAL4U2reVnbfbUSINjHSRzcqSi5dbQ1tBebS+8APz73/aMx0QMbUREREQ2y86WY7Chbfdu6UboZUalLRRe26utqAg4etT8zpGGgQOB/HygrMya+9fL2FR71CibX7gRPXtKWbq+StvJkxI4R460d1wmYGgjIiIisllWlkz369Ej8OcYzUgKCqwZkx2OHAF++CG0ShvgvdBmVRMSw6BBQHm5A78TK1fKL2/Xrja/cCOaNwe6d68/tK1dK5sdMrQRERERUWOMTbWD2ZPYaPvv5XVtO3bIsSmFNqUC6xAaCsc6SK5c6b6pkYaG9moLZp8Nl2FoIyIiIrLR4cOyV1mgTUgMffvK0cvr2oz30uFOj9TavDFZKTdXMkSbNtbcf8AACYW2hrbdu4HiYvdNjTQ0tFfbqlVyPj7e3jGZgKGNiIiIyEZr1sgx2D/2t24NdOvm7Uqb8V46nErbqVPAsWPmjclKOTnWTY0EgFatgORkm0ObGzfVrq53b0n2J0/WPbdqlSenRgIMbURERES2Mt5gh9Kcon9/b1faduwAOnaUPedC4aW92o4flyaGVjUhMdjeQXLlStkV3so0Gg7jLwLGXFxDcTFQUsLQRkRERESNKyiQzZaNfceC0a+fVNq8Mj2wtnA6RwLeCm2ffCI/pwsvtPZ1Bg2S34ny8jBv5K8y5c/y5cDw4bJDuhvVt1fbqlVyZGgjIiIiosbk58umyME0ITH07y8dGA8cMH9cdigsDH1qJOCt0Pbqq9Jg8ZJLrH2dQYNkz7/ahaWgLFok67waK+Pu3g2sWwdMmhTGi1msvr3aVq2SHcndWiFsBEMbERERkY0KCiS0hcLoIOnFKZKVlcDOnU0jtO3aBSxeDNx6KxAVZe1rmdJBcuhQWSz4r381fN2CBXKcOjWMF7NYXJyUsv1V2oYNk20BPIihjYiIiFzhpZfkD/6RrKxMgkuooc3Yq82LzUj27AHOng1vemTHjkB0tPtD2+uvy9TIW2+1/rUGDpTj5s1h3KRrV+DSSyW0NTT3dv58eUHjF9GNlKrbQfLsWdmjzYOt/g0MbUREROS4Y8eAu+4Crr4a+N3vvLtmqzG7dsnaI6N9f7B69pRCgRcrbeF2jgSAZs2ALl3cHdoqK4F584Bx48ILqIFq21b2kw67Gcktt8gcy2+/9X++tBT45ht3V9kMtUNbbi5w+rRn17MBDG1ERETkAllZ8mZ32DDgv/8bmDlT1ulEmoICOYZaaYuKkud6sdJmRmgD3L/B9rJl8rXOmmXfaw4caEJomzpV9hB4/XX/5xctAioqvBHa+vSRAFpZKZ8bm2oztBERERGFbsUKqaJ89RXw5JPAG28Al10GHDzo9MjMFW5oA2RdmxcrbTt2yM+4R4/w7uP20DZvHtCuHXDttfa95qBBMj3SyCghadNGBv3ee1KVqm3+fCnpDRsWxovYpHdv+RqMX5RVq4DERBm/RzG0ERERkeNWrJCmbu3aAb/6FfDOO7IJ9QUXhLlWx2Xy86WYYTTUCEW/fhL+wm7xbrPCQnnPHG6neKdD21tvye+nP0ePAv/+N3DDDfJztst550nH/kA6SO7bJ0u8/Lr5ZmlPWntx6YkTwOefA9dcE1rbU7vVbvtvbKrthbHXI+DQppSKUkqtV0ot8n3eSymVpZTKV0q9q5Rq7ns81vd5ge98sjVDJyIiokhQVibvqS66qOqx668Hvv5a3itecolcEwmMzpHhvHfs31++H0VF5o3LDuG2+zckJAD798tMPSc8/jgwfTrw2mt1z737rjRhtHNqJFBV/FqzpvFrb79dtlnz69JLpSL1xhs1H//8c6lceWFqJFAztB08KP/heXhqJBBcpe0+ANX/1vV7AH/WWvcFcAjAj32P/xjAIa31uQD+7LuOiIiIyK8NGyScVQ9tgFTZ/vhHeYPuxTVc/hQUhN6ExGA07tuyJfzx2GnHDnMac3TvLoFt167w7xWsigrp/tm8uQSzDz6oef7VV2Wq4ogR9o5r8GCgRQsgO7vh67SWa1JT67kgKgq48Ubg009rbgY4f7607hwzxrQxW6pnT/nLyPbtEbGeDQgwtCmlugG4EsArvs8VgPEA3vdd8hqAa3wfT/F9Dt/5S33XExEREdWxYoUca4c2QLaPAiTYeV1FhfzhP5z1bIBJLd5tdvIksHevOZU2o6q0dm349wpWcbFUOf/wB8kA06cDn30m5zZvlorxrFn2z8KLiQHS0hoPbbt2yfTIBjvf33yzzL199135vKxMpktefbXst+AFzZtLui8slB9KVJQ31uI1INBK2xwAv23tQpIAACAASURBVARgLG+MA3BYa23Mpi4G0NX3cVcAuwHAd/6I73oiIiKiOlaskDfzSUl1z/XvD8TGRkZo271b3v+GG9o6dgQ6d/ZWaNu5U45mhLYhQySkBDIV0GzGEqkhQ4BPPpEK19Sp0jFy3jzJBjfdZP+4AKnurV3b8FpHI9Q1GNpSUuSfMUXy66+Bw4e9MzXSYLT9X7VKfmCtWzs9orA0GtqUUlcB2K+1rv73DH9/P9ABnKt+3zuUUmuUUmsOVC+/EhERUZOhtYQ2f1U2QP6wP2RIZIQ2MzpHGgYO9FZoMxpkmDE9MjZWMsXq1eHfK1jVty3o0EGWeiUnA1ddBfzjH3Ls0sX+cQGyTu3UKSAvr/5rsrLk+zdkSCM3u/lmSXhbt8rUyFatgAkTTB2v5Xr3lv/osrM9PzUSCKzSdiGAyUqpnQDegUyLnAOgg1LKqJF2A7DH93ExgO4A4DvfHsAPtW+qtX5Za52utU6Pj48P64sgIiIibyookDVr9YU2QKZIrl/v/Q238/PlaFZo27TJO98Ts/ZoM6SnS1UprBb3Idi+Xf6Q0K2bfB4fD3z5JdCpE/DDD/Y3IKnOWEfXUJjNzpZplM2bN3KzGTNkf4bXXwc++gi4/HKgZUvTxmqLPn3kfy5HjzaN0Ka1flRr3U1rnQzgBgBfaa1vBLAUwDTfZTMBLPB9vND3OXznv9LaK/9LISIiIjs1tJ7NkJoqb4iLi+0Zk1UKCuR9r79poMEaOFA6s7t5v7LqCgtldppZf6dPT5evf/t2c+4XqMJC6XFRfWlX167A0qXA888DV1xh73iq69MHOOec+te1lZdL0A2oSUpSkmyUOGeOLEb02tRIoOZfCJpCaGvAwwBmK6UKIGvW/uF7/B8A4nyPzwbwSHhDJCIioki1fDkQFwcMGFD/NUanO69PkSwokDfWzUzYJXfQIDl6ZYqk0TnSrAYd6elytHtdW2Gh/Axr69kTuPdeZ/t0KCWBrL7QtnGjNIRpcD1bdTffLE+IjgauvNK0cdrGCG3nnBN+y1YXCOp/G1rrr7XWV/k+LtRaj9Ban6u1/i+t9Rnf46d9n5/rO19oxcCJiIjI+4z1bA29mR8yRM5HQmgzY2ok4L0Okmbt0WY47zxpce9EaDPz6zDbiBESzk6cqHvOCHMBb0cwdaqUR8eNk+DjNcYP6oILzPlLicO8/xUQERGRJ+3bJ+u8GpoaCQBt20rY8XJoq6yUqXxmhbakJPm+eCG0aW1+2ImJkQqsnaHtyBGgtNT9oa2iQtaA1paVJVXtgMffurV0Wpk719Qx2iYuTtr8e3Fqpx8e2WyBiIiIIs2338qxsdAG2P8G3WwlJcCZM+aFNqW800Hy4EGp/JjRObK69HTgn/+UkBIVZe69/TG7mYoVhg+XY3Z23f+usrMl1AU1RfXCC00bm+2U8vb/NGphpY2IiIgcsWKFTHFLS2v82qFDZV3U4cPWj8sKZnaONBgdJN3OqrCTng4cPw5s22bufetjfB3+1rS5RZcuQI8edde1HTsmWwEEvJ6NXIehjYiIiByxYoW8iWy0/TiqmpHk5lo7JqsYe7SZ2Q9h4EDpHun2IGtlaAPsK6YYX4fZFUOz+WtGsnatTFMNeD0buQ5DGxEREdnuxAlg3brApkYC3u8gWVAgmxob+3uZwSvNSIyNtZOTzb3vgAGy57OdoS0uDmjf3p7XC9WIEfI9P3iw6rGsrKpz5E0MbURERGS7VatkLdKYMYFdn5AAdO7s7dDWu7e5Tey80va/sFB+fq1amXvfqCiZWmtXaNu+3d3r2Qz+NtnOzpZpnXFxzoyJwsfQRkRERLZbsUICzKhRgV2vlFTbvBzazFzPBsg0vdhYb4Q2q8LO8OHSKbG83Jr7V+f2dv+GYcPkv63qUySzsriezesY2oiIiMh2K1YAKSlAu3aBP2foUNmD6uxZ68ZlBa2tCW1RUUC/fu4PbcbG2lZITwdOnbK+IUt5OVBU5O4mJIY2baQKa4S2khL5x6mR3sbQRkRERLYqLwcyMwNfz2ZITQXKytwfUmrbs0eChZlNSAxub/tfVgbs2mVdhcquZiTFxfJ764VKG1DVjETrqvDGSpu3MbQRERGRrfLypBHJ6NHBPc+rzUiMzpFmV9oACW07dkgodKNdu2RjcavCzrnnSrXW6tC2fbscvRLahg+XRiQ7d8rUSGMzcvIuhjYiIiKy1caNckxJCe55ffsCLVsytFU3cKBUU7ZuNf/eZjA6R1o1PbJZM1nDZXVo88LG2tUZUyGzs+Xf+efLnojkXQxtREREZKu8PPnLf7DTBaOiJOh5MbTFxADdu5t/b7d3kLQj7KSnAzk51q51LCyUn6GZWzZYacgQaVKzapV0keR6Nu9jaCMiIiJbbdwoDTQC2VS7tqFDJbRpbf64rFJQIJWm6Gjz792vn1Sb3BzamjcHkpKse430dAlsRgXXCoWFss9cVJR1r2GmmBjZDuHtt4Hjx7meLRIwtBEREZGt8vKA884L7bmpqcDhw9LJzysKCqxpQgJINaV3b/eGth07gJ49rQ07w4fL0copkl5p91/diBHAvn1VH5O3MbQRERG5xLx5Mp0pkp08KW/kwwltgHemSGoN5Odbs57N4OYOknaEneRkoGNHa0ObVzbWrs4Iau3bS0WWvI2hjYiIyAXKyoCf/Qy44Qbg9GmnR2OdzZslyAweHNrzhwyR6YBeCW379kmnTKtD27Zt9mwwDUiAWbKk8euOHZMGKVaHHaVkiqRVoe3QIfnn1dA2fLj8N0Pexh8hERGRC2zZIutyioqAv/7V6dFYx1h3FGqlrVUrqRp4JbRZ2TnSMHCghH6jLb3VHn0UmDhRGlw05De/kfVUM2daP6b0dOC778L7g8fatfJ9rM3ogOm10Nanj/xx5OqrnR4JmYGhjYiIyAWMEDJoEPDb38oeS5EoL08aU/TpE/o9jGYkXmBHaLO7g+TatUBFhYSx+kJSTg7w/PPAHXfY0wQjPV0qjTk5oT1/7Vq5x+OP1z1ndMAM53fWCUpJkP35z50eCZmBoY2IiMgFNmyQfZTeflumlT35pNMjskZeHjBgQHidFFNTpSL5ww/mjcsqBQXytSYnW/caAwbI0Y7QdviwhJhLL5XX+/Wv615TWQncdZesM/vd76wfEyB7tQHAunWhPf/FF+U4Zw7w/fc1zxkVTKv2miMKBEMbERGRC2zYIFOZUlKA228H5s6VdUqRJi8v9PVsBqMZSahVlXD93//Jnmuff974tdu2SWCzot2/oV07oGtXe0KbUeF86CH5Pf3jH4GVK2teM2+ePPbssxLc7NC9OxAXF1poO3RI/liSkQGcOVM3aBYWAp06yfeZyCkMbURERA7TWgKIEUaeeEKqbg8/7Oy4zHbsmFTIQl3PZjj/fDk6NUXyiy+A4mLgyiurKjS1VVQAv/oV8P77wKhR1o/Jrg6SRigaOhR47jmgRw/g1lulKygg03p/+UtgzBjgllusH49BKRnT+vXBP/f114FTp4Df/x6YNQv429+AnTurznux3T9FHoY2IiIih5WUAKWlVaGtSxfgkUeAjz4Cli1zdmxm2rRJjuGGti5dgMRE50Lbli0Skq64Arj7blkzVL1z4759wIQJwFNPSQh46SXrx2SEtspKa19n3Tqp6nXuDLRtK1W1/HxpTgLI8ehRCbNKWTuW2tLSZA2Xv2Yi9dFaqtojR0ro+/WvpdNi9bVthYXeW89GkYehjYiIyGFG+DBCGwA88IC8Of7FL6x/I26XvDw5hjs9EnC2GcmWLfKzmj9ffj5//SswebKEleXLZWwrVwKvvgq88grQsqX1Yxo4ULYWKC629nXWrZNwZBg3Drj3Xmk68swz8vU+8IA5P+NgDR0qHViNPw4EYulS2Zbgzjvl827dgHvuAd54Q+5TXi7VYVbayGkMbURERA4zwkdKStVjrVrJ2po1a2S9TSTYuFECjBkNHVJT5U31mTPh3ysYp07Jm/gBA4CoKFnT9fLLwOLFMm1z3DigdWsgKwu47Tb7xmVHB8kTJyTgVA9tAPD009Id89FHZW2Zv+YkdjDGFcy6trlzZd3ddddVPfbII/Iz/NWvgF27ZKorQxs5jaGNiIjIYRs2yJvetm1rPn7TTVI9eOwxeePodXl5UhEyY6Pf1FSpghjVO7vk58uUuv79qx67/Xbgs89kzd6110rQrh7A7TBwoByDqTIFKzdXqr5Dh9Z8vHVr4LXXgPh4mRbZpo11Y2jIuefKawe6rm3PHqmWzpola0gNnTpJBfXDD4F335XHGNrIaQxtREREDtuwoaq5RnXNmsmbx127Qm9l7iZ5eeGvZzMYU0ntniK5ZYscjTb7hksvlbVs770HtG9v75gACUxJSY1veB0O43ewdqUNAEaPllb5V11l3es3plkz+e8o0P9WXnlF/hjy05/WPTd7toS3J56QzxnayGkMbURERA46elT2gaq+nq26jAw5fvGFfWOywuHD0nDFrLVOffpIVcWJ0KYU0Ldv3XNRUfaOpTqlJDhlZlr3GuvXS5Dp1s3/eTMqqOFKS5PficbWgZaXy7TWiRP9b3zetq1UuM+ckc3gu3a1ZrxEgXLBf15ERERN13ffybG+0Na5s5xbvNi+MVnBmMZoVqXNqKo4Edp69pQ1h24zerS0qt+zx5r7G01I7O4KGYyhQ2XtXX5+w9d9/LH8EcFoQOLPnXdKQO3Vy9lATgQwtBERETnKX+fI2jIypBvh8eP2jMkKZoc2QL5ngVRVzLR1a92pkW5h7AcXbLXt9GlZk3bJJXL058wZaSRTez2b2xhTNxtb1zZ3rjRNufLK+q9p0QJYsECmURI5jaGNiIjIQRs2AHFxDU+/mjBB9p7y8p5teXnSsKJHD/PumZoqzT927DDvng2prJRKW/UmJG4ydCgQGysBPxBFRdLxsVs32SB75Urg//0///uc5eXJ4/7Ws7nJoEEynbGhdW35+VK5vuMOIDq64fulpQEXXWTuGIlCwdBGRETkoA0bJHw0NOXsoovkr/5eXte2caNU2cxc92R3M5KSEuDkSfdW2mJjgfT0xittP/wgXS579wb+8Adg7FhgyRLg/fdln7ePPqr7HKNy5fbQFhMDDBnScKXtlVckrP3kJ/aNiyhcDG1EREQOKS+XNW0NTY0EJLCNGePtdW1mdo40DB4sa43sCm31dY50k1GjgLVrZcpjff72N2l1/8tfSpXyww+B8eNlqmDv3rJRdm3r1gHt2nmji+LQoTJereue01ra+E+YACQk2D82olAxtBERETlk61ZZK+Sv3X9tGRmyB1dJifXjMltpqbTDNzu0tWgh+5MxtFUZPRo4e7bh6YGLFklF7umna05XjYoC7r0XWLGi7vPXrZM/LrihQ2Rj0tKkmrh7d91zWVkyLfT66+0fF1E4PPCfHhERUWQKpAmJYcIEOX75pXXjsYoVTUgMRjMSO2zdKnuwdeliz+uForFmJAcOAKtW1b+f2m23ydrD6tW2igogJ8f9UyMNRrMUf8H13XdlzduUKfaOiShcDG1EREQOycmRN5CBVG6GDJH2/15c17ZxoxzN2qOtutRUWYd18KD5965tyxb5Wbm55X1CgkxhrK8ZyWefyRTB+romtm8vTUnefhvYv18e27oVOHXKO6EtJUUqgrXXtVVWAv/+NzBpkjMboBOFg6GNiIjIIRs2SJCJiWn82mbNgMsuk0qbnS3uzZCXJ+uhrNig2M5mJG7uHFndqFES2vyt6Vq0SIJdQwHsnntkiuXLL8vnRsXKK6GtVSsJ17UrbStXyvTi665zZlxE4WBoIyIicoDWVZ0jA5WRIdUPY0NurzCakFhRobIrtB07Jm/43byezTB6NPD997LRdnVlZVJpu/LKhtemDRgATJwIvPhi1fq4li29EVgNaWl1K23vvivrIK++2pkxEYWDoY2IiMgBe/fK+qJgQxvgrS6SWsv0SCumRgKyx1337taHtq1b5eiV0AbUXdf27bfA0aMNbyht+PnP5Xf0gw8ktKWkNL6nmZsMHSoh25jiWVEhWxpceSXQtq2zYyMKBUMbERGRA4JpQmLo2lU2D/bSurb9+6V7pBVNSAx2NCPxUmgbPFiaidRe17ZokayhvOyyxu9x+eVA377AnDnyvfXK1EiD0YzEqLYtWybVR3aNJK9iaCMiInKAETJSUoJ7XkYGsHx5w/twuYmVnSMNqamy3uzUKeteY8sWaYnfp491r2GW6Gjgggv8h7aLLw6s0tSsmbT/z84Gjhzxbmgz1rW9+66sdQukykjkRgxtREREDtiwAejVK/gudhMmSGBbscKacZnNrtBWUVHVpdIKW7ZIV8bmza17DTONHi3dSY8fl88LCqRaWF+rf39mzqwKeF4LbR06yH9f69fLJvYffCBr2Vq1cnpkRKFhaCMiInJATk5wUyMNF18s3SadXNd2+DBw++3SFv7sWf/XnDoFPPMM8KtfAd26ScdCq9jRjMRo9+8Vo0dLl9HVq+XzTz6RYzCVpnbt5Ofcrp21odsqaWlSafvqK9kSglMjycsY2oiIiGx2/DiQnx9aaGvdWt6QO7mu7eOPgVdeAWbMAHr2BB5/HNizR85VVADz5gH9+gGPPgqMGSMB08q9zZKTJViEG9o+/dT/97WiQn5eXgptI0fK0Zgi+cknMv5gp3c+8wywaRMQG2vu+OwwdCiwfTvw979LxXDSJKdHRBQ6hjYiIiKbbdggXRWNdTfBysiQexid8eyWmSlvghctkmrGE09IeLvuOgmis2YBiYnA119LwLM67DRrFn4zkhdflCrUlClVTUcMRUXAmTPeCm3nnAMMHCih7dgx+VkEMzXSEBNjzf56djCmdL7/vvxcW7RwdjxE4WBoIyIisll2thyHDw/t+RMmyHHJEnPGE6zMTGl0ceWVUsHJz5cW8YsXAydPStOHrCyZymmX1FSZchrKxuN/+ANw991SiWnVStZylZdXnd+yRY5eCm2AVGRXrZLqYVlZaKHNy6r/UYRTI8nrGNqIiIhslp0N9OgR+jqvtDSZDvjNN+aOKxAnTgC5ucCoUVWPnXsu8Nxzsm6ooEAqblZOh/QnNVXGtn174M/RWtbcPfwwcMMNwIIFwAsvSOB89tmq64zQ5qXNpQH5Gf3wA/CnP0nDG2P/tqYiIUEqvu3bV/2hg8irGNqIiIhstnp16FU2QFrPX3SR7D1lt9WrpZplrJmqPS67w5rBWB9o7MvVGK2B2bOBp54CfvIT4F//kqmA118PTJsG/OY3wHffybVbtgCdOslG3l5ihLSVK2XftZgYZ8fjhAcekOm7Xun6SVQfhjYiIiIbHTwIFBYCI0aEd5+xY4HNm+1f15aZKUd/oc1JgwbJ/mSBrGvTGvjpT2Xj6PvvB15+WQInIKHzxRdlTdjMmTKt0GudIw39+8vXATS9qZGGhx4C7rvP6VEQha/R0KaUaqGUylZK5Sil8pRST/ge76WUylJK5Sul3lVKNfc9Huv7vMB3PtnaL4GIiMg7jBbsZoQ2wP792jIzJQx07Gjv6zYmNhYYMkTWcDVm5UrpKPjQQzJ1sHZ1MD4eeOklqdr99rfSmMSLoa1ZM5kiqZRU2ojIuwKptJ0BMF5rfT6AVACXK6VGAvg9gD9rrfsCOATgx77rfwzgkNb6XAB/9l1HRETUqPJyqYJEsuxseRM9bFh49xk2DGjZEli+3JxxBUJrCUVuq7IZxo8Hvv1WmqE05Msv5WfwyCP1T+e85hrgpptk+uT+/d4MbYCs1/vzn2V6JxF5V6OhTYvjvk9jfP80gPEA3vc9/hqAa3wfT/F9Dt/5S5VyaoY7ERF5ya23yjS3oiKnR2Kd7Gz5Gtu2De8+zZtLeLJzXVthIXDgQM0mJG4yYYJs9t3Y92TJEmnm0li18PnngS5d5GOvhraxYzk9kCgSBLSmTSkVpZTaAGA/gMUAtgM4rLU2GuIWAzB28egKYDcA+M4fAeCxpbtERGS3igpg4UJZPzRmjLSRjzRaS2gLd2qkYexYWcN19Kg592uMsZ7NraFtzBiZJrl4cf3XnDgh1cJLL238fuecA/zzn0DfvuE1jiEiCldAoU1rXaG1TgXQDcAIAAP9XeY7+quq1ZnsopS6Qym1Rim15sCBA4GOl4iIIlROjmwC/PDDwOnT8gZ840anR2WunTulEYmZoa2yUtZo2WHVKqBNG+C88+x5vWC1bCldNRsKbcuXS3ORQEIbIBuZb9sGdO5szhiJiEIRVPdIrfVhAF8DGAmgg1Iq2neqG4A9vo+LAXQHAN/59gB+8HOvl7XW6Vrr9Pj4+NBGT0REEcOY0nbPPfJxVJRszrxmjbPjMpOxqbZZoW3kSOmYaNcUycxMGbvRadGNMjKkVf/evf7PL1kiU0svusjecRERhSOQ7pHxSqkOvo9bArgMwGYASwFM8102E8AC38cLfZ/Dd/4rrSN9WTkREYVr2TKgVy+gWzdZP7R8uWyKO368vc02rJSdXdXl0AytWgHp6faEthMnpBrq1qmRhowMOX75pf/zS5bI19CqlX1jIiIKVyCVtkQAS5VSuQBWA1istV4E4GEAs5VSBZA1a//wXf8PAHG+x2cDeMT8YRMRUSTRWoKZ0cYeAHr3ljCSlARMnAjs2uXc+MyyejUwdKi5mxyPHSth8NQp8+7pz9q1su7QrZ0jDamp0inR3xTJ0lJZAxjo1EgiIrcIpHtkrtZ6qNY6RWs9WGv9pO/xQq31CK31uVrr/9Jan/E9ftr3+bm+84VWfxFERORtW7bIWq/qoQ2QqtvChRJIFi50ZmxmKS+X4GPW1EjD2LGyRsuYemkVt26qXVuzZsBll0mlrfY8n6VL5TGGNiLymqDWtBEREVnBmN43Zkzdc/36AX36AJ9/bu+YzLZpk+wfZnZou/BC2WvM6imSmZnSRdEL+31lZMiatry8mo8vWSKNVNgJkoi8hqGNiIgct2wZkJAAnHuu//OXXw589RVw5oy94zKT2U1IDB06ACkp1oY2rSW0ub3KZjDWtX3xRc3HlyyR5jZmTk8lIrIDQxsRETlKawkcY8dKxcifiROlSvXtt/aOzUzZ2RKw6gum4Rg7Vtr+l5WZf29AtirYv9/9TUgM3btLM5vq69p275a9/zg1koi8iKGNiIgcVVQEFBfXXc9W3bhxUh3x8hRJY1Pt+oJpOMaOlVC7fn3o9ygtBX72M/l37FjNc27fVNufjAzgm2+qqrNLlsiRoY2IvIihjYiIHNXQejZDmzayr9Znn9kzJrOdOCEbhZs9NdJgfO9CmSKpNfDmm1KZ+sc/gL//HRg2TLosGjIzgdatgcGDzRmvHTIypIGNsfH4kiVAfLy3vgYiIgNDGxEROWrZMpk22Nib6YkTgdzc+jdNdrP166VdvlUNMLp0kYYtwYa2wkJZL3jTTdLsZd06WTt44gRwwQXACy9IqFu1SsYeHW3N+K1wySUy3i++kK9hyRLZ868Z3/kQkQfxf11EROSo5culUtTYm+mJE+VYu7mEFxhNSKzsWjh2LLBiBVBZGdj1f/6zBOXMTOB//1fWCw4ZIo06NmyQtvn33ANce6187qWpkQDQtq2MefFi2VJi715OjSQi72JoIyIix3z/PbBtW8Pr2Qznny8dJr24rm31ammOkZho3WuMHQscOlS3zb0/69YBs2fLWsFNm4C77waioqrOx8cDH38M/PGPwKJFssec10IbIFMk160D3ntPPmdoIyKvYmgjIiLHLF8ux0BCm1LAhAlSaauosHZcZjOakFgpmHVtK1bI8aWXZANzf5o1A37xC7n2vvu8GXgyMmRq5HPPAcnJQO/eTo+IiCg0DG1EROSYZcuAVq2AoUMDu37iROlyuG6dteMy08GDsnbM6tDWs6dU8775pvFrMzMlrNUX2Kq74AJgzhz5OXlNejrQvr10w/Ri6CQiMjC0ERG53DffyNRAo+16JFm+HBg9OvDNjjMypOLmpSmSq1fL0erQppQ03/j6a6kuNSQz05vTHYMVHS3NRwCGNiLyNoY2IiIXmzdPgkpuLvDaa06PxlyHDsnXFcjUSEN8vLSjd2Pr/8pKWZ/3ySfAyy8Dv/41MGsW8NBDEqiGDbN+DOPHAwcONLyubc8e2RuvKYQ2APjRj2TLCIY2IvIyDzXvJSJqOiorgcceA37/e+niV1kpXfAiybffSkUomNAGyBTJZ54BjhyRqW9O2bcPyMqS9WrZ2VJRO3y46nyzZtJ4pFs3+Vm2bWv9mMaNk+PSpfVvoeDFjbLDMWMGcM01ss8cEZFXsdJGROQyJ04A06ZJYPvpT4FPPwWmTpV1Udu3Oz068yxfLtMig502OHGiNCJZssSacQUiJwdISgKmTJEAefAgcP31sjn1ypXA7t3AmTNAcbHscfbUU/aMq2dPabbx1Vf1X5OZCcTGBr6O0OuUYmAjIu9jpY2IyEX27gWuukr2xZozB/j5z+VNZ0aGnF+8WDZBjgTLlklga9kyuOeNHAm0aydTJK+91pqxNebTT6X6uWSJjMdNTTrGjQM+/FCCbfU2/obMTJmqGRtr/9iIiCg0rLQREbnIAw/IRsALF0qbdaXk8X79pDNgpEyRPHQIWLNGNnIOVkyMrE/6/PPGG25Y5euvZfrh+PHuCmyAjOnQIakG1nb2LLB2bdOZGklEFCkY2oiIXGL3buD994G77gKuvLLmOWOPsq++ko2Ove6TT+TrmDw5tOdPnAjs2gVs3WruuAJx9qzsXXbJJfa/diCMdW3+pkiuXy/TNhnaiIi8haGNiMglXnhBKkf33OP/fEaGNLpYs8becVlh/nxp0jF8eGjPnzhRjk60/l+zBjh5siocuU1iItC/vzQjqW3lSjkytBEReQtDGxGRC5w4IW3ir71Wmkn4c+mlUnHz+hTJU6dkPdo110iHxVAkJwMDBkjFzm5ffy3HYLte2mn8eFkzWFZWIuLUyAAAIABJREFU8/HMTPn9SkpyZlxERBQahjYiIhf4179kHdJ999V/TadO0vHP66Ft8WKpVE2dGt59Jk+WAHXkiCnDCtjSpUBKivw83GrcOOD4cVm/Vl1T2VSbiCjSMLQRETmsslI6RQ4bBlx4YcPXTpggb7yPHbNnbFaYPx/o0CH8NWGTJ0slyc4pkmfPyv5ybl3PZjDGV31dW3Gx/GNoIyLyHoY2IiKHLV4sHSPvv7+qW2R9MjKkgcc339gzNrOVlwMffyzbGsTEhHevkSOl2rVwoTljC0R2tkzvdHtoi48Hhgypua6tqW2qTUQUSRjaiIgcNmcOkJAAXHdd49deeKHsa/bFF9aPywrLlwOlpbKeLVxRURL+Pvmk7totq3z9tQTrULYqsNv48dLl8swZ+XzlSqBFC+D8850dFxERBY+hjYjIQVu2SFOOu+4Cmjdv/PrYWGmA4dV1bR99JMHh8svNud/kydJRc8UKc+7XmK+/lvVsHTva83rhGDcOOH0ayMqSzzMzpVtnIL9nRETkLgxtREQOev55CWI//Wngz5kwQcJecbF147KC1hLaJkwAWrc2554TJsj3z44pkmfOyHo2t7b6r+3ii6U751dfSXhbt45TI4mIvIqhjYjIIT/8ALz2GjBjBtC5c+DPy8iQo9eqbevWyYbY4XaNrK51a+Cyy4AFCyQUWik7W8KP29ezGTp0kG6jS5fK976sjKGNiMirGNqIiBzyyivS+r6hNv/+DB4sa+C8tq5t/nyp/Fx1lbn3nTwZ2LED2LTJ3PvWZqxnc/P+bLWNHy/TIr/8Uj5naCMi8iaGNiJyvbIy4Gc/c2YjZavs2wc8+6y8qQ62MYRSUl368kvZLsAr5s+XwGP2/mZGCFywIPx7zZ8P3H677HFW29KlQGoqcM454b+OXcaNk/9+XngB6NUL6NLF6REREVEoGNqIyPUefhh46SXgueecHok5tJYQeuwY8Ne/hnaPjAzg4EEgJ8fcsVll2zaphJk5NdKQlCQNNsJd17Z5M3DTTVIBnTBBGpwYTp+WipVXpkYaLroIiI4G9u8HRo92ejRERBQqhjYicrW33wb+/GfZd2r5cuDoUadHFL4335SGHE89BQwaFNo9vLau7aOP5GhGq39/pkyRLonffx/a80+fBqZPB1q1Al58EVizRqqgBw7I+awsucYrTUgMbdtKoAU4NZKIyMsY2ojItXJzgR//GBgzBnjrLdmYeckSp0dVZdMmWVeWlydVmUAaYZSUAPfeK/utPfBA6K+dmChr2z77LPR72Gn+fGDYMKBHD2vuP3myHBctCu35v/ylVC3/+U/gzjulard5s3Rg3LOnaj3bmDFmjdg+RtBkaCMi8i6GNiJypUOHgGuvlQ54770nb57btQP+7/+cHpnQWqpdEydKeDrnHKBNG6BvX6kmbdni/zm33y6t4+fNk82hwzFlCvDNN7I+zm4VFcA991RV0BqyZw+wapV1VTZAfgbJyaFNkfz4Y5mmet99wJVXymOXXy6BePduCWoffiidGDt0MHXYtrj7buAPf5D1eERE5E0MbUTkOpWVsrZo1y7g/felU2JMjISkTz+1vrV7IIqKJIzMni1TOP/4R9lrbdgwYNkyeYP8zDNSHTS8+qqEzt//XsJduGbMkO/Ve++Ff69gbd0qzS2mTgWefrr+n8nBg8Ctt8rH115r3XiUkmrb4sXAiROBP6+kBLjtNvl5/f73Nc9dfLFUdg8dkqqv16ZGGpKSgIceks6dRETkTfxfOBG5zpNPSjibM6dm84RJk+RN9saNzo3NkJ0tx+nTgRtuAH7xC+BPfwLeeUemTV51FfDoo8DIkfKGv6hIpkOOGyeVDzMMGiSdJ996y5z7BSM3V45jxwKPPSbB58yZmtdkZkp1atky4O9/D339XqAmT5Z1Z0Z7+8ZUVMgfB06dkp9bbGzda0aMkKmRY8cCN99s6nCJiIgCxtBGRK7yySfAE08AM2fK2qLqJk2S46ef2j+u2rKy5E1+SkrdcwkJUiH8979let2wYdKiX2uptplZ8ZgxQ6Yebt9u3j0DkZMjXQm/+EJ+Xq+9VtXRUmsJ3GPHSoV05UrgJz+xfkxjxwLt2wc+RfKZZySQ/e//Av37139dSopMQw12awYiIiKzMLQRkWvs3CnVjNRUYO5cmfJWXVKSvHF2w7q2rCwgLQ1o3rz+a6ZNk6rbDTcABQXSBTM52dxx3HCDHN9+29z7NiYnBxg4UILrr38tr5+dDVxwgUyZfOABWR+2bp18n+wQEyOvuWABcPZsw9eWlkrYvO66qumbREREbsXQRkSucOaMvIGuqJAqVcuW/q+bNAn49lvgyBF7x1ddWRmwdq0ElMbExQFvvCH7ZFlRberRQypMb75p71q/3NyalacbbpCq1fHj0sHx2WelY6TdjTumT5dA1lhXzQ8+kJ/jI4/U/eMAERGR2zC0EZEr/OIXwOrV0nK9T5/6r7viCmnuEei6JSts3Chrp0aMCPw58fHWjWfGDOlWaddG26Wlsraw9tRQY/3ed98BDz7oTBiaOFG+12+80fB1b74JDBjAjopEROQNDG1E5Lh33pFOhLNny9S6howaJeuWnJwimZUlx0AqbXaYNk3Wl735pj2vZzQh8bfGq0sXmTbplJgYqbZ9/LHsnefP7t3SHGXGDFbZiIjIGxjaiMhRW7bItMHRo6UxRGOio4EJEyS0OdX6PysL6NQJ6NXLmdevLS5O9hV7+23ZAsBqRkXPXxMWN7j5Zplu++9/+z//zjtynD7dvjERERGFg6GNiBxz4oRUiVq1kr3GYmICe96kSbJHmlHxsZvRcMNNVZobb5Qpi8uXW/9aublA587SJdONhg2TqY/1TZF86y35+Z17rr3jIiIiChVDGxE55sknpbviW28BXbsG/rzLL5ejE63/jx4FNm8Obj2bHa6+Gmjd2p4923Jy3N3+Ximpti1fDuzYUfPcpk3Ahg0yNZKIiMgrGNqIyDEffSSNIy67LLjnJSbKps1OrGtbvVqmZbplPZuhdWvgmmtkSmBj7e7DUV4O5OW5d2qk4aab5Pivf9V8/K23ZJ+8666zf0xEREShYmgjIkfs2gVs2ybr00IxaZJs2lxfswmrZGfLcfhwe183EDNmAIcONd7uPhzbtsl6MTdX2gDZCuGSS2SKpLH2UWsJbZdd5t6pnURERP4wtBGRIxYvlmNGRmjPv+IK2dPNuI9dsrKAvn2Bjh3tfd1AZGRIgxQrp0i6vQlJdTffDOTnVwXtrCyZLsmpkURE5DUMbUTkiMWLZZrjeeeF9vwLLpCNm+2cIqm1vPF329RIQ0yMTPtbuFCavFghN1dex8m2/oGaNg1o0aKqIcmbbwKxsY1vK0FEROQ2DG1EZLvKStkcOyMj9A6M0dGyHu7TT4GyMnPHV5/du4Hvv3dvaAMkqJw6ZV0FMidHAlvz5tbc30zt2gFTpkiL/5MngXfflYYt7do5PTIiIqLgMLQRke3WrwdKS0OfGmm45RZg3z7g9dfNGVdjjGl2bg5tF10kFcgFC6y5f26uN6ZGGm65RX7XHnwQOHBAtkYgIiLyGoY2IrKdUQUKtmtkbZMmSev9p56ytmOiIStLKkxuDi0xMbLeb9EiWfNnptJS2QvO7U1IqpswQfaUmzsXaN9efmeIiIi8ptHQppTqrpRaqpTarJTKU0rd53u8o1JqsVIq33c8x/e4Uko9r5QqUErlKqXSrP4iiMhbFi8GhgwJv4OfUsDjjwM7dwKvvWbGyBqWlSVbDcTGWv9a4Zg8GTh4EFi1KvDn5OcDf/gDMGoUEB8vn9fmpSYkhuhoYPp0+XjaNPf/7IiIiPwJpNJWDuAXWuuBAEYCuFspNQjAIwCWaK37Alji+xwAJgHo6/t3B4C5po+aiDzr5ElgxYrQW/3XdvnlMl3R6mpbeTmwdq27p0YaLr9cwsrChQ1fV1QE/OpXwODBQL9+wMMPy/rAM2eA+++ve31urhy9VGkDgJ/8RPax+8lPnB4JERFRaBoNbVrrvVrrdb6PjwHYDKArgCkAjL9tvwbgGt/HUwC8rsUqAB2UUommj5woQmkNFBYCW7bU/LdtW9V+U162bJmEq3DXsxmMatuuXcC8eebc05+8PAmcXght7dvLHmUNhbaKCmD8eOB3v5NtAubMkYrlmjXAb34jDV4WLar5nJwcoEsX+eclgwcDx48DI0c6PRIiIqLQBLWmTSmVDGAogCwAXbTWewEJdgA6+y7rCmB3tacV+x6rfa87lFJrlFJrDhw4EPzIiSLUm28CffpIh77q//r3B2691enRhW/xYlkXNmaMefecOFHekP/2t1IlskJWlhxHjLDm/mabMqUq7PuzcKH8ceDdd4Gvvwbuuw/o2VPO/fzn8jt3333A6dNVz/FaExIiIqJIER3ohUqpNgA+AHC/1vqoqr9Pt78TdeoDWuuXAbwMAOnp6RFQPyAKn9bAH/8ob5h//eua55YuBV5+WdbnXH65M+Mzw+LF0uGwVSvz7qkU8MQTEt5efRW4887Q7nPypHS2zMmpO9Vy/nwgLk4CtRdcfTVw770Szh58sO75OXOA5GT/e5bFxADPPy/V0OeeA/77v2V6aF6e3JOIiIjsFVBoU0rFQALbm1rrD30P71NKJWqt9/qmP+73PV4MoHu1p3cDsMesARNFsm++kcDwyivADTfUPDd1qkwtvPNOYONGWaPjNXv3At99Bzz9tPn3zsgARo+W6X6zZgXWcOLYMeC996SVf3a2jK2hjoszZoS+r5zdevaUtWf+Qtv69fK79NxzQFSU/+dfdhnwox9J9fLmm+V7deYMK21EREROCKR7pALwDwCbtdZ/qnZqIYCZvo9nAlhQ7fFbfF0kRwI4YkyjJKKGzZkj64tmzKh7LjYWeOklWXf0+ON2j8y/f/0LePbZwK//8ks5mtWEpDqj2lZcLKE3EDNnSnOK996TtvCPPiohp7gYOHSo7r833jB/3FaaPBn49lvpJFndX/4ioX/WrIaf/9xzcnzwQe82ISEiIooESjfS2UApdRGA5QC++//t3XuczdX+x/HXklMq3Q5K+KELlYpCpaMc0o1QChU1nRM5IilxokRS56ROCCG3JkmKKA5dpFBRGpFLojFFKoeKk0sxsn5/fL5zGsxt7/nuy5j38/HYjz3z3d/vns/eq9H+zGetzwL2BYcfwNa1vQJUBjYArb33PwVJ3nDgamAX8FfvfVpeP6Nu3bo+LS3PU0QOeRkZcPrpNhVtwIDcz+vY0aYAfvKJtZ9PlKVLbX3X3r0wZkzBOvOlpMAbb9iG2CVisEuk99Cggb2X69ZBqVK5n7t+PZx6KnTvbq3ui0oFLRJpaXDBBbYdQkqKHdu0yapwHTvCsGH5P8eAATZVt359q0bu2GFrEkVERCRczrkl3vu6OT1WkO6RH3jvnfe+pvf+vOA223v/o/e+sfe+WnD/U3C+99538d6f5r0/N7+ETUTMsGE2VS2/9VgDB1o1rmPH8DdPLqjduy0JKFcOGjWCLl3sA31evLf1bI0bxyZhg9+rbd99l3+17dln7b5r10MzYQOoXRsqVNi/i+SoUbZe7+67C/YcPXtacvvhh7bWUgmbiIhI/MXoo5OIROLnn2HcOLjxRvuQnZcTTrDpbWlpMHx4fOI7UL9+tq5u7FiYMgVOPtnWP23enPs1K1dalSesVv+5adTIqm3//Of+nQ+z273bYm/eHCpXjm08iVSihE2RfPNNey9274aRI6FZM6hWrWDPUaoUDB5sX2tqpIiISGIoaRNJAs89Z40ectrQOCdt2kDTpjaVcsOG2MZ2oIULbR1bhw4WQ5kyMG2arZu66SabLpmTOXPsPtZJW/Zq2+jROZ8zZQps2WIVwkNdixawc6d1H5082RLrbt0ie47mzW3MC1qdExERkXDlu6YtHrSmTYqz336D6tWhfHmbglZQX38NZ59t0w3z2kQ5TDt3wnnnWWK2fDkcc8zvjz3/vO0j16NHzs1JmjSBr76yvcPioWFDWLPG1rcdeeT+j/3pT5ZkfvFF7KZqJotff7XptLfcYnvNZWZal8xDdUqoiIhIUVWoNW0iEluzZlliUdAqW5aqVeGhh2DmTFi2LCahHaRXL0hPt8pg9oQNrBNjly62z9wrr9hUyNdes2saNrRKW6yrbNn1728xZK1dy7J0KSxaBJ07H/oJG9j0xquusqR62TL770wJm4iISNGiSptIgl12mSVCGRlQssDb3ZutW6FiRaui5DYVMCxz59reXd262dYEOdmzx9aULVpkjUfAXtP550O9elaFi+casssug88/t/c2azPvDh1g0iSbPnn88fGLJZGyqqBlysA33xxceRQREZHEU6VNJEYyM+GXX6K//rPPbK3RXXdFnrCBNSVp2xZefBG2bYs+jvykpdk6ujPOyHtj7MMPh6lT4W9/sz2+PvzQmqwsXgxDh8a/6Uf//ra9wKhR9v3WrZawtWtXfBI2gGuusUStSxclbCIiIkWRKm0ihdCunU23+/TTvPcEy8kHH1jV55tv7PbHP0YXw9Kl1tp9yJDIG0wUxPvv24f+smVtc+xTTw3/Z8TS5ZfbGq6MDKtGdu9u79l55yU6svjauNG6fB52WKIjERERkZyo0iYSA7/8Ymu2Vq+Gxx4r+HXbtkGnTnDppdYk4vXXo0/YwKYeXnwxjBgB+/ZF/zw5eestWw9VsaIlb0UtYQOrtm3ebO/PyJH2XhW3hA2gUiUlbCIiIkWVkjaRKL37LuzaBTVqwOOP2z5kefEeXn3Vzh8zxio+K1daJaiwOneGtWtt3VlYpk+3dvFnnAHz51viVhTVr28NUPr0gS+/LB5t/kVEROTQoqRNJEozZlgHxTlz4LjjbB1XbpWunTuhVSu7lS9va7yeegpKlw4nltatbfriiBHhPN/EifactWtbcnriieE8b6L0729NUsqVszEQERERKUqiaH0gElt79ljlKqfGGlddZbdE27fPWu1ffTVUqACDBlnL+9Gjbepjdjt2QLNmNr1w4ECrsEXTdCQvRxxh6+OeeMI224624ceaNbaNwJQp1qY/KzEt6i6+GO67z6qcRxyR6GhEREREIqNGJJJ0stqTly69/35SmZm2EfW8ebY5ciItXgwXXQQvvGDt9r23KXiffGJr3CpUsPO2b4emTa0F/sSJcNNNsYtp/Xpbc9arV2Rr7MAaofTvD6mp1lCle3fo3VudBkVERETiRY1IpMjw3rognn22tYrPfvvuO6sgtWplmyYn0owZ1tShaVP73jlrK79nD9x9tx3773/hyivho49g8uTYJmwAVapYRW/sWNi9u2DXbNtmFahq1SwBvesu67L4yCNK2ERERESShZI2SSoLFsCyZda6PnuVDWxPsmnTLBlq08Yqb4kyYwZccsn+XR9PPx369rVmIxMmWOVtyRJ45ZX4raPq3Nk6Jb76asHOv/12S5LbtrVGJkOGFP31ayIiIiKHGiVtklSefhrKlLEphzmpWdMqSe+/Dz17xje2LF99Zft+tWhx8GM9esA559j6ts8+s+SpZcv4xXbFFZY8PvNM/ueuWWNbFjzwAIwfb5U6EREREUk+StokaWRkWBLRsWPeU/NuvhnuvdcSvBdfjF98WWbOtPtrrz34sT/8AcaNg7POspb5zZvHN7YSJeDOO2HhQvj447zPfeopa8rRtWt8YhMRERGR6KgRiSSN7t1h2DCrZFWqlPe5mZlWVVq82Jp81KoVnxgBGje2NXWrVsXvZ0bi55+henWrnC1aZIncgTZtgqpVreHLqFHxjlBEREREDqRGJJL0tm+3ClXr1vknbGAVrZdftjVlLVtaW/142LrVNprOaWpksjj2WGv9v3ixdeLMybBh1jTlvvviG5uIiIiIRE5JmySF1FSrEHXrVvBrTjrJGn589ZU1+4iHN9+0bQeSOWkDWxN48cVw//0H73e3YweMHAnXXWddI0VEREQkuSlpk4Tbtw+GDoV69Wzvs0g0amSJx4QJsYntQDNmWHfFCy+Mz8+LVokSMHw4/PADPPzw/o+NG2cVw7//PSGhiYiIiEiElLRJws2eDenpcM89kV/rHKSk2JTF9evDjy27PXss1ubNbY+2ZFe7tjV1GT4cVq60Y5mZMGiQbVdQr15i4xMRERGRglHSJgk3ZIitY7v++uiuz9oeYOLE8GLKyYIFNoUz2adGZvfYY3DccdYh0nuYMgU2bEjcdgkiIiIiEjklbZJQK1bA3LnQpYs1F4lG1arw5z/bFMlYNEP1HqZOtY2rjzwSLr88/J8RK2XKWOI2b56t+3vySTjzTGjWLNGRiYiIiEhBKWlLQlu3Qp06cNRRB98uuujgxhJF2ciRUKoU3HFH4Z4nJQXWrrWOiWHxHubMsfVrrVtDyZK2j9xRR4X3M+Lhjjvg/POhQwdYtsw6Rua0DYCIiIiIJKeSiQ5A9uc9dOoEy5fDXXftX33asweeeQZuvRVef73of/DeudM2x27VyipChdGqlVXrJkyIvJlJTj7+GHr3hvfeg8qV4bnn7H0vCmvZDnTYYdbi/5JLoHz536eTioiIiEjRoKQtyUycaNPYHnsMHnjg4MerVbNk7tFHoW/f+McXpilTbI1YYatsYHuTXXcdTJ4MgwfD4YdH9zyrVsGDD1pSXK6crbfr1AmOOKLwMSZS/fr2vlStapVNERERESk6nI/FIqAI1a1b16elpSU6jIT7+muoWdNu8+fnXNXxHm67zZK7mTPhmmviHmZo6teHH3+E1autC2RhvfEGNG0K06dbAheJr7+Gfv3ghRfgmGOgRw/rZnnMMYWPS0REREQkP865Jd77ujk9VsQn2B06fvvNpt+BJQ65TcNzDkaNglq1bJpbenr8YszJuHFQo4ZVpiKxahUsXGjrrMJI2ACuuOL3DbcLascO66xYvbpVOO+7DzIy4KGHlLCJiIiISHJQ0pYkBg6EDz6wNWunnJL3uUcdBdOmWbJz/fW2NiwRfvjBkpz0dKtstWoF339fsGvHjrX1eikp4cVTsiS0awf//rdV8AriySftPf/LX+DLL+37wq6vExEREREJk5K2JJCWZlPz2rQpeJOIU06Bl16yTZPvuCM2re7z06+fVarS0uAf/7Bk6ayz4NlnYd++3K/79Verhl17LZx4YrgxpaTYBtIvv5z/ud5bI5TGjWH0aNsrTkREREQk2ShpS7Bdu6w6VL68TXuMZKrgVVdZQ5KXXrIplfG0cqXF27mzrcHr3dv2XKtTxxp3NGgA69fnfO306fDTT+E0IDlQrVpw7rkFmyK5eDGsWwdt24Yfh4iIiIhIWJS0JVivXra/2PPPwwknRHf9BRdAnz5WwYoH76F7dzjuOKu2ZalWDd55B1JTLam7/HLYvPng68eMsS6GsdqkOiXFWvavXZv3eZMmWVfI66+PTRwiIiIiImFQ0lZIWclJ3762cXEk0xTfe8/2z+raFS67LLqfX6KErYf75htbmxUPs2fbptMPP3zw+i/nrLvl7Nnw7bdw9dXW1j9Lerq97vbtY7fPXNu21shl+PDcz9m716ZQNmtmyaeIiIiISLJSy/9C2LfP2tYvW2YbX+/bZxWkli3tVr9+7onJ9u02rbBkSbv+6KMLF0uTJlZdysiA448v3HPlJTMTzjnHkrMVK/bf/PtAb7wBLVrApZdaEleqlFUGn3wSNmyAihVjF2f79rZeLSMDKlQ4+PG337bppa++qkqbiIiIiCSeWv7HyLhx8NFH1sTi+++tI2KNGlbxatDAKnBbt+Z8bY8elrg8/3zhEzaAxx+Hbdus6hZLI0bYtMOnnso7YQNLJFNTrbLWrp1N30xNtb3lYpmwgW2QvXdv7u/HpEm2IXfTprGNQ0RERESksFRpi9KWLXDGGdb0Yt68/RuI/PyzbX59zz1w+ulWcapS5ffH33rLpg327AlPPBFeTLfeClOn2hTEWCRFP/5or+fCC+HNNwveNOXpp+29qFMHliyBGTOgefPw4zvQ7bdbk5aMDDj55N+P//KL7efWqhWMHx/7OERERERE8qNKWwzcf79NcRwx4uDk5dhjravi229bBa5ePUtWwKph7dtbRe6RR8KNacAAm6L58MPhPi/YtMibb7YW/4MGRdblsls3q3wtWWJTFZs0CT++nDz4oMV9YLVt1iwbu3bt4hOHiIiIiEhhKGmLwgcfwHPP2cbSZ5+d+3kNG8KHH1qHwgYNLFno1g02bbJpkaVKhRtX1aqWLI4fD6tXh/e83kOXLtZ8ZNSovF9zbgYMsKriiBG2ji8eTjvNOkk+++z+m36/+KJtsdCwYXziEBEREREpDE2PjFBmJtSubVMgP/+8YOvRNm2ydVzLllklrE8fS2Ji4Ycf4NRTbcPo6dPDec4nnrDKYu/etol2UbJunU1j7doVBg+2NYbly1tyO3hwoqMTERERETGaHhmioUOtzf/QoQVvIFK+PMyfbx0lGzSAhx6KXXxly1qC9dprsHBh4Z9v6lR7vhtvtI28i5rTTrO1fqNGWfI8bZp1+tSG2iIiIiJSVKjSFoE5cyzxatTImmlEsq4rnnbutI2uK1Sw7pZ5TUdcvx46dbImIS1bWhUx63V99JG91tq1Ye7c8Kdzxkt6Opx5Jtx9t1U7N26ENWuSd/xEREREpPhRpa2Qtmyxas2VV0KlStbSP5k/8B99NAwZYo0/8tpg2nvo0AHefde2DKhb19bFdetmFakWLSzxe+21opuwgXW8vOUWGDnSOn22bZvc4yciIiIikp2Stjx4DxMmwFlnwcsvQ9++VqmpXDnRkeWvdWtbR9enj1XTcjJ+PLzzjk31/M9/rLlKrVrWuOOGG2yfs9mzoVy5+MYeC3362HpE760LpoiIiIhIUaHpkblIT7dpg3PnQv36toF2jRqJjioy69dbzI0awcyZ+1eXvv3WHsua+lgiW/q+Y4fGPt/9AAAHrklEQVRNBa1WDc45J/5xx0q3bjaus2YlOhIRERERkf3lNT1SSVsubrjBqlADB0LHjvsnNUXJ4MHQvbtVCtu0sWPe29THuXNhxQpr1iEiIiIiIomjpC0K335rlakKFRIdSeHs3QsXXWSvZ/VqOOEEmDTJNpYeNAjuvTfREYqIiIiIiBqRRKFixaKfsIF1jhwzxpqp9OoFmzdbF8V69exeRERERESSWx7N4OVQUbs23HOPVdaWLoXt260JyWGHJToyERERERHJT76VNufceOfcZufcymzH/uicm+Oc+zK4PyE47pxzQ51z6c655c652rEMXgquf3+oUgU++QT69bOOmCIiIiIikvwKMj0yFbj6gGO9gLne+2rA3OB7gCZAteDWERgZTphSWKVLw+TJtoatZ89ERyMiIiIiIgWV7/RI7/0C51zVAw5fCzQMvn4emAfcHxyf4K27yUfOueOdcyd7778PK2CJXr16dhMRERERkaIj2kYkJ2UlYsH9icHxisA32c7bGBw7iHOuo3MuzTmXtmXLlijDEBERERERObSF3T3S5XAsxz0FvPejvfd1vfd1y5UrF3IYIiIiIiIih4Zok7b/OOdOBgjuNwfHNwL/l+28SsB30YcnIiIiIiJSvEWbtM0Abgu+vg14PdvxlKCLZD3gv1rPJiIiIiIiEr18G5E4517Cmo6Udc5tBPoBjwOvOOfaAxuA1sHps4GmQDqwC/hrDGIWEREREREpNgrSPfLmXB5qnMO5HuhS2KBERERERETEhN2IREREREREREKkpE1ERERERCSJKWkTERERERFJYkraREREREREkpiSNhERERERkSSmpE1ERERERCSJKWkTERERERFJYs62VktwEM5tAdYnOg45SFngh0QHIQmj8S++NPbFm8a/eNP4F18a+8Sr4r0vl9MDSZG0SXJyzqV57+smOg5JDI1/8aWxL940/sWbxr/40tgnN02PFBERERERSWJK2kRERERERJKYkjbJy+hEByAJpfEvvjT2xZvGv3jT+BdfGvskpjVtIiIiIiIiSUyVNhERERERkSSmpK0Ycc6Nd85tds6tzHaslnNukXNuhXNupnPu2OB4VefcL865ZcFtVLZr6gTnpzvnhjrnXCJej0QmjPF3zh3lnJvlnPvCObfKOfd4ol6PRCas3/9s187I/lySvEL8t/9w59xo59za4N+AGxLxeiQyIY7/zcH5y51zbzrnyibi9UhkIhn/4LGawWOrgsdLBcf12S/BlLQVL6nA1QccGwv08t6fC0wHemZ7bJ33/rzg1inb8ZFAR6BacDvwOSU5pRLO+P/Le38mcD5Q3znXJJZBS2hSCWf8cc5dD+yIZbASqlTCGfsHgc3e++pADWB+DGOW8KRSyPF3zpUEngYaee9rAsuBu2IeuYQhlQKOfzDOE4FO3vuzgYZAZnCNPvslmJK2YsR7vwD46YDDZwALgq/nAHn+5dQ5dzJwrPd+kbcFkROA68KOVcIXxvh773d5798Lvt4DfApUCjlUiYEwxh/AOVca6A48GmqAEjNhjT1wO/DP4Dn3ee+1CW8RENL4u+B2dFBhORb4Lsw4JTYiHP8rgeXe+8+Ca3/03v+mz37JQUmbrARaBF+3Bv4v22OnOOeWOufmO+cuDY5VBDZmO2djcEyKpkjH/3+cc8cDzYG5sQ9TYiSa8R8APAXsilOMEhsRjX3w+w4wwDn3qXNuinPupDjGK+GKaPy995nAncAKLFmrAYyLY7wSrtzGvzrgnXNvBb/nfw+O67NfElDSJrcDXZxzS4BjgD3B8e+Byt7787G/qk8K5jznNIdZLUiLrkjHH/jfFIqXgKHe+4w4xyzhiWj8nXPnAad776cnJlwJUaS/+yWxqvqH3vvawCLgX/EPW0IS6e/+H7Ck7XygAjY9snf8w5aQ5Db+JYFLgHbBfUvnXGP02S8plEx0AJJY3vsvsHI4zrnqwDXB8d3A7uDrJc65ddhfYDay/3S4SmiKRJEVxfinBZeOBr703g+Je9ASmijG/wKgjnPua+z/Hyc65+Z57xvGP3opjCjGfglWXc1K2KcA7eMctoQkivF3wbF1wTWvAL3iH7mEIbfxxz7jzc+a+uycmw3Uxta56bNfgqnSVsw5504M7ksAfYCsLoHlnHOHBV+fii06zfDefw9sd87VC+a1pwCvJyR4KbRIxz/4/lHgOOCeRMQs4Yni93+k976C974q9lfYtUrYiqYoxt4DM7HGBACNgc/jHLaEJIp/+78FajjnygVPcQWwOt5xSzhyG3/gLaCms07RJYE/A5/rs19yUKWtGHHOvYT9D7esc24j0A8o7ZzrEpwyDXgu+LoB8Ihzbi/wG9ZJKGsh651YN6IjgTeCmyS5MMbfOVcJ6yD3BfBp0PF3uPd+bPxeiUQjxN9/KWJCHPv7gRecc0OALcBf4/QSpBDCGn/nXH9ggXMuE1gP/CVuL0KiFsn4e++3OucGAZ9g0x9ne+9nBefps1+COfvjmYiIiIiIiCQjTY8UERERERFJYkraREREREREkpiSNhERERERkSSmpE1ERERERCSJKWkTERERERFJYkraREREREREkpiSNhERERERkSSmpE1ERERERCSJ/T988XhugPnNFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Plot the data\n", - "plt.plot(train, color='b', label = 'Train')\n", - "plt.plot(valid, color='r', label = 'Valid')\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Naive Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3ic53nn++8zg15mQHQMCDawobCKYlOjREuKTNlyOS6SbSlyHCVrOZvkJNlNNrlOcpJ1NufEqU7irGXLluTI3sReW7KoYhWqs4gUQRLsJAACRO+9zcy7f8yMTFGkCMz7AjMD/D7XxWvI4eDBTUkU5sZzP7/HWJaFiIiIiIiIxCdXrAsQERERERGRq1PTJiIiIiIiEsfUtImIiIiIiMQxNW0iIiIiIiJxTE2biIiIiIhIHFPTJiIiIiIiEseSYl0AQH5+vrVkyZJYlyEiIiIiIhIThw4d6rIsq+BKvxcXTduSJUs4ePBgrMsQERERERGJCWPMhav9nsYjRURERERE4piaNhERERERkTimpk1ERERERCSOqWkTERERERGJY2raRERERERE4piaNhERERERkTimpk1ERERERCSOqWkTERERERGJY2raRERERERE4piaNhERERERkTimpk1ERERERCSOqWkTEREREXHIuD9AY/eIvUX8E9B93pmCZE5Q0yYiIiIi4pB/3nOeW76xh++/VR/9Inv/Cb65EV7/BliWc8VJwlLTJiIiIiLikH113QD82c9P8PXdJwgGo2i6LrwNxgWv/AX87KvgH3e4Skk0SbEuQERERERkLvAHghy72M+Xti7GAI+8UU9L3xh/89l1pCW7p7aIZUHzIVh3H+Qsglf/EvouwOd+ABm5M1q/xC81bSIiIiIiDjjdPsjoZIDrFi/g4+t8LFyQwdefPUnH4BiP3L+JnIyUay/S2wCjPVC6Ea7/NchdBk99Fb6zE+77d8hfMeN/Dok/Go8UEREREXFATVMfABvKFmCM4ddvXsY3793AkaZ+PvWtt2nqmUJAScu7ocfS60KPaz8DD/wcxvrhOx+B+jdmqHqJZ2raREREREQcUNPYR25mCmW56e8997F1Pn7wlS10D03wyX95m6MX+z58keZ3wZ0KRVW/fG7RVvjKy5BVBE98Ag7/YIb+BBKv1LSJiIiIiDjgcFMfG8pyMMa87/nNS3P5yX/aRmqSi8/9z328cqr96os0vwsla8Gd/P7nc5fCr/0CltwETz0ML/0ZBIPO/yEkLqlpExERERGxaWBskvOdQ6wvy7ni7y8vzOanD2+nvDCTrzx2kCf3N37wRQE/tNb8cjTycuk58IX/gOsehDf/Dv7jAZiweSecJAQ1bSIiIiIiNh1t6seyYP2iKzdtAIXZafyvh7Zxy8oC/ttPj/HXL5zCuvQetq7TMDkCvo1X/0TuZLj77+COr8PJn8P3d8Fgm4N/EolHatpERERERGw63NiLMbDuKjttEZmpSTxy/ybu3VzGP+85z+/+rxom/OExx+ZDocer7bRFGAPbvwaffxI6T8EjO6Gt1oE/hcQrNW0iIiIiIjbVNPVRXpCFJy35mq9Ncrv4y0+u4Q/uXMXPalp44NED9I9Ohpq2NG8o5n8qVn8UHnwOrAA8eiec+YXNP4XEKzVtIiIiIiI2WJbF4aa+q55nuxJjDA/fupy//ew63mno4TP/+jYTjYfAtwFc03iL7lsPv/5KqNH74edg//+M4k8g8U5Nm4iIiIiIDU09o/QMT7DhQ86zXc2nNi7ksS9vpqdvAFfncTo91dMvwOML7bitvAue+y+w+/dDoSYyZ6hpExERERGx4XBTL8C0dtoudcPyfH78ySySCPIXh9N442zn9BdJzYLPPQHbfwveeSS06zY2EFU9En/UtImIiIiI2HC4sY/0ZDerirKjXmPJ2CkAurzVPPi9d/jJoYvTX8Tlhjv+O9z993B+T+icW38U60jcUdMmIiIiImJDTVMfaxZ6SXLbeGvdfAiyS/jXr97NpiUL+K8/OcrA2GR0a216EL74E+i9AC//efQ1SdxQ0yYiIiIiEqVxf4ATLQNsiHI08j3N70LpdXjSkvmNm8vxBy1OttgYbyy/NfSj+V17dUlcUNMmIiIiIhKlEy0DTASCUYWQvGe0F3rOQ2noUu0qnweAWjtNG0DxWug+B+ND9taRmJtS02aMyTHG/NgYc8oYc9IYs80Yk2uMedEYczb8uCD8WmOM+UdjzDljzFFjzIdc6S4iIiIikrhqmvoAWF+2IPpFWg6HHn2ht82FnjQKslM53tJvr7iStYAF7bp4O9FNdaftH4DnLctaDawDTgJ/CLxsWdYK4OXwrwHuAlaEfzwEfMvRikVERERE4sThxj6KPWkUe9OiX6T5UOjRt+G9p6p8Hk44sdMG0HrU3joSc9ds2owxHuBm4LsAlmVNWJbVB9wDPBZ+2WPAJ8I/vwd43ArZB+QYY0ocr1xEREREJMZqmvrsjUZC6NxZ3nJI/+U6VT4PZzuGGJsMRL+uxwcZ+dB2xF59EnNT2WlbBnQC3zPGHDbGfMcYkwkUWZbVChB+LAy/vhRouuTjL4afex9jzEPGmIPGmIOdnVHcRSEiIiIiEkPdQ+M09oxEfT8bAJYV2mkrve59T1f5vASCFmfaB6Nf25jQiKR22hLeVJq2JGAj8C3LsjYAw/xyFPJKzBWesz7whGV927KsTZZlbSooKJhSsSIiIiIi8SJynm3DIhvn2QZaYKj9Ck1bKIzkuBMjkh0nwT9hbx2Jqak0bReBi5Zl7Q//+seEmrj2yNhj+LHjkteXXfLxC4EWZ8oVEREREYkPNU19uF2GNaXe6BdpCUfy+96f3Ve2IIPs1CRqmx0IIwlOQudJe+tITF2zabMsqw1oMsasCj+1EzgBPA08EH7uAeCp8M+fBu4Pp0huBfojY5QiIiIiInPF4cY+VhVlk57ijn6R5kPgSoLiNe972uUyVPo8Duy0rQs9akQyoSVN8XW/BfybMSYFqAMeJNTw/bsx5teARuAz4dc+C3wUOAeMhF8rIiIiIjJnBIMWR5r6+Ph6n72Fmt+FoipI/mD6ZJXPy5MHLhAIWrhdVzqBNAW5yyAlC9rUtCWyKTVtlmXVAJuu8Fs7r/BaC3jYZl0iIiIiInGrrmuIwXG/vRCSYDB0R9ua/+uKv13l8zA2GaSuc4gVRdnRfQ6XK7SLp522hDbVe9pERERERCTs3UYHQki6z8H4wAfOs0VUlToYRtJeG2oSJSGpaRMRERERmaaapj6y05JYlp8Z/SKREJLLkiMjyguySElycbzFgTCSiSHoqbO3jsSMmjYRERERkWmqaexjfVkOrmjPmkEohCQ5EwpWXfG3k90uVhdnU9vswE4bQGuNvXUkZtS0iYiIiIhMw8iEn1NtA2ywc54NQiEkvvXgunr6ZJXPy/GWfkKxEVEqWA2uZIWRJDA1bSIiIiIi03DsYj9BC9YvstG0+SdCTVTplc+zRVT5PAyM+bnYOxr950pKgcIKhZEkMDVtIiIiIiLTcLgpFEKybqGNpq29FgITVw0hiajyORRGUrIu1CTa2bGTmFHTJiIiIiIyDTWNfSzOyyAvKzX6Ra4RQhKxutiDy8AJ22Ek62CkGwZa7K0jMaGmTURERERkGmqa+uzdzwah82wZ+ZCz6ENflp7iprwgy5nYf9C5tgSlpk1EREREZIpa+0dpGxhzJoSkdCOYa6dPVvk81NrdaSuqAgy0HrG3jsSEmjYRERERkSmqCV+qvd7Opdrjg9B56pqjkRHVpV7aB8bpGhqP/nOmZkHecoWRJCg1bSIiIiIiU1TT1EeK20VFSXb0i7QeAaxrhpBEVDoWRrJW45EJSk2biIiIiMgUHW7so6rUQ2rS1e9Wu6bmQ6HHa8T9R1SVeAE47kQYSX8TjPTYW0dmnZo2EREREZEp8AeCHG12IoTkUCiAJDN/Si/3ZiSzcEG6wkjmMTVtIiIiIiJTcKptkLHJoANN2+Epn2eLqPJ5OOHEXW2gc20JSE2biIiIiMgU1IQv1d5oJ4RkqBP6G6No2rzUdw0zODYZ/efOyAXPQu20JSA1bSIiIiIiU1DT1EdeZgoLF6RHv0jkUu0phpBEVIXDSE62Dkb/uSEURqLY/4Sjpk1EREREZAoON/ayYVEOZgp3q11V8yEwrl+OKk5RdalDYSTFa6HrLEwM21tHZpWaNhERERGRa+gfneR857AzISQFq0P3pk1DYXYq+VkpDsT+rwMsaD9ubx2ZVWraRERERESu4ejF8KXaZTbOs1kWNL875aj/SxljqPR5nbmrDTQimWDUtImIiIiIXMPhxj6MgbVl3ugX6W2A0Z5ph5BEVPk8nG0fZNwfiL4GTymk5yqMJMGoaRMRERERuYaapj6WF2ThSUuOfpEoQ0giqnwe/EGLs+1D0ddgTDiMRE1bIlHTJiIiIiLyISzL4nBjrwPn2d4FdyoUVUX14VW+0C5fbbMDYSQdJyBg4/oAmVVq2kREREREPkRjzwi9I5NssHM/G4RCSErWgju63brFuRlkpSY5E0YSmIDOU/bWkVmjpk1ERERE5ENELtW2tdMW8IfCP6I8zwbgchkqSzz2Y/8j1w1oRDJhqGkTEREREfkQhxv7yEhxs7JoejH979N5CiZHoj7PFlHp83CydZBA0Ip+kdxySM5UGEkCUdMmIiIiIvIhDjf1sabUS5LbxlvnSAiJjZ02CIWRjE4GqO+ycTm2ywXF1dppSyBq2kRERERErmJsMsCJln7WL3LgUu00L+Qus7VMJIzE9ohk8VpoOwbBoL11ZFaoaRMRERERuYoTrQNMBiw22LlUG0LJkb4NoV0uG1YUZZHidjlzyfbEIPTW21tHZoWaNhERERGRq6hpDIWQbLCz0zY5Cu3HbY9GAiS7XawqznZmpw1C4SgS99S0iYiIiIhcxeGmPnzeNIo8adEv0noUrIDtEJKIKp+H4y0DWJaNMJLCCnAlK4wkQahpExERERG5ipqmXvvn2RwKIYmo8nnoG5mkpX8s+kWSUqFwtcJIEoSaNhEREXHcyISfdxp6Yl2GiC1dQ+M09Yzau58NQiEk2T7wlDhSV2UkjKTZ7ojkutBOm50dO5kVatpERETEMZZl8cLxNm7/29f5zL/ufe9SYpFE9MvzbA6EkJQ6MxoJUFGSjTE4E0Yy3AmDbc4UJjNGTZuIiIg44kL3MA9+/x1+44lDpCaF3mIcUdMmCaymqQ+3y1Ad3tmKykgP9Jx3tGnLSEliWX6mwkjmETVtIiIiYsvYZIC/ffEMt//d67xT38Of7Krghd+9mfysFI7ZHd8SiaHDTb2sLs4mPcUd/SIth0OPDoWQRFSXeu3vtBVXA0ZhJAkgKdYFiIiISOJ6+WQ7f/bz4zT1jPLxdT7+eFfFeyl7VT4vtWraJEEFgxZHm/q5Z4PP3kKREBLfBvtFXaLK5+GpmhZ6hifIzUyJbpHUbMgr105bAlDTJiIiItPW1DPC//vzE7x0sp3ygkye/MoWti/Pf99rqks9vHmui7HJAGnJNnYqRGLgfOcQg+N+1jtxqXbeCki3GWZymapIGElLPzetKIh+oeK10HzQoapkpkxpPNIY02CMOWaMqTHGHAw/92fGmObwczXGmI9e8vo/MsacM8acNsbcOVPFi4iIyOwa9wf45stn+cjfvsZb57r4w7tW89xv3/yBhg1gTamXQNDidNtgDCoVseewE5dqW1YoOdLB82wRVT4P4FAYSV8jjPY6UJXMlOnstN1qWVbXZc/9nWVZ37j0CWNMJfB5oArwAS8ZY1ZalhWwV6qIiIjE0mtnOvnTp2pp6B7ho2uK+ZNdlfhy0q/6+shOQG1LP+vsRqaLzLLDTX140pJYmpcZ/SIDLTDU7tj9bJfKyUihNCfdgXNt4TCStmOw9Gb7hcmMmInxyHuAH1mWNQ7UG2POAZuBvTPwuURERGSGtfSN8hfPnOC52jaW5mfy2Jc3c8vKa49jLVyQjjc9mdpmm28qRWKgpqmPdWU5uFwm+kWaD4UeHQ4hiaj0eezf1VayLvTYelRNWxybanqkBfzCGHPIGPPQJc9/zRhz1BjzqDEmMvBbCjRd8pqL4edEREQkgUz4g3zr1fPs/JvXeOVUB793+0qe/52bptSwARhjqC71KIxEEs7wuJ/TbQP272dreRdcSVC8xpnCLlPt81LfPczwuD/6RTLzQxd/K4wkrk21abvBsqyNwF3Aw8aYm4FvAeXAeqAV+Jvwa6/07YgPXLNujHnIGHPQGHOws7Nz+pWLiIjIjHn7XBcf/cc3+P+eP8UNy/N56f++hd/auYLUpOkFilT7vJxuG2TCH5yhSkWcd6y5n6AFG+yO9TYfgqIqSE5zprDLVPk8WBacbLV7rm2dYv/j3JSaNsuyWsKPHcBPgc2WZbVblhWwLCsIPEJoBBJCO2tll3z4QqDlCmt+27KsTZZlbSoosJF4IyIiIo5661wX931nP+P+AN99YBPfeWATZbkZUa1VXeplIhDkbIfCSCRxREJIbJ3FDAahpWZGzrNFVJU6GEbSdQYmRhyoSmbCNZs2Y0ymMSY78nPgDqDWGFNyycs+CdSGf/408HljTKoxZimwAjjgbNkiIiIyU1480U5asosXfudmdlYU2VqrujQcS65zbZJAapp6WZKXEf39ZwDd52B8YEabtmJPGrmZKRxvsTmCXLwWrCB0nHCmMHHcVIJIioCfGmMir3/SsqznjTFPGGPWExp9bAB+A8CyrOPGmH8HTgB+4GElR4qIiCSOfXXdbFqcS0aK/byyxbkZZKUmUdvSz2ffN4gjEp8sy+JwYx/by/PsLfTepdozE0ICoXOjVT6PMzttEDrXtnCT/cLEcdf8v7FlWXXAuis8/6UP+ZivA1+3V5qIiIjMtt7hCU61DfJ7t5dc+8VT4HIZKn0ejimMRBJEa/8YHYPj9kNImg9BciYUrHKmsKuo9Hl49M16JvxBUpKmGldxGW8ZpOXoXFsci/LfrIiIiMxFBxp6ANhqd5fhEtU+LydbB/AHFEYi8a+mKXSebb0TISS+9eCaXnjPdFX5vEwGLM602zg3akxot00JknFLTZuIiIi8Z19dN6lJLtYu9Dq25pqFHsYmg9R1DTu2pshMqWnqIyXJRUWJJ/pF/BOhy6pLZ240MqLaF6rzhO0RyXXQfgICkw5UJU5T0yYiIiLv2V/Xw8ZFC6Yd7f9hqn2hBlD3tUkiONzYS7XPE/2oIUB7LQQmZjSEJGJJXiaZKW4HwkjWQWA8lCIpcUdNm4iIiADQPzLJybYBti5zbjQSYFlBFmnJLmqVIClxbjIQ5FhzP+vLHLhUG2Y0hCTC5TJUlDgZRqJzbfFITZuIiIgAofNslgVbluU6uq7bZags8VBrdydAZIadbhtkbDLI+kV2z7O9Cxn5kLPImcKuocrn4UTrAMGgFf0iecshOUNhJHFKTZuIiIgAsL+um5Qkl/0AhiuoLvVyosXmm0qRGXY4HEKywYkQktKNoYCPWVDl8zIyEaC+28a5UZcbiqq00xan1LSJiIgIAPvqu9lQlkNasvNpd9WlXobG/TTYeVMpMsNqGvvIz0ph4YL06BcZH4TO07Nyni2iMhxGYntEsnhtaKctqKTXeKOmTURERBgYm+REywBbHD7PFvFeGIndN5UiM+hwUy/ryxZg7OyQtdQA1qycZ4tYWZRNstvYDyMpWQvjA9DX4Ehd4hw1bSIiIsLBhh6CFmx1+DxbxIqiLFLcLo4rQVLiVN/IBHWdw2ywfZ7tYOhxFuL+I1KSXKwsynYm9h80IhmH1LSJiIgI++p6SHG72LjIZmreVSS7XawuyVYYicStN891AQ584+Lcy1BQAZn5DlQ1dVW+UIKkZdk4N1pYCa4khZHEITVtIiIiwv66btbP0Hm2iCqfl9pmm28qRWbInlOd5GQk24v7H+2Dxr2w6lecK2yKqnxeeoYnaBsYi36RpFQoWK2dtjikpk1ERGSeGxyb5Fhzv+NR/5erLvXQPzrJxd7RGf08ItMVDFq8dqaDW1YW4HbZOM92/mUI+mFlLJq2UBiJ7fsQI2EkElfUtImIiMxzBy/0ErRgy9KZCSGJWFMaDiPRuTaJM7Ut/XQNTXDrqkJ7C51+HtJzYeH1zhQ2DRUlHozBmTCSoXYYbHOmMHGEmjYREZF5bn9dD8luw8bFzt/PdqmVRdkkuYzOtUnc2XOqE2Pg5pUF0S8S8MO5F2HFHaE7z2ZZZmoSS/MznYn9B41Ixhk1bSIiIvPcvrpu1i7MISMlaUY/T1qymxVF2fbHt0Qctud0B+vLcsjNTIl+kYsHYLQ3JufZIqp8XvsJksVrQo9tR+wXJI5R0yYiIjKPDY/7Q+fZls7sebaIap+H2uZ+hZFI3OgeGufIxT77o5Fnng8lL5bf5kxhUajyeWjuG6V3eCL6RdI8kLtMO21xRk2biIjIPHbwQi+BoMXWGbpU+3LVpV667SbciTjo9bOdWBbOnGdbfAOkeZ0pLAqRMJITrQojmWvUtImIiMxj++u6cbsM1y2emfvZLlf9XhiJRiQlPuw51Ul+Vup7DU9Ueuqg63RMUiMvVeUL/f1yJIyktwHGdP40XqhpExERmcf21/ewdqGXzNSZPc8WUVGSjcsoQVLiQyBo8dqZTnasKsBlJ+r/zAuhxxieZwPIzUyhxJvmQOz/utBj2zH7RYkj1LSJiIjMUyMTfo409c141P+lMlKSKC/Isr8TIOKAmqZe+kcnnTnPlr8ydBYsxqp8Xmd22gBaFUYSL9S0iYiIzFPvXujDH7Rm/FLty1WXejUeKXFhz6lO3C7DjSvyo19kbAAa3or5aGRElc9DXdcwIxP+6BfJKoTsEoWRxBE1bSIiIvPUvvB5tk2zdJ4tosrnoW1gjM7B8Vn9vCKX23O6g+sWL8Cbnhz9IudfgeBkXDVtlgUnWwftLaQwkriipk1ERGSe2l/fTbXPQ3aajTesUVgTCSPRiKTEUPvAGMdbBhwYjXwB0nKgbIszhdlUFf77dcKJEcnO0zA56kBVYpeaNhERkXlodCLAkab+WYv6v1RlOKXvuMJIJIZeO90JwK2rC6JfJBiAsy/AitvBPTthPtfi86aRk5HMcduXbK8FKwAdJ5wpTGxR0yYiIjIPHW7sZSIQnPXzbADZackszc/UuTaJqT2nOyjxprGqKDv6RZoPwUh33IxGAhhjqPJ57O9kvxdGohHJeKCmTUREZB7aV9+Dy8CmJbPftAHOvKkUidJkIMgbZ7vYsaoQY2xE/Z9+Dowblu90rjgHVPm8nGkbYjIQjH6RnMWhi8KVIBkX1LSJiIjMQ/vruqnyefHM8nm2iOpSLxd7R+kdnojJ55f57WBDL0Pjfm5dZWM0EkLn2RZvh/TZDfO5liqfh4lAkLPtQ9EvYozCSOKImjYREZF5ZmwywOGmPrYsjc0uG/wyjMT2uRuRKLx6uoNkt+GG5Tai/vsaoeM4rLzTucIcUuWL/P2yOyK5DtqPQ8DG9QHiCDVtIiIi80xNUx8T/mBMQkgiqsJhJBqRlFjYc7qDLUvzyEy1ER5y5oXQ48q7nCnKQUvzM0lPdjsTRuIfg+6zzhQmUVPTJiIiMs/sq+vGGLg+hjttORkpLFyQTq0SJGWWXewd4Uz7EDvsjkaefg5yyyF/uTOFOcjtMlSUZHPCbtOmMJK4oaZNRERkntlf10NFscfehcIOqPZ5NR4ps+7V96L+bdzPNj4EDW/EVWrk5ap8Xo639BMMWtEvkrcCktJ0ri0OqGkTERGZR8b9Ad5t7I3paGREdamH+q5hBsYmY12KzCOvnu5gUW4Gy/Izo1+kbg8EJmBVPDdtHoYnAlzoGYl+EXcSFFUpQTIOqGkTERGZR4409TPuj839bJerCoeR2B7hEpmisckAb53r5tZVBfai/s88D6leWLTNueIcVl3qYBhJ21GwbOzYiW1q2kREROaR/XXdAGyO0f1sl6oOJ9zpXJvMlgP1PYxOBthhZzQyGIQzvwjdzeaO7Yjxh1lRlEWSy9i/xL54LYz1Q2+DI3VJdNS0iYiIzCP76rtZXZzNgsyUWJdCQXYqxZ40nWuTWbPndAepSS622RkPbjkMwx1xfZ4NIDXJzYZFOfzieBuWnV2yxdtDj6efdaYwiYqaNhERkXliwh/k0IX4OM8WUV3q0U6bzJpXT3eyvTyPtGR39IuceQ6MC1bc7lxhM+Rz1y+irmuY/fU90S9SsApKr4N3n9CIZAypaRMRuQp/IMjfvXiG//bTY7EuRcQRx5r7GJsMsjUOzrNFVPm8nO8cYmRCl/fKzKrvGqa+a9heaiSEzrOVbYGM+Pl7dDW71pSQnZbEk/sb7S208X7oPAnNh5wpTKZNTZuIyBV0Do7zpe8e4B9ePsuT+xuVbidzwr660HfbNy+Np502L0ELTrZqRFJm1qunOwDYsdJG09Z/EdqOxf1oZER6iptPb1zI87Vt9AxPRL9Q1acgOQPefdy54mRaptS0GWMajDHHjDE1xpiD4edyjTEvGmPOhh8XhJ83xph/NMacM8YcNcZsnMk/gIiI0w7U97DrH9/gcFMvn920EIBTrYMxrkrEvn113awsyiI3Ds6zRawpjYSRqGmTmbXndCflBZksysuIfpEzL4QeE6RpA7h38yImAkF+cuhi9IukeaDqk1D7k9AddTLrprPTdqtlWesty9oU/vUfAi9blrUCeDn8a4C7gBXhHw8B33KqWBGRmWRZFo+8Xse9j+wjMzWJn371Bn7vjlUAnLAbmSwSY5OB+DvPBlDkSSU/K0Xn2mRGjUz42VfXza2r7I5GvgALloTOeSWIVcXZXLd4AT880GgvkGTDl2BiCE78zLniZMrsjEfeAzwW/vljwCcuef5xK2QfkGOMKbHxeUREZtzA2CS/+YNDfP3Zk9xeUcRTX7uBihIPhdmp5GWmcEKjW5LgjjX3MzIRYEscjUYCGGOo8nmpVYKkzKC957uZ8AftnWebGIH610K7bHbueIuBezeHAkkiI9JRWbQV8laEAklk1k21abOAXxhjDhljHgo/V2RZVitA+DHyt6AUaLrkYy+GnxMRiUsnWgb4+Dff5KWTHfzJrgq+9YzNIO8AACAASURBVMWNeNJCd+8YY6j0edS0ScLbH36zFg+Xal+uutTD2fZBxiYDsS5F5qg9pzvITHGzacmC6Bepfw38Ywk1Ghlx99oSPGlJ/PCAjUASY2Djl6BpH3Seca44mZKpNm03WJa1kdDo48PGmJs/5LVX+tbDB/ZijTEPGWMOGmMOdnZ2TrEMERFn/cfBJj75L28xOhngRw9t5Ss3LcNc9h3UihIPZ9qHmAwEY1SliH376rpZXphFflZqrEv5gGqfF3/Q4nSbzo6K8yzLYs+pTm5Ynk9qko2o/9PPQUo2LL7BueJmSVqym085EUiy7l5wJcFh7bbNtik1bZZltYQfO4CfApuB9sjYY/ixI/zyi0DZJR++EGi5wprftixrk2VZmwoKCqL/E4iIRGFsMsAf/uQof/Djo1y3eAHP/NZNXL/kyjsQlSUeJvxB6jqHZ7lKEWf4A0EONvSwZWn87bJBKEESoFZnR2UGnOsYorlv1N5opGWFzrMtvw2S4ifIZzocCSTJKgztNB75IQSUqjybrtm0GWMyjTHZkZ8DdwC1wNPAA+GXPQA8Ff7508D94RTJrUB/ZIxSRCQeNHaP8Olvvc2P3mni4VvLeeLXtlCQffXdh0qfB4ATrXpDKYnpeMsAwxOBuAshiVi4IB1verISJGVG7IlE/a+ysUnQWgNDbQk5GhnhaCDJcGfovjqZNVPZaSsC3jTGHAEOALsty3oe+CvgdmPMWeD28K8BngXqgHPAI8BXHa9aRCRKL55oZ9c336CpZ4TvPrCJP7hzNW7Xhx8oX5afSUqSi5OK/ZcEta+uG4jP82wQOjtaXerhuHbaZAbsOdXJ6uJsSrzp0S9y5gXAwIo7HKsrFu5zIpBk+Ucgq1iBJLPsmk2bZVl1lmWtC/+osizr6+Hnuy3L2mlZ1orwY0/4ecuyrIctyyq3LGuNZVkHZ/oPISJyLf5AkL967hS//vhBFudlsPs/38TOiqIpfWyS28WqomxOKN1OEtT++h6WFWRSmJ0W61Kuqtrn5VTroM6OiqMGxyZ5p6HH3mgkhM6zLbweMvOdKSxGdoUDSZ60E0jiToINX4BzL8LAB05AyQyxE/kvIpIQOgbH+MJ39vOvr53nvi2L+PFvbqcsd3qXq1aWhBIkbY2UiMRAIGjxTn1P3EX9X66q1MtEIMjZdl3cK85561wX/qBl7362gdbQeOSqxB2NjIgEkrxQ20b30Hj0C234IlhBqHnSueLkQ6lpE5E5bX9dN7v+8U2OXOzjbz+7jr/85BrSkqefHlbp89AzPEHHoI0vciIxcKJlgMFxP1vjdDQyYk0kjESXbIuD9pzqJDstiY2LcqJf5OwLoccEPs92qfu2hANJ3rURSJK7DJbcFEqRDGp3fDaoaROROevpIy3c9539ZKUm8bOHb+BTGxdGvVZFSTiMRCOSkmD214fPs8X5Ttvi3AyyUpOUICmOsSyLPac7uHllAUluG295z7wA3kVQWOlccTG0siibTYsX8MMDTfYDSXob4MKbjtUmV6emTUTmrH/Zc44VhVk8/bUbWF3ssbXW6pJsAF2yLQlnX103S/IyKPbG73k2AJcrdJG9dtrEKSdaB+gYHLc3Gjk5Cuf3wMo7Q5dLzxH3bl5Efdcwe8MhRVGp/DikehVIMkvUtInInHSuY4hTbYN87voystOSba/nSUtmUW6GdtokoQSCFgcS4DxbRLXPy4nWAQJBnR0V+1493QnALSttRP3XvwH+0Tlxnu1SkUCSHx5oin6R5HRY+xk4+TSM9jlXnFyRmjYRmZOePdaKMXBXdYlja1aUZHNSO22SQE62DjAw5mdreXyfZ4uoLvUwNhmkrlNhJGLfnlMdrF3o/dB7OK/pzHOQnAmLb3SusDgQCSR5vrbVZiDJl8A/Bsf+w7ni5IrUtInInLT7aCvXL851dCSsssRLffcww+N+x9YUmUn760N3MSXMTls4jOSYRiTFpr6RCd5t7GWHndFIywqdZyu/FZLje7w4GvdtWcRkwLIXSOJbD8VrQoEkMqPUtInInHO2fZDT7YPsWuvcLhuEEiQtC0616ZJtSQz767pZlJuBL8fGpcKzqLwgi7RkF7XN2tEWe14/20XQgltX2RiNbDsGA81zJjXycs4FktwPrUdCP2TGqGkTkTln93ujkcWOrlvpC4WZaERSEkEwaHGgoYctSxNjNBLA7TJUlniUICm2vXqqg9zMFNYutBH1fyYc9b/iDmeKikP3bXEgkGTtZ8CdqkCSGaamTUTmnN1HW9m8JJdCj7PjLD5vGp60JCVISkI43T5I38gkW5YlxmhkRHWplxMtAwQVRiJRCgYtXj3TyS0rC3C7bCQ+nnkOSq+D7CLnioszH11Tgjc9mSf3N0a/SPqCUJLksX8PpW3KjFDTJiJzypn2Qc52DHG3w6ORAMaEIsmVICmJYH9d5H62xNlpg1CC5NC4nws9I7EuRRLU0eZ+eoYn2GFnNHKoA5oPzdnRyIhQIEkpLxxvsx9IMtYPJ59xrjh5HzVtIjKnPHO0FZeBOx0ejYyoLPFyqk2R5BL/9tX1UJqTTlluRqxLmZaq0tAYssJIJFp7TnXgMnDzChtN29lfhB7neNMGcN/mUCDJjw/ZCCRZchPkLIbDjztXmLyPmjYRmTMsy2L30Ra2LM2jMHtmkr4qSrIZmwzS0D08I+uLOCFynm1rgo1GQigcIcXt4riaNonSq6c72LBoAQsyU6Jf5PRz4CkNJSPOcSuKsrl+yQJ+eKAx+kASlyu021b/OvTUOVugAGraRGQOOd0+yPnOYcdTIy8VCSPRiKTEs7MdQ/QMT7BlWWKNRgIku12sLslWGIlEpXNwnCMX++2lRvrH4fweWHknGBtn4hLIvZsX0dA9wt7zNgJJ1t8HxgWH/825wuQ9atpEZM7YHR6N/JUZGo0EWFGYTbLbKIxE4tr++tAbr60Jcj/b5ap8XmqbB+zFkMu89PqZTgB797M1vAGTw/NiNDLivUCSAzYCSbylsPwjUPMkBAPOFSeAmjYRmSMsy+KZo61sK88jPyt1xj5PSpKL8oIsxf5LXNtf14PPm0ZZbmLcz3a56lIP/aOTXOxVEp1Mz57THRRmp1IVnoqIypkXICkdlt7sXGFx7tJAki67gSSDLXDuZeeKE0BNm4jMESdaB6jvGmbXGt+Mfy4lSEo8syyL/fXdbFmWh0nQ0a5qnxeA4xqRlGnwB4K8fqaTHasKov9v37Lg9POwbAckJ+Y3PaIVCST5iZ1AkpW/Ahn5CiSZAWraRGRO2H20FbfLcGfVzN+nU1nioWNw3N53I0VmyPnOIbqGJtiagOfZIlYVZ5PkMkqQlGk53NTHwJifW+2MRnachP5GWDV/RiMjLg0kifqexKQUWPf5UJDLUIezBc5zatpEJOFZlsXuY61sL88jbwZHIyMiYSQakZR4tLeuB4AtCXqeDUKjWiuKsqlt1t8xmbo9pzpIchluWJEf/SJnngs9rrjTmaISzH1bQoEk++psBJJsvB+CfjjyI+cKEzVtIpL4jrcMcKF7hF1rZi418lKVJUqQlPi1v66bIk8qi/MS6362y1X7PNQ29yuMRKZsz+lONi1ZgCctOfpFzrwAJevBMztfT+LNXdWhQJJ/sxNIUrAKyrbA4SdC46biCDVtIpLwnnlvNHLmUiMvlZORgs+bpgRJiTvBoMW+uh62LE3c82wR1aVeuocnaB/QGLJ8uAl/kH997TwnWweiT40M+GH/t6HpwLxKjbxcWrKbT29cyC+cCCTpOhP65ymOUNMmIgktNBrZwg3L8+1dpDpNCiOReHSgoYeuoXF2Vtg40xMnqktDO9q1OtcmH2LPqQ7u/PvX+avnTrFzdSH3bl40/UWaDsAjO+C5PwgFkGx+yOEqE8t9W8qYDFj82E4gSdUnISVLgSQOUtMmIgntWHM/TT2j3D1Lo5ERFSUe6rqGGZvUXTQSP56qaSE92c3tlTMfyDPTKko8uAwKI5Erqusc4sHvHeDB77+DMfD9B6/nu796Pd70aYxGDnfBUw/Dd2+H4W74zGPwpZ9CZuKeB3XC8sJsNi/J5Ud2AklSs0KNW+1PYXzQ2QLnKTVtIpLQdh9tJclluGMWUiMvVVniIRC0ONOuL0YSHyb8QZ491sodVUVkpCTFuhzbMlKSKC/IUuy/vM/QuJ//8dxJ7vz713mnoZc//mgFz//2zdMbiwwG4OCj8M3rQmEZN/w2fO0dqPoEJPhYsVPu3VJGQ/cIe+0GkkwOQ+3/dq6weUxN2xw3PO7nXMcQb53rUjy5zDmRC7VvXJFPTsbsjUbCLxMkNSIp8eKNs530j05yz/qZv6twtlSXepUgKUDovOZPDl3k1m+8yv98rY5PrC/lld+/hV+/eRkpSdN4O9t8CL6zE575XSheA7/5Ftz+56GdIXlPJJDkSTuBJAuvh4LVoUASsS3xvxU3T1mWxeC4n7b+MVr7x2jrHw0/jtFyya8Hx/zvfcytqwr43oObY1i1iLOOXOynuW+U3/nIiln/3GULMshMcSv2X+LGUzUt5GQkc+PygliX4pgqn4efHm6mc3CcguyZv85D4tORpj7+9Onj1DT1sb4sh0fu38T6spzpLTLSAy//ORz6PmQVwae/C9Wf1s7aVUQCSZ7Y10DX0Dj50VynY0wokOQXfwwdp6BwtfOFziNq2hLA4cZe9pzqCDVlA2O09I3S1j/G8MQHz9LkZ6VS4k1jSV4m25blUexNp8SbxiunOni+to3hcT+ZqfrXLnPD7qMtJLsNd8xSauSlXC5DRYlHCZISF0Ym/Lx4op1Pbiyd3q5DnKsu9QJwvKU/+lRASVidg+P89Qun+PeDF8nPSuUbn1nHpzaU4nJNo9EKBqHm3+ClP4XRPtj6n2DHH0GaZ+YKnyPu21LGo2/V8+NDF/nNW8qjW2Td5+GlPwvttt35dUfrm2/07j3O9Y9Mct8j+xnzByjMTqXEm87KomxuXllAiTftvaas2JNGkSftql+sCz2pPH2khTfPdc1aLLrITLIsi91HW7l5RcH0Dp47qNLn4X+/20wwaE3vTYSIw1480c7oZIB71s2d0Uj45RhybbOatvlkwh/k8b0N/MNLZxnzB/iNm5fxtduWkz3d+9daj8Lu34OLB2DRNvjoN6C4ekZqnosuDSR56KZl0X2dy8yHVXfBkR/Czj+FpNk9yjCXqGmLcz96p5HRyQC7//ONVPm8Ua9z/ZJcstOSePlku5o2mRMON/XR0j/G79+5KmY1VJZ4eHz8Ak29IyzOy4xZHSJP17RQ4k3j+iW5sS7FUZ60ZJbmZypBch557Uwnf/7z45zvHGbHqgL+n7srWVYwzfNmo32w5y/hnUcgPRc+8S1Yd69GIaNw35ZF/M7/qmFvXTc3LM+PbpGN98PJp+H0s6GwF4nK3JmhmIP8gSCPvd3A1mW5tho2gGS3i1tWFvDKqc7o41tF4sjuo62kuF18JIbR5hUloV0AnWuTWOodnuC1M518bJ1vTu74bijLYX99D5OBYKxLkRl0oXuYrzx2kAcePUAgaPHor27i+w9unl7DZlmhNMh/uj7UsG36NfitQ7D+PjVsUfqV6mJyMmwGkpTfBp5SBZLYpKYtjr1wvJ2W/jG+fMNSR9bbWVFI19A4R/UdS0lwwaDFs8dauXllAZ7pjss4aFVxNi6jBEmJredq2/AHLT4+x0YjI+5aU0LfyCRvn7cRPS5x7Yl9F7j9b19n7/ku/vCu1bzwuzdz2+ppfkNuYgQe+xj89DcgZxH8+h7Y9Q1In2ZgibxPJJDkF8fbok8hd7lh/Rfg3MvQb+PC7nlOTVsce/StehblZrCzwpmdhB0rC3EZeOVkuyPricTK4aZeWvvHuHvt7F6ofbm0ZDflBVkKI5GYeqqmmfKCTKp8czNY4aYV+WSnJrH7aEusS5EZMDA2yf949iQbF+fwyu/v4DdvKSc1yT39hQ7/ABregLv+Gn7tRfCtd77YeeqTG0qZDFi8droz+kXWfhaw4MzzjtU136hpi1M1TX0cutDLr25fgtuhcZcFmSlct3gBL53scGQ9kVh55mgrKUkudlbEPpigosTDyVZdsC2x0do/yoGGHj6+rhQzR8e/0pLd3F5ZxAvH25nwa0Ryrvnfhy4yMhHgj+6qoMiTFt0iwQDs++fQvWBbHgKX3t46qbLEw4KMZHu73XnLwVsGda85V9g8o/+q49T33qonKzWJz2xa6Oi6OyuKONE6QGv/qKPrisyWyGjkjpUF008SmwGVPg/NfaP0jUzEuhSZh5450oplwcfn0IXaV7JrbQn9o5O8db4r1qWIgyzL4ol9F1i30Mu66d67dqnTz0JvA2z7mmO1yS+5XIaty/LYV9eNZUWZi2AMLL0F6l8PNdkybWra4lBb/xi7j7by2U1ljr8p3bk6tDPxsnbbJEEdauylfWCcXTEejYyoDIeRaERSYuGpI82sW+hlaf7cTi+9cUU+2WlJ7D7aGutSxEFvn+/mfOcw929bYnOhfwqdY1t9tyN1yQdtL8+juW+Uxp6R6BdZtgPG+qD1iFNlzStq2uLQE/saCFgWv7p9ieNrLy/MYlFuBq+cUtMmiWn30VZSk1yOnfW065cJkhqRlNl1vnOI2uYBPjZHA0gulZrk5o7KYl443qYRyTnk8b0N5Gam2Psm3MWD0LQPtn4V3LrJaqZsKw/F/dsakVx2S+ix7lX7Bc1DatrizOhEgCf3N3J7RRGL8jIcX98Yw22rC3nrXBejE9qelsQSCI9G3rqqkKzU+PjiXJCdSkF2qhIkZdY9XdOCMcyLpg3g7rUlDI75efOcjTAEiRvNfaO8eKKdz24qIy05iuCRiL3/BKle2PBF54qTDygvyKQgO5W9dpq2rEIorFLTFiU1bXHmZzXN9I5M8uUbnYn5v5KPVBQx7g/y1jmdDZDEcrChh47B+BmNjKgs8Wg8UmaVZVk8faSFbcvyog9vSDA3LM/Hk5bEMxqRnBOe3H8BgC9sWRT9Ir0X4MRTcN0DkJrtUGVyJcYYtpfn8fZ5G+faIDQi2bgPJpWtMF1TbtqMMW5jzGFjzDPhX3/fGFNvjKkJ/1gfft4YY/7RGHPOGHPUGLNxpoqfayzL4tE366ks8bBlae6MfZ7NS3PJSk3i5VOK/pfEsvtYK2nJLm5bHfvUyEtV+jyc6xjU2JbMmtrmAeq7hufs3WxXkpLk4s6qYl483s64X5MiiWzcH+BHB5q4bXURZbk2por2/ysYF2z5TeeKk6vaXp5H19A45zqGol9k2Q4IjEPTfqfKmjems9P228DJy577A8uy1od/1ISfuwtYEf7xEPAt+2XOD2+e6+JsxxBfvnHpjEY3pyS5uHllPi+f7LD33RKRWRQajWzjttWFZMbJaGRERYmHyYBl7wuZyDQ8VdNMsttwV3V87TrPtF1rSxgc9/PGGU2KJLJnj7XSPTzB/dsWR7/IaB+8+zhUfQq8pc4VJ1e1bVnoXNveOhsjkou3gytJI5JRmFLTZoxZCOwCvjOFl98DPG6F7ANyjDHz66tKlB59s578rFQ+tm7m/3HdtrqIjsFxaps10iWJ4UB9D11D4+xaE387C0qQlNkUCFr8/GgLO1YV4s2I/bUXs+mG5fl405PZfUwjkons8b0XWJafyY3L86Nf5N3HYWIItj3sXGHyocpy0ynNSeftczaattSs0H16atqmbao7bX8P/Bfg8tmfr4dHIP/OGJMafq4UaLrkNRfDz72PMeYhY8xBY8zBzk4dKj7fOcSe0518aetiUpNsHMidoltXFWAMGpGUhLH7WAvpyW5uXV0Q61I+YGl+JmnJLoWRyKw4UN9D+8D4vBqNjEh2u/iVqmJePNHO2KRGJBPRsYv9HG7s44tbF+NyRTlVFJgMjUYuuQl8650tUK4qcq5tX303waDNc20tNTDS41Rp88I1mzZjzN1Ah2VZhy77rT8CVgPXA7nAf418yBWW+cC/Wcuyvm1Z1ibLsjYVFMTfm7DZ9v23Gkhxu/jCVhsHcqchLyuVDWU5iv6XhOAPBHm+to3bKgrJSImv0UgAt8uwqtjDSe20ySx4+kgzGSluPhIn117Mtl1rSxga9/P6GX3DNxE9vreB9GQ3n75uYfSLHP8ZDDTrMu0Y2FaeR9/IJCfbbHy9W7YDsKDhDYeqmh+mstN2A/BxY0wD8CPgNmPMDyzLag2PQI4D3wM2h19/ESi75OMXAi0O1jzn9I9M8uNDF7lnvY/8rNRrf4BDdlYUcfRiP+0DY7P2OUWiERqNnODuNfE7aR1JkNQ5UZlJE/4gzx5r486qYtJTZn4qIx5tK89jQYZGJBNR7/AETx9p4ZMbS/GmRznaa1mw95uQtwJW3OFsgXJN28rzAOxF/5deBylZGpGcpms2bZZl/ZFlWQsty1oCfB54xbKsL0bOqZlQYsYngNrwhzwN3B9OkdwK9FuWpf+zfogfvdPI6GSAB2+YuZj/K9lZEUrg26PdNolzzxxrJSPFzY5V8ZUaealKn4f+0Ula+vVNEJk5r5/ppH90cl6ORkYku138SnUxL2lEMuH8x6Emxv1BewEkF96C1iOw7avg0s1Vs63Em86y/Ex7l2y7k2HJjWrapsnOf+3/Zow5BhwD8oH/Hn7+WaAOOAc8AnzVVoVznD8Q5LG3G9i2LI9Kn2dWP/eqomxKc9J56aSaNolfkdHInRVFcb2zUFkSuiNI59pkJj11pIUFGcncuMJGgMMcsGuNj+GJAK+e1tevRBEIWjyx7wKbl+SyutjG+523/wky8mDdvc4VJ9OytTyPA/U9+AM2rrlZtgN66qCv0amy5rxpNW2WZb1qWdbd4Z/fZlnWGsuyqi3L+qJlWUPh5y3Lsh62LKs8/PsHZ6LwueKF4+209I/N6GXaV2OMYWdFIW+d69J3KyVu7avroWd4gl1xPBoJsKrYgzHoXJvMmOFxPy+eaGPX2hKS3fN7h2HrslxyM1N00XYCee1MB009o3zJzi5b11k48xxc/xVITneuOJmW7eV5DI37OdbcH/0iy3aEHutec6KkeWF+/18/Djz6Vj2L8zJidlnwzooiRicD9maTRWbQ7mMtZKa42bEqvgOLslKTWJKXqZ02mTEvnWxnbDLIx9fpTqqk8Ijkyyc7GJ3QNx0TweN7L1CYncqdVcXRL7LvX8CdGmraJGa2Lguda7M1IlmwGrKKNCI5DWraYqimqY9DF3r51e1LcEcbe2vTlqW5ZKS4Ff0vcWkyPBr5kcoi0pLjdzQyIhJGIjITnqppwedNY9PiBbEuJS7cvaaE0ckAezQiGfcauoZ57Uwn925eREpSlG89h7uh5klY+1nIit/zzfNBflYqq4qy2Wfnkm1jYOktoaYtaGPMch5R0xZD33urnuzUJD6zqezaL54haclublqRzysnO5R6J3Fn7/luekcm4340MqKiJJvGnhEGxyZjXYrMMb3DE7x+ppOPrfdFf7fVHLN5aS75WSns1ohk3PvBvgu4jeG+LTauNTr4XfCPKeY/Tmwrz+Odhh7G/TZ2upftgJEu6DjhVFlzmpq2GGnrH2P30VY+e30ZWamxvXdq5+oiWvrHONk6GNM6RC63+2gr2alJ3LwyvkcjIyJhQqfa9HdJnPVsbSv+oDWvUyMv996I5Kl2Rib8sS5HrmJ0IsC/H2zizupiijxp0S0yOQYHvg3Lb4fC1c4WKFHZXp7H2GSQmsa+6BdZdkvoUSOSU6KmLUae2NdA0LL41e1LYl0Kt4bP0718UiOSEj8mA0GeP97G7QkyGglQWeIFlCApznuqpoXlhVlUlsxuynC827XGx9hkkFd0dU3cevpIMwNjfu7faiOA5Nh/wHAnbNcuW7zYsjQPY2CvnRFJ78LQfXv1CiOZCjVtMTA6EeDJ/Y3cXllEWW5GrMuhIDuVdWU5vKwvehJH3jrXRf/oJLvWJsZoJECRJ5UFGclKkBRHtfSNcqC+h3vW+QhdjSoRm5fmUpCdqhHJOGVZFo+9fYFVRdlsXpob7SKw95+hqDp0BkrigjcjmWqf114YCYRGJBveAv+EE2XNaWraYuBnNc30jkzy5Vm+TPvDfGR1IUcu9tE5OB7rUkSA8GhkWlJC3UdljKHSpzAScdYzR1sA+JhGIz/A7TJ8tLqYV051MDyuEcl4825jLydaB7h/++Lov+Fw/mXoPBk6y6ZvWsSV7eV5HG7stZfgumwHTA5Ds24IuxY1bbPMsiwefbOeKp8n+u86zYDbKgqxLJTCJXFhwh/kheNt3FFZTGpSYoxGRlSWeDjVNmjv0lGRSzxV08K6shyW5GfGupS4tGutj3F/UNMicejxvRfITk3iE+ttXFPx9j9BVjFUf9q5wsQRW8vzmAxYHLrQG/0iS24E49K5tilQ0zbL3jjbxdmOIb58w9K4GnOpLPFQ4k3TuTaJC+809DAw5ueuahv3+cRIRYmHCX+Quq7hWJcic8C5jiGOtwxwj3bZrmrT4gUUZqeyO7wjKfGhc3CcZ4+18unrFpIZbeBaWy3U7YEtD0FSirMFim3XL8klyWV4+3xX9Iuk54Bvg5q2KVDTNssefaue/KxU7l4XX+d0jDHctrqQN8522YtvFXHA3vPduF2GreV5sS5l2iIJkjrXJk54+kgLLgN3J9DZztnmchk+uqaEPac7GdKIZNz40YFGJgMWX9pmI4Bk7z9DcgZc96BzhYljslKTWFeW48y5tosHYUxfNz+MmrZZdK5jiFdPd/KlrYvjcuTrIxVFjEwE2FfXE+tSZJ7bW9fN2oXemF+HEY3ygixS3C4lSIptlmXxdE0z28rzKIw2Kn2euHttCRP+oKZF4oQ/EOTf9jdy04p8yguyoltksC2UGrnhi5ARP8dJ5P22LcvjWHO/vftJl+0AKwAX3rrmS58+0sI/7zln7wjCyZ/Da/8/+BMrx0FN2yz6/tv1pCS5+MJWG5dLzqBtQH5XaAAAIABJREFU5XmkJbt4RV/0JIaGx/0caepj27LE22UDSHa7WFmcpTASse1Ycz8N3SPcs87GeaB5YuOiBRR70nhGKZJx4cUT7bQNjPElOzH/B74NQT9s/U/OFSaO216eRyBo8U6DjW/4L9wMSelQ9+HR/8Ggxd+/dIbna9twu6I8YmRZ8PpfQ+1PwJ1YI7dq2mZJ38gEPznUzCfW+8jPSo11OVeUluzmxuUFvHSyA8uyYl2OzFOHLvTiD1psTdCmDaCi2MOJlgH9PRJbnqppIcXt4s4EPNs52yIjkq+d7rT3HX9xxON7L1Cak87OiqLoFpgYhne+C6t3Qe4yZ4sTR21cvICUJBdvn7MxIpmcBou3XfNc257THdR1DvOVm2zkQjTug9YjsOU3Ei6NVE3bLPnRO02MTgZ4MI5i/q9kZ0UhzX2jnGkfinUpMk/tresm2W3YtGRBrEuJWqXPQ/fwhK7QkKgFghY/P9LCjlUFeNOTY11OQti1toSJQJCXNC0SU2fbB9lb180Xti6Kfjek5kkY64Ptv+VsceK4tGQ3Gxc5dK6t82RoLPYqvvNGPSXeND66xsYZ3/3fgrQcWPv56NeIETVts2AyEOSxtxvYXp5HRYkn1uV8qNtWFwLoi57EzN7z3axbmENGSuKdZ4uoDP89P64RSYnS/vpuOgbHucdOVPo8s6EsB583TRdtx9gT+y6Q4nbxuU1l0S0QDMC+f4HSTVC2xdniZEZsL8/nZNsAvcM2LshetiP0eJURydrmfvbWdfPgDUtIdkfZvvQ1hs6zXfcApGREt0YMqWmbBS8cb6O1fyyuLtO+miJPGmtKvbyi+24kBobG/Rxr7mdbAqZGXmp1uGlTGIlE6+maFjJT3OysKIx1KQkjMiL5+pku+kc1IhkLg2OT/OTQRe5eW0JetEdBTj8HPXWw7eGEG1+br7aX52FZoW82Ra1oDaTnXnVE8jtv1JGZ4ubzm23kQhx4BDBw/a9Hv0YMqWmbBY++Wc/ivIz3drHi3c6KQt5t7KV7SKNdMrveaeghkODn2QC86cn8H/buOzyu6lr48G+PRr33Xt3kLvduwAabatPBgAHDDYRLQnq56YEkX0IIkMAlJFzTMdWhmF5s4ya5d1u2umTZ6r1LM+f7Y0ZgG5WZ0YymaL3Po8eaM2f2WeOjKevsvddOCveXsv/CJp09Bj48fIblE+Pw83a9SsOu7KshksdktIgzvL2/nNYuA7fPT7O9kewnITQFxq+wW1zCsaYkheHv7TW0IZI6HaQvNiVt580HP9PYzvuHznDTrBRC/GwcLt7VCvtegPFXQpiNvcBOJkmbg+0vrWdfaQNr5qehs3Vs9zBbmhmLpsHmE9XODkWMMDkFtfh46ZiR6r7z2XpNiA+RCpLCJltO1tDU0cOKLFlQ21pZyWEkhvnzwWEZIjncNE3jxewSpiSFkpUcZlsjp/ZCabapYqSX+w6RH2l89DpmpUeQbY95bc2noTb/nM3P7yjGqGmsWZBme9sHX4OORpjjvtVIJWlzsOe2FxPsq+d6W8d2O8GkxBBiQ3z5IleuVIrhlV1YS1ZKmEf0LoyPD6GoppW2LlnsV1jn3QPlRAb6sGB0lLNDcTtKKa6YEs/WvGoa22SI5HDKLqglv6plaGX+s58E3xCYvtp+gYlhMX9UJHlVLVQ1d9jeSMaFpn/PGiLZ0tnDup2lXDY5nuQIG+ehaRrs/BfET4WUubbH52SStDnQmcZ2Pjx8hptmJbvVIsFKKZZkxrDlZA1dPUNYvFAIKzR1dHOkvNFt12c734SEEDQNTlQ0OzsU4UZaO3v4/Hgll0+Ot32y/Qh3xeR4ug0anx7rvwqdsL8Xs0sID/Dmqqk29hA3lMKxd01FInyD7RuccLjez+4h9bZFpENY6jlJ2xu7y2ju6OFbi4aw9EPBRqg5Yeplc+N5kvKJ4EDr957CoGncMZSx3U6yJDOWls6eoS2WKIQVdhfVYdRw+/lsvXorSMoQSWGNz45V0tFtZKUMjbTZlKRQksJliORwOt3QzmfHK7lxVrLtIyV2/sv0hXrOt+0bnBgWExNCCPbTk1NohyGSRVvB0IPBqPHs9iJmpobbPuQWYOfTEBgDk64dWmxOJkmbA205WcPkxFDbu3OdaOHoKHz1Oin9L4ZNdkEtPnod01KG8MbsQpLC/Qn200sFSWGVdw+Ukxjmz/QU95/X6Sy9QyS35dXQ0DaEEuTCYut2lmLUNG6bY+PQyI5G2PsCTLwGQpPsG5wYFnovHXPSI+2zXltnI5w5wCdHKzhV385/DaWXrSYf8j6FmXeB3saKpi5CkjYHae7oZl9pPQvddE6Cv48X80dF8sXxKrTzqvgI4QjZhbXMSAn3iPlsYPriOD4+RCpICottzavmy5PVXD0twW0KV7mqKycn0GPU+OSoDJF0tK4eI6/tLmVpZoztF6n3vQhdzaYy/8JtzRsVSUltG+UN7bY3kr7Y9G/hJp7ZWkhqZACXTIi1vb1d/wKdtylpc3OStDlITmEdPUaNRWOinR2KzZaOj6W0ro2C6hZnhyI8XENbF8fONLn9+mznmxAfQm5FMwajXPgQAztV38YDr+5nTEww91802tnhuL1JiSGkRATwviy07XD/3lJATUsXd863cS3atjrY9hikLYKEafYNTgyr+aPsMK8tMAriJtN87HP2lzZw14J0vGy9iNXRCAfWwaTrIHgIiZ+LkKTNQbblVePv7cX0VPcd6tW7rtwXx2WhbeFYO4vq0DxoPluvCQkhtHUZKKltdXYowoV1dBu47+V99Bg0nl49gwAf9ylc5ap6h0juKKilrtXzhkierGzmpZwSjEO5IKRpsHstHH3H5iaOn2ni71/kceWUeBaOsXFk0ae/Nn25vuwvNschXMO42GAiAn3YUVAztIYyLsSvYi+xfkZumDmE4bL7X4auFpjrGfMkJWlzkK15NczNiMBX775DvRLC/JkQHyJJm3C4nMJa/Lx1TE0OdXYodiXFSIQlfvvuUQ6XN/LYTVmkRwU6OxyPccXkeAweNkSy22DkiS/yuOIfW/n1O0d4Zmuh7Y0ZDXDwVXjvAagvsSmWH71xkFB/Hx5aOcm2GIq2woGXYf53IXaibW0Il6HTKeZmmNZrG8rUmqqoeXjTzY8ya22/iGU0mIrbJM/1mB5cSdoc4FR9G4U1rW49NLLX0vEx7Cmpk8ncwqGyC2qZmereFzn6MjomCL1Oybw20a9Xd5Xy+p4yvrtkNBcPZd6G+IaJCSGkRQbwgYcMkTx6upGVT27nb5+d5NJJ8Vw8Ppa/fnKCg2UNtjXopYdrnwHNCP/5FhisW1Pyfzflc+xME3+6ZhLhgT7WH7+7A97/PoSnwQU/s/7xwiXNGxXFmcYOSmrbbG7jmZJYujQ9VwSdtD2Qkx9DQ4nH9LKBJG0OsS3P1C28yNahAi5k6fhYjBpsPlHt7FCEh6pr7SK3otnj5rMB+Hl7MTomSCpIij4dLGvgt+8eZfHYaL5/8Vhnh+Nxvh4iWUNtS6ezw7FZZ4+BRz89wcont1PV3Mm/Vs/giVXTeOSGKcQE+/LAa/tp6bQu4fpKRDpc9TiU7YQtD1v8sCPljTy5MZ9rpiWybGKcbcfe9ijU5sOVj4G3v21tCJfTO6/N1iqSjW3dvLK/htLASQSe2mp7IDn/hJAkyLzK9jZcjCRtDrA1r4a4ED9GxwQ5O5Qhm5IYSlSQL1/kyhBJ4Rg7zWu6zM2IcHIkjjE+PkSGR4pvqG3p5L6X9xIT4svfb8qyfaK9GNAVkxMwavCxmw6RPFjWwFVPbOMfG/NZkZXA5z9czHJzkhQW4MPjN0+jrK6N37x7xPaDTL4ept4CW/4KxdsH3b2rx8iP3zxIRKAPv71qgm3HrD4BWx+FyTfCqCW2tSFcUkZUIDHBvjbPa1u3q5S2LgMhEy6BikPQakPyV3EEirfC7P8y9Sh7CEna7Mxg1NheUMPCMVEoN151vZdOp1iSGc3mE1V0G4zODkd4oJzCWgJ8vJiS5L5FewYyIT6EyqZOt77SL+yrx2Dkgdf2U9PaxdO3zbBtaJmwyPj4YDKiAt1uiGRHt4E/f5TLNU9tp6m9h+funMWjN2YRFnDu38rs9Ai+s2QM/9lXzjv7y20/4OUPm4Yp/udbpmqOA3hiYx65Fc38v2snfyMeixiNsOH74BsEy/9kW7zCZSmlmD8qkpxC6+e1dfUYeX5HEQtHRxEzdblpY9GX1gex82nQ+8P0O6x/rAuTpM3OjpQ30tDW7RFDI3styYyluaOHPcX1zg5FeKDswlpmpkXg7eWZb0cTEkzFSI6faXZyJMJVPPLpSbbn1/KHqycxKdGziu+4mt4hkjmFtVQ3u8eFk70ldVz+j608/WUBN85M5tMfLuYiczXnvjywZDQzU8P51TtHKLV1HpFvMFz/LLRUwYYHTJUl+3CwrIGnNhdw/Ywklo63cQ7m/pegdAdc8hAEuf/cf/FN80dFUdPSRV6VdUtGfXD4NJVNndy9KN1UPMQ3BAo3W3fw1lo4/CZMvQkCPGsEj2d+S3Kibfmm7mB3XVS7L4vGROHjpeOL45XODkV4mJqWTk5WtjDPw0r9n238VxUkG50ciXAFHx85w9NfFnDLnBRunJns7HBGhCumxLvFEMn2LgMPvX+M65/OprPbyEt3z+bP100hxM97wMfpvXQ8fnMWSsF3X9tv+6iYhGmw9DdwfAPsfe4bd3d0G/jxmweJDvLl11faOCyypQo++zWkLoRpt9nWhnB5vXPUd+RbPkRS0zSe2VLEmJggLhwbbRrWmLbI+p62vc9BTwfM8ZwCJL0kabOzLSermZgQQmSQr7NDsZtAXz1zR0WyUea1CTvL8fD5bAARgT7EhfhJMRJBflULP37zEFnJYbbPBRJWGxcbzKjoQD44dNrZofQrp7CWS/++hbXbirhtTiqf/GCxVRWok8ID+PO1UzhY1sCjnw2h4t6875jmmH38C6jKPeeuxz/PI6+qhT9fN5lQ/4ETyX59/D/Q3W4qfuIBU0hE35IjAkgK9ye70PL5aNkFtRw708R/LUr/enpRxoVQXwx1RZY1Yug2rT2YcSHEjLcuaDcgSZsdtXb2sK+03iNK/Z/v4vExFNa0UlhtXVe3EAPJKawlyFfPZA8fIjYhIUSGR45wLZ09fPvlvfjqdfzztuket7yFKzMNkUxgZ1EdVc0dzg7nHK2dPfz6nSPc/O8cNA1e/dZcHrp6EkG+1hdPuGJKPDfPSubpLwus6uE4h04HVz8NPoHw1l2msvzAvtJ6/r2lgJtnJXPhuP6Hag4o73M48hYs+hFEjbGtDeE2TPPa6jBYuAD8/20rIirIh5VZiV9vzLjQ9K+lvW3H3oXm0zD3v62K1V1I0mZHO4tq6TZoHjWfrdcS83h66W0T9pRdUMustHD0HjqfrdeE+BDyq1vo6DY4OxTRj26DkbI629cVGoimafz0rYMUVrfwxKppxIdKefPhduWUeDQNNhx0nYIk2/JqWPbYFl7eWcJdC9L5+PuLhrz0yW+umkBGVCDff/0Ada02rq8aHAvXPA1VR+GzX381LDIuxI9fXmFj70VXG3zwQ4gaCwt/YFsbwq3MGxVJY3u3ReuU5lc1szG3itVz0/DzPuuCVtQYCE6wfF7bzqchYhSMvsS2oF2cZ39TGmZbTtbg561jRmq4s0Oxu6TwADLjgvlc5rUJO6lq6qCgutUj12c73/j4EAxGjbxK6al2VU9tKmDRw5v43mv7qWi0b2/MM1sL+fBwBT+7NJP5HjTf2Z2MjQ1manIYr+4qtbqinb21dvbw8/WHuG3tTnz1Ot68dx6/uWoCAT5DL00e4KPnH6um0dDWzU/fOmj7cx1ziam3Yte/ee+N/6OwupWHr59K8CDz6/r15Z9NCx1f+TjoPWf6iOjfvAzTe122Beu1rd1WhK9ex21zU869QylTb1vhl6aqowM5tRdO7YY595p6jD2QZz4rJ9mWX8Ps9MhzrxJ4kCWZMewurqexvdvZoQgPkP3VfDbPT9q+riAp89pc1cdHK4gO9uWjIxUs+dtmntqcT2fP0HtGdxTU8OePcrlsUhz3LM6wQ6TCVrfOSSG/qoVdRQOXtHe0Rz87yRt7yrj3ggw+/N4iZqbZd07vxIRQfn5ZJp8fr+LF7BLbG7r4d7RFTODikw/y7ekBLLR1FFHFYdjxJExbDWkLbI9HuJW4UD8yogMHXa+ttqWT9fvKuXZ6Ut/1IDIuhPY6qDw88AF3/tNUbTLrFptjdnWStNnJ6YZ28qtaWOyBQyN7XTwhFoNRY5MMkRR2kFNYR7CfnokJnj2fDSA1IoBQf2+25FU7OxTRhzON7Rw/08TdC9P5/AcXsGB0FA9/fIJLH986pPe7M43tfHfdftKjAvnrDVM9Yu1Od3bVlASC/fSs21XqtBiaO7p5fXcZK6Ym8D+XjXfYRd41C9K4aFw0f/zwuM0Xi9qNeu5tvx9/1c2PW/8GRhsuYhgNsOF7ptLrlzxoUxzCfc3LiGRXUd2AFU1fyimhq8fI3QvT+94hfbHp38IB5rU1nYGjb5sqkvoGDyFi12Zx0qaU8lJK7VdKvW++na6U2qmUylNKva6U8jFv9zXfzjffn+aY0F3LtjzTlQRPLELSKyspjLgQPz487DpzAoT7yimsZU56BF46z/8iq9MprpuexCdHK1yuEIKATbmmZHpJZgwpkQE8c/tMXrhrNkrBmud3c9fzuymuabWqzc4eA/e9vI+ObgP/Wj3TpsISwr78fby4bnoSHx2usH2+1xC9uecULZ093NXfF1Q7UUrx1xumEuLnzQOv7qe9y/qE6+FPctlaH0753N+hL9kK2/9ufSC710L5Xlj+/zxuzSwxuPmjomjtMnC4vO8lbzq6DbyUXcLSzBhGxwT13UhIPERnDjyvbc9a0wWC2fcMPWgXZk1P2/eA42fd/gvwmKZpY4B64G7z9ruBek3TRgOPmffzeFvza4gJ9mVsbD9/dB5Ap1NcOimOzSeraenscXY4wo1VNHZQVNM6IoZG9lo9L5Vug8Zru8qcHYo4z8bcSpLC/Rlz1peGC8ZG8/H3FvOLyzPZWVjLsse28PDHubRa+N734IZjHChr4JEbpvb/ZUQMu1vmpNBlMPLW3uF/HRqMGs/vKGZmajhTksIcfryoIF8evXEqeVUtPPTBMasem1NYy3Pbi7ljXiqjl98HE66GTX+EU3ssb6TpNHzxoGkJgcnXWxm98AS9y/n0N6/t7f3l1LZ28V+LBhk6nnEhlOyAns5v3tfdAXueg3GXQYRjL4Y4m0VJm1IqCbgC+D/zbQUsAd4y7/ICcLX595Xm25jvX6o8fEyI0aixPb+GhWOiPH74yxVT4unqMUoVSTEk2YWmnumRlLSlRwWyaEwU63aW0mPr4rfC7jq6DWzPr2VJZsw33r999DruWTyKTT++kCunxvPU5gKW/u1L3j1QPmCBhzf3lPHKzlLuvSCDyybHO/opCCuMjQ1mVlo463aWYrSwFLm9fHG8ktK6Nof3sp1t8dho7l2cwbqdpXx8xLJRMq2dPfz0rUOkRATws8syTcUgrvq7qYrfW3dBh4XDLT/6KRi74YpHZU22ESoyyJfMuOA+57UZjRprtxUxMSFk8LVaMy6EnnYo2/XN+468BW01HrmY9vks7Wl7HPgp0PtNIxJo0DSt95LjKaB3YYVEoAzAfH+jef9zKKXuUUrtUUrtqa5273kex840Udfa5ZGl/s83IyWcmGBfPjwkQySF7XIK6gj192ZCfIizQxlWt89Lo6Kpg8+OSRVWV5FTWEt7t4GLMvtfeyomxI9Hb8xi/X3ziQ725XuvHeCmf+X0uWD6kfJGfvnOEeZlRPKTZeMcGbqw0a1zUimubWOHBVXt7OnZ7UUkhvmzbELssB73R8vGMSUplJ+tP8zphvZB9//Lx7mU1bfxyA1Tv65o6R8G1z0DjWXwwY8GP2juh3B8A1zwM4/v/RADmzcqkj3F9d8o7PTlyWryq1r41qKMwTs8UheA8vrmEElNg5ynIWbC13PfPNigSZtS6kqgStO0vWdv7mNXzYL7vt6gaf/WNG2mpmkzo6Pdex5Yb3GBBSOglLNOp7hsUhybTlRZPExIiPNlm+ez6UbAfLazLcmMITHMf2gV3YRdbcqtwt/bi3kW9PrOSA3nnfsX8OdrJ5Nf3cKVT2zl1+8coaHNND+qvrWLb7+8l8hAH564ZZrHrz/ori6dFEd4gDfrdg3f6/Do6UZyCuu4Y37qsP9d+Oh1/P3maXQbjHz/9QMDLna8I7+GF7NLWDM/ndnp5/V+pMyFC34Oh9+Ag6/1f8DOZvjwxxAzEeZ/107PQrir+aOi6Owxsr+04Zztz2wtJC7EjyumWDAawS8EkmZ+M2kr2W6qKjnn2yOiN9eSd44FwAqlVDHwGqZhkY8DYUqp3pnVScBp8++ngGQA8/2hgHPr6zrY1pM1ZMYFExPs5+xQhsVlk+Pp7DGy6YQMkRTWK29op7SubUSsz3Y+L53i1rkpZBfWklfZ7OxwRjxN0/git4oFoy1fqsVLp7h5dgqbfnQht89LY92uUi58ZDMv55TwvdcPUNXUyT9vm0FUX6WrhUvw8/bi+hlJfHq0ctgKAz27rZgAHy9umpky+M4OkB4VyEMrJ7GrqI7/3ZTf5z4tnT385K1DpEcF8pPl/fQSL/6xqdfjgx9BbUHf+2z8o2k+21V/By8b13UTHmN2egQ6xTk920dPN7KjoJY7F6ThbelFjIwL4fQ+aD8r+cv5J/hHwJQb7Rqzqxr0f0rTtP/RNC1J07Q04GZgo6ZptwKbgN6ZpXcA75p/f898G/P9GzVnr2TpQG1dPewtqWfxWPfuLbTGrLQIooJ8+ehwhbNDEW6od0LySJrPdrabZibj46XjpRzpbXO2/KoWTtW3Dzg0sj+hAd78bsVEPnhgIZlxwfzqnSNsOVnNb1dMICvZ8UUmxNCsmp1Cj1HjzT2nHH6squYONhw8zfUzkggNcF4Sc+30RFZmJfD3L/LYW/LNa+l/+vA4pxvbeeSGKfj79HMRQ+cF1/4bdHpYfzf0nFeFs3wf7PoXzLobkmc54FkIdxPq782kxFByzkra1m4tItDHi1WzrbiIkX4BaEZT7xpAfTHkfgAz7gRvf7vG7KqG0kf/M+CHSql8THPW1pq3rwUizdt/CPx8aCG6tp1FdXQZjCNiPlsvL53i0kmxbMytsqmMsBjZcgprCQ/wZlys566lMpDIIF+unBLPf/aVSxVWJ+stqHTROOuTtl6ZcSG8+q25/PPW6fx+xURuseZLiHCajOgg5o+KZN3O0gGHC9rDKzmldBmM3Dk/zaHHGYxSij9cPYmEMD8eePUAje3dX9235WQ163aW8q1FGcxIHaQoRGgSrHgCTu+HTX/4eruhBzY8AIExsPQ3DnoWwh3NGxXJ/rJ62rp6qGjs4L2Dp7lxVjKh/lZcxEiaBd4BXw+R3PUMKB3M+i+HxOyKrEraNE3brGnalebfCzVNm61p2mhN027QNK3TvL3DfHu0+f5CRwTuKrbl1eCj1zErbWStP3L55Hjauw1sliGSwkrZBbXMzYgccfPZzrZ6XiotnT28vc/xV/lF/zbmVjE+PoSEsKFdpVVKcdnkeO6Yn+bxFYQ9ya1zUilvaGfLSccVQ+voNvDKzhKWZMaQEe38pR+C/bz5x83TqGzq4BdvH0bTNJo6uvn5+kOMig7kh5eMtayhCStgxhrT2m0FG03bdv4TKg7D5Q+DX6jjnoRwO/MyIuk2aOwprueF7GKMmsZdC6wsUKP3MQ3NLdwMnS2w7yWYsBJCEwd9qKeQWdJDtDWvmjnpERbPh/AUs9MiiAz04QNZaFtYoayujfKG9hE5n+1sWclhTE4M5cXskgFLxwvHaWzrZk9JPUsyR87QdnGuSybEEhXkwys7Sx12jA0HT1PT0sXdw1jmfzDTUsL5wSVj+eDQGd7cc4o/vn+ciqYOHrlhqnXfZZb/ybTo8dvfNi2gvelPMPYyGL/CccELtzQrLQK9TvHF8UpeySnh0klxJEcEWN9QxoVQcxK2/g06G2HuffYO1aVJ0jYEFY0dnKxsYeEIqBp5Pr2XjuWT4tiYW0VHtwyRFJYZ6fPZeimlWD0vlbyqFnIKPbpOk8vakleNwaixxIb5bMIz+Oh13DgzmY25lRaVwreWpmk8u72YcbHBzHexC1XfvmAU8zIi+dW7R3h9Txn3XjCKaSnh1jXiEwDXrTUVhli7HFBw+V9HRBU/YZ1AXz1ZyWG8lFNCU0fP4Itp9yfjQtO/2x+HhOmmIZMjiCRtQ7At37RY4KIxI/NK7eWT4mnrMrD5hHuvsyeGT3ZhLVFBPoyJcf4wIWdbMTWBsABvXsopdnYoI9Km3CrCA7zJSrbyi6rwKKtmp6ABr+8us3vbOYV1HD/TxF0LXW/YrJdO8dhNWQT6eDE2NojvXzzGtobiJsGyP5gW0V7yKwhLtm+gwmPMGxWJUTMtnTLd2gsEvWImQGC0qSDJ3PtG3AUCSdqGYGteNVFBPmTGjcyCCnMzIggP8OajIzJEUgxO0zRyCmuZkxHpcl9gnMHP24sbZybzydFKKhqHp+y4MDEYNTadqOLCcTF4jeC5lQKSIwJYPCaa13aX0mMw2rXtZ7cXERHow8os15xzExfqxyffX8xb983HVz+EKR6zvwXf2TvihqoJ61w4ztTBce9iG3vZAHQ6GLMMQpJgwtV2isx9SNJmI6NRY3t+DQtHR43Yggp6Lx3LJ8bxxXEZIikGV1LbxpnGDosWMR4pbpuTilHTWLdTyv8PpwNlDdS3ddtU6l94nlvnpFDZ1MkXufYrrFVS28rnxyu5dU6KS895jwnxI8RviMsQKAVRo0dcr4ewzozUCLb/fAnLJsYNraHL/wr3bjEVJhlhJGmz0fGKJmpaukbs0Mhel0/wCDlGAAAgAElEQVSOp6Wzh615Nc4ORbi47EKZz3a+lMgALhwbzbpdZXT12Pcqv+jfptwqvHSKC0b4+7cwWZIZQ1yIH+vsWJDk+R3F6HWK2+am2q1NIdxd4hAr9QLgEwiBI/N7hCRtNupNUhaOoPXZ+jJvVCRhAd58KFUkxSCyC2qJDvZlVHSgs0NxKbfPS6OmpZOPj8pi9cNlY24VM1LDnbrQsXAdei8dN81KZkteNWV1bUNur7mjmzf3nOLKKQnEhvjZIUIhhJCkzWbb8moYFxs84t+Qvb10LJsQy+fHKunskSGSom+989nmyXy2b7hgbDQpEQG8lF3s7FBGhDON7Rw70yRVI8U5bp6djAJe3TX03rY39pyipbPH+nWohBBiAJK02aCj28Cu4roR38vW67LJ8TR39rBNhkiKfhTWtFLV3Dni12fri06nWD03ld3F9Rw/0+TscDzeplxTtVtJ2sTZ4kP9WZIZyxt7hjZU2WDUeH5HEbPSwpmcJAtMCyHsR5I2G+wqqqOrx8giSdoAWDAqihA/PR8eluFdom+yPtvAbpiZhK9ex4vZUpDE0TbmVpEY5i/LTohvuHVuCjUtXXx6zPbPss+PV1JW1y69bEIIu5OkzQZb86rx8dIxJ12+gIJpgdJLJsTx2bEKKaYg+pRdWEtciB9pkQHODsUlhQX4sDIrgXf2l9PY3u3scDxWR7eB7fk1LB0fI8N0xTcsHhNNUrj/kAqSPLutiMQwfy6ZEGvHyIQQQpI2m2zNq2FmWjj+Pq5bxne4XTEljqaOHrbnyxBJcS5N09hZWMu8UTKfbSC3z0ujvdvA+r2nnB2Kx8oprKW92yCl/kWfvHSKVbNT2FFQS2F1i9WPP1LeyM6iOu6cn4beS75eCSHsS95VrFTV1EFuRfOIL/V/vgWjowj21UsVSfEN+VUt1LR0yfpsg5iUGMq0lDBezinBaNScHY5H2pRbhZ+3Tv4WRb9umJmEXqdsKkjy3PZiAny8uHFWsgMiE0KMdJK0WWmbuSdJ5rOdy1fvxSUTYvn0WCXdBhkiKb7Wuz6bFCEZ3O3zUimsaWV7gfRY25umaWw8UcXC0VEuvdixcK6YYD+WT4zjzb2n6Oi2vCJyVXMHGw6e5oYZSYT6y1ISQgj7k6TNStvyaogI9GFCfIizQ3E5l02Op7G9mx3mohNCgKkISWKYP0nhdlhU08NdPjmeyEAfKUjiAPlVLZTVtcvQSDGoW+ak0NDWzUdHLB858kpOKV0GI3dKARIhhINI0mYFTdPYml/DgtFR6HQyN+d8i8ZEEeSr58NDMkRSmBiNGjuL6pgr67NZxFfvxU2zkvnieCXlDe3ODsejbMytAuCicZK0iYHNy4gkPSrQ4oIkHd0GXs4pYWlmDOlRgQ6OTggxUknSZoUTlc1UN3fK0Mh++Hl7sXR8DJ8cq5AhkgKAk1XN1LV2ydBIK9w6NxWAV3Kkt82eNuZWkRkXTEKY9PiKgel0ilWzk9ldXM/JyuZB93/v4GlqW7u4a6H0sgkhHEeSNitsPSnz2QZz+eR4Gtq6ySmUIZLi7PXZIpwciftIDPNn6fhYXt9dRmeP5XNqRP8a27vZU1LP0vHSyyYsc/2MZHy8dIP2tmmaxrPbihgXG8x8uTglhHAgSdqssCWvmtExQcSHypXa/lwwNppAHy9ZaFsApqQtOcKfpHBZn80at89Lpba1S6qx2smWk9UYjBpLZD6bsFBEoA+XT45j/b5TtHf1f/Eku7CW3Ipm7lqYJkPAhRAOJUmbhTq6DewqqpNetkH4eXuxZHwsnxytoEeGSI5ovfPZpLy69RaMiiIjKlAKktjJptwqwgO8yUoOd3Yowo3cMieV5o4eNhw63e8+z24rJiLQh5VZicMYmRBiJJKkzUJ7iuvp7DFK0maByyfFUdfaxa6iOmeHIpzoeEUTje3dMp/NBjqd4ra5qewvbeBIeaOzw3FrBqPG5pPVXDA2Gi8pICWsMCstnDExQbzSzxDJ4ppWvsit5NY5KbKMhBDC4SRps9DW/Gq8vRRz0uUL6GAuHBeDv7cXH8jQrhHt6/ls8pqxxXUzkvD39uLF7GJnh+LWDp5qoK61iyXjY50dinAzSilunZPCwbK+L548v6MYvU6x2lw8SAghHEmSNgttPVnD9JRwAn31zg7F5fn7eLEkM4ZPjlZgMGrODkc4SU5hLWmRATIH1Eah/t5cPS2Rdw+cpqGty9nhuK2Nx6vw0ikuGBPt7FCEG7pmehJ+3jrW7Tq3t62po5s395Rx1ZQEYkL8nBSdEGIkkaTNAtXNnRw708TisfKhb6nLJ8dT0yJDJEcqQ+98NhkaOSS3z0uls8fIG3vKnB2K29qYW8WMlHBCA7ydHYpwQ6H+3lw1JYF395fT0tnz1fY3dpfR2mVgjSymLYQYJpK0WWBHgZT6t9ZFmdH4eev46IgMkRyJjp1uormjR4ZGDtH4+BBmp0Xwck4pRum1tlpFYwfHzjSxREr9iyG4ZU4KrV0G3j1QDpguSj2/o5jZaRFMTgp1cnRCiJFCkjYLbDlZQ1iANxMT5M3ZUgE+ei4aF8NHR2SI5EiUXWi60CGVI4du9bxUSuva+PJktbNDcTsbc6sApNS/GJKs5DAmxIfwck4pmqbx2bFKTtW3c9fCNGeHJoQYQSRpG4SmaWzLr2bB6CipPGalyyfHU93cyd6SemeHIoZZdkEtGdGBMtfDDpZPjCM62FcKkthgY24ViWH+jIkJcnYowo0ppbh1bgrHzzRxoKyBZ7cXkRTuzyUT4pwdmhBiBJGkbRB5VS1UNnWyaLQMjbTWkswYfPU6WSB4hOkxGNldXC+9bHbio9exanYKm09WU1rb5uxw3EZHt4Ht+TUsyYyRRY/FkK3MSiTQx4vfbzjGrqI67pyfJhdyhRDDSpK2QWwxD0laKPPZrBboq+fCcdF8dOSMzMcZJj0GI5rmvP9rTdP4v21FtHT2SBESO7pldgo6pXh5pyy2bamdRXW0dxtkPpuwiyBfPSunJXKgrIFAHy9unJXs7JCEECOMJG2D2JZfQ0ZUIEnhAc4OxS1dPjmeyqZO9pXKEMnh8O2X93LJY1sorG4Z9mO3dxn4wesH+PNHuSybEMsyGTpkN3GhfiyfGMsbe8ro6DY4Oxy3sPF4JX7eOunxFXZzy+wUAK6fkUSIn1QjFUIML0naBtDZYyCnsFaqRg7BkswYfPQ6WWh7GORWNPH58SoKq1u4+n+3f9VLPBzK6tq47p87ePfgaX68bCxP3zYDH728vdjT6rlpNLR1897B084OxW5aO3scsgadpmlsPFHFglFR+Hl72b19MTJNSgzlxbtm8+Pl45wdihBiBJJvVQPYW1JPR7eRRbIoq82C/bxZPCaaj49UyBBJB3thRzF+3jre+85CEsL8ufO5XTy7rcjhwyW35dWw4sltlNW38ewds/jOkjHoZK6H3c3NiGBsbBAvZZc4dQisvbR09nDNU9u56JHNHClvtGvbBdUtlNW1y9BIYXeLx0YTLL1sQggnkKRtAFvzatDrFHNlbs6QXDEljjONHewva3B2KB6roa2Lt/eXc3VWIpMSQ1l/33wuHh/Lg+8f4+frD9PZY/8hdZqm8cyWQm5/didRQb68952FXCSl1R1GKcXquakcLm/kSHmTs8MZEk3T+OlbB8mvasHbS8eqZ3LsWmW2t9T/RePk71EIIYRnkKRtAFvzqpmeEk6Qr97Zobi1peNj8fHS8ZEMkXSY13eX0dFt5I75aYCpCMzTt83gu0tG8/qeMm59Zic1LZ12O15bVw8PvHaAP354nOUT43j7/gWkRwXarX3RtxVZifjodazfd8rZoQzJv7YU8uHhCn52aSZv37+AyEAfVq/dyY6CGru0/8XxKjLjgkkI87dLe0IIIYSzSdLWj9qWTo6ebpKqkXYQ4ufNojFRfHSkwiOGdbkag1HjxewS5qRHMD4+5KvtOp3iR8vG8cSqaRw53cjKJ7dz9PTQh6GV1rZx7VM7eP/QaX566TieunW6XNgYJqH+3lwyIZZ3D5TT1WN0djg22ZpXzcMf53LFlHjuWZxBYpg/b9w7j6Rwf9Y8t5tNJ6qG1H5jezd7SuplQW0hhBAeRZK2fmwvqEXTkCIkdnLZ5HjKG9o5eMq+c1cEfH68kvKGdtYsSOvz/qumJvDmvfMxahrX/zN7SD2eW05Wc9WT2zjT2MHza2bz3xeOljWwhtn105Oob+v+agigOymra+OBV/czOiaIh6+b8tXfTkyIH6/dM48xsUHc8+IePj5i+9/o1rxqDEaNpTKfTQghhAeRpK0fxTWthAd4MyUpzNmheIRLxsfi7aVkoW0HeGFHMQmhflw8PrbffSYnhfLudxaQGR/Mfa/s4++f51nV66lpGv/cXMCdz+0iPtSP976zgAvGSoEeZ1g0JoroYF+3GyLZ0W3g2y/vpceo8a/VMwk8r3c2ItCHV/5rLpMTQ7l/3X7e3m/b89t4vIrwAG+yksPtEbYQQgjhEgZN2pRSfkqpXUqpg0qpo0qp35u3P6+UKlJKHTD/ZJm3K6XUP5RS+UqpQ0qp6Y5+Eo7wwNIxZP/PUrykCp5dhAZ4s2B0FB8ePiNDJO3oREUzOwpqWT0vDb3XwC/nmGA/Xv3WXK6dnshjn5/kO+v209bVM+gxWjt7uH/dPv7ycS6XT47nP/89n9RImb/mLHovHddMS2RTbhW1dpyn6EiapvGLtw9z9HQTj9+U1e/8x1B/b166ew6z0yL44RsHWbez1KrjGIwam09Wc8HYaHnvFkII4VEs6WnrBJZomjYVyAIuVUrNNd/3E03Tssw/B8zbLgPGmH/uAf5p76CHi6zvY1+XT47nVH07h+1c3nskeyG7GF+9jptnJVu0v5+3F3+7YSq/vHw8Hx05ww1PZ1Pe0N7v/sU1rVzz1HY+PlLBLy7P5IlV0wjwkflrznbd9CR6jJrbrNn2Uk4J/9lXzvcvHsPSAXqEwVRE57k1s7hwbDS/ePswa7cVWXycg6caqGvtkiqmQgghPM6gSZtm0mK+6W3+GairZCXwovlxOUCYUip+6KEKd7dsQix6neLDwxXODsUjNLZ18/Y+U5n/8EAfix+nlOJbizNYe+csSmvbWPnkNvaW1H1jv00nqljx5Daqmjt58a453LN4lMxfcxHj4oKZlBjiFkMkdxfX8eCGYyzNjOGBJWMseoyftxf/Wj2TyybF8dD7x3hyY55Fj9uUW4WXTsnQXSGEEB7HojltSikvpdQBoAr4TNO0nea7/mgeAvmYUsrXvC0RKDvr4afM28QIFxbgw3wZImk3b+wpo73b8FWZf2tdNC6Gt++fT5CvnlX/3smbe0wvW03TeHJjHnc9v5uk8AA2fGehVFF1QddNT+JIeRO5Fa67ZltlUwf//co+kiMCePSmLKsWXffR63hi1TSumZbII5+e5OGPcwd93/jieBUzUsIJC7D8IoYQQgjhDixK2jRNM2ialgUkAbOVUpOA/wEygVlABPAz8+59fSp/45NWKXWPUmqPUmpPdXW1TcEL93P5pDhK69o4etp1v2i6A4NR44XsYmanRzAhIWTQ/fszOiaYd+5fwOz0CH7y1iEe3HCM+17exyOfnmTl1ATW3zef5IgA+wUu7GbF1AT0OsX6va7Z29bVY+S+l/fS2tnD07fNINTf2+o29F46/nbDVFbNTuGpzQX8fsMxjMa+E7eKxg6OnWmSoZFCCCE8klXVIzVNawA2A5dqmnbGPASyE3gOmG3e7RRw9gSbJOAbEy80Tfu3pmkzNU2bGR0tQ1lGimUT4/DSSRXJodqYW8Wp+nbutLGX7WxhAT48v2YWd85P49ntRXx2vJJfXzmBx27Kwt9H5nW6qsggXy7KjOHt/afpMbjemm0Pvn+UfaUNPHz9FMbFBdvcjk6n+NM1k7hrQTrP7yjmF28fxtBH4ta7vpuU+hdCCOGJLKkeGa2UCjP/7g9cDOT2zlNTpkkuVwNHzA95D7jdXEVyLtCoaZp8QxeAqaz3vIxINhw63e8VczG453cUER/qx7IJAxd1sJTeS8fvVkzk6dtm8Ma987h7YbrMX3MD189Ioqalk615Nc4O5Rxv7Cnj5ZxS7l2cwZVTEobcnlKKX185nu8uGc1ru8v44RsH6D4vUd2YW0VimD9jYoKGfDwhhBDC1VjS0xYPbFJKHQJ2Y5rT9j7wilLqMHAYiAL+YN7/Q6AQyAeeAf7b7lELt3bjrGTK6tq/ujIurJNX2cz2/Fpum5s6aJl/a106KY4ZqbK+lbu4aFwM4QHevOVCBUkOnWrgV+8cYcHoSH6yfJzd2lVK8aNl4/jJ8nG8e+A097+yj84eA2BaA25bXg1LMmPkYoMQQgiPNGjtbk3TDgHT+ti+pJ/9NeD+oYcmPNVlk+KIC/Hjue3Fg5b/Ft/0/I5ifPQ6Vs1OcXYowsl89DpWZiWyblcpjW3dhAZYP2/MnmpbOvn2S3uJDvLliVXT7X5RAeD+i0YT4OPF7zcc454X9/L0bTPYVVxHe7eBJTKfTQghhIey/yeqEIPw9tKxel4q2/JrOFnZ7Oxw3Epjezf/2VfOyqkJRFhR5l94ruumJ9HVY2TDIeeu2dZjMPLdV/dT09rF07fNcOjf55oF6fzluslsyavmzud2seHgafy8dcwbFemwYwohhBDOJEmbcIpVs1Pw1et4bnuxs0NxK28Oscy/8DyTEkMYGxvk9DXbHv7kBDsKavnTNZOZnBTq8OPdNCuFx2/KYk9JPW/tPcWCUVH4eUvhHCGEEJ5JkjbhFBGBPlydlcjb+0/R0Nbl7HDcgsGo8WJ2CbPSwpmU6PgvxcI9KKW4bnoS+0sbKKhucUoMGw6e5t9bClk9N5XrZyQN23FXZiXy1K3T8fPWsXKaLAcqhBDCc0nSJpxmzcI0OrqNvLqrbPCdXVBrZw/ZBbU8u62IoppWhx9vU24VpXVt3Dk/3eHHEu7lmmmJ6BT8xwm9bbkVTfz0rUPMTA3n11dOGPbjL58Yx6HfLmfF1KFXqRRCCCFc1aCFSIRwlMy4EOZlRPJSdjHfWpTukKIF9qJpGoU1rewvbWB/aT37SxvIrWiid9WCp78s4J37F5AQ5u+wGF7ILiYuxI9lE6V4izhXTIgfi8dG8/a+cn50yTh0uuGpoNjY3s29L+0lyE/PU7dOx0fvnNews44rhBBCDBdJ2oRTrVmQxj0v7eWTo5VcMSXe2eF8pamjmwOlDaYkrcyUpDW2dwMQ7KsnKyWM71w0mmkp4QT56bnrud3c9fxu3rpvPkG+9n9Z5Vc1szWvhp8sH4e3Cye3wnmum57Ed1/dT3ZhLQtGRzn8eEajxvdf2095fTuv3TOXmBA/hx9TCCGEGKkkaRNOtXR8LMkR/jy3vchpSZvBqJFX1XxOL1p+dQuaBkrB2JhgLpsUx7SUMKalhDM6OugbPRn/e+t01jy/m++u28czt8+0e6/hCztK8NHruHlWsl3bFZ7jkgmxBPvpWb/31LAkbf/YmMemE9U8tHIiM9MiHH48IYQQYiSTpE04lZdOcce8NP7wwXEOn2oclqpzvXoMRn7y1iE+O1ZJS2cPAOEB3kxLCWfF1ASmpYQzNTmUYL/B175aPDaaB1dO5JdvH+Gh94/x+5WT7BZnU0c36/edYsXUBCKDfO3WrvAsft5eXDklgXf2l/Pg1T0O6fHttbeknn98kcc10xK5bW6qw44jhBBCCBNJ2oTT3Tgrmcc+O8lz24t49KasYTvui9klvL2/nOumJ7FgdCTTU8JJjQxAKdvmA906J5Ximlae2VpEWlQgaxbYp2DIm3tO0dZl4E4p8y8Gcf2MRF7dVcqHh89w40zH9Mq2dvbwwzcOkBDmz4MrJ9r8ehFCCCGE5WRyjHC6ED9vrp+RxIZDp6lq7hiWY1Y2dfDoZye5YGw0j9wwhWunJ5EWFTjkL6A/v2w8yybE8tD7x/jieOWQ4zQaNV7MLmZmqpT5F4ObnhJOelQg6/c6rorkHz44RmldG4/emGVRL7QQQgghhk6SNuES7pifRrdB45Wc0mE53h8/OE6XwcjvV9i3p8BLp3j85iwmJoTy3Vf3c6S8cUjtbT5ZRUltmyymLSyilOLaaYnsLKqjrK7N7u1/dqySV3eVce/iUcxOl3lsQgghxHCRpE24hIzoIC4aF80rO0vo7DE49Fg78mt47+Bp7rtgFGlRgXZvP8BHz9o7ZhLm783dL+ymotH23sPnthcTG+LLpZPi7Bih8GTXzkhCKfjPvnK7tlvT0snP1x9ifHwIP7hkjF3bFkIIIcTAJGkTLmPNgnRqWrp4/+AZhx2jq8fIr989QkpEAPddOMphx4kJ8WPtnbNo7TRw9wu7aTUXOrFGflULW/NquG1OqpT5FxZLDPNnXkYk6/edQtM0u7SpaRo/X3+Y5s4eHr8pC1+9l13aFUIIIYRl5JugcBmLxkQxOiaI53YU2e3L5vn+b1shBdWt/H7FRPy8HfvFc3x8CE/cMo3jZ5r43mv7MRite04vZhfj46Vj1ZwUxwQoPNZ105MorWtjd3G9Xdp7fXcZnx+v5KfLxzEuLtgubQohhBDCcpK0CZehlOLO+WkcKW9iT4l9vmye7VR9G//4Io/lE2O5KDPG7u335aJxMfx+xUQ+P17FHz44ZvHjmjq6Wb/3FFdOjSdKyvwLK106KY4AHy+7FCQpqW3lwfePMX9UJHfZqSKqEEIIIawjSZtwKddOTyTET89z24vs3vaDG46hUPzmqol2b3sgq+elcdeCdJ7bXswLO4otesxbe07R2mVgzXz5kiysF+ir57JJ8Xxw+AztXbbPEe0xGPnB6wfQ6xSP3DD1G4vKCyGEEGJ4SNImXEqAj55Vs1P45Ggl5Q3tdmt3Y24lnx6r5IGlY0gM87dbu5b65RXjuXh8LL/fcJSNuQMvBdBb5n96StiwLjYuPMt1MxJp6ezh02MVNrfx9JcF7Ctt4KGrJ5HghNeNEEIIIUwkaRMuZ/W8VDTNlLjYQ0e3gd++d5TRMUHcvdA5PVdeOsXfb85ifHwI3123n2Onm/rd98uT1RTXtnGnDEUTQzA3PZLEMH/esnGI5KFTDTz+eR5XTU1gZVainaMTQgghhDUkaRMuJyk8gOUT43htVxltXdZXXTzfU5sLKKtr58GVE/HRO+9PPtBXz9o7ZhHsZ1oKoLKp76UAnt9RTEywL5dJmX8xBDqd4rrpiWzPr7F62Yn2LgM/eP0AUUG+/GHlJAdFKIQQQghLSdImXNKaBek0tnfz9v6hrTVVVNPK018WsDIrgfmjouwUne3iQv1Ye+dMGtu7ufuF3d9ISguqW/jyZDW3zZUy/2Lorp2ehFGD/+y3rrftLx/nUlDdyiM3TCU0wNtB0QkhhBDCUvKtULikWWnhTEwI4fntxTaX/9c0jd++dxRfLx2/vHy8nSO03cSEUJ68ZRrHTjfxwKsHzlkK4KXsElOZ/9lS5l8MXVpUIDNTw1m/1/I127acrOb5HcWsWZDGwjHOv9AhhBBCCEnahItSSrFmQTp5VS1sy6+xqY2Pj1Sw5WQ1P1w2lpgQPztHODRLMmP57VUT+fx4JX/68DgAzR3dvLmnjCunxBMdLGX+hX1cNyOJgupWDp5qHHTf+tYufvzmQcbEBPGzSzOHITohhBBCWEKSNuGyrpoaT1SQD89tL7b6sa2dPfx+wzEmxIewem6q/YOzgzvmp3Hn/DTWbivipZwS1u81lfm/Y36as0MTHuSKKfH46nWDrtmmaRq/eucI9W1dPHZTlsMXnxdCCCGE5SRpEy7LV+/FLXNS2ZhbRVFNq1WP/ccXeVQ0dfDQ1ZPQu/DcsF9fOYGlmTH87r2jPLkpn2kpYUxNDnN2WMKDhPh5s2xiHO8dPE1nT/9rtr1zoJwPDp/hB5eMZVKiLDUhhBBCuBLX/TYrBHDb3BS8vZTFi1IDnKxsZu22Im6amcyM1HDHBWcHXjrFP1ZNY1xsMDUtXdwpvWzCAa6bnkhjezcbj1f1eX95Qzu/eecos9LCuXfxqGGOTgghhBCDkaRNuLSYYD+unJLAm3vKaOroHnT/3iFeQX56fnaZe8zJCfTV8/yaWTy0ciJXTI53djjCAy0aE01siG+fa7YZjRo/euMARk3j0Ruz8NIpJ0QohBBCiIFI0iZc3poFabR2GXhzz+Bly985UM6uojp+dmkmEYE+wxCdfcSE+LF6XppLD+UU7stLp7h6WiKbT1ZT3dx5zn1rtxWRU1jHb1dMJDkiwEkRCiGEEGIg8g1RuLwpSWHMSA3nhR3F55THP19jezd//CCXrOQwbpqZPIwRCuH6rp+ehMGo8e6Br9c+PH6mib9+coLlE2O5YUaSE6MTQgghxEAkaRNuYc2CNErr2tiY2/ecHIBHPz1BXWsnf7h6EjoZ4iXEOcbEBjMlKZT1+0xJW2ePgR+8foAQf2/+dM1klJLXjBBCCOGqJGkTbmH5xDjiQ/14bntRn/cfKW/kpZwSVs9Nlcp3QvTjuulJHD/TxLHTTTz66UlyK5r56/VTiAySdQGFEEIIVyZJm3AL3l46Vs9LZUdBLbkVTefcZzSaio9EBPryw2XjnBShEK5vxdQEvL0Uv9twlH9vLeTWOSlclBnj7LCEEEIIMQhJ2oTbWDUrBT9vHc+ft9j263vKOFDWwC+vyCTU39s5wQnhBsIDfViSGcOuojrSIgP55RXjnR2SEEIIISwgSZtwG+GBPlwzLZG395dT19oFQF1rF3/5OJc56RFcnZXo5AiFcH23z0sjyFfPozdOJcBH7+xwhBBCCGEBSdqEW7lzfjqdPUZe3VUKwF8+yqWlo4eHrp4khRSEsMCC0VEc/t0ypqW49sLzQgghhPiaJG3CrYyLC2bB6Eheyi5hV1Edr+8p4+6F6YyNDXZ2aEK4DbnAIYQQQrgXSdqE21kzP52Kpg7ufmE38aF+PLB0jLNDEo1RINAAAAknSURBVEIIIYQQwmEkaRNuZ0lmDKmRATR39PCbKycQ6CvzcoQQQgghhOeSb7vC7eh0it9eNYG9JfVcOinO2eEIIYQQQgjhUIP2tCml/JRSu5RSB5VSR5VSvzdvT1dK7VRK5SmlXldK+Zi3+5pv55vvT3PsUxAj0ZLMWH6yPFPm5gghhBBCCI9nyfDITmCJpmlTgSzgUqXUXOAvwGOapo0B6oG7zfvfDdRrmjYaeMy8nxBCCCGEEEIIGwyatGkmLeab3uYfDVgCvGXe/gJwtfn3lebbmO9fqqQ7RAghhBBCCCFsYlEhEqWUl1LqAFAFfAYUAA2apvWYdzkF9K5snAiUAZjvbwQi7Rm0EEIIIYQQQowUFiVtmqYZNE3LApKA2cD4vnYz/9tXr5p2/gal1D1KqT1KqT3V1dWWxiuEEEIIIYQQI4pVJf81TWsANgNzgTClVG/1ySTgtPn3U0AygPn+UKCuj7b+rWnaTE3TZkZHR9sWvRBCCCGEEEJ4OEuqR0YrpcLMv/sDFwPHgU3A9ebd7gDeNf/+nvk25vs3apr2jZ42IYQQQgghhBCDs2SdtnjgBaWUF6Yk7w1N095XSh0DXlNK/QHYD6w1778WeEkplY+ph+1mB8QthBBCCCGEECPCoEmbpmmHgGl9bC/ENL/t/O0dwA12iU4IIYQQQgghRjir5rQJIYQQQgghhBhekrQJIYQQQgghhAuTpE0IIYQQQgghXJgkbUIIIYQQQgjhwiRpE0IIIYQQQggXplxhCTWlVDVQ4uw4RoAooMbZQYh+yflxXXJuXJ+cI9ck58X1yTlyXXJuXJ+9z1GqpmnRfd3hEkmbGB5KqT2aps10dhyib3J+XJecG9cn58g1yXlxfXKOXJecG9c3nOdIhkcKIYQQQgghhAuTpE0IIYQQQgghXJgkbSPLv50dgBiQnB/XJefG9ck5ck1yXlyfnCPXJefG9Q3bOZI5bUIIIYQQQgjhwqSnTQghhBBCCCFcmCRtLkwp9axSqkopdeSsbVOVUtlKqcNKqQ1KqRDz9jSlVLtS6oD552nz9uCzth1QStUopR7v53gzzO3mK6X+oZRS5u2vn/X4YqXUgeF4/u7AHufIfN8q8/6HlFIfK6Wi+jnepUqpE+Zz9POztn/HvE3r77EjiQudl61ntXtaKfWOI5+3O7HjObrJfH6OKqUeHuB4/b2/3WB+rFEpJVXacKlzI589fbDm/Jjvm2K+76j5fj/z9j7/3/s4nnzuWMGFzo98/vTBjufnj0qpMqVUyyDHs99nj6Zp8uOiP8BiYDpw5Kxtu4ELzL/fBTxk/j3t7P0GaHMvsLif+3YB8wAFfARc1sc+fwN+4+z/G1f5scc5AvRAFRBlvv0w8Ls+9vMCCoAMwAc4CEww3zfN3H5xbzsj+cdVzst5+60Hbnf2/42r/NjpHEUCpUC0+fYLwNJ+jtfn+xswHhgHbAZmOvv/xRV+XOXcnLePfPbYdn70wCFg6lnnxcuK/3f53HHT83PefvL5Y//zMxeIB1oGOZ7dPnukp82FaZq2Bag7b/M4YIv598+A6yxtTyk1BogBtvZxXzwQomlatmb6a3oRuPq8fRRwI/Cqpcf0dHY6R8r8E2j+Pw4BTvex32wgX9O0Qk3TuoDXgJXmOPZrmlZs05PwQK5yXr5qSKlgYAkgVzrN7HSOMoCTmqZVm29/3tdjBnp/0zTtuKZpJ2x7Fp7JVc7NWfvIZ89ZrDw/y4BDmqYdND+2VtM0gyX/72byuWMlVzk/veTz51z2OD/m33M0TTsz0LHs/dkjSZv7OQKsMP9+A5B81n3pSqn9SqkvlVKL+njsKuB18x/O+RKBU2fdPmXedrZFQKWmaXm2hT5iWHWONE3rBu4DDmNKCiYAa/toNxEoO+t2X+dI9M+Z5+Ua4AtN05qG/Cw8m7Xvb/lApjIN0dNj+jA8+zG9LHl/EwNz5rmRz57B9Xd+xgKaUuoTpdQ+pdRPzdstfU3I5459OPP8yOfP4Kw9P5ay62ePJG3u5y7gfqXUXiAY6DJvPwOkaJo2DfghsO7sMblmN9P/lcq+xkqfn9ytGuDx4mtWnSOllDem5GAakICpK/5/+mjXknMk+ufM8yKvHctYdY40TavHdI5exzSCoBjo6aNdee0MnTPPjbx+Btff+dEDC4Fbzf9eo5RaiuWvCXnt2Iczz4+8fgZn7fmxlF1fP3pbHyicQ9O0XEzdtSilxgJXmLd3Ap3m3/cqpQowXSHYY953KqDXNG2v+bYXpvltAO8B/wSSzjpUEmcNBTNfKb0WmOGo5+YpbDhHyrytwPyYN4CfK6WSgQ3mZp/GNFb97CvV55wjMTBnnRelVCSmISzXOOq5eQpb3t80TduA+Xwope4BDNa+v4nBOevcyGePZfo7P5iu7H+paVqN+b4PMc3neZk+/t/lc8cxnHV+5PPHMjacny/6asfRnz2StLkZpVSMpmlVSikd8CtML1qUUtFAnXksdAYwBig866HnXGkxj8nNOq/tZqXUXGAncDvwxFl3Xwzkapp2djev6IMN58gP+P/t3b1KA0EUQOEzrZ2ID2AhiLW9lSCClSgidjZioZ2NjaWksbG0sPMBtLHLE1j5A4I2KuIbCIpjMWMI4moMiTuB88EQyGRn2LmwN3d3s5kMIYzm33/MANcxxnvaYpS/vIyHEMaAR9KV05X/3LdBVmNcFoHTGONL//dysHVzfGvbZhjYAJa6OL7pFzXGxtzTgar4AGfAdghhiHT1YBrYjzE+fbfu5p3+qDE+5p8O/DU+VeP0PffEAp7kYqt84swx6daTV1K1vwZsATe57UHrD9IXgEvSWZdzYP7LWHfAxC/zTZHu670FDj7Hzn1HwHrda1Ja61WMgHXgmnQL3gkwUjHfXB73Fthpe38zz/9GOotzWPfaGJdWXxOYrXtNSms9jNExcJXb8g/zfXt8I52BfiBdLXoGzupem7pbKbHJfUeYe7qOT/78ao7RBdDoZN2/zGfeGcD45L4m5p9+xaeRt3/Pr7sV8/Us93xuKEmSJEkqkA8ikSRJkqSCWbRJkiRJUsEs2iRJkiSpYBZtkiRJklQwizZJkiRJKphFmyRJkiQVzKJNkiRJkgpm0SZJkiRJBfsAmWqkQf2sQAgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Shift data back by 1 month\n", - "shifted_data = data.shift(-1, freq='MS')\n", - "\n", - "naive_forecast = shifted_data[split_value:]\n", - "\n", - "# Plot Validation sets\n", - "plt.plot(naive_forecast)\n", - "plt.plot(valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean Average Error Is: 48.27272727272727\n" - ] - } - ], - "source": [ - "# Calculate our Mean Average Error as a baseline\n", - "errors = naive_forecast - valid\n", - "abs_errors = errors.abs()\n", - "mae = abs_errors.mean()\n", - "print(\"Mean Average Error Is:\", mae[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dense Model Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "cannot copy sequence with size 12 to array axis with dimension 1", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m history = model.fit_generator(window_generator,\n\u001b[1;32m---> 19\u001b[1;33m epochs=epochs)\n\u001b[0m", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\u001b[0m in \u001b[0;36mnew_func\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 322\u001b[0m \u001b[1;34m'in a future version'\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdate\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32melse\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'after %s'\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mdate\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 323\u001b[0m instructions)\n\u001b[1;32m--> 324\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 325\u001b[0m return tf_decorator.make_decorator(\n\u001b[0;32m 326\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnew_func\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'deprecated'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit_generator\u001b[1;34m(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)\u001b[0m\n\u001b[0;32m 1477\u001b[0m \u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1478\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1479\u001b[1;33m initial_epoch=initial_epoch)\n\u001b[0m\u001b[0;32m 1480\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1481\u001b[0m @deprecation.deprecated(\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_method_wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 64\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_method_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_in_multi_worker_mode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 66\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 67\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[1;31m# Running inside `run_distribute_coordinator` already.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 813\u001b[0m \u001b[0mworkers\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mworkers\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 814\u001b[0m \u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 815\u001b[1;33m model=self)\n\u001b[0m\u001b[0;32m 816\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 817\u001b[0m \u001b[1;31m# Container that configures and calls `tf.keras.Callback`s.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, x, y, sample_weight, batch_size, steps_per_epoch, initial_epoch, epochs, shuffle, class_weight, max_queue_size, workers, use_multiprocessing, model)\u001b[0m\n\u001b[0;32m 1110\u001b[0m \u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1111\u001b[0m \u001b[0mdistribution_strategy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mds_context\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_strategy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1112\u001b[1;33m model=model)\n\u001b[0m\u001b[0;32m 1113\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1114\u001b[0m \u001b[0mstrategy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mds_context\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_strategy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, x, y, sample_weights, shuffle, workers, use_multiprocessing, max_queue_size, model, **kwargs)\u001b[0m\n\u001b[0;32m 906\u001b[0m \u001b[0mmax_queue_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmax_queue_size\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 907\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 908\u001b[1;33m **kwargs)\n\u001b[0m\u001b[0;32m 909\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 910\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mstaticmethod\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, x, y, sample_weights, workers, use_multiprocessing, max_queue_size, model, **kwargs)\u001b[0m\n\u001b[0;32m 770\u001b[0m \u001b[1;31m# Since we have to know the dtype of the python generator when we build the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 771\u001b[0m \u001b[1;31m# dataset, we have to look at a batch to infer the structure.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 772\u001b[1;33m \u001b[0mpeek\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_peek_and_restore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 773\u001b[0m \u001b[0massert_not_namedtuple\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpeek\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 774\u001b[0m \u001b[0mpeek\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_standardize_batch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpeek\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m_peek_and_restore\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 910\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mstaticmethod\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 911\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_peek_and_restore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 912\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 913\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 914\u001b[0m def _handle_multiprocessing(self, x, workers, use_multiprocessing,\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\keras_preprocessing\\sequence.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, index)\u001b[0m\n\u001b[0;32m 371\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 372\u001b[0m samples = np.array([self.data[row - self.length:row:self.sampling_rate]\n\u001b[1;32m--> 373\u001b[1;33m for row in rows])\n\u001b[0m\u001b[0;32m 374\u001b[0m \u001b[0mtargets\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtargets\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mrow\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mrow\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrows\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 375\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mValueError\u001b[0m: cannot copy sequence with size 12 to array axis with dimension 1" - ] - } - ], - "source": [ - "window_size = 12\n", - "n_features = 1\n", - "epochs = 180\n", - "\n", - "window_generator = TimeseriesGenerator(train,\n", - " train,\n", - " length = window_size,\n", - " batch_size = 6)\n", - "\n", - "model = keras.models.Sequential([\n", - " Dense(10, activation='relu', input_shape = (window_size, n_features)),\n", - " Dense(10, activation='relu'),\n", - " Dense(1)\n", - "])\n", - "\n", - "model.compile(optimizer='adam', loss='mse')\n", - "\n", - "history = model.fit_generator(window_generator,\n", - " epochs=epochs)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/kaggle_time_series_air_passenger/AirPassengers.csv b/kaggle_time_series_air_passenger/AirPassengers.csv deleted file mode 100644 index 7014d86..0000000 --- a/kaggle_time_series_air_passenger/AirPassengers.csv +++ /dev/null @@ -1,145 +0,0 @@ -Month,#Passengers -1949-01,112 -1949-02,118 -1949-03,132 -1949-04,129 -1949-05,121 -1949-06,135 -1949-07,148 -1949-08,148 -1949-09,136 -1949-10,119 -1949-11,104 -1949-12,118 -1950-01,115 -1950-02,126 -1950-03,141 -1950-04,135 -1950-05,125 -1950-06,149 -1950-07,170 -1950-08,170 -1950-09,158 -1950-10,133 -1950-11,114 -1950-12,140 -1951-01,145 -1951-02,150 -1951-03,178 -1951-04,163 -1951-05,172 -1951-06,178 -1951-07,199 -1951-08,199 -1951-09,184 -1951-10,162 -1951-11,146 -1951-12,166 -1952-01,171 -1952-02,180 -1952-03,193 -1952-04,181 -1952-05,183 -1952-06,218 -1952-07,230 -1952-08,242 -1952-09,209 -1952-10,191 -1952-11,172 -1952-12,194 -1953-01,196 -1953-02,196 -1953-03,236 -1953-04,235 -1953-05,229 -1953-06,243 -1953-07,264 -1953-08,272 -1953-09,237 -1953-10,211 -1953-11,180 -1953-12,201 -1954-01,204 -1954-02,188 -1954-03,235 -1954-04,227 -1954-05,234 -1954-06,264 -1954-07,302 -1954-08,293 -1954-09,259 -1954-10,229 -1954-11,203 -1954-12,229 -1955-01,242 -1955-02,233 -1955-03,267 -1955-04,269 -1955-05,270 -1955-06,315 -1955-07,364 -1955-08,347 -1955-09,312 -1955-10,274 -1955-11,237 -1955-12,278 -1956-01,284 -1956-02,277 -1956-03,317 -1956-04,313 -1956-05,318 -1956-06,374 -1956-07,413 -1956-08,405 -1956-09,355 -1956-10,306 -1956-11,271 -1956-12,306 -1957-01,315 -1957-02,301 -1957-03,356 -1957-04,348 -1957-05,355 -1957-06,422 -1957-07,465 -1957-08,467 -1957-09,404 -1957-10,347 -1957-11,305 -1957-12,336 -1958-01,340 -1958-02,318 -1958-03,362 -1958-04,348 -1958-05,363 -1958-06,435 -1958-07,491 -1958-08,505 -1958-09,404 -1958-10,359 -1958-11,310 -1958-12,337 -1959-01,360 -1959-02,342 -1959-03,406 -1959-04,396 -1959-05,420 -1959-06,472 -1959-07,548 -1959-08,559 -1959-09,463 -1959-10,407 -1959-11,362 -1959-12,405 -1960-01,417 -1960-02,391 -1960-03,419 -1960-04,461 -1960-05,472 -1960-06,535 -1960-07,622 -1960-08,606 -1960-09,508 -1960-10,461 -1960-11,390 -1960-12,432 diff --git a/kaggle_time_series_air_passenger/data/AirPassengers.csv b/kaggle_time_series_air_passenger/data/AirPassengers.csv deleted file mode 100644 index 7014d86..0000000 --- a/kaggle_time_series_air_passenger/data/AirPassengers.csv +++ /dev/null @@ -1,145 +0,0 @@ -Month,#Passengers -1949-01,112 -1949-02,118 -1949-03,132 -1949-04,129 -1949-05,121 -1949-06,135 -1949-07,148 -1949-08,148 -1949-09,136 -1949-10,119 -1949-11,104 -1949-12,118 -1950-01,115 -1950-02,126 -1950-03,141 -1950-04,135 -1950-05,125 -1950-06,149 -1950-07,170 -1950-08,170 -1950-09,158 -1950-10,133 -1950-11,114 -1950-12,140 -1951-01,145 -1951-02,150 -1951-03,178 -1951-04,163 -1951-05,172 -1951-06,178 -1951-07,199 -1951-08,199 -1951-09,184 -1951-10,162 -1951-11,146 -1951-12,166 -1952-01,171 -1952-02,180 -1952-03,193 -1952-04,181 -1952-05,183 -1952-06,218 -1952-07,230 -1952-08,242 -1952-09,209 -1952-10,191 -1952-11,172 -1952-12,194 -1953-01,196 -1953-02,196 -1953-03,236 -1953-04,235 -1953-05,229 -1953-06,243 -1953-07,264 -1953-08,272 -1953-09,237 -1953-10,211 -1953-11,180 -1953-12,201 -1954-01,204 -1954-02,188 -1954-03,235 -1954-04,227 -1954-05,234 -1954-06,264 -1954-07,302 -1954-08,293 -1954-09,259 -1954-10,229 -1954-11,203 -1954-12,229 -1955-01,242 -1955-02,233 -1955-03,267 -1955-04,269 -1955-05,270 -1955-06,315 -1955-07,364 -1955-08,347 -1955-09,312 -1955-10,274 -1955-11,237 -1955-12,278 -1956-01,284 -1956-02,277 -1956-03,317 -1956-04,313 -1956-05,318 -1956-06,374 -1956-07,413 -1956-08,405 -1956-09,355 -1956-10,306 -1956-11,271 -1956-12,306 -1957-01,315 -1957-02,301 -1957-03,356 -1957-04,348 -1957-05,355 -1957-06,422 -1957-07,465 -1957-08,467 -1957-09,404 -1957-10,347 -1957-11,305 -1957-12,336 -1958-01,340 -1958-02,318 -1958-03,362 -1958-04,348 -1958-05,363 -1958-06,435 -1958-07,491 -1958-08,505 -1958-09,404 -1958-10,359 -1958-11,310 -1958-12,337 -1959-01,360 -1959-02,342 -1959-03,406 -1959-04,396 -1959-05,420 -1959-06,472 -1959-07,548 -1959-08,559 -1959-09,463 -1959-10,407 -1959-11,362 -1959-12,405 -1960-01,417 -1960-02,391 -1960-03,419 -1960-04,461 -1960-05,472 -1960-06,535 -1960-07,622 -1960-08,606 -1960-09,508 -1960-10,461 -1960-11,390 -1960-12,432 diff --git a/kaggle_time_series_air_passenger/model.ipynb b/kaggle_time_series_air_passenger/model.ipynb deleted file mode 100644 index 605a26c..0000000 --- a/kaggle_time_series_air_passenger/model.ipynb +++ /dev/null @@ -1,1213 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import tensorflow as tf\n", - "import pandas as pd\n", - "from matplotlib.pylab import rcParams\n", - "rcParams['figure.figsize'] = 15,6" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Month#Passengers
01949-01112
11949-02118
21949-03132
31949-04129
41949-05121
\n", - "
" - ], - "text/plain": [ - " Month #Passengers\n", - "0 1949-01 112\n", - "1 1949-02 118\n", - "2 1949-03 132\n", - "3 1949-04 129\n", - "4 1949-05 121" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Grab and look at our data\n", - "DATA_LOCATION = 'AirPassengers.csv'\n", - "data = pd.read_csv(DATA_LOCATION)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#Passengers
Month
1949-01-01112
1949-02-01118
1949-03-01132
1949-04-01129
1949-05-01121
\n", - "
" - ], - "text/plain": [ - " #Passengers\n", - "Month \n", - "1949-01-01 112\n", - "1949-02-01 118\n", - "1949-03-01 132\n", - "1949-04-01 129\n", - "1949-05-01 121" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Convert to DateTime\n", - "data[\"Month\"] = pd.to_datetime(data.Month)\n", - "data.set_index('Month', inplace=True)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Time series in numpy format\n", - "np_ts = np.array(data).reshape(144)\n", - "\n", - "# Time series in pandas format\n", - "pd_ts = data.copy()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\TSB\\Miniconda3\\envs\\myenv\\lib\\site-packages\\pandas\\plotting\\_matplotlib\\converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.\n", - "\n", - "To register the converters:\n", - "\t>>> from pandas.plotting import register_matplotlib_converters\n", - "\t>>> register_matplotlib_converters()\n", - " warnings.warn(msg, FutureWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXicZ30v/O89u6RZtM1olyVZ8iYvseM4e4CENqwlQEmhhyaFFGhf3sJbaAuHlnPa0tIDLYVC6UIhZSckFJo0bwiEJEA2HK/yJluStY32bUaj2bf7/DHzyHK0jaSZeeYZfz/XlcvSM49Gt2Q51/z0u+/vT0gpQURERERERIVJp/YCiIiIiIiIaHUs2oiIiIiIiAoYizYiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiIiAqYQe0FAEB1dbVsaWlRexlERERERESqOHHixIyU0rnSYwVRtLW0tOD48eNqL4OIiIiIiEgVQoih1R7j9kgiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiIiAoYizYiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiIiAoYizYiIiIiIqICxqKNiIiIiIiogLFoIyIiIiIiKmAs2oiIiIiISDXhWAL90361l1HQWLQREREREZFqvvXSEF77D7/A+bF5tZdSsFi0ERERERGRagZnA0hK4C8eOw8ppdrLKUgs2oiIiIiISDWTvjB0Ajg26MGjp8fUXk5BYtFGRERERESqmfCFcWt7NQ40OvDpJ7rhj8TVXlLBYdFGRERERESqmZiPoN5Rgr/4jU5MLUTwpad71V5SwWHRRkREREREqoglkpgNRFDjsOBgcwXuPdyIB18YQN8U0ySXYtFGRERERESqmFqIQEqg1m4BAPzp63bBYtTjL/+boSRLsWgjIiIiIiJVTMyHAQC1DjMAoNpqxh+9dgee653BTy9Mqrm0gsKijYiIiIiIVDHpSxVtNelOGwDcd/M27Kyx4VOPX0A4llBraQWFRRsREREREalisdO2pGgz6HX437+xByOeEH54clStpRWUjIo2IUS5EOIHQoiLQohuIcTNQohKIcRTQoje9J8V6XuFEOKLQog+IcQZIcSh3H4JRERERESkRZO+MEx6HSrLTFddv7mtCiaDDkNzAZVWVlgy7bT9I4AnpZS7ABwA0A3g4wCellJ2AHg6/T4AvB5AR/q/9wP4l6yumIiIiIiIisKELwyX3QwhxFXXhRBwWs2Y9kVUWllhWbdoE0LYAdwB4GsAIKWMSim9AN4C4Bvp274B4J70228B8E2Z8isA5UKIuqyvnIiIiIiING1iPnzV1silnDYzphZYtAGZddraAEwD+A8hxCkhxFeFEGUAaqSU4wCQ/tOVvr8BgHvJx4+kr11FCPF+IcRxIcTx6enpLX0RRERERESkPVMLqRltK3HZzJhaCOd5RYUpk6LNAOAQgH+RUh4EEMCVrZArEStcWzZkQUr5FSnlYSnlYafTmdFiiYiIiIioOEgp1+y0uexmTLPTBiCzom0EwIiU8mj6/R8gVcRNKtse039OLbm/acnHNwIYy85yiYiIiIioGPjCcYRiidWLNpsFnmAM0XgyzysrPOsWbVLKCQBuIcTO9KW7AFwA8BiA+9PX7gfwaPrtxwDcl06RvAnAvLKNkoiIiIiICFgyo22V7ZFOW2rg9rSf3TZDhvf9IYDvCCFMAPoBvAepgu9hIcQDAIYBvCN97xMA3gCgD0AwfS8REREREdGilWa0LeVKF21TvjAaykvytq5ClFHRJqU8DeDwCg/dtcK9EsAHt7guIiIiIiIqYhO+9Yq21HWea8t8ThsREREREVHWTKY7bS67ecXHle2RjP1n0UZERERERCqY8IVRUWqExahf8fFqqwlCsGgDWLQREREREZEKJn1h1KyyNRIADHodqspM3B4JFm1ERERERKSCCV8YtaskRyqcNgumOWCbRRsREREREeXfxHwENbb1ijYzt0eCRRsREREREeVZLJHEbCCy6ow2hctmxpSPRRuLNiIiIiIiyquphQikXD3uX+GymTHjjyCZlHlaWWFi0UZERERERHm1OFjbsXLcv8JlMyOelPAEo/lYVsFi0UZERERERHk1mR6svVZ6JJAKIgEY+8+ijYiIiIiI8mqx07be9kg7B2wDLNqIiIiIiCjPJn1hmPQ6VJaZ1rzPZUsVbdf6rDYWbURERERElFcTvjBcdjOEEGve57QpnbZre1YbizYiIiIiIsqrifnwulsjAaDUZIDVbLjmY/9ZtBERERERUV5N+sLrzmhTuGxmbo9UewFERERERHTtkFJiwpdZpw1IbZFk0UZERERERJQnvlAc4VhyQ0Ubz7QREREREVHBGZ8PIZ5Iqr2MrJtMF2CZb4+0MPJf7QUQEREREdHVfn5pCrd95ll87+VhtZeSdZnOaFO47GYEown4I/FcLqugsWgjIiIiIiog3eM+/L/fPYVEUmJwNqj2crJuwrfBoo2z2li0EREREREViklfGO/9+jGUmfWotpox6Su+s1yT6U6by27O6P7FWW1F+L3IFIs2IiIiIqICEIjE8d6vH8N8KIYHf/cGtFWXFeVZrglfGBWlRliM+ozud9lSHbli/F5kikUbEREREZHKEkmJDz90Ct3jPnz5tw+hs94Bl704o+4nfWHUZLg1EriyPZJFGxERERERqeZTj1/Az7qn8Je/0YnX7HIBSKcmFuGWwAlfGLUZJkcCQHmpEUa9KMoCNlMs2oiIiIiIVPTkuXF8/cVBPHBbK37n5pbF6y67GYEiTE2cmI9kHEICAEIIOK3X9qw2Fm1ERERERCo6NuiBxajDJ96w+6rrriIM4IglkpgNRDa0PRIAnHYLO21ERERERKSOMW8IDeUl0OvEVdeVwqaYznJNLUQgJTa0PRJIFbBTvuL5PmwUizYiIiIiIhWNekNoqChddr0YAzg2Olhb4bSZMe0vnu/DRrFoIyIiIiJS0agn1Wl7pcWo+yLaHqnMndvo9kiXzYy5QBTReDIXyyp4LNqIiIiIiFQSiiYwG4iisWJ50WYvMcBk0BVnp23D2yNT989co902Fm1ERERERCoZ9YYAAPXly4sYIQRq7Oai67SZDDpUlBo39HHKVtFrNYyERRsRERERkUqUoq2hfPmZNiA9q62ICpUJXxg1djOEEOvfvISzCM/3bQSLNiIiIiIilYx60kXbCtsjgVSHabKIOm1j3hDqHCt/rWtx2ZWirXi+FxvBoo2IiIiISCVj3hD0OoGadCfplVw2c1F1l/qnA2irLtvwx1VblZl1xfO92AgWbUREREREKhn1hlBrt8CgX/lluctuwUI4jnAskeeVZd98MIbZQBRtzo0XbUa9DpVlpms29p9FGxERERGRSkY9oVW3RgJLZrUVQYepf8YPAGittm7q46/lAdss2oiIiIiIVDLqDaFxhRltCld6ntlkEZzlGpgJAMCmOm1AesB2EXwfNoNFGxERERGRCuKJJCZ8YdSvVbQVU6dtOgC9TqCpYuWkzPUUW5LmRrBoIyIiIiJSwYQvjERSrrk9sibdaSuG1MSBmQCaK0thMmyuBHHazJjxR5BMyiyvrPCxaCMiIiIiUsFi3P8anbaKUiOMelEUHabL0360biI5UuGymRFLSHhDsSyuShtYtBERERERqWBxsPYanTYhBJxW7c9qSyYlBmcDWyvaruFZbSzaiIiIiIhUMOZdv9MGAE67BdMa77SN+8IIx5KbDiEBUmfagOI437dRLNqIiIiIiFQw6g2h2mqCxahf875iiLofmE4lR26l0+ZMh7JovYDdDBZtREREREQqGPGE1u2yAUCN3az5LYHKjLbtzs3NaAOWJGmyaCMiIiIionwY9YbWjPtXuGwWeIIxROKJPKwqN/qnAygz6RcLr80oMxtQZtJrvoDdDBZtRERERER5JqXEmDezTpurCLYF9s8E0OosgxBiS8/jtJnZaSMiIiIiotybDUQRjiXXTI5UXElN1G6xMjDjR2v15rdGKlw27YeybAaLNiIiIiKiPMtkRptC66mJ4VgCI54Q2rYQQqJw2rU//mAzWLQRERERUUEamg1gLhBVexk5MZbBjDaF1ueTDc8FISW2FPev6HBZMTwXRCASz8LKtCOjok0IMSiEOCuEOC2EOJ6+VimEeEoI0Zv+syJ9XQghviiE6BNCnBFCHMrlF0BERERExWfEE8Qbv/g8Pv1Et9pLyQllsHZjeem691aVmaET2u209U+nkiPbsrA9cm+9A1IC3eO+LT+Xlmyk0/YaKeV1UsrD6fc/DuBpKWUHgKfT7wPA6wF0pP97P4B/ydZiiYiIiKj4JZMSH/vPM/BH4ovbCIvNiCcEq9kAe4lh3Xv1OoFqq3Zj//tnUjPaWqrXL1DXs7fBAQA4Nzq/5efSkq1sj3wLgG+k3/4GgHuWXP+mTPkVgHIhRN0WPg8RERERXUO+c3QIL/TNwmYxYNqvze7SelJx/5aM0xRr7BbNBpH0Twfgsplhsxi3/Fw1djOqrSacG2OnbSUSwE+FECeEEO9PX6uRUo4DQPpPV/p6AwD3ko8dSV+7ihDi/UKI40KI49PT05tbPREREREVlaHZAD79xEXcscOJe65rKNqkwNEMB2srXDYzJjW6PXJgJoDWLISQAIAQAp31Dpxn0baiW6WUh5Da+vhBIcQda9y70q8L5LILUn5FSnlYSnnY6XRmuAwiIiIiKlaJpMSfPHIGBr3AZ96+Dy6bGfMhbQ+VXs2oN5RRCInCZTdjWqPbIwdmAmhzbv08m2Jvgx29kwsIx4rv52I1GRVtUsqx9J9TAH4E4AiASWXbY/rPqfTtIwCalnx4I4CxbC2YiIiIiIrTf7wwgJcH5/C/39yJOkcJnOmh0jP+4kqQ9EfimA/F0JBBCInCabNgNhBFPJHM4cqyzxuMYi4QzUrcv2JvvQPxpETP5ELWnrPQrVu0CSHKhBA25W0Avw7gHIDHANyfvu1+AI+m334MwH3pFMmbAMwr2yiJiIiIiFbSN+XHZ39yCa/d7cLbD6VO1ihFW7FtkdxI3L+ixm6GlNorYJUQkmzE/SuuhJFcO1sk14+rAWoA/Ch9SNIA4LtSyieFEMcAPCyEeADAMIB3pO9/AsAbAPQBCAJ4T9ZXTURERERFI55I4qOPdKHUpMen37ZvMZyjWIu2jQzWVigDtid9YdQ6LDlZVy70T6eKtmydaQOAxooS2C0GnBu7dhIk1y3apJT9AA6scH0WwF0rXJcAPpiV1RERERFR0XuubwZdbi/+4d4Di8UJULxF24gyo20jZ9psyoBtbX0vBmb8MOgEmiq3HvevEEJgb4MD56+h2P+tRP4TEREREW3ZpYnU2aTX7qm56npVWXEWbaOeEIx6AafVnPHHuOxK0aatMJL+6QCaK0th1Ge37Oist6N7YgExjZ3x2ywWbURERESkqt5JP2rsZthfMcfLZNChotSIab+2CpX1jHpDqHOUQKfLbEYbAFRbzRACmNJY7H824/6X2tvgQDSeRN+UP+vPXYhYtBERERGRqvqmFtDhsq34mNNmLsJOW3BD59kAwKjXoarMpKlOWzIp03H/2S/aOuuVMJJrY4skizYiIiIiUo2UEr1TfrS7Vp7jVZRF2wZntCmcNoumOm1j8yFE4km0VmdvRpuitboMpSb9NTNkm0UbEREREalmbD6MYDSBjppVijarGdN+7RQq64nGk5haiGy40wakwki0FESiJEfmotOm1wnsqbPj/DWSIMmijYiIiIhU05sekLze9shUQLn2TcyHIeXGZrQpauxmTW2PHFBmtOXgTBuQOtd2fsyHZLI4fjbWwqKNiIiIiFSjBEl0rLE9MhxLwh+J53NZOTPiDQIAGjfVabNgeiGChEaKlP5pP6xmw+LohmzrrLcjGE1gYDaQk+cvJCzaiIiIiEg1vZN+VFtNqCgzrfh4sc1qUwZr12+maLObkZTAbEAb34v+dHKkMiw92/Y2XDthJCzaiIiIiEg1vVMLq4aQAIDTmhq2XTRFW3qwdl25ZZ07l1scsK2RMJL+6dwkRyraXVaYDLprIoyERRsRERERqUJKib4p/6rn2YAlnbYiCSMZ9YTgsplhNug3/LEuu3YK2HAsgbH5UE5mtCmMeh1219rYaSMiIiIiypXphQh84fiqyZFA8W2PHJoLoqmydFMfq3TaJn2FH0by5Wf7ICWwv9GR08/T2eDAudH5ogmqWQ2LNiIiIiJSRW86hKTduXrRVl5ihEEniqJok1Kie9yHXbWrdxbXohSwhR77/+jpUXzpmT7ce7gRr9npyunn2lvvgC8cx0j6rGCxMqi9ACIiIiK6WiASx9nReXS5vWh3WXHX7hq1l5QTStx/+xqdNp1OoNpaHAO2x+bDWAjHsavOvqmPNxv0KC81FnTs/2m3F3/ygzM40lKJv75nX85CSBSd9anv5bnR+U13MLWARRsRERFRAXj09Che6JtBl3sevVMLUFLdG8pLirdom/LDUWKE07p2JLzTVhwDtrvTgRl76jbXaQOAGpulYINIxudDeN83j6PGbsa/vPsQTIbcb+rbWWuDXidwbmwer99Xl/PPpxYWbUREREQq65/248MPnUZ5qRHXNZXj9ftqcaCpHC/0zuCrzw8gHEvAYtx4cEWh653yo8NlXbcb47SZNXGOaz3d46mibWft5jptQCr2f7IAu47BaBzv++ZxhKIJfOf3bkTVOoV4tliMenS4rDg3WtwJkizaiIiIiFR2atgLAPj++2/GziXnnfzh1EDpgZkAdm9yS10h65vy4+7O9buITqu5KBICL04soLmyFFbz5l+C19gt6JmczuKqti6ZlPjow124MObD1+6/ATtqNt9J3Iy9DQ78/NIUpJQ5346pFgaREBEREanstNuLMpN+2bwyJS59YCagxrJyatYfwVwgivY14v4VTpsZs4EoEkltJwR2j/uwewtbIwGgzVmGSV8EC+FYlla1dY+fHcePz03gE2/Yjdfsym3wyEo66+2Y8UeL4tzjali0EREREamsa8SLfY0O6HVXdwmUoq1/2q/GsnKqL50c2bHGYG2F02ZGIinhCUZzvaycCUbjGJgNYNcWtkYCWJxpp3z/CsFLl2dgtxjw3ltbVfn8ben00cHZoCqfPx9YtBERERGpKBxLoHvch+uaKpY9VmY2oNZuQX8RdtqUuP+1ZrQpimFWW8+kH1Jiy9tclSK3t4CKthNDHhzaVgGdTp2tic3p1MjhORZtRERERJQDF8Z9iCUkrmtaeQhxm7MM/dPFV7T1TflhTRel6ymGok0JIdmzxaKtqbIUJoOuYDpt86EYeqf8uL55+S8d8qWhvAQ6waKNiIiIiHLkdDqEZKVOG5DaItk/7YeU2j7P9Uq9UwtozyA5EsDiSAAtF20Xx30oM+nRWFGypefR6wS2O62LM+7UdtrthZTAoW3qFW0mgw51jhK4WbQRERERUS50jXhRYzej1rFyx6m1ugy+cBxzAe2e51pJ76Q/o/NswJJOm4ZntXWPL2BXnT0rWwg7XNaC2R55YsgDnQAONJWruo7mylJ22oiIiIgoN067vbhujRe829MhC8WUIDkfjGFqIbIsLXM1ZWYDSk16zXbapJTonth6cqSiw2XFiCeEYDSelefbilPDHuyqtW9pjEE2sGgjIiIiopzwBKIYmg2uujUSWJogWTxFW990amtfJiEkCqfNrNmibdQbwkI4vuXkSIVS7F6eUvdnIpGUODXsxfUqbo1UNFeVYnohglA0ofZScoJFGxEREZFKTo+kzrMdWCWEBAAaK0pg1IuiSpDsnVTi/jPvPDmt2i3ausdTRWq2BqQrxa5S/KqlZ3IB/kgch7apuzUSSAW0AIDbU5zdNhZtRERERCrpcnshBLC/cfUXvQa9Ds2VpUU1q613yg+LUYeG8sxDOZw2s2bPtCnJkbtqs7M9cltVGQw6sVj8quXEkAcAcH1zparrAK7E/g8V6aw2Fm1EREREKjnt9qLDZV33PFCb01pUZ9r6pvxod1k3FMqh5e2RFyd82FZVirIsnfsy6nVorS5TPYzk5LAH1VYzmiq3loiZDcU+q41FGxEREZEKpJToWieERNFWXYah2SASyeKI/e+b8m9oaySQ2h45H4ohEtfemaXu8QXsztJ5NkVHjVX1WW0nhzw41Fye0diGXKsoNcJqNhRt7D+LNiIiIiIVDM8F4QnGMopKb3OWIZpIYtQTysPKcssfiWPUG8o4OVKhxP7P+LU1+iAYjWNwNoBdWUqOVLS7bBiaDSAcU6eInfFHMDgbLIgQEgAQQhR1giSLNiIiIiIVnHYrQ7XXL9paq1MFTv+M9s+1XZ5SQkg2V7RpbYvkpYkFSJm9EBJFh8uKpFRvFMRJ5TxbgRRtQHHH/rNoIyIiIlLBabcXFqMOO2vW78C0OYsn9l85h9WRwde9lFaLNiU5ck+2i7Z0gqRa59pODnth1AvsbVg9+TTfmqtK4Z4LIlkk24iXYtFGREREpILTbi/2NThg0K//cqyqzASbxVAUYSR9U34Y9QJNFRsLr9Bu0eaD1WzYUFJmJlqry6ATQN+kOrH/J4c86Kx3wGLUq/L5V9JUWYpIPKnZlNG1sGgjIiIiyrNoPInzYz4cWCPqfykhBNqc1qLYHumeC6KpojSjYnWpqjJtFm0XJ3zYVWvbUFJmJswGPVqq1EmQjMaT6BopjKHaS2WSIPnwMTe+c3QoX0vKGhZtRERERHl2ccKHaDyJ65ozH0rcVl2GgSLYHun2BBcHIW+EyaBDRakR0/5wDlaVG1JKXBxfyPp5NkW7y6pK0dY97kMknizYom2tWW3f/NUgnjg7nq8lZQ2LNiIiIqI869pACImitboMY/NhBKPxXC0rL4bngpue66W1WW0jnhAWIvGsJ0cq2l1WDM4EEEskc/L8q1GGah9qLqyiraG8BEKs3mkLRRPoHl/AwabCWncmWLQRERER5dkptxfVVtOGzjkpYSSDM9pNx/OFY/AGY4sdkY3SWtHWPe4DkP3kSEVHjRXxpMTQbH47sCeGPWgoL0Gtw5LXz7sek0GHekfJqrPazo7OI5GUOLiBDnehYNFGRERElGfKUO2NDCVurU4nSGr4XJvyYnrTRZvVrKmQie7xBQiBjBJCN0MZUN47md+fiZNDHhwqsK2RirVi/0+7Ux3CjXS4CwWLNiIiIqI8mg/FcHk6kHEIiUIp2rR8rk0p2horttZpk1Ibke4XJ3zYVlmKMrMhJ8+/3WmFEPmN/R/zhjA+H8ahAu1WrVW0nRr2ormyFFVWc55XtXUs2oiIiIjy6OzIPABsKIQEAEpNBtQ5LOjXcOy/8mK6uWrzRVs4loQ/oo1zfd3jvpxtjQSAEpMejRUleS3aTg4X3lDtpZqrSjG9EEEomlj22Klhrya3RgIs2oiIiIjyqncqNVdrV+3GX8y3Ocs0XbS550IoLzXCbjFu6uO1NKstEIljaC64qb/njehw2dCbx1ltJ4Y8sBh1OS1Gt0JJJnV7ru62jc+HMOEL46AGt0YCLNqIiIiI8mpoNgir2YBqq2nDH9taXYb+ab9mtge+0nB6RttmOa2p4AstFG3PXJyClMDhltx2pDpcVvTPBBDPU4LkscE57G8sh3GDc/byZXFW2yti/08NpxJbDxZY4mWmCvO7TURERFSkBmYC2FZVuqEQEkVbtRUL4ThmA9EcrCz33HPBTYeQAEs6bRoII3n4uBsN5SW4qa0qp5+n3WVFNJ6E2xPa9HO80DeDN3/peYx41k4mHfOGcG7Uh1fvdG76c+Xa4qy2uVcWbR6YDIXbIVwPizYiIiKiPBqaDaClqmxTH9uajv0f0OAWyWRSYsQT2tRgbYVWtkeOekN4vm8Gb7++EXrdxovzjeioURIkN7dF0j0XxAe/exJnR+fx8DH3mvc+dWESAHB3Z+2mPlc+VJQaYTUblsX+nxr2Yl+DAyaDNssfba6aiIiIis53jg7h6e5JtZeRU7FEEiOeELZtMohje7UVANA/rb3Y/8mFMKKJ5KYHawNAeYkRBp0o+KLthydGICXwjusbc/652l2pn4m+TfxMhGMJ/P63TyCRkOist+NHp0fX3Hr7k/MTaHdZsd1p3fR6c00IgaZXJEhG40mcHZ3XZNS/gkUbERERqc4fieOT/3UOD3zjOL78bJ9mz2ytZ8wbQjwp0VK9uU5bQ0UJTHqdJsNIlDNGW9keqdMJVFsLe8B2MinxyIkR3NxWtaWuYqasZgPqHRb0bXBWm5QSn/jRWZwf8+EL77wOD9zWCvdcCMeHPCve7wlEcXRgDnd31mRj2TnVXFlyVdF2ccKHSDyp2eRIgEUbERERFYDTw14kJbCvwYG/+8klfPThLkTiyyO7tW4wXbhsdnukXiewraoU/Rqc1Ta8xcHaCqetsAdsHx2Yw/BcEPfekPsum2K7y7rh2P9v/2oIPzw5ig/f1YG7dtfg7s5alBj1+OHJkRXvf/riFBJJWdBbIxXbqsrgngsimUz98ue0W9shJACLNiIiIioAxwbnoBPAd993Iz7yazvww1OjePdXj2JOo4EbqxmaTRVbLZvcHgmkEiS1eKbN7QlBJ4D68s1vjwSuDNguVI+ccMNmNuB1nXV5+5wdLhv6pvyLRcp6TgzN4a8ev4DX7HTiw3d1AADKzAa8bm8tHj8zjnBs+S9MfnJ+AvUOC/Y1OLK69lxoqixFJJ5cLO5PDXvhsplR77CovLLNY9FGREREqjs+NIfddXbYLEZ86K4OfOldB3FmZB73fPkF9E3lbwZVrg3MBFBi1C8GamxGq7MMQ7P5i3jPFvdcEHWOki1HxTtV3h756OlRPNY1tuJjC+EYnjg7jjcdqEeJSZ+3Ne2osSIUSyybTbaSqYUw/uDbJ1FfXoIv/NZB6JYEpbztUAMWwnE8c3Hqqo8JRuP4Zc80fr2zdlOpp/m2GPuf7u6eGvbgYHO5Jta+moz/1Qgh9EKIU0KIx9PvtwohjgoheoUQ3xdCmNLXzen3+9KPt+Rm6URERFQMYokkTg17cUNL5eK1Nx+ox0PvvwnBaALv/MqvENNYgVbpikwAACAASURBVLKaodngpuP+FdurrYglJEa9m494V8PwFuP+FU6bGbOBKBIZdpWy7Qs/68WHvncKPzixfBthqkuVxL2H87c1EgD2prtfZ0bm1733U493YyEcx7+++3o4Sq8ecn7L9mrU2M344cnRq67/smcakXgSv66B82zA1bPa5gJRDM4GNb01EthYp+3DALqXvP8ZAJ+XUnYA8AB4IH39AQAeKWU7gM+n7yMiIiJa0YUxH4LRxLIhxAebK/Bnb9yFGX9Uk2e4VjI4G0DrJkNIFG3p2P/LGkuQdM8Ft5QcqagrtyCRlBhToWhNJCVGPEGY9Dr86Q+68OOz41c9/vBxNzpc1rynFO6stcFs0KErfXZrNVJKvHR5Fq/fV7vivDK9TuAt1zXg55emMLvk3OBPzk+ivNSII0t+sVLIGspLIERqVttpdypY5aCGkyOBDIs2IUQjgDcC+Gr6fQHgTgA/SN/yDQD3pN9+S/p9pB+/S2i5F0lEREQ5dWxwDgCu6rQpOutTHYQL4+t3EApdIinhngti2yZDSBSLEe8bDJ5QUyiawNRCJCudNuVM1dnR/P9MjM+HEEtIfPz1u3CwuQIfeugUfn4ptZWwb2oBp4a9uPdwU9634Rn1OuxtcKBrZO2ibdQbwow/smYB89aDDYgnJR4/kypIY4kknu6exF27amDY4tbWfDEZdKh3lMA9F8SpYS/0OoF9jYV/Fm8tmX7nvwDgTwEoexOqAHillPH0+yMAGtJvNwBwA0D68fn0/URERETLHB/0oLmyFDX25SEBbdVlMBl0uDDmU2Fl2TXmTb3g30oICQCUl5pQbTVpqmgbSZ+1ykYE/s5aG4x6kdFWwGxTzkjtqrXhwd+9ATtqbPjAt07gaP8sHjk+Ar1O4J6DDes8S24caCzH2dH5Nc86drlT37MDaxRtu+vs2FVrww9PpbZI/qp/Fr5wXBNR/0s1pWP/Tw17sbPGhlKTQe0lbcm6RZsQ4k0ApqSUJ5ZeXuFWmcFjS5/3/UKI40KI49PT0xktloiIiIqLlBLHh+aWbY1UGPQ67Kq14cK49ou2oXTc/1Y7bQCw3WnVVNHmzmLRZjbosavWjjPrdJVywT135etwlBjxzfceQWNFCR74xnF8/7gbd+5ybSlkZisONDkQjiXRs8a8ttNuD0wGHXbVLt8audTbDjWgy+3F5Wk/fnJ+AiVGPe7Y4cz2knOqubIUQ7MBdLm9mp7Ppsik03YrgN8QQgwCeAipbZFfAFAuhFBK1kYASozOCIAmAEg/7gAw98onlVJ+RUp5WEp52OnU1g8BERERZcfgbBAz/uiKWyMVnfV2nB/zaX7g9oAS91+99cKlPT2XSyvfk2wM1l5qX6MDZ0fnM464z5ah2SAMOoG6dHR8ldWM7/zeTagoM8IbjOHew015Xc9SBxpThclaxWyXex6d9XaYDGuXAG+5rgE6Afzw5Ah+en4Sr9rhhMWYvzTMbNhWVYYZfxQLkbjmQ0iADIo2KeX/lFI2SilbALwTwDNSyv8B4FkAv5m+7X4Aj6bffiz9PtKPPyO18n8UIiIiyqsr59lWf1G1p84ObzCG8flwvpaVE0MzAViMOtTYtj4rqt1lxUI4XtDzypYanguh1KRHVZkpK8+3v8GBhXAcQ3PrR9xn0/BcEA0VJVed7ap1WPC9992Ev3jzHrxmp3qNiG1Vqe7faufa4okkzo7OZxSSUmO34Nb2ajz4/CCmFiK4e6+2tkYCV3d1r5VO22o+BuAjQog+pM6sfS19/WsAqtLXPwLg41tbIhERERWrYwNzqCg1YrvTuuo9e+pTW7m0fq5tcDaIbZVlV83F2qwOlw2AdsJI3J4gmiq2NupgKSVUIt9bJN2rjC1orCjF797aqmpQhxACB5rKcdq98lm/nkk/QrFExsmWbzvUgFAsAYNO4M6d2ivalL8nR4kRrVnYkqy2Df1kSSl/LqV8U/rtfinlESllu5TyHVLKSPp6OP1+e/rx/lwsnIiIiLTv+JAHh1sq13wxv7PWDiGg+XNtQ7MBbNtiCIliMUFSI7H/qbj/7HztALCjJhVxfzbPYSTZmjWXK9c1OtAzuYBgNL7ssdPpcQCZFm13d9ai1KTHzdurls1z0wLl7+m6pvKs/KJEbdrI7SQiIqKiM70QwcBMYM2tkQBgNRvQUlWm6U5bMikxNBdEyxZntClq7GZYzQZNdNqklFkvdox6HfbU23Emj7H/vnAMnmCsoIu2A03lSCQlzq/wb+W024OKUmPG6y81GfDN9x7BX9+zN9vLzIuKUiP2NThwd2et2kvJCm1nXxIREZFmnRhKnWc7nMHA3j11dpwZzX9aYLZM+MKIxpNZ67QJIbDdpY0EyblAFMFoIiuDtZfa3+DAD06MIJGU0Oehk5LtMJVc2J8OI+lye5eF+3S553GgqXxDW1Qz+bdZqIQQ+O8/vE3tZWQNO21ERESkimODHpgNOuytX3/o7Z56O9xzIcyHYnlYWfYNzqSTI7N4tqbdmUqQLHTKbLNsFzv7GssRiCYwMJOf74ES99+cpcI7F5w2MxrKSxa3Qir8kTh6phYWEyZJe1i0ERERkSqOD87huqbydePHgSthJBc1eq5tMN2lydb2SCB1rm16IVLwhWyuirb9i2Ek+dkiOTyXvVlzuXSgybEsQfLsyDykBK4rghTFaxWLNiIiIsq7YDSOc2O+NeezLdVZl06Q1GjRNjQbgMmgQ51963H/isUwkgLvto14QgBSCYvZtN1pRYlRn9eiraLUCLulsEM5DjSWwz0XwlwgunhtMYSEnTbNYtFGREREeXdq2ItEUuKG1syKNqfNjGqrSbNhJIOzATRXlmY1xa4jXbRdLvCibXg2CKfNjBJTdocz63UCexvsOJunMJJCT45UHEinQy7ttnW5vdhWVYqKLM3Jo/xj0UZERER5d2xwDjoBHMpwu5YQArvr7BrutAXRkuWzUE2VpTAZdAUf+5/LYmd/YznOj80jnkjm5PmXGs7y2IJc2dfggE6kCjXFabc346h/Kkws2oiIiCjvjg96sKvWDtsGtpp11qdmUEXjuX+Bnk1SSgzOBrAtywN+9TqBtuqygt8emRqsnd3kSMX+RgfCsWTOA1niiSRGPaGspX/mUpnZgA6XbbFom5gPY8IXZgiJxrFoIyIioryKJ5I4OexZdz7bK+2ptyOWkAVfpLzSpC+CcCyZ1RASRaHH/scSSYx5QznrtO1rSIWR5HrI9vh8GPGk1MT2SEAJI5mHlPLKeTaGkGgaizYiIiLKq55JP4LRBA5t22DRptEwksFZJe4/+y/4251WuD1BhGOJrD93Nox5Q0jK3CUutlSVwWY25HyGn1aSIxX7G8sxF4hixBPCabcXRr1Y/PdD2sSijYiIiPKqZ3IBALB7gy8iW6vLYDHqNBdGMjSb/RltinaXFVIClwv0XJt7LpUcmatiR6cT2NvgyHmnLVdjC3JFOb922u1Fl9uL3XV2WIzZDYKh/GLRRkRERHnVM7kAo15suIjR6wR21dpxYTw/aYHZMjgbhFEvUOfIXty/oqOmsGP/81Hs7G90oHs8t2cdh+eUv8PcnM3Ltp21NpgMOpwa9uLMiJfn2YoAizYiIiLKq57JBbRWl2U0VPuVOuvtuDDmg5QyByvLjaHZAJoqSmHQZ/9lV2t1GXSicGP/h+eCMOl1qMnifLpX2tfoQDSRXOzg5sLwXBCNFaXQZ3FkQy4Z9Trsrbfjsa4xBKIJJkcWARZtRERElFc9k3501Ng29bF76u3wheOLA5u1YHAmmJMQEgAwG/Roriwt2Nh/tyeIhoqSnBY7Shcpl0O23RqJ+1/qQFM5ZvyRxbdJ21i0ERERFYiHj7txctij9jJyKhRNwO0JYodrk0WbxsJIrsT95+4Ff3sBJ0jmo9hprChBeakRZ3MYRjI0G0RzpTa2RiqU7prNYkBbjn5pQPnDoo2IiKgAxBJJ/PmPzuEPv3uqYJMAs6Fvyg8pgZ211k19/K5aO3QCmgkjmfZHEIwmchJCotjusmJgJpCXAdNAarvnC30z697nj8TRPx3IebEjhMC+BkfOOm3zwRjmQzHNhJAolA7kgcZy6DSyrZNWx6KNiIioAFye9iOaSGLUG8I3XhxUezk5cyl97miz2yNLTHq0VpdpptM2NJsK4shpp81pRSwhMZQO/ci1zz55Cfc9+PLi8ObVfP6pHgSicbz9UGPO17S/0YFLEwtb+oXH2ZF5xFYofN0ebSVHKrZVlWJnjQ137XapvRTKAhZtREREBUDpHHW4rPinZ/swF4iqvKLc6J1cgEmvw7YtvADurHdoptM2OJO7uH+FUgDna4vk2dF5JJISH32ka9Ui6cKYD19/cRDvOtKMg80bm8e3GfsayhFPSnRvspg/OzKPN//T8/jCz3qWPXYlAVNbWwyFEPjJH92B99zaqvZSKAtYtBERERWAC2M+mA06fPFdBxGIxPHFp3vVXlJO9EwuoM1ZtqUkxT31dox6Q/AGC7+wHZoNwqATaKzI3RbB7c5UMZGPom0+FMPwXBC3tlehb8qPzz+1vMhJJiU++eg5lJcY8ad378z5moBUgiQAnNtkMf+tXw0CAB58fhBTC+GrHlO6pU0aO9NGxYVFGxERUQG4MO7DzlobdtfZ8c4jzfj2r4bQX6CJgFvRM+nHztrNbY1UqB1G8uylKdz8t0/jFz3T6947MBNAY0VJTuL+FTaLEbV2S15i/5UO5/vv2I53HWnCV57rx4mhuavueeSEGyeGPPifb9iN8lJTztcEAPUOCypKjTg/uvFzbfPBGB7rGsPtHdWIJpL452cvX/X48FwQlWUm2CzGbC2XaMNYtBEREalMytS2LqUY+aPX7oDZoMP/+fFFlVeWXf5IHKPeEHZs8jybYrdStKm0RfK5nhmMz4fx3q8fw7deGlzxnkRS4nM/vYQnzo3jUB62B7a7rHmJ/T8/liqKOuvt+LM37kG9owR//MgZhKKpbZJzgSj+9scXcaSlEm8/1JDz9SiEEOisd+D8Jn4m/vPkCMKxJD72ul2493AjvnN0CO4l5wO1GPdPxYdFGxERkcomfGF4gjHsqU8VI06bGX/w6u346YVJHO2fVXl12dOrhJC4NpccqXDazHDZzKp12i5P+9HusuI1O5345KPn8RePnb8quXF6IYLf+dpRfOmZPtx7fRM+/bZ9OV+TEvufTOZ26Pi50XnU2i2otpphNRvwd+/Yj4GZAD7zZOoXDJ998iL84Tg+dc9eCJHfxMLOBjsuTSysGCayGiklvn10CAeby7G3wYEP3dUBIQS+8LMr25OH54JbOoNJlA0s2oiIiFSmdIyUThsAPHBbG2rtFvzNE905fyGeL72TqU7QVrdHAqlOj1qdtsvTfuyps+Pffucw3nd7K77+4iB+75vHsRCO4eWBObzxi8/hxJAHn/3N/fjMb+6HxajP+Zq2u6wIRhMY94XXv3kLzo35sLfhys/pLdur8bu3tODrLw7in3/eh4eOufHAba1Z+TveqM56B6KJ5OLPWSZeujyL/ukA3n3jNgBAnaME99+8DT86NYLeyQXE04muWkuOpOLDoo2IiEhlSvGxa0nRVmLS40/u3okzI/N4rGtMraVl1aXJBViMOjRVbP0F8J56O/qm/IjE8zvTLhxLYNQbwnanFXqdwJ+9cQ/+9m378HzvDF7/j8/hXf/+K5Sa9PivD96Kew835W1dSvcyl2EkwWgc/dN+dNY7rrr+p6/biZaqUnz2yUuod1jwobs6craGtexNd6rPjWV+ru3bR4dQXmrEG/fXLV77g1e3o9RkwOd+2oMxbxiJpGTRRqpj0UZERKSyC+M+tFSVwmo2XHX9rQcb0Flvx9/95BISRdBt65lcQLvLmpVBv3vqHIgn5Ya6KtkwMBOAlECb80r8+7uONOMb7z2CQCSO13XW4rE/vG3x3F2+tKeLNmULai50jy8gKVNdzqVKTQZ87t4DqCoz4VP37EXZK36O86WlqgxlJn3GHdhJXxg/OT+Jew83XdUNrSwz4fdub8WT5yfw32dSvzDhmTZSG4s2IiIilV0Y9634Il+nE3jf7W0Y9YZwbhOpeIWmd9KPHa7sbJtTzv/le4vk5XTYx3bn1efybm2vxvE//zV8+X8cgl2FlMGqMhNq7GacGcndz4kSQrK3wbHsseu3VeLYn70Wd+2uydnnX49OJ7C7zp7xv5WHXnYjkZT47SPNyx77vdvbUFlmwj+mR28053A4OlEmWLQRERGpaCEcw9Bs8KrzbEvd1lENAHiud/14+UI2H4phwhfGjiydddpWWZrqquQ5jOTyVABCAK3Vywct67PQQdwsIQSu31aBk8OenH2O86M+VJaZUOewrPh4NjqoW7W3wYEL4751z4HGE0l87+Vh3LHDiZYV/i6tZgP+n1dvRzSehEmvQ6195a+ZKF9YtBEREano0kRqO9ue+pWLtmqrGXvq7Hiudyafy8o6ZdvejpqtJUcqlK6KGp22hvISlJhyHy6yUYeaKzDiCWEyR2Ek58bm0Vlvz3sq5EbsqbcjGE1gYDaw5n0/657ChC+Md9+4vMumePdN21DnsKCxskTVgpwIYNFGRESkKqVTtFrRBgC3d1Tj5LAHgUg8X8vKup702bOOLG2PBFLfs0y6KtnUP+NftjWyUBzalpoHd3JoY922cCyBH5wYwW/920v4wYmRFe+JxBPomVxYFkJSaPam17fevLbvHB1CvcOCO3e5Vr3HYtTj3+87jM+8fX9W10i0GSzaiIiIVHRhzIeKUuOa269u73AilpB4eWAujyvLrp7JBZSa9GgoL8nac+6ps8MficPtCa5/cxYkkxKXpwJXhZAUks56O0wGHU5kWLSNeIL4zJMXcfPfPo0/fqQLJ4c9+NxPL60456x30o9YQl4V91+IOmqsMOl1OL/GubaBmQCe653Bu440w6Bf+6Xw3gYHbmipzPYyiTZMnXgfIiIiApDqtO1ZZ8vZ4ZYKmA06/LJ3Gq9ZozNQyHomF9BRY8vquaelYSTbqnJfSE34wgjFEgXbaTMb9Njf4Fj3XJs3GMXH/vMMnrowCQD4tT01uP/mFgSiCbzvm8fx0/OTV0XgA0tCSAq802bU67Cz1rZmp+2hY8Mw6AR+60j+RjIQbRU7bURERCqJJ5K4OLGwagiJwmLU40hrJZ7X8Lm2nkk/driyW+zsqLFBrxN5CyNZLTmykBzaVoFzoz6EY6vPr/vO0WH85PwkPvCq7XjuY3fi337nMG5pr8adu1xorizF118cWPYx50Z9sJkNmphX1llvx7mxeUi5fNuslBKPd43j9o5quGwMFyHtYNFGRESkkv6ZAKLxZEYzvW5rr0bvlB8T87kJmcglTyCKGX8EO2qyd54NSBWz7U5r3sJILqcHV293Feb2SCAVRhJNJBc7Yyt5unsS+xsd+Njrdl21XVWvE7j/lhYcG/Qsi80/NzaP3fX2gkiIXE9ngwPeYAxjK/xbOeX2YtQbwpv216uwMqLNY9FGRESkEqXYWCuERHF7hxMA8Hyf9rptPenkyI4sJUcupYSR5EP/TAA2iwFOqzkvn28zDm0rBwCcHPKu+PisP4JTbu+qARzvONyIUpMe//HC4OK1RFKie9xX8FsjFcrw75XmtT3eNQ6TXodf61RvnhzRZrBoIyIiUkn3uA8mvS6j7Xa7am2otpo0Oa9NKdp2ZmlG21J76uwYnw9jLhDN+nO/0uXpVHJkIUfeu2wWNFeWrhpG8oueaUiJVYs2u8WI37y+Ef/dNYYZfwQA0D/tRziWLPgQEsXuWjt0YnmCZDIp8cTZcbxqp1OVAehEW8GijYiISCUXxn3YUWuFcZ0EOyA1l+zW9mq80DeT14j7bOiZ9MNmNuRkQPHSMJJcK+TkyKUONZfjxLBnxTNdT1+cgtNmXrNrdt/NLYgmkvje0WEAqa2RQCpJUQtKTHpsd1qXJUieGPZgwhfGm14RskKkBSzaiIiIVCClxIUx37ohJEvd1l6NGX8UF9MDubUilRyZmw6V8v27ML76Ga5s8EfimPCFCzqERHH9tgpML0Qw4glddT2WSOKXl6Zx507XmmfT2l1W3LHDiW/9agjReBLnRn2wGHVoqy78glWxt8GxrNP2eNcYzAYd7trNrZGkPSzaiIiIVDC1EMFsILqhou3KuTbtbJGUUqJnciEnWyMBoKLMhHqHJeedtn4NJEcqFodsvyL6//igBwuReEZjI95zSwumFiL48blxnBudx65a+7ozzQpJZ70dE77w4hbPRFLiiXMTuHOXC1YzJ16R9mjnXx8REVERuRJCkvmWs1qHBR0uK57TUPT/jD8KTzCGDlduijYgP2Ek/dMBAEB7ASdHKnbW2FBq0i871/bMxUmY9Drc1lG97nO8aocTrdVlePCFQVwY92nmPJtC2TardNuODsxieiHC1EjSLBZtREREKlCKjF11GytmbuuoxssDc2vO4SokvekQkmzH/S+1p86Oy9OBnH5PLk/7odcJNFcWftFm0OtwXVP5sqLt6YtTuLGtMqNOk04ncP/N29Dl9mIhHNdMcqSiM71eJUHy8TPjKDHqVw1gISp0LNqIiIhUcGHMh6bKkg2n2N3R4UQknsTxwZXTAQtNz2LRlrtthXvq7UgkJS7l8Kzf5Wk/mitLYTJo46XT9dsq0D3uQyASBwAMzgTQPx3YUNHy9usbFws8rYSQKBwlRjRVluDCmA/xRBJPnpvAXbtdKDHp1V4a0aZo4/88RERERaZ7fGMhJIob2yph1As8p+K5tvlQDB//zzN49PQoovHkiveEYwn888/78LmnelDnsMBpy91ssz11qYIil1skL08FsF0DyZGKQ9sqkJRA10hqXtszF6cArB71vxKbxYh33tAEm9mQkxl7uba33oFzY/N48fIs5gJRbo0kTWPRRkRElGeBSBwDs4HFYmMjSk0GHGquwHM96p1re7p7Eg8dc+PDD53GrZ95Bp9/qgeTvjCAVODDw8fdeM3f/xyfffISjrRU4lsP3JjT2WaNFSWwmQ1bDiN59uIUftmzvBhOJCUGZgOaCCFRHGpKh5Gkt0g+e2kK251l2Fa1scLzY6/fhac+8iqYDdrrUHXW2zE0G8RDx4ZhNRvw6p1OtZdEtGmMzyEiIsqzC+M+SJl6UbkZt3dU4+9/2oMZfwTV1tx1sFZzctgDq9mAL77rOnzrpSH849O9+PKzfbi7sxZ9U35cmlzAgUYHPv9b1+Gmtqqcr0enE9i9xTCSb700iE8+eh5mgw5PfPj2qwq0UU8I0XhSU0Wbo9SIdpcVJ4Y88Efi+FX/LN5za+uGn8eo16HWkf35evnQmd7S+cTZCbz1YAMsRu0VnkQKdtqIiIjyrMud2rK2v2lz54SU6P8X+tTptp0c8uK6pnLcuasG//GeI/j5H78av3tLC57rnUYolsA//fZB/NcHb81LwabYU2dH97hvU4PH//UXl/HJR8/j1TudKDHp8dGHuxBPXNn2eVmJ+9dAcuRS1zdX4JTbi+d6phFLyGsuhGPpL0U4UJu0jkUbERFRnp12e9FQXgKXbXMdjL0NDtjMBhwdmMvyytYXjMZxccKHQ83li9daqsvw52/ag1P/69fxiz95Nd60vz6n2yFXsqfejmA0gaG5YMYfI6XE5356Cf/nxxfx5gP1+Pf7DuOv3rIXp91e/Nsv+xfvU4q2tmrtdNoA4NC2cniDMXz1+QHYLAZcn57fdq1w2Sxw2cywWQyLv+gg0ipujyQiIsqzMyPz2N+4+TQ+vU7gcEsFXlahaOtyzyMpgYPNywsAvS6/hdpSSqjL+bF5tFav3xGTUuJTj3fjwRcG8M4bmvA3b90HvU7gzfvr8OS5cXzhZz24a7cLu2rtuDztR2WZCRVlplx/GVmlFGknhjx40/46GDU0HDtbHritFUa9TjOpn0Sr4U8wERFRHs0FohieC+JAU/n6N6/hSGsV+qb8mPFHsrSyzJwcTgVbHGze2vqzraPGCoNOZBRGIqXEJ350Fg++MID33tqKv33bvsWCUwiBT71lLxwlRnz04S7EEknNJUcq2qqtcJSkRkrctfva2hqp+MCrtuO9t238LB9RoVm3aBNCWIQQLwshuoQQ54UQf5m+3iqEOCqE6BVCfF8IYUpfN6ff70s/3pLbL4GIiEg7lAj2A41bLdoqAQDHB/PbbTs17EGbswzlpYXVdTIb9NhZa8OpYe+6954Y8uB7L7vxgTva8Mk37V62lbPKasbfvHUfzo/58E/P9KF/xq+pEBKFTidwqLkcQgCv2nFtFm1ExSKTTlsEwJ1SygMArgPwOiHETQA+A+DzUsoOAB4AD6TvfwCAR0rZDuDz6fuIiIjWFU8kIeXGgyS0pMvthRDAvi1sjwSAfQ0OWIw6vDyQvyHbUkqcGvbiYFNhno26ZXsVTgx5EIom1rzv+b4ZCAH8wau3r3r27u7OWrz1YAP+6dk+zPijmizaAOD3X7Udn3zjHlRqbGsnEV1t3aJNpvjT7xrT/0kAdwL4Qfr6NwDck377Len3kX78LpHv08hERKRJf/xIF177D7/AiCfzMAmt6XJ70eGywmre2rFyk0GHg00VeHlwNksrW9/wXBCzgSgObSusrZGK2zuciCaSODqw9vfkxb5Z7K13rNst/Is3d6LamrpHa8mRihvbqrg9kKgIZHSmTQihF0KcBjAF4CkAlwF4pZTx9C0jABrSbzcAcANA+vF5APnL/CUiIk1KJCV+1j2Fy9MB3PuvL2FgJqD2krJOSomukfktb41UHGmtxIUxHxbCsaw833qU82yHVgghKQRHWithMujwfO/qoxCC0ThOuT24pX39lyaOUiP+/h0H0Fpdhv1Z+jsjItqMjIo2KWVCSnkdgEYARwDsXum29J8rddWW7XURQrxfCHFcCHF8eno60/USEVGR6h73wR+J4/dftR2ReBLv+NeXI8F/hwAAIABJREFUcGliQe1lZdWIJ4S5QHTLISSKG1srkZSpM1r5cGrYizKTHjtqbHn5fBtlMepxQ0sFnl9jft3LA3OIJSRu3V6d0XPe3uHEs3/8alWGmBMRKTaUHiml9AL4OYCbAJQLIZS9HY0AxtJvjwBoAoD04w4Ay05JSym/IqU8LKU87HRydgYR0bVOmTl2/y3b8P0P3Ay9Dvitr7yEMyPrB0toxen0UO3rslS0HWyugEEn8hb9f3LYgwNN5apG+6/ntnYnLk4sYMoXXvHxFy/PwqTX4YaWyjyvjIho8zJJj3QKIcrTb5cAeC2AbgDPAvjN9G33A3g0/fZj6feRfvwZWeynyomIaMteHphFU2UJ6hwlaHdZ8cgHboHNYsBv//tRVeaR5UKX2wuTQYedtdnpVJWY9NjX6MjL9ycYjaN7fKFgt0Yqbu9IddBW67a90DeDg83lKDHp87ksIqItyaTTVgfgWSHEGQDHADwlpXwcwMcAfEQI0YfUmbWvpe//GoCq9PWPAPh49pdNRETFREqJY4MeHGm5cs6ouaoUD3/gZrjsZtz34FGMekMqrjA7zozMo7PentUhx0daK9E14kU4tnZi4ladHZlHIikLbj7bK+2ps6OyzLTiuTZPIIoL4z7c2p7Z1kgiokKRSXrkGSnlQSnlfinlXinlX6Wv90spj0gp26WU75BSRtLXw+n329OP9+f6iyAiIm27PO3HXCCKG1uv3rJW5yjBV+87jHAsiZ9dmFRpddkRTyRxdjR7ISSKG1srEUvIxa2XuXIyPf/sYIF32nQ6gVvbq/F838yy8REv9c9CSuDWDEJIiIgKSfZ+1UdERLRJynm2G1qXnzNqc1qxraoUv+zRdmhV75QfoVgia+fZFNdvq4QQyPkWyZPDHrRWl2li3tft7dWYWoigZ9J/1fUX+mZQZtIzCZKINIdFGxERqe7lgTk4bWa0VJWu+Pirdjjx4uVZROK53QKYS13pTli2kiMVjhIjdtXac1q0pYZqe3Awy2vPldvS59qe67260H/x8ixubKvK6vZUIqJ84P+1iIhIVVJKvDwwhyOtlRBi5VTCOzqcCMUSODGYn2j7XOga8cJuMaxamG7Fja2VODHkQSyRzPpzA6lRBTP+KA5uK+ytkYr68hJsd5bhuSXn2sa8IQzMBHDLdm6NJCLtYdFGRESqGvGEMD4fXnaebambt1fBqBf4Ra92t0ieds/jQFP5qoXpVhxprUQolsD5Md+mn8MTiOITPzqLT/zoLPyR+FWPXRmqrY1OG5Car3Z04Ep39oV0miRDSIhIi1i0ERGRqpRtfWvNzSozG3B4WyV+cUmbRVswGkfP5ELWz7MplO/dywOzG/5YKSX+69Qo7vqHX+DhY2489PIw3vyl53F+bH7xnpNDHpSa9NhZoEO1V3JbezXCseTi4PEXL8+iqsykqa+BiEjBoo2IiFT18sAc7BbDui+m79ix9tDkQnZ+zIdEUuYsAMNpM6OtumzD59qGZ4O478GX8f99/zSaK0vx+Iduw3ffdxOC0Tje+uUX8c2XBlPn2dxe7G90wKChs2A3ba+CQSfwXG8qRfKFvhncvL0KugIeDE5EtBrt/N+XiIiK0rHB1Hm29V5M37Ejta3tlyvM3yp0iyEkjY6cfY4jrZU4NuhBMinXvxnAV5/rx69/4Rc4NezFX72lE//5B7dgV60dN7VV4YkP3Y5b26vwvx49jw986wQujPkKfqj2K1nNBhxqrsDzvTO4PO3H1EKEWyOJSLNYtBERkWqmFsLonwngyBrn2RR76uxw2syajP7vGplHvcMCl92Ss89xpLUS86EYeqYW1r333Og8/vr/78bNbVV46iN34L6bW6BfUjRXWc342v034M/esBvPXJxCPCk1V7QBqRTJc2PzePzMOADg1u0s2ohIm1i0ERGRao4NpM4bHWldP9FPCIHbO6rxXO80Ehl2kwpFl9ub9aj/V7pyrm39LZLHBlP3fPpt+1DnKFnxHp3u/7Z33/FVV/cfx18nm0yygQRCQgIh7IAIsgXcirNOtFqLtdpWO/21Vjvs72eXba11Va17VhE3ggKCsiHMJBBGFhkkIXvnfn9/5KKMJGTcm3sD7+fjkUcu3+/5fu/n5pDkfnLO+RzDd2cm8Nb3pnLrtKF9cpRqelIElgXPrD5AbGg/hjihcqeISG9Q0iYiIi6z4UAp/bw9GTUouFPtZw2P5EhtEzvzK07d2E2U1TSSU1br9KQtNrQfg0L8WL//1EnblpxyBob4tZuwHWvCkFAevHQU/Xw8HRFmrxobE0KQnxfVDc0aZRORPk1Jm4iIm1u3v5QL/v7F11XwTicbDh5hYlxopzc7np4YgTH0qSmS2/KOrmdzbtJmjGFKQjjr9pdiWR2PRG7JPtInpzt2lZenx9f7sp2TqP3ZRKTvUtImIuLG3tyUy8Jn15NRWMXbW/JcHY5DVdQ2kVFY2an1bEeFB/oyJiaEVW6YtNlsFvsPV/N5RhGvrs/hkU8z+dlb2/i/j9IxBsY4sQjJUVOHhVNa08ieoup22xRV1pNfXseEPrTnWk9cOHogAT6efXJ6p4jIUV6uDkBERE5ms1n8aWkmT67ax/TECGyWxZo+WDWxI5uyy7AsupS0AcxMiuSJVfuorG8i2M/bSdGd2uGqBtJyy9mWW862vNbPlfXfbErtYSAqyI8BIX7cNTuRQF/n/8qdah9VWruvhBED2t5CYYt9xDY17vQfaQNYMH4Q542Kxt9Hb3lEpO/STzARETdT29jMvW+ksXRXETecPYTfXjaKV9fn8OB7u8gurSEuPMDVITrEhoNleHuaLm84PXN4JI+tyOKrrBIuGD3QSdF1bPehSi7552psFnh6GJIHBHHJuEGMj+3PsKhABvX3IzLQt9f3NYsN9WdImD9f7Svl29Pi22yzJecIPl4enV5H2NcZY5SwiUifp59iIiJupLiyntte2MjuQ5U8cEkKt04bijGG6UmtU7tW7y05fZK2A2WMi+2Pn3fXClxMGNKfIF8vVu057LKkbUVmMTYLXr39bCYMCXWrIh1TE8L5ZFchLTbruDL+R23JKWdMTAi+Xu4Ts4iIdExr2kRE3MjvPtjNvuIanrllErdNj8eY1jfdCREBDArxO22mSFbUNrEjr4KzE7o2NRLA29ODcxLD+WJPySkLbjjLuv2ljIgO4pzECLdK2KC14EZFXRPpBZUnnWtstrEjv4LUM2Q9m4jI6UJJm4iImzhUXsfHOwtZODWOc5OjjzvXukdZJF/tK6G5xeaiCB3n88wimm0W80ZGn7pxG2YOjyS/vI59h2scHNmpNTbb2HTwCFO6kXD2hqkJrevavtp3coK/61AFjc22M6JypIjI6URJm4iIm3hxbTaWZXHz1Lg2z09PiqCyvpntfWiPsvYs3VlEVJBvt8vgz0yKBFxT+n9Hfjl1TS1fF/1wN1HBfiREBrB2X+lJ5zafYUVIREROF0raRETcQG1jM69tyOGC0QOIDfVvs800+x5lfX2KZH1TC6v2HOa8UdF4tLHmqjMGh/kzLDKAFZnFDo7u1NbZN6+eHO+eSRvAOcPC2XCgjKYTRmW35pQT078f0cF+LopMRES6Q0mbiIgbWLw1n4q6Jm5tp+IfQFiAD6MGBff5pG313hLqmlo4f9SAHt1nXko06/aXUlnf5KDIOmftvlKSBwQRFuDTq8/bFVMTIqhpbGHHCaOyW3KOaJRNRKQPUtImIuJiNpvFc2sOMCYmhEmneEM9IymSLTlHqG5o7rCdO1u6q5BgPy+mJPRspGr+yGiaWqxenSLZ2GxjU3ZZj2N3tqPr7Y6dIllQUUdBRb2KkIiI9EFK2kREXGx1Vgn7Dtdw2/ShX1eLbM+MxAiabRbr95+8XqkvaG6x8Vl6EXNHRuPdwz3MJgwJJSzAh+W7ixwU3altyyunvsnm9klbeKAvyQOCjkvatmSXA6gIiYhIH6SkTUTExZ5bc4DIIF8uHjPolG0nDg3Fz9uD1X10iuSGg2UcqW3ivJTuVY08lqeH4dzkKD7PKD5p7ZazrNtXijG4beXIY00dFs7Gg2U0NLcArUVIfL08GDnwzNhUW0TkdKKkTUTEhbKKq1m15zALp8Th43XqH8m+Xp5Mjg9n9d7er5roCJ/uKsLXy4NZIyIdcr95I6OprG9m48Eyh9zvVNYdKCV5QDD9/d13PdtRUxPCaWi2kZbTOsK2JecI42L7d+r/mYiIuBf95BYRcaHnvzqAj5cHN5w9pNPXzEyKYN/hGgoq6pwYmeNZlsWy3UXMSIrE38fLIfecOTwCHy8Plu92fhXJhuYWNh088vU+aO7u7IRwPAx8ta+U+qYWdh2qYEKc1rOJiPRFStpERFykvLaRtzfns2DcICICfTt93fSkCIA+N0VyZ34l+eV1nD+q51Mjj/L38WJ6YgTL0guxLMth923LttwKGpptfWJqJEBIP29GDQph7f5Sdh2qoKnF0no2EZE+SkmbiIiLvL4xl7qmlg7L/LdlRHQQkUG+fS5pW7qrEA8Dc0c6LmmD1imSuWV17C2uduh9T7Ruf+t6trPdeH+2E50zLJytOUdYs7e1IImSNhGRvklJm4i4vaYWG79cvIPPM3qvSqCzHa5q4Okv9nPOsHBSBnWtMIQxhumJEXyZVYLN5tzRJUdauquQyfFhDt/fbO7IKACWOaCK5Cc7C7nv7e3UtLGlwtp9paQMDCbE37vHz9NbpgwLp6nF4qV1Bxkc1o/IoM6P6IqIiPtQ0iYibu/hjzN4dX0O//7igKtDcQjLsvjV4h1UNzTz28tGdese0xMjKKtpZHdBpYOjc479h6vZW1zd4w212xId7Me42JAeJ21ZxVXc+0Yar2/MZeGz66mo+2bT7vqmFrbkHHH7Uv8nOmtoGF4ehpLqRiZqlE1EpM9S0iYibm1JWj7PrjlAeIAPGw+WUVXfdOqL3Ny7afl8uruIn543nKTooG7dY4Z9XduarL4xRfJTe0J1nhOSNoD5KdGk5ZZTXFXfrevrm1r4wWtp9PPx5PeXj2ZHfgU3/HsdpdUNAKTlltPQbOszRUiOCvT1YmxsCACpp9i4XURE3JeSNhFxW+kFlfzi7e1MHhrGP66bQLPN4sss99lUem9RFV/sOcyeoioq6po6VQijsKKeB5fsYlJcKN+ZntDt544K9mNEdBCrMvtG6f+luwoZExNCTP9+Trn/PPu+b5+nd6+K5MMfZ5BeUMlfrhnLwilx/PvmSWQVV3Pt0+soqqz/ej3bWfF9owjJsaYOa000tZ5NRKTvckzNZRERB6uobeJ7L28m2M+bx26cQKi/D0G+XqzaU8wFo50zWtMVlmVx07PrKaps+PpYP29PooN9SYoO4hcXJJMYFXjSNfe9s53GFht/vmYcnh6mRzHMT4nm8ZVZHK5q6PW1Si02i9++v4tpiRGnnPJYVFnP1pxyfjJ/uNPiGREdRGxoP5anF3Hd5M5vnwCwfHcRz391kFunDeXc5Nbkb/aIKF64bTLfeX4j1zy5Fn8fT0YNCiakX99Zz3bUzVOHEuznTYo21RYR6bM00iYibsdms7jnja0cKq/jiZtSiQryw9vTg+lJEazIOOz00u6dkXekjqLKBm6fHs+j10/gVxeN5IazhzA6JoQNB8q46NHVPL4yi+YW29fXvLkpl5WZh7nvgmTiIwJ6HMOC8YOwWfDh9kM9vldX7T9czYtrs7njpc38a0VWu31SVtPIT9/aBuDUZNsYw7yR0azeW0Jt48lFRNpTWFHPz/67jZSBwdx3YfJx56YkhPPKd6dQUddERmFVn5saeVR0sB93zBqGRw//SCAiIq6jpE1E3M4/PtvLiszDPHBJChPjvpmONntEJIWV9WQWVbkwulbb8soBuGz8IC4bN4jvzkzg15ek8NgNqSz78UzmJkfxp08yueLxr0gvqCTvSC2//yCdqQnh3Dx1qENiSIoOYuTAYJZs6/2kLb2wtQ8mx4fx56WZ/PSt7TQ0txzXZnP2ES5+dDXrD5Tx8JVjur1+r7Pmp0TT0GxjTSe3Qmix/3GgvsnGP2+YgK+X50ltxg/uz+uLpjA5PowrJsQ6OmQREZFOUdImIm7l84wi/vHZXq5KjeWmKXHHnZs9orW0+4oM16/jSsspx8fLg+QBJ085iwry44mbJvL4jakUVNRx6T/XcNMz67Esiz9dPdahIx4Lxg9ia0452aU1DrtnZ6QXVOLlYXjpO5O5d95w3t6Sx8JnNlBW04hlWTy75gDXPrUWL0/DO3ee0+Upi90xOT6MID8vlqd3rorkEyuzWLe/jN8uGMWwyMB2240cGMybd0zt8tYMIiIijqKkTUTcRm5ZLfe+0TpV7Q9XjMaY45Ob6GA/Rg4MZmVm94pNOFJabjmjBwXj49X+j9GLxgxk2b2zuHTcIA6W1vLrS1IYHObv0DguHTcIgPfSene0Lb2gksSoQHy9PPnRvCQevX4CaXnlXP6vL1n00mZ+/8Fu5iRH8cEPZjA6JqRXYvL29ODc5CiW7S6isdnWYdsjNY3847O9XDx2INdM1AiaiIi4NyVtIuIWGppbuPvVLdhsFk/clIqf98lT1aB1iuTm7CNUurD0f1OLjR35FYwffOpqfKEBPvzt2vFsvn+eU0abYvr3Y3J8GO+m5ffqWr+MgipGHlPY4rJxg3h90RRqG5v5PKOYX16UzNMLJ/Z64Y7Lxg3iSG0Tq/Z0PBr78c5Cmlos7pw17KQ/DoiIiLgbJW0i4hb+8GE62/Iq+PM144gLb79Ix5wRUa2l/zu5bskZMguraGi2MW5w50eQwgOdV91xwfhB7Dtc02sbbR+paaSwsp7kAcevUUsdEsrHP5rJ0ntmsGima5KhmcMjCQ/wYfHWvA7bvZuWz7DIAEZpyqOIiPQBStpExOXe23aIF9dmc/v0+FNWGEwd0p8gPy9WunB/srTc1iIkEzox0tYbLho9EC8Pw5JemiKZXtiaHI5so4R8ZJAviVHOLTjSEW9PDy4dN4jl6cVU1LU9GnuovI4NB8pYMD5Go2wiItInKGkTEZfKKq7mvre3MzEulF+cUHK9LV6eHsxMimTlnmKXlf5Pyy0nLMCHwWHO2Si6q0IDfJg1PJL30g5hszn/a5Je0Fo5Mnmg65KzjlyZGkNjs42PdhS0ef59e7XNy+zrAUVERNydkjYRcZnaxma+/8pm+nl78q8bUvH27NyPpFkjIimqbPg6eeht23LLGT+4v1uN0iyYEENhZT0bDpY5/bkyCiqJCPQhKsjP6c/VHWNiQhgWGcDiLfltnl+Sdojxg/sz1AF75YmIiPQGJW0i4jL/+Gwve4ur+cd1ExgQ0vkEYPbwSABWuKCKZFV9E1mHqxkX27/Xn7sj80ZG4e/j2StTJNMLK9ucGukujDFcmRrLhoNl5JbVHndub1EVuwsqWTBeo2wiItJ3KGkTEZdZtquImUmRTE+K6NJ1UcF+jBoUzCoXrGvbnleBZcH4Ie6VtPn7eHFeSjQf7Sg4Zbn7nmhusbGnqPqkIiTu5vIJMQAs3nr8aNuStEN4GLh47EBXhCUiItItStpExCXyy+vYX1LDjC4mbEfNHhHJ5pwj7RabcJajRUjGxfbO3mNdsWB8DBV1py533xMHSmpobLa59UgbtG6FMCUhjMVbv9kKwbIslmzLZ1pihNtO7RQREWmLkjYRcYk1e1sTixlJkd26fs6IKFpsFmt6ufR/Wm458REB9Pf36dXn7YzpSRGEBfiwJK3ttVyOcHRbgeQB7p20AVw5IZYDJTVfJ9pbc8vJLatjwfgYF0cmIiLSNUraRMQlVu8tISrIl+HRgd26fvzg/gT7ebGyF9e1WZZFmr0IiTvy9vTg4jEDWZ5eRG1js1OeI6OwCm9PQ2JU9/qtN104ZgC+Xh5fT5FcsjUfHy8Pzh8V7eLIREREukZJm4j0OpvN4susEqYnRXS7AqOXpwczh0eyIvMwTS3OW8N1rEMV9RyuanDbpA1aE5X6JhurnTQCmV5QybDIQHy83P/XR5CfN/NTonl/2yHqGlv4YHsB80ZGEeTn7erQREREusT9f+uKyGln16FKjtQ2dXs921FXpcZSUt3AO1vyHBRZx7bZp9m5c9J21tAwgv28WLa7yCn3zyiocvv1bMe6KjWWI7VN/OGj3ZTWNGpqpIiI9ElK2kSk163Oal3PNi2xZ0nb7BGRjBvcn39+nuXUiolHpeWW4+Pp4babSkPrFMk5yVF8nlFMi4M32j5S00hhZT0j3fj1n2hGUgQRgT68vC6HID8vZo/o3hpKERERVzpl0maMGWyMWWGMSTfG7DLG/Mh+PMwYs8wYs9f+OdR+3BhjHjXGZBljthtjUp39IkSkb1mzt4TkAUE9ruBnjOGeeUnkHanj7V4YbUvLKSdlUDC+Xp5Of66emDcymrKaRrbmHOn0NQdKanhy1T6uePxLUn+/jAMlNSe1Se9DRUiO8vL04NJxrXuyXTR6oNv3nYiISFs6M9LWDPzEsqyRwBTgLmNMCnAf8JllWUnAZ/Z/A1wIJNk/FgFPODxqEemz6hpb2HTwSI+nRh41e3gk4wf35zEnj7Y1t9jYkV/h1lMjj5o1IhIvD8Oy9I6nSOYdqeWvn2Zy3t9WMecvK3n44wyaWywam2387v1dJ7VPL6wC6FPTIwGuO2sI/j6eXDt5sKtDERER6ZZTJm2WZRVYlrXF/rgKSAdigAXAC/ZmLwCX2x8vAF60Wq0D+htjtIupSCdZlkVOaS1ZxdXHfew/XP31flN92foDpTS22JjezVL/Jzo62pZfXsdbm3Mdcs+27Cmqpq6phQlutql2W4L9vJmSEM7yDta1tdgsbvj3ev61IotQfx8euCSFNb+Yw/s/mM6P5iaxIvMwn52Q9KUXVBIR6EtkkK+zX4JDjRgQxO7fXUDqkFBXhyIiItItXl1pbIwZCkwA1gPRlmUVQGtiZ4yJsjeLAY5955RnP1Zwwr0W0ToSx5AhQ7oRusjp6d20fO59Y1ub565MjeGRb43v5Ygca83eEnw8PZg8NMxh95w1PJIJQ/rzr8+zuHpirFOmwH2zqbb7J20A81OiefC9Xew/XE1C5Mnl+ZftLiKnrJbHb0zlojHH/13t29OG8samXH77/m6mJUbg59369cworOxT69lEREROF51O2owxgcDbwD2WZVV2UKa7rRMnDQ9YlvU08DTApEmT+v7wgYgDWJbF018cIDEqkB/OTTru3Np9pby2IYfLxg1i9oiodu7g/tZklTBpaCj9fByXWBljuHfecG5+bgNvbspj4ZS4bt2nrrGFXYcqSC+opLHl+B9LS3cVEurvTVy4vyNCdrq5I6N48L1dLE8vYlEbSdtzXx4gNrQf548acNI5b08PfnPpKG56dj3PrN7P3ecm0dxiY09RNd8+Z2gvRC8iIiLH6lTSZozxpjVhe8WyrHfsh4uMMQPto2wDgaM73OYBxy4ciAUOOSpgkdPZuv1lpBdU8serxnCZvXjCUeePimbDgVLuf3cnn947E3+fLg2Uu4XiynoyCqv4+QUjHH7vGUkRTIwL5fEVWXxrUudG26obmvlw+yHScivYlltOZlFVhxUXF4wf1O195XpbbKg/IwcGs3x3MYtmDjvu3M78CjYcKOP+i0fi6dH265meFMGFowfw2IosrkiNpaahmcZmG8kDNNImIiLS2075rs+0vkN5Fki3LOuRY069B9wCPGz/vOSY43cbY14HzgYqjk6jFJGOPfflAcICfNrcS8rXy5P/vWIM1z69jr8v38svLxrpggiPt3hrHsWVDdwxa9ipG9M6ygYw00Hr2Y51dLTtpmfX88bGXG6eOvSU1/zkzTSW7ioi2M+LcYP78/2RwxgX25/RMSFtjgQG+fatRHn+yCgeW5FFWU0jYQE+Xx//z5cH8ffx5JpJHRfm+NXFI1mRWcz/fpjOeaOigb5XhEREROR00Jl3INOAhcAOY0ya/dgvaU3W3jTGfAfIAa6xn/sIuAjIAmqBWx0aschpKqe0luXpRdw9J/HrNUQnOjshnOsnD+bZNQe4bNwgRseE9HKU39iZX8HP3tpOs80ipJ83100+9drUNXtLCAvwIcVJb/ynJYZz1tBQ/rUii29NGtzu1xFaKycu213EopkJ/M+FyX1mBK0r5qVE8+jnWazIKOaqibEAFFfV8/62Q1w/eTAh/bw7vD421J/vz07kkWV7KKqsx9vTMKyNqZYiIiLiXJ2pHrnGsixjWdZYy7LG2z8+siyr1LKsuZZlJdk/l9nbW5Zl3WVZ1jDLssZYlrXJ+S9DpO97/quDeBrDTadYj3XfBSMJ9ffhl4t3OHzz5M5qaG7hJ29uIyzAh6kJ4TywZNfXhTraY1kWq7NKOGdYOB7tTMnrqaOjbUWVDbyxseNKkq+uzwHglnOGnpYJG8DoQSFEB/uy/JgqkK+sy6Gxxca3p8V36h6LZiYwJMyfTdlHGBYZiI9XZ3aKEREREUfSb18RN1BV38Sbm3K5ZOxAooM73nA6xN+bBy9NYXteBS98dbB3AjzB35btJbOoij9eNZbHb0wlMsiXO1/eTEl1Q7vXZBZVcbiqwWH7s7Vn6rBwJseH8fjKLOqbWtps09Dcwhsbc5k7MpqY/v2cGo8reXgY5o2MZtWew9Q3tdDQ3MIr67OZmxxFfERAp+7h5+3Jry9JAXDaCKmIiIh0TEmbiBt4a1Me1Q3N3Da9c6Mfl4wdyJwRkfzl00zyy+ucHN3xNmeX8fQX+7jurMHMSY4iNMCHpxZOpKymkR+8upXmlrY3uF6zt3U9m6P2Z2vPsaNtr23IabPNRzsKKK1p5Oap3asy2ZfMS4mmtrGFtftLeX9bASXVjdzayVG2r+8xMopfXpTMt6cNdU6QIiIi0iElbSIu1mKzeP6rg0yMC2VsJ/cAM8bwuwWjsSx4cMlOJ0f4jdrGZn7y5jYG9e/H/fYfDoFgAAAbRElEQVTRF4DRMSH84YoxrN1fyp+WZrZ57eq9JSREBvTKyNbUYeGcHR/G4yv3tTna9tLabOIjApg2zLmjfu5gakI4/j6eLNtdxHNrDjA8OpBpieFduocxhkUzh3X6/6eIiIg4lpI2ERf7PKOYnLJabuvi6MfgMH9+MDeR5enF7DpU4aTojvfHjzM4WFrLn68eR+AJlRSvnhjLzVPjePqL/Xyw/RDFVfUs3VXIwx9ncO1Ta1mTVcKMxN5Lku6dP5zDVQ28sv740bad+RVsySnnpilxTltb5078vD2ZmRTJ25vz2F1QyW3T4k/bNXwiIiKnKyVtIi723JoDDArx43x7SfWuuHFyHH7eHry8LtsJkR3vy6wSXlibza3ThjJ1WNsjNfdfnMLEuFB+8NpWJv/hM+54aTPPrN5PfVMLC6fEsaiTWwM4wpSEcKYmhPPEyn3UNX4z2vbS2mz8vD242l5N8UwwLyWahmYbof7eXD7h5O0kRERExL31rU2HRNxMU4uNFpvVYWn5juw+VMna/aXcd2EyXp5d/xtKiL83C8bF8O7WQ9x34chTlnDvru155dz16hYSIgP4xQXJ7bbz8fLgiRtT+cdne4mPCGDCkP6MGhTS7a9PT907fzjfemotr6zP5vYZCVTUNrFkWz6Xj49x2tfKHZ2bHIWftwcLpw51WV+IiIhI92mkTaQHfvrWNi7555p2qxR2ZOPBMu5+bQv9vD257qyONznuyMKpcdQ1tfD25rxu36MjGw6UccO/1xPk58Xz3558yjf9UcF+/OGKMdw+I4GJcWEuTRImx4cxLTGcJ1fto7axmbc251LfZGPhGVCA5FhhAT6s+OlsfjQ3ydWhiIiISDcoaRPppvqmFj7dVURWcTX/WpHV6esq6pr45eIdXPPkWhqabPz75kn09/fpdhyjY0JIHdKfl9dlY3Pwvm2r9hzm5ufWEx3sy1t3nMOQcH+H3r833DtvOCXVjby0NptX1ueQah/9O9MMDOmH5xmwhk9EROR0pKRNpJu+2ldCXVMLSVGBPLFyH5mFVR22tyyLj3cUMP+RVby+IYfbp8fz6b0zme6AfcsWTo1jf0kNX+4r6fG9jvpkZyHffWETCRGBvHHHVAaEdLx/nLuaNDSMGUkR/PXTPRwoqeHmqUNdHZKIiIhIlyhpE+mmZbuLCfT14uXbzybIz4tfLt7R7khXbWMzd768hTtf2UJkkC9L7prO/ZekEODrmGWlF40ZSFiADy+tdUxBksVb87jr1S2Mignmte9OISLQ1yH3dZV75g2nscVGeIAPF44Z4OpwRERERLpEhUjE7TQ223hi5T4q65tOOjdzeCSzhjt3c+bOsNksPksvYtbwSKKD/bj/4hR+8tY2Xt2Qw01Tjl8vVdPQzG3Pb2TjwTLuuzCZ26fHd6voSEd8vTy59qzBPLVqH/nldd3eC23f4Woe+XQPH+4oYEpCGM/cctZJpf37oolxoXx3RjxJUUH4eqkQh4iIiPQtff/dmJx23tt2iL8t30OAj+dx+0k1tdh4ce1BXl80hYlxYa4LENieX0FxVQPzUqIAuDI1hne25vHHjzOYnxJNdHDrVMLqhmZu/c8GtuSU8/frJnDZuEFOi+nGs4fw1Kp9vLo+m5+d336Fx7YcKq/jH8v38t8tefh6efDDcxP5/pzE06rS4K8uTjl1IxERERE3pKRN3IplWTy35gDDowNZes/M45K2itomLvvXGu58eQsf/HA6UUGuW2O1fHcRnh6GOSNakzZjDH+4fAzn//0LfvPeLp64aSKV9U3c8twGduRV8M/rJ3DRmIFOjSk21J9zk6N5Y2MuP5yb1KkRpYq6Jv752V5eXJcNFtw8NY675iT2+emQIiIiIqcTrWkTt7L+QBm7Cyq5dVr8cQkbtO5J9uRNE6mqb+buV7bS1GJzUZSwPL2ISXGhx1V9HBoRwA/nJvHxzkLe3pzHwmfWszO/gsduSHV6wnbUwqlxlFQ38snOwk61//l/t/HclwdYMG4Qn/90Fg9eOkoJm4iIiIibUdImbuU/Xx4g1N+bKybEtHl+5MBgHr5qDBsOlvG/H6X3cnStcstqySisYn5K9EnnFs1MYER0ED95axvpBVU8ceNELhjde4UvZiRGMDTcnxc7UZBk3+FqPt1dxF1zEvnzNeOIDe175fxFREREzgRK2sRt5JTW8unuIq6fPKTDtVQLxsfwnenx/OfLg7y7Nb8XI2y1PL0IoM2kzdvTgz9ePZbEqECeWjiReW20cSYPD8NNU+LYnH2ErTlHOmz7zOr9+Hh6cMs5Q3snOBERERHpFiVt4jZeWHsQT2NYODXulG3vuzCZs+PDuO+d7ew+VOn84I6xbHcRSVGBxIUHtHl+/OD+LP/xLOYkR/VqXEdde9ZgIgJ9+c37u9vdgqC4qp63t+Rz1cRYTYcUERERcXNK2sQtVDc08+bGXC4aM5CBIacuV+/t6cFjN6TSv58Pd7y8iZqG5l6IsrUYyvoDZb0+gtYVQX7e/M+FyWzLLee/W/LabPPCVwdparHx3RkJvRydiIiIiHSVkjZxC//dlEtVQzO3Thva6Wsig3x55FvjyC2r48PtBc4L7hgr9xTTYrOYN9J9kzaAKybEkDqkP3/8OIOKuuP3u6tpaObldTmclxJNfETbo4UiIiIi4j6UtInL2WwWz391kAlD+jNhSGiXrp06LJz4iADebmdEydGWpxcTEejD+MH9e+X5usvDw/C7BaMpq23k78v3HHfujY25VNQ1ccesYS6KTkRERES6QkmbuNyKzGIOltZy27T4Ll9rjOHKCTGsP1BG3pFaJ0T3jcZmGyszipmbHI2nhzn1BS42OiaE6ycP4cW12WQWVgGtG5Q/u+YAZw0NJbWLCbKIiIiIuIaSNnG55748wMAQv26Xxr/cvj2AsytJbjhQRlVDs1uvZzvRz84bQZCfFw++txPLsvhoRwH55XUsmqlRNhEREZG+QkmbuFRGYSVfZpWycGoc3p7d++84OMyfs+PDeGdLPpbVdrXEnjia7Px6yU78vD2Ynhjh8OdwltAAH3563gjW7S/jg+0FPLVqP8MiA5jrosqWIiIiItJ1Xq4OQE5WUdvEjc+uI6u4+qRzIwYE8+Jtkwnp5+2CyBzv5XXZ+Hp5cP1ZQ3p0n6tSY/n529tJyy3v8rq49liWxZqsEv68NJPteRUkRgXy9MJJ9PNpfw85d3T95CG8tiGH+97eTk1jCw9fOQaPPjC9U0RERERaKWlzM5Zl8ct3d5BRUMXNU4fi7fnNm+vGFhsvrc3mx2+k8e+bJ/X5N961jc0s2XqIi8YMJDTAp0f3unDMAH69ZCfvbMl3SNK2NecIf/okk7X7S4np348/Xz2WK1Nj+8RathN5ehh+e9korn5yLZFBvl9PJxURERGRvkFJm5tZvDWfD7cX8LPzR3DXnMSTzsdHBPDAkl388/MsfjQvyQUROs6H2wuoamjmurMG9/heQX7enDdqAO9vP8SvL0nBx6t7Uy33FFXx56WZLNtdRHiADw9cksKNU4bg69W3RtdONGloGL++JIXY0H74efft1yIiIiJyplHS5kZyy2p5YMkuJsWF8r12yrEvnBJHWk45f/9sD2Nigzk3ue8UxTjR6xtzSYgMYHJ8mEPud2VqDO9vO8SKzGLOH9W1oia5ZbX8bfkeFm/NJ9DHix/PH85t0+MJ9D19vkW+M73r1TlFRERExPVUiMRNtNgsfvxmGgB/u3Z8u9PwjDH84YoxjBwQzD2vp3GwpKY3wzzJGxtzmPfIKj7dVdil6/YUVbE5+wjXnTUYYxwz5XBGYgQRgb6804U922oamnlwyU7O/etKPtxewHdnJPDFz+fww7lJp1XCJiIiIiJ9l5I2N/Hkqn1sPHiE3y0YxeAw/w7b9vPx5KmFEzHG8L2XN1Pb2NxLUR6vrKaRhz5MJ7u0hkUvbebOlzdTXFnfqWtf35CLt6fhytRYh8Xj5enB5eMH8XlGMUdqGjt1zVNf7OfFddlcPTGWlT+bzS8vGtnj9XUiIiIiIo6kpM0NbM8r52/L9nDx2IFc0ckiEYPD/Hn0+glkFlVx39s7nFLq/lT+tmwPtY0tvHf3dH52/gg+yyhm7iOreGV9NjZb+/HUN7XwztY85qdEExHo69CYrkyNpanF4oPth07Z1rIslqTlM21YBP935VgGhvRzaCwiIiIiIo6gpM3F6hpbuOf1NCKDfPnfy8d0aargrOGR/PS8Eby37RDvbHHuxtInyiys4pX12SycEsfIgcHcNSeRpffMZExMCL9avJNvPbWWvCO1bV67dFch5bVNXNfDMv9tSRkUTPKAIN7uxNcjLbec7NJaLhs/yOFxiIiIiIg4ipI2F/vjJxnsL6nhr9eMI8S/63uv3TlrGONiQ/jrp5nUN7U4IcKTWZbFQx/uJsjPmx/N/aaCZXxEAK/cfjZ/uWYcmUVV3PTMekqqG066/vUNucSG9nPaJtVXpsaQllvO/sMn73N3rCVph/Dx8uCC0V0rWiIiIiIi0puUtPVQZmEVNz6zjkc+zWTXoYouTVP8al8Jz391kG+fM5RzupnAeHgYfnFhMocq6nlpbXa37tFVKzKLWb23hHvmJZ20/ssYw9UTY3n+1rMorKznluc2UFXf9PX5gyU1rN1fyrWTBjttn7kF42Pw9DC82MHXo7nFxgfbC5ibHEWw3+mxUbmIiIiInJ6UtPWAzWZx3zvb2XTwCI+tyOLiR9cw408r+P0Hu9lwoKzDdV3VDc38/L/bGRruz88vGNGjOM4ZFsGs4ZE8tiKLirqmU1/QA00tNh76IJ2EyABumhLXbruJcWE8cdNEMgurWPTi5q9HAV/fmIuHgWsm9XxvtvZEB/txVWoMr27Ioaidwihf7SulpLqBBZoaKSIiIiJuTklbD7yxKZetOeX835Vj2PCrefzxqjEkRQXy0tpsvvXUWm58Zj0VtW0nUX/4MJ1D5XX89Vvj8PfpeWn5X1yQTGV9E0+u2tfje3XkpbXZ7C+p4f6LR+Lt2fF/nzkjovjLNeNYu7+Ue15Po76phf9uzuPc5CgGhPg5Nc675yTRYrN4YmXbX48laYcI8vVi9ogop8YhIiIiItJTStq6qbS6gYc/zmByfBhXTIghItCXa88awn9unczmX8/j9wtGsSm7jKue/Oqkghyr9hzmtQ05fHdGAhPjHLOxdMqgYC4fH8Nzaw5QWNG5svtddaSmkb8v38OMpAjmdDLZuXxCDA9cksInuwq55sm1lFQ3OKUAyYmGhPtz5YQYXtuQc9I2BPVNLSzdVcgFowfg5+3p9FhERERERHpCSVs3PfxxBjUNzTx0+eiTKj4G+XmzcOpQXrztbIor67ni8a/YkVcBQEVdE7/473aSogK5d/5wh8b04/nDsSz4+/I9Dr0vtE6L/OHrW6ltbOHXl6R0qcrlbdPjuXtOIjvyK4gO9mX2iEiHx9eWu89NpNlm8cQJo4+fZxRT3dDM5Z3cXkFERERExJWUtHXDxoNlvLU5j9tnJDA8OqjddlOHhfP2nefg4+nBt55ay+cZRfz2/V0crm7gr98a5/BRnsFh/tw0JY43N+WSVVzlsPtalsUDS3ayem8Jf7hidIevuT0/OW84/3NhMr9fMBqvU0yrdJS48ACunBDDq+uPH217d2s+kUG+TEkI75U4RERERER6QklbFzW12Lh/8U5i+vfjh3MTT9k+KTqIxXedw7CoAG5/YRPvbMnn+7OHMTa2v1Piu/vcRPx9vPjTJ5kOu+dTX+zntQ25fH/2MK7t5tRGYwx3zBrGeaN6t7z+0dG2J1ftB6CitomVmYe5dOwgPJ1UvVJERERExJGUtHXR818eJLOoigcvTel0AZGoID/eWDSV80cNYHJ8GD84N+nUF3VTWIAP35uVwKe7i9icXdbj+320o4CHP87gkrED+el5Paty6Qpx4QFcMSGGV9ZnU1xVzye7CmhssalqpIiIiIj0GUraumD13sP8bfke5iZHMT8lukvXBvh68cRNE3nzjqn4eDn3y37b9Hiignz5zXu7aW6xddg270gttzy3gb8szWRH3vH7zG3JOcK9b6QxMS6Uv1wzzmn7qjnb3XNaR9ueWrWfd7ceIj4igLGxIa4OS0RERESkU3pea/4MUFrdwEMfprN4az4JkQH8ro3iI+7E38eLBy5N4e5Xt/LC2my+Mz2+zXaWZXHf2zvYcKCMNVklPLYii5j+/ZifEs2UhDB+tXgn0cF+PL1wYp+usjg0IoDLx8fw8rpsGlts/PDcJLfuPxERERGRYylp64BlWbyzJZ+HPtxNdUMzP5ybxPdnD+sTCczFYwbyTnI+f/00k/NHRRMb6n9Smzc35bImq7W4yEWjB7I8vYiluwp5dUMOz391kJB+3vzn1rMID/R1wStwrB+cm8i7aflYFlymqZEiIiIi0ocoaWvHwZIafvXuDr7MKmVSXCj/d+UYkrpRNdFVjDH8bsEo5j/yBQ8s2cWzt0w6bnSpsKKehz5IZ0pCGNefNQQPD8M1kwZzzaTB1DQ0s3pvCfERAQyLDHThq3CcoREBLJwSR3ZpzWnzmkRERETkzKCkrR0Pf5zB9twKHrp8NDdMHtIn13PFhvrzk/OG89CH6Xy4o4BLxraOMFmWxa8W76DJZuOPV4096bUF+HpxwejerfLYG35z2ShXhyAiIiIi0mVK2trxm8tGYQxEB/u5OpQe+fY5Q3k3LZ/fvLebGYmRhPh78962Q3yWUcz9F48kLjzA1SGKiIiIiEgHVD2yHQNC/Pp8wgbg5enBw1eOpaymgYc/yaCkuoHfvLeLCUP6c+u0tguUiIiIiIiI+9BI2xlgdEwIt02L55k1B9h9qIKahhb+fPVYbS4tIiIiItIHnHKkzRjznDGm2Biz85hjYcaYZcaYvfbPofbjxhjzqDEmyxiz3RiT6szgpfPunT+cmP792JZXwY/mJZEY1XeKqoiIiIiInMk6Mz3yeeCCE47dB3xmWVYS8Jn93wAXAkn2j0XAE44JU3oqwNeLf94wge9Mj2fRzARXhyMiIiIiIp10yumRlmV9YYwZesLhBcBs++MXgJXAL+zHX7QsywLWGWP6G2MGWpZV4KiApftSh4SSOiTU1WGIiIiIiEgXdLcQSfTRRMz+Ocp+PAbIPaZdnv3YSYwxi4wxm4wxmw4fPtzNMERERERERE5vjq4e2VZlC6uthpZlPW1Z1iTLsiZFRkY6OAwREREREZHTQ3eTtiJjzEAA++di+/E8YPAx7WKBQ90PT0RERERE5MzW3aTtPeAW++NbgCXHHL/ZXkVyClCh9WwiIiIiIiLdd8pCJMaY12gtOhJhjMkDHgQeBt40xnwHyAGusTf/CLgIyAJqgVudELOIiIiIiMgZozPVI69v59TcNtpawF09DUpERERERERaOboQiYiIiIiIiDiQkjYRERERERE3pqRNRERERETEjSlpExERERERcWNK2kRERERERNyYkjYRERERERE3pqRNRERERETEjZnWrdVcHIQxh4FsV8chJ4kASlwdhLiM+v/Mpb4/s6n/z2zq/zOX+t714izLimzrhFskbeKejDGbLMua5Oo4xDXU/2cu9f2ZTf1/ZlP/n7nU9+5N0yNFRERERETcmJI2ERERERERN6akTTrytKsDEJdS/5+51PdnNvX/mU39f+ZS37sxrWkTERERERFxYxppExERERERcWNK2s4gxpjnjDHFxpidxxwbZ4xZa4zZYYx53xgTbD8+1BhTZ4xJs388ecw1E+3ts4wxjxpjjCtej3SNI/rfGONvjPnQGJNhjNlljHnYVa9HusZR3//HXPvesfcS9+XAn/0+xpinjTF77D8DrnLF65GucWD/X29vv90Y84kxJsIVr0e6piv9bz831n5ul/28n/243vu5mJK2M8vzwAUnHHsGuM+yrDHAYuBnx5zbZ1nWePvH9445/gSwCEiyf5x4T3FPz+OY/v+LZVnJwARgmjHmQmcGLQ7zPI7pf4wxVwLVzgxWHOp5HNP3vwKKLcsaDqQAq5wYszjO8/Sw/40xXsA/gDmWZY0FtgN3Oz1ycYTn6WT/2/v5ZeB7lmWNAmYDTfZr9N7PxZS0nUEsy/oCKDvh8AjgC/vjZUCHfzk1xgwEgi3LWmu1Loh8Ebjc0bGK4zmi/y3LqrUsa4X9cSOwBYh1cKjiBI7ofwBjTCDwY+AhhwYoTuOovgduA/7Pfk+bZVnahLcPcFD/G/tHgH2EJRg45Mg4xTm62P/nAdsty9pmv7bUsqwWvfdzD0raZCdwmf3xNcDgY87FG2O2GmNWGWNm2I/FAHnHtMmzH5O+qav9/zVjTH/gUuAz54cpTtKd/v898FegtpdiFOfoUt/bv98Bfm+M2WKMecsYE92L8Ypjdan/LctqAu4EdtCarKUAz/ZivOJY7fX/cMAyxiy1f5//3H5c7/3cgJI2uQ24yxizGQgCGu3HC4AhlmVNoPWv6q/a5zy3NYdZJUj7rq72P/D1FIrXgEcty9rfyzGL43Sp/40x44FEy7IWuyZccaCufu970Tqq/qVlWanAWuAvvR+2OEhXv/e9aU3aJgCDaJ0e+T+9H7Y4SHv97wVMB260f77CGDMXvfdzC16uDkBcy7KsDFqHwzHGDAcuth9vABrsjzcbY/bR+heYPI6fDheLpkj0Wd3o/032S58G9lqW9fdeD1ocphv9fxYw0RhzkNbfH1HGmJWWZc3u/eilJ7rR95tpHV09mrC/BXynl8MWB+lG/xv7sX32a94E7uv9yMUR2ut/Wt/jrTo69dkY8xGQSus6N733czGNtJ3hjDFR9s8ewP3A0SqBkcYYT/vjBFoXne63LKsAqDLGTLHPa78ZWOKS4KXHutr/9n8/BIQA97giZnGcbnz/P2FZ1iDLsobS+lfYPUrY+qZu9L0FvE9rYQKAucDuXg5bHKQbP/vzgRRjTKT9FvOB9N6OWxyjvf4HlgJjTWulaC9gFrBb7/3cg0baziDGmNdo/YUbYYzJAx4EAo0xd9mbvAP8x/54JvA7Y0wz0EJrJaGjC1nvpLUaUT/gY/uHuDlH9L8xJpbWCnIZwBZ7xd/HLMt6pvdeiXSHA7//pY9xYN//AnjJGPN34DBway+9BOkBR/W/Mea3wBfGmCYgG/h2r70I6bau9L9lWUeMMY8AG2md/viRZVkf2tvpvZ+LmdY/nomIiIiIiIg70vRIERERERERN6akTURERERExI0paRMREREREXFjStpERERERETcmJI2ERERERERN6akTURERERExI0paRMREREREXFjStpERERERETc2P8Dp73iIi5pDPIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(pd_ts)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Split up our dataset\n", - "split_time = 100\n", - "x_train = np_ts[:split_time]\n", - "x_valid = np_ts[split_time:]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Naive Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3xc53Xn/88d9DYoRBuAYK8gCLCKVLMlUbbVbJVYsSw7tuWiFNm7zm+TOPltsskva2+yvyRO1oktx1VWbLlElqxOyaQkmxQligUsIEGCJAii996Bmbt/3BmKokASuM9FI77v10uvCw4GBw9sDjHnPs85x7JtGxEREREREZmZfNO9ABEREREREbk0JW0iIiIiIiIzmJI2ERERERGRGUxJm4iIiIiIyAympE1ERERERGQGU9ImIiIiIiIyg0VP9wIAMjMz7UWLFk33MkRERERERKbFgQMHWm3bzhrrczMiaVu0aBH79++f7mWIiIiIiIhMC8uyzl3qczoeKSIiIiIiMoMpaRMREREREZnBlLSJiIiIiIjMYEraREREREREZjAlbSIiIiIiIjOYkjYREREREZEZTEmbiIiIiIjIDKakTUREREREZAZT0iYiIiIiIjKDKWkTERERERGZwZS0iYiIiIiIzGBK2kREREREZor2ShgdMgoRCtmcbu7xaEEyEyhpExERERGZCXqa4N+ugR/e7nzs0i8P1nLr13/L3z53nGDI9nCBMl2UtImIiIiIzAS1b0NoBOoPwXdvgcYyV2H2nm0nymfxgzfO8oXH99M7NOrxQmWqKWkTEREREZkJavdBVCx89mWwQ/CDD0HFyxMOU1rdwc0rs/jqPUX8pqKFjz66h9qO/klYsEwVJW0iIiIiIjNB7X7ILYaCzfCFV2HeMvjpA/Dmt8Ae3zHHrv4RzrT0sX5BOp/cupDHHtpMXecA93xzD6XVHZP8A8hkUdImIiIiIjLdgqNQXwrzNzl/9gfgoRdh1Z3w8l/AC/8PBEeuGOZwbScA6wrSALhxeRZP/9F1JMZG8cB33uL5I/WT9iPI5FHSJiIiIiIy3ZqPw0g/zN/8zmOxSXD/43DDH8P+H8BP7oeBzsuGKa3uxLKgeH7q+ceWZafwq0eup3h+Kl98opRv7DyFPc6dO5kZlLSJiIiIiEy32n3ONbLTFuHzwa1/A3d/C6p2w/c/4IwFuITSmg5WZKeQEh/zrsczkmL58ee3cN+GfL7+6wr++OeHGBwJevszyKRR0iYiIiIiMt3qDkBiJqQtHPvz6z8Bn/oV9LXAd7fBuTff8xTbtjlU03n+aOTF4qKj+Kf7S/jTD63kV4fq+eT39tLWazYTTqaGkjYRERERkelWu885GmlZl37Oohvg8zshMQMe/wgc+um7Pl3V1k9n/wjrF4ydtAFYlsUjNy/jW5/YwNG6Lu751hucatIg7plOSZuIiIiIyHQa6IDWivcejRzLvKXw+R2wYCv86g9g5/+EUAjgfHfI9QvSrxjmjrUBfvH71zI4EuK+b+3hNxUtRj+CTC4lbSIiIiIi06nuoHMdT9IGkJAOn3wKNnwadv0jPPkZGO7nUE0nSbFRLMtOHleYkoI0nnnkeuZnJPLZx/bxH29WuVm9TAElbSIiIiIi06l2P2BB3obxf01UDHz4/8AHvwbHn4XH7qSqqpKSgjSifJc5YnmRvLQEnvyDa7lpRRZ/9cwx/ubZY4wGQxP/GWRSKWkTEREREZlOtfsgezXE+yf2dZYF130RHngCu+Ukf9/+ZT44r3nC3z4pLprvfGoTn79hMY/tqeLzj++nZ/DKM+Fk6ihpExERERGZLrYNdfshf6P7GKvu4PhtvwBsPnn89+HkSxMOEeWz+Mu7Cvlf965l96lWPvrom9R29Ltfk3hKSZuIiIiIyHRpr3QakVw4VNuFPX153D30P7HnrYCffhze/JarOA9uWcCPPnsNDV0D3PPNN843N5HppaRNRERERGS6nB+qbZa0ldZ0EJ+RR8znXoJVd8LLf3HZIdyXc/2yTJ76o+uJj4niz548YrQu8YaSNhERERGR6VK7H2KTIWulUZhD1Z2sK0iH2ER4/1ecByNdKV1Ylp3M/RsLON3SS9/QqNHaxJySNhERERGR6VK7D/I3gC/KdYjGrkHquwZZXxAeqp21CqJiodFsl6wo349tQ3lDt1EcMTeupM2yrDTLsp60LOuEZVnllmVda1lWhmVZv7Ys61T4mh5+rmVZ1jcsyzptWdYRy7Im0LtURERERGSOGBmApjLjo5GHaiJDtcNJW3Ss042ywSxpW5OXCsCxeiVt0228O23/B9hu2/YqoAQoB/4c2Gnb9nJgZ/jPALcDy8P/PQw86umKRURERESuBg2HITQK+eMcqn0JpTWdxEb5KMy7YGRAbrET37Zdx83xxzEvKZayui6j9Ym5KyZtlmX5gfcB3wewbXvYtu1O4G7gR+Gn/Qi4J/zx3cDjtuMtIM2yrIDnKxcRERERmc3ONyExTNqqOynM8xMXfcERy0AJDLRDd53ruJZlsSY/VTttM8B4dtqWAC3ADy3LKrUs63uWZSUBObZtNwCEr9nh5+cDNRd8fW34sXexLOthy7L2W5a1v6WlxeiHEBERERGZdWr3QdpCSM6+8nMvYTQY4mht1ztHIyMCJc614bDBAmFNnp+Kph6GRoNGccTMeJK2aGAD8Kht2+uBPt45CjkWa4zH3rMva9v2d2zb3mTb9qasrKxxLVZERERE5KpRe8B4l+1kUw8DI0HWFVyUtOWsActnXNdWlJfKaMjmVFOvURwxM56krRaotW17b/jPT+IkcU2RY4/ha/MFzy+44OvnA/XeLFdERERE5CrQXQ/dtebz2ao7AdiwIP3dn4hNgnnLPdlpA1TXNs2umLTZtt0I1FiWFRkesQ04DjwLfDr82KeBZ8IfPwt8KtxFcivQFTlGKSIiIiIiOPPZwJOkLTM5lvnpCe/9ZKDEuO3/goxEUuKiVdc2zaLH+bwvAT+xLCsWqAQewkn4fmFZ1ueAauD+8HNfBO4ATgP94eeKiIiIiEhE3X5nllruWqMwh2o6WFeQhmWNUaEUKIajv4C+VkjKdBXf57NYnefnWL122qbTuJI227YPAWMduN02xnNt4BHDdYmIiIiIXL1q9ztt+aPjXIfo6h/hTEsf922YP/YTcouda8NhWPaet+3jtibPz8/eriEYsonyjdW+QibbeOe0iYiIiIiIF4KjUF9qPlS71qlnW39xE5KIQDhpMzwiWZSXysBIkLOtakYyXZS0iYiIiIhMpebjMNJv3DnyUHUnlgVr56eO/YSEdEhbYN6MJD/SjER1bdNFSZuIiIiIyFTyaqh2TQcrslNIiY+59JMCJcZt/5dlJRMX7VNd2zRS0iYiIiIiMpVq90NSljNY2yXbtjlU0/neodoXyy2B9jMw6H6XLDrKx6rcFHWQnEZK2kREREREplLdfsjfBGN1fBynqrZ+OvtH3jtU+2KRuramMtffC6AwL5Wyui6cnoMy1ZS0iYiIiIhMlYEOaK0wPxpZ3QHA+ouHal8sUOJcDY9IFuX76R4cpbZjwCiOuKOkTURERERkqtQdcK4eDNVOjotmWXby5Z+YkgtJ2ebNSPKcZieqa5seStpERERERKZK7QHAgrz1RmEO1XRSPD91fHPTAiXGbf9X5aYQ5bNU1zZNlLSJiIiIiEyV2n2QvRri/a5DDAwHKW/ovnITkohAMbScgJFB198zPiaKZVnJStqmiZI2EREREZGpYNtOExLDeray+i5GQzbrC65QzxYRKIHQqDMfzsCafD9ldToeOR2UtImIiIiITIX2SqcRSb75UG2AdePdacsNd5A0PCK5Ji+V5p4hmnvc79iJO0raRERERESmwvmh2oZNSGo6KMhIIDM5bnxfkL4I4lI9aEbiHOnUEcmpp6RNRERERGQq1O6D2BTIWmkUprS6c/xHI8GZBxcoNm77XxhO2o4raZtyStpERERERKZC7T7IXw++KNchGrsGaegavPJQ7YvlFjsDtoOjrr+3Pz6GhfMSVdc2DZS0iYiIiIhMtuF+aDpmfDTyUE1kqPYEk7ZACYwOQtspo+9flJeq45HTQEmbiIiIiMhkazjsdHD0YKh2bJTv/FHFcQuEm5F4cESyur2froERozgyMUraREREREQmW6QJiWHnyNLqTgrz/MRFT/CI5bzlEB3vWTMS1bVNLSVtIiIiIiKTrW4/pC2E5CzXIUaDIY7UdU78aCRAVDTkFHnS9h/gWL3q2qaSkjYRERERkclWu9/4aOSJxh4GR0KsXzCBzpEXinSQtG3Xa8hKiSPHH6e6timmpE1EREREZDJ110N3Hcw3PBpZ4wzVXj/RzpERgRIY6oKOKqN1OM1ItNM2lZS0iYiIiIhMptr9ztW0c2R1J5nJscxPT3AXIDfcjMT4iKSf0829DAwHjeLI+ClpExERERGZTLX7ICoWctcahSmt6WBdQTqWZbkLkF0IvmjzZiT5qYRsONGoI5JTRUmbiIiIiMhkqt3v7HJFx7kO0dU/QmVLn7smJBEx8ZC1yrjtf6SDpOrapo6SNhERERGRyRIchfpS86ORtYb1bBG5xcY7bflpCaQmxKiubQopaRMRERERmSzNx2B0wLwJSXUHlgXFpklboAT6mqGn0XUIy7Ioyvdrp20KKWkTEREREZkskaHaxklbJyuyU0iOizZbTyDcjMR4yHYqJxp6GAmGzNYj46KkTURERERkstQegKQsZ7C2S7Ztc6jG5VDti0WaoXhQ1zYcDHG6udd8TXJFStpERERERCZL7T6nns1tx0fgbGsfXQMj3iRtcSmQsRQazXfaQM1IpoqSNhERERGRyTDQAW2nIH+jUZjSaqcJybqCdC9W5RyRNDweuTgziYSYKMrq1IxkKihpExERERGZDHUHnKtp58iaTpLjolmWnezBonCakXRWO0mlS1E+i8I8P8e10zYllLSJiIiIiEyG2v2ABfkbjMKU1nRQUpBKlM/9Ect3yY00IzGvaztW30UoZHuwKLkcJW0iIiIy/VpPQ0eVUQjbttlX1U7/8Kg3axIxVbsPslc7dWQuDQwHKW/oYZ1pq/8LBUqca6NZ0laUl0rfcJBz7f0eLEouR0mbiIiITJ++Nnj+j+Gbm+E/P+M6TFldF/d/+03u//abfG/XWe/WJ+KWbTs7bYat/svquwiGbNZ7Vc8GkJQJ/nzjnbbCPD+AhmxPAcNBDyIiIiIuBEdg3/fh9f8FQ73hbnZHYWQQYuLHHaa1d4h/fPkkP99fw7ykWOYlxXKopnMSFy4yTm1nYLDTuJ6ttNqpO1vnRefICwVKjJuRrMhJISbKoqyum7uK8zxamIxFO20iIiIytc68Bt++AbZ/BfI2wB/ugVv+EkKj0Hx8XCFGgiG+t6uSm//xdZ48UMvnrl/Mq39yE+9fkaVudjIzRIZq55sP1S7ISCAzOc6DRV0gt9jpbDnc5zpEbLSPFTkp2mmbAtppExERkanRfhZe+Us48TykL4IHnoCVdzjzqyK7aw2Hrti04TcVLfztc8c409LH+1dk8Vd3FZ7vqleUn8pTpXU0dw+S7R//jp2I5+r2Q2wKZK00CnOoppPNizI8WtQFAsVgh6DpGBRc4zrMmjw/O8qbsW0by2AWnVyekjYRERGZXEO9sPvrsOffwBcN2/4HbH3k3ccg0xZCfNplj2udbe3jay8cZ0d5M4vmJfL9T2/illXZ73qjWJTvDPwtq+/iFiVtMp1q9zk3IHxRrkM0dA3Q0DXozVDti0WakTQcNkraivJT+cX+Whq7BwmkJni0OLnYuJI2y7KqgB4gCIzatr3Jsqy/Ab4AtISf9v/atv1i+Pl/AXwu/Pz/Ytv2yx6vW0RERGY624Yjv4Adfw09DVD8ANz61+Afo/bFspw3kfWH3vOp3qFR/vXVU/xg91nioqP4i9tX8ZnrFxEX/d43w4V5fiwLjtZ2c8uqnMn4qUSubLgfGsvghi8bhTl0fqj2JCRt/nxIyDDuILkm0oykrltJ2ySayE7bzbZtt1702D/btv2PFz5gWVYh8ACwBsgDdliWtcK27aDZUkVERGTWqDsIL30Fat+GvPXwu49f+W5+oAT2fhtGhyE6llDI5qnSOv739hO09Azx0Y3z+bPbVpKdcukdtOS4aBZnJlGmGhuZTg2HwQ56MlQ7Nsp3vkujpyI3SgybkawOODdKyuq7uLVQN0omy2Qcj7wb+Jlt20PAWcuyTgPXAG9OwvcSERGRmaS3GXb+f1D6E0jKgru/CSUPgm8cvc8CJRAchpZySkcW8DfPHedwTSfrCtL47qc2jXu3oSgvlX1V7YY/iIgBD5uQrMn3j7mr7IlAMbz16PkbJW4kxkazJDOJY/XdHi9OLjTe7pE28IplWQcsy3r4gse/aFnWEcuyfmBZVmR4RD5Qc8FzasOPiYiIyNVqdBj2/Cv860Y4/HO47ovwpQOw/pPjS9jA2ZEDfv7s89z7rT3Udw7wT/eX8NQfXjeh42Fr81Np6BqktXfIzU8iYq52n1OnmZzlOsRIMMSRus7JORoZkVscvlFywijMmrxUjqlr66Qab9J2vW3bG4DbgUcsy3of8CiwFFgHNAD/FH7uWG1j7IsfsCzrYcuy9luWtb+lpWWMLxEREZFZoeIVePRapzPkgmvhj96CD34V4sd/pGtoNMijR0L02gmM1h7iD29aymt/chO/s3E+Pt/EOtKtyY8M/NWdf5kmdQeMj0aebOxhcCTE+gUeDtW+WGCdczWsayvK91PfNUh737AHi5KxjCtps227PnxtBp4GrrFtu8m27aBt2yHguzhHIMHZWSu44MvnA/VjxPyObdubbNvelJXl/i6EiIiITKOyp+CJ+52PP/EkfOIXkLlswmG+8uQR/vfLFdQlrOCjea185bZVJMe5q+JYkxfuIKk7/zIduuqgu858qHZ4SPz6ydxpy1gCscnGdW2R15zmtU2eKyZtlmUlWZaVEvkY+CBQZllW4IKn3QuUhT9+FnjAsqw4y7IWA8uBt71dtoiIiMwIJ16A5Fz4wzdh+QdchRgNhthZ3sz9G+ezct0NxLUdh+Co6yWlJsSwcF6ikjaZHnX7net803q2DjKTY5mfPokdGX0+yF0LDR51kNTu9qQZzy2sHODp8AyUaOAJ27a3W5b1H5ZlrcM5+lgF/D6AbdvHLMv6BXAcGAUeUedIERGRq5BtQ9VuWHSD6yYGAMcbuukZGuXGFVlgrYPRQWg9CTlrXMcsyk/lcHinQmRK1e6HqFgnGTJwqKaTdQXpkz+wOrcYSn8ModD4608vkpYYS35agpK2SXTFpM227UqgZIzHf+8yX/M14GtmSxMREZEZre0M9DY6SZuBtyrbANi6OAOGLhj4a5K05aXywpEGOvuHSUt0n1CKTFjtfqcTanSc6xCd/cNUtvTxOxvme7iwSwiUwNv/Du1nIHO56zBF+X41I5lE7tJpERERkapdztU4aWtnSWYS2f54mLcMYpLGHLI9EWvzI3VtuvMvUyg4AvWlxq3+D01FPVtEoNi5elDXdratj94h90eb5dKUtImIiIg7596A5Bwn0XIpGLLZd7adLUvmOQ/4osI1NqZvIJ0aGw3ZlinVfBxGB4zr2Q7VdGJZUDwVSVvWKuc4pwevOduG8gbdKJkMStpERERk4i6sZzOouTle79SzbV2S8c6DgRKnBXnIfUl8epJTY3NUx7VkKkWGapt2jqzuZGVOiusOqhMSFQPZhR60/Q93kNRrblIoaRMREZGJa6+Engbv6tkiO20AeetgpB/aThvFXpuvgb8yxWr3Q1IWpC1wHcK27XATkinYZYsIFDsdJO33jFYet+yUODKTY9WMZJIoaRMREZGJq9rtXBeaJW17z7axODOJHH/8Ow8Gws1IDOvaivL9VLX10z04YhRHZNxq9zu7bAa7z2db++gaGGH9gqlM2kpgoB26al2HsCyLNXmplClpmxRK2kRERGTiqnZDUrZRt7lgyGbv2fZ3H40EyFwJ0fHGNTbvHNfSm0iZAv3t0HbKg/ls4SYkC9K9WNX45IZvlBgekVyT5+dUUw9Do5r25TUlbSIiIjIxHtWzlTd00zM4+u6jkQBR0ZBT5F3SpmYkMhXqDjpXw86RpTUdJMdFszQr2YNFjVPOGrB8nnSQHA3ZVDT2erQwiVDSJiIiIhPTXgk99bDoeqMwkXq2LYvnvfeTeeucN5ChkOv4mclxBFLj1YxEpkbtPsCC/A1GYUqrOykpSCXKN8lDtS8UmwiZK5y6NgNF+U7XVt0o8Z6SNhEREZmYc28410U3GoV5q7KdRfMSyU2Nf+8nAyUw3AMdZ42+x5q8VMqUtMlUqN3ndGGMS3Edon94lBONPawvmMKjkRG5xcY7bQXpiaTERWvUxiRQ0iYiIiITU7Xb6ZCXucJ1iGDI5u2zbe89GhkRWOdc60tdfw9wOkhWtmrgr0yy4X7nZsZisxsZu0+1EgzZXLv0Eq+LyRQocXbQ+1pdh/D5LArz/OogOQmUtImIiMj4eVjP1j1WPVuERwN/i/I18FemQOXrMDoIK24zCrOzvJmUuGg2L8q48pO9Fih2rh7UtZU3dBMMuR8fIO+lpE1ERETGr6MKuutgoVk9296z7QBsubhzZER0rNMcocGs7f/acDOSo7U6riWTqOIliPMbvS5CIZudJ5p538osYqOn4S16rjdJW1G+n8GREJUtakbiJSVtIiIiMn6R+WzG9WxtLJyXSCA14dJPCpQ4byBNBv7648lKiVONjUyeUAgqXoaltzg3G1w6UtdFa+8Qt67O9nBxE5CQBmkLPWj7H+naqt1tLylpExERkfGr2g2JmZC10nWIUMjm7bPtbB2ra+SFAiUw2OXs7hkoyvOrGYlMnoZS6G2ClbcbhdlZ3oTPgptWTFPSBs4RScOdtqVZScRF+/Sa85iSNhERERkfr+rZGrvpGhhh69Ir1O1EmpEYvolcm5/K6eZeBoY18FcmQcXLzoyzZR8wCrOzvJmNC9NJT3K/W2csUOKM9Bh0v0sWHeVjVUDNSLympE1ERETGp/McdNc6SZuBvZXherYr7bRlF4Iv2rwxQn4qIdtJFkU8d/IlmH8NJLnv+FjfOcDxhm62rc7xcGEu5JY416YyozBr8vwcq+/CNjjaLO+mpE1ERETG53w9m1nS9lZlGwsyEslLu0w9G0BMPGSv9qwZiY5riee66pwasJWGXSNPNANMXz1bRCCctJk2I8lLpXtwlNqOAQ8WJaCkTURERMarajckznPa8bsUCtm8XdXO1kt1jbyYB81IAqnxZCTFKmkT71Vsd64rzOvZFs5LZGlWsgeLMpCSA8k50GDajMQPwDE1APKMkjYREREZn6o3nJbmBvVsJ5t66OwfufLRyIjAOuhvg65a19/TsiyK8lM5WqfjkeKxiu2QvsioMU//8Ch7zrSxbVUOlsFryzO55s1IVuamEOWzKNNrzjNK2kREROTKOs5BV7Unrf7hMvPZLuZRM5KiPD+nmnoYHFEzEvHIcB9U/sbZZTNItnadamV4NDT9RyMjAiXQcgJGBl2HiI+JYnl2snbaPKSkTURERK7Mw3q2gowE5qcnju8LcovAivKkrm00ZHOysccojsh5la9DcMi8nq28iZT4aDYvHueNjMkWKAY7CM3HjcIU5qmDpJeUtImIiMiVeVTPtnc889kuFJPgHD0z3WmLNCPRnX/xysmXIM4PC65zHSIUsnn1RAvvX5FFTNQMeVvuYTOS5p4hmnvc79jJO2bI3w4RERGZ0c7thoXXgc/9W4eK5nA925IJtkYPlED9IaNmJPPTE0hNiFEzEvFGKASnXoGlt0C0+7lqR+q6aO0dYttMORoJkLYQ4lOdrpgG3mlGot02LyhpExERkcvrOAedHtSznQnXs030GFhgHfQ1Q0+j6+/tNCPxqzGCeKOhFHqbYKV510ifBTetmEFJm2V50oykMJK06UaJJ5S0iYiIyOWde8O5GteztTM/PYGCjHHWs0WcP65lVtdWlJfKycYehkdDRnFEOLkdLB8s/6BRmB3lzWxamEF6kvvdukkRKIGmYxAcdR0iJT6GRfMStdPmESVtIiIicnlVb0BCOmStdh0iMp9t3K3+L5S7FrA8qWsbDoaoaFIzEjFU8RIUbIFE981D6joHKG/onllHIyNyi2F0EForjMKsyUtVHalHlLSJiIjI5VXtcuazGdSznWrupb1vePxDtS8UlwyZyz1rRqI25GKkqxYaj8IKs66Rr5Y3AbBtdY4Xq/JWZHfbtK4t309N+wBdAyMeLGpuU9ImIiIil9ZZDZ3nPJvPtnWiTUgiAuucZiQGFmYkkhIXzVHV2IiJiu3O1bCebUd5M4vmJbI0K8mDRXksczlEJ0CDaTMS50bJcR2RNKakTURERC6tyqt6tjby01zUs0UESqCnHnqbXa/B57MozFMzEjF0cjukL4bMFa5D9A2N8uaZNratzsEyGMw9aXxRzoxEw93tdzpI6kaJKSVtIiIicmnndjv1bNmFrkPYtjOfbYubo5EReeucq+GbyLX5qZQ3dDMaVDMScWG4D87+1tllM0i2dp1qZTgYmpn1bBG5xc7xyJD710pmchy5/ng1I/GAkjYRERG5tKrdHtazuTwaCeFmJJh3kMxPZWg0xOmWXqM4MkdVvg7BIVjxIaMwr55oIiU+ms2LDG5kTLZAMQx1Q2eVUZg1eX7NR/SAkjYREREZW1ctdFR5cjQS4FqTpC0+FTKWGte1RZqRHK3Vm0hx4eRLEOeHBde5DhEK2bx6ooX3r8giJmoGvxU/P2rDtBlJKmdaehkYDnqwqLlrBv9NERERkWnlUT3b3sp28tMSmJ+eYLaeQInxG8jFmUkkxkbpuJZMXCgEFS/Dsm0Q7X6u2uHaTlp7h7h1JnaNvFB2IfiizTtI5vkJ2XCiUa85E0raREREZGxVuyA+DbLXuA5h2zZvVbaxZXGGecOFQAl0VUN/u+sQUT6LwoBfHSRl4upLoa8ZVph1jdxZ3kyUz+KmlVkeLWySRMc5sxk92t3WEUkzStpERERkbB7Us51u7qXNtJ4t4nwzEvM3kcfruwmGbPzoMhYAACAASURBVPM1ydxR8RJYPlj+AaMwO8qb2LgwnbRE97t1U2bhdc6/AwY3SvJS48lPS2D7sUYPFzb3KGkTERGR9+qqg46zntWzeZK05RY7Vw/u/A+MBKlUMxKZiJPboWArJLpvHlLb0c+Jxh5uncldIy+04VNO45XDP3UdwrIsHthcwBun26hq7fNwcXOLkjYRETcajsB/3Ae1B1yHsG2bX+yr4fM/2kf/8KiHixPxwLlIPdv1RmHeOttOIDWeggzDejZw3iynLfSk7T9AmWZHyXh11kDTUVh5m1GYV084cwa3zfR6tojcIpi/Gfb/EGz3O9O/u7mAKJ/FT9+u9nBxc4uSNhGRibBtePu78L1tcGYnlP3SVZjeoVG+/PND/Nkvj7CjvJnDNXrzKDNM1S6nY2NOkesQtm2zt7KNrUvmeTdAOFBinLQtzUoiPsanIdsyfhXbnathPduO8mYWZyaxNCvZg0VNkY0PQdupd27kuJDjj+fW1dn854FahkbVRdKNcSVtlmVVWZZ11LKsQ5Zl7Q8/lmFZ1q8tyzoVvqaHH7csy/qGZVmnLcs6YlnWhsn8AUREpsxAB/z8k/Din8CSm50CbRddtcrqurjrG7t47nA9X7hxMQDHG/TmUWaY8/VsUa5DnGnppbV3mK0mQ7UvlrfOObY50Ok6RHSUj9VqRiITUfEypC+GzOWuQ/QNjfLWmTZuWTVLjkZGrLkX4lKd3TYDD25ZSHvfMC8fa/JoYXPLRHbabrZte51t25vCf/5zYKdt28uBneE/A9wOLA//9zDwqFeLFRGZNjX74Nvvc+62fvBr8PGfwYIt0Hh03EdGbNvmsTfOct+39jA4EuJnD1/Lf7+zkKyUOI6r/bjMJN310F7pQT2b07zAk3q2iMjsKMM25EV5TjOSkJqRyJUM98HZ38LK28Fgx3jXqVaGgyG2zZZ6tojYRCh5AMqfhb4212FuXJZJQUYCT+w95+Hi5g6T45F3Az8Kf/wj4J4LHn/cdrwFpFmWFTD4PiIi0ycUgt3/Aj+8zfll/dlX4LovOt30ctfCYKczgPgKuvpH+P3/OMDfPHecG5dn8uJ/vZFrFju7D4UBv3baZGaJzGdbaFjPVtlGrj+eBRmJHiwqLBDuIGnYjGRtfiq9Q6NUtakxglzBmdecZhwrzOrZdpY3kRIfzeZFHu48T5VND0FwGA79xHUIn8/igc0LeKuynTNqAjRh403abOAVy7IOWJb1cPixHNu2GwDC18htg3yg5oKvrQ0/JiIyu/S1whP3w46/hlV3wu//FuZvfOfzkU52jUcvG+bAuQ7u+MYuXjvZzF/euZrvfXoTGUnvtHouzPNzurmH4dHQZPwUIhNXtcs5DpW71nUIZz5bO1uXeDCf7UJJmeCfb1zXtibfD0CZdrnlSipecl4PC69zHSIUsnntZDM3rcwmJmoWtpTIXu10zjzwmFFDkvs3zSfaZ/HTvWpIMlHj/VtzvW3bG3COPj5iWdb7LvPcsf5lfs//u5ZlPWxZ1n7Lsva3tLSMcxkiIlPk7C549HrneufX4f4fQULau5+TXQhY0FQ2ZohQyObR18/wu//+Jj4fPPkH1/H5G5e85w1sYcDPSNDmdLPuPMoMUbXbeYNqVM/WR2vvkLdHIyMCJcaz2pZnpxAb5dPAX7m8UAgqXoFl2yAqxnWYQ7WdtPYOz55W/2PZ9BC0n3GOirqUnRLPB9fk8OTBWgZH1JBkIsaVtNm2XR++NgNPA9cATZFjj+Frc/jptUDBBV8+H6gfI+Z3bNveZNv2pqysGT4RXkTmjlAQXvs7ePwjEJcCX9gJmz83dh1DXDLMWzpmbU1r7xCfeWwf/3v7CW4ryuWF/3IjJQVp742Bs9MGakYiM0R3g/PGzLDV/96zTu3LlslI2vLWQdtpGHT/momN9rEqkKKkTS6v/iD0NTv1bAZ2ljcR5bO4acUsTtoK74b4NDhg2JDkmoV09o+wvUzDtifiikmbZVlJlmWlRD4GPgiUAc8Cnw4/7dPAM+GPnwU+Fe4iuRXoihyjFBGZ0brr4Ucfgd/8PRQ/AA+/fuXjYblr33M8cs/pVm7/P7vYW9nG1+4t4t8+vh5//KXv0C6al0RCTJSakcjMcH4+m3kTkhx/HIvmeVjPFnG+GcnljyZfyZq8VMrqurANjnvJVe7kS2BFwbJbjcLsLG9m08J0UhPd79ZNu5gEWPcglD8Pve5PyV23dB4L5yXyhI5ITsh4dtpygN2WZR0G3gZesG17O/D3wAcsyzoFfCD8Z4AXgUrgNPBd4I88X7WIiNdO/Rq+fQPUl8I934Z7H3V20q4kdy10VMFgF6PBEF9/5SSf+P5e/PHRPPPF6/nEloVXrOeJ8lmsCqRwvEF3/GUGqNoFcf53ajZdcOrZPJ7PdqFIMxIPhmx3D45S0z7gwaLkqlTxMizY6gx2d6m2o58TjT3cOlsGal/Oxs9AaAQO/dh1CJ/P4uPXLODtqnZONfV4t7ar3BWTNtu2K23bLgn/t8a27a+FH2+zbXubbdvLw9f28OO2bduP2La91LbttbZt75/sH0JExLXgCLzyV/CTj0JKwNldW/fx8X99+I1t25lSHvzeXr7x6ml+Z8N8nvvSDazK9Y87TGHAz/H6bt3xl+lX9YZxPdvZ1j5aeiapng0gJQeSc43r2orCzUg0r03G1FkDTUdhxYeMwrx6wqkgumU217NFZK10usoeeMyp93PpoxvnExNl8cTb2m0br1nYvkZExCMd5+AHt8Geb8Cmz8Hnd0DWionFyCkC4HtPPkNZXRdf/90S/vH+EhJjoycUZnXAT/fgKHWduuMv06inEdpOedDq35nPtmXxJLY2z1tnvNO2MjeFaJ9FWb2SNhlDxXbnusKsnm1HeTOLM5NYmjWO0xuzwabPOidMzr7uOkRmchy3FQX45QE1JBkvJW0iMjcdfwa+fSO0VjidIe/6unNefwKGR0N87bfttNp+1sXU8NyXbuC+DfNdLed8MxLVtcl0qtrtXI3r2drIToljcWaSB4u6hECJ8/oddj9nLS46ihU5akYil1CxHTKWQOZy1yF6h0Z560wb21ZdBbtsEas/DInzYL9pQ5IFdA+O8sIRtb4YDyVtIjL3/OYf4Befgsxl8Ae7YM09Ew4xEgzx4Hff4ru7q+j0r+QDGc1Gd1FX5aZgWeogKdOsavfMr2eLCKwDOwSNY4/cGK+1+WpGImMY6nVa26+4fezuweO0+1QLw8EQ266GeraI6DinIcmJF5zdeZe2LslgSVYSP9l7zsPFXb2UtInI3DIyAG/8C6y8Ax7aDumLXIXZfbqV/ec6+Oo9RSxbey2+lnKnPs6lxNhoFmcmaadNpte5N5ymC1ETO957oaq2fpp7htiyZBKPRsI7HSQNj0gW5fvp6B+hvmvQg0XJVaPyNQgOw8rbjMLsKG/GHx/NpkXpHi1shtj4ENhBKP0P1yEsy+LBaxZwsLqTE4363XclStpEZG45vQOGe+GahyE61nWYF440kBIfzf2b5ju7EsFh56iWgcKAXzttMn16mpy/wx4cjQQmrwlJhD8PkrI8aEaSCsDRWh2RlAuc3A5xqbDgWtchgiGb1040c9PKbGKirrK33POWwuL3wYHHnfmmLv3OhvnERvvU/n8crrK/QSIiV1D2FCRmwqIbXYcYGg3y8rFGPrQml7joqHdmuRnOjCrM81PbMUDXgPsdOxHXznlXz5aVEseSyaxnA+fIWqDEeKdtdcBPlM/imJqRSEQoBKdehuW3QpT7uWqHajpp6xtm29XQNXIsGx+Crmo486rrEOlJsdxRlMvTB+voHx71cHFXHyVtIjJ3DPc7heWFHzE6/rX7VCs9g6PcWRxwHpi3DKLjzZO2gNOMpFy7bTIdqt6A2BTILXEdwrZt9la2T349W0SgBJrLnWPPLsXHRLEsK1lt/+Ud9Qehr8W4a+SrJ5qI8lnctOIqTdpW3eXsdps2JNmykJ6hUZ4/rIYkl6OkTUTmjlMvw0g/rLnPKMzzRxpITYjhhmWZzgNR0ZBdCI1HjOKqg6RMq6rdxvVs59r6aewenNxW/xcKrHPqapqOG4UpUjMSudDJl8CKgmXbjMLsLG9m08J0UhPd79bNaNGxsO4Tzs3Q7nrXYTYvSmdZdjI/0cy2y1LSJiJzx7GnISnbGRzs0uBIkF8fb+K2NbnvrlHIXevstBm86ctOiSczOU51bTL1epuh9eTsqWeLON+MpNQoTFG+n9beYZq6hzxYlMx6FdudGxiJ7m8+1Hb0c6Kxh1uvpq6RY9n4aefGyUHzhiSHazp1TPkylLSJyNww1AsVr0Dh3eCLch3mNxUt9A5dcDQyInctDHRAd53RMgvz/Nppk6l3fj6b+1pPcJK2zOQ4lmZNcj1bRNoCSEg3rmtbG25GonltQmc1NJXBCrOukTvLmwGu3nq2iIwlsORmOGjekCRODUkuS0mbiMwNFdthdACKzI5GvnCkgfTEGK5betFOQmSulQd1baeaexgeDRnFEZmQc29AbPI7O1cu2LbN3rPtbF2SMTX1bPBOM5J6sw6SqwN+LAvVtQlUvOxcV5rVs+0ob2JJZhJLDOZ3zhqbHoLuWjj1a9chUhNjuLM4wDOH6ukbUkOSsShpE5G54djTkBKAgq2uQwwMB9lR3sRtRQGiL27fnFMIWJ50kBwJ2pxu7jWKIzIhHtSzVbf309A1yJapOhoZEVjnNCMZdX+0MSkumqVZyTqaJU49W8ZSyFzuOkTv0Ch7K9uv/l22iJV3QHIOHDBrSPKJLQvoHRrl2cPu6+OuZkraROTqN9jt3AEsvAd87v/Ze/1kM/3DQT588dFIgLgU55iIaTOScAdJ1bXJlOltgZYTntWzXTvZQ7UvFiiB0IiTuBkoyvNTVqfX3Zw21ANVu4x32XZVtDAcDLHtaq9ni4iKgfWfhFOvQFet6zAbFqSzMidFRyQvQUmbiFz9Tr4EwSFYc69RmOePNJCZHMs1l+qMF2lGYmBxZhLxMT7VtcnUOfeGczWsZ9tb2U5mcixLp/o4WN465+rBkO3G7kFaetSMZM468xoEh43r2XaUN5OaEMOmhekeLWwW2PBppxHXwcddh7Asiwe3LOBoXZeG3Y9BSZuIXP2OPQ3++TB/s+sQ/cOj7DzRxO1jHY2MyF0LHVXOzp5LUT6LVbl+jjfoF5ZMkardEJNkXM/2VmUbWxZP0Xy2C6UvhrhU42YkRZFmJDoiOXdVvAzxqc5RYZeCIZvXTzZz08qsS/+uuBqlL3RGJBx8HILua9LuWZ9PfIyPJ94+5+Hirg5z6G+TiMxJA51wegesMTsaubO8mcGR0Hu7Rl4o0oyk6Zjr7wNOXVt5Q49mRsnUOF/P5n6WVE37APVdg2yd6qOREG5GUmzcjCQyJ7FMd/jnplDImeW57Faj18Khmk7a+oa5ZdUcqWe70MaHoKfB+d/RpdSEGD5cnMczh+rpGRzxcHGzn5I2Ebm6nXzRqXcxHKj9wpEGslPi2LzoMm9Kc9c6Vw86SHYNjFDfNWgUR+SK+lqhpXz2zWe7WKDEuVkSdP8mzx8fw+LMJO20zVV1B6CvBVaY1bPtLG8iymdx04o5mLStuM1p+LXfrCHJg1sW0D8c5JlDakhyISVtInJ1K3vKmeWUv8F1iN6hUV472cwdawNE+S5z9CslFxIzzZuRhO/4q65NJp1H9WxvnW1jXlIsy7Knqb15YJ1Tt9pywijMGjUjmbsqXgIrCpbfahRmZ3kzmxelk5rofrdu1oqKhvW/55xu6XB/vHFdQRqrA35+srdaJ04uoKRNRK5e/e1Q+ZrTgMSgzmZneRNDoyHuutzRSHC+R26R8U7bqtwULEtJm0yBSD1bpJmHC7Zts7eynS1TOZ/tYuebkZgP2a7rHKC9b9iDRcmscnI7LLjWGdbuUk17Pyeberh1rnSNHMuGTzm/Cw/+yHWISEOS8oZuDtV0eri42U1Jm4hcvU48D6FR466Rzx1uINcfz4YF4/hlnrvWaT1ucEwrMTaaxfOS1IxEJl/VbliwxaiGp7ZjgLrOgek7GgnOXK3YZOO6tvPNSDRke27prIbmY7DSrGvkzvImgLnT6n8saQWw7ANQ+mOj34P3rMsjMTZK7f8voKRNRK5ex552OssF3O8idA+O8NuKFu4sDuC73NHIiNxi55hW6ynX3xNgdZ5fs9pkcvU2Q/NxWHi9UZg9Z1oB2LJ4GpM2n8957Zl2kMxTB8k5p6sOXvqK87FBPdveyjZ+8EYVS7KSWJyZ5NHiZqlND0Fvk1NT7lJKfAwfKcnjuSP1dA2oIQkoaRORq1VfK1T+xvho5K+PNTEcvELXyAt52Iykpn1Av6xk8pQ95VxX3WkU5tnD9Sycl8iKnGmqZ4sIlDivO4N246mJMRRkJGinbS4YGYTf/AP82yY4vRO2/Q/IXDbhMHWdAzzyxEE+9p23GA2G+OrdRZOw2Flm2QfAn+9JQ5LBkRC/Kq3zaGGzm5I2Ebk6lT8HdhCKDLtGHm0gPy2B9QVp4/uCecshKs6zZiQntNsmk+XwT53dqezVrkM0dA2w50wb96zLn756toi8dTA6AG1mu9xr81PVjORqZttw/Fn45mZ47avObLEvvg03/rcJhRkYDvIvOyrY9k+vs+N4E1++dTk7/9tNXLcsc5IWPotERTvDtitfg/ZK12GK56exNj+VJ9SQBFDSJiJXq2NPw7xlkOP+rmdX/wi7TjlHI8f9hjQqGnIKjXfa1gTCHSSVtMlkaDkJDYeg5AGjML8qrce24d71+R4tzEBkOLjhEck1ealUt/fT1a9d7qtO03F4/CPwi99zaiA/9Sx87MeQvmjcIWzb5vkj9dz69d/wLztOsW11Dq/+yU18+dYVJMRGTd7aZ5sNv+d04zzgviEJOLttJ5t6OFjd4dHCZi8lbXPB6LBTZFu915lD4lLf0ChnWnrZc7qVus4BDxco4rHeZqja5cxmM7j7//LxRkaC9pW7Rl4sd62TtBncGcxKiSMzOVYdJGVyHP6Z84aq6KOuQ9i2zdOltWxcmM6imVDDk7kCohOMm5GsDTcjOaa6tqtHfzu88Cfw7euh4Qjc8Y/w+7tgyfsnFOZ4fTcPfOctvvhEKf6EGH728Fa++eAG8tMSJmnhs5g/z5nbdugnzvtQlz5SkkdyXDQ/UUMSoqd7AWLAtmGwy5k+310fvjZAT/27r30tQOTNowX/pRQyFp8PEwrZtPYN0dQ1RGP3II3dgzR1OdfGrnf+3DP0Tp3AqtwUtn/5fVP784qMV/mzYIeMu0a+cKSBgoyE82/ixi23GA4+7rwuU93tQFiWxeqAmpHIJAiF4Oh/wtJbIMV9l7tj9d1UNPXy1XtmSA2PL8q5YWK80+bscpfVd+mo22wXHIUDP4TXvua8X9r0Wbj5v0NixoTCtPcN80+vnOSnb1eTmhDDV+8p4uPXLLj83E5xGpKcfMHp5OyyVCEpLpq71+Xx5IFa/vquNXNz/l2YkrbZwLbh+DNQX3pBcha+jvS/9/kJGc4djpSAc1wkJQ/8AYaIIe65P+Klp37Is/F3n0/GmnuGGA29e0cgymeRlRxHTmo8S7OSuH7pPHJS48n1x3OktovH9lRR095PQUbiFP2PIDIBZU9D5kqjWp2OvmHeON3K529cMvFanQubkbhM2sCpa/vh7iqGR0PERutghHjk3BvQVQO3/o1RmKdL64iN8k18J3oyBUqcWr1QyOko6cK85DjyUuM5qrq22e3sLtj+59BU5gyPv+3vnTmaEzAaDPHjt87x9V9X0Dcc5FPXLuKPb10xpxOHCVl6C6QucBJng/ryB7cs4Cd7q/nlwVo+e8PiK3/BVUpJ22xQ+Tr856chKhZScp0kLFDsbDv7A05yFknSUgIQEz9mmL979hifCOWTVvMqFf5byE2NZ+vSeeT648lNjSfHH3/+48zkuEveQdqwIJ3H9lSxs7yJz1w/d188MkP1NDpvSm/6c7OjkccaGQ25OBoJkLPGuTYeNZr7UxjwMxwMcaall9XhGjcRY0d+BrEpsPIO1yFGgyGeOVTPzauySEuM9XBxhvLWwb7vQvsZyFzuOkxRfirH1EFyduqshlf+0rnZnboAfvdxWP2RCf8+2H2qlb99/hgVTb3csCyT//HhQlbkpEzSoq9SvijY+Cl49avQdgbmLXUVZk1eKiUFaTzxdjUPXb9o+pseTRMlbbPBW9+CpCz4ctklE7Ir6RoY4Rf7a3hf5o3c0vlLdj6yAeLdvQlclJnEkqwkdp5oVtImM8/xZwDb+Gjk80caWDQv8fxRqQmJS4GMJcYdJCPf+3h9t5I28cbIABx7Bgo/ArHuT0rsPt1Ka+8Q966f7+HiPBBpRlJ/yDhpe+V4Ez2DI6TEa1dlVhjuh93/DHu+AVjOMcjrvgQxE6s3q27r56svHOeV400UZCTw77+3kQ8W5szZRMHY+t+D1//e2W374Fddh/nENQv4s18eYV9VB9csntjx1quFztvMdC0VcOoV2Px51wkbwM/3VdM/HGTRdb8DoRE4s9NoWbeuzuGtyjZ6BtVdS2aYY09D9hrIWuk6RFvvEHvOtHJXcZ77X9SRZiQGFmcmEx/jU12beOfECzDcA8UfMwrzdGkdqQkx3Lwqy6OFeSRrFcT5nRMqBjYuTAdgz5k2DxYlk8q24eiTzry13/7/ztzBL+2H9//ZhBK2vqFR/uHlE9z6z79h9+lW/vRDK/n1H7+fD63JVcJmIiUXVt4Oh56A0SHXYe4qCZASF80Te895uLjZRUnbTLf3287Mp02fcx1iNBjiR3vOsWVxBkvW3wIJ6XByu9Gytq3KZiRos+tUq1EcEU911UH1m8a7bC+VNRKyGf9A7bHkroWOszDoPuGK8lmszPWrg6R458jPnaG3i250HaJ3aJSXjzVyV3GAuOgZ1uI8KsZ5037iOaOOdVsWZ5CRFMvzRxo8XJx4brgPfvRh+OXnIHEePPQSfPQHkDqxHeCjtV3c8k+v883XznDn2gCv/rebeOTmZcTHzLC/37PVxoegv82Zn+pSYmw0927I58WyRjr63L+2ZzMlbTNZf7tTUF18PyS7v5v58rEm6joH+NwNi50ZUss/6OzehYKuY25cmE5qQgw7yptcxxDx3PFnnKsHXSOXZiWxKtegfiG32Lk2HTNaS2G4g6QGi4qx3mY4vRPW3u+6SQfAS0cbGBwJcd+GGTCbbSxr7nM6BVa+5jpEdJSP24py2VnexMCw+9+VMskOPu6Md7n9H+Dh12Hhda7C/N1L5QRD8Ms/vI5//tg6clPdn2ySMSy5GZJznZ1+A/dtmM/waIjfnmrxaGGzi5K2mezAY053yK1/ZBTm+7srWZCRyLbV4dbOK26DgXaoedt1zOgoHzevzOL1ky0EQ3ozKTPEsaecHa7MZa5DNPcMsvdsG3eaHI2Ed3eQNFCY56drYIT6rkGjOCKU/RLsoPFA7adL61g4L5ENC9I9WpjHltwE8WlQ9pRRmLvWBugfDvLayWZPliUeC47Cm9+CBdfCloedphculNV1sedMG1+4cfH5Y7HiMZ/PeV2e/Y3T2dWltfmppCbEsHuOnvJS0jZTBUfg7e/C4ve/04nOhdLqDg5Wd/LQ9Yve6Qa5bBv4oqHiJaMlbludQ3vfMKWaUi8zQWc11O5z7rIb2B4+Gmncxjwl4BzXMWxGUhh4pxmJiJHDP3MadRiMwmjoGuDNyjbuXZ8/c+t8omNh9V1w8kUYcX+zY8uSeWQmx/KCjkjOTOXPQlc1XPtFozDf21VJUmwUD1yzwKOFyZiW3uwckWwqcx0iymdx/bJ5vHG6dU6ePlHSNlMdf8YZjn3tI0ZhfvBGFSlx0dy/qeCdB+NTYeH1UPGyUez3r8wi2mex84TuQsoMcOxXztW0a+ThBlbkJJu3drYsT5qRrMpNwbKUtImh5hPQcAiKzXbZflVaj23Dvetn6NHIiDX3wlC3UdOtKJ/F7UUBdp5oom9o1MPFiTHbhj3/6nTpXXm76zD1nQM8f6SBj21eQGqCuoROqsXvd66GTYKuX5ZJfdcgZ1v7zNc0yyhpm4lsG978JsxbBss+4DpMQ9cALx5t4GObC0iOu2i6w8rboeUEtJ91Hd8fH8M1izPYqbo2mQmOPQ156yHD/RiKxq5B9p1r567iPG/WlLsWmsudYzwuJcVFs3heEuXqICkmjvwMrChY+1HXIWzb5unSWjYuTGfhvCQPFzcJFr8fEjKcfxcM3FUcYHAkxKu6OTmzVL8J9QedG9suj0UCPLanCht46PpFni1NLsEfcLq7GtSaAtywLBNwxo7MNUraZqKat51/jLb8gVGx+I/2nMO2bT593aL3fnLFh5xrhVkXyVtWZVPR1EtNe79RHBEj7Wed14zhLtuLRxuwTbtGXii3GIJD0HbKKMzqPL/a/ot7oRAc+U9YegskZ7sOc6y+m4qm3pm/ywZOF8nVH4aTLzmz6VzatCiD7JQ4nj9S7+HixNief3OS8pIHXYfoGRzhp3urub0ol4IM9zMLZQKW3ATn3jQ6trwgI5H56Qlzsq5NSdtM9NY3nSOMJR93HaJ/eJSfvl3Nh9Zc4h+jjCWQudL5hWbg1nBzE3WRlGl13JujkS8cbWB1wM/SrGQPFgXkFDlX02YkAT/V7f10ay6iuHFuN3TXGjcgeepgHbFRPvN6z6lSdB8M98KpX7sOEeWzuGNtgNdOttCrI5IzQ9sZp15x8+eMBsT/fF8NPUOjfOHGJR4uTi5ryc0wOgC17hvhWZbFDcsyebOyjdGg+6Yms9G4kzbLsqIsyyq1LOv58J8fsyzrrGVZh8L/rQs/blmW9Q3Lsk5blnXEsqwNk7X4q1JntTPHYuNnIM79G8dfHqyja2DEafN/KStvg3NvOK2RXVqUmcTSrCR2luvoiEyjsqcgfxOkuS8kr+8c4MC5Dm/fkGYud+YsDhRzUAAAIABJREFUetSM5ERDjxerkrnm8M8hNgVW3uE6xGgwxLOH67l5VRZpibEeLm4SLbwBEjOdrrIG7ioOMDwaYsdx3ZycEd78prOTuvkLrkOMBkP88I0qrlmUQUlBmoeLk8tadL1zTNuwru2G5Zn0DI5ytM79+9fZaCI7bf8VKL/osT+1bXtd+L9D4cduB5aH/3sYeNR8mXPI3n8HLLjmYdchQiGbH+4+S8n81Mu3r11xO4RGnbk9Bm5dncPes230aBdApkPbGScpKjLrGvniUadD3J1rPUzaomKcTn0etP0HOF4/t35BiQeG+53GVoV3G+1K7DrdSmvvEPdtmNjQ4mkVFQ2FH3Gabg27b1qwYUE6uf54DdqeCfra4NBPoPhjkJLjOsyLZY3UdQ7whfdpl21KxaXA/M3GSdt1S8N1bXPsiOS4kjbLsuYDdwLfG8fT7wYetx1vAWmWZc2SsxTTbKjHGRRZeDekuv/F+HpFM5WtfXz2hsWXb8lccI1zJtywrm3b6hxGgja/rZhbLx6ZISJ30QvvNgrz3JEGivL9LMr0uMFCpIOkQXvi7JQ45iXFqq5NJu7kizDcAyUfMwrz9ME60hJjuHml+5q4abHmPmfeqUG3ZJ/P4s7iAL+taKFrQDcnp9X+78PooFGbf9u2+d6uSpZkJrFt1Sz7+3w1WHIT1JfCgPtxURlJsazJ88+5ZiTj3Wn7F+DPgIsPj34tfATyny3Ligs/lg/UXPCc2vBj72JZ1sOWZe23LGt/S8vcnGz+HoeecFoUm7b5311Frj+eO660Y+CLguUfhFOvGHW327AgjbTEGHWRlOlx7FdQsNXoRkdNez+Hazq96xp5odxiZzZNj/u79JZlUahmJOLGkZ+Df75zVNCl3qFRXjneyF3FAWKjZ1kp/MLrIDnHuIvkncUBhoM6IjmtRgbh7e84XbWzV7kO8/bZdo7UdvHZGxbj883QWYNXsyU3gR2Cs7uMwtywLJOD1R30D8+dWtMr/utrWdZdQLNt2wcu+tRfAKuAzUAG8JXIl4wR5j23mG3b/o5t25ts296UlZU1sVVfjUJBeOtRmH8NzN/kOsyJxm52n27lU9ctJCZqHL9cV97m3O2o3ef6e0ZH+bh5ZTavnWwmGJp7ww5lGrVUOIM6PWhAAh4fjYzIXetcPWhGUtHYy8gcK7wWA73NzvH34vuNOhG/dLSBwZEQ966fRUcjI3xRzi78qVdgqNd1mPUFaeSnJZz/t0KmwZGfQ18LXPclozDf3VVJRlIsvzObjvpeTeZvgthkT+raRoI2b59t92Zds8B4/hW/HviIZVlVwM+AWyzL+rFt2w3hI5BDwA+Ba8LPrwUumOTMfEC9cq+kYjt0nIWtf2gU5ge7zxIf4+PBa8bZkGHpNvBFQ4VZF8ltq7Pp6B+htNr9drfIhB17GrCMj0a+cKSBkoK0yWn7nLPGuZo2I8nzMxwMcabF/RtPmWOOPgl20Hig9tOldSyal8iGBbO0YcOae50jdQalAJblHJHcdaqFrn4dkZxyoZDTgCR3LSx+n+swZ1p62VHezCe3LiQh1v18NzEQFQOLbjBO2jYvyiA22sf/Ze8946M6k/Tt63Qr55yzBEoITAYJMMEBA7YxzuM0juM0411P2An7e3fnP3F3ZnaCc8A5YBvbOOBElBFCZIQQKOeAcs6tPu+HR7IxFiCd00Lq1nN9adPdKkpYfXTqqbvu2juFJJIXLNpUVf2VqqphqqpGAbcAO1VVvX14Tk0RQ1PrgRNDX/IxcOeQi+QioE1VVXk0dSGynhESlsRrNIdo7Oxjy7Earp8TNnp3LycPiEyDfH1zbcum+2NnUNguXSQlF5PcD4T8yUN7h6yssYuc6jbWjUeXDcRnzDvaIp02gJM1UiIpGSXHN0HwLF1SsprWHvaVNLF+duj5Z6QnM+GLwD3YIou2BwZVvjx52kKJSUZN0XZozIfFPwYdP4cbM0pxsDNw5+JICyYnGTMxy6G5WDima8TJ3si8SG/2TCEzEj3i9DcVRckBcgA/4PdDz38GlABFwAvAw7oynArUHoeyPbDwAeF2pZE3syroN5m5O+08Nv8jEX+VuBg2l2j+uz2c7FkQ7SPn2iQXj/pT0JBnMWnkmvHcPTVsRqKDaD9XHO0MsmiTjI76PKjN1t1l23KsGlXFOhZqnwuDAZLWi31tvdo/PymhnkT4uEgXyYkg81/gHqLLJbips4/3D1dx/ZxQ/NwcL/wFkvEjZrl41NltS4vzI+90Bw0dfXozsgrGVLSpqrpbVdV1Q/+9UlXVFFVVZ6iqeruqqp1Dz6uqqj6iqmrs0OuHxiNxmyLrGbB3hTl3aQ7RZxrk9axylsf7Excwxv1u01eLR53dtlWJgRTWd1LR1K0rjkQyKnI/BMWgqzsNQho5J0LMq4wbQTPFoUif9j1rdkYDCUHu0oxEMjqObxL7kFJu0BxCVVU+PFLNvEhvIn0t7Kp6sZmxAQb7IF/7KMCwRHJvUSMtXf0WTE5yXmqzxcH2ogeFtE4jr2eV02cyc+8SafM/4fgngFuQ/rm2OGH9n1k8NbptVmYDZYN01MGJzTD7NnDWPi/wSXYtjZ1951+mfS58osUHSOdc22WJwjp3u+y2ScYbVRULtSPTdO3qKWno5GRtO2vHwzXyTIbNSOpydYUZdpBUdawPkEwBzGY4/i7ErQI37ZbmuTXtFNZ3ct0cK+6yDRM6T4wg6Fy0vTYlmEGzyhe5UiJ50ch8UhhX6DjY7h0Y5PV95axMCBj7wbbE8iiK6LaVpIvrlUZmhHri6Ww/ZebaZNE20Rx8EQYHYOGDmkOoqsrGjFKmB7p9c+owZqavhvJM6NW+vDfS15W4ADd25MmiTTLO1OVCU6Huhdpbj4+ja+SZWNBBsrV7gNq2XgskJbFZyvZAe7VYQKyDD45U42A0sC5lnA81LgYGAySvF26aPa2awySHeBDt5/rNtUMyzrRVwYn3RcGm42D7gyPVNHX1c/9S2WWbNMQsh+5GqNd+mGk0KKTG+pJR2DglDjNl0TaRDPSKRZHTV4NvrOYwWSXNnKpt5560CyzTPh/xV4HZJIZ9dbAqMYD9Jc2090p3Lck4kvuBkH7plEZ+eryW+VHeBHk6WSixc+ARIhbZW8BBEqQZieQCHH8HHNwhYa3mEKZBMx9n17AyIQBPF+2StElF8gYwD0DeVs0hFEVhbUowmcWNNHZOjTmaCWX/s+JxkfaDbbNZ5cWMEmaEerAoxsdCiUl0E3OpeCzepStMWpwfNW29lDZ2WSCpyY0s2iaSnHfF0t3F+rxaNmaU4uPqwHo9g+Jh88VNZcGXunK5LDEQk1llT8HUaFVLJgBVFfNs0cvAVWNnGSis6yC/rmN8FmqfjaJYxIwkPsgDRUHOtUnOTX83nPxIrMGw1z6nuadIFCU2IY0cJnQOeEXod5GcFYxZhS9OSInkuNLbDodfFT/LXqNcYzQCu/LrKWno4v6lMdbrgGqLeISAX7zF5tqmgkRSFm0TharCvqchcAZELdUcpqyxix15ddy2MAInex07RwxGmHaFWEA6qH27/OxwL7xc7KWLpGT8qM0Wph46XSM/PV6LosBVM4IslNgFCEqBupO6Pl9ujnZE+brKTpvk3OR/Bv2dMEufNPLDI9V4udizIl77TNykQ1HEdaNkF3RrX8gbH+hOrL8rnx6XK2jHlaOvQ1+7RZZph3g6sWa8ZfCSsRO7QozmmLR3rSN9XQj1ciZDFm2ScaNkNzScgkUP69o58kpmGXYGhTsWWWDnSPxq6GmBqgOaQ9gZDayID2BXfj2DZtvXF0smgNwPxUL4xKs1h1BVla05tSyM9iHAY5ylkcMEzRTudU2FusIkBXvITpvk3GRvEoYbkUs0h+joHeDL3NOsmxmMg52N3SYkbxCjAHmfag6hKArrZoawv7SZ+g45XzouDJqEs3ZkmuiQaiSnqo2skmbuTovG3mhjP8u2QMxyMPVApfb7TkVRWDrNj8ziJpu/75Q/wRNF1tPg6g8zrtccoq1ngHcPVXL1zBDL3HjGrgKDvS5LZBBzbS3dAxypaNGfk0RyJqoq5tliloOL9tmE/LoOiuo7x9818kwsZUYS4kFFc7ecG5V8n446KN4JM28Sxhsa+fzEafpMZjbMCbNgcpOE4Fli2f0JfS6S62YGo6rweY6USI4LJ7dAWyUsflRXmBf2lODmaMfNC8ItlJjEokSmifl0C+xr6+g1cbxKu8mQNSCLtomgsVDIEOffB/bai613D1bS3T/IPVps/kfCyQOi0qBA3762ZdP9sTMo0vpfYnlqjkBrhTgt18HW47UYLqY0EsBvGhgd9ZuRBAszkrxa7TvfJDbKic2gDsIsfQu1PzxSTbSfK7PDtbv1TVoURbjOln4NXdrlVNMC3YkPdJcukuOBqkLmE+Ab9+0eWQ1Ut/awNaeWWxeE4+FkI2Y6toaTB4TNE5JlHaTG+gK2P9cmi7aJIOsZMDrAvHs1hzANmnkls4yF0T7MCPW0XG7Tr4LGAmgq1hzCw8mehTE+7DhVb7m8JBIQrm+KERLW6ArzVW4dC6N98XNztFBio8BoDwEJcPqErjCJQ0XbKSmRlJxN9iYIvgT84zWHqGntIau0ifWXhNquaUPydaK4PfWxrjBrZwZzsLyZ03IFh2Up3wu1x2DxI7o6xi9nlALwwzQLHWxLxoeY5VBzVIznaMTXzZGkYA+bn2uTRdvFprsZst+GlJvAzV9zmC9z66hu7bFcl22Y+KFTLZ3dtlUJgRTVd1LeZPsWrJKLSMlucSrn7K05RH1HL/l1HSybrv3zp5lhB0kd+2QCPRzxcXWQZiSS71J/SnRxdXbZthyrRlXhOj1uxJOdwBngO023i+TaIYnkZzmy22ZRMp8EF1+YdavmEO29A2w6WMnalGBCvbS7qEouAjErQDVDWYauMEum+XGkvJXufu1mX5MdWbRdbI68CgPdum3+X9pbSoSPC5clBloosSG8o8A/UXfRNpyX7LZJLEZPqziNi75UV5h9xU0ApMX5WiKrsRE0UywT7dA+B6MoijQjkXyf7E2iCz3jBs0hVFXlwyPVzIv0JsLXxYLJTTKGXSTLMqBT+++oWH83EoM9pIukJWkshILPh8ZHtBdb7xyopLPPJJdpWwNh88DBzSLW//2DZg6UjsIZ9uTHkP4XXa6VE4Es2i4mgwOw/3lx0xmYrDnMscpWDpe3cHdaFEbDOMhX4lcLC9beNs0hInxdmBbgxo48OdcmsRDle8VpXMxyXWH2FjXi6WxPcogFZcWjxYJmJPl1HQwMmi2QlMTqMZsh5z2IW6VLwZFb005hfadt7WY7FzM2iOvJyY90hVk3M5gjFa1Ut/ZYKLEpzr4nxezv/Ps1hxgYNPPS3lIWxfiQEjYB13nJ2DDaC0MSnUu250f54GA0XHiuTVUh/X/gxPtiVMmKkEXbxeTkR9BRI2z+dbAxoxR3RztunDdObkjTVwtL5KLtusKsTAxgf0mzdLmTWIaS3WDvIhbBa0RVVfYWNbE4xnd8DjwuxPBhjQXMSPpNZkoapPxYApTtgfZqmKlvN9v7R6pwMBpYl3IRXVUnioBE8E/Qv2h7ptj99Zk0JNFPV6PoGM+6Rdfhw2c5tdS29coumzURsxyai4XRmEacHYzMjfQmo6jp/G8s2Q11J8TMpJXN7cqi7WKhqrDvKfCJFUusNVLb1sNnObXcPD8cN0c7CyZ4BmHzhZ48X79E0mRW+bqgwUKJSaY0JekQsRjstJ+MlTd1U93aMzHSSAAnTyFBtkCnDeBkrfZuuMSGOP4OOHpAwlrNIUyDZj7JrmFVYgCeLlPEaS95g1CVtGsvuCJ9XUkJ9eRTOdemn4MvgqlXl82/qqq8sKeEGH9X21oMb+vELBePJem6wiyZ5sep2nYaO88je9z3JLgGiNUoVoYs2i4WlQeEXfmih3S5Ib2aWY6qqtyVGmW53M7GYBSFZeFXYsGlRuZEeOPtYi/n2iT6aa+FxnyI0TfPtrdYyCZS4/wskZU2hs1IdBDj54qDnUGakUigv1uoOJKu0TUDtKewkcbOfts2IDmb5PWAahEXyezKViqbuy2T11RkoAcOvCCUPv7TNYfJKmnmRHU79y+NwTARagqJNgISwS3QIvvaADKLz9FtqzspVGQLHwC7i+gebSFk0XaxyHpKnLLrcEPq7jfx9oEKrkwOItxnnIfEp6+G3lao3K85hNGgsCI+gF359Zjk7I1ED6Vfi8eY5brCZBY1EezpRIyfq+6UNBM0E5pLoE/7njU7o4GEIHdpRiIRazD6O2GmPtfID45W4+1iz/Kp1J3wj4eAZN2LttemCInkVtlt0072JmHSZIFl2r6uDlPr8MEWUBTx+71kt5jR1UhKqCceTnZkFJ5D4bXvKbBz1rVyayKRRdvFoLUCTn0Cc38Ijm6aw7x/pJq2ngHutbTN/0jErgSDvXBx0sGqxEBauwc4UmHbW+ol40zJbnD2gcAUzSHMZpXM4kZSY/0mdv9UUAqgihM/HSQFe3Cyph1Vx/oAiQ1wfBN4hotBfo109A7wVe5p1s0MwcFuit0WzLgOKrOgrVpziHAfF2aFe8lF21oxm8XNdPAsiFqiOUxRfQc78+q5Y3EkTvZGCyYouSjELBeFe32u5hBGg0JqrB8ZhY3f/93YcRpy3oXZt4GLj65UJ4opdnWeIPY/Byiw4AHNIcxmlZczSpkZ5sncSO07qkaNk4e4eOqca1s23Q97o8KOU9JFUqIRVYXSdIheqktafLK2nZbugYmbZxvmGwdJnWYkIR60dA9wul0u9p2ydNRB8U5IuVHXZ+PzE6fpM5mnhmvk2SRvEI8nt+gKsy4lmJzqNsoapTnQmCn8CpoKIfUnuowhNmaU4mhn4I5FkRZMTnLRiFkuHvVKJKf5UdPWS1nTWXLlA88LF3edZoATiSzaxpu+DjjyOiRdC55hmsOkFzRQ0tjFvUuiL16XIP4qcSFtKtYcwt3JnoXRvuzIk3NtEo00FQtnvJjlusJkDs2zpU3kPBuAR6hYDq7XjCR4yIxEzrVNXU5sFrb1Ohdqf3ikmmg/V2aHe1koMSvCN1ZIlnW6SK6ZKSWSmsl8AjzCxH2SRho6+nj/SDXXzw3D1836ZpUkgEcI+MVbZF8bQMaZ1v/9XXBwozBr8o3VFX8ikUXbeHPsLehrE9aiOtiYUUqghyNrhrTzF4XpV4pHnYu2VyUGUFTfSXmTPIGUaKB0t3jUuVR7b1ETcQFuBHo46c9JD4piETOSBFm0SbI3QfAlYjZLI9WtPWSVNrH+ktCJlQ1PJMnXQdVBXXbjoV7OzInw4lMpkRwbNUehPAMWPSj2dWnk9axy+k3mizM+Ihk/YpYLR1cdS6+jfF0I9XL+7lzbsbeET0Pqj3WnOJHIom28OfwKhM4TG981UtHUTUZRI3cujsLeeBH/l3lHgX8i5Ouca0sIBGC7dJGUaKFkt5jZ8dG+c6ffZOZAaTNpsRMsjRwmaCbUn9TlzurmaEeUr4s0I5mq1J0UElsd5lYAW45Wo6pMbeOG5OvEY65OieTMEE7VtlPc0GmBpKYImU+KdRVz7tIcoqd/kDeyyrksMZBYf+2+AZJJQMxyGOgWhygaURSFJXF+ZBY3MWhWwTwoZiZD50H4QoulOhHIom08aa0UN2bJ63WF2V0gip2L2mUbJn41VOyDHu1GIhG+LkwLcJNzbZKxYx6E0j2iy6ajC3C0ooWegcGJtfo/k6AUsY+oqUhXmKQQD1m0TVWObwLFCDOu1xxCVVU+PFrN/ChvInzH2ZF4MuMTDSGzIVefi+SalGAUBWlIMlpaK4Usdc6dYo5eI+8fqaK5q5/7l8oum9UTlSaua8W7dIVJm+ZHR6+JnOo24bDbUiq6bFauJpBF23hSvEM8xl2uK0x6fgORvi5ET4RN+fSrwGwSey10sCoxkAOlzbT3DlgoMcmU4PRxIWmIWa4rzN7iJgwKLIqZLJ22YTMS/XNt5U3ddMjP1dSisRAOviQk7G7+msNsOlhJUX0nN8zVPm9tMyRvEFK95lLNIYI8nZgf6SOLttGy/1nxuPBBzSHMZpWXhkzaFkRbpyOg5AycPCF0ru65ttQhVc3eokaxTNsrEhKvtkCCE4ss2saTwm1iuFbHvEHvwCCZxU1cOl37L2ZdhM0DF1/dc22XJQZgMquk559jd4ZEMhLDF+7oZbrC7C1qJCXMC09n7TMTFsVvOhgdLOIgCZB3WvvON4mV0dcB79wOdg6w5i+awxyrbOW/Pspl2XR/bpgbbsEErZRhRYxOQ5K1M4PJr+ugsE5+Js9LQ4FYpp1yA3hp//l7bV8ZJY1d/GhZ7NSdybQ1YldAzRFdCi8/N0cSgz2oy/1a7Bte9DAYrH8NhCzaxovBAShJh7hVutqxh8qErGvCijaDEaZdKQpQHfM3syO88XF1kBJJydgoSRdzle6BmkN09pnIrmydPPNsIAbuAxIt0GnzBKQZyZRBVeGjR6CxAG54WbMjcWNnHw+9cZhAT0f+dcslGA3yZhevCAibr7touyolCEVhchqStNeK2Z4+fQXlobJmPjhSpT3AoAm2PAgOLnD57zSHKW3s4s9f5LEi3p81KUHa85FMLmKWC1fcsgxdYZZO8yO1/m1UJ0+YfbtFUptoZNE2XlQegP4OmKZTGllQj4PRwOKJvOGMXy0kapVZmkMYDQrL4/3Zld+AaVD7tnvJFMLUBxVZuqWRB0qbMJnVb2yAJw3DDpI6lmMHejji4+ogi7apQua/4ORHcNlvIUabm6pp0Myjbx2huaufZ2+fi5eLg4WTtGKSrxPdbx1rbgLcnVgY7cOnx2smz+J7s1nYnT+1AL78NWz9qaYwbT0D/OqDHG54dh+Pv5vNp8drtOWT+U+oPgxr/6b5QG7QrPKz97JxMBr48/UzZZfNlgidB/auUKJvrm1VUDeXKwepjLkFHG3DoEYWbeNF0XYw2OmWdaUXNLAg2gcXBzsLJaaB2JVCyqVbIhlIW88ARyq0t7wlU4jKA2Dq0XxzOszeoiYc7QzMuRhL6cdC0EzoboSO05pDKIpCUrA0I5kSlOyG7f8NSet12Vb/zxd5ZJU08+frU0gO8bRYejZB0rBEUp8hybqZIRQ3dJE/GSSS9Xnw8lWw9XFhtrLgR3D8HbEuYpSoqsrW47Vc9n/pvHOwggeWxTA7wotffZBDZXP3hQOcSV0u7PqT+LfWYaKzMaOEw+Ut/Pba5Ilf4yKxLHYOwpBE51zbnJq3GcTAFod1lslrEiCLtvGiaJuwFnXS/kuxprWHgrrOiZNGDuPoDlFLIF9f0bZ0mh/2RkVKJCWjo2S3cJGKTNMVZm9RI/OivHGyn2R69sAZ4lGnRDIx2J38ug7ZwbZlWith8z1iFvLapzRL7j/JruGFPaXctTiS62ZL85Hv4RkK4YvghD6J5OoZQRgU+DR7AiWSpj7Y9Ud4dgk05sP6Z+DOj2D1nyByCXz6+Kg6ijWtPdz36iEeeesIgR6OfPzoEn69JpF/3TIbVHhs01EGRnvtGRyADx8EZy9Y+3+av7XCug7++lUBVyQFsv6SKbyqwpaJWSHclVsrtX19dzP22W+yz2UFX5TbThdWFm3jQcdpcSMWd5muMOkFwrTj0vgJLtoApq+GpkJdshF3J3sWRvuyXRZtktFQmg6hc3RZQTd29pF3uoPU2EkmjQQIGira6nTOtYV40G8yU9Iol9fbJAO98O4d4ob35jc0y3zyT3fwH+8fZ16kN79Zm2ThJG2IGRugPhca8jWH8HNzJDXWj605tRMjkSzbC8+kQfr/CMnno4fgkh+IYt9ghA3Pi27G5rvB1D9iiEGzyst7S7n8/9LJLG7iP9cmsuXhNGaEioPocB8X/rghhSMVrfxze+Ho8trzNyE/Xfd3cNU28mEaNPOz97JxdTDyh+tSpCzSVolZLh5L07V9/eGXYaCbmsR7OVnbTmOn9mXdkwlZtI0HxTvFo96iLb+BEE8npgVMAi3u9NXiUe+i7cQAihu6KJM3mJLz0dsO1Ud0z7NlFjcBTL55NhBdeK9IaUYiOTeqCp/9VFjRX/cs+E3TFKatZ4AH3ziMq6MdT982Bwc7+av/nCReAygWcZEsbewi92J+Lnta4eOfwCtrYLAPbn8frn8BXM+6/nmGio5tbTbs+O33wpyqbWfDM5n89pOTzIvy4at/X8Z9S2OwM3735+bqWSHcPC+cp3YXkVnceP7cao7B13+BlJt0Wa8/93UJ2VVt/G79DPzdHTXHkUxyAhLBNUCbRNLUB/ufh5gVJM5OBb69F7B25JV7PCjcBm6B3+5i0sDAoJm9RY1cGu8/OU6SvCMhIMkic22A7LZJzk/5XlAHxVJtHWQWNeLhZPfN6fCkY9iMRAcx/q442BnkXJstcvgVOPoGLPs5JKzVFMJsVvnpu8eobO7mmdvmECDnf86PR7CQZOss2lYnB2E0KGzNuQgSSVUV+T61QPy8pP4EHs46/8FxwlqYf7/YYVUo9rD2Dgzyv1/kcfUTGVQ1d/PPWy7hlbvnE+5z7sXr/3VNEtF+rvz7O8do7hq5a4epD7Y8BC5+sOZ/NX+bp2rb+cf2AtbODGbdzBDNcSRWgKKIQ9uS3cJIZyzkbIbO05D6KCmhnrg72bG38AKHClaCLNosjXlQdNpi9Vn9HylvoaPPNPHzbGcyfTWUZ0JPi+YQ4T4uTA90Y8epegsmJrE5SnaDnTOEL9AVJqOokUUxvpPX0jxoppAc93VqDmFvNBAf6C47bbZG1SH4/Bfixnv5rzSHeXJXEdtP1fP/XZ3EvCi5fHhUJK+HhjyoO6k5hLerA2lxfuPvItlWBW/fAu/9ENyD4IFdcMXvwMH1wl97xe8gIBm2PMiBnFNc+Y+veXp3MdfNDmXHTy/l2ktCL3ho7OJgxxO3zqala4BfbM4e+Xvd/WeoPwmMRZ/2AAAgAElEQVTXPAHO2gyh+k1mfvpuNp7O9vzu2hmaYkisjJjl0NUgfnZGi6qKtRYBSRC7CqNBITXWl4yixsnj5qoDWbRZmuojwh5/mv55NjuDQupkknXFXyW6H0U7dIVZlRjIwbJm2noGLJSYxOYoSYeIRWCnXf5S0dRNVUsPaZPpM3Q2QSmAOrZfSiMw7CBpC7+UJEBnPbxzB7gHw4YXNC+F3ZVfz9+3F7Bhdih3LIq0cJI2TNK1oBh0d9vWzQymsrmHnOo2CyV2BuZByHoWnloIpV/DFX+A+3ZC8KzRx7B3pm3tc/R3t9P77v0YVDNv3beQv9w4a0yrIJJDPPnVmgS2n6rn1cyy775YdQj2/kPsyZp+xehzO4sndxVxsradP16Xgo+rXFMxJYhZLh7HIpEs3ilmUhc/+k3jZEmcH9WtPZQ3jdHpdBIiizZLU7RdXOxjVugKk17QwJxIbzyc7C2UmAUInSvkDbolkgGYzCpfDxmtSCTfoaMOGk7pnmfbOzRjMfmLNsRwvg6SQjxo7uqnrt02hq2nNIMmeO9u6GkWxiMu2rpj5U1dPPb2URKDPKRhw1hxCxCOybkf6tqjeGVSEPZGha2WXrR9+gRsvBy++A9xuPVwFqQ+CsbRrwZSVZUtR6tZ8dppfjtwB8uMOXy16Ljmg+IfpkaxKiGAP36W923Xf6BHuEW6h8CVf9QUFyCnqo2ndhWxYXYoVyTLJdpTBs9Q4Zg7lqJt35NiPCnlhm+eGr4H2FNk/RJJWbRZmqJtQ8WNdhlKfUcvuTXtk0saCeK0d/qVYmZv0KQ5zCXh3vi4Okjrf8nIDLtF6dzPllHUSKCHI7H+o5AJTRSeYeDkpd+MJEQ4bJ6sHYcTfcm3NBWLDocO+kyD599ttf2/oDwDrv4XBM/U9Hf09A/yo9cPoygKz90xF2eHSbbuwhpI3iAck2uOaA7h6WLP0mn+fJxdY5mVHAM9Ylff85dCSzlcvxFu2yxmzsdAZXM3d718kH975xgRPi7c/vD/B0nXYr/791B1WFNqiqIMdejsefTtI3T3m2Dn78W/4bVPal5/1Gca5KfvHcPPzYH/ujpZUwyJFROzXMy4n8Pl9DucPiE6bQt/9B2VTrSfK6FezjYx1yaLNkvS1STkkXGX6wrzdYH4wZp0RRuIubbeVqjM0hzCaFBYER/ArvwGuVtK8n1K0kUhE6TthhWE+cK+4ibSYv0md4dBUSxiRpIQ5A5IB8lxpeoQPDEHnkmFU59o7sA8saOIpf+7iwdeO0TB2cuXT7wvTooX/Ahm3awpvqqq/PKD4+TXdfCvW2ef10RCch5mbAB7Vzi4UVeYm+eHU9vWy3a9c9xlGfD0Ysj4O8y8BR49KLoJY7i+qarKC1+XcPnf0zlc1sxvr0nm/YdSSQzxhKv/KeS4798j3Hs14OPqwD9uvoTSxi5effttMVs0716I1a48+vu2QgrqOvmf62fi6TKJlEeSi0PMchjohqoDF37vvqfA3gXm3v2dpxVFIS3Ol8ziRgbN1j1CIIs2S1KyC1Atsp/N392R5BDt+6nGjdgVYHSwiPV/W88Ah8u1m5pIbBBVFZ226GWa53gA8k530NzVP7mlkcMEzYS6XF3da3cneyJ9XaSD5Hhy6hMw2IlO2zu3w4urxAHDGPki9zShXs7sK25i9T++5qfvZovOW91J+OhRiFgMV/xec5qvZJbx0bEafnZF/OQ8+LMWnDxh1i3Cia67WXOYVQkBhHo583pWmfZcuprgjaEC7c6PYf1TmtQ8nxyv5Q+fnWJJnB/bHr+Uu1KjvjVpcvaG618Uy4y3Pq75UCI1zo/HloZwVfHv6HINg8v/n6Y4AEcqWnj+62JumR/O8vgAzXEkVkzUElCMF5ZIttdCzntidnKEz0ZanB/tvSZOjMd86UVEFm2WpHAbOPtAyCWaQwyaVfYUNrBs2iSx+j8bR3eIWgp5W3Vp/ZdN98fBaOCrk1IiKTmD5hJoq9Qtjcy0hnm2YULngKlXV/caYGaYF/tLmukz6ZPvSc5BwZcQmSrmh655UsxevnYNvHYtVI9OUlbe1EVRfSf3Lonm61+s4L6lMXx6vIZr/7aVppduZNDBDW58RSw+1sCB0mb+sPUUlycF8tClsZpiSM5gwf1i39mR1zSHsDMa+MHCCPYWNVFU33HhLxiJwy+BqQdueVvztVFVVTbuKSHGz5Xn75hHiJfz998UsUg4lea8B9mbtOUK/Nj8BhGGeh7pvJfKLm23mT39g/zs3WyCPZ35zdpEzblIrBwnTzFydKGi7cBzYDbBoodGfDk1VtwLZFj5XNuoP02KohgVRTmqKMqnQ3+OVhRlv6IohYqivKMoisPQ845Dfy4aej1qfFKfZJjNULwDYlfq6hBkV7XS2j3ApfGT+IQ06RpoKdVlnuDmaMfSaX58nlOL2crb1RILMnxhjl6uK0xGUSMx/q4EeVrBTqr4NUIOevBFXWFunBtGU1c/n+ectlBikm9oKRfmONNXC7OHOXfAjw/DlX8S0tYXVgq3x4aC84bZmSckcqsSA/B2deDXaxLZ/bNlvOnzEh69tdzZ8Qh/29dGe+/YnXXr2nt5+M0jRPi48LebZmGYrGsurImARHFIeXCjrlnGW+aH42A08Nq+8rF/sakfDrwo1ggFJGjO4UhFC9lVbdydFnX+n42lj0PkEtj6U2gsGvtfVLIb46EX6brkPg6TxE82HWVAwxjEX77Mp6Sxi7/cMBP3yWTIJrn4xCwXB2O95+iS9XXCoZfE0nafmBHf4u/uSEKQOxlWPtc2liOQx4BTZ/z5f4C/q6o6DWgB7h16/l6gRVXVOODvQ++zfU4fF/skpumbZ0vPb8CgwNLJ3CFIuFq0q3O36AqzJiWYmrZejlW1WigxidVTmg4eoeCrvUvQbzJzoLSZtNhJ/Bk6EwcXIek49Qm012gOsyTOjxg/V17dV2ax1CRDFH4lHqdd+e1z9k6w+GH4yTHRnSjeCU8vhC2PCInZCOzMqyfG35VI32/NcYKznyKxI5O2S/8fXgnLeGJnEcv+dxfPpRfTOzC6QqHfZOahNw7T3W/iuTvmTi7XYWtnwf3QVvHtz4AGfN0cWTcrmPcPV9Ex1oI89wOxKHjxw5r/foCNGaV4ONmxYU7Y+d9oMMKG50W3d/PdYjH2aOltFxJf3zjc1/6OP25I4WhFK//Yfv7DjLPZX9LEy5ml3Lk4cnKtPZJMDDHLQTVD6Z6RXz/2pijoUn983jBLp/lxuLyFnn7rVaOMqmhTFCUMWAu8OPRnBVgJbB56y6vA+qH/vnbozwy9vkqZlDo/C1O0XTzGrtQVJr2ggVnhXnhP5j0krr4QvRRObtElkbwsKRB7o8JnlrZDllgn5qGLcsxyXYvps6ta6e4ftA5p5DDz7xUn+Ydf0RzCYFC4Y3EkRytayamybt3+pKPgC/CJBb+477/m5AHLfwmPZcPCh4S07Ik58MWvoOvbU93OPhP7S5pZlXDGbE7BV7DrjzDrVvxWPMJTP5jDpz9ewqwwL/70eR7L/7Kbt/ZXXLBT8btPT3KkopW/3jiLaYHulvquJQDxa4Vl/YHndYW5c3EUXf2DfHi0evRfNLwo2C9edNo0UtXSzRcnTnPrwghcHUexFsAzFK59ShxG7xjDTNpXv4H2alj/LNg7c/WsEG6eF87Tu4vJHKUsravPxM82ZxPh48Ivr9LeWZTYEGHzhSnQSBJJ86D4jIQtgPAF5w2TFudH/6CZg2XaZ1QnmtF22v4B/AIY/s3hC7Sqqjo8OV8FhA79dyhQCTD0etvQ+7+DoigPKIpySFGUQw0NNrCvq2i7WGrppn1Ytrmrn+yqVusYHk9aL+aPdLjeeToLO+TPT5yWS4ElUJcjdlNF65tn21vUiEGBxTHfu+xMXnxiRJf+8CujszY+B9fPDcPFwchr+8oslZmkv0scJkxfff73ufrB6j/CT47AzJth/7Pwz1mw60/Q205GYSP9g2ZWJgSK9zeXwAf3QdAMWPf3bw4qZoR68uo9C9j0wCJCvJz49Yc5XPH3r/kku2ZEKfl7hyp5PaucHy2LYU1KsKW/e4nRDubdIzqpWuSCQ1wS7sWsME9e21c++t935ZmicFr0kK6DrFczy1AUhbsWR43+ixLWwoIHhJtp4bYLv79wm5j9S/0JhM//5un/uiaJGD9X/u2dYzR1Xrhr96fPT1HV0sNfb5yFi8Po985JbBg7B4hKG7loO/UJtJZfsMsGsCDaB3ujwl4rnmu7YNGmKMo6oF5V1TMnrUe6eqijeO3bJ1T1eVVV56mqOs/f3wqKlPPR0wqVB3Rb/e8pbEBVJ6nV/9kkDkkkT+qXSFa39nCsUkokpzzfzLMt0xVmb1EjM0I9rc8eesED0FkHpz7WHMLDyZ7rZofycXYNLV3aiz/JGZSkCzOK6VeM7v2eYWIv1cP7IW4VpP8Z/jmLgYwn8HUyMy/KG/q7xQwciligbf99U4hFMb68/1AqL945DwejgR+/fZSrn8xgd379Nzf9J6rb+M2WE6TG+vLzK+Mt+E1LvsPcu8Bgr3vu9M7FURTVd7KvuGl0X5D1tHB1nKlt/QOIDu+mg5VcNSNoZPOR83H57yAgWSzI7jjPrGxPC3z8Y/BPhBW//s5LLg52PHHrHFq7B/j55uPnLVgzCht5I6uCe9OimR+lfdetxAaJWS52/rVVfff5fU+Cd7Q4ZLgALg52zInwZo8Vz7WNptOWBlyjKEoZsAkhi/wH4KUoyvAxSBgwPIxRBYQDDL3uCVhvL3I0lKaDOmgRq39vF3tmhnlZKLFxxNVPWLHm6pNIXj4skcyREskpT0m6kAF5aO8WdPWZOFrR+o1TlFURu0r88rHAjWGfycy7h0aeq5KMkYIvwMEdIlLH9nX+0+Gm1+D+XajBs7j69JNss3sc++w34JOfiDUPN2wE76hzhlAUhcuSAvnssaX8/eZZtPcO8MOXD3Lz81nsyqvnR68fxs/VgSdunY2dUZpBjxtuAZC8XszO9HVqDrN2ZjA+rg6jmzttLhUuzfPuEXOvGtl8qJKOXhP3Loke+xfbO8ENL4lu84c/EhL2kfj8l9BZD9c9852lxsMkhXjw6zUJ7Myr55XMshFDtPcO8IvN2cT6u/IzeQAhOZuY5eLxzDUrFfuh6iAsenjUBoBL4vw4Wds+qq7vZOSCV3lVVX+lqmqYqqpRwC3ATlVVbwN2ATcMve0u4KOh//546M8Mvb5TtXXtW+E2cPQUuluNmM0qXxc0snSa/7d7UyY7yeuhuRjqTmgO4elsz5I4Pz7LkRLJKY2pDyr2fXth1siBsmZMZpUl1jTPNozBAPPvE/8OtdqdWeOD3FkY7cPrWeVWv0h0wlFVYUARt1KzDT+hc8hZ+Qq39v8G3INERyLnPVj5n6M+6DMaFK6bHcaOx5fzu2uTKWno4u5XDtLQ2cezd8zF1+37N8oSC7PgAehrh5x3NYdwsjdy8/xwtp2so7q15/xv3v+cuBGdf7/mv2/QrPJyZhlzIryYHeGtLUhAAlz1Z6GEyPzX91/P2wrHN8Gyn0HI7HOGuSs1issSA/jTZ3nk1nx/5vb3n57kdHsvf71xFk722h24JTZKQBK4+g/tQx4i81/CeXn2baMOs2SauDfIHG23e5Kh52juP4DHFUUpQsysbRx6fiPgO/T848Av9aU4yVFVKNohdqcYteuvT9a209jZZx3SyGESrgbFYBEXyerWHrKlecLUpeogDHTr3s+2t7ARBzuDkKBZI7NvAztnOPiCrjB3pUZR1dLDriGLeYlGTh+HjtrvukZqYGdePVlqMuo92+DmN8XC4SWPjzmOg52BOxZH8fUvlvOfaxN59vY51qHMsAXC5kPQTDjwgi51yW0LIwB4a/957P972+HoG5C8QZfyYGdePeVN3dyjpct2JnPuEnPsO38HVYe+fb6rCT55DIJSYOnPzhtCURT+94ZZeLva8+O3j9Ldb/rmtZ15dbx7qIoHL43VXlxKbBtFEYe6JbvF56+pWBwYzL8XHFwv8MXfkhLqibuTndXOtY2paFNVdbeqquuG/rtEVdUFqqrGqap6o6qqfUPP9w79OW7o9ZLxSHzSUH8KOmr0W/0XCDOWZdZUtLn5C4mkThfJK5KCpERyqlOSLg4AItN0hdlb3MTcCG/rPal19oaZN8Lx98SciEYuTwok0MOR17I07IWSfEvBl4Ci+/q+M6+e2eFe+Lo7QeI6SHtMdFY14uJgx31LY741NZGMP4oium31J6F8r+YwYd4urEoMZNOBSvpM57AeP/o69HdYwOa/hBBPJ1YnB+mKg6LA1f8ULpqb7/l2X9ZnPxUz/dc9N6pOtI+rA3+/+RJKG7v4749zAWjt7ueX7+eQEOTOY5dN05enxLaJWSFWa9WfhKxnwGgvPpNjwM5oYHGML3sKG61S3SVF8Hr5xupfux0viP1sM0I98He3MplL0npoKhIfIo14utiTFufHZzm1VvkhkliA0nQImQPO2rsGTZ19nKpt/0b+YLXMvx9MPXD0Tc0h7I0GblsYydcFDZQ0aJ/BmfIUfAGhc3W5Ate393K8qo1VibLAsnpSbhAHKwd0dsIXR9HU1T/yQaV5UDiPRqSeV254IXJr2sgqaeau1CjLzDs6e8H1LwojiE8fhxMfQO6HYt1FYPKow6TG+vHI8jjePVTFx9k1/PfHuTR39fPXG2fhaGelh22Si8OwEufEB6ITnXKjkJyPkSXT/Khu7aG8qdvCCY4/smjTS9E2obX1DL3we89Be+8AhytarEsaOUziNRaTSFa19JBTLSWSU47ediG50SmN3FciNOqpsVZk9T8SwTMhYrEwJDnX4P8ouGVBOPZGhddlt00bnfVQfQSm65NG7s4XKooV8doLP8kkwd4ZZt8ubMbbay78/nOQFudLjL8rr2aO8NnM2wqtFcLmXwcvZZTh4mDklgURuuJ8h4iFYpH8ic2w5SFxoJH2b2MO89hl05gT4cXP38tmy7EaHl0Zx4xQT8vlKbFNPMPAdxrs/Yc42Fz8qKYwwzPvGVYokZRFmx76OqF8n27XyL2FjQyaVS6dboW/1N38haRNt0QyEDuDwlYpkZx6lGcK91UL7Gdzd7QjxRZ++c+/D1pKoXiH5hAB7k5cNSOYzYer6OozXfgLJN+lcBug6i7aduTVEezpRGKwXHptE8y7F1QzHHpZcwhFUbhzUSTHKls5XnXWupusp8ErclQW5ueivqOXT7JruHFuGJ7OFl59svRxiFoqft+vf0bTLL+90cA/b5mNg52BGaEePLJihKX1EslIxCwHs0mo2wKTNIWI9nMlxNPJKufaZNGmh7I9YB6wiNW/u5MdcyKsdKA8eT00Foj5Po14uThIieRUpTQd7JwgfKGuMHuLmlgY42sb1ueJ14BbIBx4XleYu1Ij6eg1seVYtYUSm0IUfAHuwcJ8QiN9pkH2FDayMiEARcdyZMkkwidaFPKHXwGT9l2I188Nw9XByGv7zui2VR8R7rELHxy1hflIvJFVwYDZzA/TdBqQjITBCLe9B48eBH/t1vzhPi589e/L2PTAYuxt4ZotuThMXy0e0x7THEJRFNLi/MgsbrI6h2X5SdFD4Tawd4WIRZpDqKpKekEDS+L8rPdmc1giqXPR9tqUYCqbezhR3W6hxCRWQUm6+AzZO2kOUdncTUVzN0virFwaOYydA8z9objGNGv3cpoT4U1SsAev7yuXhyFjwdQPxbtg2hXChEEjB0qb6e4fZGWCFaooJOdm/v3QVQ+nPtYcwt3JnuvmhPJxdg3NXUPFX9YzYifg7Ns1x+0dGOTNrHJWJQQQ7Td6V70xYe8M3pG6wwR7OuPmqN11WzIFmXYZ/NsJ3eMUDy2P5YOHU7GWDVvDWGmVMAlQVTHPFnPpiMskR0tBXSe1bb3WOc82jFuAkEjqnGu7IllKJKccnfVQn6tbGplZLGQOada4n+1czL1bnGof3Hjh954DRVG4KzWSvNMdHChttmByNk5FpnDvGz7V1ciOU/U42hmsc9m75NzErgSfGN2d8DsXR9FvMvPOwUoxI5f7Acy5A5w8NMf86Fg1TV393DMeXTaJZDLgFa47RIy/G7H+blangJBFm1aaisWwcJxO18gCsUfp0ngrLtoAkq6FxnzdEslUKZGcWpR+LR51npplFDUR4O5IXICbBZKaJHgEQ+LVQ/bf2l2urpkViqez/XdlWJLzU/AlGB11/VyqqsrOvHrS4vxwdpCueDaFwSC6bZX7oTZbc5jpge4sjvHljaxyzAdeFM6RY7QwPxNVVXkpo4yEIHcWW7shk0Qi+R6yaNOKpaz+CxqID3Qn2NPZAklNIInXAIrubtvalCAqmrvJrZESySlByW5w8oTgSzSHUFWVfcWNpMb6Wt2p2QWZf7/YiXRis+YQzg5GbpoXxpe5pznd1mvB5GyYgi8hetmYlraeTXFDFxXN3VIaaatc8gOwd9Ft/3/n4kiaWlsxHdgozEd8tHfI9hY1kV/Xwb1Lom3vWiiRSGTRppmibeAbp+sC29Vn4mBpi/V32QDcA791kdTBFUlBGKVEcmqgqmKeLWqprqH7/LoOGjv7bUsaOUxkKgQkCxmWju7z7YsiGVRV3jpQYcHkbJTGImgu1u0auTOvDoAVsmizTZy9YOZNkLMZurVLjy9PCuRutywc+lth8SO6UtqYUYKfmwNXzwrRFUcikUxOZNGmhYEeKMuAuMt1hdlX3ET/oNm659nOJHk9NORBfZ7mEN6uDqTG+kqJ5FSgpRTaKoSFrw4yCm1wnm0YRYEF98HpHKg8oDlMpK8ry6f78/aBCvpN2ne/TQkKvhCP067QFWbHqXoSgtwJ9bJyFYXk3My/X+yLOvam5hB2Ctxv/yU55iiKnVM0xylu6GRXfgO3L4rEyV7KcSUSW0QWbVoo3wumXotY/bs4GJkX5W2hxCaYYYmkBVwky5ukRNLmKUkXj7pNSJrE3hVbvTlOuQkcPfWbHqRG0dDRxxe5py2UmI1S+CUEJOlyx2vrGeBQeQurEmWXzaYJmgERqXDwRTBrPAwp3olPTxmvmNfwepb2TvjLe0txMBq4fZF+V0eJRDI5kUWbFop2iL1SUWmaQ6iqyu6CelJjfXG0s5FTMfdAIefS7SIpJJKfSYmkbVOaDu4h4DdNc4iBQTP7S5pIsxWr/5FwdIPZt8HJj6CjTnOYS6f5E+nrwmuZZZbLzdbobRPL3nV22b4uaGDQrMp5tqnAgvuhpezbOfexkvU0uAVB8nW8f7iKrj7TmEO0dvfz/uFqrr0kBD837W7WEolkciOLNi0UboOoJWJXiUbKmrqpbO6xHWnkMEnroeEUNORrDuEjJZK2j9ksnCNjLtW1B+t4VStd/YOk2bql+vz7wDwAR17VHMJgULhjUSSHylvIrWmzYHI2RPFOMJt0W/3vzKvH28WeS8JtREUhOTeJV4uiS0snvD4PinfAgvv4Qeo0OvpMfHi0esxh3j5QSc/AIPcskTb/EoktI4u2sdJSBk2FuqWRu/OHrP6n29hJbJJlXCTXpART1tTNyVopkbRJ6k5Ad5NuaWRGYROKgu3bW/vGCqfaQy/B4IDmMDfODcfJ3sDr0v5/ZAq+AmdvCJuvOcSgWWV3fj0r4gMwWtvmVsnYMdrDvLuFOVlT8di+NutpodqZew9zIryYEerBa/vKxnRYOTBo5tXMMlJjfUkM1r7fTSKRTH5k0TZWinaIRwvMs8X4uRLh62KBpCYR7kEQsVj3XNuVUiJp25QOzbPp3M+2t7iR5BAPvFwcLJDUJGfBA9BRC3mfag7h6WLPdbND2XKsmrZu7cWfTWIehMKvxLXdaKc5zLHKFlq6B6Rr5FRi7g/BYCcOVUZLVxMcfwdm3QKuYl3JnYujKKjrZH/p6N0oPz9xmtPtvdwru2wSic0ji7axUrQdvCKE3b9GegcGySppYpmtSSOHSV4P9SehoUBzCB9XBxbH+PJZzmkpkbRFStLBbzp4aLem7u43cbSixTZdI0di2uXi2nPgRV1h7lgURe+AmfcOV1ooMRuh+gh0N+qWRu44VY/RoNju9V3yfdyDhBHX0dehv2t0X3P4JWFotvChb566ZlYIXi72vLavbFQhVFVlY0Yp0X6urIiXhwQSia0ji7axYOoXN5txl+uaw9lf2kzvgNk29rONhIVcJNekBFPa2MWp2g7L5CWZHJj6hQOrTmnkgdJmBgZV259nG8ZgFLNt5RlQl6s5TFKIB/OjvHk9qxyzWR6IfEPhl6AYIXalrjA78+qZH+WNp7O9hRKTWAULHhBGNjnvXfi9pn5x+BK7CgISvnnayd7IzfPC+TK3jtq2nguGOVLRQnZlK3enRWGQUlyJxOaRRdtYqMyCgS790sj8BhztDCyOsdE5HI9giFike67tyuRAKZG0RaoPwUC3bmlkZnETDkYD86N8LJSYFTD7DjEDc1Bnt21xFOVN3aQXNlgoMRug4AsIXwgu2n+eqlt7yDvdIV0jpyIRiyBwhijGLqQOyf0QOk/D4oe/99LtiyIxqypv77+w/f9LGWV4ONlx/ZwwrVlLJBIrQhZtY6FoOxjsIXqprjDpBfUsjPG17QWYSeuhPhcaCzWH8HVzZFGMj3SRtDVK0kExCAdWHewtamROpBfODjb8OTobFx+YcQNkb4KeVs1hVicH4e/uKO3/h2mrFgvMp1+pK8zOPGEwtTIh0BJZSawJRRH2/3U5UJF17vepKmQ9BX7xotN2FuE+LqyMD+CtA5X0m869+62qpZvPT9Ry64IIXB21z2BKJBLrQRZtY6FwO0QuBkd3zSEqm7spbuiyPav/s0m6RjxawEWypLGLvNNSImkzlKZD8CXCpU8jzV39nKxtnzrSyDNZcL/oVGa/rTmEg52BHyyIYHdBA+VNo5zBsWUKvxKPOufZduXVE+nrQqy/qwWSklgdKQh3tOQAACAASURBVDeCkyccfOHc76nYB7XZsOihc45Z3JkaRWNnH5+fOLfK5LV95SiKwl2pUTqTlkgk1oIs2kZLe43oHFnANRKw/aLNIwTCF1nERdKgICWStkJfJ1Qd1C2N3FfchKpC6lQxITmTkEuEJf3BF8W+O438YGEERkXhjSxp/0/Bl8LkxT9ec4ie/kH2FjWyIj4ARcfMs8SKcXCFS26Hkx9Bx+mR37PvKXFgNfPmc4ZZGudHlK8Lr51jNUdXn4m3D1Rw1YwgQry074uVSCTWhSzaRosFrf7DvJ2nxkls0rViH1djkeYQfm6OLIz2ZauUSNoG5ZliebFOE5K9xY24OdoxK8zTQolZGQsegKYiKNmlOUSghxNXzgjinYOV9PQPWjA5K2OgB0p2iy6bjmIrs7iRPpOZVYlynm1KM/9ecY07/Mr3X2suhbytMO8ecDj3uh+DQeGOxVEcLm/hRHXb915/71AlHb0muUxbIpliyKJttBRtA/cQCEjSHKLfZCazqJFLp/tPjZPYpGvF48kPdYVZMzOYkoYu8uukRNLqKU0Ho6MY2tdBZlEji2J8sDNO0UtY0rXg6g8HziPDGgV3LY6ivdfER8eqLZSYFVKWAaYei8yzuToYWRA9hYxxJN/HN1Y4TB96GQbP2oV44PkhF9j7LxjmhrlhONsbef2sbpvZrPJyZhmzI7yYE6FdYi6RSKyPKXrHM0YGTVC8G+JW6TqJPVzeQlf/oO1LI4fxDIWwBZD7ka4wq4clkselRNLqKUmHiIVgr13SU9XSTVlTN6lTcZ5tGDtHmHOXcDxs0S5vnB/lTUKQO6/tK5+6neyCL8DeBSK1G+OoqsrOvHqWTPPD0W4KGeNIRmbB/cId8tQn3z7X2w5HXofkDcJh+QJ4OtuzfnYoW45V09rd/83zO/LqKW/qlsu0JZIpiCzaRkP1Iehr0y2N3F1Qj71RmVpzOMnrhZtWU7HmEP7ujiyI9pESSWuns0H8LOiURmYWNQFMnaXa52Le3cKF89BGzSEUReHOxVGcrG3ncHmLBZOzElRVzLPFrAB7J81hTtV2UNvWyyrpGikBca/gHfXdTvjRN6C/Y0Sb/3Nx5+JI+kxm3j1U+c1zL2WUEuLpxOrkIAsmLJFIrAFZtI2Gou1i6WrMcl1h0vMbmBfpg9tUsucdlkjm6pNIrk0Jprihi4K6TgskJZkQyr4WjzHLdYXZW9yIn5sj0wPddKdk1XiGQcIacXo/cOFFvOdi/ewQ3J3szml6YNPUn4K2St3SyF35wup/ecIUUVFIzo/BCPPuhYpMOH0CzIOw/1mISIWQ2aMOkxjswYIoH97IqmDQrJJb08a+kibuSo2autJwiWQKIz/1o6FwG4QvAGcvzSHq2nvJO93BpfFT7Je6Z5hwutPrIjkjCEWBrdJF0nopSQdHT2H3rxFVVdlb1ERanO/UmAu9EAsegJ5mOPGB5hAuDnbcODecz3JqqW/vtWByVkDBF+Jx2hW6wuw4VcfMME8C3LV36yQ2xuzbwc5J2P/nbYXWcmHzP0buTI2kormb9IJ6Xsoow9neyC3zI8YhYYlEMtmRRduF6GyA2mNink0H6flTxOp/JJLWi8W1OiSSAe5OLIjykdb/1kzJbrFQ26i901xQ10ljZ9/U3M82ElFLwT9BGBzokA7fsTgSk1nl7QOVF36zLVHwJQTPGtWM0blo6uzjaGUrKxOka6TkDFx8xN624+/Cnr+BVyQkrB1zmCuTgwhwd+RfO4r4JLuGG+eF4eliPw4JSySSyY4s2i5E8U7xaAGr/0APRxKCtC/mtlq+cZHUZ0iydmYwRfWdFEoXydGhqsJERyemQbP+WcKjb4iTZh372XoHBnlyl1gfkRrnqy8fW0FRYP594mCp+rDmMNF+riyb7s9bB8oZGNS++82q6G6GqgO6F2rvzm9AVZHzbJLvs+B+GOgWn8+FDwrZ5BixNxr4wcIIjlW20j9o5u40aUAikUxVZNF2IYq2CWvtoFmaQ5gGzewpbJg6Vv9n4xUOofN0SyRXS4nk2Nj9J/hLLJz8WHMIs1ll/dN7ufrJDEobu8YewNQPW38GHz0C0cvgkh9oyqOmtYebn9vHJ9k1/Ptl0wnzPveOoynHrFvAwV1023Rw1+JI6tr7+Cq3zkKJTXKKtoNqhmk6rf7z6/F3dyQ5xMNCiUlshuBZEL5QfD5n3645zA8WRGBvVFiVEEC03xTY8SqRSEZEFm3nwzwolmrHrgKD9n+q7KpW2ntNXDp9CstnktdDbbZYLqqRAHcn5kuJ5Ojo64SsZ8Up77t3wGc/h4GxzyulFzZworqdgtOdrPvXnrHt8+o4Da9eLWY6Fj8Kt38IjmPvNO8rbuLqJzIobujiuTvm8thl08Ycw6ZxdBfFcO6HQs6tkeXxAYT7OPPqvjKLpaYbU5+u72mYxs4+egfOWiBe8IU4kBuDMcTZDAya+Tq/gZXxARgMU/BATnJhNrwAd30MTtqL+gAPJ966fxF/2pBiwcQkEom1IYu281F7TAz567X6z2/AoMCSqWxR/o1EUl+3bW1KMAV1nRTVS4nkeTm+SaypuONDWPSI6MJsvAwai8YU5pW9ZQS4O7Lt8WUkBnvw2KZj/Mfm4/T0D57/CysPwHOXwunjcP1GuPIPY55lU1WVF/eUcPvG/Xi52LPlkTSulDbXIzP/PhjshyOvag5hNCjcvjCSA6XN5J1ut2ByGjH1wavXwD9nCRMbjRTVd7Dir7tZ/9ReGjr6xJODJtFpm3alrgO5g2XNdPSZWJk4hQ/kJOfHOxJC5+gOMz/KhwAPaXQjkUxlZNF2Pop2AArErtQVJr2ggTkR3lN7eNgrAkLnQq6+ou2qYYnk8dMWSswGUVXY/5zoIESmweo/wq2boK0Knr9UDMaPguKGTtILGrh9USSRvq5semARj6yI5d3DlVzzZAYFI80Wqioc3AgvrxF7r+7dBik3jPlb6Okf5N/eOcbvt57issQAtjySRlzAFLf4Px/+08X+u8OvCIWARm6aF46jnYE3syosl5sWVBU+fRwqs4Shw5s3Qv4XYw7T1j3Afa8ewt5ooLypm5ue20dNaw9U7ofeNv1W/3n1OBgNU/tATiKRSCQXBVm0nY/CbeKEzFW76UFjZx/Hq9qmpmvk2SStF91LPRJJDyfmR0qJ5Hkp2QWNBWLwfXiGMv4qeDADglLgg/thyyPQf/4Ztdcyy3AwGrh1gbCXtjMa+PmVCbx2zwJauvu55skMNh2o+NakZKAXPn4Utj4udrE9sBuCZow5/Yqmbq57ei8fZ9fw8yvjeea2ubg7TeEDj9Ey94di51jJbs0hvF0duGpGEFuOVX9fTngxyXoGjr0Bl/4H/OhrCEyCd24b02oD06CZR946QnVrDy/cOZfX711AY0cfNz67j7bsT8BgD7ErdKW5I6+ehTE+uE6l3ZsSiUQimRBk0XYuupuh+pBuaWRGYSPA1NvPNhIWcpFckxJEfl0HRfVy0faI7H9OzOokX/fd5z3D4K5PYdnP4dib8PwKqDs5Yoj23gE2H65i3axg/N0dv/Pa0mn+fPbYUuZGevPLD3L4yaZjdNaXwctXCZfIZT+HH7wDzt5jTn13fj1XP5lBbVsvL/9wPo+siJOzQqMlYa34Nz/6uq4wN80Lp6PXxBcnJqibXbQDvvoNJKyDS38pOm13fgxhC+D9e8XP2Cj4w2enyChq5A/XpTA30od5UT68df8iuvtNNB39hO6QRZpmLIcpa+yipKGLVdLqXyKRSCQXAVm0nYuS3cJZTEfR1tTZxwdHq/F1dWBGiKflcrNWvCMhZI7uubarUoJRFGS3bSSaisXuqXn3gJ3j91832sHK/xSzbj0t8MIKIak7y9J/86EquvoHuTt1ZHvpAHcnXrtnIT+7YjqNOdsZeHoZgw0FcPObIv4Yra1VVeWpXUXc/cpBgj2d+OTRJSyPlzfDY8LOEWbeLBb5djdrDrMoxpdwH2feOTgBO9sai2Dz3RCQBNc99+28mZMH3P6+6OB+9AjsP79T5jsHK3h5bxn3Lonmpnnh3zyfEubJB7eGEEMVT1bHcqK6TXOqO/PqAVgprf4lEolEchGQRdu5aCoGFz8xhzUG+kyDfJ5Ty32vHmLhH3fwdUEDN88Pl92CYZLXQ81RaCnTHCLQw4l5kd6yaBuJgy+KgmnePed/X+wKeGgvRCyGTx6DzfdArzCfMJtVXt1XxtxIb1LCzn3YYFTgUeeveMvxT7Qpbqzp/m9ebk4e8063jt4BHnzjMH/5Mp+rZ4bwwcOpRPhKS39NzL5DGJIcf0dzCINB4aa54ewraaK8ScOaB630tMLbt4DBDm55CxzPmmF0cBGzmQnr4POfw57/GzHMwbJm/nPLCZZN9+dXVyV87/Xo5r0AHLJfwK3PZ3H4/2/vvsOjqvI/jr9POiUhhFDS6L0mEKpgAQsKCirFhqgouNbVte5PXeuurm0t2EAFQQXsiggqgiA99BJASiChCySUAGnn98cdkJKEyU0kE/J5PU8eZu69c+bM44mZ7z3nfL+b3AW4v6zeScMalTVWRUTkjDht0GaMCTHGzDfGLDXGrDTGPOU5PsoYs9EYs8TzE+85bowxrxtj1hljlhljip82qTSc9yDct8KrGQNrLUtS03n86xV0/PdU/vbxIpalpTOkaz2m/P1cHup56heHcqvElkhGsXr7ftbv0hLJY47sd5aOtbgSQr3Isli5BtzwJfR4wvnv8W432LKI6Wt3sml3Jjd1qVvwa7MOwhe3wpR/YppeRpV7fiO2UTxPfbeKoWMWkp6Z5VWX1+08QN/hs/g5eSeP927Oa9fEUzFI+4Ncq9XSSUCzaMwps6dF0S8xFj8Dny9MK8HOFSIv11n6uHcjDBzrzMrnJyAY+o+CVv1h6lMw9ekTPmfa3kxuH7OQuKoVeePaBAL88/kTt3YyVGvE/+64isjQYG4YOZ9Z6/4oUncPHMlh3sbdWhopIiJnjDczbUeA7tbaNkA80NMY08lz7kFrbbznZ4nn2KVAI8/PUODtku70GRNYodDTW9MPMXzaOi585Vf6Dp/FhKRUzm1UndG3dGD2I9159LJmNKnlfs/EWalqXedLZbGzSEYBMGmZZtuOWToOjuxzEpB4y88Puv0Dbp7kpEF//2K2Tn6FmqFB9GxZQOC3ZwO8fzGs+MIJ+AaMoWrVCEYOTuTx3s2ZvmYnl70287QzGFNWbqfv8FmkZ2YzdkhHhnStVz6Lz5e0hEGwc6Uzo+1SVJUKnNu4Op8vTCM3z33w57WfnnBS8Pd6Gep0Kfxa/0Bn6WTbwTDzZZj8COTlcfBIDrd9tJCs3DxGDE6kSoV8ktccOQApv0HjS4gOr8D4YZ2oHVGRm0ct4OdV3hcV/+33XWTnWroraBMRkTPktEGbdRydzgj0/BT2V7wP8JHndXOBcGNMVPG76hsys3L4clEa14+cyzkv/MKLU9ZQrVIwz1/VigWPXcjr1yZwXuPq+d/hFUfzvrB1Eezd5LqJWlWcJZLfa4mkIy/PSUAS0w5iE4v++tqd4PaZHKh9ATekv8OnYa8TeCT91Ot+/xneO98pH3DD507A5wm0jDEM6VqPL/7WhQB/Pwa8O5fh09aRd9KX/tw8y0tT1jBszEIaVK/Ed3d3pXMD9xla5SSt+kFASLETkgxMjGNbxmFm/F784taFWvwxzHkTOgxzMmB6w88fLn/NqUE47x3st3fz4IRFrNm+jzeva0uD6gWUh9gw3Vk+6kn1XyM0hHFDO9G0Vii3j13Id0u3evX2U5N3EhYSQLs6RU+2IyIi4oZXkYUxxt8YswTYCfxkrZ3nOfWcZwnkq8aYo1kPYoDjd7CneY6VWXl5ljnrd/PAZ0tp/+zP3D9hKZv3ZHJP90b8+uD5TLi9M9d0qE2Y0pJ7p0Vf598SWiK5QUskYf0vsPv3os2ynaxiBC9UeYJnc2+k3t458E5X2DTHOWctzHgJPu4HVWo76fwLSNLTOjacifd0pWfLWrw4ZQ2DP5x/rKhxRmY2Q0Yv4M1p6xiYGMf4YZ2JDi98RluKKKSKswx5+eeQlem6mR7NahJRKYgJf2VCks3zYOLfnQQjl/y7aK81xinaft7DmCVjuXTt4/xfz4aFl1dZOxmCw5y9nB5VKwXx8a0daVu7KveOW8yEpMI/b16eZdqanZzXpIZuzomIyBnj1V8ca22utTYeiAU6GGNaAo8CTYH2QATwsOfy/NY3nTIzZ4wZaoxJMsYk7dr1F9/JdWnjHwd5+cc1dPvvNK4dMZfJK7bTu3U0E4Z15tcHLuC+ixpTp1ql0u5m2VO1LkTFl0AWSWf5nhKSAPPegco1nVlMlzIOZfPF4i1ktL4VM+RH8A+CUb3g1//C+Bvgl2ecWZwhP0JE/lkljwoLCeTNaxP495WtmL9xD5e9PpPxCzZzxfDfmLXuD567siXPX92KkMCiZZkULyUMcpbKJn/ruomgAD+uTIjh5+Qd7D5wpAQ755GR5oyrKrHQ70Mns2lRGcOkyJv5d/a1XO4/l1u2POHUC8xPXp5Te7NhD2eJ5XFCQwIZfUsHzmkYyUOfL2PUrIJrSS7fksEfB7K0n01ERM6oIt0mtNamA9OBntbabZ4lkEeAD4EOnsvSgLjjXhYLnLLmxFr7nrU20VqbWL2679Uwe+WntVzw0nSGT1tHgxqVee2aeBb834W80K81HepFKBtkcbXoC1sWQvpm101EValAuzpV+X55KdWT8hV/rIN1P0HiEAgIct3MZ0mpZGblMrhLXaeo/LAZzn+nac/Bmh/gkv/AVSOcLH5eMMZwXcfafHPXOYSFBPDwF8s5nJ3LuKGdub5jHe1f+yvV7QpV63ld06wgA9vHkZ1r+WrxlhLqmEdWJoy7DrIPORkhK0a4ambl1gz+MWEpSTGDyO75ImbtZPhkQP6F47cvhQPbodEl+bZVIcifkYMTubh5TZ78bhXDp63L97qpq3fiZyh8Rk9ERKSEeZM9sroxJtzzuAJwIbD66D4143zz6gus8LzkW+BGTxbJTkCGtbbMTYV0axTJI5c2Zc6jPfjolg70iY+hQpBmBUrM0Rmh5Z8Xq5nLWkWRvG0fa3fsL4FOlVHz3wO/QEi82XUTuXmWj+ZsokPdCFrGeNL8h4TB1e9D/9Fwy2TofMex/WtF0bRWGN/d3ZVn+rTgu7u7ah/QmWAMJNwAKTOdxDEuNa4ZSnxcOBOSUotcyqFA1sI3d8C2ZdDvA6jexFUzu/Yf4bbRSYRXDOSdQe0I7DQU+r7tfOYxV8Hhk2qwrZ0CGGh0UYFtBgf4M/z6tvSJj+bFKWv47+TVp3zuX1bvoG3tqlSt5P4GiYiISFF5M9MWBUwzxiwDFuDsaZsIfGyMWQ4sByKBZz3XTwI2AOuAEcAdJd7rM6B93QhuP68BNcNCSrsrZ6eIelDvXJg/AnK8Sw+fn77x0QQH+PHBbwUvZzqrHd4HSz6Gllc7KfxdmrZ6J5v3ZHLTOXVPPGGMM9sW1yHf13mrYlAAgzrXpUaofp/OmPjrwPiVyGzb2h0HWJKaT2IaN2a8BCu/gouegsYXu2riSE4ut49dyJ7MLEbcmPjnuIq/zllquWUhjL4cDu7+80Vrp0Bse6gUWWjbgf5+vDIgnms7xPHW9PU89d2qY8l0duw7zIot++jeTEsjRUTkzPIme+Qya22Ctba1tbaltfZpz/Hu1tpWnmM3HM0w6Vkyeae1toHnfNJf/SGkjOpyD+zf6nyBc6la5WD6tYvly8VbjiW7KFeWfAJZB6Dj0GI18+HsjURVCeHi5jVLqGNS6sKioeFFzhjJzXHdTO/WUVQI9D9tgg6vJH8H056F1tc4v/8uWGt5/OsVLNy0l5f6t/lzZvioFn2d4ty71sCoy2DfNti/w8lY62WQ6O9n+PeVrRjStR6jZqfw8BfLyM2zTFu9E0Cp/kVE5IxT6ispPQ0vhOpNYc4bxSoEPKRrPbJz8xgz130JgTIpLw/mvwuxHZxU/y6t3bGfWet2M6hzHWXDO9u0HQT7t8H6qa6bCA0JpFfrKL5buo3MLPfBH9tXwJfDICbRSdfvck/jh7NSmJCUxj3dG9K7dXT+FzW+GK7/3El28uGlkPS+53hPr9/HGMNjvZpxT49GfLYwjXvHLWbKyu3EhFegSU3V3xQRkTNL39Ck9BgDne+E7cth46+um6lfvTI9mtZkzJwUDmXlllz/fN26n539Sh2HFauZUbNTCA7w45r2tUuoY+IzGl0CFSNh0UfFamZAYhwHjuTwvdti9gf/gE+vdfZJXvMxBLpbJjtj7S6e/X4Vl7Soyd8vbFz4xfW6wY3fwKE98OsLEBYDNVsW6f2MMdx/UWP+eVlTJi7bxrQ1u+jetIaS6IiIyBmnoE1KV6sBUKkGzH6zWM0MPbc+ezOz+WJRWgl1rAyY9w6ERjk1uVzKyMzmy0Vp9I2PIUKJFc4+AUHQ5hqnPtkB96VV2tetSv3ISnyW5OL3KycLxg+CgzudZYuhtVz1YcOuA9z1ySIa1wzllQHx3mXwjU2Em753ymG06u96dm/ouQ14pm9LggL8uLxNAbN7IiIifyEFbVK6AkOgw1AnZf3OZNfNtK9blTaxVXj/t43HkgacUYf3wcYZMPdtJwW/S9szDjN5xXbGzEnhwJFClqLtWusseUscckrNqaIYn7SZw9l5Tpp/OTu1vRHycmDZONdNGGPonxjH/JQ9RStmby1MegA2z4Y+w51SEi5kHMrm1o+SCPD3Y8SNiVQKLkJNt1qt4P5k6PGEq/c+alCnOqx48hI61HNXnkBERKQ4XFQzFSlh7YfAzJdhzpvOFzsXjDHc2q0+d3+6mJ+Td3BxC3d3872Smw07VsKWJNiyyMlUt2sNx2rIV3oFbpsK4YUvN9x3OJvlaRksSU1naWo6S9PS2bHvz2QqU1fvZOSNifnvM5v/nlP8ut1N7j9GnmX07E10rBdB8+gw1+2Ij6vexNn3uGgMdL7L9WzT1e1ieOnHNUxISuORS5t696L5I2DRaOh6v1OY3YXcPMs9ny5m8+5MPr61I3ER3tUJPIFfyZRrCQrQfU4RESkdCtqk9FWMcFJ1Lx4D3Z+AUHcZDC9tWYuY8AqMnLmx5II2a519Y0eDsy0LYdtSyPUEVxUjnSVYLa92ZhGCw2BsP/h4AAyZAiFOZrusnDxWb9/H0tR0FnuCtPW7/iwAXD+yEl0aRNImtgpt4sJZviWDJ75ZyZPfreSZPi1P3ENzOMPJCNiyH1R2X+D35+QdbEk/xOO9m7luQ8qItoPg27shbYHr8g01QkO4oEkNvliUxgMXNz590poN02HyI9D4Uuj+uKv3BHj+h2R+XbuL/1zVio71q7luR0REpCxT0Ca+ofOdkPQBLBgB3R9z1USAvx+3dK3HMxNXsSQ1nfi48KI3cmCXkxr8aIC2ZSEc2uucC6wIUfHQ4TYnW2NMO2c27aSZCzvwIxh7NbveH8g7sS+wKO0Aq7buIys3D4DIysHEx1XhyoQY2sSF0zomnCoVT1zimFC7Klv2HuLdGRuoW60St3ar/+fJxWMh+2Cx0/yPmpVCTHgFLmymNP9nvRZXwg+POAlJilFzb2D7OH5O3sG0Nbu4qLDyEHtTYMJgiGwMV48AP3czVF8tTmPEzI0M7lyHazsoUY6IiJRfCtrEN1RrAE17wYKR0PU+CKrkqpmB7eP4389rGTFzA8OvK8L+mSWfwPT/QPpm57nxgxrNodnlTorymHZOeQL/gn9l8vIs//xqOZOWH+GS7Ft4cdd7NN/5L1ZGPcTN59SlTVw4beLCia4S4lX2uYd7NmXznkyem5RMXERFLmlRC/JynaWRcZ0gOsH7z3eS1dv3MWfDbh65tKnS/JcHwaFO4LbyK+j5PARXdtXM+U2qE1k5mPELUgsO2vJyndT+1sK1nzrv7cLm3Zk89tUKOtaL4LHezV21ISIicrZQ0Ca+o/NdsHqiE0B1uM1VE5WDA7iuQ21GzNxA6p5M7/a/7E2Bifc5QVmHoU6AFtWmyIHjhKRUxi1I5fI20SQ2vJvd20Lot+h1+rU8zwlEi8jPz/DKgHi2jpjLveMWM2FYZ1ofnOP0t8e/itze8UbPTiEk0I9r2scVqx0pQ9oOgiVjYdXXkHCDqyYC/f24ul0MI2duZOf+w9QIzSd1/2+vQupcuGoERNRz9T45uXncN2EJfn6GVwfGE6gbCyIiUs7pL6H4jtqdnFmtuW85d+tduumcuvgZw4ezUk5/sbXww8Ng/J36UV3uhjpdihyw7TmYxfOTV9OhbgSvXxPPwPa1qdb7KWev289POjMcLlQI8mfkjYlUqxTMkNFJHP7tLQiNdmYAXdp7MIuvFm/hyoQYwisqzX+5EdcRqjVyEpIUw4DEOHLzLF8u2nLqyS2LnBnrllc7KfZdenv6ehZu2suzfVsSHV6hGL0VERE5OyhoE99hDHS5y0n8sWaS62aiqlTg8jbRjF+wmYxD2YVfvGaSU8Pq/EegSqzr93z+h2QOHM7hmb7HJQ3x84M+bzlLGb8cBqnzXbVdPTSYUTe3Jzp7EyGpMziccHMx0/ynKs1/eWSMM9uWOtcpGeFSg+qVaV+3KhMWpGLtceU1sjLhy6FOTbReL7vOUrk0NZ3Xpv7OFW2i6RMf47qfIiIiZxMFbeJbml7uJPcoZrHtW7vV42BWLp/O31zwRVkHnVm2Gs2h099cv1dSyh4mJKUxpGs9mtQ6af9OYIhTUDgsGj69FvZsdPUejWqG8k6jJI7YQO5bF0+2J6lJUeXk5jFmzia6NKhG01pK81/utLkW/AKcTK3FMCAxjg1/HCRp094/D/70OOz+Hfq+BRWqumo3MyuH+8YvoXpoMM/0aVmsPoqIiJxNFLSJb/EPgE53OrMBqQtcN9MiugrnNKzGqFkpZOUUEODMeBEyUqHXK65nrnJy83js6xVEBgbL7wAAEm9JREFUVwnhnh6N8r+oUjW4/nOnwPEnA/7MRlkUh/YSlfI1W+J688OGbB7/esWJsxxeOprm/ybNspVPlWtA456w9FOn3qBLvVpHUTk4gPELUp0Dv//kJBHqfBfUP991u/+elMzG3Qd5eUCbUzKqioiIlGcK2sT3JNzg1Deb80axmrm1W3227zvMxGVbTz25czXMfgPir4c6nV2/x6jZKazevp8nLm9BpeBC8vpENnRm3PZshPGDICeraG+0eCxkZ1K/1/3ceUEDxi1I5d0ZG4rc3w9npRBbtQI9lOa//EoYBAd3wdoprpuoGBTA5W2i+H7ZNg7s2Qbf3Ak1WhSrHtu01TsZO3czt3atR5cGka7bERERORspaBPfE1wZ2t0Myd85mRJdOr9xdRrVqMyImRtPnJWyFiY9AEGV4aKnXbe/LeMQr/60lguaVOeSFl4EQXXPgT7DIWUmfHev0w9vHE3zX+cciGrNPy5qQu/WUTz/w2omLd/mdX9Xbd3HvI17GNy5Lv5+7vYbyVmg4YVQuZZzI6AY+ifGcSg7h/Txdzizx1e95ywHdmH3gSM8+PkymtYK5YFLmhSrXyIiImcjBW3imzoOczI6zn3bdRPGGG7rVp/kbfuYvX73nyeWTXACpwv/BZXc39F/dmIyOXmWp65o6VXdNQDaDITzH4Wln8CMl7x7zdrJTv24jsMApxTAS/3b0K5OVe4bv4RFm71bbjlq9kYqBPozIFFp/ss1/wCIvxZ+/xH2b3fdTEJcOHeFzyV2xy/Q4wmo5W4PmrWWR75czr5D2fzvmniCA/xd90lERORspaBNfFNYNLTq56Qnd7MHzKNPQjSRlYN57+hSwkPp8OP/ObXY2t7kut1f1+7i++XbuOuChtSu5kUtuOOd9zC0HgjTnoVln53++nnvQFgsNOl17FBIoD/vDWpHzbAQbhudROqezEKb2HMwi6+XbOWqtjHaKyTOEkmb69REdMns3ci92SOZnduc3+vf6Lqd8QtS+WnVDh7q2UTJcURERAqgoE18V+c7IfsgJH3ouongAH8Gd67Dr2t3sXbHfvjlWcjc7SQf8XM3/A9n5/Kvb1ZQL7ISQ8+rX/QGjIEr3nCWO35zB2yaU/C1O1bBxhnQ4VZnhuQ41SoH8+HN7cnJs9z04XwyMgtOLPHp/M1k5eQpAYk4qjVwxt/isd4v0z1ebg58OQz/gEAezruD8Un51GzzQsofB3l64iq6NKjGLee4K8QtIiJSHihoE99Vq5WTiW7+e0VP3HGcGzrVISTQjx9+/MHJcNf+NoiOd93eu79uIGV3Jk/3aeF+KVdAMAwc65Q3GHcd7F6f/3Xz3oGAEGg7ON/TDapX5t1B7di8J5Pbxy7MN1Nmdm4eY+duomvDSBrVDM2nFSmXEgbBnvWwaXbRX/vbq5A2H7/er9KyWXO+XLyl4CytBcjJzeO+CUsI8DO8PKANftpnKSIiUiAFbeLbutwN+7fBii9cN1G1UhAD2kbT/ff/kFsxErr/n+u2Uv44yPDp6+jdOopujaq7bgeAihFw/WfOzNvH/SFzz4nnM/c4++9aD3CuLUCn+tV44erWzNmwm39+tfyUUgA/rtzBtozDmmWTEzXvA0GhRa/ZtmUhTP8PtOoPrfoxoH0cew5mMTV5R5GaGT5tPYs3p/Pcla2IqlKhaH0QEREpZxS0iW9r0MMpfj37DXfLuDzuDZ9FK78N/BB9t1NOwAVrLU98u5Igfz8e793cdV9OEFHfKQWQkQbjroecI3+eW/QR5ByCDsNO28xVbWO5t0cjPl+YxvBp6044N2r2RmpHVOSCpjVKps9ydgiqCK2uhpVfw+F93r0m6yB8ORRCo+AyJ5HOuY2qUysshAlJqV6/9ZLUdF7/5Xf6xkdzeZtoN70XEREpVxS0iW8zxtnbtnMlbJjmro0DO6k293mSQxJ4bH1TMrNyXDUzecV2Zqzdxf0XNaZmmLvU5vmq3Qn6vgWbZ8M3dznBaW6Os5Szbjevs/L9/cJGXJkQw0s/ruWbJc4eoxVbMliQspcbO9dRmn85VcKNzo0Bb2eyf3zMWcp75dtQIRwAfz9Dv3ax/Lp2F9szDp+2icysHO4bv4SaocE81cddxkkREZHyRkGb+L5W/aFyTZj9prvX//QEZGeS2/NF0g/l8MXCtCI3ceBIDk99t4pmUWHc2LmOu34UplU/pzDx8gkw/XlYMwkyUo+l+feGMYbnr25Fh7oRPPjZMhak7GHU7BQqBvnTX2n+JT8xbZ2ZbG+WSK6dAkkfQJe7oN65J5wakBhHnoXPF55+tu3Z75NJ2X2QlwfEU6WCMpmKiIh4Q0Gb+L6AYOgwFNZPhR0ri/balN9g6adwzj20aJNIfFw4I3/bSG5e0ZZavj71d7bvO8yzfVsS4P8X/dp0+wfE3wC/Pg8/PARVakPjS4vURHCAP+8OakdM1QoM/SiJb5du5eq2sfpyLPkzxklIsmWhk6m0IAd2wTd3Qs2Wzs2Fk9SuVpHO9asxISmNvEJ+t6Ym7+CTeZsZ2q0+nRtUK4lPICIiUi4oaJOyIfEWCKwIc4Z7/5qcLPj+H06Gxm4PHCu2vWl3Jj+t8j5pwurt+3j/t41c0z6OdnWquui8l4yB3q86sxj7t+Wb5t8bVSsF8eFN7QHIysljcJe/YGZQzh6tB4JfYMGzbdbCd/fA4Qy46j3nJko+BraPY/OeTOZu3J3v+T8OHOHhL5bRLCqM+y9uXFK9FxERKRcUtEnZUDECEm5wsinu3+7da+a+BbtWw6UvOkkXgEta1CQuogIjZ27wqom8PMtjX60gLCSAh3s2ddt77wUEwYAx0PMFpzSBS3UjK/HJbZ147Zp4GtZQmn8pRKVq0LQXLB13YiKcoxZ95CzXvfBJqNmiwGZ6tqxFaEgAExacukTSWssjXyxj3+Ec/jcw3n2pDBERkXJKQZuUHZ3+Bnk5MO/d01+bngq/vgBNekGTnscOB/j7ccs59UjatJdFm/eetpkvFqWRtGkvj17ajKqVgorTe+9VCIdOtx8LNN1qFhVGn/iYEuqUnNUSBsGhPbDmhxOP714Pkx+FeudBx78V2kRIoD994qP5YcV2Mg6dWOj90/mp/Jy8k4d7NqVJLd1EEBERKSoFbVJ2RNSHZr2dZAhZBwu/dvIjzrKuS58/5dSAxDjCQgJOO9uWnpnFf35YTbs6VenXLrY4PRfxbQ0ugLDYE5dI5uY46f39A6Dv2+B3+j8XAxNrcyQnj2+Xbj12bOMfB3lm4iq6NozkZtUKFBERcUVBm5QtXe6Bw+mw+OOCr1k7BVZPhPMecvaznaRScADXd6rD5BXb2bw7s8Bm/jtlDRmHsnm2b0v8lC5fzmZ+/hB/Hayb6tQMBJj5MmxJcvZZVvFuxrZlTBjNosKOLZHMzs3j7+OXEBTgx0v92+j3SERExCUFbVK2xHWA2A4wdzjk5Z56PisTJj0IkU2g810FNnNTl7r4+xk+mLUx3/OLN+/l0/mbualLXZpFhZVU70V8V8L1gIUln0BakrO8uNUAaHm1100YYxiYGMvyLRms2rqPN39Zx9LUdJ67siW1qpRgbUMREZFyRkGblD1d7oK9Kc5s2sl+ewXSN0Gvl52kHgWoGRbC5W2imZCUSkbmiftvcnLzeOzrFdQIDea+i5TlTsqJqnWdvWuLxjjLIsOi4bIXi9xM34QYggL8eGbiKt6cto6rEmLo3Tq65PsrIiJSjihok7KnaW/nC+bJxbb/+B1mveakMK/X7bTN3NatPplZuXw8f9MJx8fO3cTKrft4oncLKgcXPeW+SJnV9kbI2Ax7NsCV7zhJcYoovGIQl7SoxZwNu6kVFsKTfQrOOCkiIiLeUdAmZY+fP3S6E9Lmw+Z5zjFrYdIDEFABLnrGq2aaRYXRrVEko2alkJWTB8DOfYd5+ce1dGsUyWWtav1Vn0DENzXt7SwtPv9RqNvVdTM3dalLjdBgXhnQhrAQFXYXEREpLgVtUjYlXA8h4TDnDef5yi9hw3To8TiE1vS6mVu71Wfn/iPHst09NymZIzl5PN2nJcYoaYKUM4EhcOc8OP/hYjXTrk5V5v2zBx3rVyuhjomIiJRvCtqkbAqqBIm3QPJE2LYUJv8TouKdY0VwbqNImtQMZeTMDcxa9wffLNnK7ec3oF5kpb+o4yI+roRuVuimh4iISMlR0CZlV8dh4BcAo6+AAzug9yvO0skiMMZwa7d6rN6+nzs+XkSdahW54/wGf1GHRURERESKTkGblF2htaD1AKduW+ItENPOVTNXxEdTPTSYjEPZPHlFC0ICixb4iYiIiIj8lZQaT8q28x5ykpD0eNx1E8EB/jx9RQvW7jjABU1qlGDnRERERESKz1hrC7/AmBBgBhCME+R9bq39lzGmHjAOiAAWAYOstVnGmGDgI6AdsBsYaK1NKew9EhMTbVJSUnE/i4iIiIiISJlkjFlorU3M75w3yyOPAN2ttW2AeKCnMaYT8ALwqrW2EbAXGOK5fgiw11rbEHjVc52IiIiIiIi4cNqgzToOeJ4Gen4s0B343HN8NNDX87iP5zme8z2M0oiJiIiIiIi44lUiEmOMvzFmCbAT+AlYD6Rba3M8l6QBMZ7HMUAqgOd8BqBiPSIiIiIiIi54FbRZa3OttfFALNABaJbfZZ5/85tVO2XjnDFmqDEmyRiTtGvXLm/7KyIiIiIiUq4UKeW/tTYdmA50AsKNMUezT8YCWz2P04A4AM/5KsCefNp6z1qbaK1NrF69urvei4iIiIiInOVOG7QZY6obY8I9jysAFwLJwDSgn+eywcA3nsffep7jOf+LPV2KShEREREREcmXN3XaooDRxhh/nCBvgrV2ojFmFTDOGPMssBh433P9+8AYY8w6nBm2a/6CfouIiIiIiJQLpw3arLXLgIR8jm/A2d928vHDQP8S6Z2IiIiIiEg5V6Q9bSIiIiIiInJmKWgTERERERHxYQraREREREREfJiCNhERERERER+moE1ERERERMSHGV8ooWaM2QVsKu1+5CMS+KO0OyFSDBrDUtZpDEtZpzEsZZ3G8JlTx1pbPb8TPhG0+SpjTJK1NrG0+yHilsawlHUaw1LWaQxLWacx7Bu0PFJERERERMSHKWgTERERERHxYQraCvdeaXdApJg0hqWs0xiWsk5jWMo6jWEfoD1tIiIiIiIiPkwzbSIiIiIiIj5MQVsBjDE9jTFrjDHrjDGPlHZ/RE7HGPOBMWanMWbFcccijDE/GWN+9/xbtTT7KFIYY0ycMWaaMSbZGLPSGHOv57jGsZQJxpgQY8x8Y8xSzxh+ynO8njFmnmcMjzfGBJV2X0UKYozxN8YsNsZM9DzX+PUBCtryYYzxB4YDlwLNgWuNMc1Lt1cipzUK6HnSsUeAqdbaRsBUz3MRX5UD/MNa2wzoBNzp+X+vxrGUFUeA7tbaNkA80NMY0wl4AXjVM4b3AkNKsY8ip3MvkHzcc41fH6CgLX8dgHXW2g3W2ixgHNCnlPskUihr7Qxgz0mH+wCjPY9HA33PaKdEisBau81au8jzeD/Ol4YYNI6ljLCOA56ngZ4fC3QHPvcc1xgWn2WMiQV6ASM9zw0avz5BQVv+YoDU456neY6JlDU1rbXbwPlCDNQo5f6IeMUYUxdIAOahcSxliGdp2RJgJ/ATsB5It9bmeC7RdwrxZf8DHgLyPM+rofHrExS05c/kc0xpNkVEzgBjTGXgC+Dv1tp9pd0fkaKw1uZaa+OBWJyVO83yu+zM9krk9IwxvYGd1tqFxx/O51KN31IQUNod8FFpQNxxz2OBraXUF5Hi2GGMibLWbjPGROHc+RXxWcaYQJyA7WNr7ZeewxrHUuZYa9ONMdNx9meGG2MCPLMV+k4hvuoc4ApjzGVACBCGM/Om8esDNNOWvwVAI0+2nCDgGuDbUu6TiBvfAoM9jwcD35RiX0QK5dk78T6QbK195bhTGsdSJhhjqhtjwj2PKwAX4uzNnAb081ymMSw+yVr7qLU21lpbF+e77y/W2uvR+PUJKq5dAM9dhv8B/sAH1trnSrlLIoUyxnwKnA9EAjuAfwFfAxOA2sBmoL+19uRkJSI+wRjTFZgJLOfP/RT/xNnXpnEsPs8Y0xonUYM/zo3xCdbap40x9XGSmkUAi4EbrLVHSq+nIoUzxpwPPGCt7a3x6xsUtImIiIiIiPgwLY8UERERERHxYQraREREREREfJiCNhERERERER+moE1ERERERMSHKWgTERERERHxYQraREREREREfJiCNhERERERER+moE1ERERERMSH/T9vRknLXO4KQQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Naive forecasting\n", - "naive_forecast = np_ts[split_time - 1:-1]\n", - "plt.plot(naive_forecast)\n", - "plt.plot(x_valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "41.72727272727273" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Calculate our Mean Average Error as a baseline\n", - "errors = naive_forecast - x_valid\n", - "abs_errors = np.abs(errors)\n", - "mae = np.mean(abs_errors)\n", - "mae" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dense Model Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Utils\n", - "\n", - "def window_dataset(series, window_size, batch_size=32,\n", - " shuffle_buffer=1000):\n", - " dataset = tf.data.Dataset.from_tensor_slices(series)\n", - " dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True)\n", - " dataset = dataset.flat_map(lambda window: window.batch(window_size + 1))\n", - " dataset = dataset.shuffle(shuffle_buffer)\n", - " dataset = dataset.map(lambda window: (window[:-1], window[-1]))\n", - " dataset = dataset.batch(batch_size).prefetch(1)\n", - " return dataset\n", - "\n", - "def model_forecast(model, series, window_size):\n", - " ds = tf.data.Dataset.from_tensor_slices(series)\n", - " ds = ds.window(window_size, shift=1, drop_remainder=True)\n", - " ds = ds.flat_map(lambda w: w.batch(window_size))\n", - " ds = ds.batch(32).prefetch(1)\n", - " forecast = model.predict(ds)\n", - " return forecast" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "3/3 [==============================] - 0s 82ms/step - loss: 271.8661 - mae: 272.3661 - val_loss: 505.8083 - val_mae: 506.3083\n", - "Epoch 2/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 264.9019 - mae: 265.4019 - val_loss: 484.3098 - val_mae: 484.8098\n", - "Epoch 3/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 252.7449 - mae: 253.2449 - val_loss: 459.5409 - val_mae: 460.0409\n", - "Epoch 4/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 240.2713 - mae: 240.7713 - val_loss: 445.2593 - val_mae: 445.7593\n", - "Epoch 5/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 234.7380 - mae: 235.2380 - val_loss: 439.4569 - val_mae: 439.9569\n", - "Epoch 6/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 232.3914 - mae: 232.8914 - val_loss: 434.1690 - val_mae: 434.6690\n", - "Epoch 7/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 229.5039 - mae: 230.0039 - val_loss: 428.0587 - val_mae: 428.5587\n", - "Epoch 8/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 226.1541 - mae: 226.6541 - val_loss: 420.4857 - val_mae: 420.9857\n", - "Epoch 9/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 221.9135 - mae: 222.4135 - val_loss: 410.7528 - val_mae: 411.2528\n", - "Epoch 10/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 216.5273 - mae: 217.0273 - val_loss: 398.2069 - val_mae: 398.7069\n", - "Epoch 11/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 209.5912 - mae: 210.0912 - val_loss: 382.1219 - val_mae: 382.6219\n", - "Epoch 12/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 200.5868 - mae: 201.0868 - val_loss: 361.0789 - val_mae: 361.5789\n", - "Epoch 13/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 188.9043 - mae: 189.4043 - val_loss: 332.4605 - val_mae: 332.9605\n", - "Epoch 14/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 172.7329 - mae: 173.2329 - val_loss: 293.5743 - val_mae: 294.0743\n", - "Epoch 15/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 150.6249 - mae: 151.1249 - val_loss: 239.6270 - val_mae: 240.1270\n", - "Epoch 16/500\n", - "3/3 [==============================] - 0s 18ms/step - loss: 119.5182 - mae: 120.0182 - val_loss: 163.1781 - val_mae: 163.6781\n", - "Epoch 17/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 75.0523 - mae: 75.5523 - val_loss: 62.0292 - val_mae: 62.5292\n", - "Epoch 18/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 29.5400 - mae: 30.0355 - val_loss: 87.7864 - val_mae: 88.2864\n", - "Epoch 19/500\n", - "3/3 [==============================] - 0s 19ms/step - loss: 48.2491 - mae: 48.7487 - val_loss: 125.9318 - val_mae: 126.4318\n", - "Epoch 20/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 57.6143 - mae: 58.1143 - val_loss: 90.4777 - val_mae: 90.9777\n", - "Epoch 21/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 33.2537 - mae: 33.7454 - val_loss: 51.3877 - val_mae: 51.8832\n", - "Epoch 22/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 26.7287 - mae: 27.2281 - val_loss: 63.7683 - val_mae: 64.2683\n", - "Epoch 23/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 35.8266 - mae: 36.3216 - val_loss: 58.0335 - val_mae: 58.5335\n", - "Epoch 24/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 27.6385 - mae: 28.1216 - val_loss: 50.9082 - val_mae: 51.3875\n", - "Epoch 25/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 24.6842 - mae: 25.1842 - val_loss: 62.9936 - val_mae: 63.4859\n", - "Epoch 26/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 28.3220 - mae: 28.8167 - val_loss: 61.9798 - val_mae: 62.4798\n", - "Epoch 27/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 26.2102 - mae: 26.7068 - val_loss: 50.7160 - val_mae: 51.2160\n", - "Epoch 28/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 22.5669 - mae: 23.0600 - val_loss: 49.6758 - val_mae: 50.1758\n", - "Epoch 29/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 24.4321 - mae: 24.9220 - val_loss: 49.2939 - val_mae: 49.7939\n", - "Epoch 30/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 23.1372 - mae: 23.6315 - val_loss: 49.9636 - val_mae: 50.4636\n", - "Epoch 31/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.6659 - mae: 23.1559 - val_loss: 52.5233 - val_mae: 53.0233\n", - "Epoch 32/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.9460 - mae: 23.4310 - val_loss: 49.7654 - val_mae: 50.2647\n", - "Epoch 33/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 22.3227 - mae: 22.8192 - val_loss: 48.2324 - val_mae: 48.7324\n", - "Epoch 34/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 22.2731 - mae: 22.7657 - val_loss: 47.9464 - val_mae: 48.4464\n", - "Epoch 35/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.3831 - mae: 22.8741 - val_loss: 47.6719 - val_mae: 48.1719\n", - "Epoch 36/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.0527 - mae: 22.5487 - val_loss: 47.6310 - val_mae: 48.1310\n", - "Epoch 37/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 22.3382 - mae: 22.8329 - val_loss: 48.8708 - val_mae: 49.3708\n", - "Epoch 38/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 21.9270 - mae: 22.4125 - val_loss: 47.1424 - val_mae: 47.6424\n", - "Epoch 39/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 21.8263 - mae: 22.3203 - val_loss: 46.5738 - val_mae: 47.0738\n", - "Epoch 40/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 21.9597 - mae: 22.4534 - val_loss: 46.2974 - val_mae: 46.7974\n", - "Epoch 41/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 21.6622 - mae: 22.1520 - val_loss: 46.2643 - val_mae: 46.7643\n", - "Epoch 42/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 22.0928 - mae: 22.5886 - val_loss: 46.5074 - val_mae: 46.9889\n", - "Epoch 43/500\n", - "3/3 [==============================] - 0s 16ms/step - loss: 21.3585 - mae: 21.8580 - val_loss: 45.4746 - val_mae: 45.9721\n", - "Epoch 44/500\n", - "3/3 [==============================] - 0s 15ms/step - loss: 21.4842 - mae: 21.9802 - val_loss: 45.2174 - val_mae: 45.7174\n", - "Epoch 45/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 21.3711 - mae: 21.8637 - val_loss: 45.2161 - val_mae: 45.7161\n", - "Epoch 46/500\n", - "3/3 [==============================] - 0s 23ms/step - loss: 21.2700 - mae: 21.7659 - val_loss: 46.5541 - val_mae: 47.0541\n", - "Epoch 47/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 21.3453 - mae: 21.8391 - val_loss: 45.4600 - val_mae: 45.9600\n", - "Epoch 48/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 21.1439 - mae: 21.6319 - val_loss: 45.3669 - val_mae: 45.8612\n", - "Epoch 49/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.9301 - mae: 21.4204 - val_loss: 44.5570 - val_mae: 45.0570\n", - "Epoch 50/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.9137 - mae: 21.4112 - val_loss: 43.6219 - val_mae: 44.1196\n", - "Epoch 51/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 20.9056 - mae: 21.4037 - val_loss: 43.5163 - val_mae: 44.0163\n", - "Epoch 52/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.7782 - mae: 21.2708 - val_loss: 43.8434 - val_mae: 44.3434\n", - "Epoch 53/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.5193 - mae: 21.0175 - val_loss: 43.6874 - val_mae: 44.1874\n", - "Epoch 54/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.4962 - mae: 20.9962 - val_loss: 43.1953 - val_mae: 43.6953\n", - "Epoch 55/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.3569 - mae: 20.8524 - val_loss: 43.0371 - val_mae: 43.5371\n", - "Epoch 56/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.3203 - mae: 20.8173 - val_loss: 43.1354 - val_mae: 43.6354\n", - "Epoch 57/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.4946 - mae: 20.9881 - val_loss: 44.3989 - val_mae: 44.8989\n", - "Epoch 58/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.3857 - mae: 20.8857 - val_loss: 42.9665 - val_mae: 43.4665\n", - "Epoch 59/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.2082 - mae: 20.7028 - val_loss: 41.3625 - val_mae: 41.8612\n", - "Epoch 60/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.1148 - mae: 20.6113 - val_loss: 41.5026 - val_mae: 42.0026\n", - "Epoch 61/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 20.0211 - mae: 20.5187 - val_loss: 43.2069 - val_mae: 43.7047\n", - "Epoch 62/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 20.0685 - mae: 20.5667 - val_loss: 42.7780 - val_mae: 43.2549\n", - "Epoch 63/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.7746 - mae: 20.2746 - val_loss: 41.1488 - val_mae: 41.6488\n", - "Epoch 64/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.4789 - mae: 19.9751 - val_loss: 39.9085 - val_mae: 40.4085\n", - "Epoch 65/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 19.8853 - mae: 20.3800 - val_loss: 39.9053 - val_mae: 40.4053\n", - "Epoch 66/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.7656 - mae: 20.2585 - val_loss: 41.1507 - val_mae: 41.6507\n", - "Epoch 67/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.4631 - mae: 19.9609 - val_loss: 41.0337 - val_mae: 41.5337\n", - "Epoch 68/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.2458 - mae: 19.7441 - val_loss: 39.9247 - val_mae: 40.4247\n", - "Epoch 69/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.2395 - mae: 19.7385 - val_loss: 38.9186 - val_mae: 39.4186\n", - "Epoch 70/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.3983 - mae: 19.8928 - val_loss: 39.7305 - val_mae: 40.2305\n", - "Epoch 71/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 19.0110 - mae: 19.5035 - val_loss: 39.9783 - val_mae: 40.4783\n", - "Epoch 72/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 19.1222 - mae: 19.6220 - val_loss: 40.0905 - val_mae: 40.5905\n", - "Epoch 73/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 18.9902 - mae: 19.4902 - val_loss: 39.0536 - val_mae: 39.5536\n", - "Epoch 74/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 18.7837 - mae: 19.2693 - val_loss: 38.5736 - val_mae: 39.0736\n", - "Epoch 75/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.7511 - mae: 19.2363 - val_loss: 38.4372 - val_mae: 38.9372\n", - "Epoch 76/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.6280 - mae: 19.1121 - val_loss: 38.9946 - val_mae: 39.4946\n", - "Epoch 77/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.6835 - mae: 19.1806 - val_loss: 39.0065 - val_mae: 39.4861\n", - "Epoch 78/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 18.4926 - mae: 18.9872 - val_loss: 38.1479 - val_mae: 38.6479\n", - "Epoch 79/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.3852 - mae: 18.8801 - val_loss: 37.4041 - val_mae: 37.9041\n", - "Epoch 80/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.3213 - mae: 18.8059 - val_loss: 37.5607 - val_mae: 38.0607\n", - "Epoch 81/500\n", - "3/3 [==============================] - 0s 9ms/step - loss: 18.2718 - mae: 18.7639 - val_loss: 37.8740 - val_mae: 38.3740\n", - "Epoch 82/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.1646 - mae: 18.6609 - val_loss: 37.9984 - val_mae: 38.4984\n", - "Epoch 83/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.1353 - mae: 18.6335 - val_loss: 37.8383 - val_mae: 38.3383\n", - "Epoch 84/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.0452 - mae: 18.5438 - val_loss: 36.8255 - val_mae: 37.3253\n", - "Epoch 85/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.8956 - mae: 18.3945 - val_loss: 36.6914 - val_mae: 37.1914\n", - "Epoch 86/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.3186 - mae: 18.8141 - val_loss: 37.3418 - val_mae: 37.8415\n", - "Epoch 87/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.6991 - mae: 18.1915 - val_loss: 34.9576 - val_mae: 35.4576\n", - "Epoch 88/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 18.1341 - mae: 18.6273 - val_loss: 35.0580 - val_mae: 35.5580\n", - "Epoch 89/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.5359 - mae: 18.0238 - val_loss: 37.1074 - val_mae: 37.6072\n", - "Epoch 90/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.5872 - mae: 18.0816 - val_loss: 38.0691 - val_mae: 38.5691\n", - "Epoch 91/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.6661 - mae: 18.1650 - val_loss: 36.0530 - val_mae: 36.5530\n", - "Epoch 92/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.1835 - mae: 17.6716 - val_loss: 33.9970 - val_mae: 34.4970\n", - "Epoch 93/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.6034 - mae: 18.0928 - val_loss: 34.3608 - val_mae: 34.8608\n", - "Epoch 94/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.3103 - mae: 17.7935 - val_loss: 37.7342 - val_mae: 38.2342\n", - "Epoch 95/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.5027 - mae: 18.0026 - val_loss: 36.7959 - val_mae: 37.2959\n", - "Epoch 96/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.0857 - mae: 17.5775 - val_loss: 34.3730 - val_mae: 34.8730\n", - "Epoch 97/500\n", - "3/3 [==============================] - ETA: 0s - loss: 19.1238 - mae: 19.611 - 0s 10ms/step - loss: 17.2126 - mae: 17.7044 - val_loss: 32.9452 - val_mae: 33.4330\n", - "Epoch 98/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.2318 - mae: 17.7153 - val_loss: 34.6835 - val_mae: 35.1748\n", - "Epoch 99/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.8614 - mae: 17.3483 - val_loss: 36.6522 - val_mae: 37.1378\n", - "Epoch 100/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 17.3502 - mae: 17.8424 - val_loss: 35.1961 - val_mae: 35.6961\n", - "Epoch 101/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.8471 - mae: 17.3378 - val_loss: 34.6734 - val_mae: 35.1734\n", - "Epoch 102/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 16.5688 - mae: 17.0639 - val_loss: 32.1836 - val_mae: 32.6748\n", - "Epoch 103/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.9663 - mae: 17.4598 - val_loss: 32.4516 - val_mae: 32.9516\n", - "Epoch 104/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.5369 - mae: 17.0333 - val_loss: 36.0674 - val_mae: 36.5674\n", - "Epoch 105/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 17.0327 - mae: 17.5302 - val_loss: 36.1704 - val_mae: 36.6704\n", - "Epoch 106/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.5939 - mae: 17.0920 - val_loss: 32.8386 - val_mae: 33.3386\n", - "Epoch 107/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.6553 - mae: 17.1535 - val_loss: 31.5060 - val_mae: 31.9889\n", - "Epoch 108/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.5042 - mae: 16.9990 - val_loss: 33.1242 - val_mae: 33.6242\n", - "Epoch 109/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.1900 - mae: 16.6787 - val_loss: 33.6231 - val_mae: 34.1122\n", - "Epoch 110/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.1753 - mae: 16.6708 - val_loss: 33.0998 - val_mae: 33.5998\n", - "Epoch 111/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.2847 - mae: 16.7735 - val_loss: 32.2187 - val_mae: 32.7187\n", - "Epoch 112/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 16.0797 - mae: 16.5720 - val_loss: 33.2867 - val_mae: 33.7867\n", - "Epoch 113/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.0323 - mae: 16.5299 - val_loss: 32.4003 - val_mae: 32.8967\n", - "Epoch 114/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.9859 - mae: 16.4697 - val_loss: 31.4558 - val_mae: 31.9558\n", - "Epoch 115/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.9755 - mae: 16.4663 - val_loss: 31.3526 - val_mae: 31.8526\n", - "Epoch 116/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8411 - mae: 16.3298 - val_loss: 32.8375 - val_mae: 33.3375\n", - "Epoch 117/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8607 - mae: 16.3526 - val_loss: 32.5154 - val_mae: 33.0154\n", - "Epoch 118/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.8319 - mae: 16.3224 - val_loss: 32.3623 - val_mae: 32.8623\n", - "Epoch 119/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.9133 - mae: 16.4119 - val_loss: 32.2506 - val_mae: 32.7506\n", - "Epoch 120/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.8105 - mae: 16.3001 - val_loss: 30.3848 - val_mae: 30.8669\n", - "Epoch 121/500\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 11ms/step - loss: 15.7665 - mae: 16.2566 - val_loss: 31.5247 - val_mae: 32.0247\n", - "Epoch 122/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.7876 - mae: 16.2771 - val_loss: 34.1970 - val_mae: 34.6970\n", - "Epoch 123/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8239 - mae: 16.3205 - val_loss: 29.7869 - val_mae: 30.2848\n", - "Epoch 124/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.9011 - mae: 16.3986 - val_loss: 28.9909 - val_mae: 29.4909\n", - "Epoch 125/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.8517 - mae: 16.3455 - val_loss: 30.7543 - val_mae: 31.2543\n", - "Epoch 126/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.5239 - mae: 16.0134 - val_loss: 34.1309 - val_mae: 34.6309\n", - "Epoch 127/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.7893 - mae: 16.2857 - val_loss: 30.1250 - val_mae: 30.6233\n", - "Epoch 128/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.3611 - mae: 15.8502 - val_loss: 28.4716 - val_mae: 28.9716\n", - "Epoch 129/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 16.0946 - mae: 16.5899 - val_loss: 28.5204 - val_mae: 29.0204\n", - "Epoch 130/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.7102 - mae: 16.1992 - val_loss: 31.5259 - val_mae: 32.0259\n", - "Epoch 131/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.3707 - mae: 15.8659 - val_loss: 29.9592 - val_mae: 30.4472\n", - "Epoch 132/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 15.2737 - mae: 15.7658 - val_loss: 28.3643 - val_mae: 28.8641\n", - "Epoch 133/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.3008 - mae: 15.7899 - val_loss: 28.7894 - val_mae: 29.2894\n", - "Epoch 134/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.1524 - mae: 15.6482 - val_loss: 30.1518 - val_mae: 30.6473\n", - "Epoch 135/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 15.3034 - mae: 15.7975 - val_loss: 29.6749 - val_mae: 30.1725\n", - "Epoch 136/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 15.0980 - mae: 15.5870 - val_loss: 30.3176 - val_mae: 30.8175\n", - "Epoch 137/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.0165 - mae: 15.5116 - val_loss: 28.1953 - val_mae: 28.6764\n", - "Epoch 138/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.1979 - mae: 15.6835 - val_loss: 27.6566 - val_mae: 28.1566\n", - "Epoch 139/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.1651 - mae: 15.6626 - val_loss: 29.0283 - val_mae: 29.5283\n", - "Epoch 140/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 15.0798 - mae: 15.5734 - val_loss: 29.3383 - val_mae: 29.8264\n", - "Epoch 141/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 14.9361 - mae: 15.4313 - val_loss: 27.4836 - val_mae: 27.9836\n", - "Epoch 142/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 14.9442 - mae: 15.4325 - val_loss: 28.3182 - val_mae: 28.8182\n", - "Epoch 143/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.7955 - mae: 15.2919 - val_loss: 30.7510 - val_mae: 31.2491\n", - "Epoch 144/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 15.1375 - mae: 15.6374 - val_loss: 29.7002 - val_mae: 30.1981\n", - "Epoch 145/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.8991 - mae: 15.3927 - val_loss: 27.1630 - val_mae: 27.6513\n", - "Epoch 146/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.7542 - mae: 15.2471 - val_loss: 27.6312 - val_mae: 28.1167\n", - "Epoch 147/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.5373 - mae: 15.0353 - val_loss: 30.2205 - val_mae: 30.7103\n", - "Epoch 148/500\n", - "3/3 [==============================] - ETA: 0s - loss: 17.0996 - mae: 17.586 - 0s 10ms/step - loss: 14.9651 - mae: 15.4599 - val_loss: 29.5434 - val_mae: 30.0390\n", - "Epoch 149/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.9066 - mae: 15.4036 - val_loss: 28.7087 - val_mae: 29.1977\n", - "Epoch 150/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.6904 - mae: 15.1818 - val_loss: 26.7065 - val_mae: 27.2065\n", - "Epoch 151/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 14.5668 - mae: 15.0590 - val_loss: 26.9992 - val_mae: 27.4989\n", - "Epoch 152/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 14.2906 - mae: 14.7808 - val_loss: 28.6841 - val_mae: 29.1602\n", - "Epoch 153/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 14.5521 - mae: 15.0520 - val_loss: 28.3887 - val_mae: 28.8703\n", - "Epoch 154/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.5371 - mae: 15.0309 - val_loss: 26.9168 - val_mae: 27.4012\n", - "Epoch 155/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2325 - mae: 14.7125 - val_loss: 26.4789 - val_mae: 26.9789\n", - "Epoch 156/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2306 - mae: 14.7230 - val_loss: 26.2296 - val_mae: 26.7251\n", - "Epoch 157/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2055 - mae: 14.6994 - val_loss: 26.4162 - val_mae: 26.9162\n", - "Epoch 158/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.1233 - mae: 14.6037 - val_loss: 26.7106 - val_mae: 27.2050\n", - "Epoch 159/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.1513 - mae: 14.6509 - val_loss: 26.2702 - val_mae: 26.7702\n", - "Epoch 160/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.0933 - mae: 14.5728 - val_loss: 25.7251 - val_mae: 26.2251\n", - "Epoch 161/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2326 - mae: 14.7241 - val_loss: 25.9112 - val_mae: 26.4102\n", - "Epoch 162/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9938 - mae: 14.4826 - val_loss: 25.8764 - val_mae: 26.3760\n", - "Epoch 163/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9258 - mae: 14.4081 - val_loss: 25.7677 - val_mae: 26.2677\n", - "Epoch 164/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9365 - mae: 14.4278 - val_loss: 25.7941 - val_mae: 26.2941\n", - "Epoch 165/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.9082 - mae: 14.4004 - val_loss: 25.5379 - val_mae: 26.0379\n", - "Epoch 166/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.7699 - mae: 14.2561 - val_loss: 26.1703 - val_mae: 26.6693\n", - "Epoch 167/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 14.2743 - mae: 14.7743 - val_loss: 27.4281 - val_mae: 27.9280\n", - "Epoch 168/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.8726 - mae: 14.3636 - val_loss: 25.3624 - val_mae: 25.8624\n", - "Epoch 169/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.6295 - mae: 14.1056 - val_loss: 24.9379 - val_mae: 25.4379\n", - "Epoch 170/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.8635 - mae: 14.3519 - val_loss: 25.2571 - val_mae: 25.7571\n", - "Epoch 171/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.6091 - mae: 14.1021 - val_loss: 25.7598 - val_mae: 26.2459\n", - "Epoch 172/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9167 - mae: 14.4151 - val_loss: 25.4713 - val_mae: 25.9483\n", - "Epoch 173/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.7429 - mae: 14.2412 - val_loss: 25.3295 - val_mae: 25.8043\n", - "Epoch 174/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.6755 - mae: 14.1702 - val_loss: 24.7941 - val_mae: 25.2941\n", - "Epoch 175/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4613 - mae: 13.9426 - val_loss: 25.0830 - val_mae: 25.5649\n", - "Epoch 176/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.5731 - mae: 14.0710 - val_loss: 25.5703 - val_mae: 26.0697\n", - "Epoch 177/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4171 - mae: 13.9110 - val_loss: 24.7032 - val_mae: 25.2032\n", - "Epoch 178/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.3789 - mae: 13.8668 - val_loss: 24.3128 - val_mae: 24.8128\n", - "Epoch 179/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 13.3512 - mae: 13.8412 - val_loss: 25.4260 - val_mae: 25.9260\n", - "Epoch 180/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.3688 - mae: 13.8645 - val_loss: 26.1222 - val_mae: 26.6222\n", - "Epoch 181/500\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 10ms/step - loss: 13.5694 - mae: 14.0694 - val_loss: 25.8322 - val_mae: 26.3154\n", - "Epoch 182/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.2000 - mae: 13.6992 - val_loss: 24.1472 - val_mae: 24.6472\n", - "Epoch 183/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4243 - mae: 13.9072 - val_loss: 23.8955 - val_mae: 24.3892\n", - "Epoch 184/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.0042 - mae: 13.5026 - val_loss: 25.4790 - val_mae: 25.9790\n", - "Epoch 185/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.9159 - mae: 14.4128 - val_loss: 28.5987 - val_mae: 29.0987\n", - "Epoch 186/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.5712 - mae: 14.0610 - val_loss: 24.1575 - val_mae: 24.6534\n", - "Epoch 187/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.3716 - mae: 13.8569 - val_loss: 23.7050 - val_mae: 24.2049\n", - "Epoch 188/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.2427 - mae: 13.7220 - val_loss: 24.5271 - val_mae: 25.0270\n", - "Epoch 189/500\n", - "3/3 [==============================] - 0s 9ms/step - loss: 13.1849 - mae: 13.6804 - val_loss: 27.2852 - val_mae: 27.7852\n", - "Epoch 190/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 13.4474 - mae: 13.9412 - val_loss: 24.7319 - val_mae: 25.2319\n", - "Epoch 191/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.8934 - mae: 13.3921 - val_loss: 23.4282 - val_mae: 23.9282\n", - "Epoch 192/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.8833 - mae: 13.3780 - val_loss: 23.4374 - val_mae: 23.9126\n", - "Epoch 193/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.8670 - mae: 13.3577 - val_loss: 24.2055 - val_mae: 24.6851\n", - "Epoch 194/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.9455 - mae: 13.4392 - val_loss: 23.8033 - val_mae: 24.3033\n", - "Epoch 195/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5873 - mae: 13.0811 - val_loss: 24.5168 - val_mae: 25.0168\n", - "Epoch 196/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.7155 - mae: 13.2154 - val_loss: 24.3160 - val_mae: 24.8159\n", - "Epoch 197/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.6164 - mae: 13.1046 - val_loss: 23.5825 - val_mae: 24.0824\n", - "Epoch 198/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5246 - mae: 13.0162 - val_loss: 23.2989 - val_mae: 23.7989\n", - "Epoch 199/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5449 - mae: 13.0365 - val_loss: 23.5102 - val_mae: 24.0057\n", - "Epoch 200/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5623 - mae: 13.0530 - val_loss: 23.5566 - val_mae: 24.0554\n", - "Epoch 201/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.3288 - mae: 12.8123 - val_loss: 22.8634 - val_mae: 23.3439\n", - "Epoch 202/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.6252 - mae: 13.1189 - val_loss: 22.9295 - val_mae: 23.4295\n", - "Epoch 203/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5140 - mae: 13.0104 - val_loss: 23.4423 - val_mae: 23.9394\n", - "Epoch 204/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 12.4381 - mae: 12.9298 - val_loss: 23.1390 - val_mae: 23.6390\n", - "Epoch 205/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.2462 - mae: 12.7399 - val_loss: 22.5807 - val_mae: 23.0807\n", - "Epoch 206/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.6462 - mae: 13.1349 - val_loss: 22.8647 - val_mae: 23.3647\n", - "Epoch 207/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.4039 - mae: 12.8931 - val_loss: 25.0346 - val_mae: 25.5346\n", - "Epoch 208/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.5314 - mae: 13.0235 - val_loss: 23.3902 - val_mae: 23.8899\n", - "Epoch 209/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 12.1288 - mae: 12.6203 - val_loss: 22.2594 - val_mae: 22.7430\n", - "Epoch 210/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 12.7364 - mae: 13.2315 - val_loss: 22.4439 - val_mae: 22.9439\n", - "Epoch 211/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 12.1403 - mae: 12.6304 - val_loss: 24.4633 - val_mae: 24.9633\n", - "Epoch 212/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 12.3521 - mae: 12.8416 - val_loss: 23.1292 - val_mae: 23.6169\n", - "Epoch 213/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 11.7764 - mae: 12.2669 - val_loss: 22.1143 - val_mae: 22.6143\n", - "Epoch 214/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.4722 - mae: 12.9703 - val_loss: 22.0392 - val_mae: 22.5392\n", - "Epoch 215/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.3456 - mae: 12.8430 - val_loss: 23.6137 - val_mae: 24.1137\n", - "Epoch 216/500\n", - "3/3 [==============================] - 0s 14ms/step - loss: 12.2469 - mae: 12.7366 - val_loss: 23.5710 - val_mae: 24.0710\n", - "Epoch 217/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 12.2427 - mae: 12.7362 - val_loss: 22.2466 - val_mae: 22.7466\n", - "Epoch 218/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.9867 - mae: 12.4813 - val_loss: 22.4064 - val_mae: 22.9064\n", - "Epoch 219/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.7876 - mae: 12.2822 - val_loss: 22.6816 - val_mae: 23.1816\n", - "Epoch 220/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.6494 - mae: 12.1382 - val_loss: 23.2191 - val_mae: 23.7186\n", - "Epoch 221/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.8760 - mae: 12.3710 - val_loss: 22.5545 - val_mae: 23.0545\n", - "Epoch 222/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 11.5640 - mae: 12.0553 - val_loss: 22.1304 - val_mae: 22.6304\n", - "Epoch 223/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.7733 - mae: 12.2692 - val_loss: 22.0229 - val_mae: 22.5229\n", - "Epoch 224/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.7202 - mae: 12.2202 - val_loss: 22.4809 - val_mae: 22.9809\n", - "Epoch 225/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.6541 - mae: 12.1474 - val_loss: 22.6033 - val_mae: 23.0880\n", - "Epoch 226/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.3586 - mae: 11.8457 - val_loss: 21.8460 - val_mae: 22.3460\n", - "Epoch 227/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.9701 - mae: 12.4633 - val_loss: 21.6155 - val_mae: 22.1155\n", - "Epoch 228/500\n", - "3/3 [==============================] - 0s 13ms/step - loss: 11.7680 - mae: 12.2612 - val_loss: 22.4829 - val_mae: 22.9693\n", - "Epoch 229/500\n", - "3/3 [==============================] - 0s 11ms/step - loss: 11.4631 - mae: 11.9514 - val_loss: 22.2543 - val_mae: 22.7543\n", - "Epoch 230/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.4029 - mae: 11.8874 - val_loss: 22.1904 - val_mae: 22.6904\n", - "Epoch 231/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.3520 - mae: 11.8395 - val_loss: 21.7819 - val_mae: 22.2819\n", - "Epoch 232/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.4524 - mae: 11.9376 - val_loss: 22.1132 - val_mae: 22.6132\n", - "Epoch 233/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2629 - mae: 11.7553 - val_loss: 22.1095 - val_mae: 22.6095\n", - "Epoch 234/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2789 - mae: 11.7637 - val_loss: 22.0426 - val_mae: 22.5426\n", - "Epoch 235/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2404 - mae: 11.7320 - val_loss: 21.8242 - val_mae: 22.3242\n", - "Epoch 236/500\n", - "3/3 [==============================] - 0s 10ms/step - loss: 11.2075 - mae: 11.6967 - val_loss: 22.0701 - val_mae: 22.5679\n", - "Epoch 237/500\n", - "3/3 [==============================] - 0s 12ms/step - loss: 11.2869 - mae: 11.7650 - val_loss: 22.1825 - val_mae: 22.6594\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "keras = tf.keras\n", - "\n", - "# Create Windowed Datasets\n", - "window_size = 20\n", - "train_set = window_dataset(x_train, window_size)\n", - "valid_set = window_dataset(x_valid, window_size)\n", - "\n", - "# Simple Dense Model Forecasting\n", - "model = keras.models.Sequential([\n", - " keras.layers.Dense(10, activation=\"relu\", input_shape=[window_size]),\n", - " keras.layers.Dense(10, activation=\"relu\"),\n", - " keras.layers.Dense(1)\n", - "])\n", - "\n", - "optimizer = keras.optimizers.SGD(lr=1e-5, momentum=0.9)\n", - "model.compile(loss=keras.losses.Huber(),\n", - " optimizer=optimizer,\n", - " metrics=[\"mae\"])\n", - "early_stopping = keras.callbacks.EarlyStopping(patience=10)\n", - "model.fit(train_set, epochs=500,\n", - " validation_data=valid_set,\n", - " callbacks=[early_stopping])" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXxV93nn8c+5ulrQhvYNhAQCIcQiFoGxsLENxmsSx0kdO4njNXHSOuk002mTzqSdTtq0adNkstvj1HbsJLazNN5is9hgMJuNJMwisQihBbTvK2i9Z/44ulgYLVfibpK+79fLryPO/Z17HrWRdJ/z+z3PzzBNExEREREREfFPNl8HICIiIiIiIqNT0iYiIiIiIuLHlLSJiIiIiIj4MSVtIiIiIiIifkxJm4iIiIiIiB9T0iYiIiIiIuLH7L4OACAuLs5MT0/3dRgiIiIiIiI+UVhY2GSaZvxIr/lF0paenk5BQYGvwxAREREREfEJwzAqR3tNyyNFRERERET8mJI2ERERERERP6akTURERERExI8paRMREREREfFjStpERERERET8mJI2ERERERERP6akTURERERExI8paRMREREREfFjStpERERERET8mJI2ERERERERP6akTURERERExI8paRMRERER8RctZTDQ6+soxM8oaRMRERER8Qed9fDTdfDs7dbXIkOUtImIiIiI+IOqQ+Doh5oj8ItNUFfk64jETyhpExERERHxAwPnDtFPIHs3/hpMBzxzK5Rs93VY4geUtImIiIiI+IHO0oMUOdJ46C3Yv+l3ELsQXrwPDv4cTNPX4YkPKWkTEREREfG1wQHCmo5TZCxiSXIEj/6xig82vwBZd8L2v4M3/jsM9vs6SvERJW0iIiIiIj5mNhQTZPbQl7SaXz68jqTIEB76TTElN/wMrvs6FDwDv7kHLrb5OlTxASVtIiIiIiI+VlO0F4DkZRuJCw/mV49eQ5DdxgPPFFCd+w246+dQsQ+e3mJtCyAzipI2EREREREfaztzkCYzknUrVwKQGhPK84+so7tvgC88/T4tmffAA69AdyP8YjNUHvRxxOJNStpERERERHwssvkI5cFLiIsIuXRuSXIk//lALlWtF3n4l/l0J6+HL+6E0Bh4/hNw5EUfRizepKRNRERERMSHGhrqSB2sYjAl94rXrlkQy08/u4rjVW38+W8O0zd7PnzxbZi3Hl75Cuz8J3A4fBC1eJOSNhERERERHzqRvxuAlGXXjfj6LUuT+NdPLefdkkb+x++P4giOgvv/CKsfhL3/AX94CPoueC9g8Tq7rwMQEREREZnJ2s4cwIFB6rINo465d+08mrv7+Pdtp4kND+IfPpaN8fEfQVwm7PgWtJ2Hz74IEUlejFy8RTNtIiIiIiI+0tM/SEzrURpD5mOEzB5z7J/fkMEjG+bz7P4Kfr77LBgG5H0V7nsBGk9bDUrqjnspcvEmJW0iIiIiIj5ysLSJ5ZTiSFkz7ljDMPjWnUv45MoUvrf9NC8dOme9kHUHPLINMOHpW+H0Vs8GLV6npE1ERERExEeOHCsk2ugiLmv0pZHD2WwG37snhxsy4/mfLx9ne3Gd9ULyCvjSLojPhBc/Cwd/7sGoxduUtImIiIiI+IBpmnSesfZbC0y7xuXrAgNsPHH/albMjeJrL37Ae2XN1gsRSfDQm5B1J2z/O23CPY0oaRMRERER8YGTtZ2k9ZykPyAU4hdP6NrQIDvPPrSWeTGhfOm5Ak7UdFgvBIXCDd+wvq4+7OaIxVeUtImIiIiI+MDOk/WsspVizlkNtoAJXx8dFsTzj6wjPMTOg88e4lzzUNv/+CwICIK6Y26OWHzFpaTNMIwowzD+YBjGKcMwThqGca1hGDGGYbxlGMaZoWP00FjDMIwfG4ZRahjGMcMwVnv2WxARERERmXr2njxPtu0cQRNYGvlRKVGzeP6RdfQPOvjCM+/T2NkL9iBIWAK1StqmC1dn2n4EbDNNMwvIAU4C3wR2mqa5CNg59G+A24FFQ/89Bjzh1ohFRERERKa4xs5eHDVHsDMIc3Kv6r0WJUbwzENraejo5aFnD9HZ0w9JK6D2KJimmyIWXxo3aTMMIxLYCDwNYJpmn2mabcBdwHNDw54DPjn09V3A86blPSDKMIxkt0cuIiIiIjJFvXO6gZVGqfWPuVeXtAGsnhfNz+9fzem6Th57vpD+hBVwsQU6qq/6vcX3XJlpWwA0As8ahvGBYRj/aRhGGJBommYtwNAxYWj8HOD8sOurhs5dxjCMxwzDKDAMo6CxsfGqvgkRERERkalk58l68oLLMKPSIDxh/AtccNPiBL53zwoOljXzw+IQ62TtUbe8t/iWK0mbHVgNPGGa5iqgmw+XQo7EGOHcFfOypmk+ZZpmrmmaufHx8S4FKyIiIiIy1fUODLL3TBOrA85iuGGWbbi7V83lb29bzDOlYZiGTXVt04QrSVsVUGWa5vtD//4DVhJX71z2OHRsGDY+ddj1c4Ea94QrIiIiIjK1vVfWQkRfI1H9DTB3rdvf/5EN8wmaFUFdYKpm2qaJcZM20zTrgPOGYTg3j9gMnABeAx4cOvcg8OrQ168BDwx1kVwPtDuXUYqIiIiIzHS7TtazLnBo42sPJG0hgQHcvWoOh3pScShpmxZc7R75NeA3hmEcA1YC/wJ8F9hiGMYZYMvQvwHeBMqAUuAXwF+4NWIRERERkSnKNE3ePtnAHTHV1l5qScs9cp/P5KZyfDANW2cNdDd55B7iPXZXBpmmeQQYacHt5hHGmsDjVxmXiIiIiMi0U1LfRXXbRdaklFpt+e3BHrlPdkokv4ldCh1g1h7FWHjFx3aZQlydaRMRERERkav09sl6AhgkvuOER5ZGDpezdiMAdacPefQ+4nlK2kREREREvGTXqQbuTGzFGLjolv3ZxnLb2iyqzHgaS5S0TXVK2kREREREvKC5q5fD51q5K26osbqHk7bIkEBaIpcQ2XaSi32DHr2XeJaSNhERERERL9h9uhHThNW2UgiLh6g0j98zOiOXdKOWHYfPePxe4jlK2kREREREvGDnqXoSI4OJaj0Gc3LBMDx+z7lLrgGg8NBej99LPEdJm4iIiIiIh/UNOHi3pIk7Fs7CaCrx+NJIJyNlJQC2+mOUNXZ55Z7ifkraREREREQ87FB5C129A3w8rtY64eHOkZdEJDEYGs9yWwW/K6jyzj3F7ZS0iYiIiIh42Nsn6wm221hungEMSFnltXsHpKxk3awq/lBYRf+gw2v3FfdR0iYiIiIi4kGmabLzVD0bFsYRWFsICUsgJNJ7ASSvYE7/OTq7OnnnVIP37ituo6RNRERERMSDShu6ON9ykU2L46G6wGv1bJck52AzB1gfVs9v8897997iFkraREREREQ8aOfQ7NYtyd1wsdXqHOlNSSsA+Oy8Nt453UB9R4937y9XTUmbiIiIiIgH7TxZT3ZyJAntx60T3mpC4hSdDsGzyQurxmHCHwrVkGSqUdImIiIiIuIhrd19FFa2cvOSBKjKh6AIiF/s3SAMA5JXENl6gmvmx/C7gvM4HKZ3Y5CroqRNRERERMRDdpc04DBh05JEK2mbswpsAd4PJGkF1Bfx2dxkKpsv8H55i/djkElT0iYiIiIi4iE7TzYQFx7MioRAqC/2/tJIp+QcGOjh9uQuIkLs/Db/nG/ikElR0iYiIiIi4gH9gw72lDSyKSseW90xcAz4MGmzmpEENxbzyZVz2FpUR/vFft/EIhOmpE1ERERExAPyK1ro7Blgs3NpJHi/c6RT7CKwh0DtUe5dm0rvgIPXjlT7JhaZMCVtIiIiIiIesPNkA0EBNq5bGGftzxaVBuHxvgkmwA6Jy6DuGMvmzCY7OZKXtGfblKGkTURERETEA3adauDajFjCgu1QVeC7pZFOySug9hiYJvetS6W4poOi6nbfxiQuUdImIiIiIuJmZxu7KG/qZvOSBOiogY5qmOujpZFOyTnQ2w6tFdyVM4cgu43fFWi2bSpQ0iYiIiIi4ma7TjYAsCkrwZplA9/PtCVZzUioO8bs0EDuWJbEyx9U09M/6Nu4ZFxK2kRERERE3Oztk/VkJUUwNzrUakISEARJy30bVEI22OxQexSAz6xNpbNngG1Fdb6NS8alpE1ERERExI3aL/RTUNlqLY0Ea6YtaQXYg30bWGAIxGdZdW3A+vmxzIsJ5SXt2eb3lLSJiIiIiLjR7pIGBh0mm7ISYXAAaj7w/dJIp6QVl2babDaDe9em8l5ZC5XN3T4OTMaipE1ERERExI12nWogNiyIlalR0FAMAxd934TEKTkHuhug01oS+enVc7EZqCGJn1PSJiIiIiLiJgODDnafbuTGxQkE2IwPN9X2m6RtqBnJ0Gxb0uwQblycwO8LqhgYdPgwMBmLkjYRERERETcprGyl/WI/N1+qZyuEsHhrY21/4GyGMlTXBnDv2lQaOnvZU9Loo6BkPEraRERERETcZOepBgIDDK7PjLdOVOVb9WyG4dvAnIIjICYD6o5eOrUpK4G48GBeytcSSX+lpE1ERERExE12nqxn/YJYwoPtcLEVms/AnDW+DutyyR82IwEIDLDx6TVz2HWqgYbOHh8GJqNR0iYiIiIi4gYVTd2cbexmc9bQ0sjqQuvoL50jnZJzoO2clVQO+UxuKoMOkz8ervZhYDIaJW0iIiIiIm6w81QDAJuXJFonqgoAA+as9l1QI0lyNiP5sK4tIz6ctenR/C7/PKZp+igwGY2SNhEREfG9plJorfB1FCJXZefJejITw0mNCbVOVOVDwhKrjsyfJOdYx7pjl52+d+08ypq6ya9oHeEi8SUlbSIiIuI73c3wp6/Dz9bC7x/ydTQik9bR08+h8hZrQ20A07Rm2vyl1f9wYXEQOeeymTaAO5YnER5s56X8cz4KTEajpE1ERES8b7Af3nsSfrIKCp8b6mZ3HPrVBEGmpndLGhlwmB+2+m8+Cz1t/lfP5pScc1kzEoDQIDufWJnCm8dr6ejp91FgMhIlbSIiIuJdZ9+BJ6+Dbd+AlNXw5wdg07fAMQANJ3wdncikvHWinujQQFbNi7ZOODfVnuOHM21g1bU1n4G+7stO35ubSk+/g9eP1vgoMBmJkjYRERHxjpZyeOnz8KtPwkAP3PcCfOFlSMiClJXWmNojvo1RZBJO1nbwp2O1fDwnhQDb0H5s1QUQFAHxi30b3GiSV4DpgPriy06vmDubrKQIfqs92/yKkjYRERHxrN4u2Plt+Nk11izb5n+Av3gfsu78cMPhqDQIibpiuZaIv3M4TL71ShGzZwXy9ZszP3yhKt/qGmkL8F1wY3E2I/nIz5xhGNy7NpVjVe2crO3wQWAyEpeSNsMwKgzDOG4YxhHDMAqGzv2jYRjVQ+eOGIZxx7Dxf2cYRqlhGKcNw7jVU8GLiIiIHzNNOPpb+Gku7P0+LL0bvlYA1/81BIZcPtYwrA+RNZppk6nlD4VVFFa28s3bs4gOC7JO9l2AuiL/bELiFDkHZsVc0UES4JMr5xAUYNNsmx+xT2DsTaZpNn3k3P81TfM/hp8wDCMbuA9YCqQAbxuGkWma5uDVhSoiIiJTRvVh2PoNqDoEKavgM89D6rqxr0nOgfefhIE+sAd5J06Rq9Da3ce/bj3J2vRo/mz13A9fqD0K5qD/NiGBDx+UjDC7HR0WxK3Lknj5g2q+eXsWIYF+Ols4g3hieeRdwEumafaaplkOlALj/JYWERGRaaGrAV59HH6xydp37a6fwRd3jZ+wgfUBcrAPGk96PEwRd/i3bafo6Bngnz65DJuzlg38vwmJU/IKaDhpPSj5iHtzU2m/2M+OE/U+CEw+ytWkzQR2GIZRaBjGY8POf9UwjGOGYTxjGMZQqxzmAMPnUquGzomIiMh0NdAHB34CP1ljLYnM+yp8rRBW3Q82Fz9upKyyjqprkymgsLKVl/LP88iGdLKSIi9/sSrfqtMMj/dNcK5KWjH0oOTUFS/lZcQyN3oWvy/QEkl/4GrStsE0zdXA7cDjhmFsBJ4AMoCVQC3w/aGxxgjXmx89YRjGY4ZhFBiGUdDY2DjxyEVERMTnTNOk58RWeOJa2PEtmHct/MV7cMs/Q0jk+G8wXPR8q9uekjbxcwODDr71ShFJkSH81fDmI07Vhf69NNIpeahr6wh1bTabwR3Lk3m/rIWLfapy8jWXkjbTNGuGjg3Ay8A60zTrTdMcNE3TAfyCD5dAVgGpwy6fC1yx0YNpmk+ZpplrmmZufLyfP4UQERGREb37ylOE/O4+Klsu8KOkf+FHid9hZ2ME9R09mOYVz2zHZrOpGYlMCc8frORkbQf/++PZhAV/pEVEezV0VE+NpC1mAQSFj/qg5NqMWPoGHRRWtno5MPmocRuRGIYRBthM0+wc+voW4NuGYSSbplk7NOxuoGjo69eAFwzD+AFWI5JFwCH3hy4iIiK+1NnTz4Wjr9JsxPCjzOc4WnOBsp0lOHO1uPBgls2JZFnKbJbNmc2yOZHMiZqFYYy0KGdIcg4UPA2DAxAwkX5pIt5R39HDD94q4YbMeG5blnTlgOoC6+jPnSOdbDZIWg61V860AaxLj8FuM9h/tonrFsV5OTgZzpXfhonAy0O/YO3AC6ZpbjMM41eGYazEWvpYAXwZwDTNYsMwfgecAAaAx9U5UkREZPr5xbtlfN4sxpaxkR981lpw0907wMnaDoqq2zle3UFxTTt7zzQx6LAyuajQQJalzGbpsGQuLSb0wyYOKSutjbebTkPiUl99ayKj+qc/naBv0MH/+cTSkR9AVBVAQJCVDE0FSSvgg1+Dw3FF/WlYsJ2VqVEcONvso+DEadykzTTNMiBnhPNfGOOa7wDfubrQRERExF81dfXy1r79/HdbGyzZdOl8WLCd3PQYctNjLp3r6R/kVF0nRdXtFNe0U1TdwbP7KugbdAAQHmwnOyWSRzakc9vwDX+VtImf2XumkT8dq+XrN2eSHhc28qCqAmvG2B7s3eAmKzkHDv0/aDkLcYuueDkvI5afvlNKR08/kSGBPghQYGL7tImIiIgA8NNdpax2FFvV8enXjTk2JDCAlalRrEyNunSub8DBmYZOiqs7KKpp553TDXzzj8fZ/Hc3ERgYZtW1rfych78LEdf19A/yD68Wkx4bypdvWDDyoMF+qPkA1jzk1diuSvIK61h7dOSkbWEcP95VyqGyFm7OTvRycOLkiX3aREREZBo733KBF94/xz1xlRCeCLELJ/weQXYbS1Nm85m1qXz7rmV8685s2i70835F+1CNjTpIin956t0yypu6+fZdy0bfbLrhBAxcnBr1bE7xWdZyzlF+5lbNiyLYbmP/2SYvBybDKWkTERGRCfnh22cwDJPl/cetWbaxGou46IbMeEKDAthaVGst16o7Bg6VxIt/qGzu5qfvlHLnimQ2Zo7R9dy5qfZU6BzpFBAICdkjtv0HCLYHsDY9hoOqa/MpJW0iIiListN1nfzxgyq+vjqAgO66cZdGuiokMICbshLYXlyHIzkH+i9Ac6lb3lvkapimyT++VkygzeDv78wee3BVAYTFQ9Q87wTnLskrrA6So2zTcW1GLKfqOmnq6vVyYOKkpE1ERERc9h87ThMebOeB5CrrRJp7kjaA25cl0dTVR5Ej3Tqh/drED2wvruOd0418fUsmSbNDxh5cVWDNsrlh9tmrknPgYgu0V4348oaFVrt/zbb5jpI2ERERcUlhZStvnajnKzdkEFrzHoQljNi4YLJuWpxAsN3GK1XhYA9RXZv4XHfvAP/n9RNkJUXwUF762IMvtEDzmalVz+aUNNS1dZQlkstSIokItqv1vw8paRMREZFxmabJv207RVx4MA/npUHFPrfVszmFBdu5ITOeN4obMROXKWkTn/vxzjPUtvfwnbuXYQ8Y52Nz9WHrOGcKJm2JS8GwjfozZw+wcc2CGA6qGYnPKGkTERGRce0paeRQeQv/bfNCQrvOQWcNpG9w+33uWJ5MfUcvjRFLrA+QDofb7yHiitN1nTy9r5x7c1NZkxYz/gVV+YABc1Z7PDa3CwqFuEyrrm0UeRlxVDRfoLrtohcDEyclbSIiIjImh8Pk37edZl5MKPeunQeV+60X0q93+702LUkgMMDg0MW50NcJreVuv4fIeEzT5FuvHCc8xM43bs9y7aKqfKsLY3CEZ4PzlKQVY85u5y2MBeBAqWbbfEFJm4iIiIzpT8drOVHbwV/fkkmQ3WYtjQyLt57Mu1lkSCDXL4rnD7VDbdVrPnD7PUTG81+Hq8mvaOXvbs8iJixo/Av6LlgPM+a7/0GG1yTnWDPo3SMnZZkJEcSGBakZiY8oaRMREZFR9Q86+P6O02QlRfDxFSlWS3AP1LMNd9uyJPZ3xOGwjb7hr4intF3o41/fPMnqeVHcsybVtYvKdsNAD2Te5tHYPCp5hXUc5WfOZjNYnxHLgbPNmKNsDSCeo6RNRERERvXb/PNUNl/gG7dlYbMZ0FoBHdWQ5v56NqdbshMxbYHUz8qAWrX9F+/69+2nab3Qxz9/crn1v3lXlGyF4EiP/lx4XNLYSRvAhow46jp6KGvq9lJQ4qSkTUREREZ0sW+QH+08w7r0GG5cPLRcsWKfdfRAPZtTVGgQ12bEkt+bill7dNQNf0Xc7YNzrbx46BwP5c0nOyXStYscDijZDhmbwO7CUkp/NSsKotJGbfsPkJcxVNemJZJep6RNRERERvTsgXIaO3v529sWYziXQlbsg9A4iF/s0XvfviyZ9y6mYvS0W7N7Ih426DD51itFJEQE8/UtE9h/sPYD6KqHxbd7LjhvSR67GUlabCgps0PU+t8HlLSJiIjIFdov9PPk7rPcvCSB3PShdudeqGdzumVpIsXmfOsfqmsTL/jVwQqKazr4+49lExES6PqFJdutPc4WbvFYbF6TnAMtZdDTMeLLhmGQtzCOg2ebcTg0A+5NStpERETkCk/sOUtn7wD/49ZhM2ptldBRZSVtHhYXHkxk2goGCFDSJh7X0NHD93eUcP2iOO5cnjyxi09vhbnrICzWM8F5U1KOdawvGnVIXkYsrRf6OVk3cmInnqGkTURERC5T197Ds/vLuXvlHLKShtX1XKpn83zSBrBlRRqnHXPpriz0yv1k5vrOmyfpHXDw7buWfbgU2BXt1VYN2OIp3DVyuOShpG2s/doy4gDU+t/LlLSJiIjIZX686wwO0+TrWz6yD1vFPgiNhXgXNxu+SrcuTaLIMR+bmpGIB71X1syrR2r4yo0ZzI8Lm9jFJdusY+Y0qGcDiEiE8ESoHb0ZSdLsEBbEh6kZiZcpaRMREZFLypu6+W3+eT5/TRqpMaGXv1ix32pp7uF6NqfEyBA6opcya6AN2qu8ck+ZeV4/WkNEsJ2/uDFj4heXbIPodI835vGqpLGbkYC1RPL9smb6Bx1eCkqUtImIiMgl399xmmC7jcdvWnj5C62V0H7Oo63+R5KweB0ADSXve/W+MnMUVLSyOi2akMCAiV3Y1w1le6xZNi89yPCK5BxoPAX9PaMOycuIo7tvkGNV7V4MbGZT0iYiIiIAFFW386djtXzxuvnERwRf/qKX69mcctdvZMC0ca74oFfvKzND+4V+Ttd3sjY9euIXl+2Gwd7pU8/mlLwCzEFoODHqkPULrKYrav3vPUraREREBIB/336a6NBAvrhxwZUvermezWlOXAxV9lTMmiNeva/MDIXnWgA+3NZiIk5vheBImJfn5qh8zIVmJDFhQWQnR6quzYuUtImIiAgHzjbxbkkjj9+0kMiR9qiq3AdpeWDz/keH3vjlpPedoaql2+v3luntUHkrgQEGOXOjJnahwwFndkDGJrAHeSY4X4lKg5DZVlfMMeRlxFJQ2UpP/6CXApvZlLSJiIjMcKZp8u/bTpM8O4T716ddOaC1Etq8X8/mFJ+5jnijnXcPH/fJ/WX6KqhoYdmc2cwKmmA9W+0H0FUPi6dJ18jhDMO1ZiQLY+kbcHC4stVLgc1sStpERERmuB0n6jlyvo2v35w5cjOGyv3W0cv1bE4xGVYzksqiAz65v0xPPf1WI421k1oauQ0MGyy6xf2B+YPkHKgvhsGBUYesmx9LgM3QEkkvUdImIiIygw06TL63/TQZ8WF8avWckQdV7IdZ0RC/xLvBOSUtx8QgpLGIuvbRO9qJTMTx6nb6Bh3kpk2iCUnJVki9BkInkfBNBUkrYKAHmkpGHRIebCdn7mz2qxmJVyhpExERmcH+eLiK0oYu/ubWxdgDRvlYULHX2p/NB/VsAASH0x+VwTJbBduL63wTg0w7+RVWE5I1E03a2qug7jhkTrOukcM5m5GMW9cWx7Gqdjp7+r0Q1MympE1ERGSG6ukf5IdvnyFn7mxuXZo08qC2c9BW6bN6Nqeg1NWstFfw5vFan8Yh00dBRSsZ8WHEhgePP3i4km3WcTrWsznFLQL7LKgdJ2lbGMugw7yUAIvnKGkTERGZoX7z/jmq2y7yjduyMEbbHLjCt/VslyTnEG82U1ZRTmNnr29jkSnP4TApqGiZfD1b9HyIy3R/YP7CFgBJy8ZtRrJ6XjRBdhsHSlXX5mlK2kRERGag7t4BfvZOKdcviiNvYdzoAyv3WfVsCdneC24kKSsBWGqUs+OElkjK1TnT0EVHz8DE92fr64byd61ZttEedEwXSSus5ZEOx6hDQgIDyE2LZr+akXickjYRmXEaOnqobrvo6zBEfOoPhVW0dPfxVzePM1tQsc+39WxOScsBuC68mq3HlbTJ1XEu51ubPsF6trLdMNgLmbe6Pyh/k7wCejugrWLMYXkZsZys7aClu887cc1QStpEZEYZdJjc94v3uP7fdvEXvynkg3PaX0ZmHofD5Nn95ayaFzV2E4b2Kmit8P3SSLA2+43JYGNYNQfLmmnVB0S5CgUVLcRHBDMvJnRiF57eCsGRMC/PM4H5E2czknHr2qyZ+vfKNNvmSUraRGRGeetEPWWN3WzJTmTfmSbu/vkB7nnyADuK63A4TF+HJ+IVu041UNF8gUevmz/2QH+pZ3NKziG9v5RBh8lbJ+p9HY1MYfkVraxNjx69lnMkDgeUbIeFm8Ee5Lng/PKtIxcAACAASURBVEVCNtjs43aQXDFnNuHBdvaXqvW/JylpE5EZ5Rd7y5gbPYuffW41B/5uM//wsWxq2np47FeF3PyDPfzm/Up6+gd9HaaIRz29r5yU2SHcNlrHSKeKvRASBQlLvRPYeJJzCOqqIjuqn61F6iIpk1PTdpHqtovkpk2wnq3mA+hugMxp3DVyOHuwtTdjzZGxhwXYWDc/hoOqa/MoJW0iMmMUVrZQWNnKF6+bjz3ARniwnUeum8+ev7mRn3x2FWHBdv7Xy0XkfXcXP3y7hOYudaiT6ae4pp2DZc08mJc++r5sTv5Sz+Y01Izk/nlt7Cttov2i9oaSiSuotJbFT7hzZMlWMGywaIsHovJTaXnW74ELY7f0z8uIpaypm9p21Yt7ip/8FhYR8bz/t6eMqNBAPrM29bLz9gAbH89J4bWvbuClx9azKjWKH759hrzv7uJbrxynvKnbRxGLuN8z+yoIDQrgvnXzxh7YXg2t5f6zNBKsbnbADRHV9A+a7DqlJZIycQUVLYQFBbAkOWJiF57eBqnrIXQS2wRMVasfsBqvHH1xzGF5GVZdm2bbPEdJm4jMCGWNXbx1sp4vrE8jNMg+4hjDMFi/IJanH1rL2/99I3evmsPv8qvY9P3dfPlXBRRWDnvSWHsMfvUpqCr00ncgcvUaOnt4/WgN96yZy+xZgWMPrnTWs23wfGCuCo2BqDRSLpaQFBnCm+oiKZOQX9HK6rTo8Weah2s7D/XHYfFtngvMHyUtg7lroeBZMEev+85KiiA6NJD92q/NY5S0iciM8J/7ygkMsPHAtekujV+YEMF3P72Cfd+8ia/etJD3y1v49BMH+dTP9nHilf/A/M/NcHYnFP2XZwMXcaNfv3eOfoeDhzaM04AEhurZZkPiMs8HNhHJORi1R7ltWRJ7Shrp6h3wdUQyhXT09HOqrmPi9Wwl26zjTKlnG27Nw9B85sMHOSOw2QyuzYjl4NkmzDGSO5k8l5I2wzAqDMM4bhjGEcMwCobOxRiG8ZZhGGeGjtFD5w3DMH5sGEapYRjHDMNY7clvQERkPE1dvfyhsIpPr55DfETwhK5NiAjhr29ZzIFvbuK7d6TyVy3/RPaRf+IgK2gLz8AxTlctEX/R0z/Ib96rZHNWAvPjwsa/4FI9W4Dng5uIlJXQWs7HMkPpG3DwzqkGX0ckU8jhylZMcxL7s5Vsh+j5ELfIM4H5s6V3Q/Bsa7ZtDHkZcdS091DZfMFLgc0sE5lpu8k0zZWmaeYO/fubwE7TNBcBO4f+DXA7sGjov8eAJ9wVrIjIZDx/oIL+QQdfvH7BpN8jtP4D7iv8PNebBZxc/g2+F/2PvNmWRm/V0TGXjIj4i9eO1NDc3ccj47X5B+iogZYy/6pncxraO2pV4DniwoPVRVImpKCilQCbwcp5Ua5f1NcN5e/C4tthIlsETBdBoZBzH5x8DbpHX/6YlxELwP6zav3vCVezPPIu4Lmhr58DPjns/POm5T0gyjCM5Ku4j4jIpF3oG+D59yq5eUkiGfHhE38DhwP2/RCevQ0MA+ORHSz59P/kj49fh5G8nFkDHXTUV7g9bhF3Mk2TZ/aXk5UUwbULYse/wLk/W5of1bM5JVsdJAPqjnLbskTeOdXIxT5t0yGuya9oYVlK5Ki1zSM6+47VjCNzhtWzDZf7MAz2wZHfjDpkflwYSZEhHFAzEo9wNWkzgR2GYRQahvHY0LlE0zRrAYaOCUPn5wDnh11bNXRORMTr/lBYRduFfh7bOIlZtu4meOEeePt/Q9ad8OV3Ye4awGpacm3eTQDs3vO2O0MWcbv9pc2cquvk0evmu7aZcMVeazlU0nLPBzdRYXEQORdqj3L7smQu9g+yp0RLJGV8fQMOjpxvI3cyrf6DZ1vt72eqhCVW58zCX466usQwDPIWxvLe2WYcDq1AcTdXk7YNpmmuxlr6+LhhGBvHGDvSX4Mr/j9nGMZjhmEUGIZR0NjY6GIYIiKuG3SY/OfeclbNiyI3bYL1C+V74YkN1vHOH8A9z8Gsy5fTpGevxYHBuZOH6OzRflHiv57ZX05ceBCfWJni2gUV+6wPqP5Wz+aUnAO1R7hmfgzRoYFsLVIXSRlfUU07vQOOidWzORxQsgMWboaAcTquTne5D0PLWWup6CjyMuJo7u6jpKHTi4HNDC4lbaZp1gwdG4CXgXVAvXPZ49DR+ZirChi+CdJcoGaE93zKNM1c0zRz4+PjJ/8diIiMYltRHedaLvDljQtcm10AcAzCO/8Kz38CgiPgSzth7aMj1zEEh9M/ez4Zg+U8f7DSvcGLuMnZxi52nWrg/vVpBNtdSMI6aq0PZv7U6v+jUlZCcyn2/i5uyU5i58kGege0RFLGll9ubduyZiKdI2sOQ3eDVc8202XfBSFRUDh6Q5JLdW1q/e924yZthmGEGYYR4fwauAUoAl4DHhwa9iDw6tDXrwEPDHWRXA+0O5dRioh4i2maPPXuWdJjQ9mSneTaRR018NwnYM93YcV98NjucZeHBc/NYU1wFf+5t4xutR4XP/Ts/nKC7DbuX5/m2gWX9mfzwyYkTkPNSKg7zu3Lk+jqHWDfGTU/kLHlV7QyPy5sYl2ET28FIwAW3uy5wKaKwFmw8nNw8k/QNfIquZSoWcyPC+OgmpG4nSszbYnAPsMwjgKHgDdM09wGfBfYYhjGGWDL0L8B3gTKgFLgF8BfuD1qEZFxHCpv4WhVO49ev4AAmwuzbGfegievg5oP4JNPwt1PQLALjUuSlpMwUMvAhXZ+/Z5m28S/tF3o478Kq/nkyhTiwl38oFqxF4IjIWmFZ4O7GkPNSKg9Sl5GHBEhdm20LWNyOEwKK1smvlS+ZDvMW29t7C6w5iFw9MORX4865NqMWN4va2Fg0OG9uGaAcZM20zTLTNPMGfpvqWma3xk632ya5mbTNBcNHVuGzpumaT5ummaGaZrLTdMs8PQ3ISLyUU+9W0ZMWBD3rJk79sDBftjx9/CbP4OIZGt2beVnXb/R0Afbz8xr5xd7y9TFTvzKi4fOc7F/0LU2/04V+/27ng0gIhHCk6D2CEF2G1uyE3nrRB19A/qQKCMra+qi9UI/ayfShKTtPNQfh8xbPRfYVBO/2OoqW/hLq95vBHkZsXT2DnC8ut27sU1zV9PyX0TEL52p72TnqQYeuDaNkMAxPni2VsIzt8GBH0Puo/DFtyE+c2I3S1wGwAPzO2jq6uPFQ+euInIR9+kfdPDcgQo2LIwlKynStYs666D5jH+2+v+olJVQexSA25cl09EzwMEy1dHIyPIrWgHInUgTkpJt1jFT9WyXyX0EWiugfPeILzu3FVHrf/dS0iYi084v9pYRbLfxwLXpow868So8eT00lVidIT/2A2u9/kRFJEFoHGl9Z1m/IIYn95ylp1+zbeJ7W4vqqOvo4dEJzbLts47+XM/mlJxj/fz2dXP9ojjCggLYpo22ZRT5FS3EhgUxPy7M9YtKtkHMAohb5LnApqIlH4fQWCgYuSFJbHgwWUkRHFTS5lZK2kRkWmno6OGVD2q4J3cuMWFBIw/a8z343QMQtxC+sheWfnLyNzQMq1lJ3XH+ctMiGjp7+X3B+fGvE/Eg0zR5el85C+LCuDEzYfwLnCr2+X89m1PySjAdUFdESGAAm5Yksr24XnU0MqKCilZy06Nd7yTc22W1ts+8feTuwTOZPdhqSHLqDWt2fgR5GXHkV7Soq6sbKWkTkWnllwcq6Hc4+OJ1o2ym3X8R9v8QFt8BD2+D6PSrv2nScmg4ybXpkeSmRfPE7rOqrRGfOnyulaPn23h4Qzo2VxrxOFXut5ouBNg9F5y7ODtIDi2RvGNZEi3dfRwaausu4lTf0cO5lgsTq2crewcG+2DxbZ4LbCpb8zCYg/DBr0Z8OS8jlt4BB4cr27wc2PSlpE1Epo2u3gF+/V4lty1NIn20JTClb0NfF6x7DOyjzMRNVNIKGOzDaD7D1zYvoqa9h/86XOWe9xaZhKf3lRMZYufT4zXiGa6z3lpuOBWWRgJEpkBYPNQeAeCGxfGEBNq00bZcoeBSPdsEkrbT2yB4Nsy71kNRTXGxGTB/IxQ+b+1v+hHXLIghwGao9b8bKWkTkWnjt/nn6egZ4EsbR5llAyj6I4TGQfr17ruxcy+3uuNsXBRHztzZ/Hx3Kf1apiU+UNV6gW1FdXz2mnmEBk1gxqxyCtWzgbVkLTnn0kxbaJCdmxYnsK24DofD9HFw4k/yK1oICbSxNMXFhjwOB5zZDotuhoBAzwY3la15GNrPwdldV7wUERLI8jmz1YzEjZS0ici0MDDo4Jl95axNj2b1vFG6g/VdsArLsz/h3uVfsQvBHgJ1xzEMg7/cvIjzLRd59UiN++4h4qLnDlRgGAYPjtWIZyQV+yEoApJyPBKXRyTnQMNJa9kzcPvyZBo7eyk81+rjwMSfFFS2sCo1msAAFz/21hyG7kZ1jRxP1ses2e5RGpLkZcRy5Hwb3b0DXg5selLSJiLTwhvHa6luu8hjGzNGH3RmO/RfgKWfcu/NA+yQkA11xwDYlJXA0pRIfvZOKYN64i9e1NU7wEuHznPH8mRSoibYDbVi39SpZ3NKXmnV1dSfAKyfvaAAG9u0RFKGdPUOcKKmg7UTafV/eisYAbBws+cCmw7sQbDy89bD0I4rH1LmZcQx4DA5VKE6U3dQ0iYiU55pmjz1bhkL4sPYnDVGp7zilyEswdo42N2GOkhimhiGwdc2LaS8qZs/HdNsm3jPHwrO09k7wCMb0id2YVcDNJ2eOksjnS41I/kAgPBgO3kLY3nrRD2mqQcmAh+ca8VhTrCerWSb9QAjdALXzFRrHrQenBy+siFJbno0QQE2tf53EyVtIjLlHTjbTHFNB1+6fsHonfJ6u6BkB2TfBbYxNtyerKTlcLEVOqoBuCU7icWJEfxkV6nqa8QrBh0mzx6oYPW8KFaNtkR4NJf2Z3Njrac3RM2DWdGX6toAtmQncq7lAiX1XT4MTPxFfkUrNgNWp7n4M9F2DuqLIFNdI10SswAW3ASHr2xIEhIYwOq0KA6oGYlbKGkTkSnvqXfLiAsP5u5Vc0YfVLINBi7CMjcvjXRy7mtVdxwAm83gq5sWUtrQpW524hU7T9ZT2XyBR0fb7mIslfshKPzDmaupwtmMpObIpVM3L0kE4K0T+rkTKKhoITslkvBgF5f9lmy3jotVz+ay3IehowrOvHXFS3kZcRTXdNB2oc8HgU0vStpEZEo7VdfBnpJGHspLIyRwjBm04pchIhlS13smkMRswLiUtAHcsTyZjPgwfrLrjGbbxOOe2V/OnKhZ3Lo0ceIXT8V6NqfklVYzkoFeABIjQ8hJjeKtE/U+Dkx8rX/QwQfn2shNm0ir/60QkwFxizwX2HSz+A4IT4TCKxuSbFgYi2nCe2VaInm1lLSJyJT21LtlzAoM4P71aaMP6umwngBmfxJsHvq1FxxhLRMZakYCEDA023aqrpO3TuoDpHhOcU0775W18GBeGnZXO+Q5dTVC46mpV8/mlJwDjn4rcRtyS3YiR6vaqWvv8WFg4msnajq42D/o+qbavZ1QsVezbBMVEAir7oczO6D98j1KV8yNIjQoQK3/3UBJm4hMWbXtF3ntSA33rk0lKnSMjbJPb4XBXlh6t2cDcjYjGebjK1JIiw3lJ7vOqDGCeMzT+8oJDQrg3rXzJn5x5X7rONXq2ZxSVlrH2g+XSG7JHloiqYclM1r+UNfCXFc7R559Bwb7VM82GasfBNO0atuGCQywsW5+DPtLVdd2tZS0iciU9cv9FThMk0evmz/2wOKXIXIuzF3r2YCSlkNrhTWzN8QeYOPxmxZSVN3B7tONnr2/zEgNnT28frSGz+SmMnvWJDYCrtgHgWFTr57NKXo+BM++rBnJooRw0mNDtURyhiuoaGVeTCiJkSGuXVCyHUJmW0uFZWKi06wtEg4/D4OX78u2ISOOs43d1Hdo5vtqKGkTkSmps6efF94/xx3Lk0mNCR194MU2KH0blnpwaaSTsxlJffFlp+9eNYe50bP40U7Nton7/fpgJQMOk4fy0if3Bpfq2SaR8PkDw4DkFZc1IzEMgy3ZiRw820RnT78PgxNfMU2TgsoW12fZHA5rL8+FN0/dnwVfW/MwdNZa/3cc5tqMWAB1kbxKStpEZEp68dA5OnsHeGzjOJ3yTr9p1bu4e0PtkSQtt44fWSIZGGDjz2/M4Mj5NvZpiYi4UU//IL9+/xybsxJJjwub+Bt0N0Hjyalbz+aUnGM9LBn8MEHbkp1E/6DJnhLNcM9EFc0XaOrqc72erboQuhshU/Vsk5Z5m9Xwq+DyhiTZyZHERwTzxrFaHwU2PShpE5Epp2/AwTP7Kli/IIYVc6PGHlz0R2svpzmrPR9YRBKExl3WjMTpz9bMJXl2CD/WbJu40atHqmnp7ht/ifBopno9m1PySqtutfHUpVNr0qKJCQvSEskZKr/cqmdb6+pMW8lWMAJg0c0ejGqaC7DDqi9Yq1taKy+dttkM7lkzl12nGqhpu+jDAKc2JW0iMuX86VgNdR09fHljxtgDL7RA2TtWAxJjlE233ckwIGnZFTNtAMH2AL5yQwb5Fa28V9bi+Vhk2jNNk6f3lbMkOZL1CybQ0nw4Zz2bs5nHVHWpGcmHdW0BNoNNWQm8c6qB/kGHjwITX8mvaCE6NJCM+HDXLji9DeZda23WLpO3+gHrb+Hh5y47/dl18zCB3+af901c04CSNhGZUkzT5Kl3y8hMDOfGxfFjDz71J3AMeL5r5HBJy63W44NX1tHcuzaV+IhgfrLrjPfikWlrX2kTJfVdPHrdfIzJPpSo2Afzrpn6NTwxGdbm4MPq2sDqItnRM8Chcj0omWkKKltZkxbj2s9G2zloKIbF6hp51aJSYeEW+ODXl/0dTI0J5fpF8fw2/zwDeogyKUraRGRKefdME6fqOvnS9QvG/2Nc/LLVWS7Zi7MISSusZVpNVyZmIYEBfHnjAg6cbaagQh8i5eo8va+cuPBgPp6TPLk36GqAhhOQtsG9gfmCzWb97A2baQO4flEcwXablkjOMI2dvZQ3dbu2NLK9GrZ+w/pa9WzukfswdNVbNeXDfG7dPOo6enhHnZQnRUmbiEwpT717loSIYD6xMmXsgd1NULbHe0sjnUZpRuL0+WvSiA0L4se7Sr0Xk0w7pQ1d7D7dyBfWpxFsD5jcmxT90Tpm3em+wHwpOcf6uRvWbjw0yM71i+J460S9aklnkMJK5/5sYywb7u+BPd+Dn+ZC6U7Y/A8Qt9BLEU5zC7dA5JwrGpJsXpJAQkQwL7xfOcqFMhYlbSIyZRRVt7O/tJmHN8wf/4PqydfBHIRlXugaOVzsIggIHrEZCcCsoAC+tHEB75Y0cuR8m3djk2nj2f3lBNltfH79JDbTdjr6ojU7lbDEfYH5UspKGLgIzZfPcm/JTqS67SInajtGuVCmm/yKVoLtNpbNibzyRdOEE6/Bz9bCO/9s7S321UNw/V97P9DpKsBubbZd9g60lF06HRhg4961qewuaaSq9YIPA5yalLSJyJTxo51niAi287lrXPigWvwyxC6ExGWeD2y4ADskZo860wZw//o0okID+alq22QSegcGee1IDR9bkUxcePDk3qTxNNQegZz73BucLzk3B//IEslNWYkYBloiOYMUVLSQkxp15cO9+hPw/Cfgd1+waiAfeA3u/TVEp/skzmlt9ResbpyFlzckuXdtKqCGJJOhpG0mGOizimzPvW/tQyIyBRVWtvLWiXoe27iA2bPGaZrQ1QAVe6292by5NNIpabmVtI2yHCs82M6jG+bz9skGiqrbvRycTHX7S5vo7B3g4yvGWSI8lqMvWR+olv2Z+wLztbhMsM+6ohlJfEQwq+dFK2mbIS70DVBU03F5PduFFnjjf8CTG6D2GNzxH/DlvbDgBt8FOt1Fplj7th35jfU5dMjc6FBuWpzAb/PPq6vrBNl9HYBcBdOEnnZr9/mOmqFjLXTWXH7sbgScHx4N+MsPIGaSe/qI+IBpmvzbtlPEhQfziCv7UZ18DUyHd7tGDpe0Ag4/b/1czp4z4pAHN6Tz1N4yfrqrlCe/sMbLAcpU9saxOiJC7GxYGDe5N3A44PjvIWMTRCS6NzhfsgVYD0w+MtMG1hLJ7249RXXbReZEzfJBcOItR861MegwrXq2wQEofBbe+Y71eSn3Ebjpf0HoJLfIkInJfRhOv2F1ch5WqvC5dfP44vMF7DzZwG3LknwY4NSipG0qME2aDv2e6PYiAjprL0/S+kdYEzwrxnrCEZFsLReJSIHIZLCHwMtfhpJtsP7Pvf99iEzS7pJGDpW38O27lhIW7MKvraKXIW6x72p1hjcjGSVpiwwJ5OEN8/nxzjOcqusgK2mE2guRj+gbcPDWiTq2ZCcSZJ/kYpnK/dB+Hm7+R3eG5h+Sc6xaPYfD6ig5xJm0vX2ingfz0n0Xn3hcfkUrhgFrKYanvgX1Rdbm8bd919pHU7wnYxPMnmclzsOSthsXx5M8O4QXDp1T0jYBStqmgNMHX2fxji/Rjx1HRDKBUXMgeYU17RyZbCVnziQtIhkCQ0Z/s70/UNImU4rDYfLv204zLyaU+9a6UMvWWWd9KL3xm75ZGgmQuNQ61h0fc9+fRzak8/TQbNtPP7faS8HJVLb/bBMdPQPcuXySbf4Bjr0EQRGw+A73BeYvUlZC/i+g5SzELbp0OiM+nAXxYbylpG3aKz97kufDnyT8xf1WwvCZ52HJJ3z392AmswXAmgdg1z9D81mIzQDAPtSQ5Idvn+Fc8wXmxYb6ONCpQTVtfs7hMOl450c0M5vrjOdY1vo9fpn1JI5PPwu3/QvkfQ2W/xmk5VlLHsdK2AAyb4WK/dCjLloyNbx+rIaTtR389S2Zrs0snHgVMH23NBIgOAJiFozaQdIpKjSIB/LSeeN4LdVtF70UnExlbx6rJSLYznWLJrk0sv8iFL8K2Z+AoGn4QcnZjOQjdW1gzba9V9ZM+8UrN76XaaDvAo6d/8x3ax7hmoECaxnkVw9B9l1K2Hxp1RfAZrdm24a5d20qNgNezD/no8CmHiVtfm7Hu++ytr+Axqz7ef3rN5OXEcs/vn6CB589RF17z8TfcPHt4OiHszvdH6yIm/UNOPj+jhKWJEe63nSh+GVIWArxiz0b3HiczUjG8enVczBN2KPNRmUc/YMOdpyo5+bsxMnvzXbqDejrhBX3ujc4fxGfBcGRULb7ipduyU5kwGGy+3SD9+MSzzFNOP4H+Gkutr3fY4cjl923bIUb/hYCVb/ocxFJ1mfPIy/AQO+l08mzZ7EpK5HfF5ynb0ANSVyhpM2PdfUO0PXuz+gjkMUf+ysSIkN45qG1fOfuZRRUtHLL/93Dq0eqJ/amc9fBrGg4vc0zQYu40W/zz3Gu5QJ/e9tibDYXnpS2V8O5g76dZXNKWg6t5ePOamfEhzMnahZ7SvRBUsZ24Kw1S3T71dSAHPuttelt+vXuC8yfBARam4Wfev2yjnUAK1OjiQsPYoe6SE4ffd3w3Mfhvx6F0FjezH2Gv+z/Gsuzs30dmQy35mG40GztnzrM56+ZR1NXnzq7ukhJmx97+q1C7hjcTWfm3RjhCQAYhsHnr0lj63+7noUJ4fy3l47w1RcO03ahb5x3GxJgh0W3wJkd4Bj0YPQiV6e7d4Af7Sxl3fwYbsyMd+2iE69aR79I2lZYx/riMYcZhsHGzHj2lzar/bGMaevxWsKCAtjo6s/DR3U1QOlOWH7PZU06pp2ln7I6BZa9c9npAJvB5qxE9pxupHdAf/+mhcPPW9u73P49eGw3b7TPZ07ULJJna4bNryy4CcKTrJn+YTZmxjMnahYvHKr0UWBTyzT+rT21nWu+QP/7zxJq9BK7+a+ueD09Lozfffla/ubWxWwrquPWH77LnhIXl1dl3gYXW+D8ITdHLeI+z+4vp6mrl2/cloXhaj1C8R+tGa64hZ4NzhXDO0iO44bMeLp6Bzhc2erhoGSq6h90sL24js1LEgkJnOTSyKL/AnNwem2oPZIFN0JIFBT98YqXblmaSFfvAO+VtXg9LHGzwQE4+HOYdy1c8ximYSO/ouXy/dnEP9hs1s9l+R6rs+uQAJvBfWtT2V/aTEVTt8/CmyqUtPmpf33jGPfbttM77/oPO9F9hD3AxuM3LeSVxzcQGRLIg88c4h9eLeJi3zhPEBdutopCS7Z6IHKRq9fa3cf/21PGluxE1qS5+Ae47RxU5VtP2f1BRDKExo7bjAQgb2Esdpvh+oMXmXHeL2uh9UI/d1xN18ijL1mNOny1FYa32INgycfg9JvQf3nt94aFccwKDOCtE3U+Ck7c5uRr0H4Orv0qAOdbLtLQ2Wvtzyb+J+Mma4lkfdFlpz+zNpUAm8GLh9SQZDxK2vzQgbNNBJ56nSSjheDrvjbu+GVzZvP6167j0evm8/zBSu788V6OnG8b/YKQ2ZC2AUq2uzFqEff5+e5SuvoG+JtbJ9BMpPgV6+gPSyPB6lbmYjOSyJBAVqdFK2mTUb1xvJbQoABuXDzJpZENp6D2CKyY5rNsTkvvht6OK5puhQQGsDEzjrdPNGCapo+Ck6tmmnDgJ1aX3sW3A5BfYc2erlXS5p/m32AdP9IkKDEyhJuXJPD7wiotWx6HkjY/M+gw+fZrxXwleBuOmIWwcItL14UEBvD3H8vmhS9eQ0//IJ9+4gD/962S0WtkFt8OjaegpdyN0YtcvZq2izx3sJJPrZpLZmKE6xcWvwwpq6ytL/xF0nJoOGkt4xnHDZnxFNd00NA5ia6wMq0NDDrYUVzHpqyEyS+NPPYSGAHWFjEzwfwbYFaM9XvhI7ZkJ1HX0cPx6nYfBCZuce4g1ByGax+39gIDCipbiAyxsygh3MfByYgik63urh+pNQX43DVptHT3sb1YDUnGWhpbOAAAIABJREFUoqTNz7yUf47QhsNkm6XY1n9lwsXieQvj2PpXG7krJ4Uf7TzDp584QGlD15UDM2+1jiXqIin+5UdvnwETvr5l0fiDnVrKrT/g/jLL5pS0AgZ7ofnMuENvGGousbekydNRyRRzqLyF5u6+yW+o7XDAsd9DxiYYamo17QUEwpKPw+mt1t50w2zKSsBmoI51U9mBn1pJec7nLp3Kr2glNz3GtU7D4hsLboTKg1csW75+YRypMbN44X01JBmLkjY/0n6xn+/vKOFvZ7+NGTIbcj47qfeZPSuQH9y7kic+v5rzLRe488d7+eX+chyOYUtBYhZA3GLrD5qInyht6OT3hee5f30ac6MnsPHvCT9bGumUuMw6urBEMjs5krjwYC2RlCu8WVTLrMAAblw8yYSrch90VE3/BiQf9f/ZO+/4qKr0/7/vTHonHZIQSEhIoZMQikAEaYKCXbGtChYsu2vZ/tum67bv6ror6lrBtesKoiBKDb2EnhBIr6SH9D5zf3+cJBJaZiaTzCRz3q8Xr0vu3HPmgVfmzn3O+TyfZ8zN0FoPGVu6nfZ2dSBuhLdM2gYqlVmiXjH+oa4G8VUNrWSW1RMnTUism7Brob0JCrsb4Wk0CndNGc6B7KrLbzRIACOSNkVRtIqiHFMU5ZuOn9coipKjKMrxjj8TOs4riqL8S1GUTEVRTiqKMqmvgh9s/GtbBi6NRSS07EOZ/CNw7N0W/6KxQ/nuJ7Ou3JB79ELI2yuskSUSK+D/vkvHxcGOx68NN25gypcQFAdew/smMFPxjQCto0FmJBqNwqxIX3ZnlKPTy1obiUCnV9mcUsqcKH+cHUyURp74FBzcYfT15g3O2gm9Blx8havsRcyPCeBMSR0FVY0WCEzSK/avFjup8Su7TiXLeraBwYgZQqZ9UV0bwG2TQ7CThiRXxZidth8DaRede05V1Qkdf453nFsERHT8eRh4vfdhDn6yyutZuy+XF4P2o6DAlIfNMm9nQ+4XbxpLcu55Fr2yi7LajsQtchHo20XfHonEwhwvqGZzagkrZ4bh4+Zo+MDKLJEUjbES18gL0doLpz4DdtpASCTPN7bJWhtJF4dzq6iob2HRWBMbarc2iv6FMUu7diVsBq0dxNwoTLdau9uJz4sJAJCNtgcaDZVw/EMYdwe4B3SdTs47j4NWw9ggTwsGJ+kRR3cIjr9s0ubn7siC2ED+d7SQ5jZpSHI5DEraFEUJBhYDbxtw+VLgfVVwAPBSFKUXHsW2wQvfnMbHvpVrajeKL1fPYLPNrSgKyxOGs/7xGdS3tPPy1o76mpApQhMu69okFkZVVf767Rl8XB14aKaRRiKdq+gxS80fmDnodJA0wKluZoQfigJJZ6VEUiLYdKoYJ3sN15oqjTy7CVrrYPwd5g1soBB7M7Q1XuKWHOrjSmSAm7T+H2gkvwPtzV02/50czq1iXLCn6UY9kv4jLBHOHYOmS/uSLk8YTnVjG9+mFPd7WAMBQ3fa/gn8DLjYivBPHRLIlxVF6VwaDwIKLrimsONcNxRFeVhRlGRFUZLLy237AWXn2TJ2nC3npchUNK11wg2pDxgd6M7dCaF8ejifjNI64bgUMR8yvjfI3U4i6St2Z1SwP7uSJ+eMws3RzrjBqeshZKpZFzrMSuA40ZumrucvIW9XB8YFe5GUXtYPgUmsHb1e5duUEhIj/XE19nPRyclPwSNYSAVtkdDp4BZwBRfJAA7nnqe6sdUCgUmMpq0ZDr0pXLX9o7pON7XqSCmqkf3ZBgphiaDqIWf3JS9NC/NhhI8LHx2UEsnL0WPSpijKEqBMVdUjF730SyAKiAe8gZ93DrnMNJcsMauq+qaqqnGqqsb5+ZnYd2YQ0KbT8/w3pwn3cWJ6xecQPAWC4/rs/Z6aG4Grgx1/+faMODF6oVjtKDzcZ+8pkVwNvV7lr5vPEDzEmbsSjKxJK08XjTqtzYDkQgLHiqMREsnjBdXyQVJCct55yutauH6ciWKV+jIhfx93m9FOxIMGjVbswmd8Dy3dDQ7mxQSi06tsPyMXSQYEJz+FhnKY3r1/7YnCatp0KvHShGRgEBwHDm6XlUh2GpIczj1Pemld/8dm5RhyF58B3KgoSi7wCTBHUZQPVFUt7pBAtgDvAVM6ri8EQi4YHwycM2PMg4oPDuSRVd7ASxNKUM7nwNTH+vT9vF0dWHXtKLadKWN/ViWEzwWNHaRLF0mJZdh4qpjUc7U8PS8SRzsjpS2p6wDFeqWRAAGx4miAGQmIpE2vwp5Maf1v62w6VYyDnYY5USZKI099AarOdhpqX4nYm4Sk7qJSgHFBnvi7O0oXyYGAXi8MSALHwshZ3V7qNCGZHCqTtgGB1h5GXHPZpA3g1snBOGg1crftMvSYtKmq+ktVVYNVVR0B3AlsV1X1ns46NUVRFGAZkNIxZANwX4eL5FSgRlVVKU69DFUNrby8JZ2ZEb6MK/pISFiib+zz931gxgiGeTrx4qY09A7uEDoDzsq6Nkn/06bT84/vzxIV6M7SCZeoqHsm9Ushf/Kw4rJZJw8YMtLgnbbxwZ54OtvLujYbR0gji0mM9DNeMtzJyU9g6PhuUjKbJGQquA+9RCKp0ShcFxNAUnq5ND6wdjK3QsVZmPYkKN0FXYdzzxMZ4IaXi4OFgpMYTVgiVGVB9aWJmY+bIwvGBPKlNCS5hN7oJT5UFOUUcArwBV7oOL8JyAYygbeAVb2KcBDz8pZ0Glp1vDBVRcndAwkPC7erPsbJXsuzC0ZzqqiGr0+eg9GLxM2wKrvP31siuZBPDxeQW9nIcwtGozW2IWpZGpSfsW5pZCedZiQGYKfVcE2EL0np5agGmJdIBifHCs5TWtvC9aY21C47A8Un5C4bCGlozDLRr625tttL82ICaGzVCeWJxHrZ9y9wH3aJS7BOr3I077ysZxtohCWK4xV225ZPGU5tczvfnJR7PhdiVNKmqupOVVWXdPx9jqqqY1VVHaOq6j2qqtZ3nFdVVX1cVdXwjteT+yLwgc7Zkjo+PJjHPQnDCU1fC/auMOn+fnv/ZROCiB3mwd82n6UlbH5HUHK3TdJ/NLXqeGVbBnGhQ0yTf6WuA0XTL7vTvSZwnFgUaTFMoz870o+yuhbOlEhNv62y8WQJDloNc6NNlEae/ET0Qxp7q3kDG6iMuRl0LXC2eynA9HAfXB200vrfmik+Abm7YeqjQlrXQeH5RlasPUxdSzvTw30sGKDEaPyiwC3wiknb1DBvwvxc+ehgXv/GZeXYaGWyZVFVlT9+k4q7kz0/neoJKV/AxLvB2avfYtBoFH51fTRF1U2sPYP4AMm6Nkk/8t6+HMrrWvj5oigUxchdNlUVDbVDZ3Tr1WO1dJqRlKYadPnsSGHOlJQuJZK2SKc0clakL+5O9j0PuHQCOPkZjJoLbiYmfYONoDhRgnBRo21HOy2zR/uxNa0UvWxqb53se1UYV3QsbLfr9Ly9O5t5L+3iYE4Vv1kczfVjrFgiL7kURRG7bdlJ4n51ycsKy6cM52h+NWnFtZe8bqvIpM0CbDldyt7MSn56XQReqe+Drg0SHu33OGaM8iVxtB+vbs+kOWwe5O2DZtnUV9L3VDe28vrOLOZG+RNviqylNBUqM6yzofblMNJBMsDDiahAd1nXZqMcL6ymuKbZdGlk7m6oLRINiCUCjQZilwk3zabqbi/NiwmgvK6F44XVVxgssRg1hZDyP5GwOXtxqrCGZa/t5YWNaUwP92HL07NZMTMMjbHyeonlCUuExgoou/xi5i2TgnGwk4YkFyKTtn6mpV3HnzalMcrfjbvjAkSjyMiF4BNukXh+uSia+pZ2Pq6OBX27KPaVSPqY15OyqG9p57mFo02bIPVLIf0aCNJIAI9hopG9gQ6SALNH+5GcV0VDi+yhaGt8e6oYe63C3GgTd5FPfgoO7hC12LyBDXRibwZ9G5zZ2O30taP90WoU6SJpjRx8A4DGSSv549enWbp6D2W1Lbx29yTevj+OIC9nCwcoMZmw2eKYteOyLw9xdWDx2KGsP1ZEY6v8HgSZtPU7a/bmklfZyP9bEoN96hei6e40y3m1jA505/a4EP6S4o7OaQikf2exWCS2QUlNM2v25nLThCCiAj2Mn0BVRT3byFng6mv+APsCRTHKjASERLJNp0qDBBtDVVU2nSphZoQfns4mSCNbG+H0V6INhr18oO1G0CTwGn6Ji6SXiwNTRnjLpM3aaK6FI2spDV7AvHdzeHdvDssThrP1mdlcP3ao8bJ6iXXhMQx8R1+xrg1gecJw6lra+fqE7BwGMmnrV8rrWvj39kzmRvkzO8IX9r8GAWNgxEyLxvX0vEg0GjuS7eNEA1KdXNGQ9B2vbEtHr6r8dF6kaRMUnxCmHgPBNfJCAsdC6WmDP19xod64OGhlXZuNcbKwhqLqJhaNCTRtgrOboLUexktp5CUoirhvZO+AxqpuL82PDSCzrJ6cigYLBSe5mLr970JLLSsyp+PqqOV/j03jhWVj8TClzlNinYRfK0pz2lsu+3Jc6BAi/N2kRLIDmbT1I//33Vla2nX8enG0WFkoT4Opqy7pOdLf+Hs4sXJWGGsro6HpPBQesmg8ksFLVnk9nyUXcndCKCHeLqZNkrpONISPvsG8wfU1geOEe11lhkGXO9hpmB7uy870Mmn9b0NsOlWMnUZhfoyJSduJT4ThRug15g1ssBB7sygFOPNNt9PzYoQUdcvpEktEJbkAvV7lw31Z1CX9m0NqNAvmLeSbJ2cyOVTa+g86whKhvQkKLv/cqSgKyxOGc6KwhpQi6bkgk7Z+IqWohs+OFHD/tBGE+bnBgdfA1Q/G3GLp0AB4ZFYYqc7xtGOHela6SEr6hpe+T8fRTsMTc0aZNoGqinq2sERwGWBf4EaakYCoayuoaiK3srGPgpJYE6qqsimlmBmjfPF0MWE3oa4UsrbDuNuF8YbkUoaOF83uU7q7SAYPcSF6qIeUSFqY9NI6bvvPfg588y7DqCB0yc94Yk4EDnby93lQEjpD1KdfRSJ588RgHO00fHRI7rbJT0E/oKoqf/z6NENcHHhybgRUZAgZYvwKsHeydHgAuDra8fD88ezXRdFw6pueB0gkRnKysJqNp4pZMTMMXzdH0yY5dxSq88Vq+UDDNwK0jsaZkUR0WP+fLeurqCRWREpRLQVVTSw21TUy5QtQdTBeNtS+IooiXGdzdkFDRbeX5sUEcCTvPJX1l5dqSfqO5jYd//fdWRb/azfZZXX80W8Hqs8oAiYvs3Rokr7EyQOC44Rk+Qp4utizZNwwvjpWRL2NG3PJpK0f2HiqmEO5VTw7f7QoLD/wOmgdIO4hS4fWjTviQjjhMg23umzayjMtHY5kkPG3zWfxdnVg5cyRpk9yZqNYlYu63nyB9Rdae/CPgpIUg4cM93FhpK+rrGuzETalFKPVKF1SPaM58QkMnQB+Jrqy2gqxN4nkNm1Dt9PzYwLQq7DtjFwk6U/2ZVaw8J+7eHVHJjeMH0bSHQ4MqUlFmfa43DG2BcIS4dwxUZ5zBZYnDKehVceG47ZtSCI/DX1Mc5uOP286Q/RQD+6IDxHFzyc+hrG3g5ufpcPrhp1Ww4S5YoX2xNaPLRyNZDCRnFvFnswKViWGm9YsuJPsnWJVznmI2WLrVzodJI2oUZsd6cf+7Eqa23R9GJjE0gjXyGKmh/swxNXB+AnK0sQurtxl65mAMeATcYmLZOwwD4Z5OkmJZD9RXtfCM5+dYPnbBwH4cEUCL90+AY+j/wEXHxh/l4UjlPQLYdeCqofcPVe8ZNJwL6IC3fnoUF4/BmZ9yKStj3lrVzZF1U38dkkMWo0CR9dCW6NFbf6vxoz4yRTYhaI/u5m65jZLhyMZJLy3NxcPJzuWJww3fZKmarEaN3K2+QLrbwLHiWaidYabHcyO9KO5Tc/h3KqeL5YMWE4X15JX2Wh6Q+0Tn4hd6DG3mjewwUini2TuHqgvu+C0wnUxAezOKKepVS6SmANVVSmpaWZvZgVr9+Xy269SWP7WARJe3Er8n7by1fEiHr82nM0/mcWMUb6ifCT9247yEdmywiYIjgMHt6vWtXUakqQU1XKysLr373l6AyT9/YquldaKnaUDGMyU1jbz2s4sFsYGMi3cB3RtcPBN8dAZEGvp8C6Loig4xi5m4vH/8Pq2kzy1eLKlQ5IMcIqqm9icWsKKa0bi4tCLW07eXrEaF5ZortD6nwvNSDwMezhPCPPGwU5D0tlyZkZY1+68xHxsOiWkkQtiTXCN1Ovh1Ocwaq7VKTisljE3w66/iZ52U1Z2nZ4XE8D7+/PYk1lhukzVBmnT6cmvaiSzrJ6s8npxLKsnq7yhWx2Su6MdYf5uXDPKj1H+blwX7U9EgPsPE+1/VdT+xq+8zLtIBiVae2FIcoUm250smxjEnzed4cMD+Yy71cv091NVSPor6HUw61nT57EAMmnrQ/7x/Vna9Xp+eX2UOHH6K6g7B0tetmxgPeA/eSmceI2cg+spuSaWQE/rMEuRDEze35+LqqrcOy20dxNl7wR7FwiON0dYlqFzsabkJETON2iIi4MdCSO9SUov5zd9GJrEcnQ21J4a5o23KdLI3N1QWwTz/mj+4AYr/tHgFyUkkhckbQkjfXB3tGPL6RKZtF2BxtZ2vkstIbOsIzkrbyCvsoE23Q+y70APJ8L9XbllUhDh/m6M8nMj3N8Nf3fHKzfFbqgQO8bj75SLD7ZGWCJkfCeMxrwur8jxcLLnhvFD2XDiHCtmjuye7BtD9k4oTYEbX7V4yy1jkUlbH5F6robPjxSy4pqRhPq4isx+/2rwDocIwx7WLEZwPDonbxIbj/KP78/y99vGWzoiyQClsbWdTw4VsCA2kOAhJvZl6yQ7CYZPAzsTHmqtBSdPGDLCKNt/EBLJFzamUVTdRJCXlAwNNs6U1JFT0cAKU016Tn4Kjh4Qtdi8gQ12Ym+GnX+G2uKunW8HOw2JUf5sSytDp1dFWYOkG099fIytaWXYaRRCfVwI93NjfkwA4X5ujPJ3I8zP1bTa5cNvQ3szTHvC/EFLrJuwRHHMToJJ917xshUzw/g2pYSFr+zmzvgQfjov0ng36v2vgqu/aI0ywJA1bX2Aqqr8aWMans72PHFthDhZcEjYlU99zPrdkDRatKMXMN/+BOuO5pFWXGvpiCQDlHXHiqhpauOBGb1wjATxUFVxFsIGcD1bJ51mJEYwO1KsOu+SLpKDkm9PFaNRME0a2dooVBwxN8oaIGOJXQaol7hIzosJoLKhlWP5V3azs1V2ni1ja1oZT8+L5PQfF7LtmUTevC+Ony2M4pbJwYwP8TItYWtrgkNvQeRC8Is0f+AS68Y/GtwCrlrXBhAZ4M7OZxO5J2E4nxwuIPHvO1m9I9Nwo67S05C5FRIeBjsTWw9ZECvPHgYm28+UsS+rkp/MjfihQeqB1WKVfaC4IUUuxFlXx0zHbP787RlLRyMZgKiqypq9ucQO8yB+RC/dHnN2iWNYYm/DsjyB46AqG1rqDB4yyt+NYZ5OJJ2VSdtgQ1VVNp4qJmGkj2n9C89shNZ6GCddI43GbzT4x17SaDtxtB/2WkW6SF5Em07P89+cZqSvK4/ODjdvw+sTnwiTJrnLZpsoivh+z94panSvgo+bI39YOobvfzqLaeE+/P27s1z7fzv58mghen0Pzsz7V4Ods9W13DIUmbSZmTadnj9tSiPM15W7p3bU8FTnQ9rXMPlH4Ohm0fgMJnwOaOz56fAsdqWXsztDPixKjGNPZgUZZfU8MGPklWsYDCV7Jzh7Q8BYs8RmUQLHAqpY8TMQRVGYPdqPvZkVtOmu/oUmGVhkdNQEXT/WhF02gJOfgGeIKOSXGM+Ym6DgANQUdZ3ycLJnapgP358uRTWiPcdg57/788gqb+A3i6PNm7Dp9eJheuh4GHGN+eaVDCzCEkXiXpZq0OXhfm68dV8cnzw8FT93R57+7AQ3vLqHfVkVlx9QVwKnPoOJd4OLt9nC7k9k0mZmPj6UT3Z5A7+6Php7bcd/78H/AApMediisRmFkweMuIYxDfsJ8XbmxU1n0PW0giGRXMB7e3PxdXPghvEmWph3oqqQkwQjZ1q/tNgQuhwkTxo1bHakH3Ut7RzLN4PdscRq2HiyGEWBBWNMSNrqSiFrO4y9bXB8NixB7M3ieHp9t9PzYgLIqWggq7zBAkFZH5X1Lby8NZ1ZkX7MifI37+QZ30NlBkx/asAZQ0jMSFiiOPYgkbyYqWE+rF81g1funEB1YxvL3zrIirWHySy7SM1y6E3h4j7VOltuGYK8y5uRmqY2Xt6SzrQwH+ZGd9zUWurg6H8hZil4Bls2QGMZvQhNZQa/n+FEWnEt644V9TxGIgFyKhrYfqaMuxNCcbTT9m6yyizhjBeWaI7QLI9HkGgObmRd2/RRvmg1CknpZT1fLBkwfJtSTPwIb/zdTXDpTflCtMGQDbVNxydcSJYvarR97WjxHS7rSAUvbUmnsVXHb5dE9145cTH7/g0eweI5SWK7eAwD39FGJ20AGo3C0glBbHtmNj9fGMXB7CoW/HM3v1l/ior6FmhtgMPvCLMmn3Dzx95PyKTNjKzekUl1Uxu/XnzBTe34R9BSA9Met2xwphC5AIA5ylHGB3vyj+/PGl7sKbFp1u7LxV6rcPfUXjTT7iRnpzgO5KbaF6IoJpmReDjZM3n4EJLkQ+SgIbOsjvTSehb3pqH20AmiNktiOrE3QeFhUcrQQYi3C2G+rvLzBpw+V8vHh/K5b1ooo/xNtFm/EueOQd4emPqo6NclsW3CEiFvn8lNr53stTyWGM7O54RZyceHhFlJ0mevQHM1TH/SrOH2NzJpMxP5lY2s2ZvLrZOCGRPk+cMLR9ZAUJzo+D7QGDIC/KJR0jfzq+ujKa5p5p09OZaOSmLl1Da38XlyATeMG2ba7sHFZO8UNTveYb2fy1oIHAdlp0HX3vO1FzB7tB8pRbWU15n2hSaxLjadKkFRYKEp0sjS00JiO1DMrayZ2JvEMbW7RHJWpB8HsitterFSVVX+8HUqXi4O/GRuH7g67ntVtKuYdL/555YMPMISoa1RLKL0ggvNSqaHeRGavoYUJYIvy4N6NiuxYmTSZib+uvkMWo3CswsuWPGsLhAPZrHLLBdYbxm9EPL3kzBUy3XRAby+M4vKevnAKLkynycX0tCq673NP4BeBzm7xS7bYKp1CBwr+hFVZho1rNP6XxoDDQ42nSomLnQIAR4mLG6c/AQULYy5xfyB2RreI2HYREjt7iI5e7QfLe16DuVUWSgwy/NtSgkHc6p4Zn7kD27Y5qK6QMhSJ90n6uglkhEzxH0ta4dZpgv3c+PN+FJGaEr52vVWnv78JDeu3sP+rEqzzN/fyKTNDCTnVrHxVDGPzA7r/uWbtU0cR82zTGDmIHIR6Nshcyu/WBRFU5uOf23LsHRUEitFp1dZsy+HuNAhjA327HlAT5ScFJKGsMTez2VNdJmRGCeRjBnqga+bg5RsDQKyyus5U1LHojEmSCMrMuDwu0LC7uZn/uBskdibhVSv6gc1ydSRPjjYaWz289bcpuNPG9OICnTnzngzSN0v5uAb4pjwqPnnlgxMnDwhaLJJdW1XZP+r4BXKz3/yLP+8YwJV9a3c9dYBVqw9TFPrwNpFl0lbL9HrVZ7fmEaAhyMPz7pIvpWxRRTXDuR6g+A4cPGB9M2M8nfjrikhfHgwn+zyektHJrFCtqWVUlDVZJ5dNvjhxj1ylnnmsxZ8I0HrYLSDpEajMCvCj13p5dLNdYDz7aliABYZa/XfUgef3gN2DnD93/sgMhulUxFzgSGJs4OWhJHeNmtG8taubIqqm/jdDbFoNWZWOpSni2baY28FrxDzzi0Z2IRfC+eOQpMZnJILDkHBQZi6Co2dHcsmBrH92UR+vjAKR3stzg69NErrZ2TS1ku+PnmOEwXVPLcgChcHux9e0LVBdhKMmjuwZV0aLUQsEAmorp0fz43E0U7DP7akWzoyiRXy3t5chnk6sSA2wDwTZieBXzS4m2k+a0FrD/7RRu+0gZBsnW9sI6Wopg8Ck/QXG0+VMGm4F0M9nQ0fpKrw1eNQkQ63vjfwHImtGa/hEBx/iYvkrAg/MsrqKapuslBgZqS2WPRDa6nr8dLimiZe25nF9WMDmRbuY944dO2w/lFwcIF5z5t3bsnAJyxRuOLm7un9XPv+LXbvJt7TdarTrGT18km9n7+fkUlbL2hu0/G3zWeJHebBzRODur9YcAha6yBiAEsjOxm9UEjUCg7g5+7IXVOG831qCecbWi0dmcSKSCuuZX92JfdOG4Gd1gy3lvYWyD8w+KSRnXQ6SBrZvPeaUb4oCjYr2RoM5FQ0kFZcy/XGukbu+xec/gqu+wOEDRI3VWsi9iax+12Z1XVq9mghPx3Qu216vbA7Xz0FvvsVbHymxyF//fYMOlXll4uizR/Pvleg6Ags/sfgW5CT9J6gOLB3hexe1rVV5cCZbyDuQXB0M09sFkYmbb3gnT05FFU38evF0Wgulg5kbgWN3eCQdYXPEVKu9M0A3DQpiDadysYOeY9EArBmby5O9hrummImqUvBIWhvGrwPp4HjoLEC6kqMGubj5si4IE+ZtA1gNnVJI41I2rJ3wtbfQ8yyAW9bbbXEdEokfzAkifB3Y6in08BN2srOwHuLYOPTwmxlyiNw8lPRLuIKHMmrYv3xczwyK4wQbxfzxlOaCjv+LP6vpYmO5HLYOQhDkt7WtR14XZiaTHnELGFZAzJpM5HyuhZe25HJvJgApof7XnpB5hYISRDbsgMdR3cYcQ2cFUlbzFAPIgPcWC+bbUs6qGpoZf3xIm6aGIyXi4N5Js3eKW64oTPMM5+1ETBGHE2RSEb6cSz/PDWNbWYOStIffJtSzIQQL4K8DJRGVhfAFw+KWsilqwe25N6a8QxU6sE3AAAgAElEQVSCkKmQ8oNEUlFEHemezAradXoLBmck7S2w40V44xqoOAvLXof7voKFf4bQa+Cbp7vtKHai16v84evTBHo48ViimZsQ69pg3aPg7AWLXzLv3JLBRdi1wl25usC08Y1VcOy/ombSw8Q+mFaITNpM5OWt6bS06/nloqhLX6wrEQ9io67r/8D6isiFUJkBlVkoisKyiUEk550nv7LR0pFJrICPD+XT0q7ngRkjzDdpThIETRq8VtCBHUlbqWl1bXoV9mRWmDkoSV+TX9lISlEt1xtqQNLWDJ/dKx547/hg0Mh8rJYxN0NZKpSf7To1e7Qfdc3tHC8wgzFCf5C7F16fAUl/FZLPJ5JhwnKR7Gu0cPObYjfjiwegvXuZwxdHCzlZWMMvFl1Up28Odv9DyE+XvAyuZq6TkwwuwhLFMSfJtPFH3hP93qY9Ya6IrAKZtJnA2ZI6PjmUzz1TQwnzu8wXaNZ2cRxsSRvA2W8BWDpB1PB9dVzuttk6bTo9/92fx8wIXyID3M0zaXMtFB0dvPVsIHbhvUJN2mkbH+yFh5MdSellfRCYpC9Z33HPNMjqX1Vh0zPCiv6mN8A3oo+jkxB9I6B0MySZEe6LZiDUkTZVw4anYM31oGuBe/4Ht7wFrhepgTyDxI5t8QnY9oeu03XNbfxt81kmhw5h6YRh5o3t3HHY9XcYeztE32DeuSWDD/9ocPU3TSLZ3gIH3xS7dZ2Lo4MEmbSZwJ82peHmaMeP517hCzRjC7gF/NCLaTAwJBT8Y7rq2oK8nEkY6c2640WoRhopSAYX36aUUFLbbN5dtry9oOpEU+3BTKcZiZHYaTXMjPAjKb1cfv4GEDVNbbyzJ4c5Uf6G1QodWQPHPoBZz0HU4j6PT4KQUoXO6Ja0ebrYM3H4EOtN2lRVxLt6ivh9mf4UrDpw9YXjqMUQv1L0sMrYCsCrOzKpqG/hdzfEoJhTgtveAusfAxdfuP5v5ptXMnhRFLFom71TGOkYw6kvoL4Epg+uXTaQSZvR7Dxbxq70cp6aG8EQ18vU7uh1YqctfIBb/V+OyIWQtw+azgNw08QgsssbOCWtx22a9/bmMNLXlcRIf/NNmr0T7JwhZIr55rRGAseJupIW4/sezo70o7S2hbOlPdt3S6yDt3dnU9PUxjPzI3u+uDAZvv2ZePBO/GXfByf5gdhlUH4GSk93nZod6cepohoq61ssGNhlqCmEj++Ez38E7oHw8A6Y/zw4uPY8dv7z4B8L6x8lPy+Hd/fkcNvkYMYFe5k3xp1/gbLTcOO/wXmIeeeWDF7CEqGhXPzuGIqqirYW/jHiOXyQIZM2I2jX6XlxUxqhPi7cN23E5S8qOirs8SMGkTSyk9GLxO5H5jZAOJ85aDWsP3bOwoFJLMWx/PMcy6/m/mmhlzqo9obsJBg+FewczTenNRI4FlCN+1LqYFaksCJPOmulq/+SblTUt/DOnhyWjBtK7LAeDKrqy+DTe8F9KNz8lqhDkvQfMUtB0XTbbZsV6YdqTXWkeh0ceANWJ0DOLpj/J1ixHYaON3wOe2e49V1oqafu44dw1MJzC0ebN87CZNj7T9EnK3K+eeeWDG7CEsXRGIlk1nZRkzrticG3cYJM2ozi0+QC0kvr+eWiKBzsrvBfl7lV3OzDru3f4PqDoMlC3tAhkfR0tmdOlD8bTpwbWK5aErPx3t5c3B3tuDXOTDb/AHWlUJ42uOvZOumUUJecNH6opxNRge7WK9mSdOP1nVk0t+n46bwedtl07fD5A9BUJYxHXLz7J0DJD7j5C8fk1HVdfRTHBnkyxMXeOj5vJSnwzjzY/HOxuLXqgJCCaU0wDvGPIn3Sr4ltPsJbEQfwd3cyX5xtTcIt0n0YLHjRfPNKbAPPIOGYa0zStv9VUZ409tY+C8uSyKTNQOqa23jp+3SmjPBmQexVXL8yt3QkN4Pwi1ajhcgFomZP1w7AsolBVNS3sDer0sLBSfqbkppmNp0q5ra4ENwczegy1ukWNVj7s12IZzA4eZlU1wZCspWce56GlnYzBya5LJVZYofDSM5VN/HfA3ncOjmY8MuZV13I1t9B3h644V8wdJyJgUp6TezNwjH53FEAtBqFmRF+7EqvQK+3UB1pW5Po1ffmbDifB7e8A3d/IWrOTZ1Sp2dV2lh2aqczNWc1FB4xX7zbXxD/h0tfHRztjyT9T1iiqHG/yOX0spSkiJ22hEcGrUpHJm0G8vrOLCobWvnNkugrF+g2VAp55Kh5/RtcfxK5UMg/Cw4AcG2UHx5OdrJnmw3ywYE8dKrKj6aPMO/E2UkikQm0gQdWRTHZjARE0taq03MgWy6a9DmFyfDvSfD6dEj7umsHxhD+vT0DVHjqSuZVnaT8T6wUT3kExt/Ry4AlvWLMzWDvCoff6To1K9KPivoWThfX9n88uXvgtWmw52UYdyc8cVjsJvRSAvbBgTwyyxtQb3gFxX0o/O9B4d7bW/L2idqiuIcgfBAqjyT9Q1iisO4vPNTztftXg70LTH6gr6OyGDJpM4DC8428vSeHmyYGXb1AN3sHoA4uq/+LCb8WtA5d1v+OdloWjxvG5pQSudpvQzS36fjoUD5zowIY7mOAC56hqKrYaRs5y3bqeALHQWlq1+61MUweMQQXB611SLYGO2lfg8ZO7LR9eg+8PVcsMPRATkUDnyUXsjxhOMFDrvJZKT0NXz0Bw6fB/BfMGLjEJJw8YfydwomusQqAWRHCOn9XRj9/3hoq4YOOBO2+DbBstVnUPFUNrby8JZ2ZEb4kjo+AW94WzYw3Pm3UosQltDbA+lViB3DeH3sdp8SGGXENKNqeJZK1xXDqc1E7ORiVbh3IpM0A/rb5LArw3IIeCnQztoCzNwyb0C9xWQRHdxgxE85s7Lqp3zQxiKY2HVtOl1o4OEl/seH4OaoaWnnQnDb/AFXZUFNgG9LIToImQXtz1+61MTjaaZke7iOTtv4g/TsInS7qh258VdRevn8jvL8Uiq4sKXt5SzoOWg2PXzvqynM3VcOnd4v7621rRONjieWZslL0Ozv6PgD+Hk5ED/Xof/OfI+9CexPc+bFZ740vbTlLQ6uO3y7psPgfPlU4lZ76HE58YvrEW34H53Nh6WuyGbykdzh5ipKjnpK2Q/8BfTtMfaxfwrIUBidtiqJoFUU5pijKNx0/j1QU5aCiKBmKonyqKIpDx3nHjp8zO14f0Teh9w/H8s+z4cQ5Hp4VxjAv5ytfqNdD1jYInzP4dwhiboTzOV3mCXGhQwjycmadlEjaBKqq8u7eHEYHuDMt3Me8k3femEcmmndea2b09UIOevhtk4bPjvQjr7KR3IoGMwcm6eJ8njDHiVwozB4m3QtPHoEFfxbS1rfmCLfH8vRuw9KKa/n65DkemDECP/cr1Fjo9bDuEajOh9vfF7btEuvAP1osUh5+p6uWcXakH0fyzlPfX8qS9lY49LawL/ePMtu0acW1fHQwn3unhhIR4P7DCzOfhtBrYOMzUJFp/MTZO+HwW+LhecQMs8UrsWHCEsXCWPMV2ku11EPyu6Jpu3dYf0bW7xiz0/ZjIO2Cn/8KvKyqagRwHnio4/xDwHlVVUcBL3dcNyBRVZUXNqbh5+7Io7PDr35xyUnRTyJiENezdRJ1g9iuTl0PgEajsGziMPZkVlBeZ2U9bCRm50B2FWdK6nhgxgjzNmAFIY30CAKfHj5vgwkHFyHpSPsaao1vnzG7oz+e3G3rQzK+F8eIBT+cs3eCaavgqeNidyJrO7yWAOsfFxIz4B/fp+PmaMcjs67y+7z7/4Qj78K/iJ0OiXUxZSXU5Hf9DsyO9KNdr7Kvv6z/U78UjYKnrTLblKqq8sevT+PpbM9Pr7vIzVSjhZvfFLu9XzwgGmMbSnOtkPj6jIK5vzVbvBIbJywRVD3k7L7868c/FAnd9Cf7MyqLYFDSpihKMLAYeLvjZwWYA3zRcclaYFnH35d2/EzH63MVsz/Z9Q+bTpVwJO88z8yLxLUnd7zMreIYPqfvA7M0rj4wciacXt8lkVw2IQidXuWbk7Jn22Dnvb05DHGxZ9nEIPNOrO+4KYclDsr+Klcl/iGxkn9kjdFDh/u4MNLXVSZtfUn6ZvAOB9/LSBydPCDxF/DjE5DwmJCW/XsSpZ//lKNpGTw6OxxPF/srzPs97HgRxt8F8Sv69t8gMY3Ri4Vl/aE3AZgcOgRXB23/1LV1Ngr2HW3WRsHfpZawP7uSp+ePvvzvpmcQLF0tFqO3GVGT9v2vobYIlr0hesBJJOYgOF6YAl1OIqnXic9I8BQImdLvofU3hu60/RP4GdDZjMsHqFZVtVMfUAh0PsEFAQUAHa/XdFzfDUVRHlYUJVlRlOTycut72Ghu0/GXzWlEBbpzmyE9qDK3iqaWbv59H5w1ELNM1B91uN5FBLgTO8xDukgOcvIrG9mSVspdU4bjZG9mGXDpKdGbaqQN1bN14h0mdumPrDHM2vgiZkf6sT+rkuY24+3oJT3Q2iAWEyIXXv06V19Y+CI8dRTG3YFf6hp2O/2ElbpPL+/GV5UNX66AwDGw5GXbW6gYKGjtIO5BsZNakYmDnYZp4b7sPFuO2huzDkPI2ycSp6mPme33o7lNxwsbxbPNXfFXebaJWgxTHhZuphlbep44Y4uo/Zv+FITEmyVWiQQQu74jZlw+aUv7GqrzbGKXDQxI2hRFWQKUqap6YaX15e4eqgGv/XBCVd9UVTVOVdU4Pz8/g4LtT9buy6WgqonfLI5Bq+nhZtlUDQWHBrfV/8VEd0gkT6/vOnXTxCBOFNaQVV5vwcAkfcna/bloFYV7p5neF+iKdNWzzTL/3AOBKQ9DfSmkbTB66OxIP5radCTnnu+DwGyc7CRhRhE537DrPYPZG/t75rX8lTL/a3DY8zd4ZbxYDW5rFte0NooaOBTRQFvuSlg3k+8HjX1X3ensSF8KzzeR09d1pAdeA+chMM587R/e3p1N4fkmfrskBjttD4+A854H/1jRILuu5MrXNZ2HDU+CXzRc+yuzxSqRdBGWKHr+1RR2P7//VRgyUiwy2ACG7LTNAG5UFCUX+AQhi/wn4KUoSqdmMBjo1MUVAiEAHa97AlVmjLlfmBw6hEdmhXFNh8XvVclJAlU3uK3+L8bVV1ixpv4gkbxh/DA0Cnwld9sGJfUt7Xx2uIBFY4cy1LMPHjKzk4QMyGOo+eceCITPFV8+JhiSJIR542CnISm9rA8Cs3HSN4ODOwyfbtDlqqry9+/O0uQRzrCHP4OVO4QK47tfwb8ni92Ir58SbR5ufQeGjOjb+CW9x80fYpeJ2pmW+q460l19KUmuyhEuzXEPirpXM5Bf2cjqHVksjA1k+igDnm3sneDWd8Vu87pHhIT9cnz7C6gvg5teH7RNjSUWJixRHC9ss5J/EAoPw9RVg98AsIMekzZVVX+pqmqwqqojgDuB7aqq3g3sAG7tuOx+4KuOv2/o+JmO17erfa4hMD9xI7z55fXRhl2csQUcPYXu1paIXQZVWVCaAkCAhxMzRvmy7nhR38tGJP3O/44UUtfSzgPmtvkHUeyev/+HG7MtotGIuqb8/VB80qihLg52JIz0ZmtamfzsmRNVFQYUo+YYbMO/Na2M4wXV/Pi6CBzttKKlw33r4f6vhTPkhidF3duc39jWQt9AZ8rD0FILpz7rnzrSg/8RD6LxK80yXUV9C/e9exAHOw2/Xmzgsw0Ix8pFfxFKiH3/uvT1Mxvh5Ccw61kYNtEssUokl+AfA65+Hf2QO9j3L+G8PPFuy8XVz/SmT9vPgacVRclE1Ky903H+HcCn4/zTwC96F6KVo6qQuU30TtH2YFYy2Ii6ARRNl4skCEOSgqomjuZLmdZgQq9XWbMvl/EhXkwaPsT8b1B4GNoabas/2+WYeDfYOQvLbCO5cfwwcioaSM6Tnz2zUXIS6oq7u0ZeBb1e5f++O8tIX1dumRTc/cWRs2DFVrjjQ9Fw+Jqn+yBgSZ8RHA+B4+DQW6CqzIrw5UB2Vd/UkTbXwrEPIPZmsygPGlraeXDNYUpqm3n3R/GEeBu5czfpflHHvv15KEy+YOJK+PrHEDgWZj7b6zglkiuiKGJRN3uneO6uzBILBvEPgYOrhYPrP4xK2lRV3amq6pKOv2erqjpFVdVRqqrepqpqS8f55o6fR3W8nt0XgVsNZWlQd842rP4vxs1PSCQvcJFcMCYQJ3sN649JF8nBRFJ6OTkVDeZvpt1JdpJYAAi18b4+zkNg3G1w8nNRJ2IEi8cNxc3Rjs8OF/RRcDZI+neAYvD9/euT5zhbWsfT8yIvXy+kKBC9BGb8WOysSgYOiiJ228pOQ95eZo/uwzrSY/+F1jqz2Py3tut59IMjpJ6rZfXySUwONWHRTVHghleEi+YXD/7QL2vTM6Km/6b/yIbwkr4n7FrRWqvsNBx4HbT24jNpQ8hvjd7SZfVvPjveAUXMMqjMFB8iwM3RjnkxgXxz8hyt7VfQv0sGHO/uzcHf3ZFFY/qo3iwnCYZNAmevvpl/IBG/Etqb4NiHRg1zcbDjhvFD2XiquP8a/w520jdD0GSDXIHbdHpe2pJO9FAPFo+10brMwc7YW8XCyqG3mBrmg4O2D+pI9To4+Iaooeyl3FCvV3nuixPszqjgzzePZW50gOmTOXvBLW8LI4hvnoaULyF1nWh3ERDbqzglEoPoVOKkfCl2osfeJiTnNoRM2npL5hahtfU0c8+qgUL0jZdIJG+aOIzzjW19W6Qt6Tcyy+rYnVHBvVNDcbDrg1tGc62Q3Ni6NLKToeNg+DRhSHKlwv8rcFtcCI2tOr45IXe6e019GRQdhUjDpJFfHCkkr7KRZ+dHounJcVgyMLF3hon3QNrXuDSXET9yCLvSzdxk+8xGqM4XNv+9QFVV/rQpja+On+O5BaO53ZDWRT0xPEE0kk/5AtY/JhY0Zvyk9/NKJIbgGQw+EbD3n2Jhc9oTlo6o35FJW29oqYe8/bZdTO7mJyRtF0gkZ0b44e3qwLrj0kVyMPDu3lwc7DQsTxjeN2+Qt0+4r9pif7YrEb8CzudA1jajhk0M8SLC343PkqVEstdkbAFUg5K25jYdr2zNYNJwL+ZE2UivTlsl7iFQ9ZD8HrMj/ThbWkdxTZP55j/wGniF9trC/M1d2byzJ4cfTR/BqsRwMwUHzHwaRswU3/fLXre9Wn6JZQlLBH27ULcFxFg6mn5HJm29IXc36NtsO2kD4SJZkS7q+wB7rYYbxg1l6+lSapvbLBycpDfsOFvGJ4fyuXVyMD5ufWTlnJMEdk4QktA38w9Eom8EtwA49KZRwxRF4Y74EI7mV5NZVtdHwdkI6ZvBfagwn+iBDw7kUVLbzHMLolBkk+zBjfdIkcgfWcOscE8Adptrt63oqHCPTXi0Vxbm/ztSyJ+/PcOScUP57ZIY8/5OarRw9+fwxGHwG22+eSUSQ4hcKI4zfmzZOCyETNp6Q8YWsHeF4VMtHYll6ZRIXtBoe9nEIFra9WxOuUpDTolVk1Fax1MfHSN6qAe/McYi2liyk8RnyN6p795joGHnAJN/JO4xVcZ5OS2bGISdRuFTaUhiOu2tkLUDIuYLE4arUN/Szms7s5gZ4cu0cJ9+ClBiUeJXQkMZoyt3EODhaD7r/wOvi56AE+8xeYodZ8r42f9OMmOUD/+4fXzfSHXtnWFIqPnnlUh6IuI6+EmKzZZTyKTNVFRV1LOFzZbNJN38hUTygrq2CSFejPBxYb1stD0gqWpo5aG1yTjaa3nrvjhcHPpIAlNfBmWpUhp5OSY/IFa1D7/T87UX4OvmyHXRAXx5tIg2nTQDMon8fcK9r3NV9yq8uyeHqoZWnpkvdx1shvA54B2GcvgtZkf6sTujnPbeftZqz0HqlzDpXnDyMGmKY/nnWfXhUaIC3XnjnsmiT6BEMtjwMkN95gBFJm2mUpklioVH2ahr5MXELIWKs10SSUVRWDYxiP3ZlZTUNFs4OIkxtLbreeyDI5TUNvPWfZMZ5uXcd2+Ws0scbXTV7Kp4DIXoGzrsvxuNGnpHfAiVDa1sSzOzs52tkP4daB17/L2sbmzlrV3ZzI8JYEKIdD61GTQasdtWcJAl/uXUNrdzorCmd3Mefls4R5poYZ5ZVs+Daw7j7+HImgem4O5k37t4JBKJ1SGTNlOxdav/i4m+EVAuabStqrDhhNxtGyioqsrvNqRwMKeKv90yjol90Uj7QrJ3gpMnDJ3Qt+8zUIlfKXoipXxh1LCZEb4EeDhKQxJTSf9ONMPuoWnrG0nZ1Le2y102W2TCcrB3IaH8SzQKvZNItjZC8rvCfMR7pNHDS2qauf/dQ2g1Cu8/OAU/dxtX/0gkgxSZtJlK5hbwGWXSDXZQ4h7wg4tkByN8XZkQ4sU62Wh7wLBmXy4fHypgVWI4yyb2cRsLVRX1bCNm9qroflATOh38Y4UhSYc7qyHYaTXcOjmYnWfLKK2VO91GUZEJVVk9ukaW1TazZl8OyyYEMTrQvZ+Ck1gNzl4w7nYc075kRpC2dy1uTn4CTedh2uNGD61pauP+dw9R3djKmgemEOpz9YUGiUQycJFJmym0NUHuHhg1z9KRWBexy6D8DJSd6Tp108Qg0oprOVNSa8HAJIaQlF7O89+cZn5MAM/2x87B+RyoyRcWvpLLoygwZQWUnIKCQ0YNvW1yCHpV9A+TGEH6ZnGMmH/Vy17dkUm7TuUn10X0Q1ASqyR+JbQ3sdJtHycKqznf0Gr8HHq9MCAZOl70ZzSC5jYdK9cmk11Rz5v3xTEmyNP495dIJAMGmbSZQt5eaG+WVv8X0ymRvGC3bcm4oWg1CuvlbptVk1lWzxMfHWV0oAcv3zGhf5oDZyeJozQhuTpjbwdHT6Pt/0f4upIw0pvPkwtQjdils3kyvgP/mKu64xVUNfLxoXxujw+ROxu2TOAYGD6dhMp1oOrZnWmC9X/WdtEyZ+rjPTqVXohOr/LUx8c4nFfFS7dPYMYoX+PfWyKRDChk0mYKmdtEX6kRMywdiXXhHiDkXBfUtfm4OTI70o+vjheh18sHR2ukurGVFWsP42in4e3743B17KdmqTlJ4D4MfOVOxVVxdIOJd8Ppr6Cu1Kihd8SHkFvZyKGcqj4KbpDRXCOavfewy/bKtgwUReGpOfJ31+aZshLHunwWO6eaJpE88Bq4BULsTQYPUVWV36xP4fvTpfxuSQw3jB9m/PtKJJIBh0zaTCFjC4y4RvQqkXQnZhmUp0H52a5TyyYGUVzTzEH54Gh1tOn0rPrwKOeqm/nPvXEE9aVT5IXo9cI5Mmy2UavLNkv8CtC3wdG1Rg1bNGYo7o52fCoNSQwjazvo269q9Z9ZVseXRwu5f1oogZ6yt6DNE30DuAXymPN2dqWXG7erXXYGsrYJCbSdg8HD/rk1g48P5bMqMZwfzZB19RKJrSCTNmM5nwuVGVIaeSViLnWRnBcdgKuDVvZsszJUVeX3G1LZl1XJX24Zy+TQPnaKvJDSFGislNJIQ/EJF061ye+Crs3gYc4OWm6YMIxNp4qpbTZ8nM2S/j04D4Hg+Cte8tKWdJzttTyWOKofA5NYLVp7iHuA2MaDONfncaakzvCxB14Tqp3JDxo85IMDebyyLYPb44J5boF0LZVIbAmZtBlL5jZxlEnb5XEPFMXUF9S1OTtoWTAmkE0pxTS36SwYnORC3t+fx4cH83l0djg3Twru3zfP6ahnk/3ZDGfKw1BXDGe+MWrYHXEhNLfp+eZEcR8FNkjQ6yDje3Fv115eIpxSVMOmUyWsmBmGt6vhOyOSQc7kH6Fq7LhHu9Vw6/+GSjj5KYy/E1x9DBry7ali/t9XKcyN8ufFm8aiSJWCRGJT9FPxyiAicyt4DRd2/5LLE7sMvv0ZlKeDXyQgXCS/PFrEjjNlLBo71MIBSnZnlPPHb05zXXQAP7PEam12EvhGgoesxTCYiHni3nPobaPqX8YFezI6wJ1PkwtYnjC8DwO0Xs6U1JJb0YBGUdBqFDSKgkajoFUUNBrQKgoeFceJbqwg12cmdYU14nzXNWLMXzefwcvFnhUzpSRNcgHugSjRN3Ln6e94Mq2AR2eH9zzmyLvC0CzhMYPe4kB2JT/+5DgTQ7x4dfkk7LRyzV0isTVk0mYM7a3iYXP8nbIO52pE3wjf/lzsts3+GQDTw33xc3dk3bEimbRZmKzyelZ9eJQIfzf+eWc/OUVeSHurcGCdcHf/vu9AR6MVtW1bfgulqRAQa9AwRVG4PT6E5785zdmSOpvqKaaqKu/uzeVPG0/Tkw/S03afEaHVsHSzEzXsueJ1v1gUhbuTvZkjlQx4pjyMe+qXBBV+TUPLNVc3dGpvFYsv4XPBP6rHqY/kVbFibTLDfVx490fxODvIvpYSiS0ikzZjKDgAbQ1SGtkTHkNh+FRR19aRtGk1CkvHD2Pt/lyqG1vxcpHSIktQ09jGyrXJOGg1vHVfHG795RR5IUXJ0NYopZGmMPFe2PEiHH4blrxs8LCbJgbxl2/T+Cy5gP+3JKYPA7QeWtp1/L/1KXyWXMiC2ACe7HB61OlVdKqKXq+iV8XPelVl/MbnqbebxEtzEjvOgV5Vu17X6VXstBoWjQm07D9MYp0Mn0qDVxR3V21hf+ZzXBd7ld+T1HVQXwLLVvc47cHsSh5Yc5hADyc+eChBfndKJDaMTNqMIXMraOxh5ExLR2L9xCyDzT+HiowuS/dlE4N4e08OG08Vc3fClXsgSfqGNp2exz86SsH5Rj5aOZUQbxfLBJKdBIpGOLBKjMPFG8bcCic+gbm/A2cvg4Z5uzowLyaAdceK+PnCKBzsBre0qryuhUc/OMKRvPM8NWcUP7ku8uo7yjVFcD4NrvsDc6MD+i9QyeBBUXCY/ggxm37KvuPbIPYKSgJVhQOrwXe02Gm7CvsyK3hw7WGCh7jw0YoE/D2kW6lEYssM7m9uc1c5Sp4AACAASURBVJOxFUKngaPtyItMJuZGcbzARTJ2mAcR/m7SRdJCPP/NafZkVvDiTWOJH+FtuUBykmDoBOHSJzGeKSvFTuWJj40adntcCFUNrWxLM67X20AjpaiGpa/uIfVcDa8un8jT80f3LAHO+F4cr2L1L5H0hP2EO2jQuDEy+yqfzfz9UHwCpj521TKLXenlPLDmMKHerny8cqpM2CQSiUzaDKb2HJSlSmmkoXgMg5Cp3VwkFUVh2cQgDueep6Cq0YLB2R7/PZDH+/vzeHhWGLfFhVgukJZ6KDwspZG9YdgEYUl/+G3R785AZkb4MdTTaVD3bNt4spjb3tiPCnzx6HSWjDPQ6Cb9O2Hy4ict1CW9wMGVvJBlzGrfR0Fe9uWv2b9aLFiNu+OK02w/U8qKtcmE+7nx8cNT8XN37KOAJRLJQEImbYYirf6NJ2ap6MdVkdl1aukE8RD11XG529Zf7M2s4PcbUpkb5c/PF/Zc9N6n5O0TzYtlf7beMeVhqMyE7B0GD9FqFG6dHMyu9HKKa5r6MLj+R69XeWlLOo9/dJTooe5seOIaxgR5Gja4rQmyd4pdNmkwJeklHjMfw17RUbnrzUtfrMqBMxsh7kFwuLw8/fvUEh757xFGB7rz0coE2VpCIpF0IZM2Q8ncAu7DwN82ivjNQsxScTy9rutU8BAXpozwZt2xIlS1Bzs3Sa/JqWhg1YdHCfdz5Z93TkDb306RlwSUBFpHYVQjMZ2YpeDqB4feMmrYbZND0KvwvyOFfRRY/9PQ0s6qD4/yr20Z3Do52Pididw90N4EkQv6LkiJzRA8agwHtJMYkfsZ6C5qaH/ozQ4X2JWXHfvtqWJWfXiU2GGefLBCmo5IJJLuyKTNEHTtkLUTRs2VK7HG4BkEwVMg9atup5dNDCKrvIHUc7UWCsw2qKxv4aG1h9FqFN65P946bMqzk2B4Atg7WzqSgY2dI0y6H9I3w/k8g4cN93FhWpgPnyUXou/JA38AUFDVyC2v7+P70yX8ZnE0f791HI52Rtqhp28GexcIlcY4EvOQGXoXXrpK2i787muuhaP/hdibhcPyRWw4cY4nPj7G+BAv/vvQFDydreB+LZFIrAqZtBlCUTK01EhppCnELoPSU1CZ1XVq8dihOGg1rJOGJGalXafnSF4VL29J55bX9zHlxW0UVDXyxj2TLecUeSH15eJ3QUojzUPcA8KFM/kdo4bdER9CflUjB3Iq+yiw/uFQThVLV++lqLqJd38Uz4qZYSjGLqqpqqhnC7sW7KXRg8Q8BE5aQp7en8Y9b/xw8tgH0FoH01Zdcv2XRwv5ySfHmBw6hPcfnGIdC2wSicTqkEmbIWRuBUULYYmWjmTg0SmRTP1BIunpYs+1UX5sOHGOdp3hRgqS7qiqSm5FA//dn8vD7ycz8Y9buOX1/fx7ewbtepVVieGsf3wGU0Za0CnyQnJ3iWNYoiWjGDx4BkPU9WL1vs3wGrWFYwJxd7Lj8+SBK5H85FA+d799AC9ne9Y/PoPE0f6mTVSWBjUFUhopMSvTIvz5WJ2HZ9lhKEkBvQ4OvgHDp8Owid2u/exwAc98foKpYT6seSD+6k25JRKJTSPvDoaQsQVCphjcE0lyAZ7Bwunu9HqY9WzX6ZsmBvFdail7syqZHelnwQAHFjWNbezNqmB3RgW7M8opPC8e1oOHOLNk/DBmRvgyPdzHOmshspPA0VPY/UvMw5SHIe1rSPkSJl6hL9RFONlrWTphGJ8nF/L7G2MHlAyrXafnhY1prNmXy8wIX169axKeLr2IP32zOEbMN0+AEgng6mhHZtAyWko+x/HwW6IfW3UezH+h23UfHcznV+tOMTPCl7fui8PJ3khpr0QisSlk0tYT9eVQfBzm/MbSkQxcYpbB978WEkmfcACujfLHy8Wejw7myaTtKrS26zmWf549mRXsyqjgVGE1ehXcHe2YGu7DI7PCmBnhR6iPi/HSsP4me6doqK2Vtx2zMWIm+EUJg4MJyw2uub0jbjgfHMhnw4lz3Dt1YDS6r25s5fGPjrI3s5IV14zkF4uisNP2UiyS/h0MHX/ZGiOJpDfERYezrnA6d5z4FOXccfAKhajFXa+v3ZfL7zakMifKn9funiQTNolE0iPy6aknsraLo6xnM52YpSJpO/0VzHwaAEc7LcunDOeNpCwKqhqto+bKSmhq1fH5kQKSzpZzILuShlYdGgUmhHjx5JwIZkb4Mj7EC/ueHlhVVchyrCFJOvaBWGme9rilIxlcKArEr4BNz0LREQiOM2jYmCAPood68HlywYBI2jLL6lixNplz1c387dZx3G6OXoONVVB4CGY91/u5JJKLmB3px7Ob53Nn+06x8Lvgz8I5Enh7dzYvbExjXkwAq5dPwsFOVqpIJJKekXeKnsjcIqy1A8dbOpKBi1cIBMV1a7QNcO+0UBRFYe2+XMvEZYUcyK5k0Su7+O1XqWSW17NsYhBv3DOZY7+dz5erZvDTeZHEjfDuOWED2Pln+Hs4nN7Q94FfifZW2PgsfPU4jJwldoMk5mX8neDgLnbbDERRFG6PC+ZkYQ1pxdbt4rr9TCnLVu+jvqWdjx9OME/CBqJWWdVDhKxnk5ifqEB3yt1Gk+UUKz6fE+8B4PWdWbywMY3rxwby2t0yYfv/7d13eJRV2sfx70mnBQidBEikdwKhgyAKAqKCFAEBxYIiuLqWtezrFtvqWthdRREbCCKggigiilSldxTBUKVIb1ITkpz3jzMqgUASMpOZgd/nunKReeodfAxzzznnvkUk5/Tb4kIy0l1T7cpXQ4j+qvKkdlfYtdo1F/UoV7QAneuWY8Ky7RxLSfNjcP539NRp/jr5e3qPXESGhXF3NmXuI1fxbLe6dKxTNvfrjlKOwaIRcPoETOwP0x6B06d8E/z5HN0No6+HpW9B86HQbzJEFsnfGC4HkUVcMrx2spvOnUNdG8QSERrChKXbfRjcxbPW8uasdfxl9EwqxhRkytBWNKrkxaI6ydPdB3JnFYYQ8QZjDFdWK8XQU/eSPuAziIrm1ZkbeGH6em6oX57/9U7M2YdvIiIe+o1xIbtWwcmDmhrpDb832s482jawZTxHT6VdUs1+c2v2+r10GDaPD5ds485WCXz1wJW0qFIybxddM961qeg/GZoNcaMw71wD+zd6J+jsbF8Cb7aB3Wug+ztw7bOBMU3zUtX4TkhPhRWjc3xK8UIRtK9dhk9X7SQlLd2HweXe8ZQ0Hhi7mIZzBjA/6s9M6nSa2GJe7O2XnuZG2qpeqw/kxGeurFaKdaeKszojgVe+/omXZyRzU2Isw25ukPf1mCJy2dFvjQvZOBMwULmdvyMJfsUqQmwjWJs5aWtYsTgNKhRj1IKtl0Sz39w4eDyVB8avZOCopRSODOOTwS34vy61KBCRxwXp1sLiN90IQqWW0PE56DMejuyAkW1gzUTv/ADnu/fSd+C9zq7v1R0zoG4P391PnFLVXP+75aPcDIEcujmpAodPnGbGj3t8F1subd1/nG7Dv6NV8nM0DkkmIrokURN6w0/TvXeT7Yvh1BGV+hefal2lJMbAQxNX879ZG+mVFMeLPesTGhLgRaNEJCApabuQDTMgtiEUKuHvSC4Ntbq60cszpkiCG23bsv84c5L3+imw/GWtZeqaX2j/ylymrtnFn66uytQ/tSKxYnHv3GDzbNifDE3v+aOaYPVOcM93ULYuTLoLPh0Cqce9c7/fnD4Fnw2FLx50vdgGzYGydbx7Dzm/Rre5nmOb5+T4lJZVShJbrEDATJGcvX4v17/2He2PTqZn6Fxo8yjm7m+hTC2YcItrbeANydMhJBwqX+Wd64lkoXihCOrHFWPL/uP0bVqR52+qp4RNRC6akrbzOXEQdi7T1Ehv+n2K5JRMmzvXLUeZ6Ejem781/2PKZ3t+PcXdY5YzdNxKyhcrwOf3teLB9tWIDPNiuefFb7q1OrW7Zd5eNA5uneqq5a36AEZeBXt+9M49j+yA9zq5KpFXPgJ9J0ABLyWhkjM1rnN/5yvH5PiU0BBD90ZxfLdxPzsP57xBt7dlZFhenbmB20cv5YbC63mY96FGF2jzGBSMgQGfQVwT+OQO94zlVfJXEN9SayzF5x7tWIO/X1+LZ7vWIUQJm4jkgZK289k8x1UWU9LmPcUrQfmG56xrCw8NYUDzeL7dsJ/kPUf9FJxvWWuZsHQb17wyl7nJ+3i8Uw0m39uCmuWivXujA5vcG9Kk2yEs8tz9oWGu52D/yXDyELx1lZtSZ/MwNXXLt2792v4NcPMH7voh6jmU78Iiod7NsP4L96FTDvVsFAfAx8v8s6706KnT3DN2OS/PSObOmuk8k/YypnQt6PbmH+vNoqKh3yduBHfKEFic80qZ5zi4Bfb/BNU6eiN8kQtqXrkEA1smBH4fTREJeErazufAJihY0q3DEu+p3RV+WQmHtmba3KdJRSLDQi7J0bbtB0/Q/50lPPrJ99QsF830B67k7jaVfbMQfenbLmFKuv3Cx1W+CgbPh4rN4fP74ePb4VQuS79bCwuHw/s3utGQu2ZBzS4XH7vkXWJ/V5BkzYQcn1IhpiAtK5fko+Xb831d6ca9x+g6fD4z1+/l6WvjeOLIU5iQMOg9DiILZz44oqBbm1mjC3z5CHz7ysXddMPX7s+qHfIWvIiISD7K9l2jMSbKGLPEGLPaGLPWGPNPz/ZRxpgtxphVnq8Gnu3GGPM/Y8xGY8waY0xDX/8QPtHmEfjzDxox8LbzTJGMKRRBt8RYJq3YwaHjqX4IzPvSMyzvfreFDsPmsWr7YZ7pWofxdzUjoWQh39ww5aibOla7GxQpm/3xhUtDv0lw9d/cf483W8POFTm7V+px+ORO+OoJqNHZJWylquUtfsm7snVcAZoVY3I1etozKY4dh06ycPMBHwaX2ddrd9N1+HwOnTjN2IFJ9N/5FObQFrh5rBuVz0pYJPQcBXV7wsx/wsyncj9KnDwdSlSFEpXz/DOIiIjkl5x81J8CtLPW1gcaAB2NMc08+x6x1jbwfK3ybOsEVPV8DQLe8HbQ+SbciyWmxSke795UnlVFEmBgywRS0jL4cOm2/I/LyzbuPUrPEQt4auqPNL0ihq//fCX9mlXy7ZqG1eMh5VdXgCSnQkKg9UMwcJorg/5OB1j4+oXfCB/c7I774ROX8PUao7VBgSSxP+xd60a0c+ja2q4XYH4UJMnIsLwyI5lBY5aTULIQn9/Xiuab/+tK8F/3MlRqceELhIa7qZMNb4VvX4bpj0FGRs5unnIMtn6nqpEiIhJ0sk3arHPM8zLc83WhjzZvBN73nLcIKGaMKZf3UOWSUasr/LICDv2caXP1skVoWaUE7y/4mdPpOXwTFmBOp2fw2qwNdP7vd2zef5xhN9fnvdsaU96bPaaykpHhCpDENoK4pNyfX7EZ3PMtVG0PXz0O4/tmvS5qwzcwsq0rPNLvY5fwaa1GYKnbA8KiclWQJCo8lK4NyjN97W6OnDjts9COnDzNXe8v438zN9CjURwf3dOc2C2TYOFr0ORuVwEzJ0JC4fr/uh6Ei0fA5/flrNXB5jlu+qiSNhERCTI5WlRjjAk1xqwC9gIzrLWLPbue9UyBHGaM+a3qQSxw5se1OzzbRJzaXd2fZ02RBLi9ZQK7fz3F9B9253NQeXciNY2eIxby0tfJtK9dhm8ebEO3xLj8WYC+aRYc2JC7UbazFYxxa4k6Pu/aXYxoBT8vdPushXkvwQc9oGhFV85fRXoCU1RRNw35+48h9USOT+uZVIHUtAymrN7pk7CS9xyl6/D5zE3ex9M31ubFHvWI2rUMpj7gCoxc+1zuLmiMa9re5lE3LfiTOyE9m4QzeTpERru1nCIiIkEkR0mbtTbdWtsAiAOaGGPqAI8DNYDGQAzwqOfwrN6hnjMyZ4wZZIxZZoxZtm/fvosKXoJU8Xgo1+CcKpIAV1UvTXyJgrw7f8u55wUway2PT/qe1TsO89/eDRjetyElC2dRvdFXFo+AwmXcKGZeGAPNBsMdX0NoBIy6Dub+Gyb0g1lPu1GcO76GmATvxC2+kdjfTZVd91mOT6kTW5Ta5aN9MkXyy+930XX4fI6eSmPcXc3o3zwe8+tO91wVjYMe77nKprllDFz1BLR/CtZOggn9Xb/ArGRkuA8jqlztpliKiIgEkVyVr7PWHgbmAB2ttbs8UyBTgPeAJp7DdgAVzjgtDvgli2uNtNYmWWuTSpUqdVHBSxCr3RV2LofDmdevhYQYbmsRz8pth1m57ZCfgsu9d+dvZcqqX3i4Q3VubJDPA8v7N8LGGZB0B4RFeOeasQ3h7nnuv9PsZ+GnL+Haf8FNb7kqfhLY4ltB8YRc9zTrlVSBtb/8yvQfdrPz8ElOnc7BlMMLSM+w/Hv6egZ/sIJqZYow9b5WNEmIcSOA4/vC6ZOuImTBmDzdh5b3Q+eXIPlLGNcr68bxu1fDsd1QVVMjRUQk+GT70aYxphRw2lp72BhTALgGeMEYU85au8u4uV9dgR88p3wGDDXGjAeaAkestbt8FL8Eq1pd4Zt/uClcrR/MtKtHUgVe/jqZ9+ZvJbFi4DdoXrT5AM9NW8e1tctwb1s/VKRbMhJCwiFpoHevGxUN3d+BmjdAdHmo0CT7cyQwGAOJntHRg5sh5oocnda1QSzPf7mee8Yu/31bkcgwShaJpGThCEoWjqSE588/vjyvi0RSKCL09+nAh0+k8qfxq5iXvI8+TSrwjxtquyby1sKUe2HXGug7EUpV987P3OQuiCjk+riNuQlumeimiv4m+SvAuHWbIiIiQSYn81HKAaONMaG4kbmJ1tqpxphZnoTOAKuA3xbTTAM6AxuBE4CX30nKJSEmARKuhCVvQfOhmUaICkeG0atxBUYv2MoTnWtStmiUHwO9sF1HTjJ03AoqlSjISz3r538D1VO/wqoPoE53V8Lf24z5Yw2iBJcGfd0o6cqxrspnDhQtGM70B1qzYc8x9h9L8Xylsu9YCgeOpbBh7zEWbk7h8HmKlUSFh3gSu0j2/nqK/cdSeK5bXfo2rfjHQfNegrWT3ZTGal7uldagL4QXdOvbRl8P/SZDoRJuX/JXENcYCpX07j1FRETyQbZJm7V2DZCYxfZ25zneAkPyHppc8lr8yRW2WDsZ6t+cadetzeN5d/4WxizayiPX1vBTgBeWkpbO4LErOJmazvhBzSgS5Yd1MqvGQeoxaDoo/+8tgS26PFRp756Rtk/keM1YpRKFqFTiwr0EU9MyOHg8NVNit/9YCvuPutcHjqdSILwgr/VtSKNKZ4yWr/scZj8D9Xq7//99oXZXl7hN7A+jOkP/T8GEuIq17f7PN/cUERHxsYtY+S3iJVWugVI1YOGrUK9XptLxFUsUpH3NMoxbvI372lUlKjzwmpz/8/MfWbX9MCP6NaRKaT/0KcvIgCVvQlwTV+pf5GwN+7tiH5tmerXMfURYCGWLRuVuFHz3DzDpbohNcuX6fTkqXa0D3PIxfNgb3uvkfr8AVOvou3uKiIj4UK4KkYh4lTHQfAjs/h62zD1n98CWCRw6cZpPV/qmBHleTFi6jXGLtzG4bWU61vFTG8KN37j1Sk3v9s/9JfBVvRYKloQV7/s3juP74cM+bp1k7w8gPB+mPCe0hgFT4ORBmPsCRMdCmTq+v6+IiIgPKGkT/6rbCwqVhgWvnbOr2RUx1CwXzXvzt+Jm3QaG1dsP8+SUtbSqUpKHO3ipiMLFWDwCipRzPblEshIWAfV7u/5kx/zUWiUt1ZXiP77X9QEsUjb/7h2XBLd94dph1O2pRvAiIhK0lLSJf4VHQZNBrmT93nWZdhljGNgynp/2HGXBpgN+CjCzA8dSGDx2OaUKR/Jqn0RCQzxvAk/9ClvmwaI3XAl+X9uX7Ka8Jd2hnlNyYQ0HQEYarBmf//e2FqY9DNsWwI3DXSuJ/Fa2Ljy4LsfFWERERAKRkjbxv8Z3QFgBWHjuaNsN9ctTolAE7wVAs+209Azu+3AlR46fYHSnCIr/+D58ei8MbwrPV3TV6qY/5tbQnNV/zuuWjHTNrxvd5tv7SPArVd2te1wxxiVR+WnJW7BiNLR60DVm95eQUPclIiISpFSIRPyvYIwr1b1yDLT7GxQp8/uuqPBQbmlakVdnb2Tr/uPEl7xwVTuvs9atG9u5ghXzZ/DQrhU0iPiZ0MmpnthLuilYdbq7UYTIaBjbAz7oBXd8lblPlLecOuIqAtbpAYXVmF5yoGF/+Ow+2LE0//rtbZ7jPsSo1gnaPZk/9xQREblEKWmTwNB8CCx7F5a+dU5Z7n7NKvHG3E2MWrCVf9xQ27dxHNvnSoPvXP7H18lDANSxkewtUoPQeoNctcbYRlCs4rnrZG4eA2NvgokDXAU7b09fXDkWTh9XmX/Judrd4MvHXEGS/EjaDm2FibdCyWrQ/S0I0aQOERGRvFDSJoGhRGWocR0sfRta/Rki/hhRKx0dRZd65flo2XYe7FCNaF/0Q1s1Dub8649pjSYESteCmtezu0gd7pkN4WVr8cGglhCWzRvQK9q4kuZThsDUP8MNr3qvAEJGupsaWaEZlD+nfaJI1iKLuMRt7WTo+DxEFvbdvTLSXWl/a6HPh+7eIiIikif6+FMCR/OhblRr1bhzdt3eMoHjqel8tGyH9+97aKtLrgrEQIdnYOCX8PgOGDyfI+1foc/y6uyMrMxr/RoTkV3C9pvEftD6YTflc/5/vBfrhq9dvCrzL7nVsL9rxP7jp769z3fDYPsiuO4liEnw7b1EREQuE0raJHBUbOYa7y563X1af4a6cUVJqlScUQu2kJ7hxWIK1sKXj4IJdf2jWtwHlVpARCEyMiwPTVzF9oMneP2WhpSJzmVvqav+6ta6ffMPN8LhDYtHQJHyUPN671xPLh8VmkKJqq4gia/sXOFGrOt0dyX2RURExCuUtEngMAZaDHWFP36ads7u21slsP3gSb5Zt8d79/xpmuth1fYxKBqXaddrszfyzbq9PNmlFo3jY3J/7ZAQuPF1N5Vx0t2wfUneYt273hV3aKwy/3IRjHGjbdsXuZYR3pZ6AiYNcj3RrntZPdFERES8SEmbBJYa17viHlk02+5QqwyxxQp4r/x/6nE3yla6FjQbnGnX7PV7GfZNMjclxjKgeaWLv0d4lGsoHF0ePuwDB/MQ+5I3ITQSGg28+GvI5a1+HwgJc9N2vW3Gk3BgA3R9HQoU9/71RURELmNK2iSwhIZBsyFuNGD70ky7wkJDGNC8Eos2H2TtL0fyfq95L8KR7XDdK5lGrn4+cJz7x6+kZtlonu1WF5PXEYNCJVwVyYw0GNfr92qUuXLyEKweD/V6uuuJXIzCpaFaR1j9IaSf9t51N8xwRYSaD4Ur2nrvuiIiIgIoaZNAlNjP9Tdb+Oo5u3o3rkiB8FBGzd+at3vsXQ8LXoUGt0Cl5r9vPpGaxt1jlmOM4c3+jSgQ4aWGvCWruBG3g1tgQn9IS83d+SvHwukT0EQFSCSPEvvD8X2Q/JV3rnd8v6uUWrq2+rGJiIj4iJI2CTyRhd0UwHWfu0qJZyhaMJzujWKZsuoX9h9LubjrWwvTHoaIwtD+qTM2Wx775Ht+2nOU//VJpEJMwTz8EFmIbwk3Doet38Ln97s4cuK3Mv+VWkK5et6NSS4/Va6BwmXdBwF5Za17lk8egptGuunAIiIi4nVK2iQwNb3bVXRc9MY5u25rkUBqegbjFm+7uGuvmegSp2v+DoVK/r753flb+Wz1LzzcoTptqpW62MgvrP7N0PZxWD0O5r2Us3OSp7v+cSrzL94QGgYN+rj2EUd35+1aK8fC+qlw9d+gbB3vxCciIiLnUNImgSm6PNTt4cqTn7UGrErpwrSpVooxi34mNS0jd9c9eRi+/ivENoKGtwGw72gK45ds47lp67i2dhnubVvZSz/EebR5FOrdDLOfgTUfZX/84hEQHQfVr/NtXHL5SOwPNj3Lnog5dnCzK+QT39qtQxURERGfUdImgav5EDh9HJa9d86ugS3j2Xc0hS++/yV315z1DPbEARbU+Ct///xHOgybS+Nnv+GxSd9TtXRhXupZP++FR7JjDNzwqpvuOOVe+Hnh+Y/d8yNsmQdN7nQjJCLeUKKye/5Wjs35NN0zpae5NhYhYdBthGtvISIiIj6jf2klcJWt6yrRLRl5TuGOK6uWonKpQrz73VZsNm86j546zaz1e3h7wiQylr7N6NPt6fvFKSYs206Z6Cj+0rE6nw5pydT7WlEkKp/6n4VFws1jXXuD8X3hwKasj1s8AsKioOGt+ROXXD4S+8PBTfDzgtyf+90w2LEEurxyTn9DERER8T59dC+BrcV9MLY7/PCJW4fjERJiuK1lAk9++gPLfz5E0hnNr0+mprPs54Ms2HSAhZsO8P3OI9iMdKZEPM2vYcU42epxPqpRifpxxYgI8+PnFgVj4JaP4O1r4IOecOc3bttvThx06+/q9cq8XcQbat0I0x5xPdviW+b8vJ3LYc6/oG5PN4VZREREfE5JmwS2yle75tcLXoX6vd3UQo/uDWN5cfp6Rs7bTFqGZcGmAyzadICV2w9xOt0SFmKoX6EYg9tUplv6dCov2Qxd32ZwvUQ//kBnibnCtQIYfQOMvwUGfOpG4QBWvA9pJ1XmX3wjoiDU7Q6rJ0Cnf0NUdPbnpB6HSYOgSDnonMNCOiIiIpJnStoksBnj1rZNGQKbZ0Pldr/vKhgRRp8mFXlz3ma+/nEPIQbqxBbl9pYJNK9cgsbxMRSKDINje+HVlyHhysAcGajYDLq+Dp/cAVOGutLpGemuWXF8a1XlE99JHADLR7mR7KSB2R//9f+5qby3fgYFivk8PBEREXGUtEngq9sTZj4FC17LlLQBDG5bmYIRYdQqH02ThBiKFshiTdqMv7nG1J1fzjRSF1Dq9nA96WY97UbfytSGI9uhMjataAAACM5JREFU47/8HZlcymIbupHslWOyT9qSv4Jl77opywlX5k98IiIiAihpk2AQFglNBrmEZs9al9B4FCsYwf3XVD3/uVu/g9UfQuuHoFS1fAg2D1o/BAe3wNzn3fSzohWhWid/RyWXMmNcQZKvHneVSsvUyvq4Y/vcaHeZOtDuyfyNUURERFQ9UoJE0u0QXhAWDs/5OWmp8MVDrkJj64d9F5u3GANdhrlRjKO7VOZf8ke9myEk3I22ZcVa+PxPcOqIm7r725pLERERyTdK2iQ4FIyBxH6umuLR3Tk7Z9HrsG89dHrRFV0IBmER0GsMdHwBGt/l72jkclCoBNS4DlaPh7SUc/eveB9+mgbX/CPTKLeIiIjkHyVtEjyaDYaMNFj8ZvbHHt4Oc1+A6tdB9Y6+j82bChSDZvcET6IpwS+xP5w8CD99mXn7gU0w/XFIaANNB/snNhEREVHSJkEk5gqo2cUVQ0g9fuFjpz/mpnV1ej5/YhMJZpWvgui4zFMk09Ncef/QMOj6BoTonwsRERF/0b/CElxa/AlOHYaVH5z/mOSvYP1UaPMXt55NRC4sJBQa9IWNM+HIDrft25dh5zK3zrJorH/jExERucwpaZPgUqEJxDWBRcNdL7OzpZ6AaY9AyerQfGj+xycSrBJvASysGgc7lrnpxXV7QZ3u/o5MRETksqekTYJPi6Gup9n6qefu++4VOPwzXPeyK+ohIjlTPN6tXVsxxk2LjC4PnV/0d1QiIiKCkjYJRjW6uDeYC17LvH3/Bpj/X1fCPKG1X0ITCWoNB8CRbXBwM3Qb4YriiIiIiN8paZPgExIKzYbAjiWwbbHbZi1MexjCCkD7p/0bn0iwqtHFTS1u+zjEt/J3NCIiIuKhpE2CU+ItEFUMFr7qXq+dBJvnwNVPQpEyfg1NJGiFR8GQxdD2UX9HIiIiImdQ0ibBKaIQJN0O66bCrtUw/Qko18BtE5GLZ4y/IxAREZGzKGmT4NX0bggJg9E3wLE90OUVN3VSREREROQSoqRNgleRslCvl+vblnQ7xDbyd0QiIiIiIl4X5u8ARPKkzV9cEZKrn/R3JCIiIiIiPpHtSJsxJsoYs8QYs9oYs9YY80/P9gRjzGJjzAZjzARjTIRne6Tn9UbP/njf/ghyWSseD93egALF/R2JiIiIiIhP5GR6ZArQzlpbH2gAdDTGNANeAIZZa6sCh4A7PMffARyy1lYBhnmOExERERERkYuQbdJmnWOel+GeLwu0Az72bB8NdPV8f6PnNZ79VxujcmQiIiIiIiIXI0eFSIwxocaYVcBeYAawCThsrU3zHLIDiPV8HwtsB/DsPwKU8GbQIiIiIiIil4scJW3W2nRrbQMgDmgC1MzqMM+fWY2q2bM3GGMGGWOWGWOW7du3L6fxioiIiIiIXFZyVfLfWnsYmAM0A4oZY36rPhkH/OL5fgdQAcCzvyhwMItrjbTWJllrk0qVKnVx0YuIiIiIiFziclI9spQxppjn+wLANcA6YDbQw3PYrcAUz/efeV7j2T/LWnvOSJuIiIiIiIhkLyd92soBo40xobgkb6K1dqox5kdgvDHmGWAl8I7n+HeAMcaYjbgRtt4+iFtEREREROSykG3SZq1dAyRmsX0zbn3b2dtPAT29Ep2IiIiIiMhlLldr2kRERERERCR/KWkTEREREREJYEraREREREREApiSNhERERERkQCmpE1ERERERCSAmUBooWaM2Qf87O84slAS2O/vIETyQM+wBDs9wxLs9AxLsNMznH8qWWtLZbUjIJK2QGWMWWatTfJ3HCIXS8+wBDs9wxLs9AxLsNMzHBg0PVJERERERCSAKWkTEREREREJYEraLmykvwMQySM9wxLs9AxLsNMzLMFOz3AA0Jo2ERERERGRAKaRNhERERERkQCmpO08jDEdjTE/GWM2GmMe83c8ItkxxrxrjNlrjPnhjG0xxpgZxpgNnj+L+zNGkQsxxlQwxsw2xqwzxqw1xtzv2a7nWIKCMSbKGLPEGLPa8wz/07M9wRiz2PMMTzDGRPg7VpHzMcaEGmNWGmOmel7r+Q0AStqyYIwJBYYDnYBaQB9jTC3/RiWSrVFAx7O2PQbMtNZWBWZ6XosEqjTgIWttTaAZMMTzu1fPsQSLFKCdtbY+0ADoaIxpBrwADPM8w4eAO/wYo0h27gfWnfFaz28AUNKWtSbARmvtZmttKjAeuNHPMYlckLV2HnDwrM03AqM9348GuuZrUCK5YK3dZa1d4fn+KO5NQyx6jiVIWOeY52W458sC7YCPPdv1DEvAMsbEAdcBb3teG/T8BgQlbVmLBbaf8XqHZ5tIsCljrd0F7g0xUNrP8YjkiDEmHkgEFqPnWIKIZ2rZKmAvMAPYBBy21qZ5DtF7Cglk/wH+AmR4XpdAz29AUNKWNZPFNpXZFBHJB8aYwsAnwAPW2l/9HY9Iblhr0621DYA43Mydmlkdlr9RiWTPGNMF2GutXX7m5iwO1fPrB2H+DiBA7QAqnPE6DvjFT7GI5MUeY0w5a+0uY0w53Ce/IgHLGBOOS9g+sNZO8mzWcyxBx1p72BgzB7c+s5gxJswzWqH3FBKoWgI3GGM6A1FANG7kTc9vANBIW9aWAlU91XIigN7AZ36OSeRifAbc6vn+VmCKH2MRuSDP2ol3gHXW2lfO2KXnWIKCMaaUMaaY5/sCwDW4tZmzgR6ew/QMS0Cy1j5urY2z1sbj3vvOstbegp7fgKDm2ufh+ZThP0Ao8K619lk/hyRyQcaYD4G2QElgD/B34FNgIlAR2Ab0tNaeXaxEJCAYY1oB3wLf88d6iidw69r0HEvAM8bUwxVqCMV9MD7RWvuUMeYKXFGzGGAl0M9am+K/SEUuzBjTFnjYWttFz29gUNImIiIiIiISwDQ9UkREREREJIApaRMREREREQlgStpEREREREQCmJI2ERERERGRAKakTUREREREJIApaRMREREREQlgStpEREREREQCmJI2ERERERGRAPb/pG1O+OrXFfkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Get our predictions\n", - "dense_forecast = model_forecast(\n", - " model,\n", - " np_ts[split_time - window_size:-1],\n", - " window_size)[:, 0]\n", - "\n", - "plt.plot(dense_forecast)\n", - "plt.plot(x_valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "23.682121" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# MAE for validation set using a simple Dense model (already much better than baseline)\n", - "keras.metrics.mean_absolute_error(x_valid, dense_forecast).numpy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# RNNS using Pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd_ts" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#Passengers
Month
1949-01-01112
1949-02-01118
1949-03-01132
1949-04-01129
1949-05-01121
\n", - "
" - ], - "text/plain": [ - " #Passengers\n", - "Month \n", - "1949-01-01 112\n", - "1949-02-01 118\n", - "1949-03-01 132\n", - "1949-04-01 129\n", - "1949-05-01 121" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "data = df.values" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training Mean Is: 218.36\n", - "Training Std Is: 73.84842855470927\n" - ] - } - ], - "source": [ - "SPLIT_TIME = 100\n", - "train_mean = data[:SPLIT_TIME].mean()\n", - "train_std = data[:SPLIT_TIME].std()\n", - "print(\"Training Mean Is:\", train_mean)\n", - "print(\"Training Std Is:\", train_std)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "standardized_data = (data - train_mean) / train_std" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAFlCAYAAABx1aD0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXRkZ3kn/u+tXaVatFSVdrWklnrf1G5323gZvGCDPRhITBJIiPNLCMkkISQQMglDhjDJZIGE8xsmgUAcEiAQlgAGjAGDAe92b1Lvi7q1lXaVVFWqRaXa3vmjdNXqbi2l0r236pa/n3M44Wi59XZbJvXoed7vIwkhQERERERERKXBUOwDEBERERER0TUs0oiIiIiIiEoIizQiIiIiIqISwiKNiIiIiIiohLBIIyIiIiIiKiEs0oiIiIiIiEqIqRgv6vF4RFtbWzFemoiIiIiIqOhOnDgREEJ4V/pcUYq0trY2HD9+vBgvTUREREREVHSSJA2t9jmOOxIREREREZUQFmlEREREREQlhEUaERERERFRCWGRRkREREREVEJYpBEREREREZUQFmlEREREREQlhEUaERERERFRCWGRRkREREREVEJYpBEREREREZUQFmlEREREREQlhEUaERERERFRCWGRRkREREREmkmkMrg6HS32MUoaizQiIiIiItLMV44O4w2feBZnRsLFPkrJYpFGRERERESaGZyJIyuAj373HIQQxT5OSWKRRkREREREmpkIJyBJwPGhIL5zaqzYxylJLNKIiIiIiEgzE3MJ3N5Riz1NLvz1UxcRT6aLfaSSwyKNiIiIiIg0MzmXQGNVBT7y5t2YmEvg0z+7WuwjlRwWaUREREREpIlMVmAqsoB6lw23ttXgkf2N+Mxz/fDPxot9tJLCIo2IiIiIiDQRiC4gkxWod9sAAH/60A4YJQl/9dSFIp+stLBIIyIiIiIiTUyEEwCAeleuSGtwV+B3Xr8V3z87gZeuBop5tJLCIo2IiIiIiDQxLhdpi500APjNuzvQXF2Bj37nPNKZbLGOVlJYpBERERERkSYm524u0mxmI/7HQztxaTKCH1+YLNbRSgqLNCIiIiIi0sTEXAJmo4Qau+W6j9+1zQsAGJphgAjAIo2IiIiIiDQyEU7A57TBYJCu+3ilxYgKsxHTkYUinay0sEgjIiIiIiJNTIQTaFg26iiTJAlepxXTURZpAIs0IiIiIiLSyMRcAnUrFGkA4HNa2UlbxCKNiIiIiIhUJ4TARDixFL9/I6/TiikWaQBYpBERERERkQbmEmnMpzIrjjsCuSKNnbQcFmlERERERKQ6eZF13SqdNJ/TivB8CgvpjJbHKkkmJR4iSdIggAiADIC0EOKQEs8lIiIiIqLyMLG4I22tThoATEcW0Fxt1+xcpUiRIm3RPUKIgILPIyIiIiKiMjG5TieNRdo1HHckIiIiIiLVja9XpDlyH+e9NOWKNAHgaUmSTkiS9J6VvkCSpPdIknRckqTj09PTCr0sERERERHpwcRcAh6HBRbTyiWIz7XYSeOuNMWKtDuEEAcBvAnA70qSdPeNXyCE+KwQ4pAQ4pDX61XoZYmIiIiISA8m5xKrdtEAoKbSAkkCpuZYpClSpAkhxhb/7xSAbwE4rMRziYiIiIioPIyvsSMNAMxGA2rsFnbSoECRJklSpSRJTvm/A3gAwNnNPpeIiIiIiMrH5FwC9askO8q4Ky1HiXTHOgDfkiRJft6XhRA/UOC5RERERERUBhKpDGZjyTU7aQCLNNmmizQhRD+A/QqchYiIiIiIypB8z6wuj05a/3RMiyOVNEbwExERERGRqtZbZC2TO2lCCC2OVbJYpBERERERkarGw/MAsO64o89pQzKTxdx8WotjlSwWaUREREREpKrJxU5aPuOOADAVSah+plLGIo2IiIiIiFQ1EV5ApcUIp3XtSAyvY3Gh9Ws8PIRFGhERERERqWpibh51bhsWE+FXJXfSXuu70likERERERGRqibWWWQt87nYSQNYpBERERERkcom5xbWXWQNAE6rCVaTAVMs0oiIiIiIiNSRzQpMzuXXSZMkiQutwSKNiIiIiIhUFIgtIJ0VeXXSAMDHIo1FGhERERFRKZicSyCZzhb7GIqbDOcKrnw6aUAuPIQR/EREREREVFQnhmZx18d+in9+vr/YR1Hc0iLrPDtpHHdkkUZEREREVFT+2Tje84UTSKazGAzEin0cxcmLrPPupDlsCMZTZdlVzBeLNCIiIiKiIplLpPDr/3YMqUwWjW5bWaYajocTMBkk1C4uql6PHMM/Eyu/v4t8sUgjIiIiIiqCdCaL9365BwOBGP7pV27BjgZXWY75Tcwl4HNaYTSsvcha5l0s5qbmyu/vIl8s0oiIiIiIiuAvnjyPZy9P4y/fugev6/TA57SWZSdtci6R9300IHcnDXhtL7RmkUZEREREpLHPvzSIz788hN+8qx2/dLgVQC56fia2gHSmvO5ijYc3VqTJ447TURZpRERERESkgQvjc/jod8/h/p11+JM37Vz6uNdphRDATCxZxNMpbzKcQF2eoSEAUFvJThqLNCIiIiIiDfX6Q8gK4CNv3nXdPS2vM1fIlFNxEkmkEEtm0LCBTprFZEC13fya3pXGIo2IiIiISEOjwXkYDdJNhYs85ldOxclEOPdn2UgnDeCuNBZpREREREQaGg3No95lg8l4/Vtxn7P8Ug0nNrgjTeZz2likERERERGRNkaCcTRVV9z0cTnVsJwSHuVOWoP75j/vWrxlmnSZLxZpREREREQaGg3Oo3mFIs1qMsJdUV53seQiTR7lzJc87iiEUONYJY9FGhERERGRRlKZLCbmEmiuWrmz5Cuzu1gTcwlU282wmY0b+j6f04qFdBaRhbRKJyttLNKIiIiIiDQyEU4gK7DiuCOQ6ziV05hfbpH1xkYdAS60ZpFGRERERKSRkeA8AKC52r7i531OW1kFh4wE59G4gfh9mddRfiEqG8EijYiIiIhII6OhXJHWtM64YzncxcpmBQZnYmjzVG74e5c6aVEWaUREREREpKKRYBwA0FC1cnfJ67Qimclibl7/d7Em5hJIpLJoL6BI85XhYu+NYJFGRERERKSR0eA86lxWWE0rB2lci+HXf8LjYCAGAOgooEhzVZhgMRrK4u+hECzSiIiIiIg0MhqaX3XUEbjWQSqH8JD+xSKt3bvxIk2SpKUY/tciFmlERERERBoZCc6jaZXQEODaPrFy6CANBGKoMBtR59x4cAgAeFikERERERGRmrJZgfHwyousZT5n+aQaDgRi2FJrh8EgFfT95bYzbiNYpBERERERaWAqsoBURqw57uiwmmAzG8qiOBkMxNBRwKijjOOORERERESkKjnZcbVF1kDuLpbPadP9nbRUJovh2XhByY4yr8OK2XgSqUxWwZPpg2JFmiRJRkmSeiRJelKpZxIRERERlQt5R1rLGkUakBvz0/udtJHgPNJZgXaPo+Bn+FxWCAHMxpIKnkwflOykvQ/ABQWfR0RERERUNkaCuSKtcY1xRyBXnOi9kzYQiAIA2j2rh6Ssx+tYXGit87+LQihSpEmS1AzgYQCPK/E8IiIiIqJyMxKcR02lBXaLac2v8zr0fxerf3oxfn8TnbRy2hm3UUp10v5/AH8MYNWBUUmS3iNJ0nFJko5PT08r9LJERERERPowGlo72VHmc9kQSaSRSGU0OJU6BmdicFeYUW03F/wMuUjTe8FaiE0XaZIk/VcAU0KIE2t9nRDis0KIQ0KIQ16vd7MvS0RERESkK6PB+JrJjjJvGcTwDwRiaPdUQpIKi98HWKRt1h0AHpEkaRDAVwDcK0nSvyvwXCIiIiKisiCEwGhoPq8izVcGY34D0zF0bCLZEQCsJiPcFWbd388rxKaLNCHEnwohmoUQbQB+CcBPhBC/sumTERERERGViZlYEolUds34fZnPaQMA3RYn88kMxsIJtG2ySANy3bSJsH6L1UJxTxoRERERlQT/bByBqD4Lk/WMLiY7Nlevn3ao9zG/wRk5NGTzRVqXz4FLk5FNP0dvFC3ShBA/E0L8VyWfSURERETlb3IugYc/+Tz+4snzxT6KKuT4/XzGHWsrLTAaJN2OOw4GlCvS9jS5MTQTR3g+teln6Qk7aURERERUVEIIfOibZzCXSC91nMrNaCgOAHmNOxoMEjwOi26DQ/oVLtIA4NxYeNPP0hMWaURERERUVE/0juKZi1OotBgxXcbjjk6bCe6K/CLpfU6bbu+kDQRiqHNZUWldex9cPvYuFmlnR1mkERERERFpYmougT//znkcbK3C2w+16PYe1npGgvklO8p8Tv0utB4IxNBWu/kuGgDUVFrQVFWBs6NzijxPL1ikEREREVFRCCHwoW+dxXwqg4+/fT98LiviyQxiC+liH01x+S6ylnmdVt120gYDMXR4lSnSAGB3o4udNCIiIiIiLXzn1Bh+fGESf/TANmz1OuB15FINyy3hUQiB0eB8XsmOMp/TipnYAtKZrIonU144nsJMLKnIfTTZ3iY3+gMxRBKvnfAQFmlEREREpLmpSAIf+c45dLdW4Tfu7ABwLXq+3Iq0ufk0IgvpDY07el02CJHbr6YnA0vx+w7FnrmnOXcv7fzYa2fkkUUaEREREWlKCIEPf+ss4skMPv7oPhgNEgDA49D3frDVjGwg2VHmWyxY9ZbwOBCIAgDaPfl3DdezpzFXpJ15DY08skgjIiIiIk1dmYri6fOT+P17O9Hpcy59XC5MpqP66h6t59oi640XadNRfe1KG5iOwSABLTXKFWlepxX1Lttr6l4aizQiIiIi0tSFiQgA4L6dddd9vKbSAkkqw07aBhZZy7x67aTNxNFcbYfVZFT0uXua3DjLcUciIiIiInVcmYzAIN287NhkNKDGbim7O2mjoXnYzAbUVFry/p6lIk1nBetAIKpoaIhsT5MLV6ejZZn8uRIWaURERESkqcuTUbTVVsJmvrnb4nHodz/YauRkR0mS8v4eq8mIKrsZUxH9jDsKITAwHVOlSNvb5IYQwPnx10Y3jUUaEREREWmqbyqCTt/K6X9eHS9xXs1oaGOLrGV6W2g9HVlALJlRqZOWCw95rdxLY5FGRERERJpZSGcwOBPHtjrnip/3OMpv3HEkGN9QsqNMbwut+wNy/L7yRVqdywav0/qaSXhkkUZEREREmhkMxJHJCnTVrd1JE0JofDJ1xJNpBOOpDSU7ynxOm66CQwZVLNKA3MjjuVGOOxIRERERKeryZC7Zscu3cifN67RiIZ1FtEwCIkYLSHaU+XRWsA4EYrCYDGgs4M+ajz2NLvRNRTCfzKjy/FLCIo2IiIiINNM3FYVBAjq8K3dbym2h9UgBO9JkXqcVyUwW4fmU0sdSRX8ghi019qXl5Erb0+RG9jUSHsIijYiIiIg00zcZwZZVkh2Ba9HzgTJZaD0SkjtpG1/u7HPZAOinYB0IqJPsKNvbnAsPOTdW/vfSWKQRERERkWb6pqKrJjsC5ddJGw3Ow2yU4FssPjfC69DPrrRMVmB4Jo72VTqkSqh32VBbacGZERZpRERERESKSKazGAzEsG2V0BBgeSet9AuTfAzNxNBcbYehgBFAn0su0kp/V9o/PXsVyUwWexej8tUgSRL2NLlfEwmPLNKIiIiISBODMzGks2LV0BAAqLZbYJDKp5N2aSKC7ausG1iP3H0r9YTHp86M4+M/vIS3HGjEw3sbVH2tvU1u9E1FkUiVd3gIizQiIiKiIosn03ilfwafefYqfnJxstjHUc1SsuManTSjQUKtQ19LnFczn8xgYCaGHQ2FFWkOqwkVZmNJ/12c8ofw/q/14mBrFf725/dBktQJDZHtaXIhkxW4OBFR9XWKzVTsAxARERG9Fj19bgI/vTSNXn8IlybmkF1MWW+pqcC9O+qKeziV9E3mkh23elcv0oDcvbRyGHe8PBmBEMCOeldB3y9JEnyu0l1oPRaax7u/cBwehxWf/dVDq4bBKGnP4jjlmdEwDrRUqf56xcIijYiIiEhjoXgSv/XvJ+CwmnCgpQpvuKcTB1qr8HxfAJ9/aRAL6QysJvXf8GqtbyqC1hr7um/mvU4rpsugSLs4kYuK31FfWCcNyIWHlOKdtNhCGu/+/HHMJzP40ruPLAW+qK2pqgJVdjPOlfm9NBZpRERERBrr9YcgBPCZd92C1231LH18bj6NrAD8s3F0rnFvS6/6JqN5/bm8DiuuTOp/nO3iRAQVZiNaazYevy+rc9twtsQKkkxW4H1f6cXFiTl87tduxbYC79wVQpIk7H0NhIfwThoRERGRxnr9IUgSsK/5+nGttsUdU/3TsWIcS1XJdBYD6yQ7yjxOCwLRJIQQGpxMPRfHI9he7ywo2VG21VMJ/2y8pIIyvnlyBD++MImPvHk3Xr/dp/nr72504/JkBKlMVvPX1gqLNCIiIiKN9QyHsM3nhMN6/VBTe22uSBsIlF+RNiQnO+ZRpHkdViQzWczNpzU4mTqEELg4MYedBYaGyLrqnMiK0ircX+6fgcdhwa/evqUor9/hrUQqIzAeKr0xUKWwSCMiIiLSkBACp0ZC6G69OfTAbTejttKCwZnSeUOulMuTUQBYM35fJu9Km47q9034VGQBwXiq4Ph9mVzU9k2Vzvhn73AI3a3Vqic5rqalOjc+OjwbL8rra4FFGhEREZGGBmfiCMVTqybTtXsqS6propS+qQikPJIdgVwnDQCmI0m1j6WaC+OLoSENhSU7yto9lTAaJPQtFrnFFowl0R+I4WBrddHO0FqbK9L8QRZpRERERKSAnuEgAODACp00IPemvBzHHfsmo2itsaPCsn5qpWepk6bfhMdLi3u8NpPsCABWkxFbau0l00nr8ed+flfqBGul3mWD2Sixk0ZEREREyuj1h1BpMa469tfmqcRUZAHRBf3ex1pJ31QEXb71u2jA8k6afou0ixMRNLhtqLJbNv2sbT5nyXTSeoZDMBok7Gt2F+0MRoOEpqoK+FmkEREREZESev0h7GuugnGVxL+OxYTHwTLqpqUyuWTHrjzvZ7krzDAZJF0vtL4wPoftm+yiybrqHBiciWEhXfyEx5PDQexscMJuKe4mr5YaO4s0IiIiItq8RCqD82Nzq446AkC7t/wSHodmYkhlRN6dNINBgsdh1W0nLZXJ4up0FDvqN3cfTVYqCY+ZrMiFhrQU7z6arKXGDn9wvtjHUA2LNCIiIiKNnBsLI50V6F4lNAQA2sowhl9OdtzI0mOv06rbTlr/dK4o3Wz8vkwubvumijvy2DcVQSyZwcEtxbuPJmuptmM2liy7sWDZpos0SZJskiQdlSTplCRJ5yRJ+qgSByMiIiIqNz3DIQCrh4YAgM1sRFNVRVkVaX2T0byTHWUeh0W3nbSLE4vJjgp10jq8lTBIQN9kccNDTg7lfn6Lmewoa61ZTHgs05FHJTppCwDuFULsB3AAwBslSbpNgecSERERlZUefwhNVRXwOW1rfl2bx47+MirSLk9F0FKdX7KjTM+dtAvjEZiNEjoWR1c3y2oyoq22sujhISeHg6iptCwVSMXUUlMBoHx3pW26SBM58k+MefE/YrPPJSIiIio3vcOhNbtosnZPJQamoxCiPN5SXZmM5n0fTeZxWBGIJpHN6u/v4OLEHLZ6HTAblbtZ1FXnwOUix/D3DAdxsLWqaEusl2MnLQ+SJBklSeoFMAXgR0KIV5V4LhEREVG5mIokMBqaX/M+mqzd48BcIo1gPKXBydSVymTRH4jmnewo8zqtyGQFQvP6+zu4NBHBzk0usb5Rl8+JoZl40RIeQ/Ekrk7H0F0Co45ALgHUaTWxSFuLECIjhDgAoBnAYUmS9tz4NZIkvUeSpOOSJB2fnp5W4mWJiIiIdKNXvo+WR5Emx/APBEpjN9ZmDM3EN5TsKPPodFdaKJ7EeDix6SXWN+qqcyCTFUW7q9jjz/38FnOJ9XKSJJV1wqOi6Y5CiBCAnwF44wqf+6wQ4pAQ4pDX61XyZYmIiIhKXq8/BJNBwp6m9ZcAty0WacWOXFeCHHaxkWRHINdJA/RXpF2cyP15ldqRJpOXnxfrXlrPcAgGCdjfXBpFGpC7l8Y7aauQJMkrSVLV4n+vAHA/gIubfS4RERFROen1h7CzwQWbef3wjObqCpgMEgZn9F+kXZ3OFRVbfRsL0ZA7aXoLD7k4nkt2VHrcsdgJjz3DQeyod6HSWtwl1su1Li60Lpe7m8sp0UlrAPBTSZJOAziG3J20JxV4LhEREVFZyGQFTo+E8xp1BACz0YDWGntZxPAPz8bhdVpht2zszb1eO2mXJiOotpvhWzy/UmxmI7bUVhZlV1pWXmJdIqOOspYaOxbS2TV/Rj773FV899SYhqdSxqZLYSHEaQDdCpyFiIiIqCxdmYoiupDe0Jvcdk9lWYw7+mfn0VJdseHvc9lMsJgMuuukXRiPYEe9S5UExC6fA5eL0Em7Mh1FZCFdEvvRlmuREx6DcfhcN6+1EELgUz+7igd21eHN+xu1Pt6mKHonjYiIiIhu1usPAsgvNETW7qnE4ExMlxH0y/mD8aU30xshSRK8DquuOmnZrMCliQh2NCh7H03WVefA4EwcyXRWleev5uRQ7uf34JYSK9Kqcz9Xq91LGwjEEIqnSq64zAeLNCIiIiKV9fpDcFeY0e7J/15Wm6cSiVQWE3MJFU+mrlQmi7HQ/NKb6Y3yOK2Y1lEnbXg2jvlURvFkR9m2OmdREh5PDgdRbTejrbb4S6yXa17s0PpnV054PLmYqFpqxWU+WKQRERERqaxnOIQDLRtbAizH8A/q+F7aeCiBrMil8BXC67DoqpMmJzvuqFc2NETWubjGoE/jpdY9wyF0t1aXxBLr5WxmI+pc1lU7aT3DQTitJnR6N7b+oRSwSCMiIiJSUWwhjcuTkQ2NOgJAu3cxhl/HRZo/mHvzXMi4I5ALDwlEk0oeSVUXJ+YgSRtfN5CvrV4HDBJwWcMY/vB8Cn1TURwssdAQmZzwuJKTwyEcaK2CwVBaxWU+WKQRERERqej0SBhZARzY4JvcOqcNFWajrhMe5TfPBY87OqyYjS0go5N7eRfHI2ivrUSFZf01C4WwmY1orbHjioadtN6lJdalOTLYUr1ykRZdSOPSxFzJnns9LNKIiIiIVCS/od61wb1ZBoOENk+lvou0YBxGg4QG983Je/nwOq3ICmAmpo+Rx4sTc4ovsb5RV51T005az3Awt8R6g51grbTU2DE+l7gpTOX0SAhZgZJbG5AvFmlEREREKhqcicNmNhS0N6vdY9f1nTT/7Dwaq2wwGQt7y+mVF1pHSn/k8cpUBIMzcdyickhFl8+BwUBMs4THY4Oz2FbnhKOEllgv11JjhxDAaOj68JAeOTSkhZ00IiIiIrrB0EwcW2oqCwpdaPdUYng2jlRG28h1pfiD8YJHHYFcuiMAXSQ8fvWYHyaDhLd2N6n6OtvqnEhnBQZnCi/ef3B2Am/71IsIxtYufoOxJF7pn8U9O3wFv5baWuVdaTeMPJ4cCmKrtxJuu7kYx9o0FmlEREREKhqaiWFLgdHl7R4H0lmBkeDKEeOlLrfIuvAi7VonrbSLtGQ6i2+cHMX9O+vgcWy8Y7oRcsJjoUutr0xF8P6v9aJnOIQnT4+t+bVPn59AJivw8N6Ggl5LC3Jy6PKERyEEevwh3d5HA1ikERERUZH854kR/ODseLGPoapsVmB4Nr6JIi2X8DgQ0O4OklLmkxkEogsFx+8D+umkPXNhErOxJH7x1hbVX6vT54AkAX0F3EuLLqTxW188AbvFiLZaO57oXbtI+96ZCbTW2LG7UZ2VAkqoc9pgMRqWkkSBXPd6NpbU5RJrGYs0IiIi0lwyncWHnziD3/73k/jEjy5DCH2k923UZCSBhXQWW2rzX2K93LUibeWI8VI2ssn4fQCotBhRYTaWfCftq8f9qHfZcPc2r+qvJSc8bnRXmhAC//0bpzEQiOGT7+jGL97aihNDQQzPrPyzFYon8dKVAB7a21By+9GWMxgkNFdXXDfueHI4CAA4uEWfoSEAizQiIiIqgrNjYSRSWexudOGTz/ThD7/ai4V0ptjHUtzQ4hvgQjtp1XYz3BVmXXbS5M5G8ybGHSVJgsdpKelO2nh4Hs9dnsajtzTDqNE+ri6fc8OdtH99cRDfOz2ODz64A6/b6sFbDjQCAJ7oHV3x658+N4l0iY86ylpq7PDPXhsJ7hkOwWE1ocunbtKmmlikERERkeaODcwCAP7t/zuMDz64HU/0juFdjx9dN8hAb4YWwx3aCuykSZKEdp3G8Mtvmjcz7gjk7qVNl3An7T+PjyArgF84pP6oo6yrzoGBDSQ8Hh+cxV89dQEP7KrDb/+XDgBAY1UFjrTX4Ine0RU72d87M46WmgrsaSrdUUdZS03FdXfSTg4Hsb/FrVnRrAYWaURERKS5Y4Oz6PBUwuu04nfv6cQn39GN3pEQfu7TL+k6cv5GQzNxmDaxJwwAOjyVGJjW39+Jfza3esC7ySANj8OKQBE7aSeGZvHpn11FdoWF2tmswNdO+PG6rbVoLbBbWojtiwmP+RTv05EF/M6XTqK5ugJ/9wv7rxtdfFt3E/qnYzgzGr7ue0LxJF7UwaijrLXGjvB8CuH5FOLJNC5ORHR9Hw1gkUZEREQay2YFjg0GcWtbzdLHHtnfiC+/+whC8SR++fFXy+aO2tBMHC019oL3hAG5e2lj4QTmk/oaB/UH42iutm/6Tb7XWdxO2r+9NIS//cFF/O+nLtz0c/lK/wz8s/OaBIYsJ3e3To+E1v3av3rqAuYSKXz6V26By3Z9HP2b9jbAYjTgiZ7rA0SePq+fUUcASwmi/tk4To+EkckK3S6xlrFIIyIiIk31TUURnk/h1vaa6z5+qK0Gf/TgdoyG5nUbOX+jodnY0h6nQrV7c6OS/Tq7l5aL39/cqCOQG8sLxnNdkmIYCERhMRrwLy8M4B9/euW6z331uB8umwkP7q7X9EwdHgccVhNOj4TX/dqXrgbw4O567Gy4eWzRXWHGvTt8+M6pMaSX7eJ76sw4mqsrsLfJrei51dKybFeaHBrSrdMl1kPJh+wAACAASURBVDIWaURERKSpo4O5+2iH22pu+tzuxtybwnNjc5qeSQ1CCAwF4mjb5BicHH5wZUpnRVowvqlkR9mexULh7Oj6BYnShBAYDMTxi7e24G3dTfi7py/jiy8PAgDC8RS+f3YCb+1ugs1s1PRcBoOEPU2udTtp4+F5TM4toLtl9a7SW7sbEYgu4KWrMwByf64XrwTwsE5GHYFlRVowjpNDIXR4KlFdaSnyqTaHRRoRERFp6tjALOpc1hUDJbbXOWGQgPPj+i/SgvEUIgtptBYYGiJr89hhkICrOirSwvEUIon0phZZy/YtFmmn8hjtU1ogmkR0IY2t3kp87NF9uH+nD//zO+fw7d5RPNE7imQ6q2lgyHL7m6twYTyyZnhIz3Du7+zAGvezXr/dB5fNhCd6cimPT5+fQCoj8JBORh2BXEfQXWHG8Gwcvf4gDuh81BFgkUZEREQaEkLg2OAsbm2rWfG39BUWIzq8Dpwvg07a4FKy4+YKFavJiLbaSvTpqEjzL+1I2/y4Y3WlBa01dpz2a99JW/pn6KmE2WjAP7zzIA631eADXzuFT/3sCnY3upY6fVrb2+xGMpPFxYnV/13p9YdgMRmwa4VRR5nNbMRDexvwg3MTiCfTS6OO+5r1Meooa6mpwEtXZhCI6nuJtYxFGhEREWlmJDiP8XACh9tvHnWU7Wpw4UIZdNLk+P1Cd6Qt1+lz6KtIm938jrTl9jW7b0og1IKcqikvFbeZjXj8sUPY2eDC5NyC5oEhy+1vznWL1rqX1jMcxO5GFyymtd/yv7W7CfFkBt84OYoXdJTquFxrjR39i2mXLNKIiIiINuDY4n20W1e4jybb1ejCaGgeobi+d6YNzcQhScoUKl11DgwGYkhl8tuLVWxyJ02pWPr9zVUYDc1rHsU/MBODySChqepaR9BpM+Pzv34YH354Z9FGHQGguboC1XbzqvfSUpkszoyGcWCN+2iyw201aHTb8DdPXdDdqKNMHq21W4zYVuco8mk2j0UaERERaebY4CxcNhO21zlX/Rp5NEvv99KGZuJocNkUCZXo9DmQzoql7lyp88/Ow11hvinyvVDy6F0+kfNKGgzk0jlvXKFQU2nBu+/q0DwwZDlJkrCvuWrVTtqliQgSqSy68+gqGQwSHjnQhFgyg6aqCuzX2agjcC08ZH9z1aZWXpQK/f8JiIiISDeODsziUFsNDIbVR6nkqHC930sbmolhyyZDQ2RywmPfpD5GHnPJjpu/jybb3eSGJAGnNL6XNhCILY06lqL9zW5cnowgnkzf9Lkef66gXSvZcbm3dTcBAN60p153o47AtSLt4Bb9h4YALNKIiIhII4HoAq5Ox9YcdQRyy4t9TmtZdNKUuI8GAFu9DkgSdHMvzT8bVyTZUeawmtDpdWjaSctmBYZm4mgr4SJtX3MVsmLllRW9wyHUVlrQnOeuuu31TvzLY4fw3nu7lD6mJnY1uFDvsuG+nXXFPooiWKQRERGRJo7L+9Ha1x+/2t3o0nUnLZJIYSaWVKyTVmExorm6QhdFWjYr4A/OK7IjbTl5tE8IoehzVzMZSWA+lSntIq1lcT2B/+bitccfRHdr1Ya6YvftrIPbrsyIqta8Tite+dB9ZREaArBIIyIiIo0cHQjCajJgb9P640i7Gl24MhXFQjqjwcmUNzSTC85QqpMGAJ1ehy4WWk9HF5BMZ9GSZwcnX/tb3JiJJTEamlf0uasZWEwKbFeo0FaDz2lDg9t20720cDyF/ulYXqEhVJpYpBEREZEmjg3O4kBL1bpx4ACwq8GNdFbo5g7WjYZnlS/SuuqcuDodRSarTSepUEvx+yp00oC1I+eVNBjI/TnaPMr+OZS2t8l90xiovPj7QEt5dJVei1ikERERkeqiC2mcGwuvuR9tuV2N+g4PGVzakaZcF6bT50AynV0qgkrV0iJrBe+kAcDOBifMRkm7Im0mBovJgEa3sh1Bpe1vqcLgTBzheGrpYz3DIUjStXFI0h8WaURERKS6k0NBZMXa+9GW21Jjh91i1G14yPBMHB6HBQ6rSbFndvlyu59KfeTRP5sbR8w3sCJfVpMRO+pdmoWHDARiaKu1r5lEWgrk9QTLl333+oPo9DoUW4FA2mORRkRERKo7NjgLgwQc3JLf+JXBIGFng37DQwYVjN+XbV0s0ko9PMQ/G4fPaVVlh9i+ZjfOjISR1WDkM1ekle59NNm+xTue8oijEAK9/hC6W3kfTc9YpBEREZHqjg7MYneje0OdpV0NLpwfn9PkDbnShmbi2KLwnSyXzYx6lw19UxFFn6u03I40de5x7Wt2I7KQxoDKS70zWYHhmXhJ70iTue1mtNXalzqMQzNxBOMp3kfTORZpREREpKqFdAa9/lDeo46yXY0uRBfSGAlqk+anlEQqg/FwQvFOGgB01ZV+wqN/dl7xZEfZtfAQdUcex0LzSGayJR2/v5y8ngAAev1yaAg7aXrGIo2IiIhUdXE8goV0FofaNvab/V0Ni+Eh49oERSjFr0Kyo6zTlyvStNoVtlGpTBbjYeV3pMm6fA7YzAac8qv7MyEHv+ihkwbkOozj4QSmIgn0DAdhtxixrc5R7GPRJrBIIyIiIlVdnsyN5+2od27o+7bXO2GQ9JfwqMaONFmnz4F4MoOxcELxZythPJRAViif7CgzGQ3Y03hz5LzSBgP6KtL2L3bNTvvD6PWHsLfJDZORb/P1bNP/9CRJapEk6aeSJF2QJOmcJEnvU+JgREREVB6uTEVhMRrQusHuis1sxFavQ3cJj2rE78u6fLlCt2+yNO+lyfH7zTXqxdbva67CubE5pDNZ1V6jPxCD3WKEz2lV7TWUtLvRBYMEHBuaxfnxORxgaIjuKVFipwF8QAixE8BtAH5XkqRdCjyXiIiIysDlyQg6vJUF/WZ/V6P+Eh6HZ+Nw2kyotisff17qMfzyqKdanTQA2N/ixkI6i8sqLjofDOTSOSWptOP3ZXaLCV0+J75xYgSpjEA3Q0N0b9NFmhBiXAhxcvG/RwBcANC02ecSERFReeibiqKrbmOjjrJdDS6MhRMIxpIKn0o9gzNxbKm1q/IGv7rSAo/DUrpFWjAOo0FCg9um2mtoER4yOBNHu0e9QlMN+5rdCERz/54wfl//FB1WlSSpDUA3gFdX+Nx7JEk6LknS8enpaSVfloiISJee75vG98+MF/sYqootpjNu8xUWYrCrMRceckFHI4/DKuxIW26r11Gyu9L8s/NoqqpQ9T5UW60dLpsJp0bUCQ9JZ7Lwz+ojfn+5fYv30hrcNtS51CuSSRuK/RskSZIDwDcA/IEQ4qb/JRVCfFYIcUgIccjr9Sr1skRERLr1sR9cwvu+2ovRkL4i5jfi6nSumOgqMGnuWsKjPoq0dCaLkeC84jvSluuqc6BvMqJZwmMwlsT3z4yv+3qZrMC5sTBaVLyPBgCSJC1GzqvTSRsJziOdFbpYZL3c/mY3AHbRyoUiRZokSWbkCrQvCSG+qcQziYiIylkqk8WlyQiS6Sz+/ulLxT6OauR7Q4WOO9Y6rKh32XRzL20slFD9DX6Xz4m5RBrTkQXVXmO5z788iP/2pZP47um1u75ffnUIV6dj+IVDLaqfaW+zG5cmIkikMgV9vxACPcPBFQvPAZ0lO8p21LvQWmPHfTvqin0UUoAS6Y4SgH8BcEEI8YnNH4mIiKj8XZ2OIpnOosNbiW/1jOLcmL52geWrbyoCi9Gwqc7SrkYXzumkSJOTHVtViN+XdWocHiIvR/7It8+uWhhOzSXwsR9cwp2dHjyyv1H1M+1vdiOdFQV3WJ8+P4m3feolfOWY/6bPyUWaXhZZyywmA57743vw87c0F/sopAAlOml3AHgXgHslSepd/M9DCjyXiIiobMmdoY8/ug/uCjP+5vsXi3widfRNRgtOdpTtanDhynS04K6JloYW0w3V7aTlijQt7qUJIXDKH8KR9hrEkhn82RNnV+w+/a8nz2Mhk8VfvHWPJomIexfDQ86NFvbLjX9/ZQgA8Mln+m76uRqcicFpNaG20rK5QxJtghLpji8IISQhxD4hxIHF/zylxOGIiIjK1bmxOdjMBhxoqcbv3dOJ5/sCeO5y+QVr9U1Fljo/hdrV6EImK9CnYuT6Wi5OzOHw//4xvnFiZN2vHZiOwWoyqLpfy+u0wmUzoW9K/V1p/tl5BOMpvOVAE97/hm34wbkJfO+GsJtnL0/jydPj+N3Xd2o2ItjotsFdYS6okzY8E8fzfQHc2enBeDiB/zg6fN3nBwIxtHv1E79P5YmryImIiIrg3FgY2+tdMBokvOv2LWiursBff/8islltwiC0EE+m4Z+dx7YC76PJroWHFGck9MUrM5iKLOADXz+FT/zo8oqdJCEEHn++H194eRDdrVUwGNR7gy9JErrqnJoUrT3+IIDcbrJ339mO/S1V+J/fPodANDf2mEjlumsdnkr89us7VD+PTJIk7C5wDPbLR4dhkICPv30fbu+oxT/+9CriyfTS5wcCMd2FhlD5YZFGRESkMSEEzo/NYfdivLzVZMQHH9yOC+NzeKJ3tMinU87Vqdzdnq5NdtJaa+yotBiLFh7SNxlBtd2Mt9/SjE8+04c//GovFtLXRuTC8RTe88UT+MvvXcA9O3z4zK8cUv1MnV7HUnKmmk75w7CZDdhW54TJaMDfPboP0UQaH/n2OQDAP/zkCoZn4/jLt+2B1WRU/TzL7W504eJEBOlMNu/vSaaz+PpxP+7bWYcGdwU+8MA2BKIL+MLLufHHhXQGY6F53d1Ho/LDIo2IiEhjI8F5zCXSS0UaALx5XyP2Nrnxdz+8pIu7V/m4PJkbxys02VFmMEjY2eAqWgz/5ckIttU58bFH9+GDD27HE71jeNfjRxGMJXHKH8LD//d5/PTiFD788E589l23wG03q36mrjoHAtEkZlVe8n1qJIQ9jW6YF+8UdtU58Qdv6ML3zozjk8/04TPPXcXPdTfhdVs9qp5jJbsaXUims7g6Hcv7e354bgIzsSTeeaQVAHCorQav3+7FPz17FZFECv7ZOLICultkTeWHRRoREZHG5GJDHuMDcoXInz60A2PhBD7/0mCRTqasvqkozEYJWxRIOtzV6MKF8Yjm46BC5O7CbatzQpIk/O49nfjkO7rROxLCw598Ho/+00sQAvjab9+Od9/Vodk9Ji0SHlOZLM6OhrG/5fq9W++5qwP7mt34xI8uw24x4UMP71TtDGvZ3ZjbC7aRZNQvvzqM5uoK3N11bWfvB96wHaF4Cp97YRADAfWDX4jywSKNiIhIY+fG5mCQcnuNlnvdVg/u2e7FP/z0CqIL6VW+Wz/6JiPo8DiWujCbsavBhehCGv5gXIGT5W88nEBkIY1t9de6gY/sb8SX330EyUwW/2WbD9/7/TtxsLVa03PJ3Um5W6mGSxMRLKSzOHBDkWYyGvB3b98Pj8OKj7x5FzwO9UJS1tLhqYTVZMh7DPbqdBQv98/gHYdbYVx2Z3BvsxsP7q7D48/3o3fxDp7edqRR+WGRRkREpLHzY3Po8DpQYbn5Ds9v3tWBSCKNV/tninAyZfVNRdFZt7n7aLJdi6OhWt9Lk4ugbTfcqzvUVoNXP3Q/Hn/sEKrs2ke1N7ptqLKbcWZEvTCVUyO5/Wg3FmkAsK3OiaMfug8/d7B4O7lMRgN21DvzDg/5j1eHYTJIePuhm8/8/jdsRzSZxj8/P4Bqu7ko/0yJlmORRkREpLHzY+Hr7qMtd3BLNWxmA164EtD4VMqaT2bgD8axzbe5+2iybXVOGA2S5vfS5ATFlRIqjSomOK5HkiR0t1Th5HBQtdc45Q+hptKC5uqKFT+vZoJlvnY15u4qrpS4uVwilcF/nhzBA7vr4HPabvr89nonHtnfiGQ6y9AQKgks0oiIiDQUjCUxFk5cdx9tOZvZiFvbavCizou0q9NRCJELuFCCzWzEVm+l5p20S5MReBxWVJfgYuODrdXom4oiPJ9S5fmn/GHsb3aX9L6wXY1uhOdTGA3Nr/l13z87jlA8hV8+smXVr3nffV0wGiSOOlJJYJFGRESkIbkTJIcerOTOTg8uT0YxNZfQ6liKWxoTVKhIA3L30rTvpEWwvV65P4OSuhfvwZ3yhzb0fZFECp97YQBv+9SLeGWVsdroQhqXpyI3hYaUmt15jsF++dVhtNXacXtH7apf0+F14PHHDuG993YpekaiQrBIIyIi0pCcRLdrlXFHALijMxdn/uJV/XbTriU7KteV2N3oxng4oXrsvCybFeibiqJLoZFNpe1vcUOSkPfIY/90FH/+nXO47a+ewf968jzOjITxf37ct+LXnh0NQwiUfJG2o94JScKa99IuT0ZwbDCIdx5pXXdE857tPnbSqCSwSCMiItLQ+bE5NLhtqFljfG5XgwvVdjNe6NNveEjfZATtnkpFkh1lcmF7QaNu2mhoHvFkZsX7aKXAaTNje50TPcNrd9KmIgn82r8exb1//yy+9OoQHtxdj+/83h14/wPb8HL/zIoJkb2L3bn9zaVdpNktJnR4Ktcs0r5y1A+L0YBHb2nR8GREm8MijYiISEPnxuZWvY8mMxgkvK7TgxevBNYNRChVanSgdi7+vW1kL9ZmyMVLqY47AkB3axV6hoNr7o/7lxcG8EJfAH9wfxde/JN78YlfPIB9zVX4pVtbYTEZ8IWXB2/6nlP+EFpr7Gv+MqFU7Gp0r1q4Z7ICT54ew+u3e3XxZyGSsUgjIiLSSCKVwdXp6KrJjsvd2enBxFwCV6djGpxMWfPJDIZn44qFhshqKi1ocNs0Cw+5vJjs2Fmi445A7l7aXCKN/sDqS62fuTCFIx01+IP7t12XbFhTacEj+xvxzZOjmEtcHz5yyh8q+VFH2e5GF0ZD8wiuMAZ7dGAWU5EFvHl/YxFORlQ4FmlEREQauTgRQVbkfvO/njvle2k6THlcSnZUobjRMjykbzKCepcN7gqzJq9XCHmJ9slVRh6HZmK4MhXFfTvqVvz8Y7e3IZ7M4BsnRpY+NjWXwFg4gf3N6/+clgK5M71SN+27p8dgtxhx306f1sci2hQWaURERBqRO0D5dNJaauxorbHrcl9a35TyyY6yXY0uXJ2OIZHKKP7sG12eiijeDVRah6cSLpsJPauEhzxzYQoAcP/OlYu0vc1udLdW4YsvDy2NTJ5aXJDd3aqfThpwc3hIKpPF98+M4/6ddbBbTMU4GlHBWKQRERFp5NxYGE6badXlwDe6o9ODV67OIJ3JqnwyZfVNRmEyKJvsKNvV4EImK1YMu1BSJivQNxnF9hINDZEZDBK6W6txcmjlTtozFyfR5XOgtda+6jMeu70N/YEYnl/8hcApfwhGg7TmmohSUuuwot5lu6nD+uKVAILxFEcdSZdYpBEREWlEDg3JdznwnZ0eRBbSOD2qTVCGUi5PRtHmqYTFpPzbjF157sXaLP9sHAvpbMkmOy7X3VqFy1MRRG64VzaXSOHV/lncu86o35v21sPjsOALLw0CAE6NhLCj3gmb2ajWkRW3q9F1U6DMd0+Nw2kz4e5tniKdiqhwLNKIiIg0kMkKXJyY21B34vattZAk4MU+fY08XpmKqDLqCAAt1XY4rCbV76XJnbpSH3cEcvfShABO+a8vUp67PI10Vqw66iizmox45+FW/OTSFIZmYroKDZHtvmEMNpHK4OlzE3jj7npYTfopNolkLNKIiIg0MBCIIpHKrrnE+kY1lRbsbnTp6l5aIpXB0GxctUREg0HCzgan6p20vqlcWmKXDjppB1qrVlxq/ZMLU6i2m5fCRdbyziNbYJAk/MWT5zGXSONAie9Hu5E8BntpIldcP3t5GpGFNB45wFFH0icWaURERBo4t4HQkOXu6PTg5HAQ8WRajWMpTk52VKuTBuTekF8Yn1tzN9hmXZqIoKmqAg5r6QdOuGxmdHod1xVpmazATy9N4Z7tPhgN64/X1rtteOPuevx4MWhEf520XIda/vfsu6fGUFtpwe0dtcU8FlHBWKQRERFp4PzYHCxGAzp9Gyte7uz0IJURODowq9LJlNW3uFtMjfh92a5GF2KLu9jUcnlSvZFNNRxsrUbPcGhp+fnJ4SCC8dS699GW+9XbtwAA7Bbjhn9Oi625ugJOqwnnx8OILaTx4wuTeGhvA0xGvtUlfeJPLhERkQbOj89hW70D5g2+aby1rQYWk6Go+9IW0hn82RNn8bVj/lWj7xfSGfzLCwP46HfPwWkzod2jfLKjbFdDrmui1r20dCaL/umYLkJDZAe3VCE8n0J/ILf8/McXJmEySLh7mzfvZxxur8GeJhcOtdXk1X0rJQaDhJ2NLpwbm8OPL0wikcoy1ZF0rfR7+ERERDonhMC5sTncX8BCXZvZiENbqvHClRkVTpafowOz+OIrQwCAv/7+BbzjcCvedfsWNLgrkMkKfLt3FH//9GWMhuZxZ6cHf/KmHaokO8q66hwwGiScH5vDQ3sbCnqGEAJfO+7HgZZqbK+/vhgbmo0jmdFHsqOsW15qPRTEVq8DP7kwhSMdNXDZ8l/ELUkSvvQbt0HS6a/wdze68JWjfny7dwz1LhsObVn/Lh5RqWKRRkREpLKxcAKzsWTBe6fu6PTg4z+8hEB0AR6HVeHTre/YYBAGCXj8sUP4ylE//unZq/jMc/14cHcd+qdjuDgRwZ4mF/7m5/firq78OzeFspmN6PI5Cu6kZbMCf/7dc/jCy0NoqqrAD//w7uvunl2ekJdx66dI6/Q64LSZ0OMP4Uh7LfqmonjH4dYNP8dtz7+oKzW7GlyYT2Xwk4tTePed7TDorBtItJxOf1dCRESkH6f9uUXD+5oLK9Lu7MzteSrWyOOJoVnsbHDh3h11+OyvHsKzH7wHv3FnO17oCyCezOCT7+jGd373Tk0KNNmuBldBCY+ZrMCHvnUGX3h5CA/trcdYeB5/+/2L133N5ckoJAm6updlMEg40FKFk0NB/PjCJADgvgI6t3q2/JcgTHUkvWORRkREpLJTI2GYDBJ2Nmws2VG2p8kNp9WEV4sQHpLOZNEzHLpudKylxo4PPbQTPf/zATz7wdfjkf2NmnctdjW6MDGXwEx0Ie/vSWey+ODXT+Erx/x4772d+Md3HsSv39GOL74yhJeuXiuAL09F0FpjR4VFX/u1ulurcXkygu+cGkOnz4EtterdCyxFnT4HzEYJW2rt2NtU2C9EiEoFizQiIiKVnRkNYUeDEzZzYW/6jQYJh9qq8Wq/9vfSLoxHEE9mcKitZsVzSVJxRsp2LRa8+Y48pjJZvO8rvfhmzyg+8IZt+MAD2yFJEv7oge1oq7Xjv3/jNGILuTUHfZMRVdMp1XKwtQpZAfT6Q6+5LhoAWEwG/MadHfiD+7uK9nNJpBQWaURERCrKZgVOj4Sxb5PLgY901OLqdAyBDXSOlHBsMNe9O9RWWiEMclcyn5HHVCaL3/nSSXzvzDj+x0M78d77upY+V2Ex4mOP7sdIcB4f+8FFJNNysqN+Rh1l3S3X/hndv7OuiCcpnj950w68rbu52Mcg2jQWaURERCoanIkhkkhjf4H30WSH23OdLK33pZ0YCqKpqgIN7gpNX3c91ZUWNFVVoHfxvt9anrkwiR+dn8SHH96J37y746bPH26vwWO3t+HzLw/hq8eGkc4KXYWGyNx2M7Z6K1FlN6NbZ8uoieh6LNKIiKhoslmBdCZb7GOo6vRIGAA23Unb2+SG3WLUdORRCIFjg7Ml10WTvW5rLV7un0EmK9b8uuf7AnBYTXjsdW2rfs0fv3E7Wmvs+PPvngegr2TH5T744Hb8+Zt3c4kzkc7x32AiIiqaT/3sCo781TM4s1jIlKNTIyHYzAZ0bTIp0Gw04JYt1ZqGh4wE5zEVWVjxPlopuLPLg1A8te7I44tXArito2bNReJ2iwkfe3QfMlkBgwR0ePUZuvHGPQ14a3dTsY9BRJvEIo2IiIrmB+cmMBNL4p2Pv4KTw8FiH0cVp0fC2NPoVqSzcbitBpcmIwjFkwqcbH1L99FKdCnw67bmVhO8sMZqAv9sHIMzcdyxuMZgLbd11OL37unEvTvqCg55ISJSAos0IiIqirlErgPyi4daUFNpwbsef7Uo6YVqSmeyODe2+dAQ2ZGOWgiRWy6theNDQThtppId/fM6rdhR71xzf5wcrX9nHkUaAPzRg9vx+GOHFDkfEVGhFCnSJEn6nCRJU5IknVXieUREVP5ODAaRFcBbuhvxtd+6HfVuGx7716N4oa84C5vVcHkyikQqi/0tyuxs2tfshsVk0KyYPT44i4Ot1TBqvANtI+7o9ODo4CwSqcyKn3/hygx8TquuFlMTESnVSfs3AG9U6FlERPQa8MrADMxGCd0t1ahz2fDV37odbbWV+PXPH8NPL04V+3iKOD2SSx5UarGuzWxEd0uVJvfSwvEULk9GcWuJhobI7uz0IJnO4sTQzd3FbFbgpSsB3Nnp4d4sItIVRYo0IcRzALTNBCYiIl17tX8W+5urUGHJ3f3xOKz4j9+8DdvqHHjPF4+jbzJS5BNu3qmRMJw2E9pqlQuhONJRi3NjYUQSKcWeuZITw7n/t37LltIMDZEdbq+BySCteC/t4kQEM7FkXvfRiIhKiWZ30iRJeo8kScclSTo+PT2t1csSEVEJii2kcXY0jCMd1xcA1ZUWfO6xW5HKCDx9frJIp1POmdEQ9jW7YVBwXPBIew2yIndfTE3HB4MwGSQcKPF9W5VWEw62Vq94L03+GIs0ItIbzYo0IcRnhRCHhBCHvF6vVi9LREQl6ORwEOmswOH22ps+53PZsLvRhecu6/sXeolUBhfHI4qFhsgOtlbDbJRUX2p9fDCI3U3upU5nKbuj04Mzo+GbUi9fuBJAp8+BeretSCcjIioM0x2JiEhzr/bPwmiQcMsq0e53dXlxcjiI6EJa45Mp58L4HNJZgf3NytxH6bvWzwAAIABJREFUk1VYjNjXXKVqeMhCOoNTIyHcWqLR+ze6syuXevny1Wt/JwvpDI4OzOad6khEVEpYpBERkeaODsxiT6MLDqtpxc/f3eVBKiN0Hcl/enFBt9KdNCB3D+v0SBjxpDpF7NnROSykszhU4qEhsn3NVXBYTXjx6rWRx57hEOZTGY46EpEuKRXB/x8AXgawXZKkEUmSfkOJ5xIRUflJpDLo9YdwpOPmUUfZLW3VsJkNeF7HcfynRkLwOKxoUGHU7kh7DdJZgZ7hUMHPmI4s4I++fgof/e65m+LrTwzpIzREZjYacFtHDV68cq2of/FKAEaDdNO9RyIiPVj5V5gbJIR4hxLPISKi8tfrDyGZyeJI++pvnq0mI27rqMVzffq9l3Z6JIz9zW5Vot9v2VINgwS82j+z4U6REALfPDmKv/jeecQW0khlBF7pn8Wnfvkg2j25FMpjg0G01drhdVoVP7ta7uj04McXpjASjKO52o4XrgSwv9kNl81c7KMREW0Yxx2JiEhTr/bPQpKAQ21rdzju6vKifzqGkWBco5MpJ7qQxtXpqCqjjgDgtJmxp8m94X1p/tk4fvVzR/GBr5/CVq8D33/fXfjcrx3CeHgeb/6/L+DJ02MQQuDkUHDdfz6lRr579tKVGcwlUjjlD/E+GhHpliKdNCIiony9OjCDnfUuuCvW7nDc1ZV7g/1CXwC/dLhVi6Mp5sxIGEIA+1qUDQ1Z7kh7DT7/8hASqQxs5vUTGL/4yhD++qkLkAB89JHdeNdtW2AwSOj0OfG9378L7/3ySfzel3vw1N5xzMSSOKST0BBZp88Bn9OKF64EUGU3IysYvU9E+sVOGhERaSaZzuLkcDCve0JdPgfqXFZd3ks7PZK7K7avSb0i7XB7LZLpLE7517+X1j8dxZ89cRYHW6vxwz+8G4+9ru263W1NVRX46m/djvfc3YGnzkwAWL/TWWokScIdnR68eCWA5/sCqDAb0d2qr0KTiEjGThoREWnmzGgIidTa99FkkiThri4vfnR+EpmsgFHBhdBqOz0SRlNVBWod6t3pOtxWA0nKJWWuFcIC5HaeAcBH37IbzdX2Fb/GbDTgQw/txG0dNegZDmGrt1LxM6vtjk4PvtUzim/1jOJIRw0sJv4umoj0if/rRUREmnmlP3eH6tY8uzR3dXkQnk/hzGhYzWMp7tRICPtVHHUEALfdjB31rrzupZ0YCqLKbkaHZ/3C694ddfjAA9tVCTxR2x2duWI1upDGHVs56khE+sUijYioxJwYCuJN/+d5Xe8IW83RgVl0+Rx5d5jk4IfnL+sn5XE2lsRIcF610JDlbuuowfGhWSTT2TW/7sRwELe0Vuuy8NqIBnfFUgeQ99GISM847khEVEKePD2G93/tFJLpLL5xcmTdMTY9SWeyOD44i7cdbMr7e2odVuxpcuH5vgDee1+XiqfbOCEERkPzuDodw2Q4gfFwAhNz87g6FQMA7GtWt5MGALd11OJfXxzE6ZHQqnfIQvEkrkxF8bbu/P/e9ezB3fV48vQ4dtQ7i30UIqKCsUgjIioBQgh8+tmr+NgPLuHQlmpYzQa8eGUGQoiy6X6cH59DLJnBkfaNFZ53dXnxz8/1I5JIwVnEnVfRhTRO+UPo9YfQM5z7v4HownVf43FYUOey4S0HGnFQg9CKI+25e2kvX51ZtUiTF17forO0xkJ94IHt+P37uq4LRiEi0hsWaURERZbKZPHhb53FV4/78cj+Rnzs0X34+okR/NkTZzE0E0dbHveI9ODVxfto+YSGLHdXlwef/tlVvNI/izfsqlPjaOtaSGfw+o//FIFoEgDQ4anE3V0eHGitwo56FxrcNvhcVlhN60fhK6nKbsGOehdeGZjBe7Fyp/HEUBBGg4T9GoxflgKjQYLRoO0/ByIipbFIIyIqokgihf/27yfxwpUA3ntvJ97/hm2QJGnpLtYLVwLlU6QNzKDdUwmfy7ah77tlSzUqzEY83zddtCLtxFAQgWgSH354J95+Swvc9uJ19G50e0ctvnx0CAvpzIpF4omhIHY3ulBhYeFCRKQXDA4hIiqif/jJFbx0NYCPP7rvukS9tlo7mqoq8OIV/e0IW0kyncWr/bP/r737Do+yStsAfp+Z9EZ6SA9JCCQkkELv0gREAbGuqGtZu666frvyrevqqlvcteDaP7E3RKSIWGgiHRISSCWF9N57mcyc748JmJCQOhXu33V5ybzlzJMc3jBPzjnPwfRB7I92IWsLJaYHuxp1v7QDWVWwUAjcNDXApBI0QFs8pE2lwanC3hUwO9UaJBXWGWTqJRER6Q6TNCIiI2lu78TnxwuwLMob10/273FOuzGvGw7nVEOtkUaKUHeO5Vajsb0TC8YPbyRszlgP5FY1o7CmRceRDc6BrErEBrrAwdr0JqBMG+MGIYCjfVQDzShrRKtKfdmsRyMiulQwSSMiMpJN8YVobOvEXbPH9Hl+Vqh2j7DUEvPaI6wvu9LKYWupxJyxwyuLPjesqxS/EUbTqpvakVLcgLnDjF3fRtlZIsLbCUdyeidpCfnaTayZpBERmRcmaURERqDWSLx/KA+xAc4XnYo2M+TXdWnmTEqJXWnlmDPWHTaWw1sXFeLhAJ9RNtibUaHj6AZ27vs/Z6yHwd97sKYHu+FkQS3aVOoex+Pza+E9ygY+zrZGioyIiIaDSRoRkRHsTi9HQU0L7podfNFrPBytMX60o9mvS0spbkBpfduIin4IIbA4wgsHsyvR2qEe+AYdOpBVBWc7S0T66n/fs+GaHuyG9k4NThXW9Th+Mr8WsRxFIyIyO0zSiIiMYMPBXPg62+LKCf0nLrND3XEir/cIiTnZlVYGhQAWho+sMuPiiNFoU2lwIKtSR5ENTEqJA1mVmBXqDqUJ77s1Nahrv7Ru69JK61tRXNeKOBYNISIyO0zSiIgMLLmoHsdza3DHrCBYKPv/MTxrrDs6OjWIz6s1UHS691NaOSYHucLV3mpE7UwLdoWjjQV2pZXrKLKBZVU0obyh3WTXo50zys4SE3ycehQPOZmvHVWbHMQkjYjI3DBJIyIysA0Hz8LeSokbpvgPeO3UIFdYKoXZrksrrGlBRlkjluhgfzNLpQILxntiT0aFwSpe/pKpHbWbbcLr0c6ZPsYNJwvqzo+6JuTXwsZSgXBvJyNHRkREQ8UkjYjIgMrq27DjdClumOIPJ5uB99uyt7ZATICL2a5L+6lr1EtXm1AvjvBCTXPH+aqF+nYgqwohHvbwNYPCG9OD3dDRqUFigXYELaGgFpP8nGE5wGgtERGZHv7kJiIyoI+P5EEjJe6Y2XfZ/b7MDnVHSkk9aps79BeYnuxKK8M4L0cEutnrpL15YR6wVArsSivTSXv9aVOpcSy32qSrOnY3ZYwrFF37pbWp1EgtrmfpfSIiM8UkjYjIQFo6OvHZsQIsiRiNADe7Qd83K9QdUvYsCmEOaps7cDy3RmejaADgaGOJmSHu+CmtHFLqd8pjQn4t2lSa83u0mbpRtpaY4DMKR89W43RRPTo1kkkaEZGZYpJGRGQgm08Wo75VhbvmDH4UDQAm+Y2Cg7WF2a1L25tRAY0ElgxQwXKoFkd4Ib+6BVkVTTpt90K/ZFXCUikwbYybXt9Hl6YHuyKxoO789NgYVnYkIjJLTNKIyOSo1Bqs+yYZ+84YfuNifalvVeH1vVmY5O+MyUMc3bBQKjA92M3s1qXtSivHaCcbROl4f7FzI3O6qPK4Kb4Qz2xPRUenpte5A5lViA1wgb21xYjfx1BmhLihQ63BZ8fyEexhP+KKmkREZBxM0ojI5Pzr+wx8cbwA7x/MNXYoOvP8jjRUNXXguZUTIMTQ99uaHeqG/OoWFNa06CE63WtTqbE/sxKLIjyH9fX2x8vJBpP8nc8XJRmuU4V1WPdNMj48nIf7P03osRddZWM70kobMDfMPNajnTM5SLsuraqpg/ujERGZMSZpRGRSvjtdivcO5sLZzhLHztagpaPT2CGN2L4zFdiUUIR75wZjop/zsNqY3bVPl7mMph3KrkKrSo0lEaP10v6SCC+cKqxDeUPbsO5vbu/EoxuT4OlojXXLxmNPRgV+93E8Wju0idq57/McE98f7UJONpaI7Bq55Ho0IiLzxSSNiExGdkUT/vj1KcQGOOOl6yehQ63BsbM1xg7rvNL6VuzLqEBaSQNqmjsGVbiioU2FdZuTMdbTAb9fNHbY7x3i4QAvJ2v8klU57DYMaVdaORytLTA9WD/ruZaMcMrjs9+mIr+6Ga/cGI1754Xgxesm4mB2Fe748Dia2zvxS1YlXOy0hTjMzbnvOZM0IiLzZT4T7Ynoktbc3on7P02AjaUSb9wSCxc7K9hYKrA/sxJXjPc0dngAgP/ZdLpH8Q4rCwVGO9kg2MMeTywZd34Eo7sXdqSjorENb986C9YWymG/txACi8K9sPlkEZraO+FghHVS7+zPgYVSgTtnBfU7hVGtkdidXo754z1hZaGf3wWGejogyM0Ou9LKsXZ64JDu/e50Kb6KL8JDV4RiWldCc8Nkf1hbKPD4V6dw2/vHUVDTglmh7lAqdDtV0xB+OzMIno7WCPV0MHYoREQ0TEzSiMjopJRY900yciqb8Mld0+A9Srtx8PRgN+zPNI2RI5Vag/j8GqyY6I3lUd4oq29DWUMbyurbcDinGivfOITfzQnGo4vGwsZSm4ztz6zExvhC3DcvBNH+w5vm2N2qGF98dqwAP6WW4dpYvxG3NxRqjcSru7PQqlIjraQB/7g2qs8ErE2lxrPfatffXanjqo7dCSGwOMILHx7OQ2ObCo6D2BgcAIrrWrHum9OI9nfuNbK5MtoXVkoFHv4iEZ0aiblmsj/ahXycbXH3nGBjh0FERCPAJI2IjO6jw3nYfqoE/3PlOMwK/XUN0LwwDzz7bRryq5t1thnycKWWNKBNpcGySG2S1l19iwov7EzD2/tz8GNqGf55bRTCfZzw5ObTCPGwx6MjmObYXVyAC/xcbLE1qcTgSVpOZRNaVWpMHeOKzSeLUFLXirfXxmGU3a/JUW5VMx747CTSSxtw37wQLI/07qfFkVsyYTT+70Au9mdWYsVEnwGvV2skHtuYBLVGYv1N0bBU9k4yl0V54x0LBTYczMXCcNMYwSUiossP16QRkVEl5Nfi+e/SsSjcC/fPC+lxbv447YfkX0xgNC0+T7s2bnJQ73U+o+ws8eJ1k/DZ3dOg1kjc+O5RrH7jEMob2vDv6yedH1kbKYVCYGW0Dw5mVaKicXgFM4YrpbgeAPD8qki8cuMkxOfX4Nq3DqGgWltt8ttTJbj6vwdRWt+KD347BU8uGw+FnqcKxga4wM3eatDr0t7en4PjuTV4dmVkv0n/wnAvfP676XBzsNZVqEREREPCJI2IjKaqqR0PfnYSPs62eOmGSb0+1Ae52SHA1Q4/nzGFJK0W/q628HKyueg1s0Ld8cOjc3D37DHIrWrGPXNDEKvjMuiron2hkcCOU6U6bXcgycX1sLFUIMTDAatj/PDpXdNQ1dSB1W8ewmMbk/DwF4kI83LAzkfmGGwNoVIhsDDcE3vTK3qUz+9LfYsK63dnYXnUaKyJ9TVIfERERMPFJI2IjEKtkXjki0TUtnTgrbWxGGXbe02REALzwjxwOKca7Z39fwjXJykl4vNrMTnQdcBr7aws8NSKCMQ/tRh/WjpO57GM9XLEBB8nbE0q1nnb/UktbkCEt9P5QhrTgt3wzQMzYW9tgS2JxbhnbjA23jsDPs62Bo3rmkm+aGzvxN6M/jc+35lSig61BvfPC9X5vm1ERES6xiSNiIzipZ/O4HBONZ5fFdlvmfN5YR5oVakRn1drwOh6yq9uQVVTe59THS/G1d5Kb8nA6hhfnC6qR05lk17av5BGI5FaUo+oC6pXhng44NuHZ2PHw7Pxv8vD+1zjpW8zQtzg6WiNrYn9J61bEosR7GGPSF8nA0VGREQ0fDr5F1UIsVQIcUYIkS2EeFIXbRLRpWtXWjne/DkHN08NwPWT/fu9dkaIGyyVwqhVHuPztQniYEbSDOHqST5QCGDbAImJrpytakZzh7rPLQZG2Vr2edxQlAqBayb5YN+ZCtS1dPR5TXFdK47n1mB1tC9H0YiIyCyMOEkTQigBvAFgGYAIADcLISJG2i4RXZryq5vx+FdJiPIdhb9ePfCPCntrC0wJcsV+I65Li8+rgZONBcaayL5TXk42mBnijq1JJYPaUHukUku0RUOMmYz1Z1WML1RqiZ3JZX2e39Y1NXRlNNeiERGRedDFSNpUANlSyrNSyg4AXwJYqYN2iegS09qhxn2fnoRSIfDmLbGDrno4L8wDZ8obUVrfqucI+xafX4u4QBe9VyscilUxviioacHJgjq9v1dyUT2sLRQmk6ReaIKPE0I9Hfqc8iilxNbEYsQFuiDAzc4I0REREQ2dLpI0XwCF3V4XdR0jIurh9X1ZyChrwKs3RsPfdfAfmOeN024qbIxS/LXNHciuaMLkINOY6njOlRO8YG2hOD9KpE/JxfUY7+0ECyOsORsMIQRWx/jieF4NimpbepxLL21EZnkTVkUPvI8aERGRqdDFv7h9/Wq51/wbIcQ9Qoh4IUR8ZaXxy2kTkeHtSivH7FD38/ufDdY4L0eMdrIxyrq0hPPr0XRbSn+kHG0ssTjCCztOl0Kl1ujtfTQaibSSBkSZeMGNayZpk7BtSSU9jm9LKoaFQuCqQWx2TUREZCp0kaQVAei+8t8PQMmFF0kp35VSTpZSTvbw8NDB2xKROaloaENmeRNmhboP+d5zpfgPZFWhU48JSV9O5NfAUikwyd/ZoO87GKuifVHT3IEDWfpLXvNrWtDY3tmrsqOp8Xe1w+RAF2xNLD6/Tk+tkdiWVIJ5YR5wtbcycoRERESDp4sk7QSAsUKIMUIIKwA3Adiug3aJ6BJyKKcKADB7GEkaoJ3y2NjWicRC/a/B6i4hrxaRvqMGvX7OkOaGecDFzhJbEnv9XkxnUoq1RUP62ybBVKyK8UVWRRPSShsAAMdyq1HW0IZVMZyBT0RE5mXESZqUshPAQwB+BJAO4CspZepI2yWiS8vBrGo421kiwnt40+ZmhbpDqRAGrfLYplLjdFE9ppjYerRzrCwUuGqiN3allaGlo1Mv75FSXA8rpQJhXo56aV+XroryhoVCnC8gsjWxGPZWSiwK9zJyZEREREOjk1XgUsqdUsowKWWIlPIFXbRJRJcOKSUOZVdhVoj7sCskjrK1RIy/M3anlxuk7DygTVA61BrEmdh6tO6WRXqjTaXBwawqvbSvLRriCCsL0ywa0p2LvRXmj/PE9lMlaOnoxPfJZVga6Q1bK9MbBSUiIuqP6f+rS0RmL6eyGWUNbcNaj9bdtbF+yChrxM8GGk07kWeaRUO6mxLkCkdrC+xJr9B521JKpBTXm8VUx3NWxfigvKEdf9+Zjsb2TqyKYcEQIiIyP0zSiEjvDmWPbD3aOdfF+cHf1Rb/+ekMNBr9j6Yl5Ncg2N0ebg7Wen+v4bKyUGDuOA/syajQ+feksKYVDW2mXzSku0XhXnCwtsCnRwvg4WiNmSEj+ztHRERkDEzSiEjvDmZXwd/VdsSbCVtZKPDowjCkljTgx9QyHUXXN41GIj6/FpODTHcU7ZxF4Z6oampHcleRj4FIKZFZ3oj1u7OwbP0BzPrnXtS1dPS6LqVE216kiZff787GUomlkaMBaMvyK01oA3IiIqLBYpJGRHrVqdbgaE71iEfRzlkV44sQD3u8vCsTaj2OpuVUNqGuRYXJgaZZNKS7+WGeUAhgT3p5v9cVVLfg3z9mYOHL+7HklV/w6p5M2FoqUFrfild3Z/W6Prm4HpZKgXGjTb9oSHc3Tw2AvZUSN0z2H/hiIiIiE2Rh7ACISLuHWENb7+p8QW52sFCa9+9SThfXo7G9c8Tr0c5RKgQeWxyGhz5PxLenSvRWXj3+3CbWZjCS5mJvhbhAF+xOr8DjS8b1eY1KrcFN7x5BeWM7pge74o5ZY3BlhBc8nWzw1NZkfHI0HzdPDeiRkKUU1yPMyxHWFuZVeCMu0AWpf1tq7DCIiIiGjUkakZFlVzRh6au/oLOPUaHpwa74/O7pw66IaAoOdVUd1OXaoOWR3gj3zsGruzNx1URvWOohkT2RVwM3eyuMcbfXedv6sDDcC//8PgMlda3wcbbtdX5ncilK6tvw3m2TsSiiZ0n6Pyweh29PleJvO1Lx6V3TIIQ4XzRkScRoQ30JRERE1IVJGpGRbTiYC6VC4N/XT4RS8WuycaasAW/sy8FX8YW4aWqAESMcmYPZVZjg4wRXeyudtalQCPxhcRju/jgemxOKhv39aWhT4XRhPbIqGnFhjnwouwpxgS4QwjwS5EXhnvjn9xnYm1GBtdMDe5yTUmLDwVwEe9hjwXjPXve62FvhsUVj8cy3afgprRxXThiN4rpW1LaoEOlnPkVDiIiILhVM0oiMqKa5A9+cLMK1sb5YHePX45yc6I34vFr84/sMLIrwgrsJVxi8mJaOTpwsqMWds8bovO2F4Z6Y5O+M1/ZkYXWs76Cm5NW1dGDH6VIkFdYhqbAOOZVN6G/Ltb4SGlMV4uGAQDc77Ekv75Wkncirxemiejy/KvKio7Jrpwfi8+MFeP67NMwL80BKVxGSSB/zKRpCRER0qWCSRmREnx/LR3unps8kRgiBF1ZHYtn6A/j7znS8fEO0ESLs6ZfMShzKqcIfrxw/qKp5x3NroFJLna1H604IgSeWhOHWDcfx5fFC3D4zaMB7HvjsJA7nVMPFzhIxAS64ZpIPov2dEe7t1GuzZoUAHG0sdR63vgghsGC8Jz47VoCWjk7YWf36433DwbNwtrPEmli/i95voVTgr1dPwC3vHcOGg7lo7VBDqRAI92aSRkREZGhM0oiMpL1TjY+O5GNemAfGevVdPS/U0xH3zg3B6/uycV2cn1H3fCqsacGDn51EY3snrJWKixao6O5QdhWslApMCdJPhcTZoe6YNsYVr+/Lxg2T/WFrdfHRtIyyBhzOqcYfFofhoQWhZjONcSgWhXvhg0N5OJhVhSUTtGvJ8qub8VNaOe6fF9Lv9wcAZoW6Y0mEF17fm40QT3uM9XSAjaV5FQ0hIiK6FJh32TgiM7bjVCkqG9tx1+z+pwI+tCAUAa52eGpLCto71QaKrqdOtQaPbkwCACyJ8MJre7OxN6P/cu8AcDC7GnGBLgMmB8MlhMAfloxDZWM7Pj9e0O+1Hx/Jh7WFAmunB16SCRoATAlyhaO1BfZmVJw/9sGhPFgoxKBGGgHgqasioJYSKcUNiDSjTayJiIguJUzSiIzgXCGHMC8HzBnb/+iYjaUSz62KxNmqZryz/6yBIuzp9X3ZSMivxfOrI/HazTEI93bCYxtPobCm5aL3VDW1I720AbMH+PpGauoYV0wPdsU7+3PQpuo7ia1vVWHLyWKsjPaBiw4LmJgaKwsF5o7zwJ6MCmg0Eg1tKmyKL8SKiT7wcrIZVBsBbnb43RztLw6imKQREREZBZM0IiM4crYaaaUNuHPWmEGN6swL88CKid54fV82cquaDRDhrxLya7TFOWJ8sTLaFzaWSry9NhYaKXHfpwkXTYwO51QDgF7Wo13okQVjUdHYjq/iC/s8/3VCEVpVatw2I0jvsRjbonBPVDa2I7m4HhuPF6K5Qz3gaO2FHrwiFPfNC8FVE731FCURERH1h0kakRG8fzAXbvZWQ9qI+ekVEbBWKvD0thTI/koS6lBDmwq//zIJvi62+NvKCeePB7rZ45UbopFa0oBntqf2ee+hrCo42lgYZDRmRogb4gJd8PbPOejo1PQ4p9FIfHIkD5MDXS6L6XvzwzyhEMCPqWX48HAepo1xHfLXbWdlgSeXjTfLiqJERESXAiZpRAaWW9WMPRkVuGV64JCKMng62eD3i8biQFYVkgrr9Bjhr57emoLS+jasvymmV6XDRRFeePCKEHx5ohBfnShEVVM7dqeV4z8/nsHa945hS1IxZgS7DaoK5EgJIfDIwrEoqW/D5pNFPc7tz6pEXnULbhvkmixz52JvhbhAF2w4mIviutYhj6IRERGR8bG6I5GBfXAoF5YKBW69YC+rwbh5agDW787CR4fzEBPgoofofrU1sRhbk0rw+OIwxF7kvR5fPA5JhXX40zenz+83plQIjPNyxHVxfvitAROjuWPdMclvFN78WVsJ01Kp/R3Ux4fz4OFojaVd1Q4vBwvDvXAirxZBbnZYGO5l7HCIiIhoiJikEQ2BlBLNHWo4WA/v0alr6cCm+CKsjPaBh+PQp5LZW1tgTZwfPjuWjz9fFTGsNgZjf2Yl/rT5NKYEueDBK0Ivep1SIfDaTTF4ZXcm/F3sEBPggkhfpx57dBmKEAIPLxiLuz+Ox7akElwX54e8qmb8nFmJRxaM7bUP2qVsSYQXXvwhA3fPCTbISCYRERHp1uXzqYVIB75OKELcc7uQUdYw5HvPVjbhno8T0KpS484RTEG7dUYgVGqJLwcoOT9cu9PK8buP4hHi4YC318YN+CHfzcEaz6+Kwr3zQjB1jKtRErRzFoZ7IsLbCW/sy4ZaI/Hp0XwohcBvpgUYLSZjCPZwwIE/LcAtl9nXTUREdKlgkkY0BJtPFqG9U4M/b0mBRjO44h0qtQZv/pyNpesPIKOsAS9dPwnh3k7DjiHEQ1u2/7NjBVCpNQPfMATfJ5fivk8TEO7tiM9/Nw1uZlY4Qrs2LRS5Vc3YFF+Ir+ILsSzKe9Dl5y8lvs62l+x+cERERJc6JmlEg1TZ2I7juTUYP9oRCfm1Fy333l1KcT1WvXEIL/5wBgvHe2L34/OwJs5vxLHcPiMIZQ1t2JU28IbSg7UtqRgPfZGISf7O+OTuaXC2M8/9xJZEjMY4L0f8ZVsKGto6cfuMoa/9IyIiIjImJmlEg/RDahk0EnjNjxImAAAX80lEQVTlxmhMG+OKf3yfgaqm9j6vlVLitT1ZWPnGIVQ0tuPttbF4a20cPHU0onPFeE/4udjio8N5OmnvqxOFeHRjEqYGueLjO6fC6YJKjuZEoRB4cEEoVGqJCG8nxAXqt8AKERERka6xcAiZhE+P5ve5SfPkQBcsizKNDXV3ni5FsIc9xo92xAurI7Fs/QH8/bt0vHxjdI/rpJR4bkc63j+Ui1XRPnj2mkiMstNt0qNUCNw6PRD/+D4D6aUNw54+ebayCS/9lInvkksxN8wD794aN6RtAUzVVVHe+DmjAldH+3DKHxEREZkdJmlkdKkl9XhqawpsLBWwUPw6uNup0WDDwVx88NspuGK8pxEjBKqa2nEstxoPXhEKIQRCPR1x79wQvL5PW+59Zqg7AO3GyU9vT8GnRwtwx6wgPL0iQm9Jwo1T/PHyrkx8fCQf/7g2akj3VjS0Yf2eLHx5ohDWFgo8siAUDy4IhbWF+SdogDaJvTB5JiIiIjIXTNLI6N4/mAc7KyWOrFuIUba/jji1dqhx7VuH8ejGJOx4eDb8Xe2MFuMPKdqpjsu7jeo9tCAU20+V4KmtKfj+0TmwUCjw5ObT2JRQhPvmheBPS8fpdRTH2c4Kq6J9sTWxGE8uHT+o0bqWjk68uS8HGw7mQqXW4JZpAXh4wVi9lfInIiIioqHjmjQyqoqGNmw/VYzr4/x6JGgAYGulxNtrY6GREvd/loA2ldpIUQI7k0sR7K6d6niOjaUSz62KxNmqZryxNxuPf5WETQlFeHTRWL0naOfcOiMQrSo1NiUMXMQEAJ7bkY7X92VjUYQXdj8+D39bGckEjYiIiMjEMEkjo/rkaD46NRJ3zOp737BAN3u8fEM0Uoob8Oy3qQaOTquqqR1Hz1ZjeZR3r8RrXpgHVkz0xmt7s7EtqQR/XDoOjy4KM9g6qEjfUZgc6IJPjuYPuCVARUMbNicU4ZZpAfjvzTEIcrc3SIxERERENDRM0sho2lRqfHasAIvCvfpNGBZHeOGB+SH44njhoMre69qPqb2nOnb39IoIhHs74ZmrI/DA/FADRwfcNjMI+dUt2JXefzn+DYdy0anR4J65wQaKjIiIiIiGg2vSyGi2JBajprkDd83uexStuz8sGYdTRXX4y9YUTPBxwgSfUQaIUGtncinGuNsj3Nuxz/OeTjb4/vdzDBbPhZZFjkaIhz3+sTMd88d59Fn8o6FNhc+PFmBZlDcC3TiCRkRERGTKOJJGRiGlxIaDuYj0dcK0Ma4DXq9UCKy/KQYudla4/9OTaG7vNECUQHVTO47kVGN51GiTLeVuqVTg6asnIK+6BR8cyuvzms+OFqCxvRP3zwsxbHBERERENGRM0sgo9mdWIruiCXfNHjPo5MfdwRov3TAJBTUt+C65VM8Rav2YWt7vVEdTMS/MAwvHe+K/e7JQ0djW41ybSo33D+Vidqg7In0NNwJJRERERMPDJI2MYsPBXHg6WuOqKJ8h3TczxA1j3O2xOaFIT5H1tDO5FEFudogY5mbRhvTUigh0qDV48YczPY5vSSxGZWM77p/PUTQiIiIic8AkjQzuTFkjDmRV4faZQbCyGNpfQSEE1sT64lhuDQprWvQUoVZNcweOXKSqoyka426PO2ePwdcJRUgqrAMAqDUS7/5yFlG+ozAzxM3IERIRERHRYDBJI4N7/2AubCwVuGVawLDuXx3rByGAzSf1O5r2Y2oZ1Bpp8lMduzu3MfUz21Oh0Uj8lFqG3Kpm3DcvxCwSTSIiIiIaYZImhLheCJEqhNAIISbrKii6dFU1tWNLUjHWxPrB2c5qWG34OttiRrAbvjlZDCn73xtsODrVGnxxvAAv/ZSJIDc7TPAx/amO5zhYW+CPV45DUmEdtiYV4+39OQhys8PSyNHGDo2IiIiIBmmkJfhTAFwL4B0dxHLZUqk1uPeTBBzOqep1boy7Az69ayrcHKyNEJnufZ1QhI5OzUU3rx6sNbF++MOmUziRV4upg6gOORhSSvyYWo4Xf8zA2cpmxAY4428rI81uBGpNrB8+PVaAv2xNQXOHGi+sjoRSYV5fAxEREdHlbERJmpQyHYDZfYg1Na/tycLejArcNMUfo2wtzx9XayQ+PpqPR75MxMd3TjP7D9pSSnx1ohBTg1wR6ukworaWRY3G09tSsDmhSCdJ2rGz1fjnDxlILKhDiIc93rk1DksivMzy77ZCIfDM1RFY/eZhuDtYY02sn7FDIiIiIqIh4GbWRnY8twZv7MvGdXF++Oeaib3Oh3k54o+bT+OVXZl44spxRohQd07k1eJsVTMeuCJ0xG3ZWVlgWZQ3vksuxTPXTICtVe8NnAcjo6wBL/5wBnszKjDayQb/WhOFNbF+sFCa93LNmAAXPL0iAr4utrCxHN73hoiIiIiMY8AkTQixG0BfC1r+LKXcNtg3EkLcA+AeAAgIGF7BiEtNfasKj21Mgr+rHZ65ZkKf19wwxR8J+bV4fV82YgKcsTDcy8BR6s7GE4VwsLbA8ijdrI9aE+uHrxOK8FNaGVZG+w7p3qLaFry8KxNbEovhaG2BJ5eNx29nBl1SCc2ds0c2pZSIiIiIjGPAJE1KuUgXbySlfBfAuwAwefJk3Vd7MDNSSvx5SzLKG9rw9f0z4WB98a54duUEpJTU47GNSdjx8BwEuNkZMNKekgrr8PsvE7F2WiDumBU06BGnxjYVdiaXYlWML+ysdDOAO22MK3ydbfF1QtGgk7Q2lRr/+fEMPj6SDwjgnrnBeGBeKEbZWQ58MxERERGRAZj3nC4ztvlkMXacLsVji8MQ7e/c77U2lkq8vTYOAHDfpwloU6kNEWIvKrUGT24+jdK6NrywMx3XvnUY6aUNg7r321OlaFWpceMUf53Fo1Bo90w7mF2F0vrWQd3zwaE8vHcwF6tifPDzE/Oxblk4EzQiIiIiMikjLcG/WghRBGAGgO+EED/qJqxLW15VM/66LQXTxrjivnkhg7rH39UOr94UjbTSBjy9LUXPEfbtg0O5yChrxGs3x+C/N8eguLYVV//3IF766QzaO/tPHDfGF2KclyMm+Y3SaUxr4vwgJbAlsXjAa6WU2JJYhLhAF7x43ST4ONvqNBYiIiIiIl0YUZImpdwipfSTUlpLKb2klFfqKrBLlUqtwe83JkGpEHjlxughVWxcMN4LDy8IxVfxRdiZXKrHKHsrrmvFK7uysCjcE1dO8MLVk3yw+/F5uGaSD/67NxvL1x9Aakl9n/dmlDXgVGEdbpjir/NqiYFu9pgS5ILNCUUD7pmWXtqIzPImrIr20WkMRERERES6xOmOBvbO/hycKqzD36+NGtZIzqOLwjDOyxH/+iEDHZ0aPUTYt79uSwUAPHPNhPOJlou9FV6+MRof3jEFze1q3PLeMWSVN/a6d+OJQlgpFVgdM7TiHoO1JtYPOZXNOFXUd5J4zrakYlgoBK6ayCSNiIiIiEwXk7QhqmvpwJ0fnsAz21Nx7Gw11JrB10A5U9aI9XuysGKiN1YMM1FQKgSeXD4e+dUt+PxY/rDaGKqfUsuwO70cjy4aCz+X3kVL5o/zxMZ7p8NSqcDaDcdQWNNy/lx7pxpbEouxeIIXXO2t9BLf8onesLVU4uPDeRe9Rq2R2JZUgnlhHnqLg4iIiIhIF5ikDdHfvk3D/sxKfH68ADe+exTT/r4b675Jxi+ZlVCpLz6y1anW4IlNp+BkY4lnL1Juf7Dmh3lgZogbXtubjYY21YjaGkhzeyee2Z6K8aMd+y3pHuhmj0/umorWDjVu3XAMFY1tAIBdaeWoa1Hhxsm6KxhyIScbS9wyLQDbTpUgv7q5z2uO5VajrKENq/Q0mkdEREREpCtM0oZgd1o5vkksxoPzQ5D4l8V4/TcxmBbshm1Jxbjt/eNY+fqhi1YZfOeXs0gursdzqyLh5mA9ojiEEFi3LBw1zR14Z3/OiNoayKu7M1FS34YXVkfBcoBy++NHO+GDO6aivKEdt204jvpWFTaeKISvsy1mh7rrNc575gZDqRB4c1/f34+ticWwt1JikRnvM0dERERElwcmaYNU36LC/25JxvjRjnhowVjYW1tgxUQfvPGbWJz8y2KsvykaBTUtWPXGoV4FNDLLG7F+dxauivLG8ihvncQT5TcKK6N9sOFgLsrq23TS5oXSShrw/qE83Dw1AHGBLoO6Jy7QBe/cGoecyibc8t5RHMyuwnVxflAMoUDKcHg62eDmKf7YfLIIRbUtPc61qdT4PrkMSyO9YWt16WxWTURERESXJiZpg/S3HWmobu7Av6+bBCuLnt82G0slVkb7YtN9M6AQAte/fQR7M8oBaKc5/s+mU3CwscCzK0c2zfFCTywZB40GeGVXpk7bBbRr7x76/CRc7Czx5NLxQ7p3bpgH1t8Ug7QS7R5q10/203l8fblvfggUQuCtn3uOpu3NqEBjeydWxbBgCBERERGZPiZpg7A3oxybTxbhgfkhiOpnn69wbydsfXAWgj3scfdH8fj4SB7+70AuThXV49lrJsB9hNMcL+TvaofbZgRiU0IhzpT1rqo4XCq1Bvd/ehJFta14a23csDZ7Xh7ljTd+E4s/Lw/vs9iIPniPssV1k/2wKb6ox+jilsRieDhaY2aIfqdcEhERERHpApO0AdS3qrDum2SM83LEQwtCB7zey8kGX907AwvGe+Lpban4948ZWDphNFZM1M00xws9tCAUDtYW+NcPGTppT0qJv2xNwZGz1fjnmihMCXIddlvLorxx95xgncQ1WPfPC4FGSrzdtVavrqUDP5+pwDWTfIa0Jx0RERERkbEwSRvA8zvSUNXUgX9fPxHWFoNbz2RnZYF3bp2Mu2ePQZC7PZ5bFanzTZzPcbazwoNXhGJvRgUO51SNuL33DuTiyxOFeOiKUFwba5hpirrk72qH1TG++OJ4ASoa2/BdcilUaqm3PdqIiIiIiHSNSdpFaDQSHxzKxaaEItw3LxgT/ZyHdL9SIfDUigjs/cN8eDjqdprjhW6fGQRfZ1v87du0frcBAIDiulb89oPj+M+PZ5BSXA8pf93nbVdaOf7+fTqWR43G44vD9BqzPj14RShUag3+75ez2JZYghAPe0zwcTJ2WEREREREg2Jh7ABMUU5lE9ZtTsbxvBrMDfPAIwvHGjukftlYKvHXqyNwzycJ+OBQLu6ZG9LndVJK/PHrUziRW4tfMivx+r5s+LnYYumE0YjyG4V13yRjou8ovHR9tN6rMepTkLs9Vkb74uMj+Wjv1OCJJWF6G8kkIiIiItI1JmndqNQavPvLWazfkwUbCwVevG4iro/zM4sP+EsmjMaicC+8sisLy6O8+yzW8cXxQhzKrsYLqyOxLNIbu9PK8X1KKT46kgeVWsJ7lA3+77bJl0SZ+gevCMXWpGIAwMpoTnUkIiIiIvPBJK1LclE9/rj5NNJLG7AscjSeXTkBno42xg5rSJ5dOQGLX96PZ7an4b3bJ/c4V1Tbghe+S8PMEDf8ZmoAhBC4YYo/bpjij4Y2FQ5kViHS1wmeTub1NV9MqKcDbp4agOqmdvi7Gqa6JBERERGRLjBJg3Ya4Lotp1HV1I6318ZhaeRoY4c0LL7OtnhsURhe2JmOH1PLcOUE7dchpcS6b5IhAfxrzcReI4NONpa4Sk/VJ43p76ujjB0CEREREdGQMUkDIITAf2+Ohaud1bD2BDMlv50VhM0ni/DM9lTMCnWHg7UFNp4oxIGsKjy3KpKjSkREREREJo7VHbuMcbc3+wQNACyVCvz92iiUNbThlV2ZKK5rxfPfpWNGsBtumRpg7PCIiIiIiGgAHEm7BMUGuODmqQH44FAujufWQK2R+NeaiWZdsZGIiIiI6HLBkbRL1J+uHA9XeyskF9fjyWXjEeDGaY5EREREROaAI2mXqFF2lnjt5hj8klmFW6cHGjscIiIiIiIaJCZpl7CZIe6YGeJu7DCIiIiIiGgION2RiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhAgppeHfVIhKAPkGf+OBuQOoMnYQNCD2k/lgX5kH9pP5YF+ZB/aT+WBfmYdLtZ8CpZQefZ0wSpJmqoQQ8VLKycaOg/rHfjIf7CvzwH4yH+wr88B+Mh/sK/NwOfYTpzsSERERERGZECZpREREREREJoRJWk/vGjsAGhT2k/lgX5kH9pP5YF+ZB/aT+WBfmYfLrp+4Jo2IiIiIiMiEcCSNiIiIiIjIhDBJAyCEWCqEOCOEyBZCPGnseOhXQgh/IcQ+IUS6ECJVCPH7ruOuQohdQoisrv+7GDtWAoQQSiFEohBiR9frMUKIY139tFEIYWXsGAkQQjgLIb4WQmR0PVsz+EyZHiHEY10/91KEEF8IIWz4TJkGIcT7QogKIURKt2N9PkNC67WuzxinhRCxxov88nKRfvp318++00KILUII527n1nX10xkhxJXGifry1FdfdTv3hBBCCiHcu15fFs/UZZ+kCSGUAN4AsAxABICbhRARxo2KuukE8AcpZTiA6QAe7OqfJwHskVKOBbCn6zUZ3+8BpHd7/S8Ar3T1Uy2Au4wSFV1oPYAfpJTjAUyCts/4TJkQIYQvgEcATJZSRgJQArgJfKZMxYcAll5w7GLP0DIAY7v+uwfAWwaKkfrup10AIqWUEwFkAlgHAF2fLW4CMKHrnje7PiOSYXyI3n0FIYQ/gMUACrodviyeqcs+SQMwFUC2lPKslLIDwJcAVho5JuoipSyVUp7s+nMjtB8mfaHto4+6LvsIwCrjREjnCCH8AFwF4L2u1wLAAgBfd13CfjIBQggnAHMBbAAAKWWHlLIOfKZMkQUAWyGEBQA7AKXgM2USpJS/AKi54PDFnqGVAD6WWkcBOAshvA0T6eWtr36SUv4kpezsenkUgF/Xn1cC+FJK2S6lzAWQDe1nRDKAizxTAPAKgD8C6F5E47J4ppikaT/wF3Z7XdR1jEyMECIIQAyAYwC8pJSlgDaRA+BpvMioy6vQ/iDVdL12A1DX7R9DPlumIRhAJYAPuqamvieEsAefKZMipSwG8B9of3tcCqAeQAL4TJmyiz1D/Jxhuu4E8H3Xn9lPJkYIcQ2AYinlqQtOXRZ9xSQNEH0cY8lLEyOEcACwGcCjUsoGY8dDPQkhVgCokFImdD/cx6V8tozPAkAsgLeklDEAmsGpjSanaz3TSgBjAPgAsId2is+F+EyZPv4sNEFCiD9Du6Tis3OH+riM/WQkQgg7AH8G8HRfp/s4dsn1FZM0bfbt3+21H4ASI8VCfRBCWEKboH0mpfym63D5uaHtrv9XGCs+AgDMAnCNECIP2inDC6AdWXPumqoF8NkyFUUAiqSUx7pefw1t0sZnyrQsApArpayUUqoAfANgJvhMmbKLPUP8nGFihBC3A1gB4Bb5615U7CfTEgLtL6lOdX228ANwUggxGpdJXzFJA04AGNtVMcsK2kWj240cE3XpWte0AUC6lPLlbqe2A7i968+3A9hm6NjoV1LKdVJKPyllELTP0F4p5S0A9gG4rusy9pMJkFKWASgUQozrOrQQQBr4TJmaAgDThRB2XT8Hz/UTnynTdbFnaDuA27oq0k0HUH9uWiQZnhBiKYA/AbhGStnS7dR2ADcJIayFEGOgLUpx3BgxEiClTJZSekopg7o+WxQBiO36N+yyeKa4mTUAIcRyaH/rrwTwvpTyBSOHRF2EELMBHACQjF/XOv0vtOvSvgIQAO2HmeullH0tOCUDE0LMB/CElHKFECIY2pE1VwCJANZKKduNGR8BQohoaAu8WAE4C+AOaH9px2fKhAghngVwI7RTshIB3A3tugs+U0YmhPgCwHwA7gDKAfwVwFb08Qx1JdmvQ1u5rgXAHVLKeGPEfbm5SD+tA2ANoLrrsqNSyvu6rv8ztOvUOqFdXvH9hW2SfvTVV1LKDd3O50Fb7bbqcnmmmKQRERERERGZEE53JCIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhDBJIyIiIiIiMiFM0oiIiIiIiEwIkzQiIiIiIiITwiSNiIiIiIjIhPw/FOTzZPRYQq0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(standardized_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "def windowed_data(data, start_index, end_index, history_size, target_size):\n", - " data = []\n", - " labels = []\n", - " \n", - " start_index = start_index + history_size\n", - " \n", - " if end_index is None:\n", - " end_index = len(dataset) - target_size\n", - " \n", - " for i in range(start_index, end_index):\n", - " indices = range(i-history_size, i)\n", - " data.append(np.reshape(data[indices], (history_size, 1)))\n", - " labels.append(data[i+target_size])\n", - " \n", - " return np.array(data), np.array(labels)\n", - "\n", - "def univariate_data(dataset, start_index, end_index, history_size, target_size):\n", - " data = []\n", - " labels = []\n", - "\n", - " start_index = start_index + history_size\n", - " if end_index is None:\n", - " end_index = len(dataset) - target_size\n", - "\n", - " for i in range(start_index, end_index):\n", - " indices = range(i-history_size, i)\n", - " # Reshape data from (history_size,) to (history_size, 1)\n", - " data.append(np.reshape(dataset[indices], (history_size, 1)))\n", - " labels.append(dataset[i+target_size])\n", - " \n", - " return np.array(data), np.array(labels)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "HISTORY_SIZE = 10\n", - "TARGET_SIZE = 0\n", - "\n", - "x_train, y_train = univariate_data(standardized_data[:SPLIT_TIME],\n", - " 0,\n", - " SPLIT_TIME,\n", - " HISTORY_SIZE,\n", - " TARGET_SIZE)\n", - "\n", - "x_val, y_val = univariate_data(standardized_data[SPLIT_TIME:],\n", - " SPLIT_TIME,\n", - " 44,\n", - " HISTORY_SIZE,\n", - " TARGET_SIZE)\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(90, 10, 1)\n", - "(0,)\n", - "(44, 1)\n" - ] - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/kaggle_time_series_air_passenger/model2.ipynb b/kaggle_time_series_air_passenger/model2.ipynb deleted file mode 100644 index 63bb045..0000000 --- a/kaggle_time_series_air_passenger/model2.ipynb +++ /dev/null @@ -1,404 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "import numpy as np\n", - "from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator\n", - "from matplotlib.pylab import rcParams\n", - "rcParams['figure.figsize'] = 15,6\n", - "from tensorflow import keras\n", - "from tensorflow.keras.layers import LSTM, Dense, Dropout" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Data Prep" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Month#Passengers
01949-01112
11949-02118
21949-03132
31949-04129
41949-05121
\n", - "
" - ], - "text/plain": [ - " Month #Passengers\n", - "0 1949-01 112\n", - "1 1949-02 118\n", - "2 1949-03 132\n", - "3 1949-04 129\n", - "4 1949-05 121" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Grab and look at our data\n", - "DATA_LOCATION = 'AirPassengers.csv'\n", - "data = pd.read_csv(DATA_LOCATION)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#Passengers
Month
1949-01-01112
1949-02-01118
1949-03-01132
1949-04-01129
1949-05-01121
\n", - "
" - ], - "text/plain": [ - " #Passengers\n", - "Month \n", - "1949-01-01 112\n", - "1949-02-01 118\n", - "1949-03-01 132\n", - "1949-04-01 129\n", - "1949-05-01 121" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Convert to DateTime\n", - "data[\"Month\"] = pd.to_datetime(data.Month)\n", - "data.set_index('Month', inplace=True)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Split into Train/Val sets\n", - "split_value = 100\n", - "train, valid = data[:-12], data[-12:]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\TSB\\Miniconda3\\envs\\myenv\\lib\\site-packages\\pandas\\plotting\\_matplotlib\\converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.\n", - "\n", - "To register the converters:\n", - "\t>>> from pandas.plotting import register_matplotlib_converters\n", - "\t>>> register_matplotlib_converters()\n", - " warnings.warn(msg, FutureWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhV1bk/8O8iCWEGCYEkTAFkFGIIAQEFBQ2IA4jlquCA0mrrVJVqHe6vrXpttbW21F6lWitV61gVQfSqiCggIWFMJEwJgUACMkTmMcP6/fGe3UwnyRn2ePL9PA/PTs7eZ5+VQZ/zzbvWu5TWGkREREREROROzZweABEREREREdWPoY2IiIiIiMjFGNqIiIiIiIhcjKGNiIiIiIjIxRjaiIiIiIiIXIyhjYiIiIiIyMWinR4AAHTq1EknJyc7PQwiIiIiIiJHrF279qDWOt7fOVeEtuTkZKxZs8bpYRARERERETlCKVVU3zlOjyQiIiIiInIxhjYiIiIiIiIXY2gjIiIiIiJyMVesafOnrKwMxcXFOH36tNNDsU2LFi3QrVs3xMTEOD0UIiIiIiJyCdeGtuLiYrRt2xbJyclQSjk9HMtprVFaWori4mL06tXL6eEQEREREZFLuHZ65OnTpxEXF9ckAhsAKKUQFxfXpCqLRERERETUONeGNgBNJrAZmtrXS0REREREjXN1aHNSaWkpUlNTkZqaioSEBHTt2vU/n589ezage9x2223YunWrxSMlIiIiIqJI5to1bU6Li4vDhg0bAACPP/442rRpgwcffLDGNVpraK3RrJn/7Dtv3jzLx0lERERERJGNlbYgFRQUYPDgwfjZz36GtLQ07N27F3fccQfS09Nx3nnn4cknn/zPtRdddBE2bNiA8vJydOjQAY888gjOP/98jBo1Cvv373fwqyAiIiIiIq/wRKXt/vsBX9HLNKmpwJw5oT1306ZNmDdvHv72t78BAJ555hl07NgR5eXlGDduHKZNm4ZBgwbVeM6RI0dw8cUX45lnnsHs2bPx6quv4pFHHgn3yyAiIiIiogjHSlsI+vTpg+HDh//n87fffhtpaWlIS0vD5s2bsWnTpjrPadmyJSZNmgQAGDZsGHbu3GnXcImIiIiI3OvUKWDbNqdH4WqeqLSFWhGzSuvWrf/zcX5+Pv7yl78gOzsbHTp0wE033eS3bX/z5s3/83FUVBTKy8ttGSsRERERkau9+CLwy18Ca9fKdDiqg5W2MB09ehRt27ZFu3btsHfvXnz++edOD4mIiIiIyDsKCoDKSuDeewGtnR6NK3mi0uZmaWlpGDRoEAYPHozevXvjwgsvdHpIRERERETeUVICNGsGrFgBvPUWcOONTo/IdZR2QZpNT0/Xa9asqfHY5s2bMXDgQIdG5Jym+nUTERERURM1bBjQqRNw6BBQXAxs3Qq0bev0qGynlFqrtU73d47TI4mIiIiIyDklJUD37sBf/wrs3Qv8z/84PSLXYWgjIiIiIiJnlJUB+/cDXbsCF1wAzJolXQi3bHF6ZK7C0EZERERERM7Yu1eaj3TtKp8//TTQqhVw331sSlINQxsRERERETmjpESORmjr3Bl44gngiy+ABQucG5fLMLQREREREZEzaoc2ALj7bmDwYOCBB2TjbWJoIyIiIiIih/gLbdHRwPPPAzt3Am+84ciw3Cag0KaU6qCUel8ptUUptVkpNUop1VEptVgple87nuO7VimlnldKFSilcpVSadZ+Cda45JJL6myUPWfOHNx11131PqdNmzYAgD179mDatGn13rf29gZERERERE1SSQnQvLm0/K/ukkuA2Fhg+3ZHhuU2gVba/gLgM631AADnA9gM4BEAS7TWfQEs8X0OAJMA9PX9uwPAXFNHbJPp06fjnXfeqfHYO++8g+nTpzf63KSkJLz//vtWDY2IiIiIKDKUlABJSYBSNR9XCkhIkEYl1HhoU0q1AzAWwD8AQGt9Vmt9GMAUAK/5LnsNwDW+j6cAeF2LVQA6KKUSTR+5xaZNm4ZFixbhzJkzAICdO3diz549SE1NxaWXXoq0tDQMGTIEC/wskNy5cycGDx4MADh16hRuuOEGpKSk4Prrr8cpzsslIiIiIhIlJTWnRlbH0PYf0QFc0xvAAQDzlFLnA1gL4D4AXbTWewFAa71XKdXZd31XALurPb/Y91iN77hS6g5IJQ49evRoeAT33w9s2BDAUIOQmip7QNQjLi4OI0aMwGeffYYpU6bgnXfewfXXX4+WLVti/vz5aNeuHQ4ePIiRI0di8uTJULX/OuAzd+5ctGrVCrm5ucjNzUVamidnixIRERERmW/PHmDoUP/nEhOB/Hx7x+NSgUyPjAaQBmCu1noogBOomgrpj7/0UmeTBa31y1rrdK11enx8fECDtVv1KZLG1EitNR577DGkpKTgsssuQ0lJCfbt21fvPZYtW4abbroJAJCSkoKUlBRbxk5ERERE5GpaN1xpS0wEvv/e3jG5VCCVtmIAxVrrLN/n70NC2z6lVKKvypYIYH+167tXe343AHvCGmUDFTErXXPNNZg9ezbWrVuHU6dOIS0tDf/85z9x4MABrF27FjExMUhOTsbp06cbvE99VTgiIiIioibryBHg5MmGQ1tpKXD2rDQracIarbRprb8HsFsp1d/30KUANgFYCGCm77GZAIzFXQsB3OLrIjkSwBFjGqXXtGnTBpdccglmzZr1nwYkR44cQefOnRETE4OlS5eiqKiowXuMHTsWb775JgBg48aNyM3NtXzcRERERESu56/df3UJCXJktS2gShsA3AvgTaVUcwCFAG6DBL73lFI/BrALwH/5rv0UwBUACgCc9F3rWdOnT8e11177n2mSN954I66++mqkp6cjNTUVAwYMaPD5d955J2677TakpKQgNTUVI0aMsGPYRERERETu1lhoS/T1Mty7F2isB0aECyi0aa03AEj3c+pSP9dqAHeHOS7XmDp1KuRLEp06dUJmZqbfa48fPw4ASE5OxsaNGwEALVu2rLN1ABERERFRkxdoaGOlLeB92oiIiIiIiMxjhLakJP/njemRbPvP0EZERERERA4oKQHi4oAWLfyf79JFNtlmaGNoIyIiIiIiBzTU7h8AoqOB+HhOj4TLQ1v1tWRNQVP7eomIiIioCWsstAGyro2VNveGthYtWqC0tLTJBBmtNUpLS9GivvIwEREREVEkKSmpfz2bISGBoQ2Bt/y3Xbdu3VBcXIwDBw44PRTbtGjRAt26dXN6GERERERE1iorA/bvD6zS5uvK3pS5NrTFxMSgV69eTg+DiIiIiIjMtncvoHVgoW3fPqCyEmjm2kmClmu6XzkRERERETmjsT3aDImJQHk5UFpq/ZhcjKGNiIiIiIjsFWho415tABjaiIiIiIjIbsFU2gCGNqcHQERERERETUxJCdC8OdCpU8PXGaGtie/VxtBGRERERET2Mtr9K9XwdZweCYChjYiIiIiI7BbIxtoA0Lo10LYtQ5vTAyAiIiIioiYm0NAGyBRJhjYiIiIiIiKbaB18aOOaNiIiIiIiIpscPgycOhV4aEtIYKXN6QEQEREREVFdxcWyr3TE2bNHjpweGTCGNiIiIiIil/nsMyA5GXj5ZadHYoFA92gzJCYCJ04Ax45ZNyaXY2gjIiIiInKR3FzguuuAigqgoMDp0VgglNAGNOl1bQxtREREREQusWcPcOWV0uW+S5eqmYQRxQhtSUmBXc+92hjaiIiIiIjc4Phx4KqrgEOHgE8+Afr1i9CcUlICxMUBLVoEdr1RaYvIb0ZgGNqIiIiIiBxWUQHMmAHk5ADvvQekpkohKiJzSjDt/gGGNgDRTg+AiIiIiKipmz0b+Phj4IUXgCuukMcitmlisKGtY0cgJoZr2oiIiIiIyBkffgg8/zzwwAPAXXdVPZ6YKFMmI65pYrChTakmv1cbQxsRERERkYNWrABatgSefbbm4xE5K7CsDNi/P7jQBkRw2TEwDG1ERERERA7atQvo2ROIiqr5uNFcMaKyyt69gNYMbUFiaCMiIiIiclBRkYS22iKy0hbsHm2GhASuaSMiIiIiImc0Ftoiaq+2UENbYiJw8CBw9qz5Y/IAhjYiIiIiIoecPAkcOOA/tHXoAMTGstIGoCrB7ttn7ng8gqGNiIiIiMghu3bJsUePuueUisC92kpKJInGxQX3PCO0NdEpkgxtREREREQOKSqSo79KGxCB/TdKSiSJKhXc8xIS5BhR34zAMbQRERERETkkkNAWUWvadu0CuncP/nkR2ZUlcAxtREREREQO2bVLWv0b7f1ri7hK29atQL9+wT+vSxc5RtQ3I3AMbUREREREDikqArp1A6Kj/Z9PSgKOHAFOnbJ3XJY4dEi6rvTvH/xzY2KATp24po2IiIiIiOxVX7t/Q0TNCty2TY6hVNqACCw7Bo6hjYiIiIjIIYGGtohY12aEtlAqbQBDGxERERER2au8XJop+mv3b4ioStvWrbKAr1ev0J7P0EZERERERHYqKQEqKhqutBkNSiIiq2zbBvTuDTRvHtrzExJkc+3KSnPH5QEMbUREREREDmis3T8ge1DHxERIaAu1c6QhMREoKwN++MG8MXkEQxsRERERkQMCCW1KSYHJ82vaKiuB/PzwQxsQIQk2OAxtREREREQO2LVLjg2taQMiZClXcbHsWxBqExKAoY2IiIiIiOxVVAR07gy0bNnwdRER2sJt9w9IyRFoknu1MbQRERERETmgsXb/hqSkCAhtW7fKkZW2kDC0ERERERE5oKio8amRgGSV0lLgzBnrx2SZbduANm2qglco2rSRfwxtRERERERkNa1lTVsglTYj53h6VqDROVKp8O6TkMDQRkRERERE1jtwQPpyBBPaPJ1Vtm0Lbz2bITHR4+k1NAxtREREREQ2C6Tdv8HzG2yfPg3s3BneejZDYqLsSt7EMLQRERERkStt3w4cPOj0KKxhtPsPptLm2b3atm+X+aBmVNoGDQIKC4Hjx8O/l4cEFNqUUjuVUt8ppTYopdb4HuuolFqslMr3Hc/xPa6UUs8rpQqUUrlKqTQrvwAiIiIiijxFRcDQocBDDzk9EmsEU2mLjweaNfNwpc2MzpGGtDQJgDk54d/LQ4KptI3TWqdqrdN9nz8CYInWui+AJb7PAWASgL6+f3cAmGvWYImIiIgo8lVWAj/+MXDsWFW4iTRFRUDbtkCHDo1fGxUFdOni4dBm7NHWt2/490rz1YPWrQv/Xh4SzvTIKQBe8338GoBrqj3+uharAHRQSoXR25OIiIiImpK//Q1YsgRo3z5ye04Y7f4Dbabo6b3atm6VOZ7t2oV/r6Qk2ZGcoc0vDeALpdRapdQdvse6aK33AoDv2Nn3eFcAu6s9t9j3WA1KqTuUUmuUUmsOHDgQ2uiJiIiIKKJs3y5TIidOBG68MbJDWyBTIw2JiR5e02ZW50hAUm5aGrB+vTn384hAQ9uFWus0yNTHu5VSYxu41t/fC3SdB7R+WWudrrVOj4+PD3AYRERERBSpKiqA224DYmKAV16RoHLokMc3la5HKKHNs5W2bdvMWc9mSEsD8vKkK2UTEVBo01rv8R33A5gPYASAfca0R99xv+/yYgDdqz29GwCv/l2AiIiIiGzyl78Ay5fLsVs32UcZAPbtc3ZcZjt2TMJosKHtwAGgvNy6cVnihx+kBahZlTZAQlt5ObBxo3n3dLlGQ5tSqrVSqq3xMYAJADYCWAhgpu+ymQAW+D5eCOAWXxfJkQCOGNMoiYiIiIj82bIFeOwx4OqrgVtukceM0BZpUySDafdvSEqSpomeC7BGExKzK21Ak1rXFh3ANV0AzFeySjIawFta68+UUqsBvKeU+jGAXQD+y3f9pwCuAFAA4CSA20wfNRERERFFjPJyYOZMoHVr4OWXq5pzRGpoC6bdv6H6Xm1d63SLcDGj3b+ZlbbkZGm7ydBWRWtdCOB8P4+XArjUz+MawN2mjI6IiIiIIt7ixUB2NvD661VBDWBoq84IbZ5b17ZtGxAdDfTqZd49jWYkTSi0hdPyn4iIiIgobN99J8fJk2s+3tnXmzwSQ1tMTM2A2hjPhratW4HeveULNtPQoUBuLlBWZu59XYqhjYiIiIgctWmTrNlq377m482bA3FxkRnauncHmgXxTrxLFykweS60mdnuv7q0NGkrunmz+fd2IYY2IiIiInLUpk3AoEH+zyUkRGZoC2ZqJCCFqvh4j+3VVlkJ5Oeb24TE0MSakTC0EREREZFjtGZoC5Tn9mrbvVv2UrOi0ta3r3SuYWgjIiIiIrLW7t3AiRNNJ7SdPSvBq0mENqNzpBWVtqgoIDUVWL/e/Hu7EEMbERERETlm0yY5NhbatLZvTFYqLpavJZTQlpTksdBm7NFmRaUNkCmS69fLNMwIx9BGRERERI4JJLSdOgUcO2bfmKwUSrt/Q2KiBNiKCnPHZJmtW4G2bYNrkxmMtDQp0+bnW3N/F2FoIyIiIiLHbNokrf3j4vyfj7S92ozQ1qNH8M9NTJSi0oED5o7JMkbnSGO3dLM1oWYkDG1ERERE5JiGmpAAkRvauncP/rme26tt61Zr1rMZBg4EYmMZ2oiIiIiIrKK1bLPV1EJbYqJkjWAlJcnRE6Ht1Clg1y7r1rMBsg9CSgpDGxERERGRVb7/Hjh8uGmFtu3bgV69QnuuUWnzxF5tv/udpPL0dGtfJy1NQlukdKqpB0MbERERETnCaEIycGD913TsCERHR0Zo0xrIyZHiUCiMAOv6StvbbwNPPQXMmgVccYW1r5WWJsl/505rX8dh0U4PgIiIiIhqOn4cWLsWyM6WQHPVVU6PyBqNdY4EgGbNgC5dIiO07d4NHDkSemiLjZUQ6+rQlp0N3HYbMGYMMHeudU1IDEOHynHdutBLmB7A0EZERETkAm+9BSxZIu95N22q2nqqR4/IDm3nnCOhrCGRssF2To4czz8/9Hu4eq+24mJgyhQZ5AcfAM2bW/+aQ4bIRtvr1gE/+pH1r+cQhjYiIiIih23bBtx4o1RRLrgAmDYNGDEC+PJL4E9/kp4OLVs6PUrzGZ0jGyvGJCR4ZB1XI4zQNmRI6PdITHTp9+LECQlsJ07IL258vD2v26IFcN55Ed+MhKGNiIiIyGGrVsnxm2+AwYOrHj96VI75+aFPqXOzTZuAqVMbvy4hITLek+fmAr17y37ToeraFcjLM29MpqisBGbOBDZsAD7+WEKUndLSgE8/lUWDVk/HdAgbkRARERE5LCsLaNOmbkMOo1v6tm32j8lqBw4ABw82vJ7NkJAA7N8PVFRYPy4r5eSENzUSkG3P9uypCvSu8N57Mh3y2Wetbzziz9Ch8gsSCXNo68HQRkREROSw7GzpjB4VVfPxvn3luHWr/WOy2ubNcgw0tFVUAKWl1o7JSidOmFMxNb5fxvfPFb76CujQAbj/fmde39jAu6DAmde3AUMbERERkYNOn5YKzAUX1D3Xpo1Mh4vESlsgnSMNkbBXW16ezN4Lt9JmfL+M758rrFwJjBolrT6d0Lu3HAsLnXl9GzC0ERERETlowwagrEwaj/jTv39kVto2bZK1XV27Nn5tJIQ2MzpHAtLVPjbWRaHt8GEZzOjRzo2hZ08JjAxtRERERGSFrCw5+qu0AbKubetWqdJEkkA7RwKREdpyc6Vympwc3n2iooABA1wU2rKy5Jdz1CjnxtC8OdC9O0MbEREREVkjO1u2taqv4tSvnxQzDh60d1xWM0JbICIhtOXkyHo2M2YQDhrkotC2cqV8UfWViu3SuzdDGxERERFZIyur/iobUNVjIZLWtR06JBtE1+6WWZ82bYDWrb0b2rSWSlu4UyMNgwYBO3dKcxPHZWZKGg1nHwMzMLQRERERkRVKS4Ht2xsObUbb/0ha1xZM50hDQoJ3Q9uuXcCRI+bttWeE3S1bzLlfyCoqZJNBJ9ezGXr3ll+QkyedHoklGNqIiIiIHJKdLceGZpYlJwMxMZFVaQumc6TBy6HNrCYkBte0/c/LA44dc3Y9m8HoILljh7PjsAhDGxEREZFDsrOlEUd6ev3XREcDffpEVqVt0yagZUtp+heoSAhtQ4aYc79zz5XfC8fXta1cKUe3VNoAKV1HIIY2IiIiIodkZUnVpLHlQP37R1albfNmmeIXTFMOL4e23FwJ3m3amHO/mBiZNut4aMvMBLp0kX0InBbhe7UxtBERERE5QGuptDW0ns3Qrx9QUCBLiCJBMJ0jDQkJ0sDkzBlrxmSlnBzzpkYaXNFB0thUO5B9G6wWFyd//WBoIyIiIiKzFBZKI5JAOqX37w+cPQsUFVk/LqsdOyaNOUIJbQCwb5/5Y7LSiRMSuM1qQmIYNEhmAp4+be59A7Z/v3xhbpgaCUhw7NOHoY2IiIiIzNPYptrVGR0kI2GKpNHxMNTQ5rUpkhs3SlXVikpbZaWDvxOZmXJ0S2gDIrrtP0MbERERkQOys6UZx+DBjV9r7NUWCc1IQukcCXg3tJndOdJgfP8cmyKZmSmL64YNc2gAfvTuLd0jKyudHonpGNqIiIiIHJCVJe93o6MbvzY+HmjfPjIqbZs3y3v9YHtXeDm0tW0bXKfMQPTrJ41cHAttK1cCaWlAixYODcCP3r1lvqjXfkkCwNBGREREZLOzZ4H16wNbzwbIcp3+/SOj0lZYKIEtkLBaXefOcvTa+/HcXFnPFkynzEDExkrrf0dC29mzwOrV7poaCQTWQfLVV4GXXrJnPCZiaCMiIiKyWW6udEEMZD2boV+/yKi07dhR9d46GM2bS4NAL4U2reVnbfbUSINjHSRzcqSi5dbQ1tBebS+8APz73/aMx0QMbUREREQ2y86WY7Chbfdu6UboZUalLRRe26utqAg4etT8zpGGgQOB/HygrMya+9fL2FR71CibX7gRPXtKWbq+StvJkxI4R460d1wmYGgjIiIisllWlkz369Ej8OcYzUgKCqwZkx2OHAF++CG0ShvgvdBmVRMSw6BBQHm5A78TK1fKL2/Xrja/cCOaNwe6d68/tK1dK5sdMrQRERERUWOMTbWD2ZPYaPvv5XVtO3bIsSmFNqUC6xAaCsc6SK5c6b6pkYaG9moLZp8Nl2FoIyIiIrLR4cOyV1mgTUgMffvK0cvr2oz30uFOj9TavDFZKTdXMkSbNtbcf8AACYW2hrbdu4HiYvdNjTQ0tFfbqlVyPj7e3jGZgKGNiIiIyEZr1sgx2D/2t24NdOvm7Uqb8V46nErbqVPAsWPmjclKOTnWTY0EgFatgORkm0ObGzfVrq53b0n2J0/WPbdqlSenRgIMbURERES2Mt5gh9Kcon9/b1faduwAOnaUPedC4aW92o4flyaGVjUhMdjeQXLlStkV3so0Gg7jLwLGXFxDcTFQUsLQRkRERESNKyiQzZaNfceC0a+fVNq8Mj2wtnA6RwLeCm2ffCI/pwsvtPZ1Bg2S34ny8jBv5K8y5c/y5cDw4bJDuhvVt1fbqlVyZGgjIiIiosbk58umyME0ITH07y8dGA8cMH9cdigsDH1qJOCt0Pbqq9Jg8ZJLrH2dQYNkz7/ahaWgLFok67waK+Pu3g2sWwdMmhTGi1msvr3aVq2SHcndWiFsBEMbERERkY0KCiS0hcLoIOnFKZKVlcDOnU0jtO3aBSxeDNx6KxAVZe1rmdJBcuhQWSz4r381fN2CBXKcOjWMF7NYXJyUsv1V2oYNk20BPIihjYiIiFzhpZfkD/6RrKxMgkuooc3Yq82LzUj27AHOng1vemTHjkB0tPtD2+uvy9TIW2+1/rUGDpTj5s1h3KRrV+DSSyW0NTT3dv58eUHjF9GNlKrbQfLsWdmjzYOt/g0MbUREROS4Y8eAu+4Crr4a+N3vvLtmqzG7dsnaI6N9f7B69pRCgRcrbeF2jgSAZs2ALl3cHdoqK4F584Bx48ILqIFq21b2kw67Gcktt8gcy2+/9X++tBT45ht3V9kMtUNbbi5w+rRn17MBDG1ERETkAllZ8mZ32DDgv/8bmDlT1ulEmoICOYZaaYuKkud6sdJmRmgD3L/B9rJl8rXOmmXfaw4caEJomzpV9hB4/XX/5xctAioqvBHa+vSRAFpZKZ8bm2oztBERERGFbsUKqaJ89RXw5JPAG28Al10GHDzo9MjMFW5oA2RdmxcrbTt2yM+4R4/w7uP20DZvHtCuHXDttfa95qBBMj3SyCghadNGBv3ee1KVqm3+fCnpDRsWxovYpHdv+RqMX5RVq4DERBm/RzG0ERERkeNWrJCmbu3aAb/6FfDOO7IJ9QUXhLlWx2Xy86WYYTTUCEW/fhL+wm7xbrPCQnnPHG6neKdD21tvye+nP0ePAv/+N3DDDfJztst550nH/kA6SO7bJ0u8/Lr5ZmlPWntx6YkTwOefA9dcE1rbU7vVbvtvbKrthbHXI+DQppSKUkqtV0ot8n3eSymVpZTKV0q9q5Rq7ns81vd5ge98sjVDJyIiokhQVibvqS66qOqx668Hvv5a3itecolcEwmMzpHhvHfs31++H0VF5o3LDuG2+zckJAD798tMPSc8/jgwfTrw2mt1z737rjRhtHNqJFBV/FqzpvFrb79dtlnz69JLpSL1xhs1H//8c6lceWFqJFAztB08KP/heXhqJBBcpe0+ANX/1vV7AH/WWvcFcAjAj32P/xjAIa31uQD+7LuOiIiIyK8NGyScVQ9tgFTZ/vhHeYPuxTVc/hQUhN6ExGA07tuyJfzx2GnHDnMac3TvLoFt167w7xWsigrp/tm8uQSzDz6oef7VV2Wq4ogR9o5r8GCgRQsgO7vh67SWa1JT67kgKgq48Ubg009rbgY4f7607hwzxrQxW6pnT/nLyPbtEbGeDQgwtCmlugG4EsArvs8VgPEA3vdd8hqAa3wfT/F9Dt/5S33XExEREdWxYoUca4c2QLaPAiTYeV1FhfzhP5z1bIBJLd5tdvIksHevOZU2o6q0dm349wpWcbFUOf/wB8kA06cDn30m5zZvlorxrFn2z8KLiQHS0hoPbbt2yfTIBjvf33yzzL199135vKxMpktefbXst+AFzZtLui8slB9KVJQ31uI1INBK2xwAv23tQpIAACAASURBVARgLG+MA3BYa23Mpi4G0NX3cVcAuwHAd/6I73oiIiKiOlaskDfzSUl1z/XvD8TGRkZo271b3v+GG9o6dgQ6d/ZWaNu5U45mhLYhQySkBDIV0GzGEqkhQ4BPPpEK19Sp0jFy3jzJBjfdZP+4AKnurV3b8FpHI9Q1GNpSUuSfMUXy66+Bw4e9MzXSYLT9X7VKfmCtWzs9orA0GtqUUlcB2K+1rv73DH9/P9ABnKt+3zuUUmuUUmsOVC+/EhERUZOhtYQ2f1U2QP6wP2RIZIQ2MzpHGgYO9FZoMxpkmDE9MjZWMsXq1eHfK1jVty3o0EGWeiUnA1ddBfzjH3Ls0sX+cQGyTu3UKSAvr/5rsrLk+zdkSCM3u/lmSXhbt8rUyFatgAkTTB2v5Xr3lv/osrM9PzUSCKzSdiGAyUqpnQDegUyLnAOgg1LKqJF2A7DH93ExgO4A4DvfHsAPtW+qtX5Za52utU6Pj48P64sgIiIibyookDVr9YU2QKZIrl/v/Q238/PlaFZo27TJO98Ts/ZoM6SnS1UprBb3Idi+Xf6Q0K2bfB4fD3z5JdCpE/DDD/Y3IKnOWEfXUJjNzpZplM2bN3KzGTNkf4bXXwc++gi4/HKgZUvTxmqLPn3kfy5HjzaN0Ka1flRr3U1rnQzgBgBfaa1vBLAUwDTfZTMBLPB9vND3OXznv9LaK/9LISIiIjs1tJ7NkJoqb4iLi+0Zk1UKCuR9r79poMEaOFA6s7t5v7LqCgtldppZf6dPT5evf/t2c+4XqMJC6XFRfWlX167A0qXA888DV1xh73iq69MHOOec+te1lZdL0A2oSUpSkmyUOGeOLEb02tRIoOZfCJpCaGvAwwBmK6UKIGvW/uF7/B8A4nyPzwbwSHhDJCIioki1fDkQFwcMGFD/NUanO69PkSwokDfWzUzYJXfQIDl6ZYqk0TnSrAYd6elytHtdW2Gh/Axr69kTuPdeZ/t0KCWBrL7QtnGjNIRpcD1bdTffLE+IjgauvNK0cdrGCG3nnBN+y1YXCOp/G1rrr7XWV/k+LtRaj9Ban6u1/i+t9Rnf46d9n5/rO19oxcCJiIjI+4z1bA29mR8yRM5HQmgzY2ok4L0Okmbt0WY47zxpce9EaDPz6zDbiBESzk6cqHvOCHMBb0cwdaqUR8eNk+DjNcYP6oILzPlLicO8/xUQERGRJ+3bJ+u8GpoaCQBt20rY8XJoq6yUqXxmhbakJPm+eCG0aW1+2ImJkQqsnaHtyBGgtNT9oa2iQtaA1paVJVXtgMffurV0Wpk719Qx2iYuTtr8e3Fqpx8e2WyBiIiIIs2338qxsdAG2P8G3WwlJcCZM+aFNqW800Hy4EGp/JjRObK69HTgn/+UkBIVZe69/TG7mYoVhg+XY3Z23f+usrMl1AU1RfXCC00bm+2U8vb/NGphpY2IiIgcsWKFTHFLS2v82qFDZV3U4cPWj8sKZnaONBgdJN3OqrCTng4cPw5s22bufetjfB3+1rS5RZcuQI8edde1HTsmWwEEvJ6NXIehjYiIiByxYoW8iWy0/TiqmpHk5lo7JqsYe7SZ2Q9h4EDpHun2IGtlaAPsK6YYX4fZFUOz+WtGsnatTFMNeD0buQ5DGxEREdnuxAlg3brApkYC3u8gWVAgmxob+3uZwSvNSIyNtZOTzb3vgAGy57OdoS0uDmjf3p7XC9WIEfI9P3iw6rGsrKpz5E0MbURERGS7VatkLdKYMYFdn5AAdO7s7dDWu7e5Tey80va/sFB+fq1amXvfqCiZWmtXaNu+3d3r2Qz+NtnOzpZpnXFxzoyJwsfQRkRERLZbsUICzKhRgV2vlFTbvBzazFzPBsg0vdhYb4Q2q8LO8OHSKbG83Jr7V+f2dv+GYcPkv63qUySzsriezesY2oiIiMh2K1YAKSlAu3aBP2foUNmD6uxZ68ZlBa2tCW1RUUC/fu4PbcbG2lZITwdOnbK+IUt5OVBU5O4mJIY2baQKa4S2khL5x6mR3sbQRkRERLYqLwcyMwNfz2ZITQXKytwfUmrbs0eChZlNSAxub/tfVgbs2mVdhcquZiTFxfJ764VKG1DVjETrqvDGSpu3MbQRERGRrfLypBHJ6NHBPc+rzUiMzpFmV9oACW07dkgodKNdu2RjcavCzrnnSrXW6tC2fbscvRLahg+XRiQ7d8rUSGMzcvIuhjYiIiKy1caNckxJCe55ffsCLVsytFU3cKBUU7ZuNf/eZjA6R1o1PbJZM1nDZXVo88LG2tUZUyGzs+Xf+efLnojkXQxtREREZKu8PPnLf7DTBaOiJOh5MbTFxADdu5t/b7d3kLQj7KSnAzk51q51LCyUn6GZWzZYacgQaVKzapV0keR6Nu9jaCMiIiJbbdwoDTQC2VS7tqFDJbRpbf64rFJQIJWm6Gjz792vn1Sb3BzamjcHkpKse430dAlsRgXXCoWFss9cVJR1r2GmmBjZDuHtt4Hjx7meLRIwtBEREZGt8vKA884L7bmpqcDhw9LJzysKCqxpQgJINaV3b/eGth07gJ49rQ07w4fL0copkl5p91/diBHAvn1VH5O3MbQRERG5xLx5Mp0pkp08KW/kwwltgHemSGoN5Odbs57N4OYOknaEneRkoGNHa0ObVzbWrs4Iau3bS0WWvI2hjYiIyAXKyoCf/Qy44Qbg9GmnR2OdzZslyAweHNrzhwyR6YBeCW379kmnTKtD27Zt9mwwDUiAWbKk8euOHZMGKVaHHaVkiqRVoe3QIfnn1dA2fLj8N0Pexh8hERGRC2zZIutyioqAv/7V6dFYx1h3FGqlrVUrqRp4JbRZ2TnSMHCghH6jLb3VHn0UmDhRGlw05De/kfVUM2daP6b0dOC778L7g8fatfJ9rM3ogOm10Nanj/xx5OqrnR4JmYGhjYiIyAWMEDJoEPDb38oeS5EoL08aU/TpE/o9jGYkXmBHaLO7g+TatUBFhYSx+kJSTg7w/PPAHXfY0wQjPV0qjTk5oT1/7Vq5x+OP1z1ndMAM53fWCUpJkP35z50eCZmBoY2IiMgFNmyQfZTeflumlT35pNMjskZeHjBgQHidFFNTpSL5ww/mjcsqBQXytSYnW/caAwbI0Y7QdviwhJhLL5XX+/Wv615TWQncdZesM/vd76wfEyB7tQHAunWhPf/FF+U4Zw7w/fc1zxkVTKv2miMKBEMbERGRC2zYIFOZUlKA228H5s6VdUqRJi8v9PVsBqMZSahVlXD93//Jnmuff974tdu2SWCzot2/oV07oGtXe0KbUeF86CH5Pf3jH4GVK2teM2+ePPbssxLc7NC9OxAXF1poO3RI/liSkQGcOVM3aBYWAp06yfeZyCkMbURERA7TWgKIEUaeeEKqbg8/7Oy4zHbsmFTIQl3PZjj/fDk6NUXyiy+A4mLgyiurKjS1VVQAv/oV8P77wKhR1o/Jrg6SRigaOhR47jmgRw/g1lulKygg03p/+UtgzBjgllusH49BKRnT+vXBP/f114FTp4Df/x6YNQv429+AnTurznux3T9FHoY2IiIih5WUAKWlVaGtSxfgkUeAjz4Cli1zdmxm2rRJjuGGti5dgMRE50Lbli0Skq64Arj7blkzVL1z4759wIQJwFNPSQh46SXrx2SEtspKa19n3Tqp6nXuDLRtK1W1/HxpTgLI8ehRCbNKWTuW2tLSZA2Xv2Yi9dFaqtojR0ro+/WvpdNi9bVthYXeW89GkYehjYiIyGFG+DBCGwA88IC8Of7FL6x/I26XvDw5hjs9EnC2GcmWLfKzmj9ffj5//SswebKEleXLZWwrVwKvvgq88grQsqX1Yxo4ULYWKC629nXWrZNwZBg3Drj3Xmk68swz8vU+8IA5P+NgDR0qHViNPw4EYulS2Zbgzjvl827dgHvuAd54Q+5TXi7VYVbayGkMbURERA4zwkdKStVjrVrJ2po1a2S9TSTYuFECjBkNHVJT5U31mTPh3ysYp07Jm/gBA4CoKFnT9fLLwOLFMm1z3DigdWsgKwu47Tb7xmVHB8kTJyTgVA9tAPD009Id89FHZW2Zv+YkdjDGFcy6trlzZd3ddddVPfbII/Iz/NWvgF27ZKorQxs5jaGNiIjIYRs2yJvetm1rPn7TTVI9eOwxeePodXl5UhEyY6Pf1FSpghjVO7vk58uUuv79qx67/Xbgs89kzd6110rQrh7A7TBwoByDqTIFKzdXqr5Dh9Z8vHVr4LXXgPh4mRbZpo11Y2jIuefKawe6rm3PHqmWzpola0gNnTpJBfXDD4F335XHGNrIaQxtREREDtuwoaq5RnXNmsmbx127Qm9l7iZ5eeGvZzMYU0ntniK5ZYscjTb7hksvlbVs770HtG9v75gACUxJSY1veB0O43ewdqUNAEaPllb5V11l3es3plkz+e8o0P9WXnlF/hjy05/WPTd7toS3J56QzxnayGkMbURERA46elT2gaq+nq26jAw5fvGFfWOywuHD0nDFrLVOffpIVcWJ0KYU0Ldv3XNRUfaOpTqlJDhlZlr3GuvXS5Dp1s3/eTMqqOFKS5PficbWgZaXy7TWiRP9b3zetq1UuM+ckc3gu3a1ZrxEgXLBf15ERERN13ffybG+0Na5s5xbvNi+MVnBmMZoVqXNqKo4Edp69pQ1h24zerS0qt+zx5r7G01I7O4KGYyhQ2XtXX5+w9d9/LH8EcFoQOLPnXdKQO3Vy9lATgQwtBERETnKX+fI2jIypBvh8eP2jMkKZoc2QL5ngVRVzLR1a92pkW5h7AcXbLXt9GlZk3bJJXL058wZaSRTez2b2xhTNxtb1zZ3rjRNufLK+q9p0QJYsECmURI5jaGNiIjIQRs2AHFxDU+/mjBB9p7y8p5teXnSsKJHD/PumZoqzT927DDvng2prJRKW/UmJG4ydCgQGysBPxBFRdLxsVs32SB75Urg//0///uc5eXJ4/7Ws7nJoEEynbGhdW35+VK5vuMOIDq64fulpQEXXWTuGIlCwdBGRETkoA0bJHw0NOXsoovkr/5eXte2caNU2cxc92R3M5KSEuDkSfdW2mJjgfT0xittP/wgXS579wb+8Adg7FhgyRLg/fdln7ePPqr7HKNy5fbQFhMDDBnScKXtlVckrP3kJ/aNiyhcDG1EREQOKS+XNW0NTY0EJLCNGePtdW1mdo40DB4sa43sCm31dY50k1GjgLVrZcpjff72N2l1/8tfSpXyww+B8eNlqmDv3rJRdm3r1gHt2nmji+LQoTJereue01ra+E+YACQk2D82olAxtBERETlk61ZZK+Sv3X9tGRmyB1dJifXjMltpqbTDNzu0tWgh+5MxtFUZPRo4e7bh6YGLFklF7umna05XjYoC7r0XWLGi7vPXrZM/LrihQ2Rj0tKkmrh7d91zWVkyLfT66+0fF1E4PPCfHhERUWQKpAmJYcIEOX75pXXjsYoVTUgMRjMSO2zdKnuwdeliz+uForFmJAcOAKtW1b+f2m23ydrD6tW2igogJ8f9UyMNRrMUf8H13XdlzduUKfaOiShcDG1EREQOycmRN5CBVG6GDJH2/15c17ZxoxzN2qOtutRUWYd18KD5965tyxb5Wbm55X1CgkxhrK8ZyWefyRTB+romtm8vTUnefhvYv18e27oVOHXKO6EtJUUqgrXXtVVWAv/+NzBpkjMboBOFg6GNiIjIIRs2SJCJiWn82mbNgMsuk0qbnS3uzZCXJ+uhrNig2M5mJG7uHFndqFES2vyt6Vq0SIJdQwHsnntkiuXLL8vnRsXKK6GtVSsJ17UrbStXyvTi665zZlxE4WBoIyIicoDWVZ0jA5WRIdUPY0NurzCakFhRobIrtB07Jm/43byezTB6NPD997LRdnVlZVJpu/LKhtemDRgATJwIvPhi1fq4li29EVgNaWl1K23vvivrIK++2pkxEYWDoY2IiMgBe/fK+qJgQxvgrS6SWsv0SCumRgKyx1337taHtq1b5eiV0AbUXdf27bfA0aMNbyht+PnP5Xf0gw8ktKWkNL6nmZsMHSoh25jiWVEhWxpceSXQtq2zYyMKBUMbERGRA4JpQmLo2lU2D/bSurb9+6V7pBVNSAx2NCPxUmgbPFiaidRe17ZokayhvOyyxu9x+eVA377AnDnyvfXK1EiD0YzEqLYtWybVR3aNJK9iaCMiInKAETJSUoJ7XkYGsHx5w/twuYmVnSMNqamy3uzUKeteY8sWaYnfp491r2GW6Gjgggv8h7aLLw6s0tSsmbT/z84Gjhzxbmgz1rW9+66sdQukykjkRgxtREREDtiwAejVK/gudhMmSGBbscKacZnNrtBWUVHVpdIKW7ZIV8bmza17DTONHi3dSY8fl88LCqRaWF+rf39mzqwKeF4LbR06yH9f69fLJvYffCBr2Vq1cnpkRKFhaCMiInJATk5wUyMNF18s3SadXNd2+DBw++3SFv7sWf/XnDoFPPMM8KtfAd26ScdCq9jRjMRo9+8Vo0dLl9HVq+XzTz6RYzCVpnbt5Ofcrp21odsqaWlSafvqK9kSglMjycsY2oiIiGx2/DiQnx9aaGvdWt6QO7mu7eOPgVdeAWbMAHr2BB5/HNizR85VVADz5gH9+gGPPgqMGSMB08q9zZKTJViEG9o+/dT/97WiQn5eXgptI0fK0Zgi+cknMv5gp3c+8wywaRMQG2vu+OwwdCiwfTvw979LxXDSJKdHRBQ6hjYiIiKbbdggXRWNdTfBysiQexid8eyWmSlvghctkmrGE09IeLvuOgmis2YBiYnA119LwLM67DRrFn4zkhdflCrUlClVTUcMRUXAmTPeCm3nnAMMHCih7dgx+VkEMzXSEBNjzf56djCmdL7/vvxcW7RwdjxE4WBoIyIisll2thyHDw/t+RMmyHHJEnPGE6zMTGl0ceWVUsHJz5cW8YsXAydPStOHrCyZymmX1FSZchrKxuN/+ANw991SiWnVStZylZdXnd+yRY5eCm2AVGRXrZLqYVlZaKHNy6r/UYRTI8nrGNqIiIhslp0N9OgR+jqvtDSZDvjNN+aOKxAnTgC5ucCoUVWPnXsu8Nxzsm6ooEAqblZOh/QnNVXGtn174M/RWtbcPfwwcMMNwIIFwAsvSOB89tmq64zQ5qXNpQH5Gf3wA/CnP0nDG2P/tqYiIUEqvu3bV/2hg8irGNqIiIhstnp16FU2QFrPX3SR7D1lt9WrpZplrJmqPS67w5rBWB9o7MvVGK2B2bOBp54CfvIT4F//kqmA118PTJsG/OY3wHffybVbtgCdOslG3l5ihLSVK2XftZgYZ8fjhAcekOm7Xun6SVQfhjYiIiIbHTwIFBYCI0aEd5+xY4HNm+1f15aZKUd/oc1JgwbJ/mSBrGvTGvjpT2Xj6PvvB15+WQInIKHzxRdlTdjMmTKt0GudIw39+8vXATS9qZGGhx4C7rvP6VEQha/R0KaUaqGUylZK5Sil8pRST/ge76WUylJK5Sul3lVKNfc9Huv7vMB3PtnaL4GIiMg7jBbsZoQ2wP792jIzJQx07Gjv6zYmNhYYMkTWcDVm5UrpKPjQQzJ1sHZ1MD4eeOklqdr99rfSmMSLoa1ZM5kiqZRU2ojIuwKptJ0BMF5rfT6AVACXK6VGAvg9gD9rrfsCOATgx77rfwzgkNb6XAB/9l1HRETUqPJyqYJEsuxseRM9bFh49xk2DGjZEli+3JxxBUJrCUVuq7IZxo8Hvv1WmqE05Msv5WfwyCP1T+e85hrgpptk+uT+/d4MbYCs1/vzn2V6JxF5V6OhTYvjvk9jfP80gPEA3vc9/hqAa3wfT/F9Dt/5S5VyaoY7ERF5ya23yjS3oiKnR2Kd7Gz5Gtu2De8+zZtLeLJzXVthIXDgQM0mJG4yYYJs9t3Y92TJEmnm0li18PnngS5d5GOvhraxYzk9kCgSBLSmTSkVpZTaAGA/gMUAtgM4rLU2GuIWAzB28egKYDcA+M4fAeCxpbtERGS3igpg4UJZPzRmjLSRjzRaS2gLd2qkYexYWcN19Kg592uMsZ7NraFtzBiZJrl4cf3XnDgh1cJLL238fuecA/zzn0DfvuE1jiEiCldAoU1rXaG1TgXQDcAIAAP9XeY7+quq1ZnsopS6Qym1Rim15sCBA4GOl4iIIlROjmwC/PDDwOnT8gZ840anR2WunTulEYmZoa2yUtZo2WHVKqBNG+C88+x5vWC1bCldNRsKbcuXS3ORQEIbIBuZb9sGdO5szhiJiEIRVPdIrfVhAF8DGAmgg1Iq2neqG4A9vo+LAXQHAN/59gB+8HOvl7XW6Vrr9Pj4+NBGT0REEcOY0nbPPfJxVJRszrxmjbPjMpOxqbZZoW3kSOmYaNcUycxMGbvRadGNMjKkVf/evf7PL1kiU0svusjecRERhSOQ7pHxSqkOvo9bArgMwGYASwFM8102E8AC38cLfZ/Dd/4rrSN9WTkREYVr2TKgVy+gWzdZP7R8uWyKO368vc02rJSdXdXl0AytWgHp6faEthMnpBrq1qmRhowMOX75pf/zS5bI19CqlX1jIiIKVyCVtkQAS5VSuQBWA1istV4E4GEAs5VSBZA1a//wXf8PAHG+x2cDeMT8YRMRUSTRWoKZ0cYeAHr3ljCSlARMnAjs2uXc+MyyejUwdKi5mxyPHSth8NQp8+7pz9q1su7QrZ0jDamp0inR3xTJ0lJZAxjo1EgiIrcIpHtkrtZ6qNY6RWs9WGv9pO/xQq31CK31uVrr/9Jan/E9ftr3+bm+84VWfxFERORtW7bIWq/qoQ2QqtvChRJIFi50ZmxmKS+X4GPW1EjD2LGyRsuYemkVt26qXVuzZsBll0mlrfY8n6VL5TGGNiLymqDWtBEREVnBmN43Zkzdc/36AX36AJ9/bu+YzLZpk+wfZnZou/BC2WvM6imSmZnSRdEL+31lZMiatry8mo8vWSKNVNgJkoi8hqGNiIgct2wZkJAAnHuu//OXXw589RVw5oy94zKT2U1IDB06ACkp1oY2rSW0ub3KZjDWtX3xRc3HlyyR5jZmTk8lIrIDQxsRETlKawkcY8dKxcifiROlSvXtt/aOzUzZ2RKw6gum4Rg7Vtr+l5WZf29AtirYv9/9TUgM3btLM5vq69p275a9/zg1koi8iKGNiIgcVVQEFBfXXc9W3bhxUh3x8hRJY1Pt+oJpOMaOlVC7fn3o9ygtBX72M/l37FjNc27fVNufjAzgm2+qqrNLlsiRoY2IvIihjYiIHNXQejZDmzayr9Znn9kzJrOdOCEbhZs9NdJgfO9CmSKpNfDmm1KZ+sc/gL//HRg2TLosGjIzgdatgcGDzRmvHTIypIGNsfH4kiVAfLy3vgYiIgNDGxEROWrZMpk22Nib6YkTgdzc+jdNdrP166VdvlUNMLp0kYYtwYa2wkJZL3jTTdLsZd06WTt44gRwwQXACy9IqFu1SsYeHW3N+K1wySUy3i++kK9hyRLZ868Z3/kQkQfxf11EROSo5culUtTYm+mJE+VYu7mEFxhNSKzsWjh2LLBiBVBZGdj1f/6zBOXMTOB//1fWCw4ZIo06NmyQtvn33ANce6187qWpkQDQtq2MefFi2VJi715OjSQi72JoIyIix3z/PbBtW8Pr2Qznny8dJr24rm31ammOkZho3WuMHQscOlS3zb0/69YBs2fLWsFNm4C77waioqrOx8cDH38M/PGPwKJFssec10IbIFMk160D3ntPPmdoIyKvYmgjIiLHLF8ux0BCm1LAhAlSaauosHZcZjOakFgpmHVtK1bI8aWXZANzf5o1A37xC7n2vvu8GXgyMmRq5HPPAcnJQO/eTo+IiCg0DG1EROSYZcuAVq2AoUMDu37iROlyuG6dteMy08GDsnbM6tDWs6dU8775pvFrMzMlrNUX2Kq74AJgzhz5OXlNejrQvr10w/Ri6CQiMjC0ERG53DffyNRAo+16JFm+HBg9OvDNjjMypOLmpSmSq1fL0erQppQ03/j6a6kuNSQz05vTHYMVHS3NRwCGNiLyNoY2IiIXmzdPgkpuLvDaa06PxlyHDsnXFcjUSEN8vLSjd2Pr/8pKWZ/3ySfAyy8Dv/41MGsW8NBDEqiGDbN+DOPHAwcONLyubc8e2RuvKYQ2APjRj2TLCIY2IvIyDzXvJSJqOiorgcceA37/e+niV1kpXfAiybffSkUomNAGyBTJZ54BjhyRqW9O2bcPyMqS9WrZ2VJRO3y46nyzZtJ4pFs3+Vm2bWv9mMaNk+PSpfVvoeDFjbLDMWMGcM01ss8cEZFXsdJGROQyJ04A06ZJYPvpT4FPPwWmTpV1Udu3Oz068yxfLtMig502OHGiNCJZssSacQUiJwdISgKmTJEAefAgcP31sjn1ypXA7t3AmTNAcbHscfbUU/aMq2dPabbx1Vf1X5OZCcTGBr6O0OuUYmAjIu9jpY2IyEX27gWuukr2xZozB/j5z+VNZ0aGnF+8WDZBjgTLlklga9kyuOeNHAm0aydTJK+91pqxNebTT6X6uWSJjMdNTTrGjQM+/FCCbfU2/obMTJmqGRtr/9iIiCg0rLQREbnIAw/IRsALF0qbdaXk8X79pDNgpEyRPHQIWLNGNnIOVkyMrE/6/PPGG25Y5euvZfrh+PHuCmyAjOnQIakG1nb2LLB2bdOZGklEFCkY2oiIXGL3buD994G77gKuvLLmOWOPsq++ko2Ove6TT+TrmDw5tOdPnAjs2gVs3WruuAJx9qzsXXbJJfa/diCMdW3+pkiuXy/TNhnaiIi8haGNiMglXnhBKkf33OP/fEaGNLpYs8becVlh/nxp0jF8eGjPnzhRjk60/l+zBjh5siocuU1iItC/vzQjqW3lSjkytBEReQtDGxGRC5w4IW3ir71Wmkn4c+mlUnHz+hTJU6dkPdo110iHxVAkJwMDBkjFzm5ffy3HYLte2mn8eFkzWFZWIuLUyAAAIABJREFU8/HMTPn9SkpyZlxERBQahjYiIhf4179kHdJ999V/TadO0vHP66Ft8WKpVE2dGt59Jk+WAHXkiCnDCtjSpUBKivw83GrcOOD4cVm/Vl1T2VSbiCjSMLQRETmsslI6RQ4bBlx4YcPXTpggb7yPHbNnbFaYPx/o0CH8NWGTJ0slyc4pkmfPyv5ybl3PZjDGV31dW3Gx/GNoIyLyHoY2IiKHLV4sHSPvv7+qW2R9MjKkgcc339gzNrOVlwMffyzbGsTEhHevkSOl2rVwoTljC0R2tkzvdHtoi48Hhgypua6tqW2qTUQUSRjaiIgcNmcOkJAAXHdd49deeKHsa/bFF9aPywrLlwOlpbKeLVxRURL+Pvmk7totq3z9tQTrULYqsNv48dLl8swZ+XzlSqBFC+D8850dFxERBY+hjYjIQVu2SFOOu+4Cmjdv/PrYWGmA4dV1bR99JMHh8svNud/kydJRc8UKc+7XmK+/lvVsHTva83rhGDcOOH0ayMqSzzMzpVtnIL9nRETkLgxtREQOev55CWI//Wngz5kwQcJecbF147KC1hLaJkwAWrc2554TJsj3z44pkmfOyHo2t7b6r+3ii6U751dfSXhbt45TI4mIvIqhjYjIIT/8ALz2GjBjBtC5c+DPy8iQo9eqbevWyYbY4XaNrK51a+Cyy4AFCyQUWik7W8KP29ezGTp0kG6jS5fK976sjKGNiMirGNqIiBzyyivS+r6hNv/+DB4sa+C8tq5t/nyp/Fx1lbn3nTwZ2LED2LTJ3PvWZqxnc/P+bLWNHy/TIr/8Uj5naCMi8iaGNiJyvbIy4Gc/c2YjZavs2wc8+6y8qQ62MYRSUl368kvZLsAr5s+XwGP2/mZGCFywIPx7zZ8P3H677HFW29KlQGoqcM454b+OXcaNk/9+XngB6NUL6NLF6REREVEoGNqIyPUefhh46SXgueecHok5tJYQeuwY8Ne/hnaPjAzg4EEgJ8fcsVll2zaphJk5NdKQlCQNNsJd17Z5M3DTTVIBnTBBGpwYTp+WipVXpkYaLroIiI4G9u8HRo92ejRERBQqhjYicrW33wb+/GfZd2r5cuDoUadHFL4335SGHE89BQwaFNo9vLau7aOP5GhGq39/pkyRLonffx/a80+fBqZPB1q1Al58EVizRqqgBw7I+awsucYrTUgMbdtKoAU4NZKIyMsY2ojItXJzgR//GBgzBnjrLdmYeckSp0dVZdMmWVeWlydVmUAaYZSUAPfeK/utPfBA6K+dmChr2z77LPR72Gn+fGDYMKBHD2vuP3myHBctCu35v/ylVC3/+U/gzjulard5s3Rg3LOnaj3bmDFmjdg+RtBkaCMi8i6GNiJypUOHgGuvlQ54770nb57btQP+7/+cHpnQWqpdEydKeDrnHKBNG6BvX6kmbdni/zm33y6t4+fNk82hwzFlCvDNN7I+zm4VFcA991RV0BqyZw+wapV1VTZAfgbJyaFNkfz4Y5mmet99wJVXymOXXy6BePduCWoffiidGDt0MHXYtrj7buAPf5D1eERE5E0MbUTkOpWVsrZo1y7g/felU2JMjISkTz+1vrV7IIqKJIzMni1TOP/4R9lrbdgwYNkyeYP8zDNSHTS8+qqEzt//XsJduGbMkO/Ve++Ff69gbd0qzS2mTgWefrr+n8nBg8Ctt8rH115r3XiUkmrb4sXAiROBP6+kBLjtNvl5/f73Nc9dfLFUdg8dkqqv16ZGGpKSgIceks6dRETkTfxfOBG5zpNPSjibM6dm84RJk+RN9saNzo3NkJ0tx+nTgRtuAH7xC+BPfwLeeUemTV51FfDoo8DIkfKGv6hIpkOOGyeVDzMMGiSdJ996y5z7BSM3V45jxwKPPSbB58yZmtdkZkp1atky4O9/D339XqAmT5Z1Z0Z7+8ZUVMgfB06dkp9bbGzda0aMkKmRY8cCN99s6nCJiIgCxtBGRK7yySfAE08AM2fK2qLqJk2S46ef2j+u2rKy5E1+SkrdcwkJUiH8979let2wYdKiX2uptplZ8ZgxQ6Yebt9u3j0DkZMjXQm/+EJ+Xq+9VtXRUmsJ3GPHSoV05UrgJz+xfkxjxwLt2wc+RfKZZySQ/e//Av37139dSopMQw12awYiIiKzMLQRkWvs3CnVjNRUYO5cmfJWXVKSvHF2w7q2rCwgLQ1o3rz+a6ZNk6rbDTcABQXSBTM52dxx3HCDHN9+29z7NiYnBxg4UILrr38tr5+dDVxwgUyZfOABWR+2bp18n+wQEyOvuWABcPZsw9eWlkrYvO66qumbREREbsXQRkSucOaMvIGuqJAqVcuW/q+bNAn49lvgyBF7x1ddWRmwdq0ElMbExQFvvCH7ZFlRberRQypMb75p71q/3NyalacbbpCq1fHj0sHx2WelY6TdjTumT5dA1lhXzQ8+kJ/jI4/U/eMAERGR2zC0EZEr/OIXwOrV0nK9T5/6r7viCmnuEei6JSts3Chrp0aMCPw58fHWjWfGDOlWaddG26Wlsraw9tRQY/3ed98BDz7oTBiaOFG+12+80fB1b74JDBjAjopEROQNDG1E5Lh33pFOhLNny9S6howaJeuWnJwimZUlx0AqbXaYNk3Wl735pj2vZzQh8bfGq0sXmTbplJgYqbZ9/LHsnefP7t3SHGXGDFbZiIjIGxjaiMhRW7bItMHRo6UxRGOio4EJEyS0OdX6PysL6NQJ6NXLmdevLS5O9hV7+23ZAsBqRkXPXxMWN7j5Zplu++9/+z//zjtynD7dvjERERGFg6GNiBxz4oRUiVq1kr3GYmICe96kSbJHmlHxsZvRcMNNVZobb5Qpi8uXW/9aublA587SJdONhg2TqY/1TZF86y35+Z17rr3jIiIiChVDGxE55sknpbviW28BXbsG/rzLL5ejE63/jx4FNm8Obj2bHa6+Gmjd2p4923Jy3N3+Ximpti1fDuzYUfPcpk3Ahg0yNZKIiMgrGNqIyDEffSSNIy67LLjnJSbKps1OrGtbvVqmZbplPZuhdWvgmmtkSmBj7e7DUV4O5OW5d2qk4aab5Pivf9V8/K23ZJ+8666zf0xEREShYmgjIkfs2gVs2ybr00IxaZJs2lxfswmrZGfLcfhwe183EDNmAIcONd7uPhzbtsl6MTdX2gDZCuGSS2SKpLH2UWsJbZdd5t6pnURERP4wtBGRIxYvlmNGRmjPv+IK2dPNuI9dsrKAvn2Bjh3tfd1AZGRIgxQrp0i6vQlJdTffDOTnVwXtrCyZLsmpkURE5DUMbUTkiMWLZZrjeeeF9vwLLpCNm+2cIqm1vPF329RIQ0yMTPtbuFCavFghN1dex8m2/oGaNg1o0aKqIcmbbwKxsY1vK0FEROQ2DG1EZLvKStkcOyMj9A6M0dGyHu7TT4GyMnPHV5/du4Hvv3dvaAMkqJw6ZV0FMidHAlvz5tbc30zt2gFTpkiL/5MngXfflYYt7do5PTIiIqLgMLQRke3WrwdKS0OfGmm45RZg3z7g9dfNGVdjjGl2bg5tF10kFcgFC6y5f26uN6ZGGm65RX7XHnwQOHBAtkYgIiLyGoY2IrKdUQUKtmtkbZMmSev9p56ytmOiIStLKkxuDi0xMbLeb9EiWfNnptJS2QvO7U1IqpswQfaUmzsXaN9efmeIiIi8ptHQppTqrpRaqpTarJTKU0rd53u8o1JqsVIq33c8x/e4Uko9r5QqUErlKqXSrP4iiMhbFi8GhgwJv4OfUsDjjwM7dwKvvWbGyBqWlSVbDcTGWv9a4Zg8GTh4EFi1KvDn5OcDf/gDMGoUEB8vn9fmpSYkhuhoYPp0+XjaNPf/7IiIiPwJpNJWDuAXWuuBAEYCuFspNQjAIwCWaK37Alji+xwAJgHo6/t3B4C5po+aiDzr5ElgxYrQW/3XdvnlMl3R6mpbeTmwdq27p0YaLr9cwsrChQ1fV1QE/OpXwODBQL9+wMMPy/rAM2eA+++ve31urhy9VGkDgJ/8RPax+8lPnB4JERFRaBoNbVrrvVrrdb6PjwHYDKArgCkAjL9tvwbgGt/HUwC8rsUqAB2UUommj5woQmkNFBYCW7bU/LdtW9V+U162bJmEq3DXsxmMatuuXcC8eebc05+8PAmcXght7dvLHmUNhbaKCmD8eOB3v5NtAubMkYrlmjXAb34jDV4WLar5nJwcoEsX+eclgwcDx48DI0c6PRIiIqLQBLWmTSmVDGAogCwAXbTWewEJdgA6+y7rCmB3tacV+x6rfa87lFJrlFJrDhw4EPzIiSLUm28CffpIh77q//r3B2691enRhW/xYlkXNmaMefecOFHekP/2t1IlskJWlhxHjLDm/mabMqUq7PuzcKH8ceDdd4Gvvwbuuw/o2VPO/fzn8jt3333A6dNVz/FaExIiIqJIER3ohUqpNgA+AHC/1vqoqr9Pt78TdeoDWuuXAbwMAOnp6RFQPyAKn9bAH/8ob5h//eua55YuBV5+WdbnXH65M+Mzw+LF0uGwVSvz7qkU8MQTEt5efRW4887Q7nPypHS2zMmpO9Vy/nwgLk4CtRdcfTVw770Szh58sO75OXOA5GT/e5bFxADPPy/V0OeeA/77v2V6aF6e3JOIiIjsFVBoU0rFQALbm1rrD30P71NKJWqt9/qmP+73PV4MoHu1p3cDsMesARNFsm++kcDwyivADTfUPDd1qkwtvPNOYONGWaPjNXv3At99Bzz9tPn3zsgARo+W6X6zZgXWcOLYMeC996SVf3a2jK2hjoszZoS+r5zdevaUtWf+Qtv69fK79NxzQFSU/+dfdhnwox9J9fLmm+V7deYMK21EREROCKR7pALwDwCbtdZ/qnZqIYCZvo9nAlhQ7fFbfF0kRwI4YkyjJKKGzZkj64tmzKh7LjYWeOklWXf0+ON2j8y/f/0LePbZwK//8ks5mtWEpDqj2lZcLKE3EDNnSnOK996TtvCPPiohp7gYOHSo7r833jB/3FaaPBn49lvpJFndX/4ioX/WrIaf/9xzcnzwQe82ISEiIooESjfS2UApdRGA5QC++//t3XuczdX+x/HXklMq3Q5K+KELlYpCpaMc0o1QChU1nRM5IilxokRS56ROCCG3JkmKKA5dpFBRGpFLojFFKoeKk0sxsn5/fL5zGsxt7/nuy5j38/HYjz3z3d/vns/eq9H+zGetzwL2BYcfwNa1vQJUBjYArb33PwVJ3nDgamAX8FfvfVpeP6Nu3bo+LS3PU0QOeRkZcPrpNhVtwIDcz+vY0aYAfvKJtZ9PlKVLbX3X3r0wZkzBOvOlpMAbb9iG2CVisEuk99Cggb2X69ZBqVK5n7t+PZx6KnTvbq3ui0oFLRJpaXDBBbYdQkqKHdu0yapwHTvCsGH5P8eAATZVt359q0bu2GFrEkVERCRczrkl3vu6OT1WkO6RH3jvnfe+pvf+vOA223v/o/e+sfe+WnD/U3C+99538d6f5r0/N7+ETUTMsGE2VS2/9VgDB1o1rmPH8DdPLqjduy0JKFcOGjWCLl3sA31evLf1bI0bxyZhg9+rbd99l3+17dln7b5r10MzYQOoXRsqVNi/i+SoUbZe7+67C/YcPXtacvvhh7bWUgmbiIhI/MXoo5OIROLnn2HcOLjxRvuQnZcTTrDpbWlpMHx4fOI7UL9+tq5u7FiYMgVOPtnWP23enPs1K1dalSesVv+5adTIqm3//Of+nQ+z273bYm/eHCpXjm08iVSihE2RfPNNey9274aRI6FZM6hWrWDPUaoUDB5sX2tqpIiISGIoaRNJAs89Z40ectrQOCdt2kDTpjaVcsOG2MZ2oIULbR1bhw4WQ5kyMG2arZu66SabLpmTOXPsPtZJW/Zq2+jROZ8zZQps2WIVwkNdixawc6d1H5082RLrbt0ie47mzW3MC1qdExERkXDlu6YtHrSmTYqz336D6tWhfHmbglZQX38NZ59t0w3z2kQ5TDt3wnnnWWK2fDkcc8zvjz3/vO0j16NHzs1JmjSBr76yvcPioWFDWLPG1rcdeeT+j/3pT5ZkfvFF7KZqJotff7XptLfcYnvNZWZal8xDdUqoiIhIUVWoNW0iEluzZlliUdAqW5aqVeGhh2DmTFi2LCahHaRXL0hPt8pg9oQNrBNjly62z9wrr9hUyNdes2saNrRKW6yrbNn1728xZK1dy7J0KSxaBJ07H/oJG9j0xquusqR62TL770wJm4iISNGiSptIgl12mSVCGRlQssDb3ZutW6FiRaui5DYVMCxz59reXd262dYEOdmzx9aULVpkjUfAXtP550O9elaFi+casssug88/t/c2azPvDh1g0iSbPnn88fGLJZGyqqBlysA33xxceRQREZHEU6VNJEYyM+GXX6K//rPPbK3RXXdFnrCBNSVp2xZefBG2bYs+jvykpdk6ujPOyHtj7MMPh6lT4W9/sz2+PvzQmqwsXgxDh8a/6Uf//ra9wKhR9v3WrZawtWtXfBI2gGuusUStSxclbCIiIkWRKm0ihdCunU23+/TTvPcEy8kHH1jV55tv7PbHP0YXw9Kl1tp9yJDIG0wUxPvv24f+smVtc+xTTw3/Z8TS5ZfbGq6MDKtGdu9u79l55yU6svjauNG6fB52WKIjERERkZyo0iYSA7/8Ymu2Vq+Gxx4r+HXbtkGnTnDppdYk4vXXo0/YwKYeXnwxjBgB+/ZF/zw5eestWw9VsaIlb0UtYQOrtm3ebO/PyJH2XhW3hA2gUiUlbCIiIkWVkjaRKL37LuzaBTVqwOOP2z5kefEeXn3Vzh8zxio+K1daJaiwOneGtWtt3VlYpk+3dvFnnAHz51viVhTVr28NUPr0gS+/LB5t/kVEROTQoqRNJEozZlgHxTlz4LjjbB1XbpWunTuhVSu7lS9va7yeegpKlw4nltatbfriiBHhPN/EifactWtbcnriieE8b6L0729NUsqVszEQERERKUqiaH0gElt79ljlKqfGGlddZbdE27fPWu1ffTVUqACDBlnL+9Gjbepjdjt2QLNmNr1w4ECrsEXTdCQvRxxh6+OeeMI224624ceaNbaNwJQp1qY/KzEt6i6+GO67z6qcRxyR6GhEREREIqNGJJJ0stqTly69/35SmZm2EfW8ebY5ciItXgwXXQQvvGDt9r23KXiffGJr3CpUsPO2b4emTa0F/sSJcNNNsYtp/Xpbc9arV2Rr7MAaofTvD6mp1lCle3fo3VudBkVERETiRY1IpMjw3rognn22tYrPfvvuO6sgtWplmyYn0owZ1tShaVP73jlrK79nD9x9tx3773/hyivho49g8uTYJmwAVapYRW/sWNi9u2DXbNtmFahq1SwBvesu67L4yCNK2ERERESShZI2SSoLFsCyZda6PnuVDWxPsmnTLBlq08Yqb4kyYwZccsn+XR9PPx369rVmIxMmWOVtyRJ45ZX4raPq3Nk6Jb76asHOv/12S5LbtrVGJkOGFP31ayIiIiKHGiVtklSefhrKlLEphzmpWdMqSe+/Dz17xje2LF99Zft+tWhx8GM9esA559j6ts8+s+SpZcv4xXbFFZY8PvNM/ueuWWNbFjzwAIwfb5U6EREREUk+StokaWRkWBLRsWPeU/NuvhnuvdcSvBdfjF98WWbOtPtrrz34sT/8AcaNg7POspb5zZvHN7YSJeDOO2HhQvj447zPfeopa8rRtWt8YhMRERGR6KgRiSSN7t1h2DCrZFWqlPe5mZlWVVq82Jp81KoVnxgBGje2NXWrVsXvZ0bi55+henWrnC1aZIncgTZtgqpVreHLqFHxjlBEREREDqRGJJL0tm+3ClXr1vknbGAVrZdftjVlLVtaW/142LrVNprOaWpksjj2WGv9v3ixdeLMybBh1jTlvvviG5uIiIiIRE5JmySF1FSrEHXrVvBrTjrJGn589ZU1+4iHN9+0bQeSOWkDWxN48cVw//0H73e3YweMHAnXXWddI0VEREQkuSlpk4Tbtw+GDoV69Wzvs0g0amSJx4QJsYntQDNmWHfFCy+Mz8+LVokSMHw4/PADPPzw/o+NG2cVw7//PSGhiYiIiEiElLRJws2eDenpcM89kV/rHKSk2JTF9evDjy27PXss1ubNbY+2ZFe7tjV1GT4cVq60Y5mZMGiQbVdQr15i4xMRERGRglHSJgk3ZIitY7v++uiuz9oeYOLE8GLKyYIFNoUz2adGZvfYY3DccdYh0nuYMgU2bEjcdgkiIiIiEjklbZJQK1bA3LnQpYs1F4lG1arw5z/bFMlYNEP1HqZOtY2rjzwSLr88/J8RK2XKWOI2b56t+3vySTjzTGjWLNGRiYiIiEhBKWlLQlu3Qp06cNRRB98uuujgxhJF2ciRUKoU3HFH4Z4nJQXWrrWOiWHxHubMsfVrrVtDyZK2j9xRR4X3M+Lhjjvg/POhQwdYtsw6Rua0DYCIiIiIJKeSiQ5A9uc9dOoEy5fDXXftX33asweeeQZuvRVef73of/DeudM2x27VyipChdGqlVXrJkyIvJlJTj7+GHr3hvfeg8qV4bnn7H0vCmvZDnTYYdbi/5JLoHz536eTioiIiEjRoKQtyUycaNPYHnsMHnjg4MerVbNk7tFHoW/f+McXpilTbI1YYatsYHuTXXcdTJ4MgwfD4YdH9zyrVsGDD1pSXK6crbfr1AmOOKLwMSZS/fr2vlStapVNERERESk6nI/FIqAI1a1b16elpSU6jIT7+muoWdNu8+fnXNXxHm67zZK7mTPhmmviHmZo6teHH3+E1autC2RhvfEGNG0K06dbAheJr7+Gfv3ghRfgmGOgRw/rZnnMMYWPS0REREQkP865Jd77ujk9VsQn2B06fvvNpt+BJQ65TcNzDkaNglq1bJpbenr8YszJuHFQo4ZVpiKxahUsXGjrrMJI2ACuuOL3DbcLascO66xYvbpVOO+7DzIy4KGHlLCJiIiISHJQ0pYkBg6EDz6wNWunnJL3uUcdBdOmWbJz/fW2NiwRfvjBkpz0dKtstWoF339fsGvHjrX1eikp4cVTsiS0awf//rdV8AriySftPf/LX+DLL+37wq6vExEREREJk5K2JJCWZlPz2rQpeJOIU06Bl16yTZPvuCM2re7z06+fVarS0uAf/7Bk6ayz4NlnYd++3K/79Verhl17LZx4YrgxpaTYBtIvv5z/ud5bI5TGjWH0aNsrTkREREQk2ShpS7Bdu6w6VL68TXuMZKrgVVdZQ5KXXrIplfG0cqXF27mzrcHr3dv2XKtTxxp3NGgA69fnfO306fDTT+E0IDlQrVpw7rkFmyK5eDGsWwdt24Yfh4iIiIhIWJS0JVivXra/2PPPwwknRHf9BRdAnz5WwYoH76F7dzjuOKu2ZalWDd55B1JTLam7/HLYvPng68eMsS6GsdqkOiXFWvavXZv3eZMmWVfI66+PTRwiIiIiImFQ0lZIWclJ3762cXEk0xTfe8/2z+raFS67LLqfX6KErYf75htbmxUPs2fbptMPP3zw+i/nrLvl7Nnw7bdw9dXW1j9Lerq97vbtY7fPXNu21shl+PDcz9m716ZQNmtmyaeIiIiISLJSy/9C2LfP2tYvW2YbX+/bZxWkli3tVr9+7onJ9u02rbBkSbv+6KMLF0uTJlZdysiA448v3HPlJTMTzjnHkrMVK/bf/PtAb7wBLVrApZdaEleqlFUGn3wSNmyAihVjF2f79rZeLSMDKlQ4+PG337bppa++qkqbiIiIiCSeWv7HyLhx8NFH1sTi+++tI2KNGlbxatDAKnBbt+Z8bY8elrg8/3zhEzaAxx+Hbdus6hZLI0bYtMOnnso7YQNLJFNTrbLWrp1N30xNtb3lYpmwgW2QvXdv7u/HpEm2IXfTprGNQ0RERESksFRpi9KWLXDGGdb0Yt68/RuI/PyzbX59zz1w+ulWcapS5ffH33rLpg327AlPPBFeTLfeClOn2hTEWCRFP/5or+fCC+HNNwveNOXpp+29qFMHliyBGTOgefPw4zvQ7bdbk5aMDDj55N+P//KL7efWqhWMHx/7OERERERE8qNKWwzcf79NcRwx4uDk5dhjravi229bBa5ePUtWwKph7dtbRe6RR8KNacAAm6L58MPhPi/YtMibb7YW/4MGRdblsls3q3wtWWJTFZs0CT++nDz4oMV9YLVt1iwbu3bt4hOHiIiIiEhhKGmLwgcfwHPP2cbSZ5+d+3kNG8KHH1qHwgYNLFno1g02bbJpkaVKhRtX1aqWLI4fD6tXh/e83kOXLtZ8ZNSovF9zbgYMsKriiBG2ji8eTjvNOkk+++z+m36/+KJtsdCwYXziEBEREREpDE2PjFBmJtSubVMgP/+8YOvRNm2ydVzLllklrE8fS2Ji4Ycf4NRTbcPo6dPDec4nnrDKYu/etol2UbJunU1j7doVBg+2NYbly1tyO3hwoqMTERERETGaHhmioUOtzf/QoQVvIFK+PMyfbx0lGzSAhx6KXXxly1qC9dprsHBh4Z9v6lR7vhtvtI28i5rTTrO1fqNGWfI8bZp1+tSG2iIiIiJSVKjSFoE5cyzxatTImmlEsq4rnnbutI2uK1Sw7pZ5TUdcvx46dbImIS1bWhUx63V99JG91tq1Ye7c8Kdzxkt6Opx5Jtx9t1U7N26ENWuSd/xEREREpPhRpa2Qtmyxas2VV0KlStbSP5k/8B99NAwZYo0/8tpg2nvo0AHefde2DKhb19bFdetmFakWLSzxe+21opuwgXW8vOUWGDnSOn22bZvc4yciIiIikp2Stjx4DxMmwFlnwcsvQ9++VqmpXDnRkeWvdWtbR9enj1XTcjJ+PLzzjk31/M9/rLlKrVrWuOOGG2yfs9mzoVy5+MYeC3362HpE760LpoiIiIhIUaHpkblIT7dpg3PnQv36toF2jRqJjioy69dbzI0awcyZ+1eXvv3WHsua+lgiW/q+Y4fGPt/9AAAHrklEQVRNBa1WDc45J/5xx0q3bjaus2YlOhIRERERkf3lNT1SSVsubrjBqlADB0LHjvsnNUXJ4MHQvbtVCtu0sWPe29THuXNhxQpr1iEiIiIiIomjpC0K335rlakKFRIdSeHs3QsXXWSvZ/VqOOEEmDTJNpYeNAjuvTfREYqIiIiIiBqRRKFixaKfsIF1jhwzxpqp9OoFmzdbF8V69exeRERERESSWx7N4OVQUbs23HOPVdaWLoXt260JyWGHJToyERERERHJT76VNufceOfcZufcymzH/uicm+Oc+zK4PyE47pxzQ51z6c655c652rEMXgquf3+oUgU++QT69bOOmCIiIiIikvwKMj0yFbj6gGO9gLne+2rA3OB7gCZAteDWERgZTphSWKVLw+TJtoatZ89ERyMiIiIiIgWV7/RI7/0C51zVAw5fCzQMvn4emAfcHxyf4K27yUfOueOdcyd7778PK2CJXr16dhMRERERkaIj2kYkJ2UlYsH9icHxisA32c7bGBw7iHOuo3MuzTmXtmXLlijDEBERERERObSF3T3S5XAsxz0FvPejvfd1vfd1y5UrF3IYIiIiIiIih4Zok7b/OOdOBgjuNwfHNwL/l+28SsB30YcnIiIiIiJSvEWbtM0Abgu+vg14PdvxlKCLZD3gv1rPJiIiIiIiEr18G5E4517Cmo6Udc5tBPoBjwOvOOfaAxuA1sHps4GmQDqwC/hrDGIWEREREREpNgrSPfLmXB5qnMO5HuhS2KBERERERETEhN2IREREREREREKkpE1ERERERCSJKWkTERERERFJYkraREREREREkpiSNhERERERkSSmpE1ERERERCSJKWkTERERERFJYs62VktwEM5tAdYnOg45SFngh0QHIQmj8S++NPbFm8a/eNP4F18a+8Sr4r0vl9MDSZG0SXJyzqV57+smOg5JDI1/8aWxL940/sWbxr/40tgnN02PFBERERERSWJK2kRERERERJKYkjbJy+hEByAJpfEvvjT2xZvGv3jT+BdfGvskpjVtIiIiIiIiSUyVNhERERERkSSmpK0Ycc6Nd85tds6tzHaslnNukXNuhXNupnPu2OB4VefcL865ZcFtVLZr6gTnpzvnhjrnXCJej0QmjPF3zh3lnJvlnPvCObfKOfd4ol6PRCas3/9s187I/lySvEL8t/9w59xo59za4N+AGxLxeiQyIY7/zcH5y51zbzrnyibi9UhkIhn/4LGawWOrgsdLBcf12S/BlLQVL6nA1QccGwv08t6fC0wHemZ7bJ33/rzg1inb8ZFAR6BacDvwOSU5pRLO+P/Le38mcD5Q3znXJJZBS2hSCWf8cc5dD+yIZbASqlTCGfsHgc3e++pADWB+DGOW8KRSyPF3zpUEngYaee9rAsuBu2IeuYQhlQKOfzDOE4FO3vuzgYZAZnCNPvslmJK2YsR7vwD46YDDZwALgq/nAHn+5dQ5dzJwrPd+kbcFkROA68KOVcIXxvh773d5798Lvt4DfApUCjlUiYEwxh/AOVca6A48GmqAEjNhjT1wO/DP4Dn3ee+1CW8RENL4u+B2dFBhORb4Lsw4JTYiHP8rgeXe+8+Ca3/03v+mz37JQUmbrARaBF+3Bv4v22OnOOeWOufmO+cuDY5VBDZmO2djcEyKpkjH/3+cc8cDzYG5sQ9TYiSa8R8APAXsilOMEhsRjX3w+w4wwDn3qXNuinPupDjGK+GKaPy995nAncAKLFmrAYyLY7wSrtzGvzrgnXNvBb/nfw+O67NfElDSJrcDXZxzS4BjgD3B8e+Byt7787G/qk8K5jznNIdZLUiLrkjHH/jfFIqXgKHe+4w4xyzhiWj8nXPnAad776cnJlwJUaS/+yWxqvqH3vvawCLgX/EPW0IS6e/+H7Ck7XygAjY9snf8w5aQ5Db+JYFLgHbBfUvnXGP02S8plEx0AJJY3vsvsHI4zrnqwDXB8d3A7uDrJc65ddhfYDay/3S4SmiKRJEVxfinBZeOBr703g+Je9ASmijG/wKgjnPua+z/Hyc65+Z57xvGP3opjCjGfglWXc1K2KcA7eMctoQkivF3wbF1wTWvAL3iH7mEIbfxxz7jzc+a+uycmw3Uxta56bNfgqnSVsw5504M7ksAfYCsLoHlnHOHBV+fii06zfDefw9sd87VC+a1pwCvJyR4KbRIxz/4/lHgOOCeRMQs4Yni93+k976C974q9lfYtUrYiqYoxt4DM7HGBACNgc/jHLaEJIp/+78FajjnygVPcQWwOt5xSzhyG3/gLaCms07RJYE/A5/rs19yUKWtGHHOvYT9D7esc24j0A8o7ZzrEpwyDXgu+LoB8Ihzbi/wG9ZJKGsh651YN6IjgTeCmyS5MMbfOVcJ6yD3BfBp0PF3uPd+bPxeiUQjxN9/KWJCHPv7gRecc0OALcBf4/QSpBDCGn/nXH9ggXMuE1gP/CVuL0KiFsn4e++3OucGAZ9g0x9ne+9nBefps1+COfvjmYiIiIiIiCQjTY8UERERERFJYkraREREREREkpiSNhERERERkSSmpE1ERERERCSJKWkTERERERFJYkraREREREREkpiSNhERERERkSSmpE1ERERERCSJ/T988XhugPnNFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Plot the data\n", - "plt.plot(train, color='b', label = 'Train')\n", - "plt.plot(valid, color='r', label = 'Valid')\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Naive Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFlCAYAAAB4PgCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3ic53nn++8zg15mQHQMCDawobCKYlOjREuKTNlyOS6SbSlyHCVrOZvkJNlNNrlOcpJ1NufEqU7irGXLluTI3sReW7KoYhWqs4gUQRLsJAACRO+9zcy7f8yMTFGkCMz7AjMD/D7XxWvI4eDBTUkU5sZzP7/HWJaFiIiIiIiIxCdXrAsQERERERGRq1PTJiIiIiIiEsfUtImIiIiIiMQxNW0iIiIiIiJxTE2biIiIiIhIHFPTJiIiIiIiEseSYl0AQH5+vrVkyZJYlyEiIiIiIhIThw4d6rIsq+BKvxcXTduSJUs4ePBgrMsQERERERGJCWPMhav9nsYjRURERERE4piaNhERERERkTimpk1ERERERCSOqWkTERERERGJY2raRERERERE4piaNhERERERkTimpk1ERERERCSOqWkTERERERGJY2raRERERERE4piaNhERERERkTimpk1ERERERCSOqWkTEREREXHIuD9AY/eIvUX8E9B93pmCZE5Q0yYiIiIi4pB/3nOeW76xh++/VR/9Inv/Cb65EV7/BliWc8VJwlLTJiIiIiLikH113QD82c9P8PXdJwgGo2i6LrwNxgWv/AX87KvgH3e4Skk0SbEuQERERERkLvAHghy72M+Xti7GAI+8UU9L3xh/89l1pCW7p7aIZUHzIVh3H+Qsglf/EvouwOd+ABm5M1q/xC81bSIiIiIiDjjdPsjoZIDrFi/g4+t8LFyQwdefPUnH4BiP3L+JnIyUay/S2wCjPVC6Ea7/NchdBk99Fb6zE+77d8hfMeN/Dok/Go8UEREREXFATVMfABvKFmCM4ddvXsY3793AkaZ+PvWtt2nqmUJAScu7ocfS60KPaz8DD/wcxvrhOx+B+jdmqHqJZ2raREREREQcUNPYR25mCmW56e8997F1Pn7wlS10D03wyX95m6MX+z58keZ3wZ0KRVW/fG7RVvjKy5BVBE98Ag7/YIb+BBKv1LSJiIiIiDjgcFMfG8pyMMa87/nNS3P5yX/aRmqSi8/9z328cqr96os0vwsla8Gd/P7nc5fCr/0CltwETz0ML/0ZBIPO/yEkLqlpExERERGxaWBskvOdQ6wvy7ni7y8vzOanD2+nvDCTrzx2kCf3N37wRQE/tNb8cjTycuk58IX/gOsehDf/Dv7jAZiweSecJAQ1bSIiIiIiNh1t6seyYP2iKzdtAIXZafyvh7Zxy8oC/ttPj/HXL5zCuvQetq7TMDkCvo1X/0TuZLj77+COr8PJn8P3d8Fgm4N/EolHatpERERERGw63NiLMbDuKjttEZmpSTxy/ybu3VzGP+85z+/+rxom/OExx+ZDocer7bRFGAPbvwaffxI6T8EjO6Gt1oE/hcQrNW0iIiIiIjbVNPVRXpCFJy35mq9Ncrv4y0+u4Q/uXMXPalp44NED9I9Ohpq2NG8o5n8qVn8UHnwOrAA8eiec+YXNP4XEKzVtIiIiIiI2WJbF4aa+q55nuxJjDA/fupy//ew63mno4TP/+jYTjYfAtwFc03iL7lsPv/5KqNH74edg//+M4k8g8U5Nm4iIiIiIDU09o/QMT7DhQ86zXc2nNi7ksS9vpqdvAFfncTo91dMvwOML7bitvAue+y+w+/dDoSYyZ6hpExERERGx4XBTL8C0dtoudcPyfH78ySySCPIXh9N442zn9BdJzYLPPQHbfwveeSS06zY2EFU9En/UtImIiIiI2HC4sY/0ZDerirKjXmPJ2CkAurzVPPi9d/jJoYvTX8Tlhjv+O9z993B+T+icW38U60jcUdMmIiIiImJDTVMfaxZ6SXLbeGvdfAiyS/jXr97NpiUL+K8/OcrA2GR0a216EL74E+i9AC//efQ1SdxQ0yYiIiIiEqVxf4ATLQNsiHI08j3N70LpdXjSkvmNm8vxBy1OttgYbyy/NfSj+V17dUlcUNMmIiIiIhKlEy0DTASCUYWQvGe0F3rOQ2noUu0qnweAWjtNG0DxWug+B+ND9taRmJtS02aMyTHG/NgYc8oYc9IYs80Yk2uMedEYczb8uCD8WmOM+UdjzDljzFFjzIdc6S4iIiIikrhqmvoAWF+2IPpFWg6HHn2ht82FnjQKslM53tJvr7iStYAF7bp4O9FNdaftH4DnLctaDawDTgJ/CLxsWdYK4OXwrwHuAlaEfzwEfMvRikVERERE4sThxj6KPWkUe9OiX6T5UOjRt+G9p6p8Hk44sdMG0HrU3joSc9ds2owxHuBm4LsAlmVNWJbVB9wDPBZ+2WPAJ8I/vwd43ArZB+QYY0ocr1xEREREJMZqmvrsjUZC6NxZ3nJI/+U6VT4PZzuGGJsMRL+uxwcZ+dB2xF59EnNT2WlbBnQC3zPGHDbGfMcYkwkUWZbVChB+LAy/vhRouuTjL4afex9jzEPGmIPGmIOdnVHcRSEiIiIiEkPdQ+M09oxEfT8bAJYV2mkrve59T1f5vASCFmfaB6Nf25jQiKR22hLeVJq2JGAj8C3LsjYAw/xyFPJKzBWesz7whGV927KsTZZlbSooKJhSsSIiIiIi8SJynm3DIhvn2QZaYKj9Ck1bKIzkuBMjkh0nwT9hbx2Jqak0bReBi5Zl7Q//+seEmrj2yNhj+LHjkteXXfLxC4EWZ8oVEREREYkPNU19uF2GNaXe6BdpCUfy+96f3Ve2IIPs1CRqmx0IIwlOQudJe+tITF2zabMsqw1oMsasCj+1EzgBPA08EH7uAeCp8M+fBu4Pp0huBfojY5QiIiIiInPF4cY+VhVlk57ijn6R5kPgSoLiNe972uUyVPo8Duy0rQs9akQyoSVN8XW/BfybMSYFqAMeJNTw/bsx5teARuAz4dc+C3wUOAeMhF8rIiIiIjJnBIMWR5r6+Ph6n72Fmt+FoipI/mD6ZJXPy5MHLhAIWrhdVzqBNAW5yyAlC9rUtCWyKTVtlmXVAJuu8Fs7r/BaC3jYZl0iIiIiInGrrmuIwXG/vRCSYDB0R9ua/+uKv13l8zA2GaSuc4gVRdnRfQ6XK7SLp522hDbVe9pERERERCTs3UYHQki6z8H4wAfOs0VUlToYRtJeG2oSJSGpaRMRERERmaaapj6y05JYlp8Z/SKREJLLkiMjyguySElycbzFgTCSiSHoqbO3jsSMmjYRERERkWmqaexjfVkOrmjPmkEohCQ5EwpWXfG3k90uVhdnU9vswE4bQGuNvXUkZtS0iYiIiIhMw8iEn1NtA2ywc54NQiEkvvXgunr6ZJXPy/GWfkKxEVEqWA2uZIWRJDA1bSIiIiIi03DsYj9BC9YvstG0+SdCTVTplc+zRVT5PAyM+bnYOxr950pKgcIKhZEkMDVtIiIiIiLTcLgpFEKybqGNpq29FgITVw0hiajyORRGUrIu1CTa2bGTmFHTJiIiIiIyDTWNfSzOyyAvKzX6Ra4RQhKxutiDy8AJ22Ek62CkGwZa7K0jMaGmTURERERkGmqa+uzdzwah82wZ+ZCz6ENflp7iprwgy5nYf9C5tgSlpk1EREREZIpa+0dpGxhzJoSkdCOYa6dPVvk81NrdaSuqAgy0HrG3jsSEmjYRERERkSmqCV+qvd7Opdrjg9B56pqjkRHVpV7aB8bpGhqP/nOmZkHecoWRJCg1bSIiIiIiU1TT1EeK20VFSXb0i7QeAaxrhpBEVDoWRrJW45EJSk2biIiIiMgUHW7so6rUQ2rS1e9Wu6bmQ6HHa8T9R1SVeAE47kQYSX8TjPTYW0dmnZo2EREREZEp8AeCHG12IoTkUCiAJDN/Si/3ZiSzcEG6wkjmMTVtIiIiIiJTcKptkLHJoANN2+Epn2eLqPJ5OOHEXW2gc20JSE2biIiIiMgU1IQv1d5oJ4RkqBP6G6No2rzUdw0zODYZ/efOyAXPQu20JSA1bSIiIiIiU1DT1EdeZgoLF6RHv0jkUu0phpBEVIXDSE62Dkb/uSEURqLY/4Sjpk1EREREZAoON/ayYVEOZgp3q11V8yEwrl+OKk5RdalDYSTFa6HrLEwM21tHZpWaNhERERGRa+gfneR857AzISQFq0P3pk1DYXYq+VkpDsT+rwMsaD9ubx2ZVWraRERERESu4ejF8KXaZTbOs1kWNL875aj/SxljqPR5nbmrDTQimWDUtImIiIiIXMPhxj6MgbVl3ugX6W2A0Z5ph5BEVPk8nG0fZNwfiL4GTymk5yqMJMGoaRMRERERuYaapj6WF2ThSUuOfpEoQ0giqnwe/EGLs+1D0ddgTDiMRE1bIlHTJiIiIiLyISzL4nBjrwPn2d4FdyoUVUX14VW+0C5fbbMDYSQdJyBg4/oAmVVq2kREREREPkRjzwi9I5NssHM/G4RCSErWgju63brFuRlkpSY5E0YSmIDOU/bWkVmjpk1ERERE5ENELtW2tdMW8IfCP6I8zwbgchkqSzz2Y/8j1w1oRDJhqGkTEREREfkQhxv7yEhxs7JoejH979N5CiZHoj7PFlHp83CydZBA0Ip+kdxySM5UGEkCUdMmIiIiIvIhDjf1sabUS5LbxlvnSAiJjZ02CIWRjE4GqO+ycTm2ywXF1dppSyBq2kRERERErmJsMsCJln7WL3LgUu00L+Qus7VMJIzE9ohk8VpoOwbBoL11ZFaoaRMRERERuYoTrQNMBiw22LlUG0LJkb4NoV0uG1YUZZHidjlzyfbEIPTW21tHZoWaNhERERGRq6hpDIWQbLCz0zY5Cu3HbY9GAiS7XawqznZmpw1C4SgS99S0iYiIiIhcxeGmPnzeNIo8adEv0noUrIDtEJKIKp+H4y0DWJaNMJLCCnAlK4wkQahpExERERG5ipqmXvvn2RwKIYmo8nnoG5mkpX8s+kWSUqFwtcJIEoSaNhEREXHcyISfdxp6Yl2GiC1dQ+M09Yzau58NQiEk2T7wlDhSV2UkjKTZ7ojkutBOm50dO5kVatpERETEMZZl8cLxNm7/29f5zL/ufe9SYpFE9MvzbA6EkJQ6MxoJUFGSjTE4E0Yy3AmDbc4UJjNGTZuIiIg44kL3MA9+/x1+44lDpCaF3mIcUdMmCaymqQ+3y1Ad3tmKykgP9Jx3tGnLSEliWX6mwkjmETVtIiIiYsvYZIC/ffEMt//d67xT38Of7Krghd+9mfysFI7ZHd8SiaHDTb2sLs4mPcUd/SIth0OPDoWQRFSXeu3vtBVXA0ZhJAkgKdYFiIiISOJ6+WQ7f/bz4zT1jPLxdT7+eFfFeyl7VT4vtWraJEEFgxZHm/q5Z4PP3kKREBLfBvtFXaLK5+GpmhZ6hifIzUyJbpHUbMgr105bAlDTJiIiItPW1DPC//vzE7x0sp3ygkye/MoWti/Pf99rqks9vHmui7HJAGnJNnYqRGLgfOcQg+N+1jtxqXbeCki3GWZymapIGElLPzetKIh+oeK10HzQoapkpkxpPNIY02CMOWaMqTHGHAw/92fGmObwczXGmI9e8vo/MsacM8acNsbcOVPFi4iIyOwa9wf45stn+cjfvsZb57r4w7tW89xv3/yBhg1gTamXQNDidNtgDCoVseewE5dqW1YoOdLB82wRVT4P4FAYSV8jjPY6UJXMlOnstN1qWVbXZc/9nWVZ37j0CWNMJfB5oArwAS8ZY1ZalhWwV6qIiIjE0mtnOvnTp2pp6B7ho2uK+ZNdlfhy0q/6+shOQG1LP+vsRqaLzLLDTX140pJYmpcZ/SIDLTDU7tj9bJfKyUihNCfdgXNt4TCStmOw9Gb7hcmMmInxyHuAH1mWNQ7UG2POAZuBvTPwuURERGSGtfSN8hfPnOC52jaW5mfy2Jc3c8vKa49jLVyQjjc9mdpmm28qRWKgpqmPdWU5uFwm+kWaD4UeHQ4hiaj0eezf1VayLvTYelRNWxybanqkBfzCGHPIGPPQJc9/zRhz1BjzqDEmMvBbCjRd8pqL4edEREQkgUz4g3zr1fPs/JvXeOVUB793+0qe/52bptSwARhjqC71KIxEEs7wuJ/TbQP272dreRdcSVC8xpnCLlPt81LfPczwuD/6RTLzQxd/K4wkrk21abvBsqyNwF3Aw8aYm4FvAeXAeqAV+Jvwa6/07YgPXLNujHnIGHPQGHOws7Nz+pWLiIjIjHn7XBcf/cc3+P+eP8UNy/N56f++hd/auYLUpOkFilT7vJxuG2TCH5yhSkWcd6y5n6AFG+yO9TYfgqIqSE5zprDLVPk8WBacbLV7rm2dYv/j3JSaNsuyWsKPHcBPgc2WZbVblhWwLCsIPEJoBBJCO2tll3z4QqDlCmt+27KsTZZlbSoosJF4IyIiIo5661wX931nP+P+AN99YBPfeWATZbkZUa1VXeplIhDkbIfCSCRxREJIbJ3FDAahpWZGzrNFVJU6GEbSdQYmRhyoSmbCNZs2Y0ymMSY78nPgDqDWGFNyycs+CdSGf/408HljTKoxZimwAjjgbNkiIiIyU1480U5asosXfudmdlYU2VqrujQcS65zbZJAapp6WZKXEf39ZwDd52B8YEabtmJPGrmZKRxvsTmCXLwWrCB0nHCmMHHcVIJIioCfGmMir3/SsqznjTFPGGPWExp9bAB+A8CyrOPGmH8HTgB+4GElR4qIiCSOfXXdbFqcS0aK/byyxbkZZKUmUdvSz2ffN4gjEp8sy+JwYx/by/PsLfTepdozE0ICoXOjVT6PMzttEDrXtnCT/cLEcdf8v7FlWXXAuis8/6UP+ZivA1+3V5qIiIjMtt7hCU61DfJ7t5dc+8VT4HIZKn0ejimMRBJEa/8YHYPj9kNImg9BciYUrHKmsKuo9Hl49M16JvxBUpKmGldxGW8ZpOXoXFsci/LfrIiIiMxFBxp6ANhqd5fhEtU+LydbB/AHFEYi8a+mKXSebb0TISS+9eCaXnjPdFX5vEwGLM602zg3akxot00JknFLTZuIiIi8Z19dN6lJLtYu9Dq25pqFHsYmg9R1DTu2pshMqWnqIyXJRUWJJ/pF/BOhy6pLZ240MqLaF6rzhO0RyXXQfgICkw5UJU5T0yYiIiLv2V/Xw8ZFC6Yd7f9hqn2hBlD3tUkiONzYS7XPE/2oIUB7LQQmZjSEJGJJXiaZKW4HwkjWQWA8lCIpcUdNm4iIiADQPzLJybYBti5zbjQSYFlBFmnJLmqVIClxbjIQ5FhzP+vLHLhUG2Y0hCTC5TJUlDgZRqJzbfFITZuIiIgAofNslgVbluU6uq7bZags8VBrdydAZIadbhtkbDLI+kV2z7O9Cxn5kLPImcKuocrn4UTrAMGgFf0iecshOUNhJHFKTZuIiIgAsL+um5Qkl/0AhiuoLvVyosXmm0qRGXY4HEKywYkQktKNoYCPWVDl8zIyEaC+28a5UZcbiqq00xan1LSJiIgIAPvqu9lQlkNasvNpd9WlXobG/TTYeVMpMsNqGvvIz0ph4YL06BcZH4TO07Nyni2iMhxGYntEsnhtaKctqKTXeKOmTURERBgYm+REywBbHD7PFvFeGIndN5UiM+hwUy/ryxZg7OyQtdQA1qycZ4tYWZRNstvYDyMpWQvjA9DX4Ehd4hw1bSIiIsLBhh6CFmx1+DxbxIqiLFLcLo4rQVLiVN/IBHWdw2ywfZ7tYOhxFuL+I1KSXKwsynYm9h80IhmH1LSJiIgI++p6SHG72LjIZmreVSS7XawuyVYYicStN891AQ584+Lcy1BQAZn5DlQ1dVW+UIKkZdk4N1pYCa4khZHEITVtIiIiwv66btbP0Hm2iCqfl9pmm28qRWbInlOd5GQk24v7H+2Dxr2w6lecK2yKqnxeeoYnaBsYi36RpFQoWK2dtjikpk1ERGSeGxyb5Fhzv+NR/5erLvXQPzrJxd7RGf08ItMVDFq8dqaDW1YW4HbZOM92/mUI+mFlLJq2UBiJ7fsQI2EkElfUtImIiMxzBy/0ErRgy9KZCSGJWFMaDiPRuTaJM7Ut/XQNTXDrqkJ7C51+HtJzYeH1zhQ2DRUlHozBmTCSoXYYbHOmMHGEmjYREZF5bn9dD8luw8bFzt/PdqmVRdkkuYzOtUnc2XOqE2Pg5pUF0S8S8MO5F2HFHaE7z2ZZZmoSS/MznYn9B41Ixhk1bSIiIvPcvrpu1i7MISMlaUY/T1qymxVF2fbHt0Qctud0B+vLcsjNTIl+kYsHYLQ3JufZIqp8XvsJksVrQo9tR+wXJI5R0yYiIjKPDY/7Q+fZls7sebaIap+H2uZ+hZFI3OgeGufIxT77o5Fnng8lL5bf5kxhUajyeWjuG6V3eCL6RdI8kLtMO21xRk2biIjIPHbwQi+BoMXWGbpU+3LVpV667SbciTjo9bOdWBbOnGdbfAOkeZ0pLAqRMJITrQojmWvUtImIiMxj++u6cbsM1y2emfvZLlf9XhiJRiQlPuw51Ul+Vup7DU9Ueuqg63RMUiMvVeUL/f1yJIyktwHGdP40XqhpExERmcf21/ewdqGXzNSZPc8WUVGSjcsoQVLiQyBo8dqZTnasKsBlJ+r/zAuhxxieZwPIzUyhxJvmQOz/utBj2zH7RYkj1LSJiIjMUyMTfo409c141P+lMlKSKC/Isr8TIOKAmqZe+kcnnTnPlr8ydBYsxqp8Xmd22gBaFUYSL9S0iYiIzFPvXujDH7Rm/FLty1WXejUeKXFhz6lO3C7DjSvyo19kbAAa3or5aGRElc9DXdcwIxP+6BfJKoTsEoWRxBE1bSIiIvPUvvB5tk2zdJ4tosrnoW1gjM7B8Vn9vCKX23O6g+sWL8Cbnhz9IudfgeBkXDVtlgUnWwftLaQwkriipk1ERGSe2l/fTbXPQ3aajTesUVgTCSPRiKTEUPvAGMdbBhwYjXwB0nKgbIszhdlUFf77dcKJEcnO0zA56kBVYpeaNhERkXlodCLAkab+WYv6v1RlOKXvuMJIJIZeO90JwK2rC6JfJBiAsy/AitvBPTthPtfi86aRk5HMcduXbK8FKwAdJ5wpTGxR0yYiIjIPHW7sZSIQnPXzbADZackszc/UuTaJqT2nOyjxprGqKDv6RZoPwUh33IxGAhhjqPJ57O9kvxdGohHJeKCmTUREZB7aV9+Dy8CmJbPftAHOvKkUidJkIMgbZ7vYsaoQY2xE/Z9+Dowblu90rjgHVPm8nGkbYjIQjH6RnMWhi8KVIBkX1LSJiIjMQ/vruqnyefHM8nm2iOpSLxd7R+kdnojJ55f57WBDL0Pjfm5dZWM0EkLn2RZvh/TZDfO5liqfh4lAkLPtQ9EvYozCSOKImjYREZF5ZmwywOGmPrYsjc0uG/wyjMT2uRuRKLx6uoNkt+GG5Tai/vsaoeM4rLzTucIcUuWL/P2yOyK5DtqPQ8DG9QHiCDVtIiIi80xNUx8T/mBMQkgiqsJhJBqRlFjYc7qDLUvzyEy1ER5y5oXQ48q7nCnKQUvzM0lPdjsTRuIfg+6zzhQmUVPTJiIiMs/sq+vGGLg+hjttORkpLFyQTq0SJGWWXewd4Uz7EDvsjkaefg5yyyF/uTOFOcjtMlSUZHPCbtOmMJK4oaZNRERkntlf10NFscfehcIOqPZ5NR4ps+7V96L+bdzPNj4EDW/EVWrk5ap8Xo639BMMWtEvkrcCktJ0ri0OqGkTERGZR8b9Ad5t7I3paGREdamH+q5hBsYmY12KzCOvnu5gUW4Gy/Izo1+kbg8EJmBVPDdtHoYnAlzoGYl+EXcSFFUpQTIOqGkTERGZR4409TPuj839bJerCoeR2B7hEpmisckAb53r5tZVBfai/s88D6leWLTNueIcVl3qYBhJ21GwbOzYiW1q2kREROaR/XXdAGyO0f1sl6oOJ9zpXJvMlgP1PYxOBthhZzQyGIQzvwjdzeaO7Yjxh1lRlEWSy9i/xL54LYz1Q2+DI3VJdNS0iYiIzCP76rtZXZzNgsyUWJdCQXYqxZ40nWuTWbPndAepSS622RkPbjkMwx1xfZ4NIDXJzYZFOfzieBuWnV2yxdtDj6efdaYwiYqaNhERkXliwh/k0IX4OM8WUV3q0U6bzJpXT3eyvTyPtGR39IuceQ6MC1bc7lxhM+Rz1y+irmuY/fU90S9SsApKr4N3n9CIZAypaRMRuQp/IMjfvXiG//bTY7EuRcQRx5r7GJsMsjUOzrNFVPm8nO8cYmRCl/fKzKrvGqa+a9heaiSEzrOVbYGM+Pl7dDW71pSQnZbEk/sb7S208X7oPAnNh5wpTKZNTZuIyBV0Do7zpe8e4B9ePsuT+xuVbidzwr660HfbNy+Np502L0ELTrZqRFJm1qunOwDYsdJG09Z/EdqOxf1oZER6iptPb1zI87Vt9AxPRL9Q1acgOQPefdy54mRaptS0GWMajDHHjDE1xpiD4edyjTEvGmPOhh8XhJ83xph/NMacM8YcNcZsnMk/gIiI0w7U97DrH9/gcFMvn920EIBTrYMxrkrEvn113awsyiI3Ds6zRawpjYSRqGmTmbXndCflBZksysuIfpEzL4QeE6RpA7h38yImAkF+cuhi9IukeaDqk1D7k9AddTLrprPTdqtlWesty9oU/vUfAi9blrUCeDn8a4C7gBXhHw8B33KqWBGRmWRZFo+8Xse9j+wjMzWJn371Bn7vjlUAnLAbmSwSY5OB+DvPBlDkSSU/K0Xn2mRGjUz42VfXza2r7I5GvgALloTOeSWIVcXZXLd4AT880GgvkGTDl2BiCE78zLniZMrsjEfeAzwW/vljwCcuef5xK2QfkGOMKbHxeUREZtzA2CS/+YNDfP3Zk9xeUcRTX7uBihIPhdmp5GWmcEKjW5LgjjX3MzIRYEscjUYCGGOo8nmpVYKkzKC957uZ8AftnWebGIH610K7bHbueIuBezeHAkkiI9JRWbQV8laEAklk1k21abOAXxhjDhljHgo/V2RZVitA+DHyt6AUaLrkYy+GnxMRiUsnWgb4+Dff5KWTHfzJrgq+9YzNIO8AACAASURBVMWNeNJCd+8YY6j0edS0ScLbH36zFg+Xal+uutTD2fZBxiYDsS5F5qg9pzvITHGzacmC6Bepfw38Ywk1Ghlx99oSPGlJ/PCAjUASY2Djl6BpH3Seca44mZKpNm03WJa1kdDo48PGmJs/5LVX+tbDB/ZijTEPGWMOGmMOdnZ2TrEMERFn/cfBJj75L28xOhngRw9t5Ss3LcNc9h3UihIPZ9qHmAwEY1SliH376rpZXphFflZqrEv5gGqfF3/Q4nSbzo6K8yzLYs+pTm5Ynk9qko2o/9PPQUo2LL7BueJmSVqym085EUiy7l5wJcFh7bbNtik1bZZltYQfO4CfApuB9sjYY/ixI/zyi0DZJR++EGi5wprftixrk2VZmwoKCqL/E4iIRGFsMsAf/uQof/Djo1y3eAHP/NZNXL/kyjsQlSUeJvxB6jqHZ7lKEWf4A0EONvSwZWn87bJBKEESoFZnR2UGnOsYorlv1N5opGWFzrMtvw2S4ifIZzocCSTJKgztNB75IQSUqjybrtm0GWMyjTHZkZ8DdwC1wNPAA+GXPQA8Ff7508D94RTJrUB/ZIxSRCQeNHaP8Olvvc2P3mni4VvLeeLXtlCQffXdh0qfB4ATrXpDKYnpeMsAwxOBuAshiVi4IB1verISJGVG7IlE/a+ysUnQWgNDbQk5GhnhaCDJcGfovjqZNVPZaSsC3jTGHAEOALsty3oe+CvgdmPMWeD28K8BngXqgHPAI8BXHa9aRCRKL55oZ9c336CpZ4TvPrCJP7hzNW7Xhx8oX5afSUqSi5OK/ZcEta+uG4jP82wQOjtaXerhuHbaZAbsOdXJ6uJsSrzp0S9y5gXAwIo7HKsrFu5zIpBk+Ucgq1iBJLPsmk2bZVl1lmWtC/+osizr6+Hnuy3L2mlZ1orwY0/4ecuyrIctyyq3LGuNZVkHZ/oPISJyLf5AkL967hS//vhBFudlsPs/38TOiqIpfWyS28WqomxOKN1OEtT++h6WFWRSmJ0W61Kuqtrn5VTroM6OiqMGxyZ5p6HH3mgkhM6zLbweMvOdKSxGdoUDSZ60E0jiToINX4BzL8LAB05AyQyxE/kvIpIQOgbH+MJ39vOvr53nvi2L+PFvbqcsd3qXq1aWhBIkbY2UiMRAIGjxTn1P3EX9X66q1MtEIMjZdl3cK85561wX/qBl7362gdbQeOSqxB2NjIgEkrxQ20b30Hj0C234IlhBqHnSueLkQ6lpE5E5bX9dN7v+8U2OXOzjbz+7jr/85BrSkqefHlbp89AzPEHHoI0vciIxcKJlgMFxP1vjdDQyYk0kjESXbIuD9pzqJDstiY2LcqJf5OwLoccEPs92qfu2hANJ3rURSJK7DJbcFEqRDGp3fDaoaROROevpIy3c9539ZKUm8bOHb+BTGxdGvVZFSTiMRCOSkmD214fPs8X5Ttvi3AyyUpOUICmOsSyLPac7uHllAUluG295z7wA3kVQWOlccTG0siibTYsX8MMDTfYDSXob4MKbjtUmV6emTUTmrH/Zc44VhVk8/bUbWF3ssbXW6pJsAF2yLQlnX103S/IyKPbG73k2AJcrdJG9dtrEKSdaB+gYHLc3Gjk5Cuf3wMo7Q5dLzxH3bl5Efdcwe8MhRVGp/DikehVIMkvUtInInHSuY4hTbYN87voystOSba/nSUtmUW6GdtokoQSCFgcS4DxbRLXPy4nWAQJBnR0V+1493QnALSttRP3XvwH+0Tlxnu1SkUCSHx5oin6R5HRY+xk4+TSM9jlXnFyRmjYRmZOePdaKMXBXdYlja1aUZHNSO22SQE62DjAw5mdreXyfZ4uoLvUwNhmkrlNhJGLfnlMdrF3o/dB7OK/pzHOQnAmLb3SusDgQCSR5vrbVZiDJl8A/Bsf+w7ni5IrUtInInLT7aCvXL851dCSsssRLffcww+N+x9YUmUn760N3MSXMTls4jOSYRiTFpr6RCd5t7GWHndFIywqdZyu/FZLje7w4GvdtWcRkwLIXSOJbD8VrQoEkMqPUtInInHO2fZDT7YPsWuvcLhuEEiQtC0616ZJtSQz767pZlJuBL8fGpcKzqLwgi7RkF7XN2tEWe14/20XQgltX2RiNbDsGA81zJjXycs4FktwPrUdCP2TGqGkTkTln93ujkcWOrlvpC4WZaERSEkEwaHGgoYctSxNjNBLA7TJUlniUICm2vXqqg9zMFNYutBH1fyYc9b/iDmeKikP3bXEgkGTtZ8CdqkCSGaamTUTmnN1HW9m8JJdCj7PjLD5vGp60JCVISkI43T5I38gkW5YlxmhkRHWplxMtAwQVRiJRCgYtXj3TyS0rC3C7bCQ+nnkOSq+D7CLnioszH11Tgjc9mSf3N0a/SPqCUJLksX8PpW3KjFDTJiJzypn2Qc52DHG3w6ORAMaEIsmVICmJYH9d5H62xNlpg1CC5NC4nws9I7EuRRLU0eZ+eoYn2GFnNHKoA5oPzdnRyIhQIEkpLxxvsx9IMtYPJ59xrjh5HzVtIjKnPHO0FZeBOx0ejYyoLPFyqk2R5BL/9tX1UJqTTlluRqxLmZaq0tAYssJIJFp7TnXgMnDzChtN29lfhB7neNMGcN/mUCDJjw/ZCCRZchPkLIbDjztXmLyPmjYRmTMsy2L30Ra2LM2jMHtmkr4qSrIZmwzS0D08I+uLOCFynm1rgo1GQigcIcXt4riaNonSq6c72LBoAQsyU6Jf5PRz4CkNJSPOcSuKsrl+yQJ+eKAx+kASlyu021b/OvTUOVugAGraRGQOOd0+yPnOYcdTIy8VCSPRiKTEs7MdQ/QMT7BlWWKNRgIku12sLslWGIlEpXNwnCMX++2lRvrH4fweWHknGBtn4hLIvZsX0dA9wt7zNgJJ1t8HxgWH/825wuQ9atpEZM7YHR6N/JUZGo0EWFGYTbLbKIxE4tr++tAbr60Jcj/b5ap8XmqbB+zFkMu89PqZTgB797M1vAGTw/NiNDLivUCSAzYCSbylsPwjUPMkBAPOFSeAmjYRmSMsy+KZo61sK88jPyt1xj5PSpKL8oIsxf5LXNtf14PPm0ZZbmLcz3a56lIP/aOTXOxVEp1Mz57THRRmp1IVnoqIypkXICkdlt7sXGFx7tJAki67gSSDLXDuZeeKE0BNm4jMESdaB6jvGmbXGt+Mfy4lSEo8syyL/fXdbFmWh0nQ0a5qnxeA4xqRlGnwB4K8fqaTHasKov9v37Lg9POwbAckJ+Y3PaIVCST5iZ1AkpW/Ahn5CiSZAWraRGRO2H20FbfLcGfVzN+nU1nioWNw3N53I0VmyPnOIbqGJtiagOfZIlYVZ5PkMkqQlGk53NTHwJifW+2MRnachP5GWDV/RiMjLg0kifqexKQUWPf5UJDLUIezBc5zatpEJOFZlsXuY61sL88jbwZHIyMiYSQakZR4tLeuB4AtCXqeDUKjWiuKsqlt1t8xmbo9pzpIchluWJEf/SJnngs9rrjTmaISzH1bQoEk++psBJJsvB+CfjjyI+cKEzVtIpL4jrcMcKF7hF1rZi418lKVJUqQlPi1v66bIk8qi/MS6362y1X7PNQ29yuMRKZsz+lONi1ZgCctOfpFzrwAJevBMztfT+LNXdWhQJJ/sxNIUrAKyrbA4SdC46biCDVtIpLwnnlvNHLmUiMvlZORgs+bpgRJiTvBoMW+uh62LE3c82wR1aVeuocnaB/QGLJ8uAl/kH997TwnWweiT40M+GH/t6HpwLxKjbxcWrKbT29cyC+cCCTpOhP65ymOUNMmIgktNBrZwg3L8+1dpDpNCiOReHSgoYeuoXF2Vtg40xMnqktDO9q1OtcmH2LPqQ7u/PvX+avnTrFzdSH3bl40/UWaDsAjO+C5PwgFkGx+yOEqE8t9W8qYDFj82E4gSdUnISVLgSQOUtMmIgntWHM/TT2j3D1Lo5ERFSUe6rqGGZvUXTQSP56qaSE92c3tlTMfyDPTKko8uAwKI5Erqusc4sHvHeDB77+DMfD9B6/nu796Pd70aYxGDnfBUw/Dd2+H4W74zGPwpZ9CZuKeB3XC8sJsNi/J5Ud2AklSs0KNW+1PYXzQ2QLnKTVtIpLQdh9tJclluGMWUiMvVVniIRC0ONOuL0YSHyb8QZ491sodVUVkpCTFuhzbMlKSKC/IUuy/vM/QuJ//8dxJ7vz713mnoZc//mgFz//2zdMbiwwG4OCj8M3rQmEZN/w2fO0dqPoEJPhYsVPu3VJGQ/cIe+0GkkwOQ+3/dq6weUxN2xw3PO7nXMcQb53rUjy5zDmRC7VvXJFPTsbsjUbCLxMkNSIp8eKNs530j05yz/qZv6twtlSXepUgKUDovOZPDl3k1m+8yv98rY5PrC/lld+/hV+/eRkpSdN4O9t8CL6zE575XSheA7/5Ftz+56GdIXlPJJDkSTuBJAuvh4LVoUASsS3xvxU3T1mWxeC4n7b+MVr7x2jrHw0/jtFyya8Hx/zvfcytqwr43oObY1i1iLOOXOynuW+U3/nIiln/3GULMshMcSv2X+LGUzUt5GQkc+PygliX4pgqn4efHm6mc3CcguyZv85D4tORpj7+9Onj1DT1sb4sh0fu38T6spzpLTLSAy//ORz6PmQVwae/C9Wf1s7aVUQCSZ7Y10DX0Dj50VynY0wokOQXfwwdp6BwtfOFziNq2hLA4cZe9pzqCDVlA2O09I3S1j/G8MQHz9LkZ6VS4k1jSV4m25blUexNp8SbxiunOni+to3hcT+ZqfrXLnPD7qMtJLsNd8xSauSlXC5DRYlHCZISF0Ym/Lx4op1Pbiyd3q5DnKsu9QJwvKU/+lRASVidg+P89Qun+PeDF8nPSuUbn1nHpzaU4nJNo9EKBqHm3+ClP4XRPtj6n2DHH0GaZ+YKnyPu21LGo2/V8+NDF/nNW8qjW2Td5+GlPwvttt35dUfrm2/07j3O9Y9Mct8j+xnzByjMTqXEm87KomxuXllAiTftvaas2JNGkSftql+sCz2pPH2khTfPdc1aLLrITLIsi91HW7l5RcH0Dp47qNLn4X+/20wwaE3vTYSIw1480c7oZIB71s2d0Uj45RhybbOatvlkwh/k8b0N/MNLZxnzB/iNm5fxtduWkz3d+9daj8Lu34OLB2DRNvjoN6C4ekZqnosuDSR56KZl0X2dy8yHVXfBkR/Czj+FpNk9yjCXqGmLcz96p5HRyQC7//ONVPm8Ua9z/ZJcstOSePlku5o2mRMON/XR0j/G79+5KmY1VJZ4eHz8Ak29IyzOy4xZHSJP17RQ4k3j+iW5sS7FUZ60ZJbmZypBch557Uwnf/7z45zvHGbHqgL+n7srWVYwzfNmo32w5y/hnUcgPRc+8S1Yd69GIaNw35ZF/M7/qmFvXTc3LM+PbpGN98PJp+H0s6GwF4nK3JmhmIP8gSCPvd3A1mW5tho2gGS3i1tWFvDKqc7o41tF4sjuo62kuF18JIbR5hUloV0AnWuTWOodnuC1M518bJ1vTu74bijLYX99D5OBYKxLkRl0oXuYrzx2kAcePUAgaPHor27i+w9unl7DZlmhNMh/uj7UsG36NfitQ7D+PjVsUfqV6mJyMmwGkpTfBp5SBZLYpKYtjr1wvJ2W/jG+fMNSR9bbWVFI19A4R/UdS0lwwaDFs8dauXllAZ7pjss4aFVxNi6jBEmJredq2/AHLT4+x0YjI+5aU0LfyCRvn7cRPS5x7Yl9F7j9b19n7/ku/vCu1bzwuzdz2+ppfkNuYgQe+xj89DcgZxH8+h7Y9Q1In2ZgibxPJJDkF8fbok8hd7lh/Rfg3MvQb+PC7nlOTVsce/StehblZrCzwpmdhB0rC3EZeOVkuyPricTK4aZeWvvHuHvt7F6ofbm0ZDflBVkKI5GYeqqmmfKCTKp8czNY4aYV+WSnJrH7aEusS5EZMDA2yf949iQbF+fwyu/v4DdvKSc1yT39hQ7/ABregLv+Gn7tRfCtd77YeeqTG0qZDFi8droz+kXWfhaw4MzzjtU136hpi1M1TX0cutDLr25fgtuhcZcFmSlct3gBL53scGQ9kVh55mgrKUkudlbEPpigosTDyVZdsC2x0do/yoGGHj6+rhQzR8e/0pLd3F5ZxAvH25nwa0Ryrvnfhy4yMhHgj+6qoMiTFt0iwQDs++fQvWBbHgKX3t46qbLEw4KMZHu73XnLwVsGda85V9g8o/+q49T33qonKzWJz2xa6Oi6OyuKONE6QGv/qKPrisyWyGjkjpUF008SmwGVPg/NfaP0jUzEuhSZh5450oplwcfn0IXaV7JrbQn9o5O8db4r1qWIgyzL4ol9F1i30Mu66d67dqnTz0JvA2z7mmO1yS+5XIaty/LYV9eNZUWZi2AMLL0F6l8PNdkybWra4lBb/xi7j7by2U1ljr8p3bk6tDPxsnbbJEEdauylfWCcXTEejYyoDIeRaERSYuGpI82sW+hlaf7cTi+9cUU+2WlJ7D7aGutSxEFvn+/mfOcw929bYnOhfwqdY1t9tyN1yQdtL8+juW+Uxp6R6BdZtgPG+qD1iFNlzStq2uLQE/saCFgWv7p9ieNrLy/MYlFuBq+cUtMmiWn30VZSk1yOnfW065cJkhqRlNl1vnOI2uYBPjZHA0gulZrk5o7KYl443qYRyTnk8b0N5Gam2Psm3MWD0LQPtn4V3LrJaqZsKw/F/dsakVx2S+ix7lX7Bc1DatrizOhEgCf3N3J7RRGL8jIcX98Yw22rC3nrXBejE9qelsQSCI9G3rqqkKzU+PjiXJCdSkF2qhIkZdY9XdOCMcyLpg3g7rUlDI75efOcjTAEiRvNfaO8eKKdz24qIy05iuCRiL3/BKle2PBF54qTDygvyKQgO5W9dpq2rEIorFLTFiU1bXHmZzXN9I5M8uUbnYn5v5KPVBQx7g/y1jmdDZDEcrChh47B+BmNjKgs8Wg8UmaVZVk8faSFbcvyog9vSDA3LM/Hk5bEMxqRnBOe3H8BgC9sWRT9Ir0X4MRTcN0DkJrtUGVyJcYYtpfn8fZ5G+faIDQi2bgPJpWtMF1TbtqMMW5jzGFjzDPhX3/fGFNvjKkJ/1gfft4YY/7RGHPOGHPUGLNxpoqfayzL4tE366ks8bBlae6MfZ7NS3PJSk3i5VOK/pfEsvtYK2nJLm5bHfvUyEtV+jyc6xjU2JbMmtrmAeq7hufs3WxXkpLk4s6qYl483s64X5MiiWzcH+BHB5q4bXURZbk2por2/ysYF2z5TeeKk6vaXp5H19A45zqGol9k2Q4IjEPTfqfKmjems9P228DJy577A8uy1od/1ISfuwtYEf7xEPAt+2XOD2+e6+JsxxBfvnHpjEY3pyS5uHllPi+f7LD33RKRWRQajWzjttWFZMbJaGRERYmHyYBl7wuZyDQ8VdNMsttwV3V87TrPtF1rSxgc9/PGGU2KJLJnj7XSPTzB/dsWR7/IaB+8+zhUfQq8pc4VJ1e1bVnoXNveOhsjkou3gytJI5JRmFLTZoxZCOwCvjOFl98DPG6F7ANyjDHz66tKlB59s578rFQ+tm7m/3HdtrqIjsFxaps10iWJ4UB9D11D4+xaE387C0qQlNkUCFr8/GgLO1YV4s2I/bUXs+mG5fl405PZfUwjkons8b0XWJafyY3L86Nf5N3HYWIItj3sXGHyocpy0ynNSeftczaattSs0H16atqmbao7bX8P/Bfg8tmfr4dHIP/OGJMafq4UaLrkNRfDz72PMeYhY8xBY8zBzk4dKj7fOcSe0518aetiUpNsHMidoltXFWAMGpGUhLH7WAvpyW5uXV0Q61I+YGl+JmnJLoWRyKw4UN9D+8D4vBqNjEh2u/iVqmJePNHO2KRGJBPRsYv9HG7s44tbF+NyRTlVFJgMjUYuuQl8650tUK4qcq5tX303waDNc20tNTDS41Rp88I1mzZjzN1Ah2VZhy77rT8CVgPXA7nAf418yBWW+cC/Wcuyvm1Z1ibLsjYVFMTfm7DZ9v23Gkhxu/jCVhsHcqchLyuVDWU5iv6XhOAPBHm+to3bKgrJSImv0UgAt8uwqtjDSe20ySx4+kgzGSluPhIn117Mtl1rSxga9/P6GX3DNxE9vreB9GQ3n75uYfSLHP8ZDDTrMu0Y2FaeR9/IJCfbbHy9W7YDsKDhDYeqmh+mstN2A/BxY0wD8CPgNmPMDyzLag2PQI4D3wM2h19/ESi75OMXAi0O1jzn9I9M8uNDF7lnvY/8rNRrf4BDdlYUcfRiP+0DY7P2OUWiERqNnODuNfE7aR1JkNQ5UZlJE/4gzx5r486qYtJTZn4qIx5tK89jQYZGJBNR7/AETx9p4ZMbS/GmRznaa1mw95uQtwJW3OFsgXJN28rzAOxF/5deBylZGpGcpms2bZZl/ZFlWQsty1oCfB54xbKsL0bOqZlQYsYngNrwhzwN3B9OkdwK9FuWpf+zfogfvdPI6GSAB2+YuZj/K9lZEUrg26PdNolzzxxrJSPFzY5V8ZUaealKn4f+0Ula+vVNEJk5r5/ppH90cl6ORkYku138SnUxL2lEMuH8x6Emxv1BewEkF96C1iOw7avg0s1Vs63Em86y/Ex7l2y7k2HJjWrapsnOf+3/Zow5BhwD8oH/Hn7+WaAOOAc8AnzVVoVznD8Q5LG3G9i2LI9Kn2dWP/eqomxKc9J56aSaNolfkdHInRVFcb2zUFkSuiNI59pkJj11pIUFGcncuMJGgMMcsGuNj+GJAK+e1tevRBEIWjyx7wKbl+SyutjG+523/wky8mDdvc4VJ9OytTyPA/U9+AM2rrlZtgN66qCv0amy5rxpNW2WZb1qWdbd4Z/fZlnWGsuyqi3L+qJlWUPh5y3Lsh62LKs8/PsHZ6LwueKF4+209I/N6GXaV2OMYWdFIW+d69J3KyVu7avroWd4gl1xPBoJsKrYgzHoXJvMmOFxPy+eaGPX2hKS3fN7h2HrslxyM1N00XYCee1MB009o3zJzi5b11k48xxc/xVITneuOJmW7eV5DI37OdbcH/0iy3aEHutec6KkeWF+/18/Djz6Vj2L8zJidlnwzooiRicD9maTRWbQ7mMtZKa42bEqvgOLslKTWJKXqZ02mTEvnWxnbDLIx9fpTqqk8Ijkyyc7GJ3QNx0TweN7L1CYncqdVcXRL7LvX8CdGmraJGa2Lguda7M1IlmwGrKKNCI5DWraYqimqY9DF3r51e1LcEcbe2vTlqW5ZKS4Ff0vcWkyPBr5kcoi0pLjdzQyIhJGIjITnqppwedNY9PiBbEuJS7cvaaE0ckAezQiGfcauoZ57Uwn925eREpSlG89h7uh5klY+1nIit/zzfNBflYqq4qy2Wfnkm1jYOktoaYtaGPMch5R0xZD33urnuzUJD6zqezaL54haclublqRzysnO5R6J3Fn7/luekcm4340MqKiJJvGnhEGxyZjXYrMMb3DE7x+ppOPrfdFf7fVHLN5aS75WSns1ohk3PvBvgu4jeG+LTauNTr4XfCPKeY/Tmwrz+Odhh7G/TZ2upftgJEu6DjhVFlzmpq2GGnrH2P30VY+e30ZWamxvXdq5+oiWvrHONk6GNM6RC63+2gr2alJ3LwyvkcjIyJhQqfa9HdJnPVsbSv+oDWvUyMv996I5Kl2Rib8sS5HrmJ0IsC/H2zizupiijxp0S0yOQYHvg3Lb4fC1c4WKFHZXp7H2GSQmsa+6BdZdkvoUSOSU6KmLUae2NdA0LL41e1LYl0Kt4bP0718UiOSEj8mA0GeP97G7QkyGglQWeIFlCApznuqpoXlhVlUlsxuynC827XGx9hkkFd0dU3cevpIMwNjfu7faiOA5Nh/wHAnbNcuW7zYsjQPY2CvnRFJ78LQfXv1CiOZCjVtMTA6EeDJ/Y3cXllEWW5GrMuhIDuVdWU5vKwvehJH3jrXRf/oJLvWJsZoJECRJ5UFGclKkBRHtfSNcqC+h3vW+QhdjSoRm5fmUpCdqhHJOGVZFo+9fYFVRdlsXpob7SKw95+hqDp0BkrigjcjmWqf114YCYRGJBveAv+EE2XNaWraYuBnNc30jkzy5Vm+TPvDfGR1IUcu9tE5OB7rUkSA8GhkWlJC3UdljKHSpzAScdYzR1sA+JhGIz/A7TJ8tLqYV051MDyuEcl4825jLydaB7h/++Lov+Fw/mXoPBk6y6ZvWsSV7eV5HG7stZfgumwHTA5Ds24IuxY1bbPMsiwefbOeKp8n+u86zYDbKgqxLJTCJXFhwh/kheNt3FFZTGpSYoxGRlSWeDjVNmjv0lGRSzxV08K6shyW5GfGupS4tGutj3F/UNMicejxvRfITk3iE+ttXFPx9j9BVjFUf9q5wsQRW8vzmAxYHLrQG/0iS24E49K5tilQ0zbL3jjbxdmOIb58w9K4GnOpLPFQ4k3TuTaJC+809DAw5ueuahv3+cRIRYmHCX+Quq7hWJcic8C5jiGOtwxwj3bZrmrT4gUUZqeyO7wjKfGhc3CcZ4+18unrFpIZbeBaWy3U7YEtD0FSirMFim3XL8klyWV4+3xX9Iuk54Bvg5q2KVDTNssefaue/KxU7l4XX+d0jDHctrqQN8522YtvFXHA3vPduF2GreV5sS5l2iIJkjrXJk54+kgLLgN3J9DZztnmchk+uqaEPac7GdKIZNz40YFGJgMWX9pmI4Bk7z9DcgZc96BzhYljslKTWFeW48y5tosHYUxfNz+MmrZZdK5jiFdPd/KlrYvjcuTrIxVFjEwE2FfXE+tSZJ7bW9fN2oXemF+HEY3ygixS3C4lSIptlmXxdE0z28rzKIw2Kn2euHttCRP+oKZF4oQ/EOTf9jdy04p8yguyoltksC2UGrnhi5ARP8dJ5P22LcvjWHO/vftJl+0AKwAX3rrmS58+0sI/7zln7wjCyZ/Da/8/+BMrx0FN2yz6/tv1pCS5+MJWG5dLzqBtQH5XaAAAIABJREFU5XmkJbt4RV/0JIaGx/0caepj27LE22UDSHa7WFmcpTASse1Ycz8N3SPcs87GeaB5YuOiBRR70nhGKZJx4cUT7bQNjPElOzH/B74NQT9s/U/OFSaO216eRyBo8U6DjW/4L9wMSelQ9+HR/8Ggxd+/dIbna9twu6I8YmRZ8PpfQ+1PwJ1YI7dq2mZJ38gEPznUzCfW+8jPSo11OVeUluzmxuUFvHSyA8uyYl2OzFOHLvTiD1psTdCmDaCi2MOJlgH9PRJbnqppIcXt4s4EPNs52yIjkq+d7rT3HX9xxON7L1Cak87OiqLoFpgYhne+C6t3Qe4yZ4sTR21cvICUJBdvn7MxIpmcBou3XfNc257THdR1DvOVm2zkQjTug9YjsOU3Ei6NVE3bLPnRO02MTgZ4MI5i/q9kZ0UhzX2jnGkfinUpMk/tresm2W3YtGRBrEuJWqXPQ/fwhK7QkKgFghY/P9LCjlUFeNOTY11OQti1toSJQJCXNC0SU2fbB9lb180Xti6Kfjek5kkY64Ptv+VsceK4tGQ3Gxc5dK6t82RoLPYqvvNGPSXeND66xsYZ3/3fgrQcWPv56NeIETVts2AyEOSxtxvYXp5HRYkn1uV8qNtWFwLoi57EzN7z3axbmENGSuKdZ4uoDP89P64RSYnS/vpuOgbHucdOVPo8s6EsB583TRdtx9gT+y6Q4nbxuU1l0S0QDMC+f4HSTVC2xdniZEZsL8/nZNsAvcM2LshetiP0eJURydrmfvbWdfPgDUtIdkfZvvQ1hs6zXfcApGREt0YMqWmbBS8cb6O1fyyuLtO+miJPGmtKvbyi+24kBobG/Rxr7mdbAqZGXmp1uGlTGIlE6+maFjJT3OysKIx1KQkjMiL5+pku+kc1IhkLg2OT/OTQRe5eW0JetEdBTj8HPXWw7eGEG1+br7aX52FZoW82Ra1oDaTnXnVE8jtv1JGZ4ubzm23kQhx4BDBw/a9Hv0YMqWmbBY++Wc/ivIz3drHi3c6KQt5t7KV7SKNdMrveaeghkODn2QC86cn8H/buOzyu6lr48G+PRr33Xt3kLvduwAabatPBgAHDDYRLQnq56YEkX0IIkMAlJFzTMdWhmF5s4ya5d1u2umTZ6r1LM+f7Y0ZgG5WZ0YymaL3Po8eaM2f2WeOjKevsvddOCveXsv/CJp09Bj48fIblE+Pw83a9SsOu7KshksdktIgzvL2/nNYuA7fPT7O9kewnITQFxq+wW1zCsaYkheHv7TW0IZI6HaQvNiVt580HP9PYzvuHznDTrBRC/GwcLt7VCvtegPFXQpiNvcBOJkmbg+0vrWdfaQNr5qehs3Vs9zBbmhmLpsHmE9XODkWMMDkFtfh46ZiR6r7z2XpNiA+RCpLCJltO1tDU0cOKLFlQ21pZyWEkhvnzwWEZIjncNE3jxewSpiSFkpUcZlsjp/ZCabapYqSX+w6RH2l89DpmpUeQbY95bc2noTb/nM3P7yjGqGmsWZBme9sHX4OORpjjvtVIJWlzsOe2FxPsq+d6W8d2O8GkxBBiQ3z5IleuVIrhlV1YS1ZKmEf0LoyPD6GoppW2LlnsV1jn3QPlRAb6sGB0lLNDcTtKKa6YEs/WvGoa22SI5HDKLqglv6plaGX+s58E3xCYvtp+gYlhMX9UJHlVLVQ1d9jeSMaFpn/PGiLZ0tnDup2lXDY5nuQIG+ehaRrs/BfET4WUubbH52SStDnQmcZ2Pjx8hptmJbvVIsFKKZZkxrDlZA1dPUNYvFAIKzR1dHOkvNFt12c734SEEDQNTlQ0OzsU4UZaO3v4/Hgll0+Ot32y/Qh3xeR4ug0anx7rvwqdsL8Xs0sID/Dmqqk29hA3lMKxd01FInyD7RuccLjez+4h9bZFpENY6jlJ2xu7y2ju6OFbi4aw9EPBRqg5Yeplc+N5kvKJ4EDr957CoGncMZSx3U6yJDOWls6eoS2WKIQVdhfVYdRw+/lsvXorSMoQSWGNz45V0tFtZKUMjbTZlKRQksJliORwOt3QzmfHK7lxVrLtIyV2/sv0hXrOt+0bnBgWExNCCPbTk1NohyGSRVvB0IPBqPHs9iJmpobbPuQWYOfTEBgDk64dWmxOJkmbA205WcPkxFDbu3OdaOHoKHz1Oin9L4ZNdkEtPnod01KG8MbsQpLC/Qn200sFSWGVdw+Ukxjmz/QU95/X6Sy9QyS35dXQ0DaEEuTCYut2lmLUNG6bY+PQyI5G2PsCTLwGQpPsG5wYFnovHXPSI+2zXltnI5w5wCdHKzhV385/DaWXrSYf8j6FmXeB3saKpi5CkjYHae7oZl9pPQvddE6Cv48X80dF8sXxKrTzqvgI4QjZhbXMSAn3iPlsYPriOD4+RCpICottzavmy5PVXD0twW0KV7mqKycn0GPU+OSoDJF0tK4eI6/tLmVpZoztF6n3vQhdzaYy/8JtzRsVSUltG+UN7bY3kr7Y9G/hJp7ZWkhqZACXTIi1vb1d/wKdtylpc3OStDlITmEdPUaNRWOinR2KzZaOj6W0ro2C6hZnhyI8XENbF8fONLn9+mznmxAfQm5FMwajXPgQAztV38YDr+5nTEww91802tnhuL1JiSGkRATwviy07XD/3lJATUsXd863cS3atjrY9hikLYKEafYNTgyr+aPsMK8tMAriJtN87HP2lzZw14J0vGy9iNXRCAfWwaTrIHgIiZ+LkKTNQbblVePv7cX0VPcd6tW7rtwXx2WhbeFYO4vq0DxoPluvCQkhtHUZKKltdXYowoV1dBu47+V99Bg0nl49gwAf9ylc5ap6h0juKKilrtXzhkierGzmpZwSjEO5IKRpsHstHH3H5iaOn2ni71/kceWUeBaOsXFk0ae/Nn25vuwvNschXMO42GAiAn3YUVAztIYyLsSvYi+xfkZumDmE4bL7X4auFpjrGfMkJWlzkK15NczNiMBX775DvRLC/JkQHyJJm3C4nMJa/Lx1TE0OdXYodiXFSIQlfvvuUQ6XN/LYTVmkRwU6OxyPccXkeAweNkSy22DkiS/yuOIfW/n1O0d4Zmuh7Y0ZDXDwVXjvAagvsSmWH71xkFB/Hx5aOcm2GIq2woGXYf53IXaibW0Il6HTKeZmmNZrG8rUmqqoeXjTzY8ya22/iGU0mIrbJM/1mB5cSdoc4FR9G4U1rW49NLLX0vEx7Cmpk8ncwqGyC2qZmereFzn6MjomCL1Oybw20a9Xd5Xy+p4yvrtkNBcPZd6G+IaJCSGkRQbwgYcMkTx6upGVT27nb5+d5NJJ8Vw8Ppa/fnKCg2UNtjXopYdrnwHNCP/5FhisW1Pyfzflc+xME3+6ZhLhgT7WH7+7A97/PoSnwQU/s/7xwiXNGxXFmcYOSmrbbG7jmZJYujQ9VwSdtD2Qkx9DQ4nH9LKBJG0OsS3P1C28yNahAi5k6fhYjBpsPlHt7FCEh6pr7SK3otnj5rMB+Hl7MTomSCpIij4dLGvgt+8eZfHYaL5/8Vhnh+Nxvh4iWUNtS6ezw7FZZ4+BRz89wcont1PV3Mm/Vs/giVXTeOSGKcQE+/LAa/tp6bQu4fpKRDpc9TiU7YQtD1v8sCPljTy5MZ9rpiWybGKcbcfe9ijU5sOVj4G3v21tCJfTO6/N1iqSjW3dvLK/htLASQSe2mp7IDn/hJAkyLzK9jZcjCRtDrA1r4a4ED9GxwQ5O5Qhm5IYSlSQL1/kyhBJ4Rg7zWu6zM2IcHIkjjE+PkSGR4pvqG3p5L6X9xIT4svfb8qyfaK9GNAVkxMwavCxmw6RPFjWwFVPbOMfG/NZkZXA5z9czHJzkhQW4MPjN0+jrK6N37x7xPaDTL4ept4CW/4KxdsH3b2rx8iP3zxIRKAPv71qgm3HrD4BWx+FyTfCqCW2tSFcUkZUIDHBvjbPa1u3q5S2LgMhEy6BikPQakPyV3EEirfC7P8y9Sh7CEna7Mxg1NheUMPCMVEoN151vZdOp1iSGc3mE1V0G4zODkd4oJzCWgJ8vJiS5L5FewYyIT6EyqZOt77SL+yrx2Dkgdf2U9PaxdO3zbBtaJmwyPj4YDKiAt1uiGRHt4E/f5TLNU9tp6m9h+funMWjN2YRFnDu38rs9Ai+s2QM/9lXzjv7y20/4OUPm4Yp/udbpmqOA3hiYx65Fc38v2snfyMeixiNsOH74BsEy/9kW7zCZSmlmD8qkpxC6+e1dfUYeX5HEQtHRxEzdblpY9GX1gex82nQ+8P0O6x/rAuTpM3OjpQ30tDW7RFDI3styYyluaOHPcX1zg5FeKDswlpmpkXg7eWZb0cTEkzFSI6faXZyJMJVPPLpSbbn1/KHqycxKdGziu+4mt4hkjmFtVQ3u8eFk70ldVz+j608/WUBN85M5tMfLuYiczXnvjywZDQzU8P51TtHKLV1HpFvMFz/LLRUwYYHTJUl+3CwrIGnNhdw/Ywklo63cQ7m/pegdAdc8hAEuf/cf/FN80dFUdPSRV6VdUtGfXD4NJVNndy9KN1UPMQ3BAo3W3fw1lo4/CZMvQkCPGsEj2d+S3Kibfmm7mB3XVS7L4vGROHjpeOL45XODkV4mJqWTk5WtjDPw0r9n238VxUkG50ciXAFHx85w9NfFnDLnBRunJns7HBGhCumxLvFEMn2LgMPvX+M65/OprPbyEt3z+bP100hxM97wMfpvXQ8fnMWSsF3X9tv+6iYhGmw9DdwfAPsfe4bd3d0G/jxmweJDvLl11faOCyypQo++zWkLoRpt9nWhnB5vXPUd+RbPkRS0zSe2VLEmJggLhwbbRrWmLbI+p62vc9BTwfM8ZwCJL0kabOzLSermZgQQmSQr7NDsZtAXz1zR0WyUea1CTvL8fD5bAARgT7EhfhJMRJBflULP37zEFnJYbbPBRJWGxcbzKjoQD44dNrZofQrp7CWS/++hbXbirhtTiqf/GCxVRWok8ID+PO1UzhY1sCjnw2h4t6875jmmH38C6jKPeeuxz/PI6+qhT9fN5lQ/4ETyX59/D/Q3W4qfuIBU0hE35IjAkgK9ye70PL5aNkFtRw708R/LUr/enpRxoVQXwx1RZY1Yug2rT2YcSHEjLcuaDcgSZsdtXb2sK+03iNK/Z/v4vExFNa0UlhtXVe3EAPJKawlyFfPZA8fIjYhIUSGR45wLZ09fPvlvfjqdfzztuket7yFKzMNkUxgZ1EdVc0dzg7nHK2dPfz6nSPc/O8cNA1e/dZcHrp6EkG+1hdPuGJKPDfPSubpLwus6uE4h04HVz8NPoHw1l2msvzAvtJ6/r2lgJtnJXPhuP6Hag4o73M48hYs+hFEjbGtDeE2TPPa6jBYuAD8/20rIirIh5VZiV9vzLjQ9K+lvW3H3oXm0zD3v62K1V1I0mZHO4tq6TZoHjWfrdcS83h66W0T9pRdUMustHD0HjqfrdeE+BDyq1vo6DY4OxTRj26DkbI629cVGoimafz0rYMUVrfwxKppxIdKefPhduWUeDQNNhx0nYIk2/JqWPbYFl7eWcJdC9L5+PuLhrz0yW+umkBGVCDff/0Ada02rq8aHAvXPA1VR+GzX381LDIuxI9fXmFj70VXG3zwQ4gaCwt/YFsbwq3MGxVJY3u3ReuU5lc1szG3itVz0/DzPuuCVtQYCE6wfF7bzqchYhSMvsS2oF2cZ39TGmZbTtbg561jRmq4s0Oxu6TwADLjgvlc5rUJO6lq6qCgutUj12c73/j4EAxGjbxK6al2VU9tKmDRw5v43mv7qWi0b2/MM1sL+fBwBT+7NJP5HjTf2Z2MjQ1manIYr+4qtbqinb21dvbw8/WHuG3tTnz1Ot68dx6/uWoCAT5DL00e4KPnH6um0dDWzU/fOmj7cx1ziam3Yte/ee+N/6OwupWHr59K8CDz6/r15Z9NCx1f+TjoPWf6iOjfvAzTe122Beu1rd1WhK9ex21zU869QylTb1vhl6aqowM5tRdO7YY595p6jD2QZz4rJ9mWX8Ps9MhzrxJ4kCWZMewurqexvdvZoQgPkP3VfDbPT9q+riAp89pc1cdHK4gO9uWjIxUs+dtmntqcT2fP0HtGdxTU8OePcrlsUhz3LM6wQ6TCVrfOSSG/qoVdRQOXtHe0Rz87yRt7yrj3ggw+/N4iZqbZd07vxIRQfn5ZJp8fr+LF7BLbG7r4d7RFTODikw/y7ekBLLR1FFHFYdjxJExbDWkLbI9HuJW4UD8yogMHXa+ttqWT9fvKuXZ6Ut/1IDIuhPY6qDw88AF3/tNUbTLrFptjdnWStNnJ6YZ28qtaWOyBQyN7XTwhFoNRY5MMkRR2kFNYR7CfnokJnj2fDSA1IoBQf2+25FU7OxTRhzON7Rw/08TdC9P5/AcXsGB0FA9/fIJLH986pPe7M43tfHfdftKjAvnrDVM9Yu1Od3bVlASC/fSs21XqtBiaO7p5fXcZK6Ym8D+XjXfYRd41C9K4aFw0f/zwuM0Xi9qNeu5tvx9/1c2PW/8GRhsuYhgNsOF7ptLrlzxoUxzCfc3LiGRXUd2AFU1fyimhq8fI3QvT+94hfbHp38IB5rU1nYGjb5sqkvoGDyFi12Zx0qaU8lJK7VdKvW++na6U2qmUylNKva6U8jFv9zXfzjffn+aY0F3LtjzTlQRPLELSKyspjLgQPz487DpzAoT7yimsZU56BF46z/8iq9MprpuexCdHK1yuEIKATbmmZHpJZgwpkQE8c/tMXrhrNkrBmud3c9fzuymuabWqzc4eA/e9vI+ObgP/Wj3TpsISwr78fby4bnoSHx2usH2+1xC9uecULZ093NXfF1Q7UUrx1xumEuLnzQOv7qe9y/qE6+FPctlaH0753N+hL9kK2/9ufSC710L5Xlj+/zxuzSwxuPmjomjtMnC4vO8lbzq6DbyUXcLSzBhGxwT13UhIPERnDjyvbc9a0wWC2fcMPWgXZk1P2/eA42fd/gvwmKZpY4B64G7z9ruBek3TRgOPmffzeFvza4gJ9mVsbD9/dB5Ap1NcOimOzSeraenscXY4wo1VNHZQVNM6IoZG9lo9L5Vug8Zru8qcHYo4z8bcSpLC/Rlz1peGC8ZG8/H3FvOLyzPZWVjLsse28PDHubRa+N734IZjHChr4JEbpvb/ZUQMu1vmpNBlMPLW3uF/HRqMGs/vKGZmajhTksIcfryoIF8evXEqeVUtPPTBMasem1NYy3Pbi7ljXiqjl98HE66GTX+EU3ssb6TpNHzxoGkJgcnXWxm98AS9y/n0N6/t7f3l1LZ28V+LBhk6nnEhlOyAns5v3tfdAXueg3GXQYRjL4Y4m0VJm1IqCbgC+D/zbQUsAd4y7/ICcLX595Xm25jvX6o8fEyI0aixPb+GhWOiPH74yxVT4unqMUoVSTEk2YWmnumRlLSlRwWyaEwU63aW0mPr4rfC7jq6DWzPr2VJZsw33r999DruWTyKTT++kCunxvPU5gKW/u1L3j1QPmCBhzf3lPHKzlLuvSCDyybHO/opCCuMjQ1mVlo463aWYrSwFLm9fHG8ktK6Nof3sp1t8dho7l2cwbqdpXx8xLJRMq2dPfz0rUOkRATws8syTcUgrvq7qYrfW3dBh4XDLT/6KRi74YpHZU22ESoyyJfMuOA+57UZjRprtxUxMSFk8LVaMy6EnnYo2/XN+468BW01HrmY9vks7Wl7HPgp0PtNIxJo0DSt95LjKaB3YYVEoAzAfH+jef9zKKXuUUrtUUrtqa5273kex840Udfa5ZGl/s83IyWcmGBfPjwkQySF7XIK6gj192ZCfIizQxlWt89Lo6Kpg8+OSRVWV5FTWEt7t4GLMvtfeyomxI9Hb8xi/X3ziQ725XuvHeCmf+X0uWD6kfJGfvnOEeZlRPKTZeMcGbqw0a1zUimubWOHBVXt7OnZ7UUkhvmzbELssB73R8vGMSUplJ+tP8zphvZB9//Lx7mU1bfxyA1Tv65o6R8G1z0DjWXwwY8GP2juh3B8A1zwM4/v/RADmzcqkj3F9d8o7PTlyWryq1r41qKMwTs8UheA8vrmEElNg5ynIWbC13PfPNigSZtS6kqgStO0vWdv7mNXzYL7vt6gaf/WNG2mpmkzo6Pdex5Yb3GBBSOglLNOp7hsUhybTlRZPExIiPNlm+ez6UbAfLazLcmMITHMf2gV3YRdbcqtwt/bi3kW9PrOSA3nnfsX8OdrJ5Nf3cKVT2zl1+8coaHNND+qvrWLb7+8l8hAH564ZZrHrz/ori6dFEd4gDfrdg3f6/Do6UZyCuu4Y37qsP9d+Oh1/P3maXQbjHz/9QMDLna8I7+GF7NLWDM/ndnp5/V+pMyFC34Oh9+Ag6/1f8DOZvjwxxAzEeZ/107PQrir+aOi6Owxsr+04Zztz2wtJC7EjyumWDAawS8EkmZ+M2kr2W6qKjnn2yOiN9eSd44FwAqlVDHwGqZhkY8DYUqp3pnVScBp8++ngGQA8/2hgHPr6zrY1pM1ZMYFExPs5+xQhsVlk+Pp7DGy6YQMkRTWK29op7SubUSsz3Y+L53i1rkpZBfWklfZ7OxwRjxN0/git4oFoy1fqsVLp7h5dgqbfnQht89LY92uUi58ZDMv55TwvdcPUNXUyT9vm0FUX6WrhUvw8/bi+hlJfHq0ctgKAz27rZgAHy9umpky+M4OkB4VyEMrJ7GrqI7/3ZTf5z4tnT385K1DpEcF8pPl/fQSL/6xqdfjgx9BbUHf+2z8o2k+21V/By8b13UTHmN2egQ6xTk920dPN7KjoJY7F6ThbelFjIwL4fQ+aD8r+cv5J/hHwJQb7Rqzqxr0f0rTtP/RNC1J07Q04GZgo6ZptwKbgN6ZpXcA75p/f898G/P9GzVnr2TpQG1dPewtqWfxWPfuLbTGrLQIooJ8+ehwhbNDEW6od0LySJrPdrabZibj46XjpRzpbXO2/KoWTtW3Dzg0sj+hAd78bsVEPnhgIZlxwfzqnSNsOVnNb1dMICvZ8UUmxNCsmp1Cj1HjzT2nHH6squYONhw8zfUzkggNcF4Sc+30RFZmJfD3L/LYW/LNa+l/+vA4pxvbeeSGKfj79HMRQ+cF1/4bdHpYfzf0nFeFs3wf7PoXzLobkmc54FkIdxPq782kxFByzkra1m4tItDHi1WzrbiIkX4BaEZT7xpAfTHkfgAz7gRvf7vG7KqG0kf/M+CHSql8THPW1pq3rwUizdt/CPx8aCG6tp1FdXQZjCNiPlsvL53i0kmxbMytsqmMsBjZcgprCQ/wZlys566lMpDIIF+unBLPf/aVSxVWJ+stqHTROOuTtl6ZcSG8+q25/PPW6fx+xURuseZLiHCajOgg5o+KZN3O0gGHC9rDKzmldBmM3Dk/zaHHGYxSij9cPYmEMD8eePUAje3dX9235WQ163aW8q1FGcxIHaQoRGgSrHgCTu+HTX/4eruhBzY8AIExsPQ3DnoWwh3NGxXJ/rJ62rp6qGjs4L2Dp7lxVjKh/lZcxEiaBd4BXw+R3PUMKB3M+i+HxOyKrEraNE3brGnalebfCzVNm61p2mhN027QNK3TvL3DfHu0+f5CRwTuKrbl1eCj1zErbWStP3L55Hjauw1sliGSwkrZBbXMzYgccfPZzrZ6XiotnT28vc/xV/lF/zbmVjE+PoSEsKFdpVVKcdnkeO6Yn+bxFYQ9ya1zUilvaGfLSccVQ+voNvDKzhKWZMaQEe38pR+C/bz5x83TqGzq4BdvH0bTNJo6uvn5+kOMig7kh5eMtayhCStgxhrT2m0FG03bdv4TKg7D5Q+DX6jjnoRwO/MyIuk2aOwprueF7GKMmsZdC6wsUKP3MQ3NLdwMnS2w7yWYsBJCEwd9qKeQWdJDtDWvmjnpERbPh/AUs9MiiAz04QNZaFtYoayujfKG9hE5n+1sWclhTE4M5cXskgFLxwvHaWzrZk9JPUsyR87QdnGuSybEEhXkwys7Sx12jA0HT1PT0sXdw1jmfzDTUsL5wSVj+eDQGd7cc4o/vn+ciqYOHrlhqnXfZZb/ybTo8dvfNi2gvelPMPYyGL/CccELtzQrLQK9TvHF8UpeySnh0klxJEcEWN9QxoVQcxK2/g06G2HuffYO1aVJ0jYEFY0dnKxsYeEIqBp5Pr2XjuWT4tiYW0VHtwyRFJYZ6fPZeimlWD0vlbyqFnIKPbpOk8vakleNwaixxIb5bMIz+Oh13DgzmY25lRaVwreWpmk8u72YcbHBzHexC1XfvmAU8zIi+dW7R3h9Txn3XjCKaSnh1jXiEwDXrTUVhli7HFBw+V9HRBU/YZ1AXz1ZyWG8lFNCU0fP4Itp9yfjQtO/2x+HhOmmIZMjiCRtQ7At37RY4KIxI/NK7eWT4mnrMrD5hHuvsyeGT3ZhLVFBPoyJcf4wIWdbMTWBsABvXsopdnYoI9Km3CrCA7zJSrbyi6rwKKtmp6ABr+8us3vbOYV1HD/TxF0LXW/YrJdO8dhNWQT6eDE2NojvXzzGtobiJsGyP5gW0V7yKwhLtm+gwmPMGxWJUTMtnTLd2gsEvWImQGC0qSDJ3PtG3AUCSdqGYGteNVFBPmTGjcyCCnMzIggP8OajIzJEUgxO0zRyCmuZkxHpcl9gnMHP24sbZybzydFKKhqHp+y4MDEYNTadqOLCcTF4jeC5lQKSIwJYPCaa13aX0mMw2rXtZ7cXERHow8os15xzExfqxyffX8xb983HVz+EKR6zvwXf2TvihqoJ61w4ztTBce9iG3vZAHQ6GLMMQpJgwtV2isx9SNJmI6NRY3t+DQtHR43Yggp6Lx3LJ8bxxXEZIikGV1LbxpnGDosWMR4pbpuTilHTWLdTyv8PpwNlDdS3ddtU6l94nlvnpFDZ1MkXufYrrFVS28rnxyu5dU6KS895jwnxI8RviMsQKAVRo0dcr4ewzozUCLb/fAnLJsYNraHL/wr3bjEVJhlhJGmz0fGKJmpaukbs0Mhel0/wCDlGAAAgAElEQVSOp6Wzh615Nc4ORbi47EKZz3a+lMgALhwbzbpdZXT12Pcqv+jfptwqvHSKC0b4+7cwWZIZQ1yIH+vsWJDk+R3F6HWK2+am2q1NIdxd4hAr9QLgEwiBI/N7hCRtNupNUhaOoPXZ+jJvVCRhAd58KFUkxSCyC2qJDvZlVHSgs0NxKbfPS6OmpZOPj8pi9cNlY24VM1LDnbrQsXAdei8dN81KZkteNWV1bUNur7mjmzf3nOLKKQnEhvjZIUIhhJCkzWbb8moYFxs84t+Qvb10LJsQy+fHKunskSGSom+989nmyXy2b7hgbDQpEQG8lF3s7FBGhDON7Rw70yRVI8U5bp6djAJe3TX03rY39pyipbPH+nWohBBiAJK02aCj28Cu4roR38vW67LJ8TR39rBNhkiKfhTWtFLV3Dni12fri06nWD03ld3F9Rw/0+TscDzeplxTtVtJ2sTZ4kP9WZIZyxt7hjZU2WDUeH5HEbPSwpmcJAtMCyHsR5I2G+wqqqOrx8giSdoAWDAqihA/PR8eluFdom+yPtvAbpiZhK9ex4vZUpDE0TbmVpEY5i/LTohvuHVuCjUtXXx6zPbPss+PV1JW1y69bEIIu5OkzQZb86rx8dIxJ12+gIJpgdJLJsTx2bEKKaYg+pRdWEtciB9pkQHODsUlhQX4sDIrgXf2l9PY3u3scDxWR7eB7fk1LB0fI8N0xTcsHhNNUrj/kAqSPLutiMQwfy6ZEGvHyIQQQpI2m2zNq2FmWjj+Pq5bxne4XTEljqaOHrbnyxBJcS5N09hZWMu8UTKfbSC3z0ujvdvA+r2nnB2Kx8oprKW92yCl/kWfvHSKVbNT2FFQS2F1i9WPP1LeyM6iOu6cn4beS75eCSHsS95VrFTV1EFuRfOIL/V/vgWjowj21UsVSfEN+VUt1LR0yfpsg5iUGMq0lDBezinBaNScHY5H2pRbhZ+3Tv4WRb9umJmEXqdsKkjy3PZiAny8uHFWsgMiE0KMdJK0WWmbuSdJ5rOdy1fvxSUTYvn0WCXdBhkiKb7Wuz6bFCEZ3O3zUimsaWV7gfRY25umaWw8UcXC0VEuvdixcK6YYD+WT4zjzb2n6Oi2vCJyVXMHGw6e5oYZSYT6y1ISQgj7k6TNStvyaogI9GFCfIizQ3E5l02Op7G9mx3mohNCgKkISWKYP0nhdlhU08NdPjmeyEAfKUjiAPlVLZTVtcvQSDGoW+ak0NDWzUdHLB858kpOKV0GI3dKARIhhINI0mYFTdPYml/DgtFR6HQyN+d8i8ZEEeSr58NDMkRSmBiNGjuL6pgr67NZxFfvxU2zkvnieCXlDe3ODsejbMytAuCicZK0iYHNy4gkPSrQ4oIkHd0GXs4pYWlmDOlRgQ6OTggxUknSZoUTlc1UN3fK0Mh++Hl7sXR8DJ8cq5AhkgKAk1XN1LV2ydBIK9w6NxWAV3Kkt82eNuZWkRkXTEKY9PiKgel0ilWzk9ldXM/JyuZB93/v4GlqW7u4a6H0sgkhHEeSNitsPSnz2QZz+eR4Gtq6ySmUIZLi7PXZIpwciftIDPNn6fhYXt9dRmeP5XNqRP8a27vZU1LP0vHSyyYsc/2MZHy8dIP2tmmaxrPbihgXG8x8uTglhHAgSdqssCWvmtExQcSHypXa/lwwNppAHy9ZaFsApqQtOcKfpHBZn80at89Lpba1S6qx2smWk9UYjBpLZD6bsFBEoA+XT45j/b5TtHf1f/Eku7CW3Ipm7lqYJkPAhRAOJUmbhTq6DewqqpNetkH4eXuxZHwsnxytoEeGSI5ovfPZpLy69RaMiiIjKlAKktjJptwqwgO8yUoOd3Yowo3cMieV5o4eNhw63e8+z24rJiLQh5VZicMYmRBiJJKkzUJ7iuvp7DFK0maByyfFUdfaxa6iOmeHIpzoeEUTje3dMp/NBjqd4ra5qewvbeBIeaOzw3FrBqPG5pPVXDA2Gi8pICWsMCstnDExQbzSzxDJ4ppWvsit5NY5KbKMhBDC4SRps9DW/Gq8vRRz0uUL6GAuHBeDv7cXH8jQrhHt6/ls8pqxxXUzkvD39uLF7GJnh+LWDp5qoK61iyXjY50dinAzSilunZPCwbK+L548v6MYvU6x2lw8SAghHEmSNgttPVnD9JRwAn31zg7F5fn7eLEkM4ZPjlZgMGrODkc4SU5hLWmRATIH1Eah/t5cPS2Rdw+cpqGty9nhuK2Nx6vw0ikuGBPt7FCEG7pmehJ+3jrW7Tq3t62po5s395Rx1ZQEYkL8nBSdEGIkkaTNAtXNnRw708TisfKhb6nLJ8dT0yJDJEcqQ+98NhkaOSS3z0uls8fIG3vKnB2K29qYW8WMlHBCA7ydHYpwQ6H+3lw1JYF395fT0tnz1fY3dpfR2mVgjSymLYQYJpK0WWBHgZT6t9ZFmdH4eev46IgMkRyJjp1uormjR4ZGDtH4+BBmp0Xwck4pRum1tlpFYwfHzjSxREr9iyG4ZU4KrV0G3j1QDpguSj2/o5jZaRFMTgp1cnRCiJFCkjYLbDlZQ1iANxMT5M3ZUgE+ei4aF8NHR2SI5EiUXWi60CGVI4du9bxUSuva+PJktbNDcTsbc6sApNS/GJKs5DAmxIfwck4pmqbx2bFKTtW3c9fCNGeHJoQYQSRpG4SmaWzLr2bB6CipPGalyyfHU93cyd6SemeHIoZZdkEtGdGBMtfDDpZPjCM62FcKkthgY24ViWH+jIkJcnYowo0ppbh1bgrHzzRxoKyBZ7cXkRTuzyUT4pwdmhBiBJGkbRB5VS1UNnWyaLQMjbTWkswYfPU6WSB4hOkxGNldXC+9bHbio9exanYKm09WU1rb5uxw3EZHt4Ht+TUsyYyRRY/FkK3MSiTQx4vfbzjGrqI67pyfJhdyhRDDSpK2QWwxD0laKPPZrBboq+fCcdF8dOSMzMcZJj0GI5rmvP9rTdP4v21FtHT2SBESO7pldgo6pXh5pyy2bamdRXW0dxtkPpuwiyBfPSunJXKgrIFAHy9unJXs7JCEECOMJG2D2JZfQ0ZUIEnhAc4OxS1dPjmeyqZO9pXKEMnh8O2X93LJY1sorG4Z9mO3dxn4wesH+PNHuSybEMsyGTpkN3GhfiyfGMsbe8ro6DY4Oxy3sPF4JX7eOunxFXZzy+wUAK6fkUSIn1QjFUIML0naBtDZYyCnsFaqRg7BkswYfPQ6WWh7GORWNPH58SoKq1u4+n+3f9VLPBzK6tq47p87ePfgaX68bCxP3zYDH728vdjT6rlpNLR1897B084OxW5aO3scsgadpmlsPFHFglFR+Hl72b19MTJNSgzlxbtm8+Pl45wdihBiBJJvVQPYW1JPR7eRRbIoq82C/bxZPCaaj49UyBBJB3thRzF+3jre+85CEsL8ufO5XTy7rcjhwyW35dWw4sltlNW38ewds/jOkjHoZK6H3c3NiGBsbBAvZZc4dQisvbR09nDNU9u56JHNHClvtGvbBdUtlNW1y9BIYXeLx0YTLL1sQggnkKRtAFvzatDrFHNlbs6QXDEljjONHewva3B2KB6roa2Lt/eXc3VWIpMSQ1l/33wuHh/Lg+8f4+frD9PZY/8hdZqm8cyWQm5/didRQb68952FXCSl1R1GKcXquakcLm/kSHmTs8MZEk3T+OlbB8mvasHbS8eqZ3LsWmW2t9T/RePk71EIIYRnkKRtAFvzqpmeEk6Qr97Zobi1peNj8fHS8ZEMkXSY13eX0dFt5I75aYCpCMzTt83gu0tG8/qeMm59Zic1LZ12O15bVw8PvHaAP354nOUT43j7/gWkRwXarX3RtxVZifjodazfd8rZoQzJv7YU8uHhCn52aSZv37+AyEAfVq/dyY6CGru0/8XxKjLjgkkI87dLe0IIIYSzSdLWj9qWTo6ebpKqkXYQ4ufNojFRfHSkwiOGdbkag1HjxewS5qRHMD4+5KvtOp3iR8vG8cSqaRw53cjKJ7dz9PTQh6GV1rZx7VM7eP/QaX566TieunW6XNgYJqH+3lwyIZZ3D5TT1WN0djg22ZpXzcMf53LFlHjuWZxBYpg/b9w7j6Rwf9Y8t5tNJ6qG1H5jezd7SuplQW0hhBAeRZK2fmwvqEXTkCIkdnLZ5HjKG9o5eMq+c1cEfH68kvKGdtYsSOvz/qumJvDmvfMxahrX/zN7SD2eW05Wc9WT2zjT2MHza2bz3xeOljWwhtn105Oob+v+agigOymra+OBV/czOiaIh6+b8tXfTkyIH6/dM48xsUHc8+IePj5i+9/o1rxqDEaNpTKfTQghhAeRpK0fxTWthAd4MyUpzNmheIRLxsfi7aVkoW0HeGFHMQmhflw8PrbffSYnhfLudxaQGR/Mfa/s4++f51nV66lpGv/cXMCdz+0iPtSP976zgAvGSoEeZ1g0JoroYF+3GyLZ0W3g2y/vpceo8a/VMwk8r3c2ItCHV/5rLpMTQ7l/3X7e3m/b89t4vIrwAG+yksPtEbYQQgjhEgZN2pRSfkqpXUqpg0qpo0qp35u3P6+UKlJKHTD/ZJm3K6XUP5RS+UqpQ0qp6Y5+Eo7wwNIxZP/PUrykCp5dhAZ4s2B0FB8ePiNDJO3oREUzOwpqWT0vDb3XwC/nmGA/Xv3WXK6dnshjn5/kO+v209bVM+gxWjt7uH/dPv7ycS6XT47nP/89n9RImb/mLHovHddMS2RTbhW1dpyn6EiapvGLtw9z9HQTj9+U1e/8x1B/b166ew6z0yL44RsHWbez1KrjGIwam09Wc8HYaHnvFkII4VEs6WnrBJZomjYVyAIuVUrNNd/3E03Tssw/B8zbLgPGmH/uAf5p76CHi6zvY1+XT47nVH07h+1c3nskeyG7GF+9jptnJVu0v5+3F3+7YSq/vHw8Hx05ww1PZ1Pe0N7v/sU1rVzz1HY+PlLBLy7P5IlV0wjwkflrznbd9CR6jJrbrNn2Uk4J/9lXzvcvHsPSAXqEwVRE57k1s7hwbDS/ePswa7cVWXycg6caqGvtkiqmQgghPM6gSZtm0mK+6W3+GairZCXwovlxOUCYUip+6KEKd7dsQix6neLDwxXODsUjNLZ18/Y+U5n/8EAfix+nlOJbizNYe+csSmvbWPnkNvaW1H1jv00nqljx5Daqmjt58a453LN4lMxfcxHj4oKZlBjiFkMkdxfX8eCGYyzNjOGBJWMseoyftxf/Wj2TyybF8dD7x3hyY55Fj9uUW4WXTsnQXSGEEB7HojltSikvpdQBoAr4TNO0nea7/mgeAvmYUsrXvC0RKDvr4afM28QIFxbgw3wZImk3b+wpo73b8FWZf2tdNC6Gt++fT5CvnlX/3smbe0wvW03TeHJjHnc9v5uk8AA2fGehVFF1QddNT+JIeRO5Fa67ZltlUwf//co+kiMCePSmLKsWXffR63hi1TSumZbII5+e5OGPcwd93/jieBUzUsIJC7D8IoYQQgjhDixK2jRNM2ialgUkAbOVUpOA/wEygVlABPAz8+59fSp/45NWKXWPUmqPUmpPdXW1TcEL93P5pDhK69o4etp1v2i6A4NR44XsYmanRzAhIWTQ/fszOiaYd+5fwOz0CH7y1iEe3HCM+17exyOfnmTl1ATW3zef5IgA+wUu7GbF1AT0OsX6va7Z29bVY+S+l/fS2tnD07fNINTf2+o29F46/nbDVFbNTuGpzQX8fsMxjMa+E7eKxg6OnWmSoZFCCCE8klXVIzVNawA2A5dqmnbGPASyE3gOmG3e7RRw9gSbJOAbEy80Tfu3pmkzNU2bGR0tQ1lGimUT4/DSSRXJodqYW8Wp+nbutLGX7WxhAT48v2YWd85P49ntRXx2vJJfXzmBx27Kwt9H5nW6qsggXy7KjOHt/afpMbjemm0Pvn+UfaUNPHz9FMbFBdvcjk6n+NM1k7hrQTrP7yjmF28fxtBH4ta7vpuU+hdCCOGJLKkeGa2UCjP/7g9cDOT2zlNTpkkuVwNHzA95D7jdXEVyLtCoaZp8QxeAqaz3vIxINhw63e8VczG453cUER/qx7IJAxd1sJTeS8fvVkzk6dtm8Ma987h7YbrMX3MD189Ioqalk615Nc4O5Rxv7Cnj5ZxS7l2cwZVTEobcnlKKX185nu8uGc1ru8v44RsH6D4vUd2YW0VimD9jYoKGfDwhhBDC1VjS0xYPbFJKHQJ2Y5rT9j7wilLqMHAYiAL+YN7/Q6AQyAeeAf7b7lELt3bjrGTK6tq/ujIurJNX2cz2/Fpum5s6aJl/a106KY4ZqbK+lbu4aFwM4QHevOVCBUkOnWrgV+8cYcHoSH6yfJzd2lVK8aNl4/jJ8nG8e+A097+yj84eA2BaA25bXg1LMmPkYoMQQgiPNGjtbk3TDgHT+ti+pJ/9NeD+oYcmPNVlk+KIC/Hjue3Fg5b/Ft/0/I5ifPQ6Vs1OcXYowsl89DpWZiWyblcpjW3dhAZYP2/MnmpbOvn2S3uJDvLliVXT7X5RAeD+i0YT4OPF7zcc454X9/L0bTPYVVxHe7eBJTKfTQghhIey/yeqEIPw9tKxel4q2/JrOFnZ7Oxw3Epjezf/2VfOyqkJRFhR5l94ruumJ9HVY2TDIeeu2dZjMPLdV/dT09rF07fNcOjf55oF6fzluslsyavmzud2seHgafy8dcwbFemwYwohhBDOJEmbcIpVs1Pw1et4bnuxs0NxK28Oscy/8DyTEkMYGxvk9DXbHv7kBDsKavnTNZOZnBTq8OPdNCuFx2/KYk9JPW/tPcWCUVH4eUvhHCGEEJ5JkjbhFBGBPlydlcjb+0/R0Nbl7HDcgsGo8WJ2CbPSwpmU6PgvxcI9KKW4bnoS+0sbKKhucUoMGw6e5t9bClk9N5XrZyQN23FXZiXy1K3T8fPWsXKaLAcqhBDCc0nSJpxmzcI0OrqNvLqrbPCdXVBrZw/ZBbU8u62IoppWhx9vU24VpXVt3Dk/3eHHEu7lmmmJ6BT8xwm9bbkVTfz0rUPMTA3n11dOGPbjL58Yx6HfLmfF1KFXqRRCCCFc1aCFSIRwlMy4EOZlRPJSdjHfWpTukKIF9qJpGoU1rewvbWB/aT37SxvIrWiid9WCp78s4J37F5AQ5u+wGF7ILiYuxI9lE6V4izhXTIgfi8dG8/a+cn50yTh0uuGpoNjY3s29L+0lyE/PU7dOx0fvnNews44rhBBCDBdJ2oRTrVmQxj0v7eWTo5VcMSXe2eF8pamjmwOlDaYkrcyUpDW2dwMQ7KsnKyWM71w0mmkp4QT56bnrud3c9fxu3rpvPkG+9n9Z5Vc1szWvhp8sH4e3Cye3wnmum57Ed1/dT3ZhLQtGRzn8eEajxvdf2095fTuv3TOXmBA/hx9TCCGEGKkkaRNOtXR8LMkR/jy3vchpSZvBqJFX1XxOL1p+dQuaBkrB2JhgLpsUx7SUMKalhDM6OugbPRn/e+t01jy/m++u28czt8+0e6/hCztK8NHruHlWsl3bFZ7jkgmxBPvpWb/31LAkbf/YmMemE9U8tHIiM9MiHH48IYQQYiSTpE04lZdOcce8NP7wwXEOn2oclqpzvXoMRn7y1iE+O1ZJS2cPAOEB3kxLCWfF1ASmpYQzNTmUYL/B175aPDaaB1dO5JdvH+Gh94/x+5WT7BZnU0c36/edYsXUBCKDfO3WrvAsft5eXDklgXf2l/Pg1T0O6fHttbeknn98kcc10xK5bW6qw44jhBBCCBNJ2oTT3Tgrmcc+O8lz24t49KasYTvui9klvL2/nOumJ7FgdCTTU8JJjQxAKdvmA906J5Ximlae2VpEWlQgaxbYp2DIm3tO0dZl4E4p8y8Gcf2MRF7dVcqHh89w40zH9Mq2dvbwwzcOkBDmz4MrJ9r8ehFCCCGE5WRyjHC6ED9vrp+RxIZDp6lq7hiWY1Y2dfDoZye5YGw0j9wwhWunJ5EWFTjkL6A/v2w8yybE8tD7x/jieOWQ4zQaNV7MLmZmqpT5F4ObnhJOelQg6/c6rorkHz44RmldG4/emGVRL7QQQgghhk6SNuES7pifRrdB45Wc0mE53h8/OE6XwcjvV9i3p8BLp3j85iwmJoTy3Vf3c6S8cUjtbT5ZRUltmyymLSyilOLaaYnsLKqjrK7N7u1/dqySV3eVce/iUcxOl3lsQgghxHCRpE24hIzoIC4aF80rO0vo7DE49Fg78mt47+Bp7rtgFGlRgXZvP8BHz9o7ZhLm783dL+ymotH23sPnthcTG+LLpZPi7Bih8GTXzkhCKfjPvnK7tlvT0snP1x9ifHwIP7hkjF3bFkIIIcTAJGkTLmPNgnRqWrp4/+AZhx2jq8fIr989QkpEAPddOMphx4kJ8WPtnbNo7TRw9wu7aTUXOrFGflULW/NquG1OqpT5FxZLDPNnXkYk6/edQtM0u7SpaRo/X3+Y5s4eHr8pC1+9l13aFUIIIYRl5JugcBmLxkQxOiaI53YU2e3L5vn+b1shBdWt/H7FRPy8HfvFc3x8CE/cMo3jZ5r43mv7MRite04vZhfj46Vj1ZwUxwQoPNZ105MorWtjd3G9Xdp7fXcZnx+v5KfLxzEuLtgubQohhBDCcpK0CZehlOLO+WkcKW9iT4l9vmye7VR9G//4Io/lE2O5KDPG7u335aJxMfx+xUQ+P17FHz44ZvHjmjq6Wb/3FFdOjSdKyvwLK106KY4AHy+7FCQpqW3lwfePMX9UJHfZqSKqEEIIIawjSZtwKddOTyTET89z24vs3vaDG46hUPzmqol2b3sgq+elcdeCdJ7bXswLO4otesxbe07R2mVgzXz5kiysF+ir57JJ8Xxw+AztXbbPEe0xGPnB6wfQ6xSP3DD1G4vKCyGEEGJ4SNImXEqAj55Vs1P45Ggl5Q3tdmt3Y24lnx6r5IGlY0gM87dbu5b65RXjuXh8LL/fcJSNuQMvBdBb5n96StiwLjYuPMt1MxJp6ezh02MVNrfx9JcF7Ctt4KGrJ5HghNeNEEIIIUwkaRMuZ/W8VDTNlLjYQ0e3gd++d5TRMUHcvdA5PVdeOsXfb85ifHwI3123n2Onm/rd98uT1RTXtnGnDEUTQzA3PZLEMH/esnGI5KFTDTz+eR5XTU1gZVainaMTQgghhDUkaRMuJyk8gOUT43htVxltXdZXXTzfU5sLKKtr58GVE/HRO+9PPtBXz9o7ZhHsZ1oKoLKp76UAnt9RTEywL5dJmX8xBDqd4rrpiWzPr7F62Yn2LgM/eP0AUUG+/GHlJAdFKIQQQghLSdImXNKaBek0tnfz9v6hrTVVVNPK018WsDIrgfmjouwUne3iQv1Ye+dMGtu7ufuF3d9ISguqW/jyZDW3zZUy/2Lorp2ehFGD/+y3rrftLx/nUlDdyiM3TCU0wNtB0QkhhBDCUvKtULikWWnhTEwI4fntxTaX/9c0jd++dxRfLx2/vHy8nSO03cSEUJ68ZRrHTjfxwKsHzlkK4KXsElOZ/9lS5l8MXVpUIDNTw1m/1/I127acrOb5HcWsWZDGwjHOv9AhhBBCCEnahItSSrFmQTp5VS1sy6+xqY2Pj1Sw5WQ1P1w2lpgQPztHODRLMmP57VUT+fx4JX/68DgAzR3dvLmnjCunxBMdLGX+hX1cNyOJgupWDp5qHHTf+tYufvzmQcbEBPGzSzOHITohhBBCWEKSNuGyrpoaT1SQD89tL7b6sa2dPfx+wzEmxIewem6q/YOzgzvmp3Hn/DTWbivipZwS1u81lfm/Y36as0MTHuSKKfH46nWDrtmmaRq/eucI9W1dPHZTlsMXnxdCCCGE5SRpEy7LV+/FLXNS2ZhbRVFNq1WP/ccXeVQ0dfDQ1ZPQu/DcsF9fOYGlmTH87r2jPLkpn2kpYUxNDnN2WMKDhPh5s2xiHO8dPE1nT/9rtr1zoJwPDp/hB5eMZVKiLDUhhBBCuBLX/TYrBHDb3BS8vZTFi1IDnKxsZu22Im6amcyM1HDHBWcHXjrFP1ZNY1xsMDUtXdwpvWzCAa6bnkhjezcbj1f1eX95Qzu/eecos9LCuXfxqGGOTgghhBCDkaRNuLSYYD+unJLAm3vKaOroHnT/3iFeQX56fnaZe8zJCfTV8/yaWTy0ciJXTI53djjCAy0aE01siG+fa7YZjRo/euMARk3j0Ruz8NIpJ0QohBBCiIFI0iZc3poFabR2GXhzz+Bly985UM6uojp+dmkmEYE+wxCdfcSE+LF6XppLD+UU7stLp7h6WiKbT1ZT3dx5zn1rtxWRU1jHb1dMJDkiwEkRCiGEEGIg8g1RuLwpSWHMSA3nhR3F55THP19jezd//CCXrOQwbpqZPIwRCuH6rp+ehMGo8e6Br9c+PH6mib9+coLlE2O5YUaSE6MTQgghxEAkaRNuYc2CNErr2tiY2/ecHIBHPz1BXWsnf7h6EjoZ4iXEOcbEBjMlKZT1+0xJW2ePgR+8foAQf2/+dM1klJLXjBBCCOGqJGkTbmH5xDjiQ/14bntRn/cfKW/kpZwSVs9Nlcp3QvTjuulJHD/TxLHTTTz66UlyK5r56/VTiAySdQGFEEIIVyZJm3AL3l46Vs9LZUdBLbkVTefcZzSaio9EBPryw2XjnBShEK5vxdQEvL0Uv9twlH9vLeTWOSlclBnj7LCEEEIIMQhJ2oTbWDUrBT9vHc+ft9j263vKOFDWwC+vyCTU39s5wQnhBsIDfViSGcOuojrSIgP55RXjnR2SEEIIISwgSZtwG+GBPlwzLZG395dT19oFQF1rF3/5OJc56RFcnZXo5AiFcH23z0sjyFfPozdOJcBH7+xwhBBCCGEBSdqEW7lzfjqdPUZe3VUKwF8+yqWlo4eHrp4khRSEsMCC0VEc/t0ypqW49sLzQgghhPiaJG3CrYyLC2bB6Eheyi5hV1Edr+8p4+6F6YyNDXZ2aEK4DbnAIYQQQrgXSdqE21kzP52Kpg7ufmE38aF+PLB0jLNDEo1RINAAAAknSURBVEIIIYQQwmEkaRNuZ0lmDKmRATR39PCbKycQ6CvzcoQQQgghhOeSb7vC7eh0it9eNYG9JfVcOinO2eEIIYQQQgjhUIP2tCml/JRSu5RSB5VSR5VSvzdvT1dK7VRK5SmlXldK+Zi3+5pv55vvT3PsUxAj0ZLMWH6yPFPm5gghhBBCCI9nyfDITmCJpmlTgSzgUqXUXOAvwGOapo0B6oG7zfvfDdRrmjYaeMy8nxBCCCGEEEIIGwyatGkmLeab3uYfDVgCvGXe/gJwtfn3lebbmO9fqqQ7RAghhBBCCCFsYlEhEqWUl1LqAFAFfAYUAA2apvWYdzkF9K5snAiUAZjvbwQi7Rm0EEIIIYQQQowUFiVtmqYZNE3LApKA2cD4vnYz/9tXr5p2/gal1D1KqT1KqT3V1dWWxiuEEEIIIYQQI4pVJf81TWsANgNzgTClVG/1ySTgtPn3U0AygPn+UKCuj7b+rWnaTE3TZkZHR9sWvRBCCCGEEEJ4OEuqR0YrpcLMv/sDFwPHgU3A9ebd7gDeNf/+nvk25vs3apr2jZ42IYQQQgghhBCDs2SdtnjgBaWUF6Yk7w1N095XSh0DXlNK/QHYD6w1778WeEkplY+ph+1mB8QthBBCCCGEECPCoEmbpmmHgGl9bC/ENL/t/O0dwA12iU4IIYQQQgghRjir5rQJIYQQQgghhBhekrQJIYQQQgghhAuTpE0IIYQQQgghXJgkbUIIIYQQQgjhwiRpE0IIIYQQQggXplxhCTWlVDVQ4uw4RoAooMbZQYh+yflxXXJuXJ+cI9ck58X1yTlyXXJuXJ+9z1GqpmnRfd3hEkmbGB5KqT2aps10dhyib3J+XJecG9cn58g1yXlxfXKOXJecG9c3nOdIhkcKIYQQQgghhAuTpE0IIYQQQgghXJgkbSPLv50dgBiQnB/XJefG9ck5ck1yXlyfnCPXJefG9Q3bOZI5bUIIIYQQQgjhwqSnTQghhBBCCCFcmCRtLkwp9axSqkopdeSsbVOVUtlKqcNKqQ1KqRDz9jSlVLtS6oD552nz9uCzth1QStUopR7v53gzzO3mK6X+oZRS5u2vn/X4YqXUgeF4/u7AHufIfN8q8/6HlFIfK6Wi+jnepUqpE+Zz9POztn/HvE3r77EjiQudl61ntXtaKfWOI5+3O7HjObrJfH6OKqUeHuB4/b2/3WB+rFEpJVXacKlzI589fbDm/Jjvm2K+76j5fj/z9j7/3/s4nnzuWMGFzo98/vTBjufnj0qpMqVUyyDHs99nj6Zp8uOiP8BiYDpw5Kxtu4ELzL/fBTxk/j3t7P0GaHMvsLif+3YB8wAFfARc1sc+fwN+4+z/G1f5scc5AvRAFRBlvv0w8Ls+9vMCCoAMwAc4CEww3zfN3H5xbzsj+cdVzst5+60Hbnf2/42r/NjpHEUCpUC0+fYLwNJ+jtfn+xswHhgHbAZmOvv/xRV+XOXcnLePfPbYdn70wCFg6lnnxcuK/3f53HHT83PefvL5Y//zMxeIB1oGOZ7dPnukp82FaZq2Bag7b/M4YIv598+A6yxtTyk1BogBtvZxXzwQomlatmb6a3oRuPq8fRRwI/Cqpcf0dHY6R8r8E2j+Pw4BTvex32wgX9O0Qk3TuoDXgJXmOPZrmlZs05PwQK5yXr5qSKlgYAkgVzrN7HSOMoCTmqZVm29/3tdjBnp/0zTtuKZpJ2x7Fp7JVc7NWfvIZ89ZrDw/y4BDmqYdND+2VtM0gyX/72byuWMlVzk/veTz51z2OD/m33M0TTsz0LHs/dkjSZv7OQKsMP9+A5B81n3pSqn9SqkvlVKL+njsKuB18x/O+RKBU2fdPmXedrZFQKWmaXm2hT5iWHWONE3rBu4DDmNKCiYAa/toNxEoO+t2X+dI9M+Z5+Ua4AtN05qG/Cw8m7Xvb/lApjIN0dNj+jA8+zG9LHl/EwNz5rmRz57B9Xd+xgKaUuoTpdQ+pdRPzdstfU3I5459OPP8yOfP4Kw9P5ay62ePJG3u5y7gfqXUXiAY6DJvPwOkaJo2DfghsO7sMblmN9P/lcq+xkqfn9ytGuDx4mtWnSOllDem5GAakICpK/5/+mjXknMk+ufM8yKvHctYdY40TavHdI5exzSCoBjo6aNdee0MnTPPjbx+Btff+dEDC4Fbzf9eo5RaiuWvCXnt2Iczz4+8fgZn7fmxlF1fP3pbHyicQ9O0XEzdtSilxgJXmLd3Ap3m3/cqpQowXSHYY953KqDXNG2v+bYXpvltAO8B/wSSzjpUEmcNBTNfKb0WmOGo5+YpbDhHyrytwPyYN4CfK6WSgQ3mZp/GNFb97CvV55wjMTBnnRelVCSmISzXOOq5eQpb3t80TduA+Xwope4BDNa+v4nBOevcyGePZfo7P5iu7H+paVqN+b4PMc3neZk+/t/lc8cxnHV+5PPHMjacny/6asfRnz2StLkZpVSMpmlVSikd8CtML1qUUtFAnXksdAYwBig866HnXGkxj8nNOq/tZqXUXGAncDvwxFl3Xwzkapp2djev6IMN58gP+P/t3b1KA0EUQOEzrZ2ID2AhiLW9lSCClSgidjZioZ2NjaWksbG0sPMBtLHLE1j5A4I2KuIbCIpjMWMI4moMiTuB88EQyGRn2LmwN3d3s5kMIYzm33/MANcxxnvaYpS/vIyHEMaAR9KV05X/3LdBVmNcFoHTGONL//dysHVzfGvbZhjYAJa6OL7pFzXGxtzTgar4AGfAdghhiHT1YBrYjzE+fbfu5p3+qDE+5p8O/DU+VeP0PffEAp7kYqt84swx6daTV1K1vwZsATe57UHrD9IXgEvSWZdzYP7LWHfAxC/zTZHu670FDj7Hzn1HwHrda1Ja61WMgHXgmnQL3gkwUjHfXB73Fthpe38zz/9GOotzWPfaGJdWXxOYrXtNSms9jNExcJXb8g/zfXt8I52BfiBdLXoGzupem7pbKbHJfUeYe7qOT/78ao7RBdDoZN2/zGfeGcD45L4m5p9+xaeRt3/Pr7sV8/Us93xuKEmSJEkqkA8ikSRJkqSCWbRJkiRJUsEs2iRJkiSpYBZtkiRJklQwizZJkiRJKphFmyRJkiQVzKJNkiRJkgpm0SZJkiRJBfsAmWqkQf2sQAgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Shift data back by 1 month\n", - "shifted_data = data.shift(-1, freq='MS')\n", - "\n", - "naive_forecast = shifted_data[split_value:]\n", - "\n", - "# Plot Validation sets\n", - "plt.plot(naive_forecast)\n", - "plt.plot(valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean Average Error Is: 48.27272727272727\n" - ] - } - ], - "source": [ - "# Calculate our Mean Average Error as a baseline\n", - "errors = naive_forecast - valid\n", - "abs_errors = errors.abs()\n", - "mae = abs_errors.mean()\n", - "print(\"Mean Average Error Is:\", mae[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dense Model Forecasting" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "cannot copy sequence with size 12 to array axis with dimension 1", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m history = model.fit_generator(window_generator,\n\u001b[1;32m---> 19\u001b[1;33m epochs=epochs)\n\u001b[0m", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\u001b[0m in \u001b[0;36mnew_func\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 322\u001b[0m \u001b[1;34m'in a future version'\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdate\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32melse\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'after %s'\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mdate\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 323\u001b[0m instructions)\n\u001b[1;32m--> 324\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 325\u001b[0m return tf_decorator.make_decorator(\n\u001b[0;32m 326\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnew_func\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'deprecated'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit_generator\u001b[1;34m(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)\u001b[0m\n\u001b[0;32m 1477\u001b[0m \u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1478\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1479\u001b[1;33m initial_epoch=initial_epoch)\n\u001b[0m\u001b[0;32m 1480\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1481\u001b[0m @deprecation.deprecated(\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_method_wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 64\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_method_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_in_multi_worker_mode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 66\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 67\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[1;31m# Running inside `run_distribute_coordinator` already.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 813\u001b[0m \u001b[0mworkers\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mworkers\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 814\u001b[0m \u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 815\u001b[1;33m model=self)\n\u001b[0m\u001b[0;32m 816\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 817\u001b[0m \u001b[1;31m# Container that configures and calls `tf.keras.Callback`s.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, x, y, sample_weight, batch_size, steps_per_epoch, initial_epoch, epochs, shuffle, class_weight, max_queue_size, workers, use_multiprocessing, model)\u001b[0m\n\u001b[0;32m 1110\u001b[0m \u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muse_multiprocessing\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1111\u001b[0m \u001b[0mdistribution_strategy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mds_context\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_strategy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1112\u001b[1;33m model=model)\n\u001b[0m\u001b[0;32m 1113\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1114\u001b[0m \u001b[0mstrategy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mds_context\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_strategy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, x, y, sample_weights, shuffle, workers, use_multiprocessing, max_queue_size, model, **kwargs)\u001b[0m\n\u001b[0;32m 906\u001b[0m \u001b[0mmax_queue_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmax_queue_size\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 907\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 908\u001b[1;33m **kwargs)\n\u001b[0m\u001b[0;32m 909\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 910\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mstaticmethod\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, x, y, sample_weights, workers, use_multiprocessing, max_queue_size, model, **kwargs)\u001b[0m\n\u001b[0;32m 770\u001b[0m \u001b[1;31m# Since we have to know the dtype of the python generator when we build the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 771\u001b[0m \u001b[1;31m# dataset, we have to look at a batch to infer the structure.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 772\u001b[1;33m \u001b[0mpeek\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_peek_and_restore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 773\u001b[0m \u001b[0massert_not_namedtuple\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpeek\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 774\u001b[0m \u001b[0mpeek\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_standardize_batch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpeek\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36m_peek_and_restore\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 910\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mstaticmethod\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 911\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_peek_and_restore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 912\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 913\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 914\u001b[0m def _handle_multiprocessing(self, x, workers, use_multiprocessing,\n", - "\u001b[1;32m~\\Miniconda3\\envs\\myenv\\lib\\site-packages\\keras_preprocessing\\sequence.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, index)\u001b[0m\n\u001b[0;32m 371\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 372\u001b[0m samples = np.array([self.data[row - self.length:row:self.sampling_rate]\n\u001b[1;32m--> 373\u001b[1;33m for row in rows])\n\u001b[0m\u001b[0;32m 374\u001b[0m \u001b[0mtargets\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtargets\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mrow\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mrow\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrows\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 375\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mValueError\u001b[0m: cannot copy sequence with size 12 to array axis with dimension 1" - ] - } - ], - "source": [ - "window_size = 12\n", - "n_features = 1\n", - "epochs = 180\n", - "\n", - "window_generator = TimeseriesGenerator(train,\n", - " train,\n", - " length = window_size,\n", - " batch_size = 6)\n", - "\n", - "model = keras.models.Sequential([\n", - " Dense(10, activation='relu', input_shape = (window_size, n_features)),\n", - " Dense(10, activation='relu'),\n", - " Dense(1)\n", - "])\n", - "\n", - "model.compile(optimizer='adam', loss='mse')\n", - "\n", - "history = model.fit_generator(window_generator,\n", - " epochs=epochs)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/kaggle_time_series_air_passenger/my_checkpoint/saved_model.pb b/kaggle_time_series_air_passenger/my_checkpoint/saved_model.pb deleted file mode 100644 index 7a11ee65495c208fec6d346923342765c31a3bd9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 472210 zcmeFa3y@q_dLA}+dIr;T1~V9341nPwUL1lT*<7%vZ}&XC;w}aRxmbb(2!J59qR`uz zZUDXL=^1tRki^P~BYwb4NeZ5AzyWLrsM!^$zj66sC(AaC+ zmv_*4GzSHP#?{+pD^K*D6tPHIjpXm=d4*Dk!I(n^F>osogwyxAVy=Jeu-EP#+*IF%i z3XRn|ce-Bgdb15#g$?z_u0x9#4k7Zhi(1WY?-|mvXPN(VI%z-V+P`oVO+v=KTC?5gurDq=hNhr9JB@m^UEAXF6vk@-x{&R7C~{%E+vvR0 zD2#j0d(SU=^Y8e7&vrH|XIIbO@oudx-!3mNd$(2{_kaEhM(?4SI?RMdwNkv-=(HQq zuS|stN6<_)m_b#)oUS{DM%PCQQ*_#lE;@xnv=V4N?~dl{@SjsS$+uzF70Q9GS>Q`9 zlF8!#kC`#T48lS#g%eT*_an9%Y(>!y+E0tT)vR^JnnbtJB+0(s*sR@8-3o_q1?Gol%8j!|RdhTm$EqFiyEYAR&^zcLDWKJ;b=t6z zR6DSV4ceduzCnjvxd^n4o|4M7YM`8#T|--FKPhl)d#lmz?QRX)MtME4xuXU;#eTPH z8CO5MM*VFEJ=JY)?X()zPP<+8ip-bIMymzC3~RS^$c|Z9=7;ua*RFWZY%# zRZrO!YS?pw#&Fxxf9D{!_f$3PzyaFn!1SpOt5eAlR4;s#@6?i;wj$_@4mzLEy<+99 zIy!Ad3|$^HmFx1q>7XYQYCW9euU@F|UHp`5Q!x4|2d!9C(5fqK3N##|bxxE)!on}J z1LZIL^3WE3FmT3&uP-M3RHY^d$--|W9=kV+|QO&-2Y%#aX+bD#c!brzelR2L90H`_xYqt zGe+Nr9uLc~sy==Zu4 z56^MeR4DpkkQWV=vg!s?0SP;*e~0vSWiF^T&|h`XV{C26_BlugN&15V-#L%F`r^>{ zI_RvnGFBa<&)l$63SIIW4)RDX5(K!RPp05*0g6e`Q$(tft`B zW0;YO`_w;o(1$JRE{axzOj^aNt`}bA2jT^Hpjx4?Iq1qD&9WMtfvRX2CdD1>R~@uy z(VijiC-uTPepoy=buG{@JLtuu!!l7?U!N@0WN)~ldZAuoe zS#`X)DOu#3Zni5nB~=*@e^W|TE7hiyDg&#*5jUk&C8QfB#ipbx?ZIzKiM3E|N{KI7 zb-%bNCFW|sDeVu8scv9W{ai7$%DRDZc3~O>?{}J;jrH?a-dJC>5!ojS|MGci!2R0u z8^8N}e!?Bu_|50hcaNf}yyH%^YWEwRvx{gxKkCl;U#jmmdv~kvHkxHI!-a(k!O+-iQh(SffM?&Le6A-Ic< z=JW2MUI#3n#4ucqA3TmJ&5f-mW$uB21? zlAd5oA|tcF=lP^A&(r!mpJMa;6$h$(#vLQpPBfW++8y^zhUj4a8F!j9x}p8~XWcwC zPvIG8bo6b03%(y`z5|dTUtqp(!}sTy?>q4QL(KQ@fbVCS?;ZI5JoCK^-;2!m9)V^+ z3C<$?dCql8@aIFWOZH&C3|&q(p6XTuP!pSmQ@vN^dTX|fsr(vSZ|(l^pF=knqD3_aLp&?WJTPxR6fL!N zep&n_-Lm+wep!4AyDUb~VVEw8`K9@Jgh-tz{{qv)+^%*q|B<8~{;0l(QT`l(wZN9y zg@w5x_qJxsoXVePdt1AIlHNYc^!D@0-Y!PH{UYDn7j(V-lD@ZJmU|l(E?Ld6aLHIZ=snR=dNBn zw{hu0^~SkNZ(I;DJ$P9mb5K)x@%eMtuV1~m@y7KF*NS{T=!Sb;%A141;EFP5Us5&X z3-Bnihm!GuJ+y?x@8Qn)8Z#o?>31@JIcY?$=ttyW{&jg2G{@;w{wg~P+Ow6}7q2n3 z=FZoX`Rhrwe#2Dj8*;5R2liC{O}5tB)B9!jf;7GnG6+8#$%#IC$uvb@yuC4*qF7iY=I6{f5&yRS-Fb0`#iHqMobCZ-H)ZdJ;Vwb`mr6@g@j z&qTs?anV%7Jr`tZep#l*OR$BNOodh5ZM+$UPwud?sfeTw zQxzc!18jRLroxgsOjVfJVN0e0o`fyZ33kfS;3Ufha_LwgmyQ#;G}wH|Ci+&8^jk?% zDy*d!K78@+6U;Wo$wMde-LC{wBMPX{D_RX!$H@Ip1W(QBUM8 z#n0h+Q)QaW2_+}9s<+$Kd+!p6H{^1U&!xrY64xUBq}qW4 zt2(YkI)q|)6M>B}u+1AJ31x!W zRQzT!*b!86z!$kQexOQy z&T;>STq#jUt*VrGwnY|4wt65H3{<_JaNHl2t0(GkRn_wcOx0r`M+{UYyJ1uv(1u|I z$zz~O*$tzrQdYwVvdTc!vl~WL^|ZqX(#=3s`mBRa5YHI`)~`2i*LGXIYOA(&t6r;m z)n*%fs9e@1s<0^eWt>3A*0DR4{|5cX;l6M{)525K-@^C~`X^(02PmCq6i#Rdw!Ar5 z3FJvI5OF$jg{uZQSQMBoT$RihZrQ?BiKM~>?;*_T7z%TN)7Uhc@+O_R@SnnT=ruNu za-QQ9o|eY_Fgmn;kQ-{>GpK-YwF4ea)$MlcK70z?-h!#r1y4AH^Ui2)Y<%BDzEBWc z%&#JmOKP9M7Q=1e7)UlHGFR}ZWdekcTI3!HR$)I01>5j$pavqc1{Ylz!tt=IMH2irNy;6#TL+`k6~KA(W15@)coo&93zxr(dSPk2Bn{PMVpt6oiA zaaAV%X0Iw;kEO+Wv??}XL9q#EiPItyaXOqH9ugW2U$MaLNFzgqBIVo~3KB?apK7oL zX-HWcv3;t125X-xM^5HY)+?~+!=dhb9fKg?;R(l?bX5OL@F&WI*6@GIcz}$ekyOXV z)8yD#xOxhmV2=%A(c1(+V{%4RSJ#%j3i^L0^cy^w0X2I+7B_g~QHx{cFQdIxXkU4) zsiok;iUq2xfH*@qVMFzTFKn=dt7b_kxUhw*k{JtEz2Fxf>MjDU3XaqO6ZGrs1`oRrNCW4*8cM1s{7x6g z0i93k4d8bG2_Jw+?J6)j)P0(YS}Q~@fh4}Py5t>{dIJN#=wjGkZuAMy3!Sze5HJ8l zYyvsgiCcp8CBy>@IW1w~csx4pLHcW)`581FTuvy{gZf^xemOtlzJhG8LFg2ktM03qxSL=+F`Vn~kom3W#l6FExmWSPCqy5afSiQtz@Fl%0J^e)2GDmGdT!iN$Zr6J(k0307>mBYEh zaSHOD+i(GhJqG&3(FI?x?2L?zc;!CofWI_~p0udBdr)c&9`0h|51w_4I`O?3ODwiB z2oO|F(*cQGJ3UaKT9l1{+d)rDldSk^t@r9~%hv_mi0RElvZ_9|41+_5>(aXWg7)BoMUSkLy>opLvlrcv6Gz!A>ptOJECg6fuXPX3FI|=KZ#n20`QZla ztmo>9EMooa$%f_2JEM68`7+egnzBSR3;Vu^*mJg(GuaG)mfKfPR zsu>2-qQi2F3B!NPY8}`!22`M71$sL5=h^SgYko?p?4h$64anm~S3a0O@+W>azKH_&b^W z%1nM0n{^ZRclEB%i5iOqhqbx^w(v6UFojo`!cFTdt=_Eev1L{gG-nG>uvaYiP~7v; z+~SgWOcGC>q|78KtCLiiB$YVH-9D~FZa?DC!lw*3V(l%;?dz0ZxSjrb==LFeFPxSx zyRNKYSooYX)a$Q1-1}AG1yMnE7CmQHknt+AM?yVz4Af&LE#8FjY2NsBQvVeF__v@x zbI{AI!GIAoI1@^O(O?51ek~vX_y0s@ooMIP(-`N7fDydaLx(tBQ_)w-Q2|Du1;n%ytCcAz|MZJ3ih8aC}F$zTu||QfS~8f!Ed7};2zip!Y)wN3@TvOJ-`Jr*@5wH zGWzP~KpTXQaK*>XpNrBJ??=BTw$qzp3IHK-e~=5YsibTS@HYjd|7auc3-zOaG~vzg z8R9z##RY^WqUosOL`=ko;{>T10>V`MCccGcf^R#ZaBtL$(K_q%f>QTp#T+p(rG?!U z6ylCufx@%{bd;|UH%70)+!~DsOTQV6#$6f|3S$;dnDZnU16|Y>&2$RjKNJkv{tX27 zsFA`LD1JxcDd^{jchR_Cb9d~eW~)WVCn!B?1P-U4|4Q^LZBdFlGi=j-X;AD8z=qo0 zo$YR;2vE~4+BALVZWq82V8NSQDWxM8EbpcR%N?Ds%~3>`uAD<8=AD8?*j_f~d>GHyjTzP=<2w zKLE*td(JA-t~UJOC79R1@imQmb6#j;^hBphP#S^?vj}yG>>31c0TF~q5?mGWuRCao z`Q?qkTFfW~Ujl1!kbti&?NdIp`5ouKN9p8zCp z@{0l?6X(D!DiyZ<4Fc4>a`iQINuzfOl_d;*HA(rhw6vr$7ixzPgDdZGW=Fc=fqXzg z2mbMryxpWb3Qi`Jhk@lp&+3$}kE(fL8F8VTwZVr$Q`ik;Ss6Dq7XNIaRLs z&&N=pm2=16B$!(Kcu+02=y+J4(A7CkGEMq0{yHy=);cxiNPCiY%HS0y50f+%mKs@$ zG@DjwMfbq4%^f0WYEXlCD3{9}c5;WwPInSL2C(gS0k6EG)KO%0~c@hT$2%*>qWy@mg{wnynS0D2Y)P zEz}aq%Zzv0rZMRw~_wY}HYmCtUf^hs?@@!h~`9M@q%nG7&SPq?k%K}x)iazsnpT$ zh3H(y_t9*mQ3D}ruM~{1e~QK6UvkhC^CPQdOf?{nF_{ck7YRlPCU5+C;K8MM0|pEs z9K11v02gjbHbk9q5AVC_Z*hI7iWzuI0(heE5z$)xJo-?QMwa#F@NT5JXxW=KL7Pvd zs9>Xi8@xu|LVa!3$xcvv=XHX9@Fe(iN}+^?;R(;e@xz( zwev%-0ZZeOz~OH_1!9`koKBE-V1Kgg?zxMup(syRtp}ci5g781CIqO>Lp!;IR{r8H){1zg3j_si*yQ z_=AftugD0S>WfPu?}dBN26YBq+bA5yU~Bz8M!85C>`QDNFne}Aws z_>io=*ciUtKO4gyuDJ)UVW_K(SOZWql>4P-h~}JTg2VOygk+`zDSbT;?j;Iea|Jbn zrfy1V2AVeVGf$%jk*FDHZh{Z~050eXY6e<}lA58c;UaKF&J4*HF>w!pkJraKG=z~7OQvRs3y7y2 z)pn$~lM+jPEb;}AIZ`(zHAA^*qGs^h#JZNJsD^@?At>y@Q8NVPWz-Blp+QP#Ga0AG zX$LyOTau{;fSS24OE_3B4n<@e1=+Q6*5$dAgB=IaAY+VFz;zUL-f z#TOK$4~bHfO!|=c3MkhUqz}omfK2+3{0@|*Abp75(+KG@=|j>RP!6b#_v|w5?%{1M zBYFUH6=)MhhD9b>xN% zxwr@$X#b4X$AHmV%d(>)c3)jBl^-nf(3;qtR4oOuyD7PX*xi&|LF{fyo)NqIOt=}b zJMYXB6Tc5e?EW9dP*oZ6BF)*ivIq!ceQ1z-Xy(FuJ8*u!*xc$C>&=KkWN`Wc;0@uk z#ye;4_`!|9o2HDrJ8=FrB!zNxqb1=yZ!OY8)F4%73KoEJP_hD zb~Vb^u48q}*wqB@ufUJ5n&7#m)k11H4l;H%4Ma9$SIgMdy2XrL&FRaH*~!?|Ahb9Q zxt2%!)_uBC9)+(aG<9VE=8!rLD9W|mZhPq8OiRz$)oysatA8q{4m4Obxhu1>7zZ|V51@)L3TAqd-G7RtNrExLAm5GNeP&81MYLM zkX--BCM1_YAyETh-Xk(#-i9`Zi9h8w#qkM!C9QKC`uLy zD}VM8PtBtEE$;#nlKEA|61se37)9(_HP{!gsPR5Ja&VT8M|W z^6Dao5#yaPfBQ6JBFB|44B%4@R`DQ9{38$~J`7c#)C)-?W3NvJfV;X( zLZdzrK8kh4vq4=M&F~5J>jU%%Q1FF$;?FwhXi%c0MU`~Ci4!s1+yLJeP00`4^|N75Mc`WO(v{bdM^Q)}OK{r_Vz zqzXnmBL1YtiFuIxACAM0D!33Ut)_Fnsapu7A1LRW zfBhKx$(#VDZhXgXqupyl(2`VO>gB~H*F`g}+SaXl4PI@wK}ik%ibs&k5JmtE;EJ~f zGNAJJCC%?7b~T?*8S+`GENgxTUTRhPCE_D_5KY%1BtoNFAz7?c9`ZS)UBw z((%WB!8y&g(=M4lQq)&Q(LC+TqTm$h9uR)OLbn(82f?{u_wgVQ*K`<|EBxBe71Al3 zGDhSYMI)(#aa|(8xL&?`VF*4X-l_*YL%P1g|3eO04UE=54?m&Hn>j4lp%11wmZ$xa z;qL_B)@29LR~%Mhl}4_pW#sk|JlH*t5g93H1|+PEQtpoT}C(NqiU6|%ryy80s8 zU^+g#-}s-!XG}TyjCm&E0F3(IeEL}T?*lw=QqB6M)g|V@kvb0l zA8L<%dWuLdME!j?nh=^k;jpr0N`FQRAIy_8CF>?ub$S6021607Fp<$wH(5Q$9?xn&tV)NGk| zzei8@20Nh8H4vLkrJR@-l12Moybtx&J83qh_mLm-zkLz?7kWSDG$+#P+8RX7MtT3n z9gqYmJeiX?uHYW5@MKP;`-0c{()C^kjYsjbFQ4122Q%4~|+E&lEk(AxDCZ z`mcj4{UMGNyU*yAYM8)?cUYOd6iGhxwJoJaXsFB0e3>&}=0<0`TLi09@xHW)YJIke z3+1Qji@1vR2VX8Vy4{rIotZCl=F9vD_%eULgC--m4I9KYI&SdM==pHtv%*r0a>kd@ zgnwL-kjBBeH61nQv#fEVSuABX!~r&GIs!^6Mspe5#)H`@LREe1c4 z@bNEowzq0gh9U>)eJL#$F#?@WF|GV3N$6IrCx8|#KFASt~cHz4)O8r)KbS?AJm(f#&i%6G7_Xm^5jWU2Bd@dq=;gp@@A&3 zh%i7YyqW2{LJtgp5i-TBQF${*u{VS&NP{4`ohIs5?9pch^bBL*45MW=BN=d zLQN55BtS&PcqrMMIm$=qi~+_&;msVCqV#5_Qz9AZCi$L4%R&pnOt&x;-ptzCDZQEF z)Y0Nd^k$CV8Qvgd0c#qq7PwkLtdrq+Glv0de%wLF8By?t2NRcbbQ`wFcQTlM?8{J0dod!N5q~U8Fosn4B&g1hHj=z~I&rh3qGjHu~Rhzv=r`Bt3x4ZaL z$n~Rt7TMsQbVlgR{)tK(_dZn-6(5=?iX5P#JwaqsI7Oo>`wtKhJY~QQa-fMO< zZ|45^SS4>}HEF#d_?2UkaNkW|s7bFeNdxxi!;_g0<|2AB-vor#Cs02imAWa&N`Tw& zgRD44oK)W-SkUhqN%PZyP1Z`@GK-W_k>*E2k4Cb3A3;rC6rd&)#1+LA)Nj8T(4^j| zSG$CSgwn|m?aU%kW?2g(Edc+%gQmGB?*3~*!fT`=c*Zw^#v9EsE^&}e{Pcw4DXafg zK99*2iJ?W({%QdjT4irWnxB#8Z{BOvizWQM4#nl{fGMI;&wwV60MG;mHHLezKojZ< zpTSJtskL?+?(_y@iOgUo&FFlk2%c&NGs$2k8O#Kj0Ap)J43u%_RKH>#O^07#tQPjL zn@DCH)Mk;9=4Yh&1dPdEGfr{WkZJ}qae*+8{Kq2M91?Fr1~~+n1i{jcGnh%W({5J- zAV?AiZw4~~dd3W9@+z>Hl`@#gW^aA554|+eSj9{jAp#5FA{g8Zj>u0KHmJwsry0xy z5YQRS#7BToovIbq!x$9|kc|P9WD9Ix8O#LObp-=ej7-8SmbZlPUQoRYVX9jV$TBt5 zHiMbm2lCAB_HGBr%mY)H3m&{UH<6ztK$2VA_51GJRhKgHlJC{kwZ-K{J#gt?Kh197lF1~x4KA6%E0E=3BkhR>_yX_ExhtqF z-T0DJH2#aLs3O0(70{1s9ahMj9Meip;0@=$d-MGF^88^geP!OkhtL6`i{Yiq=#?RM zFqGOCg$?eH!Up$AVFRQ!#BHZ^o%QX#3R8=*PrTgdU4*H{J4etB~ zm7s{0oB;JMXWA_zoy%DYCHdDBk!5K+B0XTiVl>vt-U)Z#qO?7Qfi;C*8NeIRDW_-GCh)mnJ07lz8Xj!1Y6*c|RtAxYO430{tl2b@S@ zR`{l0V?wcX&Y$psQ)QKPs>HKl;uLibI-**_mz0#3lYWk@$FRQnZ2XO?CjLgCzXz`s zQGZVjR{HF@@EiCwrU1{4*gB=iBzF0E5Xl8y1ny$EMBT5Jnfxj?^D^x3NQX`vb6AJ9 z@z}=UlG3FR$}DJtSlS{y3Me`?m^o0XyPn9fe?KRbM6pLz<@ruBp#C_ zhL>|m%1n~jk%miBVUkqhy4*$b36yl-bo&v97Cwda;;r_A>h^WYFWg3{EiJCTc3RIhr}}t9Wbfy9yH7tJLN^o7(2_0YoKc4W9E?9JIf^!-BICJJt@Y{vPZJ!!tN}45b1~0N@X#2M)U9E7(3+(6Y{_lV?{ii z7&|bf zr|psPP=+v#yY0%7R~Cj)8$se>#n^!jo{g~sn|l^xXS>~~pRcuAS&SVBwc$quOgHPn z%{&h3CWXw&V(dU{MS!VhF?Q%W%VO+2q!>H@>v{Aq_oEYRkew>fmv0hkfZ96^Kckk4FE;VJsN%t9u1{LH=64o1=H3CHhU;wWUfbtj7hnSSDMy=Csw(nGd zq^+TOBd#&Yduw|Ov}3^Rrq2FF^ii69tflv=qRQSgchYO<<94}p8k@VF4phjT-v)ZY zEGCk?*I+s$^b`vqs;HJElcye~NU-~(7yfEsn~S`U~o zH?KDCG~Rn@x77lZMiV==9`J3pUF7C( zcFXI<;`0UXh`M0BiN?>9hK05%+fo=))dW;!Jmx!?a7Q-ApWmr;c=Z$~VK@X*uPMQl6Ca9Dv!jcB;#p6>rH~TfDVd+pKJ^t=3AV#^%z}T79YHl@@EY zqF);@o`rS5KkT4=*MO3Cv*(6?@p09#L^cOJ(sjgS|&${ zF)7Xse-}Cov_&1Ddw2kh^FwhnqaXRP*S5z4u(Xgn{^KchDA*l}Js)#dCA~$*L(Eu@uA65& zYohS~BDz%m3~l@gg2gfh@Zbs5Rox8p6S+5xE+{Ne5UB7H`- zFI+3$ICu5pxs6K~syEJEdgH=IMfo1tK}~NxyS>wEZZ#n;R}t_99aGXmoYWUvO=-P2 zEho5|-Z>k;Ll03?@-tLQ=@u6))0HgKd6wzQmgy>%>6T3CDli4$`cd0y7PlI(7j2Su z`(j|~w|qe^wBk#%ATarVF&2)pb)pX;hZo>xkA?ZLM_P1R z;!~PZ;uQ9(6l|+T!8R%sY^6TIsZ=LX4U^O+cwm(Y9-_Jg52z|pwMKOd3vZ1IHG--& zsvM+CqAD*%YgBppcS6u}5v4JxLvWv}5Zsp<1P@mQ zg7-@OfrqL3&^1~$Wx@$erAn1TOxI{tcG7G%W~^znD&s_Thj`hTlP<2KXryok?W+^Q zwyp~ybi8@TnRHbD_}AOup!i;L?D4ljLjO1X`=HMZuPF)tqJs`f&n)kRr=%B$c`H1m zs2KhN0NjIP68efgMm1Mx{mqag)t@MosHE`B#+gu3a5j!r&wuQ~`B$!7zWCa8|JHYT ziF+ymKv_;~7>Yzy1 z76~fHq|swVl@n2JY%j;6$U^j7Y+#&5&=KN^o54$VE9yYBq5v@NITM5to)(J#z(HqZ z-C}Vw(ldq@C|HkUSAc~rK`axOA=?wQ)_5|kezhbv0F+vRiYd}=>F3?3_l#}T$>LOK zP+i4uxM=&Lmp)$cginkz`AkkWNqfhJS z0bcwOq|yAMr!+3@(=I!O)=xvXoI)q0Qy9i1>KbSLRDP74#8N6yFNYm{44hm{Sm!b0 z({ba|eTJu};dn9CKN$4W`MfcePn!s>oHVww4!wme@;RNKvPg9*zdxb0WBF-A%a7$} zj86|3pUxVdp3WaktUs9(uCe|O^wuF`K6Gs6jH&3@95$9l#^#7cKBx0XEmEDz&nJ|2 zEdQ9k2hryd0_VXJ3-4eIyCJ`1pxWC6xLfsh8xS90UgAQ8>_>SBZ{2HjfsDX$r_jW1 z`(Atd-8R6&r_p5i#iux6z5-62M~DlS!~ijVl-Qvfw|84tz=GB!glQq}?gw%pMysE> zx(ApNvPad$w5m9+X8f@Pk-l@+!3YJmGH={*=H})A`8akRLK?dJ(3m&sIE8g-tATS~ z<-8#KGuVJrM{{F^0@}a1-M-zt1H#RAZ`;K%o)ahscF$QbB%<8Q@L|Lo{rJeLQ+NY8 zx7{mOUqhFyhm@$@I*s0L2lzy{+jYN_0q@Y-?sj2BSC^MoJYN^4?rb9Us*e9tn!$-B zk@=gNB=j7%=i?zVBK5(-pV5g1NmVN0VOEKk6$bVvD_jsIi3;-U=Gi*q>f?Fom(BWR zIKN-9cGE%095t`QS^lbhh6@@A0Sx+Gf8X(AEA<^c3H*Buhd%lbW2lPGv&$(&yrzNb zuX@Xi?4BuXefQAJh4*$~CBE3)>K5zGtyC6hBP-;rm^JyU;D4hcd?^o6mTE9_I zJn(@<<37PD&Z2rP63=Z0W|Z?04GwYM*TmK;;rDyVdE+D8U`AUdo{Q2I??=DVja%>V zKgAS)t29j2rAD`#lBwYkotJ1M?-NRl{?UXt!)J)^AQV)S6yT1L|KsVX;)GEFAC42G zY6zS$@tgP-nhCxI0k?`2an~=(st#HYA;&DLSEC+HG&=owfFPZIDMWfeOZo$cchL+u z9JIST+ucTSr_qUIBmI7rCpHcWj29+;_4C=#(>g9N_ z5TmL9?cN0F>%o!$^Va_$gu975*3cV-C?(8AIs}OAiIB(+=@7`GdI2v;2xFmLn??1y zpGEchphfi}yQ8;)mafOtm-f-L@LvFhqUD=eRIkW3!Jk@c`ChTXhVi6i5^x%5Dw28h zX9Q<$)=T(+iQ}ZsD3(=8U%EG>qeT(vo;J|K{}B-GLd}H8!9tigKJ+hbM=Zu@Vs5|=v1(Fn%vkhn?X0^%7L--T@HVSHU#?2+x8 zJN>#Tqk4HoQ&cbiJ(dd6dZ({@fJcxgDk+S3NFHYdsT&?l4e-<>-sXWmDfw_s$25L2 zp*#ZHKOoeIB}UDndSy|)VDo=M7l|xh)6?J#*NDH)3zKR+3b`e2YJvp7h-AZy>J@GF z8W~7teNH^EaX%-@A>>?lL3!$-TrPLm$sHybgp=qoFwei+=u~&Rgr=ek4vd?3t6RkB z+8uqyDLjr2SBYchcBgr#*#=`iAQnIa-35PGR9KTNRZpX*BK(;QQ-~go*Z>xcQN32Y z#fmp{qs$m?bDc%$w5=hkM87kY8}C;2IMg& z6Tbn`Sj2*KUyELh>h+!y=5c^2o>1cBeK-BhYS6+{Ks`PpLOq^GA4&*W=5S!D8595# z+~Ci8|B=0%WH`v)@i3zw{}u!%%*!msiMfxYV)k2HT;qTykHhvR+^~T7b9t>?0bq#s zAt5E!J_KfB9zNwmL!_&|mPhjoP6i|Koz}qHLa*x0U?kju6j({C35SgqUZFi(4xnkS z9Q-z#3IGc}?t{uY8s`aCqm;o&G8l=^8Y;S_5&MM!AJ&`gEAON47p2XVO7`} zLyQbC*8OGiwniWA;gu{Z0{@9*&BPhQz7>PT*F%_x(03a`E+#Y2ZNeZo&hyNreTg!zlPb6b_xK7Jmu_VKj?u7|m2gt5|A*L?kGY%@zOoSfopR^Da>5;m74f zu@LnEGcRj)vx;svGi-B@mO*%Vt+K2)2*cB*%pjZ@ghOL?W)PON50SN&?#lWro7J^I zAsk0VWCr1_TK676XdJ>^&MEDynL(KGi06IfA>OQL5dOTHGDNsG#8HrO;ihCmECRqq zNem;Ik*&d?duutabC%;9X)ap!rcKc156dE5f2bDe&l)Y#X{ZmD%d0%~fx@l~p+%R= zix9I`WpoZ6u9zM|EM6Onv^F?rW|2nYnMGQFNQD+>MiI}e@-vGxwRRHPNUi0a_)|v) z^^Djc&_pZ3$7I9?z(bK)q!2rCU_QH#@O` z$|9}3M(>G5I@ArwrkYSMpnI_Ps9K~`DPI;VWlv#|)(&B2k!GdDfGRMvNJBJ6->W*a zNJGG5)+MfQhiAzm-TyZCh*_k|r4@rkx?Eb$EYg`pIcTPl8>@%h}KK8k|DZ3XX?GRO7s5A3ahlXeXeAc)+QaIRr=xjN&n;- z^!0Hx>mw7Zx3=r|tE;QaU|v2FLK=aU1$grOV5N=Dd=4V>1mH?w)_3Mz|ujYM`F z|HV~Qkzd@Z^}rRjs%2dxZ*tc6oDfNf|L)E6-^=rdx%8EJ2OkpgJtcVQGJ1vSyg@q{ zO0A&O)Qiy4{$eoTK4UO|YdztfD_xIiU~hPYo30rALa1h5ZuBm~)Z!hUl8=9DA0l64 zTkfL{_)DYcNsF4Z&Rk(*@NgFsW>-31x2O}}n~`y(V2NgOlsbCvDXad#zdZn*sGj9Y zyJZ-769*#{{hEX3r41!yK#VvO3l^iXPWDdVC@Jc46ZjejptJ-)zOE4bTZ2%H_OmA& zJjd%S_kiOS&@*zi)#Rs-6v^mU2O=5m>$o#4mqBSpf5nbwloL}t1s7h%G8(Xp`Pe)tL+2WHun z0c&I@CC7v4BYsBsb(CYcYPn;4#!nF+&0!R1EzH1!fY$H|zK$l~53q*ar$SPnu3`=e z>=9;#Z~8SRaYD}3>o+_cI9YKw5F3DO-s+pr+++cVrw-q& zy)RKZ41M-oz(sJziwp3W=yIgL?5fM==i%>U@+&j>RXFKEvu?uvu2M=<+L*(-RX_se z(SVlVT+m^@RhYs}>nog%DOiZvGAjvT@+^X1b4fh+P}H6nro$yEGf86XKbNG!B&kG` zc;PORd9IVf(z*SJLkpimdhu3!L3R5&y7B6B<~&b-uhVxJqj2ciIVp)I;0BjdMw|60PUT-1by0Mhj7@#mcskcO*G5aod2A(YskEtHpFRQ>w+H#D>^Av>)O~ zD01wbD4*eth$8k*R0>w9#b`aH=r&U99Z6u07K?UIPP<$bphRu`uu3f!r;e5krwUQ1 z#o||nHwwq(xIl3+%HTU?WAL452&3y2mV)oZ1;kU1UTIU@HwnYANDWQurVPGQHU{7E z+r(b$Q&d9{d?zRjKQOgeP+q1M3)NGZTCCZ-51PC@Rhi&SE#^a^`&ElE>+73aEtV+T z$ZD~~SE`FDwOI0rEvvGk zD3WZZ7VE{3Jrf*HjTTGV#WJ;6=Nth;+9B4yiP2)3IBf%<#po4LxadkZ{Y)*^xV$r5 zv>5IBOf43KdX9AznOclQ4CuOG=wHvfK+H$}<6(T6TFeK}NHM81wOFeKF&X`s)R|hW z*4k~jlN%F$7!hEP$k1YLpr6UmVnlQIK|zaUYO!{8vq3htBp61f7TezK0QEqo7V}wr zGql(MYO$Zsqp#-BamMuLRRfR8&Fyv_JSrExHTOw$QjtJ#uY49grARbPU(2V^6Rk$K zTjh!oyf4A`avd#mDa7VftDy3#@3!l;cCX5~coHYee%~ztA#uO&dIP*$2CdS5lyBA> zZSW|)KaX$&`GGgxAp9l=kx%YDYB$#7x*;6OB^U$ziV}dHC(l^RFVbSF8T@$yy1DRC z5l&h}XU%X@7EDS$KN4HSiTpkn{Lv(IDh!Fg51s%>srh+6;rXQLIrmG(4*Bphd>HXYKR&YR z6s{oWw)@J}i^B;NUMZDGBsN_q|CpMQ;glwQj8>VysYyb28v9Q4QtTLg#FFPD0(jcK z&`zoW;>|x?cK;vDqhD~)2D`4|IO#U3m1?VYztO2~)<7z+fi%!*^maQSrGsS9Bott^ z7I-vuyNzyjb!BO}%!Qg?Kqo@30F50OHUW?;ZZ&IN0yNPklJ)}pqYgS8C=-+P*$FjB zfOK*(S{&jxs4NwC(Z1k81U;kM%W>rkeJhw94|bv;OZ+1aI-+*ym9+XveQdx_3S9u; zEOnU}q5(~Wk78`(Y*1H5<$FT?`T#uwK6hcBxULjQX2ZwPo|Jm$ankHO&x^7O#IjZS zj!+5ZGPt_DV(oIWw^2aQ@4tvXJ35>LWy#~W0|mWCvcc3<&}$@W2Vh_6(~m&fYO+Wm zStJnPnNUXhU^hL}~7>i{D05Q7Dapy_fy4P)v5X#RTebbFc2U@DZ-~ zXg|es%xlrFbeGlNB(q2$0io;^yT)Yi_bd`f76~M{tnN)DkU9y;6U7(-Uag61ek6OK zF7Q9#>FA*kiH{(=das)tVL}LVkwd4Kf>22mR<6&66F$j4GX9Ql>f-{4kNA8Zy$)!= z>eX(`XXFhEz*2n1uw=r@aDE%;)@%h|UD=BGj8PH#(!ISe9b$(&vLE^WYe6?%BfW%Y z!vTtRY~h##zo0H5q>Gw*6QIMOUz;LZgJ30Yp;E@7L)FIeWr z_eZo?bZT#<$EzY(OBM+viv$voI!99q3%hF+l_W}`ylB`fSYgi2cJFqY?R!-qNbLfN zf-bzP3N*74pHNZiys8;G`_l%jprs@ zxM_;`2Kc}(++}ow>()}1U@c!D1L^BYIt*dGIjv)sad63~JC zGYbECu3QZMB?nD0WxJEtJGFLqXS>_L&v9ocK)p8aFPYDDOPVt!37E7^#Z29Zb07C|bq|HR)kT2?dVBuyzG={3^Jc~AK)wXWcYvA`` z4>w!$)=DhgjE8REYiJyz)TA^yNN^Yg;rhH~&Bu!U2E z*Np!t5-O?H+xjZz5E^pG12T{Jg&3xx33$}k6)zQL>5Pb3Qu5t8>#49x7O|nwznet= zi-VqI=R&u6r(FY-VWawPr?vyz96$?KmOR%*GvPGxsy=KMVlUYPidncZf!i~1V?fZe zUn~6ACI0JjI&AXy<)4&j$G3Fui;w=NfI`JzuOBq?CjprFHd>Ut4NjnArn;bK&|GyFR5I1> zPGhrqy9s9bb`5kOv#v0)_mIc?81Q(T$h98|Z8!Ser_opUDP66?;B|}T#rKP=6`;2{ zA1V&|1<~I~jJuoY6M<}Jj&aB3!@OW(*n#}Ni38r9LdUpH6FMKF-@T3AVtP^={f^6p zdBN26YH}klfl^&fZj=~j5MEPYb)&+xhL86L=Xd|1@V?xCD7-yfb9}g#Z7jmyFnU1`^3BVKgkO2w6bv093rlZ8MlZ!-7L;Hbody%yLQ9i>n ziYf@eqf(Rv;Iy8}mT8FqJb8m20s*+Teo6xHICW&3P9gx0Um4ygC`{9FF-ih(&qx3s z4Pm5WkO{!!0^%u`S`kst;^KAMApwc!Gb?2T;Cny-eou&tm&7aaJ_?f8V#2<$Y~XgR z7j!}D{bAUEZ>20^UgT$Bt&C?o@BGYC;SqiP9sUF>&H_+AEW75lt0@8Cm{=M%hi zd8qL+q14CGQB8+HgLDrogxf~@5G+wX)y=a~#znBC_Zqi%TUTlwpm_r3jYj=EkaA!^ z>6Whh_VpCh+R3;9Yp0$5HDF)rUjsJWV5J{0rPue5A^Z8E<*LC2i&?V{QOCCcw;|l4 z^&0_JKO&oe?h$MN;Qi#YEP>CcH}3c}OEV$O65w9FQQ%oxm#k3Fpff5~4LP=~4fPUO zCR14@-yl}WD_37bmsqQ$v}#kp8I~6-Wlw?6_p~ej_x31Ayo4FmRw2?zqykQ7!Q&Tm z1=-90fd-F%Pl+{&gU92-O=&XgCSvlvmZ9y!KkR5O(b|w&!>tQ@MJ(Y@GnG+ArQf@< zJ^Xjro)|cUeLpp|4R;UsBSb@=RoQs=>9>kfKlQZ6Qq{SDWFIIEKt(G}y6Q8P$lVLN zw<;ygTjV6xzg5<~1&4GNfD3Rn-iY+m%YHY}yOEBdW*-Knc)TJg_ z<7CD4LP+R^1kEr=pRjZGiZOnfJn&ii}&#zgyQcZ z5C3$;kx1M*@ZmT?@qRpdq0Lh}VB~@mzlm?5z*D)n1AbSHdNJZP>(kLZqZ-Vp2KSO` z(8;I<8Ok=`@?Iw{n3hK$u=8^#2f+41ht-T~un~1ef^V*NXVo5s8P(vUM>XhMEizRYLG&n1>m;Cawh}t6a1L=%*jJVHAq_#A=U+og7`3# zsRrr0LJthUs-~bCq=hJ{1|w*?Pz7laB&xwgy^2A{kxVtHtJfpt(4nFlq@$JW&>>sy z=(5my+!+>zUEpeM?FfiTq8f}-M~g#b<&vjW=zt`(e}F}i`EwAeLElHEFCL1zr=S`P z{3~!qHOSlsQxSM)RD+TcM4_ycQ8pvqTxb+5vPMDt%|$hsWDJq11``i#nQAa9M1P_@ zT2zCpOUtWzszG?VQdmXPJZt~c=qYm?(~;nD;W2b*r`7?)FVLOD=4y9z{uD9!1csw8 zIcSkXbt>t&cv{qC!;Cc)*yr!}(pLfhnS&OR>+Oc*s)V)QZy28On@yGHWxST03Ez17 z>SCcHZ70AuvwngjS>eBo=Icr-fA6$SV@S9>-ke0~=aL6RP#2!07KtMpb0Mdjv(D1F ziiRs%lB_kP{C1HUK~F3vR6-Y;MbcSDMd(W(p2<#Ix`%&yRCE$33ue1i%yzuhj`nag zzeMK#s237b#5X{tWzQZOXMf?&s0MX3OQ5Tls0P(g+5-$5A#o#?83y~>arT&Q&|!I` zz^WOXD{k;-0J=d7CO81A5Db;ZZV69EjZY1z8T4~A=-)eLq<$LW!R4hDAjw1_Dg%&T z@EPndy+#*44=d)adm5eEs`Y^U52%(jo{NItl*9Q!mF5YiY}fk(;} zx&Y>~I@ImMij-R?G1+LO+|N4bXb_uM(v?WsyTpl@PBR3DvZiF9xXsf?k zA}AXNQ0;(U0?icPLpdNjaL3Qp>o+_sg$%|nO*s(522g!MDd3AZcD>fV>-zu46Yx`? zsuh4wl8k^2OvN3VC(rnheYV&^_MpL^WZ?fS@4+DXbAA{L$5Eboe7Xmzt3f0iEj+j$wj>3!0?a7i7F8B$+oH) z-RiPEU-Yl;UvStT%fXNMKSM_;(Qom>dposu{l(^1w^(mReCHY|k>@%$hB$#kNK*#> zuN`zq@ytbWT`(noKBY)VDjIEFF=)3RdEfB>W~(Ry_|4gl0|!kK1Cru}k15_zR7iif z&k-dlH(CLt_{Ttw=YHnkNC6lrwfaJ*IRO1jQd#&jpg2lOG{ji1pxH?-&8||z({b2T z%ENzul(Vpr$bn42TtV~kIM+%6z05i_3E2cQAew6UIW8ZrM2cKXlQ=;Yk{;Q`oA!jp z;CIkGSN{mVn~GFkQ!F->@23mq{(d;H%z!dd5!nLGAU6WCQ$ z^ChTq)D2j*)cmZYB(#I{p7|%lY{gX&Lt{9E>>S_!9ANh?`aPoDC9Vlt?%_ zORpGZFw6ikje}bGq@yvAk>r1e- z#2DoSS{nZAKq|uZ26w*DWJ8px&e)Y_Te0EERdyBg@IM~qx%+s@3VMon20PC6ZaCMX zox&tC(aw((pXKt>j8wYhLzl52ScIvT_-FYL#sCar$*g#DEnN#%qJ{DL$Hyl&7K;Cn z2d4>%Re?xZT$+%aZ%{lo9EGSjg`#9&!y5>TFABU|U*mt}pbc)Un8$ClLH)#q_Ijza zy%i+j+e8ORzhPMe3Vf9Qi^HfC{>4$ma#(YtVrrW^7qpRp4&oML!=Zp*8N3gNHsH(s zwL0l+B3C7t4aq}2l(Q);E$IjdlRdDrDJsvlVh`$Uq80P-@0!mhPdJ-Qv)XW%hbxdj z9imx_O$QUL9pln$lRV*IvKFoNjtAzG%ESNG5f&4(&I28Gh&~n!RFXYyFip6@*ro_V zA#MPcb;f_{AmK=gZ@gS%BRidtoK-JXopr4rr#ZcYOc{w!UhN|C58x*u5D?xnRdi-;J?#6m!#@eLI{#>fRh+sDTmE zu2J~w4q8q~O3l4VgFUD{$*`OiUKOkT)*Jsj2R&`s(IQc_q z3djGKBivnux~i^zW&6g((@8j?xT7-`lLo!~iSmum8hjTWBiApYhXFm_F-w!A{?50MgZX zYVdgoDyz7t7rAOPMVapE;p^3?CY%H!!89WO6b<45b0?hQ^#l+E9#}N^K)S~~i^fPW z1ow%nClex_79i>7cDt@kN*-2MR~Nmty>XloQ4anZ!~fLbu}Zu~@|vIq3%>8^sr8Wo z>w|x86!9Vsv!HHx$`;AaHvF>oyNa&YGJZ+7UNzbC$2`qvsBSo=)NLlVW!~V&?@yuA z2HpPk3Qj@mmFS=&NqU?F5Eh%HWr|!%QrAz1z%g4uqVjAj_Mp^Xv|=9qBeVKTbog0K zIf>VMzNrF^Jd<)PtWGq?jmj}v_gLz)N*?Q1_R2{}6dr|@fdNm>Tec!YDaiCYjZOsJ z)32Hw58r!&y0y)390}dpatr&3Nr3z_3jcY+0TY{!!!ijoBabU!YQ@^8`yYA!Ld9f1 zOzX9b7h(z$uz+O&3&_oB<~4i!HGfKm`C|bKNG2`=C>yeUfX4zV%Mwi%%0xr74e)!m zrZl@s4R2$#sg#5T6zVS61lVIg9Q$}HW3hljHlj&@-6EAq88AP$pQ;ll?08yG8{A}P zyLUUy_Pr`_e|G`&+`R`FCdcDVqe7tq7O>3X_2_Y{GtDMkk;S#mUth0zT>ZFpdon7xPvPGORQXy?a? zSqz0#ZXk@Y5|&N!q03nOB~q%Thy^V3nm1l&MAw3q*kv>g@K``&p&}MgNUSmlv8F;H zIp3goC|Mo3)Jah?txe_-nx^VVYMXH&!XoMtAF(R6)<^;`rxO&hfLzT@I(WWKbddBL zRyz9~j|J?rQX&@6IvWctpl~Q~SU~G?_&yxkfb&ow>)IrpO<-}}LoA>;|HIOfj({-P z13R0d@@y;ipw1>*F$oJOb*ykUv4%i#RvYf}W-OpoXu5+bYD~N);C6knU2nWcc&zDd z&0e(DY6HwCm4pR^b_w8&avxYggA2FDM41jeByIqfbr!LJ`o>1UA=3#KOBEazP@k)S zz#0HR#Df6zC5l);RZ2B_&4>k5jc&O8<{MZHBVpy}0UN%MMO0~XMf+whh$ zj|DW9DPjRtX*F0tRnl;#Mkf$Qm8yDyPM&x*q(7$!rzEpmtBQdph*&^XG7T0`m2_BG zKvmv8X_0^hF8wit-5Qk<>gP5Z@9}J1k>ZO zfFS=39}5^{Dq;ac4wwgs1=N=)VgYH&J;Va4iV(4YVHy<{Q1yDeQ?Xb;n$i{v7>rh& z7e7sf>7&L1hKg%l9-RG{RaLQAKyDeC^blbwYAm4PY}N?c92QXZdV(CsVF6X|CyEA- z6c(^t_3>j>0u%&*U#YyR#RAf#Ar`Py-Xjui5#^x70&>&O3feYo4H%CFOkW=n3uu#r zD-mz=!k_^QXp_C>BpfCsH;)Chsg#HX1R;jSw@`xT{n&_UZmdp2Y%k*$>xx&662%1>v6q7-q=PXsLj- zq<>6MO>n!MLx7paTHs%B&v8U9-iIzdZQE2<<- zkS$TBLBA(->8YeT5Z=lILN#NJ-8_8~s3T%!1f~<9sBT){IylFJ7)7+yFmK#IGa)%; zxd=F{R7`qmM9;_0lM&-H#Xsbr{p?QxST5>=ur~2zqFkV1rJ@I^H8l!oZ^qH7YPH$E-RLyhn~iGq z-A-+12l{4fyAIKYR+rY+Dy|zXG7pkM*fI!q@EZDfm*t0MC$Pd_F1+JvuGqked>Orx zCcj&WbkA4Nr8F5PUBaP?h9(=X^?fy2mES;3R%K|>3J6} zMYtCvyggJ-YT}KNP#(EHYX?N2t9~{qGsSVN2NdNz;$6*FkKL65=NSC+4&u9vOT)>W z!Hq5TJzs~sET$}&*mR2e<|wKK$SNIE}2>D*p|q($Su z?;yiab20#ZXNVGdxsSs8s`Bup^ggQW;lG+g{MzGAU!j);NxhIb+v82tR&u688Na!% zFGZ*xwapIj?$9On=TdYp{x!mss@>fvc7^$S`+e0J>+_YjkO1u&j$bc&})eQ z_fd3i;8tsV!whqcJ3sMT1J{7>_n}Rn^F!#IRA+kV>XQUM;=X`wYthwJ*zr;vkWt}%Rr#Tu>9ooo{x4IU=^|6T z^}4b?(8GE~>jqmN=(I%)PAB!d2?x5hN1LAAKE(;|;lF0w5*gWx<2x2G7!oLAh{i$# z97REbZ`{KyTZ8|bQDi#31^+)Ugx^H47Sp>NvM`NjegX6;t1ad}7Df`$qQFl<5!>i!EuX%YTe638gU zqzvW*s2uhMpMX1B`?jyci%&pq(Iw3sT8=OR156#_uB@%9yliL%@Xrvo+Y~P{&VQ*^ zTDWz^{bjfu>Z=VUUA?B+ZBZy$8MY6~w>k zpcVa?GdI`0_bXiMyC(Saqb4MK3~NZ3&atDU{i$roU8h3Cuj|{*)X1dO3;Qtkr{u&+ z7VPPOAe|<+Rd(Vu zY&m}S(rvShud#Dzuui6#4mH#RxF`%#L;NLsjOE@rex|TJhn|6{l)jNS;gIyyBWd*1 zQQ>`6`Jw2kX_YN#5?Ju@k zWU2A4z>7a+{P#$#Ip*}^cdp3(23n)Na!M7BUvmZUUmrC=)|mRTkfb5aFvH!RDR`KG zrMhQC%`v4Koe4tTTnbn+phTD)?IBABDI_e}=uALX)!v20FgOz^3pUzem2V6Ys$@9d zG)4DO-QgV-sjF*tCJ>q^K$NtiSUAVx{aouzAQT`H4QNjg<$G4n1nM^v&HycpUAyHQ z@GC+MjLrmjLrmn;v{DR?cCPFYWe*8k3wQ_Cg6)OIup>OKKduc7^vwCAgY-`EaJ*CIunE` zlbi`?hStsm^aa1Q(uB8{@I9komF!Hw(4Op>^ln@aku>QSZ*(SL>dH#)_M)oZnSjZ9 zxU#wN9EjR(bS8)*T2R?st3YR3VK12*oC%_m(@2mM(oL7}UIGt=J&zV`)Q)K08KQ)4 z03K=!@2kqglhXUBve}tHYN#NoYZVI7oQpO^Y%6oq;g8?c;s>SbrEn(Dy*qS?-JqnA z>R@yx5Qx`!gfm^IR^m>-&IHC97@Y}(H&xbpEnY-;mv47GOSG0ish6X72DQ~2FJqh$ z!stxEHPB>s3B*Mg7M<#VjG*L0s<6?SKvQ90|2FwF>fU-NXFBaKvonEIW#LS> zl}qgp^srvhy3w0bq`D1ophvwCmHQCPFj9kz&IFKJKpffz&fyIIEM~;Oa;2f+N{8b$ z?qQa#F*+0I`y|5fTA%!}Y^Qf7(3dwnEUy8vrZ3*;OrUygP-g!Uzm7bqvk~rV1FH2~;oII1{Me3)f0?aznrgt$jdu z$bi*ur?Xw(-R!L|QWHc9jjY+?DIL>E&IGDf+Bg%a-rEyr0#!kNTq2V*0e4M#sLlil zH8DC9NbjoD6Iy2i>21wz5nGEXG3aPe1%*-f#3?A?o?~(*fIIatVjdZs34#)g&IBQK z>BDj+&=+rXCZMl9C}#pyc}8b~@P$NY0#(NG4y|=2ps)4iOc2b9xD>-05~j0-GeKy* zv&x+VF0p_Rtuq0)FPOA?Vfhx$1O`b;bD7gS6R7e^knZ))1ggvuMZ8DXnSe%V3IaMU zt$B-f&II(m(3xPZwD!QA3BuKCbSB_t_WRA5AbsVG&IC5uxl%+Z!$rW>nZTxCjifQm zSWyON0-G8doe4nXWZ|F>#hE};hg3>mlE-l4OQkU6MuqoP<%goDrd2jO6G$T?=&7|( zZ<~2(;Y=WvAB=J=Em)hSX?tV2-d+Pv-;Gt5?*lEi*_nW`zdamh0=WW4X96xc3rQN% z4AVLja0L$+uw+EdMSvx^^!<;bR|t(!6sY|Km6N3O<+TnlUpkt=i#ESZ-l*xig8teHmHy?|1jMRNIz#x%;(X2vJCFjZug$ zH~NH+Yn$Y=+@HG1J!cfdG=P{sMR@N?ttfW9hZ#+5Bbg$?5dFo!ig<=R!cK9ud4vhp zKM4`Y-tHp;*)y65WV5ai)90Hm64}qqpnvb6OKc!AWOh~BnYYqhF1pdaWo zdb^!=m1qx|z2kX8)avhq)MMK_@U^?W+u3Z)&+*}`@C-st*gkvB-u-H6-uWTN!9VJt z!@K@aUjPIj7tyDZeg0+QD(kDW72j~wtZfK_X9?CHm*4eP{|)a2WjVa z^G+3@9=&ZB!%Ue#x${@vn1%BSG}73AD@U%7e_y=*gC66C3s<)u{* z4h7w4Y2qB8(xi{J1U!FJlO*-V{cvw4p0;navo*U#RAIe9Ea7VRZf&OlLEg~l`Uvcf z{l_!@`8@h+4jpH14!ntRwNzdqqP-#k3s;!Wxz7R_OALCVxyUwsNO}NG?X+r}jl0{e zdZPnB97NO14u6a~k-%a~np3U9o>AXz*K6%w zl__=+O6~Vuvg`NzE;%CleHYFX?zV&=V*D5r|BvlwoZNeK3(-5`gJ?#w$FHbGGxCgR zT4+W{hfiW9u>?7(@KI3+0v;Eb_QAihkOvRMxa!A1{(+l|Bqh@I;~1azFPWUpkHNaI zl)LJ%kWE3&PvrNx7|lzKfFbc4d;+!s^YeVd^GVZl^pj`M*T>PUuM-Mc5LcI$SKTAX z4So|ggkxwv_vU@O-|>iUp&IYdc!|pP0*2epp6)~qT3zG2P(tEeeq1XKvN%(K+#jOMw zGjMAh^UAzs~ee`=j0Q|pFD)C$GmmrF3UUT*X*!qnn{7Rl~t){d8c6eqCu zr>+D3(kOb;;w=`+8a4(GcQIk^6k4~a6W^PW>|3zhNu9zWG~H-5wm@rGt@rNlG~Cfe zKj5Q9+4#2|2ze$>vM@Y}prw%%ZGCJR1~rpH1xXx=?dpcV=Ae09+DH#ou;`I>vUjd8 zV%C4f6v$=(-4&c)x+>$}BC%4XwyV{N(!lhyC);a93G<0%&G7FK!<#N~tT|nf(*(M@ zSW}1P9ki(KjsZr5SmAWFCAQ{g<)>7qn6y~>I_?b1MWK}?@OG*8n)=~iaS+z0j+P8} zRq=pp#Kt?gfS@iZue+0ej_iF` z-+TrHfUB&PfU!Ji?@P(O%NZWv)*OpSEsNKSO#DUuU4cZ%e)X8SF@W?R{Kdd}z%xlEZY8j?(A_D4#Y z{jVp`XGBy$e2*)OsDQP_MF>@a^366_-@2f5bzFNq0H>cN_%(wO|KE(JH;dw^S_$U+ z!hygJ4;V6UjM(A(G{M&kPZ>?{AU5M1nBa$Deb)?1g7tlQbbc!N}ip`!NTIDXJTxABqZpEZD3YN(#z%2^80kv zlB%UxwWj2XRclJFShc3)*{aP}tr0dd7%b#ZC(uvmC23ETqyb>NN_J@Kg(Iis;jM^h_D1g?!dNd8htPlCx8Cbr48|3S^ z`jW40Ao_bJUH|UW=&Spbn9+dF20)gp?-$G{c&;&KKVTu^6=ZOe&$&0zCwdm(F)knG zg?^A^<%AH=J|IkiBr8`Fz)t>)3M5%npjJ^&-sChDJW>phwH#8+21#}boS@nJyU_WN z+u^qXa8_3v?jb4A z<#6br5^xqZthZ$I^7fo&gI5dj5Ht$FnWk?_z!@#;p=SmHoYC3@WYGY?8U^5tHlhTa zl{5&eaKKq84S|)>C+ZN~a20?vUC)$&Gp}#};Ec|LkN%MXXI?$Yt%w3}=Cz^(oY8)U zyZlO~Xz#FS33S}!q5zy}`=-QebeUBbUy;Yq>QWZa>P&DS` zeTblF&jrhSW{4<0r+~7Ba!oRnE%cLWK?P+C=LKXaTlhE7mIBJ=eWzj4Whh(N7tjvC z*M}xdn?sb=QuvzV#C>nzYkxV4s^~Nu@W74W7E3o=usEeYr$;g%3eDv6?{0#A`Al=Y zJ6~_E$AW$b=AxVutH$4NAmq1ZGJj*L-+#n^PkQ6Ar1Wkx`ihTi5Dc+jGwvxdd>1$3gqxis`HfzK4qrCwuNxl+)zI;gNQ8>xxUps`CNz5~qz?QUCtck0yy zS>n54e+=7iAE$41f)mq|r>}yG*Gag%v0Js)R>R!AIss95M$JslSTRN{2(YB69={9T zKCFs8;lS61?M|d>K-Y3|@vDhksc6~4Up3Hf?u`(KdeUAH@3iBCTwyV2^dZGtHl2j> zz3)|^4F0TT)?s<4x;Hw__RVVT-DVf865X3709vd)!jM2yKVfI6nqS{)4eYy9w;&V{ zQyp%ho!(C;_~?Fa8vMzd_R1-ui)zPdO)w3B|IIF^780%^=3w^G^MF=!a2@~(^tEwo zlCKb7N62r$bRuT#_Bw8dBAxLI#2N_PG5(kMDw=eDZ9;hYMtvR}piXZCp5PI?J!(Q98WY)%`Ao&d%*3aRbOd8Tdb0RK5|is5`w! zY)EsDNAlh#8+RNIqE|CSl^C~aBXQhwZmr$kOFqJ1z-$mdK(`j@5&)gB9p)o^QX^h_ z;w3;Ez@I^na1@KaAVYJGq<#pI+BOLILeqr4_2jNUZR-~Px*>Z}?YiXLm6ux0wFaJY z7sxv@n7_v8Z29kxXoebEBJrzmuQWKKNj|_?_V|Dmbj5W_SB?k=iZ>9%JD?r>%fNYX z?^z$^i;ZrhbE|=Q=V895{%p<)^XvV0`nv& z@fF`$I<5MH6gjGjZSh{}vmf}cAVNsQ5ol7=^JES`7qK>eJ`!6Zu<=IhfJ|WBB--I? z6N$);Nc?@(Z9pb*G=29F39Q$IzV#szSlYUU|3)IPmLOvY8%m(AZcW~X!2)%qEiw6L zG$lf)Yjh4sD|txd*22H5h{!{Yg@VabvcpR;QassQqkA11JmNPL@p$McJX^0ohW+W5 zqwmmfg&7zU7~(66=sTWKSLlMY2vUrcP`yfkY>+}Bx)9`oz&fPZHgrn>J9RNQ`neuA zq*YnPI~cKm5D;Wdiss;t#XB61Wa?8fd0V+*x}@avXvY)XvCUU)r!9|h8*oXO>%s|=@#3xPk4^%`s^3k zP3F-5IV-G|pL|#(YT7M>mzX+&q$amjFW`;>wig0FmxG#xUf7Vl+&A9X(E&Y1OMjz0 zkO_VdqEX`KU`}5&Y1j|P?_s&PWaZ)Q8l=}@-;&?e3cM{2Cs{A(5*@=4B*iK)d*q%Z z-nHU)0e{m#bK(6qU5ZDdu0jZWP(e@H!={I>rjiC7ErC{szY77Q?5GIeWU9>Oi|hjha`-nOY$A2y>HFpoa`8M%x>V1A?QkV9kp z_f-tc{^NK74>1x*;#u;_B@StlX32xJTC6?NMrb&JV+9>VnkDc2W|}2Wm!B`qk{35( zDah%>cO}h|muAVMd2E8h_Z@^>G}`!>=%*2aDB?vH2Q16;3?h@H%3CfMi`-=h0rCKC z0V!j_m%RS~d7PWMlkhblVBYulll6{*T)ggv1?gPN3teyo_?fq9~z1AfH{VXnL=cTy_^Oz8ah$n2U250W*j!6Z@8)_`8ZWb~7!Wgz67r3r7O3?k$e4hSM-xri)3qKk}1@ahp1#sh%16hVZ% zR+K@6Xg?+7n1p4Nf(Tg@Orga&BoIVM+dpLxA-}YToeK*h)u$#Uw&03dct%I!RcRX4dLAl5kNwe0q8r4p_UFCDX z2i)?iP(L1bpm8^mL;Zw(0ik}74JxiM`UVwGjlQYTcZfz`IYW(AwQ=lK$5U&mQYZ)+ zYG?u0;SX}dJcZb>$h6Qp1WQ}rTCX;HjZUrCgos;EbPt-?Y}M8pH#S=JMh713MV!*L zI6EUgvH&K>XQ;6f%1~of9oLjvr&GHVlqLnBdNZmJhT&2ugg#VcsImIZP~$ZiAYcno z6ZwoZgJ-CbCcm!?HIb)YouS5?2aUo2=0FjsGIZM28EU-7w3Ggz+mp93Lrvs`uNJmF zLrrR2PL0caNRZUH3{h=CNQxhyKQ%7bdarD?AhO{ON1=r|K1Y$E#<%*W#^qeyj&UXg zORx>!$_zDDV1^p|yW}#|IE`&zh8m~6G(!!fP6Fh~odJWJ7$g*`TNMP|AG80YDVf*| zHB^pag`Ed1Lk%5*EQ(Qzt`7#CW~gaFSViJI$OqYdQu1MfDDMhK5|ZfPT)ojI=H+U6 zaG#d#GduGcY9x7&%TOb|1;eW%LrtjUC1dc+n45PJ+)T z1b2;itf3=gf!(|}8EU?u%TN=?K)tk3Szry+LWY`4Xe@4C19e>a7f%!Tm0cJ9c9exb zoOA}%<8;z~&O3y(wfeQ|?^6(hRHaq&1PuL&cb;V42* zbM&vr(GMHw8I6}Rw;yZ=Woxm(F1k5^#<$ux+Z(srpuF6TcDg_8q}j|*uzm3R1Clfc zxFCNugC2o^RK3Qvt=5HF2W~~s2si4dYps^4d*S6Gq8-A1XZ$~l`8|%~aSrXUMs2_2 z-LBs;Yy%72j-#IKC_ctUCL7Dg_yX}Ue(B=5L~{5nEm)-o$-Ov)>&Xusfyau!sa77; zC_Uf(6#AKQlh*9L((*b)Gx~t{hM{> z(bM|ogjoAPf3oIHbe%ET+_DJcqP~E4|9h&A!%K2G(iikbULK*$2}!? zKEmEvAv7AoLC!~Pc>otTh@7lz1pnS3!TKeq!%%_(E29q!DMW|MqZ4wsHK0%kaj!_p z?iLPkI;2Y%Xd{RaFk7hAMf+J)@CDeXc|ig6b%t2id0{O?N> zP`4mTm^=w~sJTBd5T8wISWbsb{&ZcScUAf+>v**O;R~*>;J^kKQ1-w?&)>nXp)CAC zcM*#O!;^LiZ~M@Vp|?+fY!9E{%bqc3;BGQ@p?3wlP%Js>J~9&BVQdgZMg`V~lo!4t ztihuQnHGHWhs884g4Xpb%+_b&2g6a3Ig{}*6YPK=D2vgXF$6|4j>xaFC53WYvMnj} z6SXZVoPUsQN#Wn9ZAspD8pd9>C53$f?fi+cO`^HEU9w+lWy*lz>|QxU{`@3@w2m)p zObf0HFcSbZBwFTjsl?fvOg=U$fWFsjJuuclNUU1@mK*VfiI4^MiO135tIb*$IDvpd zPoN`iMOr~X(4iTM_^S8^AsdC#IZ+CK64LL0Bw@D4LmDbvkcWZU)=0mQA!J;Vb*G$F z^2H2%Nd5T$5)?3tZk_mx2GThuN;@NTBL?gZg}W@|8+OJjNyor1<>)IFA)LGr%sV9=eT|Ga}5RTX@!M! z#Bz#^VB21K&|~2)mP@7k)h!ab7RN0zpt#B{GN8E1Ei#~Z>K2*0MGny|G6IjwVQ4~m z+~p+>UX${;3O*(c`#}`SY9=)e`;qdvDUW-<=7@-g-+buuJtTxXUgmP-aBwCAr?}$> z0(Y!P{Xx?C-lyUY=~@hNC#bkW+zBeK5O;!#r{Yd3?hH}f`ALNSRP+{Lv7d}KpLh!_ zEm!{ zGNAcB36}q7$^WzL|GD7*xtO1J{1+f+uCuvspsK;-#fR`9Ak#h~@2bUi9{P4t-<=n-jTj(SIPvP_wT+^k9{Y2(7lBUk|*0CbTFtd=meUsZgm@-YIn1-*1Xni)T`~Z>qV z01Lr)j@_z394T}6>O?MUj+&XAv0{u^a2Y77$M2#U#bXGhGL zon{@_oNlYR)^LUesX#O>Tf=VI!e2GeZf?-#u1iiAFOeSNNqa$j{KP@7urmPv?IFe6 zs-GPfE8kn*_hj|Xwd;*{%}gOnw~Q913(Gszz0qm5Z&o4TXBYB3b#I!$#aerWAwdrI ziT4_vjqbed-cKi02VI9w)O&Ye3zJTmbPMfV9fvJ6vSQRN5SN(ha0~79emda<_H)zV z4G&Ly<>vjwAED#4CYT0r7433rdAZT;#*9g{j}8W{=Ip^_zBX=6@)hFi2>A_|qof(U z+v_-STEH`Yfmj0p5zzkMbk^z6^plh2DfCggBWG9lyA(P* zw~OSbB>!aK{}wDN-w0XMo!%pJ=VjUjdfDJdytj6*6k{z*qUszvvT}%%l=&ZUb&!MT z)eMHQaho=h`@y-jc6%@Rz)bZ={+A>BJrzmuQWK~t#*L( zmF4}g=@E`Zgb&c;Ypzb&7Yd?Er*9e7V}b49Uk1*D>j&%EeX#*rp<4~i`?K*q^=ETd zm~Zb5un3dY4LjjNwd*JX>?CY?m3vx#3L(2tmEQh@li<3Df7?I{%#+uFErk1o@oj&h zv$5_J;5$pFRZj~tJY{^0PVMxn=~BkboUO;Rv-d9b*$)gb`X?ifz?^mp5}$p4T$m?w z__>I+@$-?`5`iCi#16;=)*3c}bsLaLocm&!1lDUp-}(>k|Qfx6O`7%@XrB80j|=70>Xm1q9%oty%aYfl|bVBpLy@jnz#lYPjdci}pVncA0b(%NIm#- zXx7$K&C9{0Vzm*-_(1FrT_gA%WIFHI_*b!-mNgP1*0ict{1>Ch(aM=)Z`^3M8u)?U*Q|C|+8Yvl%LGFuR}U7|_aErXYsI)b<g9q_|ircy^AnRTv5XPry<4w~{b zYQRJdOTh^AQ)~wRqJbuuhpdt@)`C3BRFb4F(l$acb>n|*C?gK5uOaS>JjKCS^bwZTU;$0ml{msybh!*P`jnG$h<*Q|T%$Of9)t{>;FTls5Vr0L zAW40v(?tJZC;F99eJEF&w!z^Q7AnPJP$*Ygnq_5!L%Gr~WbV8FP_7nwwgomSZRk}g zQ2;b`7M<3`8KqtHryvN;l1N1a=aNW8#QvX1MKU&~gKSHnYY*fCXvLgzl=BrQkYv9Z&TPVS6Dc|I<}DCg11V18Z1PCgV_1P|ANln0i?rn84~<00>J zA@6qvy+=QG9DQSqmuJ95!P;I|jv2I<=N5~02FK$YjSp)AA*&~8*4TV z&Ai!aR6Ff<)eTFnc8`}rETy5DlS|o|hGzD1l~)xhJN=Nx$%WBMLo+v8t*RZ;nH4Xh z>$cL+%*4~i0oa6C35s!V7-Ej2%Q?qh}8|3%eh!@X_(~?QJ7^#V$IOV#%VC*jjhgF1A-wxAql&t ztYDb?DI-zw*GyKvO2Z%D%kamF2q%jbtFpanu~{_jDB5|bIH=PhZI^8pfossl7(my8 zl;$ytD_lUyz;(4NTtI`0%WCd7^=fYA;KMJ?RGG~oufcki4X|w`niBVZRAvL5aC=W} zs?5IHYA~VOhmf@}Rc3c>R_8&_K$t4CZICi`el@H#&mgFSoPhCOB>Obapf2Aw|Lc?LCLIHe#AaJqaqFT2Imdnt`qYgSi6y zz+v>=f-3;n^0xWZZlCq!G4!Y;^@F>1Wq~*!Oq<%*rQp{K53IdI5v#Q1ObCSE*S;h~ zN&6Dw_}iiSCC9&#Hk!w;8K`*KcCS6v>D2CAu`WVJ;Cbf>aREQu=$-2|)_I3+8qXnt zU{5JD-w!yEe^T;GQnC;lkNAkzjPDzjeMq(Y!+b;&$p^==69@`YJt4rFS3m@GuYdqN ztZ{rec_D;DUR+pMP{r}lt}Ood2I8a7z0m=%By;pHIY*xjrQ<%r+=3Q)-xNzC^E%?= z^W~}bGiIb)IY`d7YCqpq%3V8c<*OY*S9ZhKZbT}S>HTFP|238J@ZUCAy(TO4IS4Ho z_p1mAFhE~;jPQF*XDp^OL=Bz%Jg{wB_-EOfC^3zfx%*sms@=2a#~bQn#b&gQ$!t$c z_*dDUmYJT$Cl$qhRx`4=&!<8x&pn26)T`6nOShm$wdRg8PM<|{A1%NH1m}uaOc6ic z2v?-U6e+12Dl&E$F_2OFBgflhEyo_#Ike zWJYJ>0d+VMfI1vnyp5Ga@r?IMVH*-Oq*P_Wzo3a+4hkAVOS5h>!9hdl7xL9Lyr3ba zst^GnIA{p%q8l^>rXWaz7Z9Q&dPN~YL!ws{5;P=wMY2Ay@1P;l^oKJ+DbD&si?dc~ z3YW`^+pFKd=bFOh#Y&JWaCxZ^{MvfhG=(rBdSxI?N6 z4l4=>`oO2qF-4&yRe;CPQ74>%?`xw96}*BL6&-ODePlR6ioSloCAz(Sza{Fte!rD9 zcny6#gz(u5XM<9u-G^3b_h)C&k7u;`vEx8HDwRsX+y$n{HZb2^&|(>885NjA>qK#c zkXJp(|Eu#}g=4dTit<-in}LoY@Yy1g?XH&7v))*G?{xhnT{|&Fh(F(N<*G4ABLoS+r@EW)jXm&7$q*#_O6nv}0uy9O=_6 z+CfB~&lTHO7H!A_>}RuP6Wn;$&5-hF*V8=Oz^G8hkM4JaU()?Fo!0Kv2``&T&EVU0nBwcx6I>|JT_7Ib&rg^kCA)RF*Yo&R#bH<8_ zz>2(I1I_BndhwEkY`H!b8qe##6=q=NR;|@%E(XZ{q-z9!#Xu+Iml3mL z#Mi9^Fu=kJ!W?)1z;p6Iok(yio1KmN)*6_3vAnNnJ;|*{U^p=t zivk4g^b^AT5X{V#TBliq5SZsTrDM^D+A7|`P~=Ug@${tLVequXx;bZpiHYg% z1*wGr4n>+8V|b}Ce#i*PUr$jdNqN&A4rvenx*;W^XR&V=8{J0dRs$dB@M*B!xQx~w z77YvJ+)uWva}QDmH3MiC>fWerHmbclF3Sc1KZGto94kA|J)N>h!iVfDH$qY{l3efj zbNW>FvDyd}aNx?ZJqYGy^B#UjmDxU4)2iW3t7^qx8S}EdzHy`3YTyG-w^-ApzpO`f zefEp&CUfZjoE27U#Y<){5;g6X!AndXueZBGX7v|38|zL1w^iSNO}?wBjiLj$#4Y!h zU;-s$nX*Y+tW-Z#R2u zH>&H6&UFx1P8j(EXr|hR{3RQm=JjT~)~Y%Q?YoeQ9_5!M?k#eH`(uFtegL+Gv*Wp) z`GaWm>PG#JIeihbN81~rN`6DckuMnLcXu`)=FY+JrQLv_#(-$4d5oNT|!1VQ+uoBg*%TJFKpRF98z4^IW^$c$esGd~|{RQE=w*}hqY z{7+rD0lGJVd>ABln9w+8^4ySWbHp6`Lrpm>E_+;>>UJKnabmfwr03m7M*^~c0`YtN!*Rt}jH zIZ742W$-^hv0*29b~9T`N$=kVC)!V;z9tOKp=r3v;XdzfHrATgnvHt3U0ZLM$aKw3 z^98_`4J+;a*8{;OR<%{T16^B#o3$DeN2F4!RKmd~RtRsU2Af!6{FNGP;x(3nO&Si# z1$DvLX-H|;3(z157pVH~lJ8C00Df1vy4@Ga-CN>~O&h>pHPCL3SPOU7bT+#40NENi_Dc#jNx>$-E(M4; zaM$f}_SKKwKSO!(U8@Lgw2}Pi2>e4>2B!tPM!bc_?4Rc7 z3(Z!Gu8-5YfBL4GPrRpnuniy{+BHG5lO9tvG@fosYy{sku!)g^O;WH4@yWydMF;9y zTmJP9l_+~rWQ(t^)s;y6GL(d|A~`99Y>q*nvYQ(}zgK)5k zu3t*9iB~uPY(i%t2yEijliYeJz$RWRWGoWcg!WScTSzM+nFhUMp;cQ291H~tO93{~ z_D%^l@k@J$L$u4v+iH8jCVtoOuMnG&@3Lz9wpsHKPt_bdRj*&MWZ;swf41by3Xz!;a~U5ZCKel-*o2V=M-k+-SK2RA zun7Pm);6}aYf3(pyG;@gF(gR07Y-=0~Ad=;hi{qWs#mmEkuDp z-$_UY{E`yWl_T$1u@vc0{BfXK9~Yro^XTNti2J|2GD>TN#cA1pKNJZL4&`>3pc0hO z+pr||AP?onL*5UTa_}3VT=||cAt+JfyS7N!L4cUY!HF#`S1c2u9Zpap2uXAbeUwpv zK%_BIhZ7DNTSd@@mVNF8pNB&`eumGEPMVEw{aN^!@csv_=KRCPoc zOCBAEAWYpxwH)5*r_qzNY-sNk;hjuoo~(JBqTV&whb8AB{w#XLO^IyHKmYC~KoZY1 z*Sque<~rroBLGoC4836d(X@g88w2fAyfcyC7n)WXA5jz}9rbjLl;9eD!RrkRGW;o; z0K_djan`(zc{9iC|KNj)FBBcp3p`m1JcPK_aw`72kZzcJtbo?hCDPX}h*N4=V#JyY zZwvn@Fgjr!N)QbRZVlnBMe9^@X3Qv^vhXiuIQLRw>g+)HwR*KnWMKh9d4Li=Ju&O4*2Q^mj$Qz4XSChJ8p!DQXe-=Ay$bF#8Gk3~iGD`2 zs!px2q1dnsw8_N4r|RS8AW{FRA>4KLnz^`C)qZih>`jC6sM%F}Md$>@$TTQkz;>sI z{f^%Np4MY%U{-O<@h#%t5s8)eo^@LarbXhVik(hbS0G*%a4wZf15w5{u zdU$f;eMXc_{<`Wne%9Kru0MoNpa@M$PW3HB;DYGndt?Ql3~E>Au%Z-CoX0v8JUjRw z@>KU3U}hn1%mU@ZDqycT>==4!W4!2EAPycrnr5F`gws7ZWWWaxq0_ zt@S|Y;G4?Ae`W}Wi8<#k4$(mo3V>7z3p$u4JOCD|z)On+AYz~KpBsDz5-Ic^#bkP5 z(V!d5Up)K~rU$ULz8oDig#%!$A-W9Hh`vSqpA57RQgRiNAppuWY<&kbQ$&YigF{VU zJ;wj9fsRM}(g$g?Yo(t?A3uw^ZO(q}uC#hK2UzM8Q3r*;Ven~f6uqN>;IPFW)SeV@ zoE0eVO27Ta|CtXUs$W64KX*8T$Gon=RzdhQp4;WoCvbrEs(^nNlj&&jl?5ZK)UoeoM5SEHDIPpdnK+H(|6&NTDpY3xM>+gR61S|e9x7M@VlIlk7mls3; zE`TGyO@-~_M{^9kHTXIN<)Yt>GhDZsrh@bk?&p5cM~(xLU>Y7?UI)tOZaBr~As`4m zFl+EY!u6kWV?!Rj2$5#lWvtq}&kYp0R4EklP?SLGOkGj(vRWZ&28RRW7mX}-2k{>p zJXVRcJ0<^m1*f3(3UwHeI6aO7aGMR&GEu0#XJwAuKOF)m*aG6U7qw&CrT(HF zv+&n~)n6q+{Z)y%iC21noZILC*gQx%=61*1=Lv|iUO5x~GS zBwztc0v1rWDADcL{4MF$j|D6s*@+CG%rQR3rj$BL#A5-KZHXoeWuXLZ13b;vv=*&X z$q~jVoszJCLf-|V$X@&I+WVx8#R3Y|I6J^E%92QBQAX0`=&8DJ2*uNa+Q6Wu4#CKq zMukQNEMRGfSU|3B5evw?l(B$9pZ%$4v4Bhsv9fOR@EN8S0Sidq3E@~)X@tif;vhYh?2ibx$22_lEuBdFBMoo`dJVbkd{dp3+PrWVgXA&_cJtpi^l?r zEs9t`<~_@6@n9*2k+I!2`Q7HdO_rMyiJ8}ofCY5#JHj={SU_fY(RnEz3+UA!!Y5GV z7v27P9$Jt*b^KHypFmp^D^_Ci_JV(J z2e3?Z^8LarhC*uBVa8YvD@yUic`ROtlzJ&*0ZY6hNo^X6a215Og7H|uz(z$Zpio$4 z5MoV*LUDdT{!+3!a%qyhVuM1%M245s35r-iuIE8Icz#Ub1S>KYuudX~@>sw=J0)TP zBUcjv3n*L)92PKgJNz6bw%|MzC~|MY?j|splaxx~OP$Ewx4x5h*n4?H9ifQWq-v4Hx)dcdKe8_ee_I4q#PR$&SU01)vY0DX%h7Eo1Ejb4+m zo~#X7wZ0)XNQf^+5Sl)y9^Hcbs`FV2pl?Siqo9y(6vAWqDK>bGuwi3qfeP$faZ+V10QkV9*Fe zETF2a1`DVv>h4s3>^y_7qp68v0ag8iA&6K&RWS_~P*pT3ETF1xJLs)|1>`tVg0JKG z;BW>ro-Dy*0Ye%Wv4B!>mFUM}0i_T4!TH-M=;~zjtva!HAKFb3lyx^#vY`lPD@x*= z@K-GgSU}+alE(r%m5NwEHwMf$VgdCnidaBea)?+!RTCl>&@H3F0;)duw-$>9q$TB? z(|&mt3+Swt|Bm0L!uC;P0bRwlt`5$A%&MwbEFgD`g7gq>D{3rYz}>82wD}uO!UC4U zQWtVqz<}oUtieNt1uXGcz~w?kiv^@bT`b^oVQD+CfbQ`Sv4Gt6(;(+~!k+Z4#bW{E z_eaD6MybKvom^{24DfBRL@VCM;`hLm{nJLLR&l*FiNLHEFds3EWTxU!GnWM zGo%|Nii;4YLDRd$)L$c3um!~J7BCJGJGNcwFWNB)3nXWrzivR}C zdJV_#p8yQgjnNn}UsJ^Jk0GiFPPcDZ0L%>R1^$wOCixPcqJifu1*+?xoMZgwNof`g z3$l0eRpWnbphNVLT2Upb{h|iS4AAchQ+gz<4y(p$W2Z&Wur8nLFh7%3u~pKbKc!A9lf=>!!J zb~vt5AAP`ooI#IA=sBxIcL#&F>u6$@*5H*0z2)cG=NTdfcrete3W%c+p>6#8d^ith z`$c5=^&3#L+pC2D_FoZnh&Rp!^$q_K@1ez&^+bYvgc(^OG#Xs-B@mRbiM7e!E?SgBiom5)Zr z?LN@=(a=2{qhu-a3#OS{ZTaO}HuF>0C9OaD)>eR2p)6!Uve&g_6l_$VQw!J z`HPOV@wt16*ye4I28|S?zPCU@9HoEw0vZEg!TcS{m*^UqKx5Q^oz2TZR19m}tq8w{ zvQQ(<|I1zDlXg@7)eK%rm(5H;>m6u~*>&N|XdJ!-ZROzI-04+?-?e*8l=7$SRK>C6 zC_Lr%D8^`{$fyo+rNzsmfw zn5M~cMH>iPpM^io)K_BaD@WPO?n-zzW;&P|9W>u!8!zDw(|DO_Jm^fiJ2*yQF1F2b zNDjNXqpXl;?(>(~+jU$Kiz(vU9k?PTrbtO$OPMKB_KUn3Ltr%Hi2QRm`VigBeweel zclwd`%)WSzxoh#oShEjNVD3+hZ4%AR?UMcS&xuOUlj!N-1ay1~x`!hD+(Ae`7o_^^ zTgeD&)1CU7(T^QR-xxzvTy&_yvSsc^rt?ftCmuwz&hsRdhBFYSjx+E(s=?RLE4>J+ zL8eTq00cuvRiyyjhxQ0l3~Ijf=p|2PgQoTe9vPhIHgIdvXdYIvNH*U89J+>R|bbr{GFy?2G ze{1nSOZ?9=|8s%=xhP=93;-?NH6DS8>Al9at=5HF2WU)lqur>VhF;@;ltsFCrtSrH z$A{_Ius<&U&!YdQ<^Ngo|1A4|F8F^g=BH8iaErrm$?yV2<7jjf&u#zD)7 zYkTRyXVPa62 zj-%}93$ITZ5AShy^R3IDXmE&W(1Lrubx6 zbfc*0zD)<{{~1R=DpEloK511&D!5QA!pX`xXAEdv96HDWUPFl2H#70K1@^iXLca2Q z96FRkJFHPcheQ%omhkBiA$#SJ9;I()a`pVNKzamV0h|STlmsc#tWXFkS}auxL8J)M zGk9PFhF?#F6!kTuap=;=L=)q)=$Vie<9sWue(2EK;3x4Z)X&%;6NbiD0-5eMo-Yi~ zTLS&%D5|2TYFwS9U-1P z!@FTs=IF|@wfG@2N0%tVRSO3PzF*;w5*h_V=a1qw7yzjiWDDN^q#u8jduERIMyr`# zwQou2J9D2`%fv;Ro^{p|uUwgM>DsG)I>-_E*X8TmmVEk_}iHeK`4W4-#F^@V_+BqoSjm zSJ?MUXY;Mu#wz;iM&43@{HB0<#b%OR{n-Q)LIeJm^EvK_ z&U|&1Il43teZ${pp#5^MnK+D!VMcH+gRoa*sQN;7+o zG|dL8K-yRlF|6kw7p>>>=wz__It1qAf^|L=qR}C6Uo)5v#UbD3-SctM-5P!yY7tRf{V3-V=Blwcihvto#Q2p5{H$iyA~Fjw|Ou;C(5o*58N_n*KEiP5(;N3IlIT=bo|g+e3 z9mln$AdvPiWY8YLbIcSUPy}^;m*Y3#I%)}iTYZ72^G5=mCNgLwmcPWy#C7ZJ#pefx zwl5V*Ws+b+m>P)9s6uzo3dKBP-Jce2TN&w;sumY;DD}W%*gT_+hpq@VWD}X9fQbzlPe=qF=+4EbY-9HuZYCB!*i%=h>p-StWEm zA0D+&xmc9aA8N=Q{*f#Sqny!JPrLa3>hXjfb3aS@Nrx2zuTCoqE~KIdX~g9*@=pZv zKOi;WjFE}O1HD9epcgKlL8~l#NN*{|p*Kt)x3E~Uj)u-R{$KsOr4)X*oCvx2y!j7i zHY3mPHu9ITl${He1?Iw$CJz5!YG+(}i%1`M^M;SS9WurE7@rDFci6aM+5_XWxKY<6 z4p*CaxPjHs4Q+-|80+PTyg($5L8whT&n8=&wp5BmNh~zNe>j7_m=UCy{v7WsOJz<3 zH~Y$nW%id5D=;IP)J-m{G|7B zrgJBCFHKvauY$|lN$kX9w`#4ehPiunB9}EsArgbJVvJY-{!~;CIU;5hj}uGeY}kG( zEF!=e7I@caT23xgGs&@{XxSo}d3SSfgj~#%_Ja5q$U&~Km{R$W;%(Je?_uS8KY4*N zX|mSb56e5%z0qm5Z&qvXHoM?B-Mwj&te1O)A>p^s#Cwg-MmKiaQ&skpx&Z_Bw8-OP%ox#2N@_i~TS0RW#}R+Jvm?jru&~W;wk9DI9gE46-|d z($dsPGFrYy{CP-5%RVwkFOU@Ox&?ZKEj#aTT(U;5!rsdGi=`(*8GlNhk-?g|8^#`A zjA5$N?v9N3ThOi%Z=o@}=jP}OO^EL0u8-5Yx6!b>{p?S?r*uRy%oRYU?be{#NiPBR z(2|S8qVkQ9McwH=V$+9HGvp)Q+a$Ap8{{B*HAD3Laho=h`@y-jc6%@F6i$(@JTT|E zwMdr$81=e6*sXNG=yzPiYfrocXao2&=n;-$(H99`ePA%uG@)-jx$95cx`n?EnY)Fa z30L5hyFlKN5w0;hTmJhaLWT664=s`SRR~rJp)bTI_P}K}lPRA|lkT>` z;5@i~u<6q-HoA?@tp?`vn(;mLXLD8i8?DAVq|~j_E5*o9A=D+jYqfU= z7+6SEMmPzsi}<$sbzHXg$fHvJ^pGyxx+rJS7jDVzY!!NGL}s0+M$uv?{BBgP}mTDMGr?Sp;V9B7_yb z;^IBeZ<5ULilmWrEFJ{TkxYFmCU2`WD=?ci=)TVi{6hwMjNv@4SgIHp%080M8kDCN%4V}OMs|k8iav}Uh3M|LAvwTSx7og4?cQ$o)^1eS z8=dPQQJygJ2hdEly|rH5=rpf4+Yk#Lg4^36=`*t^zbv^=J&BG5JClt#ucJ8djOTXd z52Del8}&Qp^hJ};`dL}56v*2(2vg6#CBGrT!Q#?#zJhi;ou$d4B6sdlv~RQ4fxH8a zRuwX*cWNXPK^OF?M~KPC-jDdp1}ZRnq8W&Y3mmL0C3qt&jgYB>G0jO(zBI-K*a@t+iiz# z&4MUS(|-62fv$uv0V*wfkp=F0bb-4BDC{Xu4-YKaW~1Z97S}7^vb=HWDBYH`tNYz; znVs83(zcR+GVp&3=%?5W{zU^#Fb`SNM63mQl&K_13x;jFWa0SziqyXL}KSm zUiLNNNZg`yzHPpW#AmK#|; zf*aXEa3c!}tQ6o8hJG3$2*O)ral4WVO$u{RDlc;fpLcYQo~DdH=n5z0fLvqWKS-`I z-*YrL>lhgC?DS!<<*YHo&f7ETrVaz0fR%yVVJnh!bpjn%Ex(-bHi~!!*~DT&v0o=p z>SnEUr&7tqhx_h)|L4F^DV5DIKMMzyDuo7Ert4`^(87sxo_`jy1XTj zs07Ef``Nc}xxlTROI{Su%AxBSkuSeD84u%mSy?4v3ALUx_sq9&d5QBaTwYFn3%wl1 zsc)g{H6Cx*FBena!rq+_Hb41P#;I?iYt@0Qz&YQ*GhC$!#K_JDDqQZzIM@I84)huH zB&+99_-B*oJ)qX*wL1a&9EB*LO*{T4{lu)Kz84BL&4=aA0(&9Yc6*I$TP-1s3VzT+ z=f~8P4qsO>Z0&07T;~>`nA2S6V4~;9`Gb+`yu7>=q$f=S%&V!GHhRj+gPZI83mfPQ zd(ct#wylEsd#yp@x^{aTod(>qi-n502Tfc9Y+ZG;)40}rcXpgafUR}A&FgI@_A9-p zZ#FvZMhkRuszSvoEkl zR9|-*Yg?TTame!Ofw=QhJ(aL}+&NW^V43|E=1&+w$#3~AIxV$aEU;gwK35Fk+t89+ zQ8BC{cMOlAN9B*LYHy=gBYR8vx>Q};*lPFSwQ5%t%g)zT5{ph*V8Qv`E>J@Aa{I6i z?0whnHmYTJ#;VNLDWa3|N3iHC!ats$e+MM!zaudsWy$XRoJ>NqYH9fu<+q^ ziL1xf`XV|b)oQ_h2(LBDSS{EPd`+s|6>Y4RLpYduQ`HrFtWZgK4~4N}Ael{S-Ln>E z$87_|)G3>2`VJI#4O4tnE#5Wu$qx(4r|PnnvTRBDw5)u(pnSThe7dB3T2Ve-Rt;F$ zT}wG&OF3XmT>}hQo?Ycbm;|{b%z^w6ra*oOGax^N36LMc_;-SPFS%N;K&L0Xzab9F zpHHCu-tTz_pjd6!)*D?HIzP92zTUXiTx+bHzVP}=Q2Ojy7ST7J|7%1cecwc@Uq_IQ zf<%LvU0rlyo&ikzM)h{1dHqJOd(xVB&f5I5r!HTgCs;Uo9)YBPSr}tEVgT6WGe?zHvQ1RoG z%jwP+B9<#gEN4Y5SBhA!9I@O&P`NT}0l1}Vo6Y(421L$TBjdJj-q>H+7jn$6ihZ?J zoDXg5lgfQd_xt$^m(RU&?o-cStX_Kg{N?$0TjUL8)y|O^sN!?n-b<<~*q%vM1v@yY zs$i2RRTZ3rq^g3WGDuYxVBXYZ9sd@1Px`N%@CzjNWVZ!GeqgG9niBn$)rv>*M^J0i5bS<`QvDZ z9WtY9!o*m!hOyI7{X>G~cw@qED&e2|yaKK>LKm)dFKmuBnG_2o$KZx3v6QCt1c%A$ zcrS&3dDESrmgbj)oM)m?8N>@fGuTZ}SV4xWa8+(0rSQ}e4*cC6`vu)`7?Q7rKD!+Jre<|h)z$jwg? z|B`ZkR6Jw9#tL>$e7E2z%%pNoiu|0g?4)W=Jbp5WyW-}=BJ7o7F;pC--Uh>tIu1i= zkO0*3PO$hOWxFd0u+_)F<&neei#aG6)Z?ba{kDpY|#Uei!EJvxDi%2XbHy2CzXOwfHVk+aA zZP}TK$3QA)Vu_y#mW5Q!L?j-Pn~4eu-KwB{DlRf1YcxAW@z_e`6jk^sVi`--6h-1J zxhYyEVfhqOq~a|TH?p&n6_4puP8QE~S|MDg6`Sj{3ivlwlLalw3c*CM1Iz?jg@M^l z=s(MrTOn+x6`Sp}is}OgEy)ukAGp3C5$qHV&V|AVxG4(ZLao?bsAZ`S93V^ODUuJ| zfJhH^vIb{fVJzHag)pyHZ06M}X%3uo;-=Z7oA?-8L>!)94884@ z6RmGr(*?LtQVW@#40)Vn>+q@pQ^_(KeRbpfrfL6MtX64`AaO0pC;025jOxQ;g(c41 zxc6;Qyu|yYN6?dL#lwQ~sk*GCEL&1OEi0ccD4#AWpDrn%R+LYdRRdOb7p_9ZGywHi zJyq9GQZ=T0SXPx>P(55!JzP>ftf(F?vRA=W2xJ9y*`lhfrd~@`7FbwSA4;mSC3V@ds%%+Zc0pBk zL0xuHRd!Kbc1cxsNnN(0DqB&PT~?J{R<5w6SYh?-g1{)Ru%%vMkew7|)hi4_grcmb z52_W0;0UU{TT+ZnU9zkwSytA$peVVZEV-yCxu`6;q$s(hELl;MtSCz^D@ra~`x%@Q z!;u1i%`$x^`(x#FZp8c;(xg~I$Ivu{kA@i1-Oa{Y^I8*pkq8Fb+-) z^oxc*?+ozH2GYE`B&z{U6flZ1D;#h(&8s^~()Z#tuWp)Gm&C%cld};reNXf1LS|4uzbzZQ z-n(vanpszwP+q(SK)c^1=}Y815$=n`vQ!vymI|*4ee20xfKrYO+IpH<_lm_QY>Acq zDKPO=npxLL-D}%z=(Oq?;54%?&xl1#ew=33%^53(g1~wiXJrCQUk#DKdQGI6bcI%({`3b7^MXH`2_yX=dF!Bq-#@ zR%fkIbu2I@=~Ua4iRi2+l$#>M=)E znP%2Ccdt%($%Rz{J4a~sxPDaCM_S=ZsBZF>!y!+-?6Cb(H9ZSIFC zv+jc%`}xO?qi>9%DLX-M_3B3bPPMXRLEbmWx#m1;ZES2h@o*cR*(}7nnsuJ9*WPWe zZ>=-A?BOj$JKbzS;OHA0t-4(t^06@wAfoOJNzukWg6LW14BE@5@-9{jP}^(h6~{lM z*6Gyl+_E~2TD|H#X+aM8>kY`6*jRU;*k!ibw#kVpbgi?o?mC$ipz%dyN$Ro?trv7< z+FU{<`8yKUuU02PvTJo3o)0F=V~@y(6;zf#T(9-kiTED$C6}xsD`Xqxe_ONs@6zlH zSH3)J;C&(~E5b+T(Mt(VFtpki!U!)QSzQsP1%t$XL2Id<+SzG{z>9wklE_}RQ@@`g zTkDE-5teY?dGa!Bt+S2ZIoMh}GZxN%#51y#`sf4xat1vfq37maX)rk1!-UzBj#nb| ziJwi+T_PVbo0^eV*=($1k>&&czR|y;ybqEwG*$T@fdidHP+Z-frwz^JSx?pLLKh_Ec|SBcRiB5c&;QUsPsvN- zD4GG(K}e+^xm;S4zOK7~<3bYM*ZF{xPsivV{#6LBsvnJaWO$xLq2)>S=MR+r{0|KD z1V;tm=m5cEuJ}vN70+Ij?jy|Yg(82^DfZIkTKmSz9iWUFUk3HPbv#=C@C7smJm&lz z%6;e>VM4O1kfjDe*4Y)|*H9MzFvozvUa|PmP1+^=tJ(FG%<6__fpaf>f-j?S_zw_= z!Mh2`>)opG+jfr$Ozf21RfR-?r`*CZ`s_>uc>cbu49L6Fu5sl(|EkjuANe(a@4q_a ztyW&5VejHV^}uuV~$6>$C8unflmR1?4E`#+~o#4G2`-YWQoB{=NsnzYb!~OYysHTjvlR=T7EEO@Pfw z?Lv&A6-BoX=EefMxg+rHc;MSy;M)LCI`k{!=ub0LEw;7+!T5<X$Z0b3gdQOg= zYu6j^nwdhDZW*o60_1e6d!y5A->ia#2yz@!W9lBXo4d#$MEHd5>NO9xkbwn9+xW;- zhg)c;_tVS*S`zQ)n)d`oJnfa6zvDd(9Vf}{;(Z9h-!A6|xn5!pW*C{$J zzsb~ZvUg{*0St$cpF+s?ajd#evKDX>oQje}*iKZ`n+|MPlAvKk#fQ|jl7|H2wD9jL;2yx!`cayX2>p-{W1)JL03C;bFUZS~ z6kWea^zujL<#GpMj=O*0Ik}7js94$TY}B{bdVs`{_myTc23QY;-=sG*G8PH=L02mr z_#qi;ykntNS;adT3fPCXcLd=lnG*fd-r<Klf*Is4@{2{ghSCI7~XQzF={V{`-T zTI$9~D%{5y*5`@^8@JIKPNqkT8W-gx-^COu-W z;eljCUFe04`?*o}A>*zuNzbV9cr(I8FQEqt!%#o0jmw zY6MojEdqBb^_z6i)3&uH%x|)%M6L*OypJcuJKnb0k3QJ>7!a3_i4d1((K9QDco>>E zFgEuDSTrd+WcPOEEx@O}iOSODI){#g)r*d3qQmD**Vr^XeB0bu?!Psrb^&;Js$07S zEXB2Et3g83uN2G!aD;n}Yg?@gwGQ|uHaFUh`srE=JpJH2KdO6aRWfsj(LPdJy}G_p zZ?wQ@-fUMlHq9JzlO6#YaHd*ii!|HK9w~Cnd|dYmxe1d1Uz7)B%N_`)e~Yj`^~SZ@ zR;y=1>iLUkvQ=BZTCY_tCz^x#adbo|SLI8r6s8P}0~Y=xDCd4rG7CsIY`Yo>4+u3o z1n?U0Yx8bL<~IS^)&w2N5B_8Z{pK>7fS~{5t=gSN=VSrR<}&8A{i6z8-Hqz)M)UfO zUKid>z#F$%5sGD%#fnfYON&`hY*bmyf?}hzSP6cN(H~{B8&FR>H#U3C^(JT&;ODrx zle&X;(IdH>xerW`z*b&`2x0zut5xeX->Z?`0!(VR+vq|S$lQ6e(W!N- zwaq4)%uSf6+q~Yc^|rvd6dlNInUBy_v^Pc7dyDe9TjudKvgrVs4a_He(yo%91S)9n zNnmf?c6Q}%o4IP$E?u4b(?vK{y=zsc;cnx*wi@kTv(_?4a|SH=?=60MZmm@VJR;fc zb1O&YE_p@fo;fl{pZXtGE%MwOJABgXY&GCf<6TJV0HNFMS7b-lI@kTTbzxz)0_N!1~j_7ppEo47^Tr(RW^ z+HFz~_s*---CM9Px7OhlkX8HiXFm&zB`)wKTN`%q)mKSfiao@rsdT47wfye6biS0YDzKBcYn?hNOdogM3yFEO)$VMxTFe6=Tn(7QcQ!iA z!!5X8NJYg$0cx+oUc6#2UZ}Y&hwq#jg9LYAi4_`UI)Sp6&9Z* z!w_q~3T~z$6@RMH+350h+8uL8>d|j|r0%ZqJFR?ex2k+&Pjj%Ln4GjpmgdbRZ*xY ztX&+^M0pXQmg0>TnIk&~oDSv4u9Lqjr_R2%`ogJI!ik-}ytPJHA^2x?^R<_5o^p7t z8+T4YQQ*j4Ja?MBi^6fK`K_DqwZm^gZ4U^?^&M~ku5LA3b%FU8m%!1i*`Q5wW|XWp zVJMQSi?q?LUhmX4Z&cfj-tCRfP1qPd8w896C7pDwTRtsfWr`L%QsJ;Xx_A41pK$Tih<@ zFNU-qhqa)hjjc~}r2SOt2~r`XQco)N46a-n5+NJ{rL(J)h+Hc5@OtJ{>QNaOY;~n) zX<_6BVgynMvoCI41+62RR1@mRE2GxSb)oyvc z0SJgS($Kfht=AfJM4)qQbi~@}y>wNlq)*g@2cNi4yEPjQ>wIRLNd0%7;f)x$G?LTV zGs1Xi*DpD5TA*oZ6FXGLQL01VoqvkO#mZt~d8ynuSy-|Mw^q9YZ9D4H^$lVh*jl$A zRF>_3mKKW(m15Z{k_l>bd!RnP1@GX`DA>6}S2=lpj zV;KGJFh;+>y94drAE^L zLu@KV4O5DOOUT8m0ObG{K*FA!YXijm5_t(lnNvWwHa#*VoB@0wb^6J|fW8S)R5&s-vw~ zPg@W0wDmJFXzOPg+WO@{+WPln(^j1_=-$#+U9ac{WC2*IiYi5<*g(bm1Ceqc5Z6NC zej=}=H=jj+G7c2>pt-|=3IVZw%p4`UBVb$)@x=A8j<_Dt6W60Was97i5ZBK!#P#R3 zBIl3n5HC3oZ9y5FDHim<6|Oa{wc zb)FpxWSK1J0p*wGP8Na70=OhFPVjheoB>otj`SCHz~Pub#+*}9;w<)p+NTne2pMJ zMJ{*T90hPs2kp!~X^zz!ppQj+b0^H*oDLW5$~|S~sD2ht!ky^-nq7zAk1@a7@H@}^ z-hkgvGru?C_cP4z?}Fbancp4w{Veml3%}=?-@UoL$oCI%w5#Y%GzN_t1^Ca?rcs3d zJYyOb{O6=;l;A(lnnoG^GjAFT@SlUGu?YWp%rutf4x#;^&0o7|yOWSSXw}<*LfUL} zhF_yu5kecINERyFvL$KsfTe$B|FNX`k|OD;}TzjK`<1 z@K^n}>8|>Z=&$;Z@>l)m<6QOM%U<>GYdQ6ANX8*gy?h!J=d5{@6qiu zJl%d?N4H`w_jxFHfI<+oI4jrw?7d?w_jrD_RBKe)>z#pa<8y-TWf;bm1FE^ zK)0h?;EqGt!Ra={4uR+pIg&IK{%_10)}*VTop+gSyfOz^)vl+K2Uy zZWK5UWfNHM&@~F5^Y9YCL^!ES%&Kq-*~7WZVXN|b(5hUKS4E@Yoyfhxu1bKqmsQ!K zSnA#T{c}_}!(gvfYKiTtatC(YmYpFh+M(pWEF%4fM}&$Y92~5VMYQ za@0{yj)8J=Th5(uGD#31LEA|v@S9FoKN*E$3pFbAr$Z>A=y!N4eTs#Beiq&zn+AT0 zp@E#H>TvGc!)V}JK{W6?WE!YZeNE)vW@%u69*osx0S%0y2YZqf9-Ia~37c~YHs`%K zE8#o4?_Jpk(@S<`AD>0sl~ra}a&q|L+;@iU%39E_yejWXjbJ~KTVr=+fRxWl>aZ(g zNcm5a!pZE){SVi!4Bsb1DACvX8A3mXbkZTY#7+>R#(EpQ8YI)pHO#TKjjeVMta{g2 zUDxj1bw+PB_q_(1@?q(Y4bHJp;dexMz$=X!3Hs%E64@R}@LQ#~VF0oe3#2U$u!+AQ zy}#l2zDavOnR~}X)obl4iIsJoAfs;bqiM0D`Dgmk{HUQC&MUS@(;JROmK_`MeTqJ` zfYR4UJgd2Nn7V51YImcx1;Vbs=F=-rG2)eB9dP74 zJ1mkb)A&N%v6aVNK?>q3vjvF|;ul+8`M6uBljzVQMHz`nC3QKv9>0#4S3be?t8RTH zLLH(c<=6I+l@+(+b*m7eCf#^!VbBuCqY}&Fjz?8Tf8$Zr#E<9ehV`EfbfgLqdagAf zR^J+gyL2EaG@NZ^VR^Z1{(*u1w(-l^A286w3*e@As&kz6E` zLaP0H$2-n*h*1rXZr(OCXapkr=iKPE5St%N;_MZMAWBvUMIuSOdWItD|rDEig55?qsD{K9YNZoz)tQBX^ zl`0j1miAfEVyT==MGFP-n&`7fOXWrLUmNIu0_y%h3eu`o-8d^ z9@)YJ>nZwLaIm_FuK^UVXc*eKP42)s^ZuS{;>~0ov2fm+q47rMAQ)(Chd&usx zUG~8HklxoQ$i)CQjBInnd(j!a^Zj*X_WjI^vIFLC8cJp=&h18&p5`rPg`avq0}6LL zELGPGHgY&h6?eLGe*A_2kVzRc@g{dv+DiI(b=%u46FdsNTkplY z+2_%7ceCHtj{!Kd>1@0>S4m<6DHW0&h;1m1bti&+lgNq?`*4?85uXoQW>uMI)<=;dLBEWS>J3_JJ)Aq~W4Y_^$cPHyAt4{fXtg26n=4l>iJ@8I8y zF@wZLZ(d_&aPW& z%DIsL+80R-Ce@Z>2wp0wfq`8(;ej!`s-J=VaY8EwmU9z)IqVhlN#Du$GkH%A3YTXR zS*oN)L@e(KjcC9%0&uj>V8)#)at~D&ibeCYLpnJTBosI?X1xAdRpBRgX}D_Dt(dqL6#$_F%bMlGGmCp4nM7@H{9v4RSp2I zFgJ&E1l0U7ERPwli-5XFw2RD?>bv+8ac0p18(1^xEt^!|KzW=@-y+T17ZNt>n!o0< zeQ({(eiGTDNU(8$s1u*On|%T~<_pIh3#`1-ia=CAHrH-fY?GVE-p^o^E$F^@;)Co_ zbol+uK{QsFFX~F!W`|^_0&LPlo(flh8OBun??$j0PhvEeOK_zA>9#EWnY-CjdL=Ho zP3Atx9!Ac-(5<-H#|Rfo!yci#qREUfY&&z8O9<<=3J>d7Wc@nD?ncvAt^ veR8sgI2HHsWOGwtvm9X4xA*-J$LkXHWcGd7$ySUIAP9tZ4RM4?p6vf0gMauv diff --git a/kaggle_time_series_air_passenger/my_checkpoint/variables/variables.data-00000-of-00001 b/kaggle_time_series_air_passenger/my_checkpoint/variables/variables.data-00000-of-00001 deleted file mode 100644 index ff2441d7ef0222f29293aab7478e98892619a62e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 249201 zcmYJ5X*iW%7se@5rpzQ$rX(a9aQ511ph=}Uk|a@5Nzz<~ip)`>B1%M*3?*l;T|^{F zgOc!XP)S0i3DxV{d#>yG`kd?9YoEQ=ec!)*y8hbWEpcBi$R0zRUJj>jS9EFH??ZOp zjxPMx{6CQ4dy{Q_CC(cwyimVwCOw#^M8}<$rTlde|2R^f|GEAGW&JfFZ{aBjGTTiz z#>EpwO$ENX&Xli_>}8+(5?QRtWk`(uMm+YWuFcp2Fj~W_oynXj&Qro;2?y1)a`b#qiEKfv> z_e*F)@mf0BOdZ~eJMe>3ccE>}6Odc>7-oA*&|~w&=#C9a{Pp5W+%akeuXpJM$=Q4O zl9yJzDtZks4GF;|f%?3l?J|Zgp2M#iDPv{jdQi8Pds*NUYfC5eUje^YUtwUo19#r^S3pGm|2cWEw2f1^@JSGzrR(fGE z>?IrY6`@}FQQ-Q#2g#dR7};jVi;dRPv)5+RhNyh_GD?KENBhzKxjX2T2nQ}@nho8f zAE3?AE~x1)2hu-=x1ZgG{>yU7ZN<&p;HoG{xmeMh-By^qVKx#|DJSstfUB2Tjuko*}Bl>ro~Ol5*Qg6fP$OSeB(J8-moeQoeOHfDlvuh zk9VS8_3OzFr?Jrb=RUbn5XZ8j#c1n)=}gwF5SN^Mg74;S;xp7T@rq&|alJo_B?uX&mNKMYxRpF~M(mXAc^3HRNMIN6(16Hl(&ATmlm2Cib zI(G~vd7lRnUoq~H(#p;nW&qplgtoVB;NFWmvU8(>DeEroNFt-t9swEZJTz`W_?9ssj^MBZFumuMn z2DAN2Zz1BvaKTfxVJPdermU!B8oVkw$1=7jkds#5phT?*&Np0RV>a)G`^BwL>3SCK zuKA2ph6f5x+m6Go#)bGVzX<-UYJlP!y8OG2BF%rC4bJUR@NNDvoHWfH8NOVdKzcXu!T2l8t!%SWtSqIaa6`X5;Gx*yA2&wKHsBoUPu+`e$)!j4o}5% z3V-2dcQ|Ul7>~1R}{}zx*0u zpJpc3@4rZX7Ku}1e|dWEX*S-omEpyP!PLjr2rFL7LizGn_~&oDpu)%kCajdExsg|J zjY$R^y0aWNHJifW&PtZ<)=w5?6xi9gOoBsR?{LM|Md)sAh>|CR*!MA0;6rJOFy1f{ zRT^dJm$m(DgK4&~e%63s(UCJCad8x{)rf_E5=}7X6@_1OFWYq+#DS7PiYhFz<6Vvf z_I+|84XwV++3^^TTxbkBr!HW3o+oJi*bSjd%Ggq2M(@u$MULfvLBG;_=(SskUl(5r zM}HrK_!om9{&6m!`?;OyAC}~S_wFzk_f9-J{sN59l%sv(XE1KhFy0%r1*cBlLrRS7 zP&gi;*z+`uni>XAt}Y-qFXW;nTZlWQba+$!E9|)CPQOmBgCkFG!rN<8@d#-1tPR(( zEX0his~pA?<@?EOr^6Uzp^7peZE;2MFVb{63JZ@LQXRE;sPLJHk z?P6&_#ML-NVetf4E%xwNPdF1QrRau&F;9W(@pbQ3?)_H2N}L zEmy>r+~wR&AjWUsmgbt#1^90DD&g7H9%S+Fg|zg_3GfiT3IQ22S@Ts3xaVm^b2op7 zeRZAqHFp{f49*hx(PgyJB#g8~M4^33I0z;i(pNfDhzqMX; z2aiEjQ6b)+Ux(XV=JCS$ld#7~nmg=t3oS<-920(e@j*OFl-G zm$C3;@l+`I)rAIzM`%Is1Hr~Z8PxeL15LYiXrX$!ATm`Jdi8D#O1opoymo&uG#Jho zYf{)XUKuJMEGJX-PN0b6AB;P6l1kb51MYq+*(P7~qrgzbh%uq0*4rfPlgZuL6 zYSPU<&W?e0snOt^kpWsC;>nir!Gf<(uL#D_v#9?q0c(n`3hsV!1dpZP;ikJZ_mHo` z7o7n(BKjGtU8m0=F@&47EQDvLJbAe067>F+4#UN(;Ptm#H#b)5;t`X>)Q`mT>9-GK zRcJXVS?kaSsZ}t==shV|o&=p|Ub1G9ERsJVo80#(K%MumfONYHE3@*Lp7C)k$yeYe zqDBzycNQ-jm!R@5eJbr!4-HirLk|HXA77q3_6$DQW5$Ebwz8Yn=3p9_i^@j5MC$x# z8gMEPJ({Jz|*O87>$P&W{u>-R1v=Q`AhOLZ4O$NkLJM>Qc?5rHn=OaTQpZIe|-tYvLw7Lo)W#KN6O* z8l#>qWd%Jpd|ag(EW-e>s~1H*@)t~&4d+SIb#S9>9%#zV=ZT|L@!c5_YNXJIr*@a) zg7&F+z9JOo%$>yRqUE8yQh^?g+X4LzR(MW-JPq#X6-asp;1}!Pc9ZtzVYaFvtEo2^ zsONtoVush?S6mWa*EXW>^Bc%NeQ6jo;E4D~g+}`|vySXUa;Tyf-FEk|TlqtMDP5dL z42vyW?IF(-HtA#d9a&midIVqS-GQ}!9(-Q!B$&ATHrln0q(M`J?2>;HqrYNk%my(U zGk!hmS)@mQU4H;s;&auk6V!N34hor zX?HABzQzJGit+t&e~|vWRp=2`2Q9I`%6%9@7ucHFKP`(Ftx>I;> z>@H$b8V%w)j#Q`>&a_MHsP9H?IDf~4PWhdMJJ&{GMg43z@+=wB6Z?tXU>?4mVGV!R zO=kBcCD1BX71P%&5L|5b0i9I|pr|>DS>L+>@3{sxyG$iddyi2s(W$&A?icgeo`K>k zk5TIY#@7jLLCpUmDrqZWLi9u`JflvX+8LN@eTMoa#w4oOkamm}YS ze^D~(=`6-mj!ER_Y$20V6yn#LL$yzOMC^SJ+q%r2LH2Mh6pb3rcboLF_obRNHhMeE zP7>#*i*)dKlstcvo(fc}3V$fP2hRm{;2|@KTjuBpW;l#wSwlU#e%40NFg^^9Z3ZA; zV8x2I-NMdUrbmL*f;=7ZnnC?jo z^^xH(>ds)SrYL_^y#yt#`*8L_L%MF71>YnV1b0pjL+!_X$d3O5XTumi!ssj>ASWNZSYyd-MaGk`05sQ+0XwTm>F~ z`G~N3j}g7~cPRw7X5ReLJ`XGct+C&}M9}%mlAlkz1`5{4dD4ej^i^08s9AhsH;yuR zyZQ~`lQ&>}*kpdtJQUXls9^9nYxXH2A9qdBrn(nqaGSw9P_+3!w0c_&US|h|vlScA zTyTv|{iDH?i_>7w3TgT^_8ClV9f#kOL$DFzSwut#beS#1m^>S5!i{jVNFsc{LNR{$ zMBc@BqEq=DcJ*65ev@{=P2U!Sht^-ajGQPkKTLxcPglV$`X6zt(S5u!_5lW^`QV&= zVgm2;m!K`U9L4WEVAp)F5x4uCDQ2Ao$*ASLA+UngdOw8Rm!V`_a{zW0T0!ldE2wwO zmW1q(=6$m(!TH5(tk`k`%PiY*eg0VRks5?KjZNU&dzoe5HKfZ7^{JXk16+CV4oyTR zpvtY4?7wNRF-R<&Jew;8s$Fl8T-N4WCrqK|hRd-RD96WcQQ`YKXW=l_IjlW$8m{Xc zKGf5l**LdK% zcxarq>l&2j$%&fu(b0XNR8l&$ez(|5pM7}H$&;GRl%?_7A=skVDs&i@1>e?M;!c_X zQoUa6k+LKlJ3gH5jY$QQ*{6kGHa9T-i#AwlU&LcKZ({zR1Uz&`fh+!ggr@t0!9dX! zZ8dYzHM>gSGw&!KAJGB<8@*`RkJs$A$qp*9B@#xs^|F*y721@w0Ae!~c+F}zf&DVP zIb7}!M7us0zH8ORdvBI=m7@7{$&nmPd0>K<>KwUVuNd9^$cS5nO~u1DVzBv10?62k zQuWi(U_S9LuJ2UCi6{3#?1g){^<+0O8FWDHC~cG-lO;%%no6g}IP+bBT3B0t9isEb z@lcIq$X&dR={{^`ALe(W=E)brKi(DiaolkJf_wnS6=TUIzwhLwrZ!V+};lmn=` z2+D+Ve7Kwneeq-^q|!)wjUT}pwSC~*J@h?2K495Z0j8Pt!oEp!S;#&)s_^V6wmeYh zixlI~JjwzDS%+}NxTpC2P&nHC&J~uX8S^bK%1G$aclfJZ1-c)$VAR(|SmrVh{gOD8 z*xS<=J-5Jmr8R!s>;>^VRba-t&ln*L!^R`5rfoPmHeKbE+wGF=5Wq^r_IFH@75xjOC~uPM^_>NwjudrVdy37HJA+mJn=ozOaW3#$1#X2$iPz>4ywv&!wDBqIRR3sd zzBz<;k8OtKPws(M=MPY_`2vd;KgIlw0YLW2(#8?y*io;`1G*RDhHHmFYOD)t7n|WQ zWqGi**5gf^3R(Dh5&HAGI&Qlp#P8yS5?;Xs&4kXJ)(FMw9hh+cDBa<*7%nEr!HPxy zaALtYSi0;Ku=)1{rf%tE{ii3w#U(aW*6JBP+^hjz_d|pi3gvia`3AB-MUk(48w$%d zn#0=cYdCDp7FK-b6%?Pa!dn|xgHf&neJSAz;w_?3p>KowsqVzMMVagSYSV+ZS@>Hl z7d0}c;QB`)7~pe_Y=ASk=~xR^jPWYFSU(PGWe?+d(GOrAq|Xm+c~Aaxl7VODT`+%L z11xz|hJRnLL>Xl*5RA~Iej|rNpfN@3mC3Mitv0*K2&f6Bvx6)I&#G;~gnE7I+L#Ha z>?X5tC27hm*9Zef++|tgA7b*Oqc~<+JtQ7fqSitY?%!DtdmD||$O{=bX^sR5PPuBE z`e_G7jhcX#kK_dIMiU`sKZ5hPU+k%iGj~&x<+Yn{p_}VFj0nEZv?Ek_;c0iQ6`c$3 zH~Z1A5)Dkvv<_xFYS8&*r%?5Z89dGYfjVu$@JqE2x;mG$u00O)&GVDwbB7WaSr#k& zaLvRm4G7KlU7?AHInVuTGMC ziaLB`@eB5#$e5mb(hE;ly0h{_$4JAhlCp5kSoT8t0UG9%2#1l(k@xP6qqpaG!+9ppU+tSkpQuUk-k7QMxLqcQh&^Ho4UTBK zZIGS+`jo8+u;l57Vo1>WRPs2l6i*u$gW{hzFj{&VUvscY5T*DIG!4b@&C}sj^TZrz zD9sRhh&O%OVf=5>8MvpZ2@&e!p~v|>EXiqvq+%pB)8avW))y9e$Bv)) z6N=yN_`;i0+F0-|1yYl*qV3<)7&&eN6KfEHa`$+?{n-i}Sk{CqxEof?5d*s=4?+FV zG%U+}LaslW%Foyw!rQ@(_~(Z;aooXK|J3sY{iBJ?O=aI!BO#Z$rZ?HE3NgdZD~XMu}$RTGQIC=wE?gIXDNL*9r!Z#;bp z<{p#dzsFheh303Ow|_Hu-*ts{`yCL?KQPm2=ZKM1DHvSSrB*g})ajf$UAN7FOIxjk z6BTQSea{87GnOHllT2yQg#>7r@E>$`M&Mv#E{tn7e4H#W!Z@bdi>pHbt;=xL>9i>0yF;o!xhU{ zfw5B@ne<78|M&P1Dji)~V$AK^h=QEqTxs2I&^fUP`rXCgVvZHfV&Zhl{&;TG@)t@w^O(T+K5P4Pl>9t+ zmXycpf_#7rntrK+d&7=lpv-mfI;qMu+s5Nh`&M{5Aj#*c<%0H~W1y1JE1c6}F3c3X z$I6o&*8Zo!dzR;eoEU=%$tt}0fIKK~Q|2cZnA81RNAj)=1exOl_<2|=toq>qhrLbd z>`9}!dbAmsWM6~5|3c8$vIbkkc7a_%I~I)hF3bPW#5^o_37Rg=;Qj>#U{D}WgTu;SIlxAYsvNHcmYf zJe;pX#ghZjc4P&#pO!$irbuWR?M5oJLdl!ccd)E@8~bs(2aCrZ1*iMIpqJQ&<&J&$ zNb@UdB_3f;PlDLiYJK=zRtO38+c0#Z2X8ER&V1UeF+E|UumM|{l75ar?0YIGOuh%t z|6PYm>PbSwtCILRL|= zy8je7w>1zC)&O+Y3(?Or2~TYA#SuPgcqKm@EbR=zH<)=TmhqVdY0R-IoEe^PyBsXB7Ua z3MXoYt)R4bG`s(3I@LG%0_v9n$<42Y(6Mzi58R`Hqjrv`5qBP7U`{F|8o6THy?nN- zD+=9ZX2A5z-7ILuA`G#7V0R@#4r-@+;)lf>K`(uca9LmqNc(p&)3~v4dd+Aa3)T2` zeLW`3s$llx!tj!e1+~{WP2!ve!72I=EIKuYdQZD3*lQC8N@8Zz=x!SdH`#!+{sPF` zP&_oN2htq1Gi2ak6`pi*<%c}mN$$gXFqoPEKeh+*eAPiRMRqj(?%jq5qke;sT>$GL zf9lq8b?O=v4<@r}amIvx94Jd5PgC~_{*%848^n^3kADDd#|*%C<1CUp=PxAa`9fYr z6LHIsM4POs_(rZ4uBM!Wfd9m(z3CL{m$+6~oc>X;OYRVyE?GgQDn?={KL!7;oJUE8 z*EqI28b`&nfqKw3R9RO5Bj3b9vz--{*HWPGT|B__lo~IxM&fbP2ddZJLf^!ru+}w% z+CNsa`}x@o^rRy3?c#V`+O&v>OT@9^+Eb{Mg(0q)Wy5#A--dGeZRq~*4mM2|=W{ov z3T6~;M*Nqy_pYC=e9&=n!<2{sFoeC4W?i~g85|*S>UJ_J0 zm)M!%0rofD9(6WPraG4%!tT;U7UBA;3`rO-8fQwIElg2UX8bWmxRIrR!nG!H%hD5Ojtm8dfDtrsv9-Y7BN_{2#<5c^O5DyhU$~>anABPR z0~PuC@cgX;tq^wOGLi9o>5tXeC-DNx%@nEEyR*Uysd`k9ts=u~-!dvOhl#iuVxhh` ztXyZv^?yc@AkpR3)3Vk3;|YuOxH$H}?1BeSETe0AD-`g;7E$t~C7t?t|YjbH5Jm z4mg4r>zdi^?(sBwiyHX57J`v^7LHd_q&6|>LQjJ+?2g4g*mUzAvL5pk;#bZd?)E6!cSLZVz*|L>#VeBvtlv_4@+ zMM*?QPJq-cBWXKBh=cJJ-@b<^n5Vh?l*lNkbgiRWB-*;ttE$9+#C^STq z!-hg@uW?i{{S9!&54$T&BL>uqB6;8hXMPe^j*{tzh12*yim5(g3u9{;Ul(TPY7trNb<#5CRpbv&CA7R;Jui1fVY#tJv$%$w0lX$yHGf=v!Cq$)SpS-ve)r_4sXp0xd~7kL9rg=#sw@Gfl=r+Ilm3X5byTZCp(|@2KJXCuzj- zV*<;oFM;m3E6`nSgBC0RwB~iPzWV2^vo03Q!wl%)(A;EZD8c58|0!^MHxG6jr67~( z7Z#4ch0^RhdH>}LirlGV6Ss)bSg}U%bbJ9NJGa57dt>-ADOp}W-h&sR z((V-$y_Lk$)1&FbYy!AGep*`_10%sm57d)<74~1LK;hNkdpjxyL z?G~2evsGgOJ%L4p_k*ze6pMY3i2I7vhggyQeFe)2Pq_ zK0)`9z2LN=9P|bPp}{hhd7DPzr&T9mUdnHlG4)$)Zc_~?KKE8_6PvjaWKtp@%(Cc@p#l&R_9ae=an zC?63N%Z4i(a9K}XxN!Rh$T>Y@-laRK%I%o$hakyLc z9{!tI2rIrtgWnHTYWO$}PR{leUYL6aRuyZ*iZkJK$>b|AzfcRezUhXgNm2CG%Pw>s zS&VKA3gBf{DBL~t3jPJpqH2f6F`uw5Ecnoa?8;5V>(kgk_vv6HN<@XXLy(*Mi-xSAwG93=u?fEaO}`E68trr zjkhmDU%_%5=5_&V+b)A&hZ23dPYb!06huU{67MZ5_&{0)Tz|5JXl+=5&0`bbL6#P8 z@(m%jhn_S0#BHSXpCcR>amH6Zk6EXW99{0y3awF_NGHUQy^SCSkMZA^0M-6#TL*=(HOP>4<y)l=pl8!@p(9px&sF{MNb}h_9OqnJHdKoU?F| z>^L}*^#nHl-HkE(u7k?E&G5k@g5Tb0$5-7Ikb-5m!B=TDXt&)F+)G};7rK2#_s>5d z(&{!0F3?5`)9+ZO`vFd@&BxxzH)T;9^H|O4OriP3>F_w-9_KICf@MzHbY7Yn6a>ie zt+M0jg03c9p1qw{Z&}6PwyDsO4VUnF)GVuh=o1BeFQ=?Ikdkd<+NAO0UAzgOK zi48yN2+;qSNGDoiM1dw;nW0XLlBDUfekK06rvv=!FAD-^bqE@948JS&R_I?i$f`Hn zKu35p8+^VT;*56jN6pLO)m2Su_mH7;WSxL57}B7DDs*FSKCWLIk9(zG!_ygh{CVgH z;vhDYZfp~v#9c9PD%=Vi#YMP1YI59`2GE>{U4udhUX5(`6B#z?uovtv^MmD08_>^M z8dQwi!3@XJox1B$YPJQb*laH7$-DqtJFb$$32}V8_eAQoMViMQ%SCtdFx)vh6V6UD z=l09T!;IBOVVAtp|}#BYswaC44U%msT$n( zy*@Z!b)%_Al0Zvck6gW7h8JSn@p+gN1oRcaoX~ox*Zu+uI+C=*;V#^LFrLT^47Y0X3o)MDY1T+MUH%qjl^pobN9HvCMxt0eU9jB@4aiawc2S>NFB(;8)7Hve|s9B@Je0grR`XO18dy0&>PifHwMTmA@ zjCK<)p=PoLk8RdOvo>dF*qlR#b?t)9@14o$>3iterHQB;@(1lYEHU7GDFnn9vRHdL zl9ZOoCJn2AUd2Bku3?W;MgAduHwmree&FLR4FWT}QM{sLE_Jb8%^ytN3|=j3F#UlL zn=?8w(CP;sliUrHw6j6{KoUe1tRTu+nmEilmMIi;LBWj=5GzswdPAH^(49vlcjOeV z>yj!Q)6+tRk5_>2uOA3P4HjXlYQL~$icSPYLKEXg?T?3;g|a-^5};VHLIE+ z9EhrbZ5yWYTW7y9&DWxM?DkgJTfFz*TAI2AH=@i0avvK3r>h@;PnVC zvfDLU(A_p4P5bUbTdg{~@)Ln;F69eP{Db0cOL?iWAukX9hpnE+xYEqW*yN>1?PdJw z8~>{qub2g8T@NwGNyWb~{^K>AqdXZ)|4V`x z_L(H&2B=V*i2E-~!<)Hbcgn@-EU1nCif~y-d~7kCYO?`QA%iaqz~fGg@fkeW}$1% zNnGYxh9i0=F|Q`zTfClO#E^Ht;4{$WF~evB8O=2&7vSUSEcnZgfYXFl;kp)rvolh7 z=j%miFkge4EYL!YUV%p%cyPtfFNI5P8H2@>cg*F46~A$H0y#Tx28elG0n-36EMKI? z+rCGVXY2bA^>fi<*%b)bF$JU_oWXC)XTY8AL@ZOdRhAcFOKqOHvcRlKV4e06wyl$) zPqj4!(|6gy2{Xd`_GE$7QZ?$e#t`Fd42j*Cg_wRv36Cxt%KWFsu{TE!Fq{16aP4y< zj;xwRM-*Pc;!lQDTCN?xIX9tbWe}^oE{Y02N7=2hJ3xA+W%!|eW#I3`(K=8aa-{d+ zwTk(0+pGb0sxCpz{v1ND81h*~i=g*yAxxSmWab_#ab(jeXus?$EY=hun^OfP+C$`bP&1xVI0}z$T*u&E6PT_y#BGO{vma|cN#DGs zI4Uy~L>2t_oL$=R?WQ>yTiFgXm8Iy0hc`f@;QAm%6!=3pTtim6a1vc z&|6Jsu;^eqIz4ZNVXY^b(@?(&dAA5{tsfChLtR?fQ`iOA9dJqz`F)wHH5I%kslGAgq?1fmVla!%)x$%S5FFvKQ>}>A+QR z&|Sc1d>z4^4z8pM8Z+!px(m^3gD%zIV}qK_gZRa$kEtkipz7*D_FMcfu|I!}RU9Y; za_0rhV~H@(Ujz#rgQ-^59at|*KxjFZ>LjKhRV+oR`7cPM`cX2PG@$jJr?_do2mGxt zhZeU@H2SkTy&g4*ggmHa`(1;HrqM;r(H~Cz%l-+lH-YB_@8?cBCUE-Me_;PNfh6AX zN3A_$d0rxC9}MDHWXUt|+;$P4U3|kPl*_Pz#_4>Dp%Ir?+kmS^rooE&awKIazqrv; z3Be1uz}Od&@N9Jq`tC_(UF8jU^@j>JC>rpZ9A)~fE(gDq@4@q#lDtRpA**A5g&il0 zAo%R$n}`0J#_MY~qp`t8mK<>qo?Gn3i#bC+!B;ubr)7%vEzhx3WU^rMf?@npmb-9K zQ4(xXm8A22Ph|W23qWs)P`Ge^HMxD|0&Hy3!rLzG%r{LPYI3i$uR}Wh`(_n7<**EY zcl{M9(Q0EMGvr~<%pd6fHH;qkdIK!Vui%{5S@2|{7w;|kh8dryL)iU5sP(T!v6UwH z{9QGA9GECP9vO)%Ck)`vg=gUBbWs|0V$)C-p+qzMoFI9}2~2mM$s>>bV*0_)g&E?? z^rp#G60a)Frtf#f$-lP2($xDX!{(x^)PLmmw>yGwqdtIVyg1Re-v(|fn^E3a3~Kr& z&~VQ&^qGS(XbnEbt`O(m^&l_>%PA5BPR(Fj!6vF3XX4j57PJ z@mtU|0^97U_x2IsKa>lKNKL2GmXE<-LYY^rnF!Ucs(A3V6kVYb#Tw0`pnZuU4YVb2 zIrTj_joXD)J?n|2T?hD`kl>j!Qdss{F>d|#GF~sbK^8AdLvNo{2wPu`OJp^LOV2EX zT|Ij6?V~D~#Ezr(?-SsRzb>`wjKRMHb>t(2vcnb`!j_h6U?buP10fgL;8CHE zXyO91Z2=^v>L?giMUaBmVd&rcQ#d8`Bs04C8V`?ffr8pZc;(nzmM*GBB{m=Cv2kNd=S?f&NXW;3PpVSg#Om9;QC1ljD~X9jy6qt zXTn_2T7QYDeyn3O^A$>+*Q8!!D};T?GcevKU*NV*3GM{WK!w-h{QAl%80mEwXBUdn zK0OsuGphhKJ)6+;T{Gk~+JVO!2VT&#h`-hghAiPk8Z?%GT>S{5`%es4HFSfj>rv1$ zlVg#g+FWq&GO>QK3hoClgke>b{@J$zaV!b-;``jvUf3pkoorm*@ z=eFX6sv?v(N`aikKk@6jIy9G(8)AP8vDa{j=P0t{`zNG9#M{;QdthkqL{m8FGK|jB z(1Kpqae}=q;=J^GE%d#{d|=|H zbXFu7;(2y|dU`|}j(;)UavH)`J4)&rwo<7s7B4_%W)ae z8EjF`DfF;iNk*9qK+`%HJ}sI?X3TDbOCRF7fB&m8>irqLwohQ|tn=BH5NRkqUr4Gl zYf&qz3Ttjmf|*wf;8plKjIihct9@g5XqgiY7^4aDsV;md@t^k3Hw=!`sp!I^6WX8Y0vhp#V!o920-uvdo8S5n96 zKHpJk{t)w19V@(Z{xz;Gih{Vd4fOnzCnQ2I6CW>QY})6Sklr#(Xfyj6+}`wshiDcFv5mmKrE>&Bkn?_ld!oQ7zLR_q&M+@`z;;FpT7gTirX{MAze z82bpaovZNHfhv~!pavFAP~`n#F6e6=hbNz{ht1P(Vs36K7OpzYOm6q!l&LErOV$OJ zJ7)={zn#PJd6LxogbE(FSEEsHj$rnRYjo}xRoMK-6#DJLQD5>2grC!*KOZ&1*g!FQ ze)v+@m=un~S{=Z+@+DiA?|{kPtMUC%&iDRIId%)1Na)>XWc8aV=$q<^J~S8}R9n*i zrE6ijr>-Dv)N7oweir3H>#=TPGkdT%3|@cl0g=T$==ej8D>jJ3A{hfd%TR)QEgysS zKckpzx`1n2w?K!1gYdUj66)E!v+JF{mjwQIf`sRtf(d7Sz?7Q_(4{b))pqLg%J5KH z;29_MQ8qyJSF6ap;Lp(Yagh13dbZy39K1Xg4Z$N$-CU=B7<3fZa#bx!I%$$C^*d+8 zJCl2HtiCKgF;^88E&CuMdNsz($|MJx-(%jgqx?nOVMv%4f_#c5bS_uM_)#aA&reAj z(A5P>!}LMo;Ltl~Hp8UKeNbS(81*YNpwzaOnf&Jmo>u{GNmb|r(c*C+caVYIRjcJ$+K4s@2JlKXp>H&y__((j!~7P)%Rf)pmYpAPOW12j@w-lzUNB&Zd=qGHO2b3m4J7{iAl{s=%9n-Y zp!)vVv?pAW2g`QCwZYZI+@T)4i6Pt{e-~E8oX5@kw(~I)1K{B9Y-aqrl=V$c1MjnY zq4M7?u$N9lk!`PRE)3B#$@i_pE}ESU0` zRX9m1kR|Lt1-eU@^Ha-0u(#?jT=6%fmj9YixAi#jOPm3vZ@r1A?rW^@*5a4cuHpMp zaxiap2#SfhfmFY$z<0+x){@(fDHF?Ck)}PZk=Sb2z#R<3A~V(GHM%>m5x1$Rq51hRlrB`_S&)VW7v-_hb~nPrYj|K^6sdV*fp7m>(`t=& zuqnBZ@nus5b%JLsulgLsPw>Xyfi9S~JQLz=GRbHr3rEJp&=1EXxoy>Ol;Gup;LW1+ z?@k@QEKHW<_bTvXk6pngV>}E)PUF z8DeXLo?Ai3oAF$9-D`Lw9?3UuyC`UxCB$M>@ZX@&Dr57b88`S@V3S3OgCzN<0)9${9)bewb{>wqaY?+ zA5Scn<&Uo$w8kbIG_vYv=-(+?y1mK@;O^z=Sf%h zSPgj#*?6p12%}e}u~U=N(E9mxjIPZkja^6RTc;rwLiaK52)~Uc*-1Fi{E&sF8`4Uz zJNQ%>!E2NMuxq;avG;2Xrpz=Ls>LArco#9pH)z};&U3=YbNL`8W_V*fd<*07t3DA8L_UMEcM_bF z2*M33Jz$tbA9Iv!9JQiRhzBOpJh z4Ks&01+~1x#9`+2p?mn>1?Q|vVgFE8KY#pn#$KI;$dbdr2YN`}=?Y;{L>Qa=@jDC~ znp^&MCPCZvazKN^A@BADapvEN_6k+}oH+Eq0&kKrL^%r-_q>K{mNoFxM~=-@(&VML zQqZW#kMcjSV4i0-`yWH+9gg)EhH-?DkR)Z65tWjW@t)_TL6o8;A!*T6QA(+ZjBFuf zlu9K^QsF(%i6YXV($GYaw)!fF?nbH4+u`${!(e0QB9g7B z0!6hnwktay-Hr|7Q{BqgrTdBy*z7{f&uj3CqzABI(kk2;^9Y+yW>Tvq^0d46CcZU% z2RGZ&@bWxWxHDds9yqy~4xX0^20!0HT;eEhwOx*Hx_u0mOxuoYq~qCVrDbeY&T!EY zwXN{xmOI{9Js+hSoWLmlGx&83BIOr`z`c==vGQ3AI4AVs$IX>kc2$g6C&J*6N$~9c zF=D&0hlEO0WB25DjQ4ZaWt439B61Ryc`}t27)%7k?oaq+iXU@+vVhFp>B7?d<>*L?dDBpqcpRvo=+B=?B##XP9~5U-TaT6V3#@BgNl(;oIHEIQVla zmX!yHraB*l-9zu9-NT(wcxxG+pLY(=JXNHT6Y}85>6evf8>DG~_Fv}XtU{gUAHi!9 z0noR(4KJ2ui57*QB6VXJ-ffH|Ch2!YJs-~FQ{suMpBnIi%4!fAbC@@O9}Pq9`_t_g zBCuuj5i;)4A;_HH0(1E#BARcE<2DeoL+PS;hu3M?P?`y^8;0}1i*0B-{w!z&DNq&j zbNC{t88bU-P(8R>q<^#li!Ib)qk}U9-PHr#oS&dNHjc4b$@H%{4u7tg$-Bb7!bE#Z z{BnnrP484ewMU)yJ$B@U6E5QNm7D0@Ew)g3^c<1CB*!Iww!^gAf6UxMg}vx3f|%(q zk?T}q_pC0wo*D^yqEF(HF%lxfs}ZnC_!^d7L+S4y@VNUo=J7Ean)gi?t47D-mm5d% z(6I9?$~%ojwfXQ#x@&39M?DOf@)+BnjK*iZ4a}zQGOn4ej&om6BcYDRMMm-3RP)$% zd?0H};^}FOS7xzqYV+|*xGKKp^`NM41nEUX`9)KG`g?FUw(1PvyL2hHUl=V~bayFQ zuTdfvO6}xRM+wOFxsY`yy6_1H@@1SJjc zP8e5|ZoyhpTVWO$2ByX%@yu{D7~C`j&#J}2_xpo+cS<*G6(7g15*Oeg-HofN4)NjF zGs)cAXvpzc23;R4*pafa{Fg#2%tCGMe^Ln}tvcC`wc&U=;v7s4ZC0TypwFvTdf|!I)2R zqzQn_OB-}+a$++V-Ga6hN6`8rMP=hJq3SDFK0{Jq#e5=hzwll&NbrLh!klL3prepC z(U3WB z3&Hd1JLq;&V0jl1Z3dX)%0>zPtX-O#&YM8bY!Ai2LpE@Iga&4p_lXmCCE(@SnS=(YD%EXWfh!JE=Z3cCXdfa@>iZ2MP0G%^) zVU1QT@qHW*zDIA0Gum1q)oU08o%N?lt6Ru`-N|U#^o1=dxIi}Ll*2}&X>@0v8rx`n z8n;IT;?Bi_mt^)cqVDn>W#16`N#O*uc|49+FOOjVzCB0L`nBLvzKAEZbfZts0cy5z zARX*rj>S@E$p}N>rw?VriIve9cIhL|e;dL)*8x==+b+5idz85b3B0GMg@j|C=x3-L z_($~Oc%_4AC#^>pK0c2&nP-UJgwZf`{w?M++n${;u4g$#Z!q!EMx5z?5GK3C^2!U+ zbeCK#m>HK~=h*Q)Uvv~@+frbs5@Gk+&fpikjdPwHAf~Zm0+Q8L zfQ6rfkfR-FR%{Oco?7CDx^Oxq_!H)5rr;0LQ_yujidP+LVPhp-;J<}w@cLH{+$ii~ z2SrKnNX?ltWgQ-rdjm(zt!Cq&MZy8O5VWDk@lD=+&;SA_8z5oHTT0BSNmAJ9AlD#8=j?YYJD#r(FPJlQ>^3a-Z2flSO@yM;xMNqXcs92mWvWTp(F z6PF#sp4VbnXB`J2mC-OQSPq;EF2FNu;r%gA9V7iVzyl*I-V@XaPnu2e^}a1|{822* zH69ga5Hi$0v6_r~bq&2GBI(W}kHFp_+IG==MLJY%G=2PJ3Vpom37N&OqKt1jOQ|%Z zA%4jSXv=M7$HF$R4|v~3hNorb!ES{)(388??ufE48@XCv$og|J!r?M*Jn#Vu`*QHv z%_mU#`LNFY7Yy((06m2ad>oe!@!}kah5|TCqnV6-2V}-= zg@M7w+(Y1=4wjApKjYcps}o8Sw+`cT$Q!{c;Z*hJ!)GYeb481=$83ZAROYiFA4dG_ zV<}dz$=sYK(l7lF{F7Q)y;?Coe_zQ=>V^E!WjhR;bQedbc9QyS$>KZnhhbUn7nodf z5vp(WlKJK}SbfxrF8SAt+8c{-nEWv;^L`0RqJfYuWc{fjQf!akL*}v96y}=7g2l#C z^7WP>)zM!A-*5cE`a7Cj@o+C5BZO{9E+SVJuY@_Lg*Q{6HlAve=QXQ0GOfSCbg#l1 z+FPQ{R@dx;Lw9>2rK1Ys+;qA9)1|a&#sR3mHUKaF%m%Gx2~4(qGT86E3XK(K;IgM3 zT;KKshq@4UV+z3wCSM`x-h3#qngr#M1L$_!8^kX`L?T9BAU37u{0@DD@-4C$Gx;`- zI)S*h^%?9N>xJU*XeK-M530D0rU^xdS;tgw9vT-Z+H*pmyZINBohx6nhNXw`=ZVZJ z$#)a!hY&g9_c9#f^c46w;~OX;RZsR_x{5RQ0O|Yi9o?4qLd>CIc=cm791qK+Gat(0 zn8g=FQD1f=zuX1aW1m2YSQcVLLm9g3FS9pWi3 z_F#PAXkJ*FL>w#pMe7Ey!$Iq=z~;rvn7@nzs_wGKt5$D7(Zq$mIJXpg_zOF8X%X(T z9#4myJPHhR3b?-jVs60kmqFV9bSt%|RmB6Hf64=7=?QGTU zVARr&!i=wFX#7v;;X9#tsknZ&7GECI9w1wTZpAVk$P3R=K zo*XPX4sz2f#Hk&TOs_~CLg&taqKQfL)Z?eD?5zm|JDz3bo#)BtNPB)~t0yy9;{m}o zg-mu^D<*cQ;+cbE>HHIWL{*OF*nX`B43^)(l;a8TXeVbctOeiM9uNBJsS-X`T}uXy z+=m)77O+8HzC3el0g8rCVV|`u_{yxyxOT^4R&iLLD#$D+W6d1E{h}jYX_DrhvyJ(o zNE;q^NP$T2c*NX~3=os85kMLbx7o3_d!RvR8W;elE;kl3LPW?y%Sjq@a#d4CML$?a!n zDumhB!&+7_auZ*$?-xvAgJ9wO@$|yv2jsKd2eNs+5?#K13p8pMh-)Vb-PxSsAby#F zb;4U@!5 z;3FT1^d!>Ai?_PG&U+R=mN|eb3cX0%51Z(;(eK%Ay2L> z2VmedC7M+F6`z}}1Ci%lGUWOhvZPS~?hoF>4#c-G!`}(;y{U+t{O67;s5~6! zsmhJ}4ziln#R9JpU1dDch`MIYWfDJ)`0G+Fmb&01Rs>b!_Kizn+uMm$eo-By4q8IP zpGXkjH->EMs*#Y>AO{y}Ga&F&0p5oZeBke^ETD1>=Iy@%TTZ8`*$0DjoFVDqFBq793&urfL*aR2y#3@FxEofYr=~E&_3)-$so_G- z&;TDx(y(XI4R(LtL)=q_q(^WNB;7RNDeG&Po@5Hs`*;}ro<_k<{ZVx6OW}=U+sz~_ zQ_w8^F_DM}BCF=^hgZRx)TnI(J+<(fNKes=cI^v?*(L-_^G`#}of!U4_Z75UM4X)E z!T;PjQB@H6@gsjZ$(-SifVlu~n0KJ6&x|3z|Mp`Kmc?m%9( z+=A3!3VcY@c2cFY15?MB!_weULY8fhTW6bbyC3>2H$g|i9+*k&rt^P<*a?$8xD@yAV^ zdvG?F6nGQ~Z*8*2ZajVWz?a^OSV(AkIXE*p`mJ;co4bAjevGU@iD~}m5xJf%HkY6i z99EJselI3rU_$9nqGJ>mA{vs)H)o34Zo{;uSOu_g(&ibeciuIS7vaTsjtu~~^rr&XgW(_!o zOrY_NT~KFR4mPtCQDd2cz+8u+k(M)YNa)4}t8%6|VFqTHeFmvl_wY%lA#vOg2o;a3 zpz-4=>gjC5r^(-dUjx%w`O{noj!j{k542;PZvj^Ax(Sc7uY$p0DSkreww1j1XS(v) zL_K#iO6QnT@h~B$FzFNDZF>#kIp$pLsvOn0?MNl>#lR0I4zoujVvE!*CYPoU4_8bD z$(}THk)8}K^XggG!8n*?PT+N#F74ZtFWS%?1De`7U_V@4@RY{F)h-3tIP(R0xw@Y8 z?@NHgv77nbzc$<;_bka&c!Q@Ne1Km!$Ky|#@z7xJkJpcz;J>RfXkGdVOXq1rR`McZ zb;<)*UH*pr`w-f=$bz?w&J(w4sbO2IHJ|L)h>7Xx&>U0F_R1^pn_;FPdo=?-W#5Hc z8SdD-vkkPCm!e)-qA&~dh6kqO>D2xTc&+KkvTx{d=UrYnBP)~{$0m?g%O7xMz*$sQ zEreZ764W7H#8-~F2VO5?;bYAdT>8Ngh9%FYBNNs@_4hew*0v50q#Oh1+@19O0xhay zP1%beSJ+l^o!H$AC$TG!q4%dXIOvHow|FB#RXJ6v5RC zv0w!g`4Zt-=as0r9O2yC z0tIuAz~SS1TsqkS?cWaKGZyY(efq25x$Ir6;MZ{4v9n)RB8pcO%RRKU4$NYjzZQ`U#vf(ONU$=g5lR%;gOs!y32F)HP#?G z_7WV13!hzyB-yy@0h~?Iz_XH!?UR0prB{p~{QEfm;@vQ&Ee?k0@YCl=W%v$r$Xndd5n%yRf?a3f|s%h$RoMAWnmlV8fYyyp^MX(xrRhaIF*# z?A79e4g=gOMJ)Z<1#&}Rxh8t1qch(QE)H@4;X-HEP=~p6Td;8$jfV`(p=R+=&V5^9 zoRc)x4Ur`vI5EF`64-n{9lHM5C-S6K2?FF?uxC{|uGSFIWw*?^i`H?hw|PM98`Q|} z6G!mI`{{g;eGTMod4@aA2Z|I7k6~$pDGW{+jZcrwX9F|O2^^{~Ptg0qI)2tbVyzA@ zg1NY0O*V}3mV?-4ZRqQGhFo$QC)fAFpG^VcO|CY0D(MB|SBr^+Rx#YMeuM?fq-pKG z0`ljK6u)`RMPM}zLF%?XTosrwKe-~3P}vL*Gd0B~&unRcj5XTKU5MKgFT*FJGSMrm z95(Tt0Zop11Pc~v(<28RsQzhLe(<3qXtrkH%z;0!|C9+G7bgj)Ue?0KMHcv(55;OZ zb-Ft08qPA*z(wmVNWYb=Xh+})sOVN?Mz0Qo=WZL;td zI`}a(5ULKuvGVcjp?cKx%7@`5G2jvU6M!ZKi6XD?WmD)5hr zWASayVBQ~`KpGxdQw@*%sFu;g0vj#qU>r$D&VLWpD_u!Nnh)H3AQ!w*kx2N=Fb{Wdz}Jswxk3v{QVbqCEQ@!YsWEV=XU0jriHJf?D)hb=RxgozG$Y7 zBDknT@>T60NaunQJQ!jKdx{5Qh|Dy6tigcX3}dxIKPyyVj=aZBfHSRGsJm+xsV%?YP*`raBW`*#{gKdEN3US+_E$OGUq>O4qqpiq6GNi=($0{&Pwj3!li zva`=?p&}~`q&*(OgWft~{nVO1`S6HH9|g6Ba{fOpYA{-wo|^whoPO*KTd>d?GrIQL9UtkPUyO|ct$_5|unJ2LZAl^EF82pL^BK(<|qj|*Lofx)j~?!6u0ct(NG z)EhwC&&0E-`|640&PtfjTsNTM7QZ-@}hTp`g5d2Bg>qqUzUeOu|)?>25uMuSNSDaW!Lb@+ z!NWd|S(h)S?i&?o`-f3%K%y*nT_TV5k=p2a8;O0YyIrrMF_~{Q5Keh^gY-hdFEgVE zjd%KhLgHkUmnZ{!bwAqjOki#|w?R^|9xRzNoZI-9q4|-1*ykUH!56(~pwPo})JliH z#yxE5O;`B1K)6qqKgXjA<8Yn1ESwk!eAW3rT=9Ae4;Z+NdJJ5TyGNgZlk+5Lyg`~M zweuvVHZCISUOD8yP5+3~^>64raxE4PyAGL6+u7xxvOMw4ceYsNGWqqy9c0)Y@?&2e z98#_VPmQ&Fe`OntY4o6zY-F&xI2%k%ozboSAe@y?$FHd#kV&`mm_^~(cte$Vs5aqV z4bHYl%W|0lBbulr2W9IAP$?~Y{50?;+L*3H_ZDLm{h16+kB(uk)l2k$J&am*sdDm0 zhc|4wMHD^5uwd{2{;foY{PLG2#T)NnzGWqRv2=hJ=c-|FebQ@!0fzaA1=zO!s_@lLb#k&f_tn@WS`vuP*lV;#X^)wsk0Np0xsB)-3=t z+al3UUj)CW`Ox#{8$Nil5Bsuzk_8=;A-zVLjGpH}pC@;s+PFvPZh8f$n>2~n&6uyFrG?;OXsZSnD_!9_sl`<~2g5R9rKiUv1aK`Hd6##jToDKFE+ajxRy`i$!crK|S0{ zStoRh!@xST9%FqfK%8le604L^YyC*UX_p{A+*r$s9%bRNo9Qt7nFI2Px`IDJna>E( zrVXkptp7zi`Prg}+vmMUwH4YJ*xbi%CR_)(Q_j56K!dA?9mlHuM*MPs9UnjGA8Dvu zNaMemz|1FuY5GTXY}4M3O3ByQ-;gY*@IOtatqbPrI||^K#va&qZX}|c++1O>c%qmc5yu}wu;8%t3%i@s>~xRM$(t_2t+q}!aD7>RINW2+7=#! z?mu%udQ!TmspKMS^V$Zp(td%V;O$=0vK&;28g!Q*AtohexFB>hmmgsPgOoPlse}?y zSY#19H@%%*n<~jMY5(-Rq-Qs91gI9KGL*0y`=K@ z%Piuz<05*6U4nZFCQK%0B)Jr&L<5pX!c{$GUT7PK({wHiH<~P1_S_B+4^pIYw?<;q z{aB1Mdk*T?PoU9!e_?)V&Ib3!f#F$M9ymgQs}Bi-o!cB(w_iVIAFC1eRT%LnF=xqu znkn>$z2GLt9`uUWr(qJVjFCA|64j5%MhI3KKOtc7J80UufPGDN!W|#qksbHGv%W== zbk^P^s1okFl5We%&EmT#opcO!@@#N}kl%M0&xFVM6S1Q}g)3x9an+JqW}DiEvZE&O z9HDpKuR59cpB)4-_XqJIx7{d-7>#Phk3_TlYXGF~;Zc)AkU{Q}o8_8JO=^SK^stGY z_X@#FIAbMD>-h-N%>{1_6~UZ{iFE6MVR+i`049#7T;_%n>K#+zkuuR@-K6u@n!fQc z%lFxF`O&s4bsb%qJCk2aR^_vvu7kLWmx90UDP9ix$`ZDj;c1m> z7MF1VcRSP&9nH<$Vec7i`SA#g>)TjJWG5VdTh0PSMQmG_GgPIOdY_yD|8GY`g<$zW-<9G_@91i$fhc-=5n@LAR2;l2*&6kIl254rN% zrwgFYpW+O2Wfr+#mz+(#j=iq-qNf_+sO9qz`13+O_2wGEC!2$}2Q{#~=c9=07rPrPy4~RW#Y1p|G zEp9R%*6jsttr+@d&_A5J_c`cl$WlH~l|R`#A2O@Ez+N+4^zqX`9$(}N=hhz(zHb@S z%gfPCT^f9p;7(r^+RJ=@oATf54xsy**C0J{0Ds`Jna^??NCVW8aO0&K;+0#+ybqti z_NFQH=JUI7<+e1xw>%AXzMa9+%X#R_8&Qc3CeJj>(dm~2A9{N}zR~Z%;JbgAUgJpd zLHogcX22>qyFd&_+#R5ya2U=rQNk}*UVw|uO=#a*j7*r7X!I^)mSJo8%Pp;FDD-us zrV3~Ezf94s-4@h!tt|dHa2JSz56mC@9yI-I=^oE=lp47Qj+~spZ-2`KMR^PK-Rml3 zMK#RJGL-#DcBZElZ&%sNZH15fmcoShX|Uz;1qjvp0DT(XZw1FQy-WGkGGe8m@#}1$JOsgdY8% ztA%;j1L2$NaVXX+08iNvP=9)YWpC9c9?r%%Z-h4NIA0;U@Y$N~lzL8v+@1qB3kOlV zsuXxe@`+1X2xMC&qVg1TZsM-Zm2UQ-zNR-^^;M*ScT6!%B;p1BR^o30_ovq9oum0wo;rjWGwxu8_2U&|B%G#cVVV^0iKBH z0#Fk2m`jS(t!*|A>lYkrW}~1>b_nYYZ57?ipyiD>BzdB+2W#UAP!_k5&fSk;ptb>b+th{0tA(9F+q`*H z=@hKlO#RdoK#d1s3VO6g_2JBl-8qX{Rzk4El zy`lsQf@FB|@Dn7mR}R~cu0Rd^0_*+%kixcUxXdh`Rjl_WO5x?;qI(h}7O3;KjfcsO zi*o#Wk2USiE5RoTr(nkZX<)Fw2J82}W*WU-XnkQmY)z>UT@k7A+BQir+QHbUztM1G zlP6zh)=YjX+`+y3dWe@^5`X-x2SQTM!(CfLd@7tHp9c-6O7k>X*=;%Y-1Ra@bk$Y) zJfBaz=Y7WwLu6>cH7OnplDyxx3x1WzqlCp(d}q6u#Vj04P6^Jmb9PJU?Q2n}-+vmb zO(&5fDVM}LjtW@sR|u8a6Znga{cxkwjwY?iB5Qo-gL(H?Br5(;TQ!xcZT*B!-Xe^Z zHs+($^`XUc8Km#7fDTtPI&Wqyw5+{ECdDtpWt%f_c9bWb|LB&`?b4zAWD1u3Du&Ss zGqHnv(GLO>e5G2APH5D?6^pcJ>3un_H*6)d>BbRo<(wgg7?z7=su4e>~m)$^$F5iJ(uLzi@T`6!{=S5jU7CTh7Oz={v z^DwETDtq$;C|Iw}gY;jrPnS@icL4o93`Pn(j4i>cN%eEGP8l(bCdIXj%tIzpbZ5*g+2ySgSCU{W7n1e$QnnW;q=ti$v3oIGNg8r1%Ec9oq;OxjJW@07!r%I2vx(N;{BP(G~g)BFkq6-U! z0AL%9TgAzBpJ?9Yq54`7pb^pP1b)`CeN~TsHWCn8WVQ{ z_QyIyXHqU`)xCyq_ts*L;N(rycuHhdU!mpntJt(wcoWnm!(8WVm{7ffFPSr&#;E)9 zMWxqZ@k$l`pSC6*P>E!>Of>jc)p*=7&z@xeS`04*S1tb92Q8tEtZcy$Fdyv(;qsci zWzAONc%x7>>2xHzs6T*MjVzE_y#kX4^uU-ygy*h}{LWv5VGiji@xU2JcIUE}{`oL>mM&H3#Hv~Q73k`L6ZxQP%JAW*8ZB^_ zrU#-gav^9xUWOyX3L)r7y@Xjv&*O=JFHHb|Bsx3dbD6*lBGA-fUbfirI08r5Yzg z<=sS(8jy>-@`q!x#TzKXAzb~>W%wsB?M3BwJVbH=ogn)eHjUed$^V2-UcpY5?jgYz zy@|l~w=po{zBh0AJB+NtPMqJSzs$=2{Iq&3gfG@xdPqUhx1b9(1EZi45OS*vJ}>?SuGp96s9TBe_xuqaEgQ z5~a*>+-3;9dz|cVyM!H$x*&*n3f#F%;DBZ?LdB?)?3UgzI5heeJRUO; zca)jq!xh3#l|LQKu2hAOdwK^>Za0J5LUtByqQi!Fs?wcVzlpTa&~xz`MJ=vu<=$b} z*z2d4LF;o8Jajw3o)#(d_wG~BBIz(l2A+jYYx_vcn8p0FkulUx`+?;S!BC@g4qmx@ z1EoA|W_V^BhWs~&{=LA7=#V->&j3g{?1Hn_WD*N6I}CA@p!YXFM~$y4^uIVQ7`$Wv z)3S4ig_8v*beSxEioArm9!o)L-59Pi(1F%0K1WUqPL~JvTT$tSCckz&jra>cQ|8zw>mMf9N9nG4v?`&2AiFIErXoqV#3pd9XM%l&K8a49WT`u&3oB1UpBAoMt<& ziXMbhcNL)5HzB`t{X%|)CS%wbYuFT%02^0U!G;uJkIz|cyczzR`CNGe;mJl|rL+t; z{b!F4gmba2BNcJ8B-b0FS#@`y5&s-0$!~i}(PuZ~VUNrfJn?%ozo>K^+?+RyTyxs+ z)cSsrle3cLM}l4#IJ=Zo>|j_Ly(I!T2p z2|2WUo;hugSweRV>SyPM-6lJ47qFo7u5{U(F;KJ%N!{XT-0vO*dB+qWXmS*Ma9V`7 zo~J;}OG#l*#xNdpcOS0GSK%XqRtfB83O=jW#>SztB&T#g_RO!sp5kI0zEqwsogE4l z{TUcI;0b#%V=fKecbaw9D}dCC|<$fJjc~rshXf;q+uZLT13cJB>n8Em^>)GeJU^rGb1tiuhaUV%#{4!62E?Bmj z6c4aPm-|g*-lm;=_B0QS{j(TSv%f=J%TeZh#-X_7jGlIXU8_!?LeouD)N~kT2S0?iElMKWkOY2NayvA}Sff*CUJUixT$h1uue4CN&VSrCgMvu$UxkDG<@8EnwDp zg+1F}3pRnVxGQ5jsxGKOvTHAn$SlI(quQWwKNfamtj7_iL+JUOM)-JT8Gf8Qk?PKw zML$#x;}4q#5Y6?+!Enn-c&%+f+doTF%cvu8XuksAct?f&NNobiBn7(R*kt~)--BL7Em*oWs*4`c1C5(p^1Ry9rT9{e8Kf@%|5*c9!>7+<+l9Gqne8EZB(iTgKU_3E*7 zrP+4~oo~n#4Ttlts0+B&R|AIsybc;KSHL0Zohq#ZnNpXmxju60{_=)#k-QG zbKx(BO}YCY*jA^4{p5R4c29+CzA@*rOPgV!%_C5c&?2nH0mG(K)_YYQLsgq`YQH8d z{Gf^PFPHI)hB2(=(hMAz5CvOvhiSQO!j`nz3db6TZn zlv@wzL`d_^(d+QR0bSmu5sRP8z373-A8@mZG}qf00?H90jCuNy6ulH7Ni{^J9d+3E zw-t?F9mV!HHn26A`sbJjf=wXJOXRlPpe07x|h{jB%2p`I9KtO^YD$jj1d-=D0ZA zdm8^TJ^=iRtUzJJ4`z3ygv^_&zz+>D0Pl;-LF(cF@+q|e(n13T@AYdYwvpuKQpMF&I={!KEQ~kZ@`gt#HoAx{7=zec&s~Y;**}FY(x&m`?0fOv#UX4>0p* zBC3_{B%^;z5QBYF==i_y!DqSxvzeTWrNzJ4uO|^;l&wTd=B%r`XT$3pYqGB&ZBscPt#OCZeNf<0Uo0V|ey z@ay8S+&wlCUG0X`wpVW}bw;jYsV7U}%&-pdJ`g3aJu>`xurAFA-o;~VGa;ue1wK3} z2gBv3;oIjjSl4BRW0ju5vd*I<)Al9tRqFuby*gm@b0}RIk2pm)6z_EhgT+=I+PkV+ zT;6d){72}AO2`?F5_7&v69PIGf*QDLS% zMAxr{C&u;IdteW=3XbC7*G|m+**IL4T?m8593;m*0`Q_z5o}vDiTZ3GM->bbpm#Tb ziH9z=3Bx+gGp%iqPI10Du81iYktMNV` z&L`(i1W{Q#OctFd`CtD*>EaGna8;L`3UOwc1BUQSVOQ74u7faQ_j&TE#t6R3Js~p! zL^$i_68z8f5UyRZ7-k5&6&vR2B3y_R9kg}8--#5r8qR`8ClqMH^OvOPk|zu2Ij~pg z_?8V>zC#p8>$ zXs4M6eXVy+tbbOWTZIVu>;pY$+Ma>->aC&?Q3xl!9OzKR?_{(7R(#|+9L44y0yn(p0Ni`|07}ms6-SLp#J!gjaZ*4dI3$js zR1#;`?Hl zVIU2K57t0su{`fl7CMBg1L62aeLD0<4~)Jj51+=Bz^>wG7`y5O_}h-><$k9`Os*Mh zMzz{S-O9m9t1iG?{ZQ~x9nF(thoRPz2#ox@8QyeH#D}l`Vnd=ljxoJ~ay~2BPQTgw z_`Q3gprjNae;$ZJLlbbnvk|{8_!w2F3&)R37<2vV$y{)zG`~7~sKL#Mb z(;l@gH*$>iE$AHfg{Pu#M0N#~^E>uk#}YXwnr|_O#CW9q`((#>hK#aQ;k7=4PS|IK()bCE3@TvBiJqc%&yD1fMsvCG3txlaq4$Xcrz41pG?!j_>K9j zPPP}uTgj83R=vy|{#;(B$vbw`RvG$Ny<-i#Maj+EEI-P10b3G=OuE`kp0xNpvPIvR z-aCJh4Vz&>B+K)l^j0OycDSPV#R!Pn^9F3XL|~GEAfZm(Sl@CAigKK&a<4b%3EV)X z8~7+=Jqz}2d%#b~Tm>g3I6k1#Omg_qW8R3=8TMsxEV7juIJ{SzDV{!&Eyy<@H!4EW z!%dYwtT@l#{(zz1_1}P(f+>Ba|A9Ym+A3yviYqleoQuzmWvI`+tJtX92W3$e_|smD zd@nU;LuaS*O#6+Q4PHvH!#b9(w@!j}XV0Hk?*UrDZ}<(teDJVP&xU4%E5I<#`%3J`on zn9qJztVp~C&(PsKGmU02KC2~2;Nf&Ak20j2^Yd75%a@QIREJhi+F-&XMH= zqH0-nys)BU(D}|ACar3RM&~}5^Kd)%)+ez8F1}#DsR}2h9ENyDS2Anb6dLsW9RABL z0dk~}ebMQ|@|ejH+VVMET)Gr2%d%no2?cuK z(muS)X}xY97eKcYKb>^C1^Ft&;&gRdFU+vZWDf@$!`B{JGGU||E5|jU>mmsd6iFod z&zcHLja@hmju83&XAu)*Cr&R1*WlwRw;;ysFK_>Wc9=OwiKJOvXBA~WFv|rbscM-C zSw8xf4}mv%pIf%$GvR9HVJGLIljy@koPOhThb%d;nahFl`NfX?Yr$f#v+!r)C@Vjg zGV2R%_ zWZODYdEEp`!zPeVf!#Q~&Wx`tH^RS8w&Cl8wovzc9NOM}!Di~O=Q2<^U3^^_?{I@I z6}z$k`Np=mO>I7#ta_E*kv|(QY~j}Jx1}-jM=X82_ z4Z7>z#jnruaO0z38hwzIQk2i@d>IlXeHad7Od<|I58e$xlq%tqIC8F?? zdvNW$G6~WOW|l4c!Mna?0l3wtywihA-6O4)R5dr$+SR%xHe+<{dUci;R(fGSilHBn0!`NRn;F~oCyVpCy zkd7Za>1ZdP-=jv2RkyQmdYkd&gi?@e*hl8Zt^hGE4`K2#E>|gfE@tR#B+=QAoxH7* zKw=t~Epy=~%(!m}n(mjFxf;ey?a#MZl&nWnUPhzz@)^vmf_0$5=0n0fS@4-%$ynEJ z1kG=O=o(gr3MFT7&|?QVw@sHW?|0(r&&haYrv)9b)`gV&e>oo5Y1}qpA@87OId6yX z8IrznHeEXZFJm!M!_kzCK%ILb(kN|W-X_ir#Hqu?8@r%@W9IcU@#tD2L~k8E&#q4tAiB>u{Zj!$&+NYj z)As#CF>)MVN44SiF%gp3DM@-HSu8IUg5I${EaEa?COV7J#fhzWFpTbSh)(Cs(XFBj92daR!6oOC4@i$j@(ySG#RNljK}Zxhr0AP%yQNwQvM%W&iBRdkBf5B8brdHAOI z7`8PX0Qqin@(-QK{ojqOW4<%L+NmDS2DLz2^$ zSb2OD`3JJ_!9rbPyxNP=iRCiSYwclmpdl@vbc6ZGu`^9uRlx1?2ouWnW;T?t5cSrE zu4FVJQ@RyLC_|8@Ykgrj^Aiy=B?Vq&Yq+|qTdNp(iqFC^6aU4 z?Jh8yv=fBBm4W4Bb+%}8GOS*@fEI)lLJ9K?sxSV-moS7Q=bTCTpS8@Mu0wDz;Q-^f z%okI_oY?XN3;OExWIB6X0?W3Y!SIvej7NnXZJL#a9o)PWZIj2yw%LKcKsE^a4zalL zFta!0pu?EM8a$<=dv>qFoCy+GPSP<@6CAlB=m}Llq{K zha*{gj`NFf9_$rKY#)xt2V8DksE<5x%eaCAjn`o2hG~$L`Wb6!I_t~TZ145=O}TuW70f7ny1_pVI>u3NN69#(FCJp#mdhCSmR5wanpT3u#$FK5WRJ&!kSH~s8D6BrUe?WI3byQ_Z^O(<^r?r?&o5?^7ue8SI)E$30-=B37r1kgqKVA| zT(wz}%=9l}mBVyswf7QceZg}q8w_WT{}^Iws+x=1U$?^i{M%qC@st_pc?V}69b&W$ zkHeCxR2047%i7mO!~N6O+3g`bj6eJqo!!^5jqR(c&CQn}+w7 zQ-YSXuK+qHQTa_8dVF;wp(EW)_KbND><;YGu4mY9Pq> zlXbf@Ic}I5$56cjP(7JS)TiQce=c{)pW|!jawfbb%7nkU0tHfeXi!>%7Y-hQfB*b2 znsgw#XCZ%qt%c^++FC!*5%KycYqhBwvLK~>;g(AJ5D{K`AX0gia> zbRw&8#|RbfXhE=<5pXe8#A%Km>X?{;fyq;lyTxT9%gmy7`=7HHO)B^s*)6pHvMO#f zw1oT}H=sL74}MC;LRZplj^TR*?`$4n7CN3JdVad3!&H{2<|eSioKZ0TjtAXTJqr)! zF2WqKpX}%}SF&zuCCu{@Bl@D>iv*`?lT;HRVIj%Pl@dGJ=$pj`ngUVyDN4-m{f54Y z(|ErEmtw_|lQ6hY1@@_lqrk+(sXRYrs^CCDY|{hm3A_U_PQMvDQ#Gfgx*bsMWkvaO$@&_zU*4w^h{1XVVB?`TL{ry5S5C)DFXbk(*GQS&Dn- zb6SJ#rZASHL09VPlkGcL&|M}BN?e6G-CFnvm$~aoT(nQ4ZIC>Xi9QT#?DAQA?m20S z)Pj)f_B4zG18;sn&Xf!^`o}NVZ%>am*5a{?lJr7SJ1*C$ zLM;(VdSa3rF}LAT(BGfK*PjgWPw*siF2WOUUmrrPT^{6;+CA{pvOu%w6L6()C4P4Q z?08~xGKQXH8R3VE=()mleyM#KH1{<^dFdKZ;Fxy$YJ&80#1-E9#dVM`U=4pi8?egP zmNL70-C*17U!3OlAvUbpjCop-FupL0k^8-a3YLUIhguHIt0&AEVa{KB?*aQo<`ERz z2(u5=9HHNEJJ*fTW@{L(C#Z??L`*>f&DIBO28w_bt1 z^$l#K%op;$&w;{JZ{y}|yAr{RNp{91hIL{#&1&LN#||`fSb!qs%Wu@~RowWpB_jS)Hmca$`0JDwEFm z7Bo(K&GqPC!NB~P;Gj_gmbUS@oBt9ME)~OzU+VPG$xyOw)p0hn_8T658_G|+RSXvj z(xA!z5z0%N^QB7CP}MP(J*Q+!Vplk!3`^SUbrhD+ zMwlnbWpylXWRjiqv8KO^O)~f4nQ?lC-cfm~o|(zMu@<4z`IE7v<~r*+Q5yWr55xS) zdUVT=tGq-xc~bu3D~3BQg5Ni+so72$yqKU0-W3yx-`OSX%}Xmu;~F9Adn1X5DoLwe7D9dXE=kG5=-bo6vP{G9BCVo?TIT0#1$OvZs0_dD~1*;j{VjP<{F}1pmH@-y#GFJ9-WC zELJhcIwHYWcn#Q3jA6TeOHBXMgTqH0@cii$ux^(Q3f*LxhQZ6s*5zebS7yg-nk)bf z?IX;%sv1;%N||L2ofv*Tk_2s6LHUa}a8_a+Yx;62uF}ZH%ZUnLZEj2^n=oEErMksZkng`-3D zynE_J7=5n=&lXOCS?3h!0!>}cn-2>PN9}6 z&ZNh;ig9dpBC1j+V9#6)I*WUb7dICI<2nUHZZ|T_;##Pmbq0lQxzUEQ27Gc&hgffL zrn=Q9@Y119kPU8t{PWq^{=pBQw-0ccg17PWP!vQQcI5ouBIJH2@Fw%k*-vs0k>@8y zuZ|1hc&$R@RQar;;9r{PHkbl2>9zQFpEQwg`{G1{gvrwFCCobwY0mrj3D%aJAv@nG zldpIj-dCwn*USp6v^j&n1VZ6Tks>{bd%0W`TQaY36*EV}9li3zVO_lfEEj&sWQc~d zIZ>0C0@PqvZnoncG|Pt7K{J67+Rra=-A=CZMDS8pE4)bJfwYSxS-WvB`!>=9%v%mY zXXRC3?fGb4JC2Ec%V}k#xqRVi-x!?{15&m9A-?`)OaAQR!}6{jpn7C7Jr&=L0-C0U zbBHm{YHx(^_go=!+i^C{HHKrwmoTzY!sLZM$B~HM3-`~oLHObGjB-vkYQEfq2F z7_32suy7_l{vB(5j$>0NUq;0X5fFD@kL>Ad!QVuf{@gHu{deAq)a#Bhll0y)&0KC@ zR8==5n99+f@^kp*{vL2NF{arQPr*ugZ~E8f8Vc9z@SYn^M@hfaD5TAY*ZxXmWwAT` zTOou_o+t4_!6@6jPk@$M4l|V-2~*!62wDanwDVsbZ^o8?n3#Va|CXns-YQwf>1Ytl zkQh&&22x!6?i4%ydI#JP*?^nP7LXCk{rGg&S~NYnp4!FA(N(?@Lh(%9BPb)2logWgDgHe-S|%-O?`hU#ss&-0_y)Nh2R zz0wi9e6e}uWOWJsg51ApMM9n72d8!uOL*&sVqmAC@U!lA&`BwWp3EaWp_oE270E+`DKDA0WJMx++Xri&uOe}rcfm7m z4Y}$tj{Q|T9d=&}fB?Z)VEWRHEik5Fvb~9Q*Ng!bTOFQ5m;g=Z{*UM$*^B?4`;rBr zBWMz!guQ=%pheVlQvO~AC#3I0KSLo>FkB5@E?r2aPD5bnL3Gf+4;Rou`8DuZ-?D@exw0?BwvHax$)>$+{?s-1rlLyZ+t4C7xwMh z!Es*}fy&o#P|H=P{mTXD_HR3(xxW!&4dy`NPaV|wd6Vt`tWLiv40iYgzZgF8sacJif^qfsMbmkl^cwsf_+M zjJJ-%_v|s?jb1fVgo$xUkW|y)9D=E9(aDM248sz zqtcr}J~`(=j%=L^GfWo2v91-!`uB1SiL0zv_hdYht;UdW$7!I>lk)lh|}wv(kIni zkF!gZM&xy42lp%pOuGtKw#d<2%`G6Ia)@ucqX&0B_n;OBm*K)FK@!~QOc(n^@M3&7 z@vaB8Fa<-e8QI!My!9{%_H-72+n5{(dj4j6F02M$%P%ZnKOEJ!rx*Td3Be#MAGj1g zgZNxBW1Wu&GQPjWh(&`l30}^!IpPMGBY2D1@9_+C*U!g=CwiH7yMGtq9(a3takb3rl#n)Ze;S3PX7n3n)6>%1{}d?#D^*%2Lx zK2=H0M&_{ry;r&%4>dZ&{(w;wm?F>R*c#!x{f4kEZY?wgSP;9r41SYogsasQ?1dk| z;-hKs`0zNgZR;&&tJ*I7p#B5q@7zJ;&q>fuvpLKaho^Y8dldGc6`|^{zq7|RREW?Q zQ4*LZ0|Nig(UE%O;eV&cU391Z@3sH0ajS=X;eYQfv3_Ot-`M=*CK9C;c~~i~j$7E@@7m?SHSw#-a-T8~@+Oz0w>1 z^P40+o;V8l3fQMo^*sIjwEy|+6Tkm^{NKMBsyc2_tJ}y$LJ0`GPxbnr@B82P{u}8u zpUnUB^?&CP14ncI-`8TVCD_am5lwA5F2FY5x`GOS-Qmm^T`DxioYjx6#=8$oAz)WH zBz|^qGMOwvBEOiDEOS-ba!(Q0&ex#J_?9Te=}f2pe9m~Q8({BEBjR^$4zBv%hVCy` zUWQ&GD1fCSimkVl`7?${Up81I~QMrUm!Vw~Cwb1r0o zh|(_fov*^)SNs75CKpha^R|T=zJ;RT3~UWFp~Kt4aly=0u*Om!^le4y>HBwiet!h% zRemGte#&A!f0>Zc1!lDMpcn5)ury6ozssvR_6ep{{ex*`gScUf3gIOS@%0Y&5vNML`0An|x zO-?`Z7AS*TRuxXY!Fl0A)8U7A0S2z&m@VfwqTsnM{LmysoO1-=6nhF+cumHU05LLj zUyz=!KFx;OS;9LdIT&vu27+J0nX!jy@S{I`E639j}2^ymy0PQ{$xFluYZBUPG;1TuR}ago5&PPf$r8Q3>^_7)vhMc zINpkJ^c_c?B{SiTdLS0RaE9HI`DnrU$R|wfhj80hprOu(3MpfHOZyxw?rO%XF?}dj zWXi0Vr$`LzjOjmxUaYM;jXg0neAit=*x%NMPiD+T;hQ0#V5mq-_trrDvo$Dw&5l|p z>q9ZuH#=Y!3B&w&uu~ME8PkujBCWP$Rz)jbsIFnh)^x$5nR;~Vs{+ip6%QH`2Gr=v zdJHUl0y}4lljtS|^7za@oErZJAFVlu8{;z}s;d#Y<8^7@`Vc%8-;8dTZ}2yJu7usU z7lIlu27gSui!XL&gG&=1ew{$%XUdb9O9te6nlTplJmIZ+8xA`ziIJCcbZJe)0Nbs& zo8u@xfe#IL`EzEpurM~rlr&vt#<-f^mL-%Oyufh^KL``gjaitsl@C=lhD6Ju5A!bXap3%JdW9 z^>j@deW(UH9X_D(3qC5{R3UmQhB)F_#%zl2hL0-0QD~1K{p+qnoGlfhsCSLgbhVL`ru0x7*BO3tqSfoVJSh}~~vuzhJu)wUbc{dS`C#+R8)N=-6j z(zOzAt>V~bc{)`2hcfY3)+AR$)ajCC3dH`-X7oPoglz|Gh+B6(4o|-Xeg4I;Zp@M` z?v^6QuCBlp2Rndw&xSr4P@zYR<|A-^b|Is5T(7K7P6TK(1u8!{Uw}5<1&B9ViZSux zB;LD5Tl5VNgN`*~Bs}ahUgNlOPbBonXm}{HEuX+d`gf6ntQd9niNPKPP1;y8A7zKC z**_~PQJT}_2624AC{cTo$DCqhUo^nu2YOVmqzFYl#^6P37MiSxz{gxKpxH*AE?>rF z6#g;B0l`bq{_G}foSDpsR#w6E>Gt&SZF| zhZg-RFdQvFO|8b$N>ew^m;QwRB=H;AdTav;X;lasRwd^`=HoEO%%z;iT8l^c6(hV3m-W!kaI)1VrszUMRa5K2CXko9ZJ>&=-9Ba%#iq>wIB+J^B z&?usf9n?C5tIn9QE0SfXSV9y!dT@;BzBjnv+lYA1+5{W#S(EmG9=xSzgL$`&NWxT0 zDq}4}`AffI@!;uxbVL-11PX^0r%c1703T2NPl3N*vcq?B2Vgr}f zvvc07lBH`6AxP&QbPWc>Qf@ChthO7fbP$54dtkf#CpaNLfw)YxCEmLhV9L-GX3A4TE>~8P z)>u1X`@Dx!yKZ+tO&?dAn0g(Yzg>k73F2_DmY&=*5Wl3iA;JBs8zdep_%b<)wx;*)KMT4HtPGYo{+=dnUb1}a!9dAY% zgW0bP<~^RnAFIu1+0QsQkp2PhFL1_MaYgdb=O@n1U|IhkA5m!PJh-Me4vg2oz;&M7 zULdCvJQv)-n+bKyn3O2lpYRl}IR%3*SG!BDe#`N?deFmn1>EI41v(9Fc%xN@6d%6K z~Uqc`_zAw+8`)A+|mblI`Ba4@?UdxrWjd6hPu z6te=??WjlJ(>bu+LzRv^D}$Qq1aQvs=O?c=C4b+=VuZ97K3zK%l$5_Qut^ ztufhY^_}M`lf>w4wV*Hd$dhQQM$Yce#9uA{n6_qnOzwUFzZbipeT)lESJ5OXF@p5L zFI#$8y_wqi5{39 zHlh!|hoTUt<7vM(4&(m)L{sK6KWo=BjFS+j)vqtZhqrOCw=$Yt@A?cTRR4h$e&_Ip zaw968WbxP>Yq~$=B{rlf5S4&*=#4mudt5HVUhitOtaYm1nd|CEX2pct1Y`~~jr zxxus4S~GRAtT{2evKZb@TM5sp6_KCG@lss=q3T^Vx{%8b?XuYj4T^0%10qD3t(H*v z(wL0o{G2*oZwkca`U6kV4tEHyfob_G;9Ar~xSje0r)j;1n?=#+kdlO@VQRE7(+eK% zkf6~wPBX8v-^24L1J-Orn8ZW}!H0Jx@IWe*t-35oPIathR~1cyN)bui$?>y!i>>)* z)HHa#T?QnnbTKY?q)M1aMd-Hd61%)?K8%#8(EXz7#NSCE-gZS!PoRKT*2~g2GljT$_dcq$^~2kbr$Gcl;Oz@V zVtM)|HgWza_1~6M?A>RqxxNN|xH=)vayPSCL=L~sWZB@{62|Y_PL3VN?bR<>l51w- zv~g)6b7P|mejZ6@d#`%p!MF%sO@j)Nnxjpd%!Q!LW|ZwRuVF=sZi15w$CA*oAt}@6 zLXJu`Q~K~N?ogNxe{_rCA67BEBRY83=o#EQvl2Wu+{f`LBYf)!VczyIEqYO*4a^q^ zurwwND`RTl>%%B$T>O<4ytEABxph$Z`{S&K^ar@&Q;i;<8rex4JLJB^a&XQmgW~EY zF8|z|PLnbwy3U&9{hUb{K5Rq`&sTy|qB-%4`hj8My2Q-coH#5or==hCpux|Y+|G!@ zONJ6eDa?lQZf2sb*k!!vdlwD*EGRyE0!p`&V8^+aY@X;i>epKYvo{aHf`}Nny1)=b zPOO1F@j}F1)R?;USd#m@oWMSP*lDO>4ATPbshs)}j+cG`>dxFot6z&bR*C}I6BWkP z?O6?`_bXxY7{~1xr%I1)O@djMdtrmW1^!SF#`%&aWbT+INR=5A-@*>CupdB^*Mi_@ z8jXhfW$?)LGmdV)g*WF_;3}a3c7{hirrB|9Wla$}8YW3>xIIdYm^>X#(!fIz=kU_8 zKe$KjI;IbcQTp@;_LLfvU0t@ATQSP9-u#(hac%msO^1F~2GW-mz*qATd^wR@%{^75xeq&; zsh?Cy=NOl7@0WoYa~wf<R$n?S59p-#h==q&4D6-TGT;)AXD<69`W+3S)w zJ9^o9sV||!B!%TYo{#Iq%TQx?31it>k9B@VWIv}xS8uQ)2AuBnsoYA;){!Ki^2Q+A z(SWEhI>d|Xd`~T4v7tqRYzue56{)|leWDJzuPMWZxN({rB8mK*?@;kx2h=CK;o=E9 zK+5PB?6_-7{>G?KMw{dQ&NCp7b=z_BrACzC_OAXvUcf%CMrj{Vj05-{e)#1f@5E0w zTUvk)L?=Lm;#t^NY77r1*pl#B&1m#UpPpFajZH3o@bq{QRxg+a^HR@2<~)7sJ*GhF z0_>>YXG3Z+FB&7o%qag;9rW0bCzsz2Giga9{P$X~d67r0i04ZKV!pZvv(Jdo39*@| zdg2zW_p~ERF27~Aacln<3zE_Kwgjm>B}7lXNr0ylw&InDZsxA83ayklh?$}xcU%<=ht>&CF5H}8UnRRNR2_Tq7-l!5r~X#Xq|e@@(vGv8UT zJ;I-$+gu)^e#?;z#{t}<%EE;fJDSMtO(xDUBGOlM=)u{-^b)tOTRYE^TrL02?6L-s zyufvXB1A1v~2I}051i8!zaJ>7DS=4FE`4iKz;SzU~ za`(HPo-DoBqlawJXDn`>iP}F@$k8%kQlt@tb6z&XzOOy-u)iJgbv`@2Y7{NMD>4$L zCEy)-5?82keXzkUaPzkzlM?O85VtoOac~B`P6HH`)}*BYVeFaZ`sC`WIq<4dmiWvU zq-B%Up(5Ip7VIr`8jeloP1G_XDM||Dr)Cx2{AkUjo3z3Ku@`8yvl3TwT0Yt#2i>Lb zA>a5RdrFUw@9r!9CB>?YSN4{4@yGzIsq_QIND6-)DprQ!w#?F3f5@ zg;FD$q&-RoK8D#4nMtA?FKr*EG2g`+Mqa~9ht+7<*k)eE=tth-HRZgu%Y^9Wyx$O) z`jZilup^Hr{)Ew?rwp?|6GZN7P_chpo?w{|X4v23`i|pC=LOE6oBM~$3P{9%zmu@P z+J+`S6(ju>zZmtUoPLj&ih>E3@yl&vA|5Qnn0%QJa9@VXEmfn1755;%uDrW<$6K6M`{`A8*01I}xLa^cK}j2gyB%1xNsO-U&&SUOI>hLD z8S{;+^{(jLSR^MbOnIZt?D-GXFzd|(rZV*@W6d!)f6fpm?h@)4xk8wZ28H3Zj#TJ- z*$XE-j`1DtJ%$Tm;;_=F0-nwgBcJ^H@$NJ!;=pcZ-+MZvcEDG#ufKx+3pzn>>KG8U z0DRVa8FgbeqlfkvI2d&Y!bi>64?6`ofAKh?(li%5T8wDRF$Fr;>M0vC*OIE)y~Moan>cY$km%ZYqWaf8%=Qk1 zpc|HSmq{b8n4AG0)+M55|2Od8D?*oVvM5p;P^E)5TC{xaK}gY5pe+_Tcux2fwjZry z<7TPCmw$3lgGR7jOp=CXN|U+8CzxH8LvZ)>Lkx(1gRHhWeKq+nvYiJoG)9F4SBpW) z>*erdw1fA?*nmCo+yKTlea6}Gg0yI2AT*}D!q3OG=@h#u*kBOI)&1VUO&t}|KKO|( z*qDs>?5$``r#9=7o5$9o9)WIgx@7-+_*?WBqO_1V?5D^Rn!S>Z`^eQD*PEkfl`=iI zst|+H<8XQn*HdYJ4vu?lNn*fOv@EkG3uekvn!W+F59zQ%`LZPGtrh8tlOsP^7Pc6T zF>_bia6W2rdOnNg_Q7_v;jayO&8C3fULTZyZI3C{+hF&HVeEHE1&Qz1p)xuHy=)1t znUD;N+v4zU_d4$WT*{6rYEh3mGy1Vy8`8gt68Di(ENHZ+Rg$jWyo0Ig>zIOGc~a6QNA}n3Vg$Zf;rm&wn7-{9oVOl=fweZg0kJnwbVY+`y328F zCu>|bTE=-SIiFU@S;kw^gWY+|lxl^Bvl$XQA&JYMmJD79Vj*7`ed8{;;c*Jw{#=34 zOmF76;(11_PM1t?>4#=cx1`PII4nmkNrX=ddU08g8y?2tyz4#e$ACQid$Jrwp00xW z#UHTDM24o?X z$wKv}WK`7BraH-0uyCCgS@$um=-AmDNU5p-twkB=tND(RVBR)HLEAlbnz`&1ly4U2r@G6Mz2=F9TTaW;Lr3*!;-fkYA8Ka$ zWM6@;;dpwgFqh{k(ayLp$cE~Z8sxsQFPATngCpjl@Li`Lo#uVQ@NPMhlG_1Wd|xq6 zkA*0lSAdO&6~TX@2FdK64oB=xGY`MGf>lZah{f8lL65UhMY9P6Q&vEfzdCuf^e#S- zevWaQU14duIeT(*06rg01DS#|=<+lb`QEW0zq3&?w;pU$=-d7v4GH!%|rqFgX^F$q}5-S-=}ka%;>vtKiaFO}aA9 z6;CFV;^rtZ@<{Fkh@|a>dM<~>F2R=W|A+j#r>FUD=e6nR_$;RXPXb&N8N*Fq|KbMY zD>&4sN}VlQ*^{>h;jv^irZ(M%LhE`c6LUq`<=M=`CMBx;?ip&ko`CFyHz2_)2$xJA zh8pD|$lg5!@li22?s_Y98@A!3G7^>PfVU93Kl9nf733mAFY&9d|RRZR%dE6RR9qS^4p|bWq%4yGo)D1RN zr2jR(&QqiHQ?oE9jMwXnViXj>ympEk?WeaOOl!+ZFs;U8>{ ze}Q4y!5G2y2uFRy$fn}^>^@05vT>a#^={-?NMan{xZnv+m-@>t7z)SSrQ_%c=LbNZ z72xD3ju~C7%PyEEPOi?*!JSqqtW~WNU0$cp=PdzzsAohrU%dj62TB>O_;?U)xWUf2 z^AA>?Dn^F`gB;&82UBfx;QRc=xJ6Emyx&>~Ln6yzO0E{^Jaz;QPf39_Ww!K_unVdL z8jynz?Mbkj2fJgq6?xhos$f$`(@NkGH_E`vuNCSe$~C_X{SrdhyWY(XWOk3h{1 z74o~;7K$4Vqsl@Zy1Fn8pTx@3>a~KT*@dFMyB8cjXpi-G2VhuLnZ})ZhZ^g%(01Eb z*r`?ljz>q}_f;ACaQ9C*S=z_Vql(luWdcmsdxio*d@Rh*U>xR7z?NO2)N>W$&*>8M z9OtPPxl;yC?U~T&X+k~svgq)|7ey4)*n&DEa`k8qGciI2tvu~%=HYjk`ua4o^bJa= zT9K?7#$@W2Rrp&%fZpHrkf+M+72Dsg0;!}ve0^~oRc}4R|D(DBVprcp(_5cFcE>qv z*0Q2MuMUE@;TW29bfBE_eQvHA57i0UG;FgqX(_jZ1uY7o@W_%LvAGBmkCV`+_#hj< z!kVN-_Q8&~&tTqDE+e8Vi}^Iegh&?Kz^PvvWV_cW>=3c#c*m-ArS~kXD3wCJHYJ)` zdLMB?D5@p*nO<7R0#W4A7Kjhw-xoPNSS`@IRoMNG-Kz&jXl{s+uj z69~WF8sV}|MJn-9j`jr#kZJKJL13r|57?gOfAt%MzUk_8!6Z@ocmz;mK9`65eKYKO z$ua*!I+=_fG4yIRBrln}=#r~XltZs!!a7}IXlg{ZhCG7gH?KHfw<2-g`UxewyHUUU zCRjc&q~FI05Pd}@Qpt~Gh*C9J20Vt9*$Xi4NfBdv+!~w*Zeni6Gf1ei!?hyToG$(V znlBZgX9~Hx=?^cksU3u}FeN%_+K2r@`HZLRFlaBaJ{Vv8_?7TL)<;` zeCH5;yvoOqGp)ftSd4foXwY3d6^ZZnhip-7Aus!q23_QJYwEwWe60NS?l?xcZDXB(Nl+u37Vu9Mr>z_ZLSmydqp{5p*qA@i zFm{}mr>slo48GxVy(GZ0xehi?7N++rOvv`>*T84ID0r59N7dQkIBs_u?D!}{)-_e2 z_(Ex3*u)30K0}PUC35=D%|+RP1 zeJ;iP#CNcg-3%Z4?CAvw1Gd%kFxstJi+^@vvJtk_X&bZ z%&2$!CcdxlIC9~@7I;#xOy10p!Nnv2#?Xb$0Az6qY8X7uNNSCzi^8P_e)r>_oG!r z8uMs!0)fT^%b!wY0H`|naQ;|V{*?@AVtieY*zqiIN4PM1qSKD( zwjO3G4YI(iav@qC2*IN}Q^4xF1$mNYNTNCI?dJ2+eB*F=n*LUub{o`Vdw?# z9&W|qgIN&$`YG?}s6Cxq{Sd4_e#F+yJUl0;L9#U#qt$~I(DBZaCQn_5b+tU0@a{OI z7Ag?c8|qZ+)?-$^T$25CA_%7mo6^Sjo!FV!#+JPP=~Ot(L+@7~@qThXES%xW?%_BF zR$3dmwaae^+HFp4B`>m%1n%JpI}cc2=&nbWuV2X4(Bd~BkM7s4d9}|^Ho77_#O@HE==1SPVWOOzJ+#l34j1CRr_t%h52QAGv&s(*X-1vZR_>6m3m&*6#vqZVfI1!EEj} zYohq}9=ubvB}<-XU}Tm*yJL+3UX9Qo>xMVO4HqL~>3$kx6AE#lkYo5LdZU-w5BMmk zNKHDQ;FA=2v{X$l+J9!_-svjcgKEs9qkW$at+YIGah{rJhU5GSr{gVsxbuvj`7zY0u; z`mI_d&Uyo8yxxn|nF93B&IpX0tVOY-z3d~i?Cx~t)P^y*ygw9X-95(4<@Snk)5kz) z%R&?smLvZcMduxj_4~$gGkfp7_iV@Wx$gGfd(n{g-b0i^()gybM}gDhhUyd7uQqEI)MH^ zU~je#5g&V+HwY=jQo#+#@=zqVe#XJ<8Ru~6m?qp?E(=%s#HcH~k5zljW?ExwD#qp? zd+P^X|Jzsr>*}BJiN~bqE}ued4$y$9lQn6Vtu9PDN?pUI45IV0WHL8=R2`>0!tPD*K7zsO8%F>OBx==1^1dC%gBB`suU;Dmd zziT1fGLfer&P#%mp%D#Op-8v?`HIq`-lMpj713+GgA3nj;f?3d1o^LJ(YZeWR~2Om zt5hXWW8WZ-PZ)qHyXyF_NoR1kKl1^%%;dG%j$)|tHKr`dgi3uW^2VQe{mzD?jEMuU znG_|EzTyrO*7TxXyf=O|tIHj~8=>wSqK}6eReRhCRpSvaVkReLyco7>YSFoGLqKd! zk0Ae6DAYSzQn}+NVAU!UqBC(2l4s>{TfVdiRDyZf^duP4vc33umsP;iEgFnwrJ?%3 zewZ_TA~*M;I@@iX!)cO3u(CT4RK&CS=sUZhagiFan_$UT%&dV``6i@2NfOqF$&-*< z{X)qnAuuXL$lZOaOo}&_Li3suu1`5092Ml~n*ce|B>o0x{Vm7K3J-a|4m0BHt3%(I zjNn)3XY#IkMkJnXk}VFn;JJYjwAZ#D#M~sQo$XDSLvj!%t%Sb`O~Q9MpIBD+3{I4} z01m^xyl(Y-uJTI;_DHmHQ@&~HhTScno7>W3Cs#n`okqS@W>BbJ zc|ds3Yy?@`IUfHTqf6zBgZTWj4s^lxWV8}9r7^26f_%9$9Azeu`K&WPyX`NgSo=W! z(GoOUtII39xuVLPbUf3jiN{!0!7NUaNXhrGUa2D5wM)|6u9JM}{1iU9GZP!iI0*7u zz^DEj0wz`fSS3LY7buZae@kJEt_Iz!Y(Yeqn8}CgkPN| z2zHg&QpX?%syE^je^YM+^0yZ85()7r@+chT>#fMn`xHfUKeJ9jDxQm50C(?-(z=%# zz4r?A5{liPM1KY*=kgI%)G?+u7m$`)=fTVLmmDkL-n|HF3)ipOwG>b zeorVv-~RU~HCl$Tv4&wzVF5p9oi40fZ$bpsJ)pas@n9CK5MC^V3)g*xAMaN~>()#V z8{>jaI*BmCZYJ2z`UuJEt6`qL1WB1x4GYWeV)*_b6qN6S@aPQKJ5>Wr_zS}OisNuF z-H5hVThW*hIleg06BIuB;JCL9u(;Kc?D~|#o8HObWL}%l;n+f+vaVFp#i!uEUlV%S z{z5R+!2jsJB0M!qhWalMfg4XW2!B2VK06svj}aF*$NnGCGFg=(JGwm9t&Z%B2hHv85*)ibH*Q-$o5Q%UHG*t(G(~>H{*l2Yl|nz|AcVbH z^h1>{+};q~Bu2(m?zZ#hkXgk8y3=llcILP&A)D5u5ct!sNTfs3+w8DnXBL=)gSIeRE@s9>@QDAw=Jp=&qM0in@KMF+rMnJ1%qg_ZiUhR?Uzq zu1h+2BWgMSu~7PL8)^iYV$M)3nk?1Dq@yytZTkXl_n}D6R52R&T^`MOd1T;lpg1jP z{Ko&u%ft>UMic`?h(SRhK3lX9Qbu~h41q2w-t0)OtSRQs9g?K`emaq$98HM2Gk{`$ z&f}8l=5(P-8m8^cz|(UoxC@LiK5Cf(-L%#NGA@Kc`{Gxax!RO;U5tQhCB3+_EfVQc zGm>^^Ep(te-W)-teY{8F_BjKb0(8VVDzRal$otV z{%tp=emM(ZlHwW|>!QPJ$|;iI#9wesM1>}E^EvBCDcqH1L#J*S=6cpR!~QW+bfDQE zOJ#RY(Bm{&RelS!kIdrgKC6mzaA{a7B)Dbk8lXSq$CX4Fur1Ma@iBk64-^z4Hn zcvh#2W+%ULR(TI#wVNh92zU)^CI-N9F-KDHT!fC>D@l?kT2Tj^Opx97P3U&A&{bsS zZ5YvIOQSQ|c&$@nkl*_i{_c1KhoWMjiTdI0RmLd!qY6e`4uT!mwaM0bJWNX0r^=d& zaNY1D7d78gZgDz)W&8qk2>F*Q`|<=j0f#s-F3{_T~ZE@NNbVVv=2`CT!%ytJ+gW0Io1D)MF}?##evw?HXI+@gSXqIxw7me zi1VrC$0{Xa_kKk>DD@jXrXS&Vm1>hnnalkCMaD$ofhaNAsYh-VCiC-d_=4MUQ#wU| z4A?F*rzIu#@Xh@lyuu!Nh%NmBpJzHyoO_kuSLq9D5q|3B z!Sw&kh-#)W$(&rouixrGuinn%BbB1D?_es#mG#1j>)rV8(HuDWOONW?OVMeo9ZC5X zQFw2pPiE!)$Fl4%ux$G~^ml6HN4C#Jt;esy%ccNBjiu;Hy+^`Ja+Um+&yVq0s|8*4 zy#S=-r0Gd&L|%`pg{nkbIDUUFNZXAh9(LMv)_ys9Ua=0l`t$Awwhzl&M2-D<&3&!>MOg+$@WQ*m9~9X`D6Iod|`I zQj+ves}qr$^%Lj4i022!WMG$a2QCs#0uzPXxSe$c1Gm{zi^?Q!)6ZO}D7PX->^?uY z@ghF_dKwh;mV&ykEXlp$1#15GL~LRPc;9Nr_Pj>i=Ut4tw{3|?i6~!x)PQ!rKLq0k z%V3YVEi4T<3}+WLz_nH%9MxaPJ9|6ONE=IX(@>jtySExnnKq*JIJOt{Hipg*U1$(H zQg||30V?-f(l93j8h0QaExMV->@YI=KSD~xv#}xzaS7T$-}Nof&3CH zO+w>K;aG_?Q9ODIJBT)!^2Lkg=}pL{h+tF-dWUmar%vu=6>PZv9NKFpLRqr{nLm&U zq2YRz9FU`JbCYp%Ml6V$*FfC)K=3^*4gZ#!(Q5Z)=qf9Z)grrLLxLiy)YyYlrOZj> zx)J2!7dw(<`ZCvTmnr`&UW10e&wvXolk@9}Ih`f`5N0Yf*V)STcyG&B*DN1D4DnZ_ z<;~KhdxbMO@ll>;rc8r(FD7FB_p^BC{BNwSYvk4(Z51TUY2YU6#=`weay0btEOa#p zX5Z`a7@2{yCw_A3TM9tS<2i4;@G|^dKMQ6RAT00Q z3^MbM!{E;rbX_4$vlctiGrgN!+w;%CYt^5i{zZbyWZ94l{90TYAWx1vhnAw z7?vv?k1PEYvC`!L{HrX3RW-&Whs{uL9H|i6toaS*N7U$Kn=^uw?g4PX{WX}o1jAC# z+gyCJ72AR7Q^_N`)JaMTMpxy-qI7HOV{A`uZLWfp4U9eh>nY^#u^}btnwa9C!{+*I zH?27xFMk85$u^_h%S*6#w?4n+jx3Sv5a72hGhmte>zqSX0qk{;fla4`aOCzF{zt7Y zdHcc=>FjM)D8D`z zTKsBJa@taSsyxUUwT1zWALi~wh;U=KpTX}F8bN582&Q}9;p1smbd-%DN!nTr%F(SD zro0g!yZYjpXgg}DzLZB5))N>sq!+%-#~TV2Fy^oYt=#qoYkJkG-U(@PFFzdA<~)Qg z7ZvIJLyTdV7RX$Ak-4s>O0aWkE#77`uK%>sVD=aT+PZIzFpqUeCJwZ5XI@?d$t5lL zB0`JY)IIw+b9ruq9?%SwiJ4lC!9y0}B|8Stnt7c=+ zTMK$QT$~(VW=uI5_NTE3ry;Z@FS8KL>e?_uSCx$Y(So6B^Rd-y9sX*yr~i6tac{s~ zG-brPpN1i@_U&5Nvd4j(PYgRhCO6`6bQI=17QxP2yLpq<5gb3?fIMaI^9Q08g6zCH z{+)aqXnh*uYJL~<-V^OfTi8D4`Ax^;QI9#5v&;c2qC{NQgu~3}FoDi(AMU`4a&Bak zCHWO)Lz=!t@u}W%_)6AB_-IxnC>5;YPgte$SEf!xU->-{toIm}ZfSsjwd1*i0e%=I zKaxZi?cld3Ef?tiW@p^qa4d@5f)e8t$bl7(wCJS_T=mo;HH}MgzM;KvT(KjWKBXPh z`99Q9jUvb{OHyiVIM%`~g?LpbVa;j6_8T8TzSMlQyrt zfxA!G(RGGm^zq~lsJb4>DZkT#_dD}&qx&F8Nc6){*hAsw`|Yp}El95G5-^C)=7QJq z&>y2gl9p8?$tVp z2X*N{IrBYB-3F;|2Zg&mzG3&L%aH7>PHorMfQ-p;d}u2}c5ih7%aaatLd$F6)$596 z_EtZBwShLcikgsjRGBDfoPnOZDs*DK6%9E5kn?P_pemETfV=4d*!s?o3vBu&^nCUj z6eioywGGZRR66{z zsS~>=gtH96C?_iV2I25{XZntD5YHw5!SdrJW+jA-G$d<&>(L#jf;oPC6-3rPz|14}aq%5x zI(MHYZ+9^c_SUCkaAr8#vfjn239>{ZJRF;oa@ZhK$dL`}e|7 zu75W~vmRseT1T?f-h|G}H=>`rZ{UP?M$|z}op_8jCAU8i)P9f)9}AK&n)NLj-s_P& z?Y7)y<8J88Ny4DJHq>Xc771357Hm9n0fn1Rfw{9enUG!r#qTfR`bc^D#K?%)sE2X) z&E)Crx%Sk?ly%>$?&H4I&(Y7(5!^5H_=9Dz16pUpP+Gr0>-9ly!#F9NbW?<$-(QGN ziHu;RZaS|TV?ed?ucPUtrJUL-ak^Lj3I5PfrQaSzfy!?iBDSyv{(GQE+VWU-bH{Sm z$)7c8exM0C7$-uvb{uDacNVeZFPHdbP_X)`JlWsh2^Px8jbh!5M++QC)S(ybxi$ti zM3itfT>?I{?gSVWOo!LAG)Vc3A%3j5GVv+>2@{9y>6QDP&={YMGp)YkpX^rjV!hC5 z++O~HN(f$`rbO2zNRnIb$_!(!N8)?)xhtV2 zxGp%XDubfejOdDqgYxlOI@2;j8)q#$${Vs6CE_ahvLd?aCeSO?@L4OBaEDkPy9n zY&f}<8swLcJ@MFD!b|V8BDdFkgoW*c*jn`+>wC@V_(zK%TTzJ&2C5RXLqGT@?owDj zMUz-{y5gOuGWhjAo9CDg@cODvxUsT=>pLNYV|$z79i+m5cs|_tXhVCqo03U~1|aeV z>-AI{kU47RWE(qcUo@-I(q47qJ@pJ8y|p=Jcoh5T0zr11Wywa z>N@2(9@F)oU|*;Yi#wBX`?z9md0{q02CCB?88+1UzyYv4^#{E2)Tqt$yC}CP3A)q` z$P>|Z$W_%~Y@aQu>8r+qPIJ0RUzP7pD#tu=d$O4l-1;#XYF^2qWKReGGIa=Vr`*Kr zdDVDt$^y8<2{^*^x%SN{MNKtn02F%d*c}lmR}9Ym1qHIT^_`Bmu2C{jdxgS833QU8HblK zC`Skxe>9q4i~4e$yg-l6WwYPV5>xUhw+34Ov7SJyIc`Xi!3{y7Se*F-x!Qg%PdW`u z|K8+tK8cdjZF{iuk{-3{G$poCJB2qdR-?|e16cayM;OaT>ca8 z38$jw_TBj2J{_Vx^hu6>1gvzP2wP^vgXyWec*(X8SIamM;~R)#eq%Tz=UTkDPJ*s+ ze!!S%CS(dp#u)$1-047g;GVTfGRbE)p_7;X5FLGD!Pz9W>UlU_i?h z3>99*w(lyO#8~9p#*5R52i;)r`kOd7BMiN5Lts{%J`o-)M9oL1&|``z92g@*GoH%Q zjE78ZQDa9GwM=O6Q5PK5V?yN#`N}L0C`dicc3^ZpzWK;F4D*NJfb|@1^p`StCUFVx#gAiI)=Zpd zXUuv)CUlNR5?oI)qrXyaaZWL{&|$j+^9n0K#x4(Bjs^4e?3`*9v%=~VM_@Ns$?g{t zq;|bA$$soWgHBnIU{zComYk4R{I(aTmp(+NqX3`f=BX~@V1v9tk-&t4s(BFysj>Feqlm`_949fqE2ELZo+`1 z0laVCjd~uI@MYU>n4T_8{mfN}aVdN5Gp>gv7b9Usj4g>&yU*?5>S6e860T5xCKNv~ z$US-d9Xx+*5==Hz!1XLUnL|#Y@6q+Bc|n#wUVRN`U;hg>bDHt!&;?9=B}&R8262AY zJt)4?gj-(6fLbG)d#g$i50>ey+UrR8f1*U;(qi1_r%qC@YLN4*W$4iYd91sB04LtL z1;O)G$wF;eik*`o>+&#m$*;pj$EMX@gB@h*CxjW-*8c7F)xVj;C)r3(6HN-+f*9~ zrQZ#RM_3K+Ph_5?fg+gZ+%LQ_^BBJQ{D_|$^a^H8^B4S!d;l}wm_X124c60c5H$4Z zLC-2D-2ePNToKknrct+0BJL4>|5Xh=hYg5Iv^}i!D1tvvt>}nZsd(2!hm5}S19Nwr z!7LxvS+RWrw|nKGD(4ey7#5=bbs;o$hCy54Ob{tZgMzaqd?4%QYqaKb?SfD!NE^j2;DcH#NCv)1w z$eIh;sJ z5B?d4hZbs*yg_l=)fWkQHU;pdqz9PDh&tYg1JN*Z)M>RKdy{i`JvVup_sWixwZ-F( z=lS^5;2Wx)Q-WFcBLyQ3K5-vz-NgHErASt(89AF~LPkwfrnyCKATCk~N5-0y(e8%@ zX&e9Iqb3usr28IR58V#G8}_4nh9w=bCy5&qVkk)VZwBK}{>Z(U2c7fkVbQ$jpw=A; zhotn#;=*8%nyW@_KWT$!S{P=>FJ?2O2CPW2Bj%}=^sDJsc)8#${xeYlu^Z$0Mu+R@ zlVnZ${$+y3tBX)**T@G(8Pdexi+PzX=TK(*3y6FrMrR(;=hn?oB+lR18TGynCz?-z zs}Yjaz9^PA7B`|Z=rZ)JWQ@7~8Z-|71f8E#p!i)jEMoKYnYSPCB@;EdU8VX^^#C!- zqyYF2h0xjD2fO@4NHJrjfAjjuFMGn+)f@is*|%b$so)+bwrm~VO$x;9LK~9sJ%f*7 z>B$Q;LP&uvgNN>fj>2_?C&_$#6KTzrD&Cv;HO*Z_M>q)NyuVWvtWi99G|b zgQ^Jz{KnWTFx{gC56d5g?iK|i^;wr6AN`hd*{(?!e`>*gly5BP zfyxGJdQPVjwXM6SxdqEYvBNe%b^J1i1*e|q; z8UT%^Az|tPL!uox9mjZ{;|uz2QR`aG} zGPqUem!M5XiFzlRkj{6q)Wxg}))$LoUP&>${gi_LQq9ng@gcXqm!tJ3gK(X?8QW1^ z;;V(9`61SUld}EFUu5&z;qn!*&v_L@JTa$zn>J#F!2wu1U_o{sWo#|{fT!HFh~TCL z@29*BBtqVRM|v#=sV2g(V=b<@bX^cwU`}3iTcNVXW~hoXMi9*48>U=S6^J zEY+eeQV;OpRwddL7KEF&Rzi2xNB-Kmc;4)59fsOX;U2ts&A3gE1sQ5qB<;U@d?s$s zo<1oQ-)u6WHe=bD<(~oHk8A~vlj$xIR<&@%_8h+=*_pH`Y2xX3V<2v1EQa5^gt1?% zL7uti3%eyqZ?iseE^}o)$XT49atSY=C&2aN!eF{h0uoz&QuFvFuj6CD&DyI*MJBO4 z?6%Wf;m}z)*ssSG`mx>55+z((&}d|(VyLmzTK6jlj;I-WT_(r)@c*-E5Eqi zF3QwqO(WL5a>4Ecn$(*8Kdzgz>`Kx{$o#eh7VA2b@K7It|2HujKVcY^a+q5-z?9z6 zvg7VI?dRlt&0v|TA@%8^Vq)J$d!{$;+{Ab*>;n0p1?3MWILs6D*=mj+oZ zKe&AENZRLRMeI_$@W`|)+~r+{dO2U-P>Qm;4BgH(b^X+vSVNweu3BQ*{+27 zLv>Z0sfVo*S+~3g#cn>wqd!-{ow6a^QD4l_JsB01_7ZbE%dv}5U~Le%#~yf;>y zxcVl8(a!+bd{BluX8pv$X}*x6Fp_3ndxENqzOehOEjcyzF7n&k@m_HNe3WNg*B2|0 z)o}5${~v)*P!bewDgpXR15XOdP)h{_&mS9;C0|TASv-xSPvwKd;AWU{4srWyd$7zi zqH=YQxdbmga$<)Bovy?7yT_x!ZIS_T%P&JH+l((aE&-{mK`tw>91Oz5>HhR+4E?GE z3aoFI5v5Diq|NAq@l9CudmiZI=%J6TJn82c$4WAh-_>*)s`t3@uJ46h2K&tVxj7Jr zm`h+jR+p5Wv?eK@A|&$sZ~mQ&Gr!WU9F1!)L(s2Jc(V8oEUXO1qm%UMs*~v$#aOUk zG_r7Zu@h~%-hdmMGnuou3=Tx;P#wlfyb}Ee$Jg9|?8c3Jzy3aceE{oVCpN)0g$O*) zSRE2N)A^=J0U*}+4V501K<>gsl$zkeEzd9ED*u@h?fugrdtM_vlvX3xGneyka2KDK z-3kdWwTQWT4LtrXNyh~$(i?fqm32piPB~?OX)k3-ePbf#a5K0+fAq-ih4tvmax7zS zJr`JsFD zlzvjnJ1~Rg+6{kJs*$zFrlHwFN#b5( zjeGLV$g)3PT+wR@0-bjaXi$zB8M8}?Joo&=@3WM{$UU~yFl3@IW6l9wb#nopbQ6R0g#CgpOM7ZO z;|Gp0TEfj1)8~8ovr+uLJk6Q>1Mh2ufXw4zj3{}Bak{GX&SZ6X=h=pK_eS%pdsWHp zXLj^krZd@aTmVYqDnPy%lQm9>+_L%1K$C8bBBtB0lx6mx%H%@AGbfVu^D*a_g;;Q+ z3G8*R!ju9l75*ql_5kvfA;CCzv{s2r%{4m=iMK{qm&!hwO6_^#BHKN?XgT$c0Pb()zyl~|e! z^Orf03rd5o%WA{0X>BZgWPYA56HR>Vrh?mhA}}{ij6R7oChnm|Bc z&20Cy-!N5pA|hJQQf`NmwQm^{-iq!Qm%(L=a-ij36d$Q+!A*8lz~-+RIHZ`IJGt4-3jW#TBYEBLV?kV^?J=6t&5L0q;G>HGa3WDV-_>oqj7 z%Q+kuyKREz5-SjUm5qldXi|07T`;~s5@wZ3k@+({`M3I0Vf}s9Kg+w$HzzoOW@aWE z*#G2KR7IoBC~G=v^bQ=mzz}RgtjX+ZmfK-G^kZ}s7ToxRLk^2EqE{0YM;p^++52JT zJm!OGtmN0;Dd1a_GElef0=~@?!IEdOe1u#nJX)HJadQ~QBcT%v_Dj-!i*`=&6U)_1 z*@@4yvmttsHS=>YPH{yP9AUr5KURih*`9t_RQMX|qs+kndpvA4@Wk)FHe|U=CFkW^ zhb|>~(3UESr=FOTu8j}z{ik9+jaVvbUIjz!Hu#$3XEvcBZXTCL3;!gC9%Tu6wfq z_0qQC7CLrfRh2ouyf00?CK;1oHCb4f%(!^N%~;%Mi*J`b;(bH^!0i?C(ClkYMK+n> zvOg72ukaObAJ!mK)(yjO2kS@8vZ7D*yRg4ph4?*aN4*Q?WbrN=>RDNfqZ`#=$6Pyl za@%O^Hva&h{<{Fh>zv7$q*6TGD@(JYMTq(4slsCiXThY{(KsejkH)`XbGYgeG{{~G z(v;F5?4<)WjTWbF+jhZ}P1+<|LIhroR!6VqK0Kbe3zhf2f?sYj+%4`od>-uv1MVVJ zYSA^Qew8GYiX91O65`Nj@@ljT{|Q^(snAb{ECsC#8LRQD7c8=rAe#eBsIEq)V5P@a zFkNT|X4{Nd($bP%W&8o1jS|GV^ea~UwWNa+?%-N;d9?02z$si*B9^+=be@$i^Fe6R zLH%Fs=S;z88yNahQ6Ts<}B^j+Uf_Cg=uJ9Zj}468q*)SR=QVbHOV7P!WiO z5(Z@On+QB(Y{7j8%3zk9HE~jTjF&nYKhNkPSF`6Ka@TqULm_7TcM}!*%?2A+t*?dIpO(N~K6wtEH|F=Jth z$xGN&Bu=YSH{sw+8H%+%c#Z8g^)@Mx|7^yfxnltLd^%%1onsu&Z$ESWh79P1nj-8| zuEY1**SMg*&!CyCPu?eu<)Zqv>2DO{H{_WUyQL0fpRolT&;Ji%t~rpYT26F8+>xF; zw-{{Y^~ryJ(%_$V9-BU1L5r4XUf1#iMvSh<@#fk@ndMP@FJz$iszKg0A^;a(Fr!vO z@`UXE2v#<2a7k-3sQecQ$C>Y4t=oaT+O0?X12o~u*H-Y}cNt?oJmt1D+;w$aZbiq= z8$d?|Cpu0`hIszAL`YDjeH}_f!|OkcSYS@mWRl^#p)Y*Vv!K7~Z0Yx)d${JG4h_I9 zeB{%|FlOvuR9!1ZLcG;!4Icp|qb}g)JKF^tr=GgJWg2_R znXEjU2+P`LVw%7O;wtn>)&=iAzfsVr^a)hQEk| zEfa#LcnrRC=h0F9ANGCt31_s8xWmUrAe4{B{0AR}5!Ng#sr;CAC_5oSjP>`m`p|fb z9L%3fiU+m_tC0db_npg1GD~dw7 z=XmeUHf{>bd@RyXg}BxsKC&_dt5y1O{KHaI`PYl@PPE|8`6j%gpBa&Tf;rJ=Bx%`( zuNds#1)`@I`=@vYckZY&&H7po!LIjV+mBLsy67EP-Ik%vm#pdSnJ&P+R3|6Q)^cl= zHHg2r0)BInC%2>`pt`9Zdb~;nR}7V?Q?)ax*U==m>LkeL6EXaau!H=s9S=ZhMml_L zVV}>EZ=ZO-vr7qqRlpp8o!FxB`Xbh<4OB!~TB&+1pub+-ib;^qo` zH0HqzFDWARFO%c{C{Q)#)C`K1qxqkfgKYm_kQ*UNU%)m#`jP@%cqN3g11gYdnTyxw zT*2WoU&aRgj9b3-u$Q##zNNxEb7iPv~}?o3+^_)m4D z*g@gCV9Vn_D}r70RR%1fLU3>Bhv-?AfT8^|>v`vonLRzhEij1_!{! zC9%-!bcwMG2D!UUN@OqNEr=$HLD>yW{`W(1>Z`dC&K6FE3_&7vO?n0Ul!lXczamLzGx@F{E&6^)lFrs22SfjUz`wu~ z{F=UgoXI-fvNGAA%h+`L)=3fGXc&r3O1ZVc8F(VI6USBA)AkLKs5noN#wt6|VjoMQ zpkIu8c{%>fo}(~x&Q<)E%N&EB6M6A{YZ0_8X!Wyu{OKMWa&T7^o_wlBi}!QDoiwIe z)mLFzk}Oe}xEysS1!2`HJ<{E8OFuM;Q2V@mnCB}-`GwA8sGZFcPZ-e`J@a9WYZflp z6_>N~u{9cOCy=pF0uMjY5OiPo4|@KdfSq;rTxE$4wePwOXZtjXzn%>*$7X$ZYAbNV zr$k)zbQ7+R`-TIP=0aA+Q=BPxli#zDaZY1=;K?ot8hI!MJoilF|7n(CYtc^b#fXP| z>P8WmJ8KcQeybaIAjcc#6}}ZxxFpQpkd5E(Xwd1D&DDp3k?wMZ-`DNvlnwo$P}v$iIn3$7A`_X{lJb^Bd#LYEi-EHJpi~60XUZj_=3yWUGdvKQ(5^sBNOSh*mdFLd&aP&Df!=!T$Owd$-%s<~ zRVQ<0zzwsv@~1ES)RmC{e}w5 z&%k4qhmc+_M@2H^h}(3=po!Z9PD;5jVA71WBddg|(P22h|7Pxrh}VMH8M$~hREdN~ zx#ILUqws=i8Fy#HSGcmvkX8(7k&k<{>7(0+aBXP@3=m%^Om*i(uT*loW)Gos;RDoK z{28_?8Zm!zA{0vpW7+6lC_H0>+x?#M-!6DVriBn3-K=PC?G}jMp+?&|D?!w%D+1G3 zQNpGRwshZpS-R(qG>yt*KJ*cW5VR_-hdBLDWqT{N1hNF;+cK@1#23r7*qSkw&<{mto{Q6{u`z>KU2ZNL|mqNM+OILNI1 zfyPt9af+J=%_u&{zcV(Ze{-zRWV;4&-V+KNOZ4f8VK&#D6p5KxBhX^+cgUT|dVlKX zG|tNn-Hy)1m}Tr9@#_$jZy6_?{X81PN6PcGO@O%i47B{Y24hBPl1q32+WXAth1jiZ zm!d=+p2orE$vkH@{v7u;kmYMi)TrfwuL6hNL;SAq39du7DJWm41zjJ-$al5#P^fYf z$DZE;CS%gj_(2d(NXUgFmhAnl8jnjl`f;$^m{eKn!?$4*DzrKe%@^KrPix-cp}ItH zxGP168+e#js0W7QBuJypV{E*~?$Z@|^mTGEHVW;?hx(6vd6XHEOpv6qIV_X9XfsrL z8j=T9K`o>4}-3EGPL;HG5+aMwzw3i(-XRECS4%`x0W0RW$$G8K$`KK=RaXv-DfQJ zmZ92_pWs+7fJ$#YyslHF9P9Un*JVK8RT;ufJj6R1+~cO5kf23giFl{Onp;rRg=%rJ z=yY6zUS0DB_K0r8XR-$T@EC-l&Hk_emSRmO%c*n}V&){qU`dq3(1Cb3zg?DuYeb^c z*RybE+JE@m>?6NU?jFq1x(<%93mN;xl8)4FgXcj{VE!s&Dm5b?KW3(YgMvDll_Q4@ z5i=n#w1N*E-iu@24DunfdO+i+HI5Wfgvq@s(BmOS4vIYHGvDgal}7L2Q+Xkbmsh5v zL-+9R>(5~H@l@P5suw5Yd&WB(xYM*e8Uoyp*9Fo6=YkM5YMG1EIxV#hEzO(t>WJ7Fv zGo2fIlyMy`N8xhzT&jJ)8W$Bj$ACF3dtG)O#x9-A&GC4`dZ3PELMX*AMwawV(k1kq zl!St=2=H9Rd>45t^oF+_xosa0)1s>2{-OtJGzwjQjG*RS_t8Pl3T9Na;HaxlvHSK6-YmO`-_F=?ZJiIH*e@1@ z`p59-oDagUx#nazGY69epLw%b))W2EiVMe%K#_K9np~TT{FJx+cRhLRl*kt*+`7v8 zf_@-uOT_JON-*zC6^t@gyMod9$z)c$9w=fs5RkT3vnKWJNF$$*m3~@f+6ZqtyHRvs-2dnNFlbXvpV3c_YxBm*~x9)PJ zPlq00ZHFcJ=Z3*e|1KOU`~SYrbi8;#fsC19g9qi+QS65wE=W}*zjKs``k&T#Zm6>1D?(G=~=@VfpnDzN$4)g3nwtsX$kTr(nQ z_P~m9pE&yo4z{186B;=hV;Jn8r@jj=l3g5LXVc5}T49 zlp0?kxNxIBDYCo;m&;7(?OV6eMQ1b)d^;{^v~#9AKlZ`Cwu@-#A&Y&NLZLD59=BTU z89w@(3o&)(bmX@jH2Y^w&fVSavUWimrb}znK9&{7ThDo)_Pg-)Ne;NTu1E(J{>5s{B)&q>mt=vd${8PneYV#yB{`4Q5=16}z-v1& zZyTbZW-RQJm82e0sW>)u1M|ZOxTj}6;0H5P5`TVX;n1Znn2@bVw@$Dn;&K=LWG6qON4(vG>2%?S-B!9zwICe{ooGXx` z{)f!Se<5Eu!*_o{X1^CVsLuA(YDy$^Zys7+*QRaD^SSpEZ$Q{PV=~#_1A|A8p;tUU z!U1JF+C9?@o_sJP>S<>5@|B|~qQw|}YYJfE0R>v?%QAaj=`hvnAK2)`gNe8{5mP(| zFOAYca;yqDH0~!ic+rF(uxu@CUBn!^V`cc~8ggtGrcPXr@w{~%yEll7z=GW-)Hn&5-6GVCmJwulA1+o>qGjtfX=!;7rmEH=6J%1|ozl#is6?CwjL89A z1-f=!2UPD%=iFWzQ_+jpaqV<-DjGJDzG&XS-;J2Tcck=k-)_$4WrM|Ghp#4)`Qtz~ z*s2SLc4|O>^-K``szUldujBHcWntj;5p>m4P2zR_3{2lAN458-f`sNd&i3&sJp4I} zi{H|Sil-=U*{@A4a{#H^AQ!pyHE;dfjI6(ALTiVms6yKW6p5_EJ+=x|r&OOtwHcy% z#dU0&p+Nln&FKDR;UH(b9xpmw#-)RdgO&Ce{*+$D=a)C}MQ{qQhkb+<0XB4Hryl)x zbU!#psL-NnW%~8-2CV6IzzlKAbD&vP=zY~*hg`i?-B*~SLTE91z*AKV^49y(he9_)FEn)yWnkT6wKFr z%=Ls>P-YCJGwemF-0m=b#%^(XDexyRAsB$z@ncYHi7Z(M$03U4=#Ks?fCovpFu&pj z+aFF43i~xluzEc{ajS#JFOy)AtrO_j58}<9C~Of=k(zTicMz5{mrf`A+i5?iDKgL7+Phln^mUvEo0+`566l?FX2 z8S-q)1=Q-T#wWfObmoei{E`6Hd7R45FHJweV;p;Su-U>E%RY?1x*JDkgrjnY0v)Nj z3oD+QV6tZzrWiJ(NzVh=_&gS3Pd??dLtlWNqc%A&^N5q|kRj7s*g0a_R7c}9WzrZF z1tD(x7>B==`<<|Xn@o8WIqt@o#-b!B`ZD?}r{g2BX*{PE#(m1`$LKyKI!d#L|H$_G zNdtS)Yhec_tW~9*@pe=;dG5BJUIc=i3!sO?T{PkT)*#4>)yazMDak&*eY0v@ArB~t6NM~5= z+zXE*%E7&N6o$0^6ztkC9kJsXIn=$Fd?=;lTWwy;{_AoIE+A z6@)I&r{JT+5)ht$$2AE;@Ijw0O^`Z)Tfd`SwW*n2#0gR#WrxPM38sn{*HQ>^b1#PE(VbA`2D6~?bfrpO4 zn}gCgU2Fzeza&unb{Oj#>rhqWI2d_P0`s#4m^I8g+kQ4Q&dd!RS7l+X?NR>vq#meP zn=NpE??6i3f9mCErj@eyW=ffADTKHFKNb_9*)UXg&oe`p? zxEZ#xUN$&Z3qNNWlJd~?!i@%_XhuW^d=gBCrfn{Q-X!LA5uL(syJvv|r$VsbOpONg zS;4+rszPs*UFe+Uj``&#)bMs3Y}+YEzupXU9DU&fKl#&lY>Df~gGOFZ-@X7|ti2A2 z4tFj$!Lpaax)11~*nWW3>25u0C4?@(X{U(UE*!_0b@_j#Vb3nmuv< zK|Qkh@&7d!+@yeXYe-$tGFy%1zgq|09%a1c*pc2DD!XOtUNmrj@GpI*;;8qX_>s3EyI#M-qS3neu_lD;QniN?%aJr* z*n!y#>L7g13m7vp1xy=S;dj0XDXNJ^sSoR+`1BW;xuFVmr>}+Ir$@rmrekRQP?Il^ zQXvn{nQ#j2`gkxymgrY`p^z~sAFryxoXwZu$l2A%Wl59JQ3bq+gdNH9-w8K8tjN-{ zW!QJ+F61SN(RoKCsrl6;%v{NO6Q|lZD-b2$4~!uI+U$WfXy=;^o+KPcath42*PgU1c z@%+&?IQ?9WM%=4_Q-|^(SM@n;ksnF_eN+b@#$riNx`2xlTsgzp%W+RyFaL@DfYS|z zAm&zy1J-en2V;ops5}VOnvKDBOJIh%Ihh%4Np{awA^FRn;f1Cw++5+sPoHrP#%zs; z|1`6);iWI@1*_8iV;|zG$s(w;WD3ScNnu*dPjHH7J*4jk;g|I&veUVn5AR6i8loi0 z=U6>zb@IC4eim~)IcLJGa8vp_!iszws)g@+wde|`m(cfLBnoS+X|%kwz_n0}ymGn? zaUVP&x&Ep^b+ZG}a2pH!w6P%it$>@~W<;($_JLDgm3&5OB}`Ti2YW4fa(~({m?Ttz zfE9-9o|?li9pS~7f8GvK-*OGLcjW3jKhzOmGk3#$L>VinT+Y-QE`)}_$0oGDWlakbN0GX8HOC#2;`HZ=G#0==cPq*Nk=mMNXuj8x$Q7UtyAH@1q$%x}I@OblU+_{nMV!t&&(3_3m z=HdZLUFWz_78~$;;yyfSS%6}VO>pp11NUdUE^`%I@z)f+gd(hG+urEV<>^xOj@azwEiZu%#1w-m&w@}nGxD=h;p zA8lH_Mvqve#B-~DDN{|uQ~by~W&EWH{f=+eAHx5n)ydk`QY3h00spAahCEQ;#T{c= z`gHX}c&4wLu{~e&@k>nkh&4iZ`-R=J#eReHgyrBeMU1X9XMCx!^I#RgX0vB9xr*># zDAFSXqMMGvv#G&QuqYetPk!Ye1YUN$FJVk2Cdq>C(^z!97016H_Y3u>ByeZ@97tnw zE>23HfQ=_?=u!_wvR~>fMtR#aPQ?{2`BbZLzpMd0e=!U;1?=Tl4El33@)g;vBZfbl zdK)K}CF54BAc5ySe{kCP3Szb;V534L$i=Yfp0)|eyp{(em*`UiBSZ})Rbntzne^db z6tuYuT3c80pQ3FDr^VqFc2}4gAwxqp7h++bJY9151MWnb?78(_iYAV?f}1*Y$4L#dStj0w9P_AiLV zKyy1#(~X9bML}Sc+5&?{YGn05ESf`d8@D}TZq<6Q_%V7Ak0}E#0~l9bMaJ_bX-ru;(>JTn_3H>@@^CzwZENz zp_&adS-x|pXFJBGYtntwqOfA*L@sTb3MiX7K**?#Tt-F*>Q!3N-KVQyfb2o}vcH^L zsu?NrIRz(cMv#}yie$>lYY-4k;dGoh9XskUjtgXY_qXia#O_QTi?47uX%`+B&%~mZ zYxujf6L+)Sl4I~ASW{Au@(&Nd;M6$$T`Gp(##DgI#cn?1<9XO+^bh{Bep`*tV^kEX z5r!u2F` zG_zEvT|PC~a?YAQk(Q@dzKnoZ%f0#K>^KyXS_|dDJo!^?aiIup-vtTOTo2M7g5B=lJr>mgMGOMfxm_*8?X-=KJLT4+Zf}q zONV)nfAZ0xKZF@WMnoonIbH-IAbVehYMEIP2|X=Ru5%7NH>lCzEmm|I8p#yDhxFL^mvhHoiyVF$Zvqa`vD=);dky@4UF zI^>4PU7kOo&NvyY`y18?234_q^L-(9FPMsVXKjKR@!xQd+iT&Yhe8+;@(&iW-1WYF z$~4(WgziY4jysx-sGG%TB0cXHtdz7zgV|}Yit%8dB&%WBm`k`QWEr+>X8Wa+yE(Ip zLE-m5{?Neul8rxW`Qx&^c=&t>wrDiN(t4J1@EL%;+bzL*{zlwx)yGdPE`?-|9-I{0 zgznMD&>LrQ{)q!z&v!2vYq108-}1oiE|SDTUW=U5*M{+Y9a@%lK%7@6|JX#1i`iiy zsAOl*?Ttfl`@lt^U7b4lvilkSHIC=*osESXYud13Xeo>ka3ldk4ATKs8!CUW2TA^%2aD zjp9C5O45IYRy2E=D$N;Bz~nr|?KT=@MZqW{Vm%hpx`wdnw;0_X_l8^8{S2O{{^stM zTtYN7pzoKhgRLi&1SWdAWVgjpj6b;^)u-&h%d;(LZSF;gNpPUKVs@nMPz+}?VI_JS zGEddbZXA0gjD3F=aPpBx#A|#Gm}nN@&7+ny>#!mn-~5u_JmM9)ZTgHa4Jxqkbc^ue z?9t>&9P4CfpXUSK4}-5t3~uTcAt%4Q6I8Sn!UIK3UY%v>yiGLds=`N@-;<4V`x@Z) z$w>)V^k`agX&u-H$JxUbQI_$!`VscR$Oaao?a4|Z`k66WFSPbs)z;v=xz zuoJIjYf!J|)fjy~6SWuXkX=0kIIr?Me2~uO=S!Azo;lB8zoa4Q?qA3yNOYiey9L>k z{vKLfOHox_oc>X@C+*Kzf97ZjzL~8_Ojw3G_rWTR9Tp|ol^!rS%Z`dpdBS_K?#0lL zUY!1=jw>BjBq{7UH~okWQGBCG{9I09n-|M9?vMrbad+^x_*dA|GJ=+`Rv{mLSHlGP z20W-~LHVZ1VCj#JUUv3$j+;F=JRO3+j$(9aOg{dovZdmKTBLha6DCF3l1G=Ukq%kX z*(ztC^M?xk#8@nyNlGw%!Zkcn`V#$3DqzO$S@3n=7Puj)j@`rA{F6PCgmoW(OewJc zh?R$nURr;(pMMIY?A_QT>A^B z`47XxKUeYBauZB@9S1dH{g4`JLX6H9aaGA9$)%E!#D297Ew+w_+tZ|I;Zl~r^{@n6 z;|zQywGqzMxpALWB+x~oRqV9Us{PbVA*pdcEq)%YRfrT(OF$?%BpRg|yxjqqX zTC(M*AT}!lmwBm>&r$_wUSB1ALLT9x4I;#uF_VqP-^15W194Y}20c7A21;iaz~KHS zczUf73>O9C@*X+3^QRqRLL{i=gvsa;piMPruY|-dC1QP$aeubRlDUgoSx@-{bUS*% ztMo6NzFsZd7Cy!)gW43|hw|Ti7+2(PH5Tdag5H8#{0TjZZzflx>YnwO+}Z)7mo`A- z+d;UNB1isy(I*KZirj?eC%nzr-EiJ}DkR=iB=Y$;88m15^+LX3Mks&z zyAE}7DuK#^$zWS|4F(oj5`hBSL4GR6otX+;x@;>qHcpL5Y7Z1P&eNrK{Wc`xf;sIe z+lrbS_w%k6vQ+i9HaT3W%guIu1@ViN=uhK&(6D#~D8x*~wM#OD@ns?0fKDgB%5xp} zc`M8Q8cR4nSk=xOHi(di=Eosc^0mNP-IAVrWP?)6eu0%R7REV%3e?J?8 zXm>GI@3u#mqoZ)a)@b-A*;^<+?J^j?s=|c_6Tr27Kkl*k3NMW0=-5As^snqoTy*C= zk8d5IC`FrB5Rs$1EqyWR!7n^5$D@yA4t$?6gb`XYGrl zvn*+b+Yr3Ade41%&;U8b5~Rhi4v)|IhvVP|x;|V73ZByVG1(i7T$uM%fptwBRAC_e zDfF0W3x$?>_=P#MJD#>e<;8kDu`29)s7?opZlLWb=7tFwttL^nhW8Yf+W-g+N&1jb2fpO10(PC!26xG)1k&r0;9rwPFrgtvtpojTW%syF( z*}K^e^N<=9d0m1M-m%=tIRs1MIh>3#}G*MGuq2WsK!!cEXEszY{+ z`2e{+LFkz!k4ul5Lm0b1ihqdY@1K>XebytW;K+Pjb1GuzAnrWee$X$7bLiBtM{4!`W64!w0b z4Dy!ENJCgHS3-U{d~sIz@}DA(iX!dOFqEfm-=+A z*mfK$i^m%+8q`!Y1up!WfCtVQ(9RW;xmlfBA}`DbI_cdZikP zs?{PP8+B=t;&1qMv634tc?O&vVxaJJEM7b`1%5^-@n@T)$+P51@VLMl7r5-@_P%bw z>|^D4@0C4?-SG!Dj#9$a{>^yecOeQJd|~ml1=y;Z0lf>~LeJ$9T<4QfsrpO6{k}0F(dIN{ zY9oefIS^}26Y^igJxty#O`TyPTA#ZGZkZ#fFt!(CXC-h7mtLUepcV10N`n)Y6%d=> zgBF|5!XsZb(#d|;9WM&uWw9w;KH*W}4o5@k_t1eXzW*0y7$*Q#?}w9T?r^u8mZSS) zFBsD`08Uel$cAM>(0h&TnX>K4)90mddV4MgW_9znf8KM>c8j=&X+6xzV^59WtCNXm z-$Le%Pr`ZKo#?TYeP8_xk(Mct{M;|7S$+q!)NAmCbuhaA7{(cX7rD>rgLv{YV{ZGM zz_|hT(6GEiu;gYV#-EuFLtV8?zoSVhe|Lx-;y|Q`iB0cj1>|b!To8AgrC92 z1b0f)-AgCK#G^X&e5WDv-Y(>{nKxsc_=++VxmP~>nb zO!v2^A1a1X#fZaq!fu#ou^GLXt8Z%Y32@1ahrw1E(v;7#{7ItZeD`r&b@>yv2gPv0 zpb<2>O`5LduECR=t6_Vd7KR`Ej_zk{==wdWxTWeA%E~F>6UNSwp&x}70#QHOON-t|Gx<3|v?c`WMfp95;2bqsWB6^UcBFfpF8!KNh3*HXh-j}Jt=eWw)&w(;>Ik++SYqQ?%`#I5K6k>qIt`4= zevc809>6&-UxABV1sv)#r!}|hv26bWFy6u(wf{tkqss;i+y55Fv7N^G;C?({q(fge zq~ofEA8@79F+9B8mUQ?Z1P_lA5Xc)4sdy#gr;-9&js?RNZBaU*I1WpnvNNfiGTkFs zzy%?}@1g&(~ z4AFn@@M7*Cz-6;Gm)CF3-n}Zs+xR2rx2b_|do>@vo)RJIJ6*A3?rVPgHf@q9IS2t> zBk5WBcnCk>g=^F`NcTkxGM>37dkvzXqPmV>FkO;nE6xO`!BIrLuNs4EwCOJ~mBQ3l z4!lqO2vl#$!^MZ{_|D`z{Fwsg_*?U2DgZZ{Dm&mdWxu4s2#>s6ZY<0}d3K zq4G*i8Zg(B|9zjiQD+=P+g53!zm&r}o5kt9Yd>&i`B#2p=wiHxSFt%g5f43y;@y4Y z@THmz5y)-e<=)gnlJI7s>_<}~ZpdNTG!M+p%N3qp7zTwG9LN@yuYP$x2@lT9!~>^9 z$(j6-WUFc^II+9doAwC2D0-3$85{=+M=pW9_&*$+@D9C=P0>#OEbR9bB`JkcWZrp8 zl5pk@(FE3WBxC54?0UKQI~}Z#3K0xHsdAee!|XZyG3yI zCvkFl!$mCrV9jKiAiKN?O}B2wpcT*g#vl<|Tzv~} zsmoB!>~>!E1aq!G=|Hw%rTL_W)2+zodPOP!S7ai}MV-KpuCio`sXF0S=->~9RQwXU z2#%aO1bul@RBVhJu9MJ2qZMyh$Lu*T`p;S#4UW`w`0yWlQ zV>yy?ll#2N?)%uw=fF8%1IYhjPg}YyspHN}zTPhv`+Ejp+2s{*TzFqlQ?J0!*>V%7 zW;bBQUQ?33Yb$)bkqe1;DtMfu*}pVILZ1V1fAQxd~`+}>WF*<-FN%=>x%!FOYMcQEzyby4K(;^zR$3J!)Ri= z@)fTyn*n;uw&EwnOlZ!#i_J&kg&Kk1ag2K%W(ABQ_qfgYQ%r*T$pnMvHz`Osb(=3^ z`OPx+OkC0!ge?JLXmwtSKE5qZKS@2ojJquBQBjR!qwUBihj<89e9ZAFbD$wKk<(%4 zlCIuzP(K=pVqHT54c5howbr6BIr$)(nv79u$8cks77egIj$cLMdF}Xil-;`(66XhE zL<3`B{;;Cg{X?K-?rA7bZ9^wggPpa0TzGeh(0j{Oyl~C<<(Uq*~?phi;5H zI;MbcY_0@{v%|c+kh~K9O%g0c1-%$0stDNrbTAP4r_X~Xs9 zan8as}-K}oVTxiN1w?7Uz=!gpEGp64^*-^wAFzQCU94~Os@Vs&UbdtdEQ zVmUo$1M=`e6uy^yhna2-{DOnX`OlWc@s8Hidt4W8Iv5HE7x|*=JUgnefQQQyGg1GR z7-OCnqjXvbH>t!C-o~88vdU2I^3#zdE$A74ZbuI2JnV&CD?7QG$#0;wI|iPg8AZh2 zNMT<6RfxGHM^?AzV#23)xOlldo%G~7mOs!SH#2ofMTjQ-_gsl=*|dkxI>Ee28)V4# z^zYn}<`DdF`c&bg5#MoHM?ZGAilW%aMZ)_7#_*{*2HU?lz>elE{Ku9q?9w#it*<;| zj8P>bdzg9Qw-~~LpJw!9=qh+NvA}V{KXXt$qD-xpTtJy|Z%}K^HBQa81dC)?PG^S% z+19H>`FZ*@_L>o$P@m?wAUhVVI>QA8frS|DDorS3QTFe6h4;dxNnKndYOWYX|Cy<= z&fEcrV()tPC4k2DImLm$!R z?ZR+HRu&jnX^{QqI^@*&RCI%{uu+%}nsxHzL}xl^pSs9xObllX{xJ4``4%+ZPUX2b zPe5_tBy1S>6Kk4<+`Ql0aQ4N|up`BgP9En5+a1J-UcM}ic20%)eirm)?m5BjvyQ^y zJZoxbBSiOwQiQaB=XT(A=-;nGH^nYS-Xj&)*DB(;+sWMb2_xx|9ZGy{@HyCZVHomG z+;)7Fe;8z+OOS%GpE37q3RLfX#@Ech0@Y(H;q`JoG9_A!ct1BKyunk}|Is3Lu~`sr zyA7>(pM>!zZo$hiaWZ`WBW@mNKxVXW2CdMwTzrue)P%^9EtdDtWqcw`DPq0DaRqSM zBah|5E$I09SD|I+BYuwQ1=PHBQ6QdYKt9cDv$|GaVB*sU0QXgB!0XD*vRerTC}4i3#R#tz$gFjikS)P$lh}mQ*^!jv7t+4^<4c=P&fvrnytV+~b!>Ge|} zu3OQmR*G)a)gj8ivf%6a)v#_>EB`B;!gs>XZGrma$Xh*X+&PkavNH+>jHT&{gQ`gD z^B5E98O+H#&UtwM;J^N1_lDJS!b$%0)uXdbMPhxqI!1Lg9Dj22| zq+-vyBDk$>K`-Tt<0?-#p~Llhe$YILIpxer)yiIURW`uPS#7u{&XDXK@Z&;@B5`2n zD&Bai27TZyNn3=sc?{P9ZgwI>3u5@itQYGVcTX_ZU4!bsPr}N%OVR4H9p{}Ei_e); zx;jgfs4KsMc{g0~@+%>BSUusS?4`)l!!cNy8qUu6BTz1l?QA}$aXBmlF5MCbra{kz z<6723+OrjSxhjisj`T@Xbh7a9#a65`S0rAl(NOrvh)#Mi7iuc^quhZbXl`dlS9y*h z_K&sr&0FsAE&_ABk-m*9{Kxi5BjxDEcw;i|um!o&XG~XRCqk5WJ|<^Wu|4b=9Ar$K z+Y=_D(J6h5`B%mV{ZS`}i7HKV8bxc;C-Qx}LU8VqY)BDz;tP+lzNU*47q>(lCv5x5 z(Qw~PdQ++ED> z%C}IeJQwVao033tCsHKU%&!j^4_@XSFx#RG(gPJy|Hn66W_5($6(~;@EH4Ic110jZ zR~tl9Rj?^kk?70y!ieyzxOC)v{5LNRoD-|S#A3g|ceN}zC(MSYj2+f<{X6US8}p9w zi%7L|v4F=WT$S18`1=b-IwGuznhkTJ1mEL-{=Zihug6ishsCv%^ z^6EV4#C7|*;>CZleMzb?qe_&N{>;bF+^LX0bVK;dx0+L{xCdHl%#->|o{Y1{JXLqZ_NqDRAVJ<+ZKr`va|4p=lep{ zJc`cxpSgV36nL|}6aRBds6?4W?EB20 zSiTufiF@)1l{Y~2z9lL(@pwU00SZ;uakKY|(A{rNLG9E5nCsGvj}Db{2JeGV=9MR1 z*Vuxpd)M;n(evqcU0a;GAOhXLW(dTrl}TQ(CAuf>hTr8)_-N$>V%?|@hm1pci%N0w ztN#K#>Dqu_W{A+%(7@^L>J9dzR(Z5Q%$)~^xzZ2SrvoGzh$ z%?*64a||^ay~*<6dcg{o)!kOuYlM2W1H8 zJL1t{NovtPfo@VZA%8P!_+G1VMASzf|17kjf?p$uo&ON;ztRVvZS4^ZnP0;N<(in5 zu1Eu{_F`%A1FR1F&TpKdKrJ5U3!KdIxGKgsYy35akv0?%=g*`$I+x(xmm7S9)=Aj$ zSpuTIe8+izXY<9`CTOzm9=G!Qd}22B8iMaB8`FL^iAlHeLc#n=w3|nssKNM`Ja_o3+?h$7i)|mnod5&~W zd#GUUNO7`dF6*HU+~aiJ2}FbgzG&WuRy!KGu1XOac`XgJT6NK>IR{JQg6W*Qj(B$` zV@NEjgaa)X`HHEZ;d0kcK44ZKe!r22D?KH_Z=AXyVrL_)%H2+0T`Y#xnWaJq$ONsD zO&Dp&cvqn@@OFwgRL*>jkqL9~&@*jf^wp1Lxl+M>!AI`+^oe}T#sL26kFz-EW;m>I z`oI_Le1zQmeE!4ay@l3~HOcsdXv~W|#=UD+gQ*kLXsOs7epFKmN|v{RO{6BaJMBZ` zw_&*T`LHlK(-`9H%5n1gLi}{TpZnFg6DlA61cj(#SW+0vGKgugu(O8KGM)nqO1Hu7 z#p*EZJP`wCTl429Q!rLtMHUR-#mb5L+&}%f_^0+A%qqTuiwzx#T=6^3P9qD1?*9aj z7#pPC%b55K^JnJ8^)>8ikfu8WK7y_POUGxWI&^E~bUyrLDmZO@fhTfouxw*9 z%FSvedIQNi3@V2QLK~jabuQ~qeWE~-f1m|Vpkd3bwC_vBv66DpWD!{)D6l< zKXFNGUC1=Qg}Aw=iF>v`5&Wlr#ntL^WXI_Wj9-2izLlQ=L7pcD{})6ux;g>sq+p!K z2&!H77FUW|;?lqjjG@_(Siup!0r;3rN=1r(E_V4)&N`_qeqN70Y zsf{yPVh;~*<>HQE6&$)M0RIFd(mgr_JZl=c6&ck4uWw_H&nSL5Fr)3Kr=lszZY%E*@C;1XQXmEt=ziC4IdJ9oX{WzHYZDWok%Dwbj zPlx9I#_NBhg`-dZ6E2x)40Y4X_&JHp`#AWXU%~EDk~t=1aQc1t?HMX`jZNaTL!>}K z@EX><5|GntS5SGgCB);tD2yF@oZk~wjN3vEa7WfPVyAB*`@Z^*G@QiCIm|@qmCdNQRt-#5tZC|r zKFCPl&Ye`-Lbq>V83LPWbhi3m?nS05Q8i^VEaskh8e)#)9CqUI-mjp1U;${n--!Qt z)bMvr9^!nD0%+MQhQ0el=%)LnI8H;CT=WgcQ)g#_aaj`f8b0QGZ)8Bpg3Ac$bA;_m zqsgl{)*&9bg~}Z{&UP)HxbAI-pzE6{l)h+$&L{JT(P{RsRD6s7O-cks&%?ZDpC%bO zU6opH&4*tiqrv^sd04vSHI`%^hl5#D$c2$N`DfWySidWWmss-@s}0!h{rENho$eBN zo^_i!4E+Sh4yp4JE5)hhOj;?t7Y+4I8-E9$3o*zv>!*T|0}oxe7b1?x9r?)6aqgP1v4;a-4b)jzml{T?SC-b-iR`~{`o#*vug zlF)uvlUDElf~L>qK|yo{w2u~`cgO)y%hwln5l!&DH-rX7`&idcoo>8*@4j=<77+d$ zfaP}Qh}nnJ(AMY=Ted#JLvBx@$Rr8oWkkW*72&L}eHmsPJxP|xiPQhqSVD=TI`p4& z=C{1;#1kqfz%SX6Ov+6Kqp*G8d+QjObZ6q!lRUp-^A?<{5y=1ETMAcny)ig>7ruI1 zCYWI~4^Fzx=ESTo;L#XO)Yg;c&#}(Ofly0KiOb@|^$^r5&BHhcMr6DG>=&$CvxmiC_6Te138Vzi(v?>bfSN z+RQT$s!|~M$mS?JLYZ;Ge_xO7nQ`x@!)s8R1Fo z`*)(Znm#dm+{u{*O`^s7zB$QUCPL~o!|7f;-*~v##GE2R(lf^NDR}k~sid z)y;5y^BI`(cfLrV24SB#l(g@+Vm4Oq;Jm>`NX|)t#x2J%R_71S>{sj=?Rk;85H8wiu5L@`Z z26Xa{*?%{YK<&@-`PIA~I5Xll+jV{jiVZ35OQl#Puv(@^y$A1C6tXl|!185(#gS7h zkZm7IMNh<_BT)vcSL(v$>K7zpt&iYTxj}q|+`LxLI8k|&GVfl!3N| zxWJP=Gm>_!j}SVOrts>gkm+AI7oV#h5jq49apPlwk878N9zyrCVA~+3KB*L*)CG$M zbqt0kpH9}eZ3T7n98OhiD7x3G;hZx~*!VCB0um~K^t`wxvCBqKjz9CK|I~1{6 zfDOL4W@ReB>#+-yi0(N>u5xD!E}xzXcWgRHYmON|*QiUa9Sqo%^FhQi>N7L7ng?gb zm$KPX@>J=53mS+mValfpIJ9sD-gi-lwK^7f>W?%lwrT+dnNE1zm;|<~?nA<;EzDM~ zg!OFHhZ3cH@d4qCGwMnav)Ak;ZBP5z82kbMwyXi>uZrjI3q8*HwZyz(lfc@UKrfz` zz@WE6M*LzCWGD@!d2j|Crz-LM<)^`Q!VvmWQIeiKZV0|()G*4`oPK#H&)-XqphpGo zgUVwfF7Hc0Gv*6^9s)PS;t)znwIdVxantj&c|hSKn0zuAmQFZMd~?*;wb=v2=}M7o zUuPs-nyCP0Zin%+#t~u~ZHX>p{ZZQ`k#_Uju%O=zcI_y~p7#5qJDP$^xwjG4KiNg> zJr0Aj^AUDV(St`0G>6=QD?xTkEZcHmC_S}OfdmA!lcM)|4S&cG#=U-0nYyQJvNO;|TL7Y8N31G%_*oH2C>jTZD9 zyNmQ_ZSZsEtN)?wkh?9GCHd1QM>EN)x{IuP*-JF>k>z<=Ln&{Hhjl|`A#(CJ2+;Qz zhl&L@>9)a8cR!f_?HbMgTh;?N_g}y}yFcQ+y_aEVST2(l*j=+SeenDF`84LAB8$3l zA8Wr0duo{nOxNo^Of3}LszM({21dK63;Prg>o|K)kU^7s2$ea+RV><65O*f z;ew!E$MQT^Wr(idS%ix&FPQ6AEkl%6Oj#96n&8RO6E=6N=qgN zV@|jo-KjW+mI=?lyP+odymh5h6P4(V%wT%KdOOk4GbWqf&Bp)eaD3L8#~z7~VWN*I z{d=~F+}sx>YFcs;{Le~Kg9Is(LpJeh=Q14htVLjqtjCg&VRXKnf{;ZT!_T;1!Gp>9 zENIntc|tDg){v0jYV?V`7-lSt z!spGaVfKZeY<>wRCrFF9vM-p_+bD>p9F4?>Rddm$Dg}3S|6~5^6fiwP$cc5eVC_a( zcz^Oa>lt9eWj@s6N`oVOv1UC^o?Hth+KepT76<+}6N#4ZB0lj#KfZL!BEK#v;_ak) zM64PP%7-e-&Ue4URbJ}Uw|hPvDcmzgzd1w-R0#fir$u9HwaC`CC$LQO4Gx-mmOji} z3g5l_aMcnMYU@2()M&F7!V*tFQ{N15lKE}lDV+B*8`9Y00uvngNCD26aV(4;MvYSv zFlFs$D8Dxob4Ioj+o*T=Y|nof_&5OEGX#D>P6hek76@8Buh&5$QCtcnEvzy)~LB+=O|ZhPGV5@#9FxIf0!8_nF$}7)|^GrRd~Oj=aWl0#Ew1 z0d_6C3ZnVf!C|s58{g;%r>6-$pBPme+ltu7sAFqE6CDMRXMA>%#U zOO(=Qh-xYqVAp;*TJ~iv{w$gf*FMa}h085L<)#-AoE@;W;40`OtiZu8q0rg9j3#PR z`@(VcU|r-56<0&)uhrKe{7XFC95aZ{wYL#E8ILfb<}H{iW}$afGp>+(#{N!8h1O-> zWW;cHQZDri9c)`+cf%F9J#08Cuact^oA0s#V|GBL=#Xg4Qx{R`hGcT(SSu`y*Ap#$ zvKgu6K`xnor3}7n@MnvEvezmD$*=N2EbdF{@I?J%*lVjq$+l9+RlLSj{BL1ER=MyFt^(z< zg{0Nvpx_BHqw(wHxcVDAy1B3q7ro6UVAT(oZw=?muH1!XLw3>WGqXrpIcLtJ2ID!; zd!Rz1;A`7pE-WCxW_b!|zYWEG`d?7BZYnAAX=LpabgA|gCBA0DdvdfR6xDn;vJF4< zsb9-Iv`9HckLJ3=Xo>gWR@jRLV~4`sS%ENyzUOoh_T#b7_u86sr_F0Y$8)34r# z$Mt>S>1zYrFwmVhSw*wS1$)FFpAV#sI|Vk;=|~WDsYBH~p(9)IAMUgafvzwmC^#wj z*}oRT^=d`B(r+g&?7M;9+v{NP(Rrlyuo-Aw560jP55d1_Cb(Fr^8ub4VWFob+uIe* ztW77=zMgi_dwBr5m;AIR6B=Mh*dthO&`LaZ-oS#ouh6aX5p4df!qZvqeCLv(*dGxD z(O&nU)lrsSvOfooTmIqqG#wc7pC$ii_m%9mZe^k3vCuGA;MB>@AUp5=K&1maN#NEC zWX`gcRA=)%$QA)>+R_QXrM1A^?z70aK=6MLf5x7!@L(Ft>hN?~EUF!lrFMH?qqcWC zs9l%{yK|(VZBHW}_A`L45w%3sAqvg%6QNfk1^Y5(sOO85&~xcMtgFg^nny)we5njw zLyBet;U1P_;D7l&EDL z=~=MI?hnd!WrE9C5#9fGAa5vND~@z6g{XQn;U2?^N&Vi%C7+l>@cWC9yQLd;$CQd% zE!X2H9)~_I(bVzcZI(MHg83i6gD;M5<{O_Xku>|itYH5XJU(?0#WZO;MPN#V=pr7I zc?L5tz9J{DX+ZSYX;7sk%)46)Aj%+u>~W~Z6C)1cuwoTb6tNdhFTKT|97-gQZ3m-6 zTQJj}a25al)#brL=85JLa{SK_{35X&esxR-{Vglu!Kg;&FJS{e@5;fh=U3qSQ;s#w zf}=_0jL2>CB`^;+LfNEvXfJt%?^7!=%uJf!+mnb}&YuALIbujRtb&9mXJPE*Y*GC4 zD)#4SU#ZFhdG!2xfL{zdjA8v!;#&_&MClPGbe)hne0%XAuGnya)GzD-g_*YS(()BJ z6z&%U0vFKNX#$z!a!wpn+t2(fZ=y}K1x=D{Whq-L(ZI}{|7$$Mey69v&9hzP^Xol0 z)S-#A3B16{WEnnp&_ZZa{7DXeIF2jgbh-K517xk`0jTX&#=hp=?B-x=>_6}jkKg#l z&NQjO+3un6&*%V~yjbXwkz+(>sVDic>%2Jh$zmKhXNJB0;7-Ui2;t%-0)Kz1K3bVq z*>{gN!q=gmqVkGAczyoc^MTRvn%o56u#zodm@{e$ z{H|{iJ@`1E+%kX8luKU=&sHm{3ZAcXhZ@NB@MGAs?Yg+g2Y6~=8!n28Bc&Y|*v!;x zWUYcEh_qMG)#2)Rs^bJ$UVB73uekC!;e4n2b}_v4pT^U*ry(_%fH6a);58otuEkSv z{dOsF^tl{Rit9zsWhnOgQmn52S*8aj^c~2pYFQntRoy;#1H0Fo#@*_;c+zJ7;KWHoxfxQ~t7u@ua4 zC%rGR2#2-LK*^dN(0-P&s->Z%enL5Oz5E5N6erVV@wd@-y%m?fa}Z;TGf)&~NMrJ5 zV7z%AKD#O8+3HeYaz+FU$$E|s_J*Lcun|I+|AbBYYw7fPFJXMS&@ptZW=XNaZZ~)> zQTp@^LnTK;uhdK-_vXisjM5kFuaM`-ZtBEySq}!Mra)bbomf3p0`_?-W76hdxUH<0 zoJi59*Y*^k_pJzMbSuZblV)NX3&v$l9pa|5PvN_&8nsxc$ZstO#TEaw`P$_3MD=Vm z&hWFs^}psZsyPYO2DX4@;$8f0Dvyw~6vB*c`N+jvFkCAh*D7|wxXX`WMg9!jFF4(9 z$Hv*)1}#HB-y~r1Kfz{J7c83oMs#$fI(3e7VUPDl!hD5&tTRHFe!kd9X1*4j#`~u8 zeLKv#tMyFinmrSIKBU6%74OKJb-Kc>p@>eg+r%G*je+OcW4Nop_DS4*!rr(^hMSM} zgwg_ASfToz+^$Z>wq_N!Q8**)_+^NRT7z*@S{TfHszcqiitSSS_hRlAB_6S(A6jQ- zmw{0PHJVdM{@K>UqIgeCOPoV{?jC>+(E?0x;_#`;nYJ!hMQ?+TWo`%U@JLr3`b(aK zlF`?ov3fb5NCn3KxoRvN_>O%(A%Vtk%wfQUE~~%ou*wd z;MQ754fq7Vg&feA=__c>hjD1~WjYDjpMYi~)?;&N1j;Y{0S7x)U|+Ry*}MhU*y51G zqHLpD7%^IgCWsj+zxEzZtJ-7EbZZ(i{~p%Nu1AAQ5;< z>9pmQLI;FdEKUTVUiV7teaCV6DS^jw-;hp;dykJiHKM_$Jdu#PL$+h>7;3M zAsT>~Y+sKG0VZ_TjY0I*hYVP^U^lp4%)kLggLrY{bdvnz1sv@ADH;(c@He{SP~~Tg zee_dh{y0h=^q;+j?1pA|(WC%%6|Zpsd5S9x5>cYS0u1&^vt!TpV{>3WY%ulXcYSnt ztNH}$YV#GX)3(8OkD)v}u8OHvy23v%9nk1b1&N`W^o48+o(;H-^~a7e-@7B=+nd#p zq+5=zz0c7MkKpc9MY3o0Is9wjUFPwo7N)rx;IV2Me)Xm@l?k1~Z|u>+y2GDwoA(@C z5;2*phs)B!rCM}uq$+zbH3hnpW$B?i)9BdKvZ&E}0KPaxvza|HBv@lU-nNNAtLfe_ zFLgFo(op65%CkYsOoz^$^;dLqmOZ%tO(cUOCPL(vG|~N)rC_ruvb5^VJ5sGL!o!_W z5H>3c7KGbyDd!kawCDgcUc^Mr`@y;KDk*f+<@bx#p?;PKof1zIym|yaU$=&cztdPn z*>SKj9?WljB~<34z+MJdTL1R|Q}ohero5I!#cHy-K6-FzVIlbY>hQ^Ogvn>HR30e9q)qsxO`v^nktYM1dR?(LS#-r|?186tD zgf&lYWt-eCirw=*Lf^}!IJRUHET2?{Q+_?hE83Anw%+2qM{+pS2Z*Eo7X zrwcBsTJo;~*EC%fsBNAne$4D-YMzb|+ZzmTyZ(qaHVP}WUZ<#@;U5x8LP ze6UQ)1-rTHFbz%slYUCBew>U}hilMDv=Yx5*^|)=b!fidBsi!474)U0Xlv6#oW}L= z)`so0xXP4_N!iGB434o5%pgB4i z4q96aJ!&CG7O)4Lml~qPny2{Wzb5>ya|GKqcA?o85%AW}c*WL`&j{a+HjeIeTARS| zRk$wfzgOXwgzF&Aj)mUNNP+jm;Mw1Ecz9=@NKw9rZTT((=Zfd>M;8*(k$H{L>Iv9yX9iTMAh^?NHHS0spke(qBa?bke~bd~{6~4-`Ao9WkA--zx(yzNh@EpD~O`odnB6S22fI zj^bqd&@DM0e6j+t_}Ub3&D)H7ro2NZ%S5=WJ{g@(o6u=C z0npSfPapSR#;aWo}8OcS)RSc@g`x zw~#)^7dZ6&d-BZh5^UU^086swiZqQ3=^8r+{2O2_-u}&jpD0y=Pt}_RLfd}W`eP(s zT491>jjv>z;H&v3a|7NU$`sFtnu2DJKcY&-K3xB!0_5t)gJ_-zdVlJ`y($y_^TRMc zBY6m1Gakvu>^Kj%-F_lWa)$$|adt(=OVQ=`9C(oLikk9+sO!SkA#!amg=zIIIICE4ODtU~d zw@%E0FwG*;KXw$)SsGDx!p;Uv1YS|LlaLi(tHYODtD#8d3Gv!>9>q4B(MwQ#O?D!p-eOctJ3o!CC-*vx>~UJ(`NDEnaXo1>> z$Jm)vEgmsz9(E-D#Iy7U?C((E8|P5LY2`=PDFQW{8UO|}jQNU-M)>S(9GXs^k78y6 zjl-tFgVBNF(l9MPXx1r`{lyXAzg5LjQ5{JeupMWpDf5mL2R!+$1F`F0(IY@5rEhAyIaaQkg!M*1HOwwh1v%(HR0x6I$W#jZlams!eOVXYc{L-LSXl7dfHU2rlOXOUsh% z>3Ls6deyoK6&@<@8!v>(t@voUsj5=1Z9L|igcp!`lS+6Nec zb@E$m_|^(8Xa2xAA*Z_QWFkmp3wh?RmT)jtEH*Sg#@>o0`Q4xzSa^RsYZY#Yp8cp2 zE79NRzxX@p8?QpUT04aIRU^^4B+N~N^Dyp6HNNf{3Z}ob;j+6N|GvK%wDLE=&+9XA zneh*_{q_a|6TL;tw^`5!&NFCA?r8pH^g1FFB?Cv!42L@3`Ox=l1CA+rg}J+nNY&yP zcrd;mU6l@^vb~LvKU>V6AC{uG_pip(0p-M^VwB+NtzuSE)1l647zUMi+Q%P0iQcmt zV71_H`K~{K*eyLQu;9O9h{jZSVb{XKKX?e;y@Xpw92fgeFyhCJ#*qDTj@0t|So+-c7ffmy z1E~)TNqu%7j@Plo+h=3w6VvG^lR@FV`B*U5Uk5rd1L@Y#0@3-OS3s)mGHh=*Cg zaNs5fC>q9? z*&BD-y}qPGSM7~L`(GpIo{v#HD$9|mXe46I<1E2tDC7v=PZbRkje^XRS>U&SA{)>j zPMReQ*^YU`ae;D=sC3qRoc{G8W~tsKArT|FS>F{nBJ&B}3|qsGkE|ng$w_D%@D=25 z{{;KjPDJa<5sZ@<2zu@tVEmO>@qYKuq7hQ*ICP)4efHY5Xy6l1`mgGt&!<$D@~f4o zz1t1a`|QOPz60sZ59w@Tw-kDf&}aMdl&Fhi2fO)6o=bU;;XlV4(u%PK@Fqfo9F$Rm zB|U%fLdOtNp!}TW`W%9B`8xc^UsKU_r$*-5A%zO-)X2q#04^VxjBZ+AgpwdaxY{-d zvo^*_S94J(HI6*_YRjB_7&@O#gtWUxu<&jQx!yhs8$3>u&=Jo-dz3b)HapNyqdc)m zS_Na`>@chXyo$q?Bx|%JR)6BJ~<47YTJmiO`h|3Uy>WmS?rH{ugddP z8wcMyH%8Md51Ke-SH4MS{%hS73L6d zuM~8YHB0lqrNMY1Oz5RN&JY+;@6qAc z5Rg8%m&XSM!Q%1VqFy~uTy8?>VvysTq`dHS@@it#a0u*#((=voL11aWfMl~1WvK&a zQ72s?zn!a1j+~2yf&Fi>cUA_x8oM9e%XDZ>xeShxcg63MM!>8|gGAj!f7w@B&&FQe znbgcA1~1#($KG!pD3Xu^k*^onJe&(firwtPZcXyg^{9CB?U1t21IwUo>rSB=Xd<{( zoLE(=8S|mX%m(h?9z{>B z4ix>?@_>vq33PBi2yIW7vH=B=f+tHIoOYx@=ma(V&n6R_W%lBX#>ueogd2qzFHGAt z7<~&H(Q4muD7}&eCKf(0PCbqc)*Qpt3ajDejQ{YMR1WSp)P;PFBam`y2EQoukk?uO ze;KU@j`p3*z}bZ#%TQxxzmC8;yI*9_cRk)PEFMK?f}yPB1SFl)7r14IAY!`)ja3-W zH@nJFe&!boUmMA{m+=rfsff8U7M{{jI6A zQhyNMQ5iswSWQFSN7B^XZz{i$IfV|$5tFuEk5OglK-y-iOvCF=vLA9@sJ;3vtKJ`q zl>#-os`55o>>0(q-^at3tG`gu=_D#Tw22-nE5d!JDwg`OPi$HuNpnV?#*2v+xK3v= zTk_5blhec5iy1UXk|~r`L4~eVCstIDCt^Yw!g)HAzd@Avp2q?mIAIn{KJE zTMenI7y^n_|FPwZOPOPl9{0XFpFYr${i+ z!7wqk7vHX%jTtk&M55d>vf9@bDpU$lfA|yhQi=r@wTBMebdX6b{fZ7YYZx?kh}J(_ z!?!Hk16M+0v47!I+-rNEHzjTr;c^rPa-vNbre^~A0m!Ns+B$!B_ z6!O7UGu5pcmlV1KH= z!@ckb7p!@N*V+}Rx=tx(-&p|tFJ`j?(T1F?>=KPOk)$PgStz$aU_YO^2zzW*@zN)4 z7+dW^S8g4PyK2V4=i`r|z2=J8_w-^q#&aDRq3b4|@#hTt(K;7#^e&!ov#>07`9G9Y zddsf!kyLmCvucG&Ae!CC?p4|dyrCxYw7Q?oTXP;3W`9MSb0zpC#28YwmXkk!>qW8r z7!cVodZfmbuj=)|o_*=$n9o zV7B2283@rV6}T zRO={kQhM*1h&`1z*b9kc7}k3k zdgk~*bd?sjtaT(=IpYnx59+hvOGzrRSo4Z4`fN+mG-J7pt2MS2r3mlTwLI#xz*@wm*ng=GoXJOVo!;3} zs}=sxD13))J9`OU`|HvdJtmOy^0s}|1q1FZ^aH7dEaWLBfpW_sFdwZ=cTMo6(|dYh z|D{RHI9-$d+m{8mlBFQ?swJJW$BKXM?ttw@HZbHtC9$^+M~%I8Fz<^Z-feiv9*%kr z#mTEhVWoj&{Q2eV#B(h^_ryG$KqPpH;MjCY8_I)MoWYR3Le_CAj2LCD2a}NF(0k?v z>}U<7R%vp4Y4Ak!{PF|_Mf8a@XU~F8vkFKbHJik)(&8%}b0E20$VyKs2G5&vG-mxa zsK0quv}HmQxcfYYTc5LG|NCNg_P_*ue_$inz8%j8#EoD|K0na#)_a)nLYd5d;YUvS z7qAU^_0S;rt3sa(P9r&Y;-LOW^wl&3i{m5E%>O9qiVfxx4Svk~=r8i=>PwM<;HK|~ z8rbnT3^%#xA-`$LZ@P`)lT0Td4CaCxc@}wS@C?gh?AhFxT6{`X2vhi509w^|VVe1B zzIdo3=q@S*!``d7(xMri291Vp;hk(UMh*7aISDy$8@%wvkacGp)8Z~?UcV}ewRHc- z4-eBW8x+}2mOGik%+d~!Pbq-ok>kX&QxnAaPy8SX~#K|y+xY_tvB!|Pa<`BOY%G{^UT6$7bCH-QDB4KHieU8L*V1(Hqf58O{}3E zh869OXq@&5Jhl7T-YR)o^udCjk`JK|WIqxA;k|6t_f}kF@E@cnjKbOW*FfdNG1ju( zS=fDFgF8=!+<3qaa(`nj1fO)p58}I`d7HI_89fhA>H6B=m?Vb_f34>AL_vJO^bfpU zP(Z%^tstT2Pr|$QO+;s39$e*_@Z|JB`lPHxG%s!8c`yRN!MQU9$rpc*?``^jFaKRp?>#8gh%rhj5wl3_{ONnMVVKQf!oU`u)TZ=>rxi@ST$2cj`=qsJ!~6M z>lHGQ<;%h3aj%fxK8h=I#uJxnbw1HTp6m4r{G4mTes^3H$y>Y!{4crUE>R(FlX%2d zY0ga1$th$-pZ$!j9)wFm4rQ^&iUGJn2jkyxe6; zhnt_~ZFTSPOTRDg>6Rz|S(hPsdkg}PP35h!b1~q_O+0>Y7tEjjk{uUKp~+8eg*h~b zIM=2_jm<^uSUn88O>5c9V|kbv8VTLjOYr!*K1lHThP469p!?_&@M6s;I?LF*Pc}9lGhN4)mkzHW{V*9FtIN9xe+5Vz*OxF>C zw!&ttWj){#BI5i0e8dB2MB;PYK;1P9D)cJAwva$p(Lr>KJPjjqZJ6_;Rovr>43BNz zhVI_|(Ernjs|&fW?t*8qAkmV3l<2P0pe)z{@NUuE&cjQ;&s0C+4 zk}`G7V=3^Qiy}PdRwh2uqK>V)14-h6R_3ly)u09hwo zF{rc>V*hw>sa$!g*uNgv zwUgzjj(;1-7Tib2@cWo6T_bpHqiNHWWtj8D4y~GJ!m7edxRIiGuOJVkhqcGVZN4zk<6uzo_Ds>V*vkS*8a7L62J$OEWX}WyFXCJPJ=F;i>Zb<^2 zHz0!4?zjXR+8SIvvJgV=__3Cuj?8Fz3^YvXMDy-pq%1p#Rqa~C%5JE0&C@4{irNqM z^35rvQjba0&M;;eu>v2T1gHfo(URirSbe4de0H7z$xHF}(^giZ%r(UKxDBNid4P8Q zP1JDLg4usJP{pb9(d*qR*w@>RE{ZN(YfuD`$eH}ok7(E#*$j1E+K{^X3*Kr>C*Qsg z$C|@OSyq%u@SbS*&n(b^YvZe0=sWl$O6oW05p3$WfsgZcDLs)gDaR zn2JmPyk>)Q&6#d~mx!IoLbGK9S@xcL5ct6le=KQ)H6Mr2C%aT&H(Af~ngQ3CZ)N2h zl;{NQ80J+o2R%kc6YanGpz+X@MVqyjiGCeo8B24SX=O8R)%XgZNAj{=cY9#kcy~C~ zuf$t6ZewYJdwj@FT_Jz73~t$IptF4<-ktFPp15v;pwphPP~f6(YnVg>8pqcDM2{e z@FrL_NYSRp$9UbqQsynp_1lk+rs{7t3D2A~Ex3P2l-J|Pe|byMh4-wXXVwkWyZO#u zB3XkESo$9K2wc;*yNo&e8%w-&`VE)Kk;tnjXk=*fD~ z;HbIqcO6O^nDTclz$0h(`2#m_$Jn}#D&L5`a)o3Jl%Q! z6Aq$AV7|2v4?XA*tvXu*+fpBjLzRtr(6G6@C42#_mNbX@4<=OlkO8l|I}!Vq-+`=u z%A$W|m*K%4;dy;ugO))ZxYo@R2ia}smxKpHZb30=zZs49gxRHfY%|8~{DFPFW8r)7 zBv=tLm<}GPO^@kiV9r@1DnCC})cRY6j_p_vf5tt*4K6DDzt8m;bnw3D`vFTn`B)Sh zjeh{Ki%La%ZH|%F?>pg}M?HFlnt;iP{q$4$eK`Mf0#y*$9@k&$K*NS9T=wBs@-Rq* z^SA%DUw*xk746gE$D(htpcPwSgRV4l3Alr*MdKh?Ga8bfdr*gCW9bwBL)cm3h_OFn z*?9FKw5+(EP1~hLzemJ_?gYedW{og^N*WBgA?(p#%EHAo1-?3WI(}c7A@r61fty1! z{5D;}UrObWyhl-RnrPs}x)r#<D8h>^2W!5EM4t^ zx7IDDrneqIqvmw7DQ+B6zoS@DcMN`{>}E?uIi$03DX5o7(+^H>an`mey#JLKe)D+9 zvX+0r`rBq8KgOH>Q~V)#K#ZuW(|H)88U%K3`gqW!!G58KEk9orgA3UJ@-p!r#HiV@ zhUP`wKj<-8qGwF6Z5Fz1b^F-d)nbvhjtTu!x);Z}2)$`xm*yrp9sOIY#82*IGASJxS&899X8&3_2rpX*>;zKAEJuVW4OZ(>1861=XtW|x{N3D&J;sO}v_pS8Ht zLj8{dV=;yt@c0NryM^Z~{WSBj8o(|(+{2EoW$a^>0z^s(oXM>hiM7-rG0pr6KbFiC zxY*7(Tcd_0O&Un6ZKUyK>Lna^L~tKY(1KUO%=||Fo;W1*9^N#Trkdx4jNG^ogzM_G z^;sZVq|0)jRSVF}Wh>uNtpnOt(;&%1=yUj8A<|)s@jAq?J;vAI+Ldl>lH1CoW*c%J z#SS5}t;{VN?5On6NHWiK8n*Osrfd0%{H*rlaZcYs+qny7CcVS@=pEqPDMxcIPlui% z&mcEJhL-yOgVuay-m~Kj&S_i#6BT8tZR}LqwLpR_Nqc~cd_!5kd4<3pzlK?_h5W{< zv&8C>6usuG$x9l9Yz-F!xxN#++H-K5o)dn~Xe1Vv)sQ zv98D4G5>@ledk)p_5?9htxY7~pTvUx&sD6&DjUzG3wPb-;rOECEsimdM5Fiw$Xc}r z!o9a~uYx7y|1*`st25YjKo;VP--|ErTn<^&gigBZTJh_^CVam&16D~_qO(s0cDEVe zlEyq7oHUg8st)84O7f7>c#$2w0@QQIOh#T=i@hhx@S&@s;c}J)A1&PVZrK;eld_M& z6aP?=?z~FK46OmH6;nZ@OozXWn@t;b`?1#=zo2aHJU&kDr1<(ZVSg87iC35RBe^$+ zx4$@s_4eUdc`yab+Z)ieDHM9E4wG+NMsbHV9Q~GQ(yaCIpc9)$I_GGh-se&_@}xX} z(RN92mga!kgBfCSsu7z_N1#cU3M!3g!qUOQxvf}_{2O&%vv0(}?Uit)xR8w7 z^%;Br_2Sm`dVKWiJLq`z6jnVwT&h*S2j3a~1M7!o)NgYtE6Z^d8{1E$x3yN|l;18e zQP?ls@2nt`|BkQbx0N zn%ri=Zg%gKJe7NV9bQMrq4pa|I<@ROX}xm`x35_Y9(&5fSI1m~!n0LizFTlx@A(Jn zD~gHkhvASN7y^#(<8WpS7rw({g`A!&?Tc%KpIZ)~@}xjGx%CiUxjhaKi!Rvb08747ZqaZIt>~*e=6jU zo6I&oeZ&&|+?i*n3u@&tbNW!W~)oDh&6l z5YffoL_wp4Y^GK+)0d5c4?3}6y=f4i_L4#SL|gp5VixT@qs;&9RTp;DE~0|rWwTa7!x{gytJ`?FnDbV&iMEj;Knl@svrRUxc#UPLM%-+@lMcf?O~15a1p3@!&JQSl*Fn32}N zj*l_r16MB=PaAdt+ij!R?x^QvdrTV+8R!cc&*O=OdA8t>*k|uCU;&J8I~; zxG@D9H2pyZ26ZIE$ip1+#!K>gfn(&FrN9km4B&N@nsirS6U_dX4(Bh{pqk!5Z2S3u zT@*6xFYg{_JyEr2swVJvh&zqnGm_Y4O%|PStU@KFH^k0$HZS3t+_kY%;Bfqh`cc_P zh76{Y2Bwx-kb1C@cczmKD#-WkYniGz8+)HeW9g&k5E0OX3DZ_nU(faQ^|36XmGU3o zK5;Le+HS*VUC(6dCx1ZwU=v7kP@wKhG$CwVIvhIGz``18SajML7Bzi1)2VyU9vXim zt0x(wS5XTrvpR}Q}Eh=`=1xbZ)@OO1V7ncfhIm(E?v6w~Y z{p*Hp*S?7>4Ibm{M^@lGK^HuHqUZoPfa`BB0JZW$IP#~0c@7*6slJO~aiBw)uRdc_ zzj%UurY`o}sAGAHXQ1W8OmSlPHT-n%x+o~E6BkCr;MDRVWQXP&cz7=pY%e`!TD#+U z%8eSBIL8Uj<_?AUzuTc^tqf)+twQasn!HVBCvhHcN$>jx!t4VPFf=5V3>Ww~wvu|> zKIhHSx^ z!B^SM>u!ZD2FngpK)a1 zbl9@ei%(stOqC0UQ0ZNF$O+Hif>YrJmW|zub|I>uvn>rrUHb^5-ll-f$B*Q0x*^Fm zHh{lx%<%2gJLJxz2KcTx0IU4}3C_er0_X4zKCrGvJvm_?`B{;^zFB2o(eoUB27hGk zJ{I)#i_Q3^Bc1H^H-*TJc}%T9lCFBK&L^!uhyM)$+UM~>{K>@_TeK3y)&pwo(<7#F z(d+}_j_FPi@Y4c^d`sugyB7f2U<@Zv*fTZiVjOKJ>c7UYI@vtbeksGpmkOPoH=`l+ z_)~J}h9gg%_K8huHs?2LggNy?9^TabB#wHs9b0TJU`d=0-kYUL2d2oD zw%qh5T%R@@cbLm!$~-+7S#HGi;L&>b^Q|X))ji@){ z8?N1Bj7ygOkD>E^#QF=vaM?swR78~B5GC@S=Lk_rOVL)+7bT^rw5<>tDoKe5(NH4m zJfPxip3C z;W(t?0H|f|#p<=g*{3WeSmn@*|1vhSLn8%Fn#L^DG=7hxrbr8Co+^-3`rB;*Royx4S4fgN%75 zoC*9-LvYVX?ymkrH0w(hto$YkTS7;|b(bBi#b7ACAY>h` z#;)V$`vqV5x7#G)++h01-CfkFvW)-P?M&yVn$XkhPcqlw94MY5aHi*L;OKoVaQkB> zI$J1%Y^o}~W1d37_ZY(xf!iegynO?%ytp3&rz!Dx=`J=WTA1EGSkF{UPeRVFJox;r7UY&Tg2Uoi zT(4UU`Qh1^v?mK5ULM8PTUcRjd=b#|xE*1+N*em(D_|EYLGyLO@_YPfSr$XZK zW=1B;T0~RQHinx!Yx9a_l+GY(JR_tN=(-$mQ60j^RVJay$pkPvIE0pWmJ3;v4U@QmJIwk3p2`f;5x6tPd`)8{l-;x{UNfMh1xKD=~Xb;+(;&m98FJDXv4hp-ib3EgPo5 z`~R)OSZ)RdV-~`jK|dhkpA|n*r${C|5?DfBuhX(u2+iMT5jN(qEqnZMlG?J-wy|*ba>OJx46@~gbX^ZK^G?Ki@)tNrmG?> z*pX+IU}Ag-rdMxd0o&?8aKp2*axa`de-eEybR>;#%)v7z+VFYg4Kj7^SlTfriKI`O z!Bq~WW9W`J)_%(Xr5x3u^@<|(NXmgLlW&XOxa&hwNG9-a{|TPUYef3#KOC+75iR>| z@vPMaGTuUjU)`;#p}|tLII;uw=;pyskAcj5^a=J+!bBWdUx10C8RW=eb@K;FDO}G?kxL9RU-%bx~oe&?)$7 z#C>G!c<1DQOss#IFfSdRs}=?Qe&x7YHk$XmeF)#DWf8q$`h4S_a#rE67uL#JQ=@f{ zVda76%+$XWZu<(%&4+g&>iamTa+?7eLt0Sg!W8zkO^&xc41+~|er#X-2{6Cj#q?IF zai+Th4jnb7_U9)O*|2z!bXrL5HFtv7g(w=l{sbIc6+_Z%OIW?j7v|%Vi+0&Rz-wJO znKjJ?!z;X@nl@m-_XN6p{2zR!U&1W^DM7%7Msn7}2qQO#lpJ$@hodg+fshn|_q^H< zt-Vw5l2bBNI#Rx2wlpd@pJVN66{MQW(_OK7Xl7M~ZBJ66T6O>&+;|bXLUzN}v@G27 zYbiZ*?>Thz3B3zjRr*=rc*AC0qWLsioap%sLsP53L&yn!`!oi(F6tpCmPfE^mf{N7>|eKpJ>7#=_lSVI)aB7bi?AhY`y=v8eA7?wDaqGtEbOR$&g8mQE?~M|iVs^m392&Xc*^TS!3`z&sx&g8e$i8$d}J`G3G2eb zhrJ+e>WYT#(%2!e5Vzbkq$3YoQKymsa?862E_z>t^vp|4vhyNaVb&p5I}r*0jMGtd zwFBf{3}cy#>Ok?tBXAGYrur$I?c4SWY>$L8w}&NY_465i4_1fq30AP-?|&#~FdnxF zu6y0ee3Y9oU97k1B)rgG1eXeHp)UJAINXTjO%YFEMnMoxbzciKzDD5G?*Q4U=a_;_ z45l_Lz*t9lUUI9Ry`3~3#@rcz`@W6G5ij?`m*K;>cm5gJ@_0YGv}KYW<3D&`#Scsk zq#z=DI<0+OkDiM{amW7E^kVWgY#X>ARiE6#)ZuniMaTeMP(O!J^B38MUY`Kdj0*70 zg-VEP-vivd6NmXkh<3h+z_C}w#wOw zhnx%~-gYAT#>N`%&YOYXvI;>iZZ3MtZRF0oOfi0;ke~B8jak>Hz$MQ+BD?L!aKGbM zqSTZ^7P#-kkHtB7I9r)#{1^ypcDvCRRt&G-Ng(^A_uz!NLm**+F1?Yi$=9#br?-~~ z-!AX^Pf~&fR zg7Ok$zNzIt@!I$RALV8+SojoMampgRix-p zt2br(Mz;8G&xk7sng~3g*|M)_yq0;PNzSH_^?d^M=NPSEj-?L6>OfphU&9| z$L5IwxzHi()fnaRd8crU$!+oHnMx3QD}!vYE?{O|25iFzW4ItN`D%}?A{x?4{D=2h zHuC2{xO}xsbWN=euii99KZ^!Dymt~wNG*oDju*?yJqxgEo(`zJ+DP}hx zf=aXt)f^Iz+44u3$woz9^n4#ER^B9UUkQ8^btf|Y=0V7|=!c@elI%}!E}P!bi>0|8s#AD3vi8h^6rbu6Q^s>~D z0`Y2Y#mdx%(tRsW<1zQg=vA?ZjJ%Nx3v}1;qWh7=^<@D$dPHD$`{kkEWLMFDeZ#o# zhWW6%I1?Q1Ip1_CCUClb@ZDrm; zK6qV81@)4IcT<|+rD(4fHQuj))cS$g8ND2*eXS>{QMa)&_&vxxNdf;Uiqvq9JT;AM zgxuBgur)vodawRs*yMxInHDIxDfWxX^hd*lC5Q3Ek9cVKeIEbIMdDiEEx4^ti<*CD zk`r4@V7_q>_QrjHkM4zRXG}aqZrXzTXGTDR^$b+?ki&_!`g}*jZD!|r7XR7A@hy?s zJT#~lN~*s>+}qC(n(zW!7HveVtz+MIMDWZhb1?VfF}iMv2gY4$VJE|upo+>Y{IqNW zyE^U+o||w~wC2k#QQY2fe5YIl`gX}sEdo@ucm-ZxI*!<( z2@$T+&|;!XU!LoP8@&RLEv*Sl=9%$%uY~8;cPc) z@-4y#|CkPk5shQ%Sy?r-c9EsMp@A^uNFH7s=LsDa^D%3eaJ@Ag7o6P+{NBD>BxlMe zP`nm~cF9#lEB_qXw@!E$d_9iQ4~1`z{fDT3X$EU^{{**l!e~#JE?Ta<3$K6spzAt4 z*t)(M141v5%8~>a6(CK6RNq2GRTF#Q(<}aa)P$yNlc%AlOlhRTmTT}&DLdix49ea=QHK3{PoTyT5p`HA4`+Qhp#J6+?6Ib# zz-<)R)SiRs@~XpV^fL=z%w2R;qRwP@m&x9VCiRnSZOIi z5C2*YXJ)oyB?1etH70lL3Gu8H-0Mp4Sc8=2<_YI@L7Iq436)DFPs#VPnr!Vr_nRQS`uYUG$lzS#TsXs&ND z9u^8t;n0o8glyFX_`O_Dwpa|38W|f4pV;U&t$g; zL$!Ar@t?ko-r87%GSB(9* zkZe?sCxJn6csz0*pDgRjePlP8vvp59NaFDdCRZhbq>Lo2e5}YdHgCe=@5@m^HWVKHdk-fZe!}$367kDT$6>cP z8#hSYX6{n|;en~~?8&Av{OF4%uw`%rajli7BZb}LTIX2|9{$58o@U%gb2+`~_yg`5 zJ_QZgH;m1dqFV#63Hc5K(2RLT3WEmmOOKC0lui)Ni=B+49CL-t(L7f7p@ogCwIuJ$ zf0R9LJ1E*b>o(Dqzlu%Uq~QCC$2dAFh55$^Gt0gsWcq$Bh%2_H`8&*E!S$i^=_dkm z@6@O>i-j)B<+wrcPhUP!28OBxv|skaqx*kh<)^zsKgSLF^nSCz#>vpM-ye7Mza>UV zooIXT2+V&rfRuJ$MTby1T6Ev(`m;aOGHha%cu9oLA#=a(x8WnbOi_ zAH|dHrCEsgFSsQ?9mUpz_>im)R8>#F;L2W%_-jUUtGd8I`2Egr(MYz=g0xxdX-i3` zknfd7-4BXzz>St!Zp?=C{zD|MFo~?*)r?;R{z6FEBjkPSK}Y2Qv2Gxc+m(pTy(__U zfDg(qngYX`HG!LHitbM^x0tnY2iqr{Pn2;yJJd9s{v0)l9}x0=Bj=nFH3#dF_R;6qH-$u4 zJnko+H@hrK)2P5v2lm3pJE}OZLYrQHc#vmr{>F|kxeN2WMo_!vYAn?BBllA_Kz7es z{%Gk)a>fqW1xs0ASCe3n;uG94P?({vl;ICfXmhET2l03DA;?Smfl1qLU~+mjp30vE zHUrB=D>AP^`{7`mqG!XZjt<~T9WiLyF_*8sBy<2V72265_lOUqn=HPAW2PHy|HSdn z&mJ&sP{LC$Icf$@#048xie?T^WGmjALD9N70Ihp*`N-+G_WBzPQ?6r`15)`3t%WdM z?F1gF&IWa1_HeH?O5g^45M7PF#YQ#BV!!uS4BK!=V18Z3b@`*g$EX~SiWfqI^)$Ht zrGjj$T!T-3*13xiwti;CMktEk0WMJ8iSdeYp1J52TgOK2BqMncp_AYr81|--+hqN%quqnX% zj|!*w+63UCjzBQ;34p*73tk$(nO2-xhVd(Y;G>Va{Fv%0a%r_rertFiVCR zv$x}{rBTFIq$hf@LyJHAAxn*B%HY3-PIxqy@RdnxsBipNxa1uRH;)ThlqJWpOUU}9 z&2;3o2hy?n>KW!5lwMk45--lkwxJCHF>I!gKhORxc$@mx;FTw9Ay;$<&1%15;eHEh z9VZJjeg}~8TPE@TLr3t_xd)=Gc^?b66A-0czv-(u!+gu;RsJxOhEP z$o!tdkDXDlR`VeS|2K)bJrY2cpIqUQT?U@84Cc=K5WFX0nDk#c-dw#A?+NFJmsgTu z`$7%)JJk*r4_!?rEI0#=K8AF@w%{H<_Lt2c{tj*lT(!pVE3k8(DLQ#*@@S*|Flj;} zHqr*R@wGG!+`gFQjE}{+!gaEtyBwqb*ij$BBOR8dL9K4;@P&#sxLTqSk9-ll-NlPA zC+jO#S^{0_|CGcnK7^Yq<+${r6Y%HfC^{`>HYmt=Ku}W`in9jM2XBT$?8jmpp7$Fo z6qdouGGBBt`%2X9vT^Yy?i0Xz=oNr3F zOYD4jdh{tc)lH!H6SYuJBb812w~{_`*o93|c6``PEq>#c@|* z=yGkkE$kmmzkQa-In1E(bA;S?yaM->A3+^YgwPE|xgbAeFkdlChc+a{6SWJ&=rSKW zGJL~HvM6h%Xj7dW4a@vYvithQ|CDOQ>lEUdV*DDm&nW@khOXsAYZfYuKLwuaYKWum zYE+Coh>E}e!}-E)VuRaQUQwh<&8Pmv9%U)Czauyr?t0;A3wQDFSDVnttC9?lTLq@( zQ9P*M9HTx8XY_L-sJ>Up)^AE7rX4Djd~ zwp-W%o*ZchrSY`w*^rJ7&c|B%lnpE)yjR#OjyFHfqQ6Y!TE2#K zr~4MZ@7H3;%KHR9o^RpwYio2oZv`sJRmI45QZM3GBL?=#v~v zR`1zQo^(9N-Op6`rO_gqS{P{L8dm| zVXerE3Vl7-E4K0qiJ17o7qYj0XV;c0VZu;PsJHzizOvO2Jv>HW_*54R=-rA#YU6mf zMuTnXuX$Mhs!5zQN}okJmcgA}`Qk7SE%Bc@hhSLo81i?(9q}uLd~D2K3PZAAgMNVn zeKx=cJ}rnq|MWz>?W=|3SM{;29_%Q{H;ek zT#PW_+dQ?{_rDys$OOaB^#$a6ugG@V_jr~p*8`I2#hCtgC%EBrlI>E91HOI0y!8UB z+g*-#oRh%8S1Rze;cN7}q|J65i4pkpFLC>vN?dTH2Cs}f4PRX}`LJ>OP;%2BGCVO7 z2eiavmZ>@L1$kxb&(A3i7pkN7-K31ojOdasT3(XXp_N_fautzt^F;0O^i^5RGQ3cwb%;X_cKCziu`dBko)rWF+8kWHWPOY9K7E`Xuc=Hq1E{Shd%u;`ivf2Q1( zJORT@ceC%_1#ss6e{fc50@w=sjJy(is?(o>9UWb`xu}&*>s^SuUrdCW9izpyH;3Z& zX;JjuHd}hOp#=JMOHohV4ZKF3#`<3YARnm7cIi*&Qah7uUONapWZ!C*AMgYRy@|$D z;oEhybUY+3(u8YUPGNs~JZ#?PQs%d1Deg>aM1S`RA~7+K{g~zl)mzu%t+tC~^BpVd zR#=8z$+GZQ@SvxSP2|;5F=WBJ8B~3sDLsAdFR(4qtXV1zk_aS5ph_DK8}j zHIy4fsbWp_JRIH}%PQV?h#VV7(avU1(X9A1O#B!lV!Jn^-A-j_jsTEJ-U1^}#L&-Y z8i`!{KqO`yw|?Q+8B>hG{;e=s;R|Wa(&D0yvydjag%}+Htoyf`HzfC=DE}t-zMslV z+RUhxaDLLt)nr90exs~S8A&#%hS%N4@SLo(sNu+0(Jj{uVz6ZrQ5`h^+-u(ug}f6G z7OBYxq`N?k(_LKFQV)*5ufl(_XNl82!PS^Dj^90HMqW=a#g(T#_^sYJj2j_Ii_}tB zNV5aqsgZy~PS?SSb3*57V=;7lkKtEWHM5lx4j7ij@%G14crc2CMXx7cTk6j?w8Y?@ z6?W9J-WcqS3Yb;G6@2A;3D)dOge&jP5SztmDEsmz9R0B0pX|x`HmivqRXFQg!@1Kf)e!0QP z^9E=&*iPgaaa;7I&=4P(=HS!oUs=`fy=>lqaWt-{8kL-1!1m;9vB*}EuU1$^t^1U? zg-4?W(dob)-gZn82D$ja)GcY}c>AmgqP< zyQ`lVf4K}#OV#iI5?x@FC~?$CCQ4H1x3=Nta3A5Eqom@cgsCAhW&|wUZ8l+TKj4 z5ZFEm>-!-7roGS&iiAtjpTu5#AMPABiQE5t1r?8XVT@}WZNG28=1C0#e}U!xz4ZZN z+f(%2u?=2)_QH5P0oI)dFfgVL4QJG0$FED`Adavla6WB|34?bQv)F~=wXjR_946T+ zGD}Bm+Wl$`o)*r-;jvn@=Yld^j+O-bgHv(H%N_`Pim?CmK%DGpO5IPr#j1%0*s^C9 z*8cttiNg{BCQAr={}>4GJ4*CV)RV(gYSAm#8QkRNfkcTPY*$W#2TFtKZksEDk7zs8 zdL-b@1#_s&@o1=;9|57+9c_3n`NS%&)F`9--i3JAfWo&GE4$(!uaA(|R2nx}rAD1ff zyFYefO0Wu_cw#R<5H4^7TE~c6m72$w&R&pF9X!+F20a6{}! zO0@Jz%}-fA)G!loMrDEj-cDHVrVLk&e!z}Xxn#$^fxIB!g+;xH#gLaRc;&wh z&q(}(${UvOetIoRi>xr}>N#kz{|9@&ZN#FKXTmjm5zO96&?jdMV1nyB{2DR`ZB9HU zhgUSC{C|nK{;Uz7E|Wm?1n$^Bq3`Lx_%5_A`XHWK@*W-=4WNIYWw2p0M$@7P$3W#( z8zxK>dIQ@4^shXCCmSviIa-M>n_q*;>3EFPzlY;HUHH070-IPvnzr}tCBKJ;(TM6_ zY{g#0!`g}@<;qwb=ISX{cZ|U-zdn{QX#@897l`B|OvIahC(x9$H?Sx2AQbF>DP9+O zM|8w}15Rn}B5l@&+CbRUqPbWdW_}BY=yC({@s=~pdl-!p{{>K6Wk=lDdmn3W^^vXrohE;? zWQB~-ci5sypyieWH4E{$=h;(izRA>R+ZkLHF!_3je^eB{7JCMhvN?1PD zlx7J0ldCVE+iJ~JqZ>5elBa!7VAWPh`u4sfdg(tb-LWu^J(PQgy~#c7%c~8z{HO;H zdVT~p$SAWpZr#l8Q#~qY>B7s22(>?g@$N29wq)~i2;Zqg{}Y{u5upyq8#bVY-$^Ve zuM#@wbGhP`rTBA7CJwu3O_bAAd3RDXl*$Z)>sGZGG&d7M?<$EFKs6inw4UwmEyWrC zX;3A*Dt1QI6E=+>f(yqe{(EXFdVWolb{(t6TKj2C(pH|^rS(JF+c>a)n<|p5 zt%AWSj&x#Hve-TUAgX20)JaXp{@67TvFT&HJf~R^TJDP!oDxenYdHg z>|-eLB?3bBwSkj#9%`Typ6Guj+B2;cx7T_>y2Nufw9!wT^>_naG9wKA{tc!V><{C; zqzSZPVguCF9)-1D{a7o^NNasxz>Am?6it?;KYrdq`N(e~)oYv4;E^r={r3S{jBF7F zD@LK5yAeHf-4nZoU0X}cWRXUQLfPcPJEF7U4RE?g6Z2n>rU6g4ix*B0hY_dbL<$20 zE?jdC{u=gOaLifIo@*!An8q>uX4peK?GcU*=Pjv2(LTtn%fbY?XuKmSL*`j)qw-r# zZs~Rl70;$26?XAsEh=%pqB5V=A$b10*D>391+aeNUR*cjD|o%whZYWTVA=2-YjQkD zM#4n6e>jXyNy&tL=89PSpdY5rdO_yqG2&KMfV(vuv9#J96vyU)^M$=^v|2t+e_4c2 z`=x2I_9K)OCIOY-9Ju25(50fky zYiuKASoP?ql1pTpr#5w5B}v7ChuSdW0EWcHV#37NIR5%TZtJ>*WeyqwL}1f&<>>Lq zzmq^o9L*HYO4Hq~MQ}DNlw!7H>8>%zR+dn1<~NdR8T@9^myCF!Um%aZ{tJ(0MdHsv z`5^N?7~=2z0Jq2I*$#z8#8zyLhhOR9euZZ^V_YJ>?N^}3x2W^D=hYgMYTdJ*C5o+%4#+mv3R+vPSr@JrcjE zo`4(c5X2gTXxYk2h#;##{)H};=k|mu#iF05J0xr>1Si)tkz8w>!2GHsbt?{G*y_5(kJz13@_E5 zWzLC$Q+&cr9J|8>^X(Dk>*Iy)*8ncLxdN94<&&*ZmZdNtK#okxYlb`jLP1k|GC$nw2YrcCG~#|T?H!>;v;Q(ybXXEA z2HnS!UOD=H`)fSVT1O(E?}hzw8r0*aFRUComUN#xO?3aLP#9SblYQdR*jt$v*B9aZ zC+A>DawZP#!ILMeu&$w*T)ff=8HQTuxqBXD4;@bbxa#v^CF_Z~*>}oLeXA1esWwEXJA_hpbW5Se+FtDSINsk_ZJAMc~te7RNF+!3j?bjfA7ArwjwHK%9 zor1Fb2>QFW8GYs!LG2A~a1K2$xNOGJb!$pk{J%&cb9z^}wi>~{DHDHBixzz5p(yxo znB%cum}UI~D!nOPEd5kqay8@LtT&+2l1ip3tioZJ&*8Yesi^d(5SKrj$7}LmVCGUO zyl(6uu0FO6h8iS6ca=H!@lS)`ZS(jDLwD}EVG-Y)y9Ud;*TA@P73y))nX7E~$6*^? zc*}S(s%ErfYH5jWxz{9&tCXS7lOMrpoo4u(+zA)e7YLjQOK8|Rg)R4+3Jd<3;efmH zxTA9voO=Hkb2luY4nyN`L~kCx%T|OBin@^Dw?ptZSF*wjZ^&?$`{|Hp-WHzQn3kD?bz|KkNlR8 zM2XZM>`sv*vr9`@`)XsVJzSYiGPwW)oPbA~bz;`}6i`d{!-cBnansyllIv%MZ6Ak2 z(kWRw^6~{VF6&{Di{l`(P@V@wpMk0CWJ%SR2>g-Vh3iY^;{r7mY7#@>pK}oIe$@}d zN6Yc97G)Y8vKc*&1mUXHmtoj$5h$@7ob_IhhL;{Dk=bn+*0Z0t6j(6}&1vH2vmfAY z`E#gX{Ehr~H4aOTHe&VUTC#7@V7^Nt65@KJp-ofpCc4@jVXgCeH76AIX!^t7vDmJ&I8S|ps(D12~;ElH6xuMHpzj72v4U+^*T~$W@ zWTDorJRBQ2AN9A^p>(t~-Q+hEr%ly|SuRIKe`Yt5xA)t@Kz$P|J(EI8g}vrc%ax*K z$KT;}r-^8>co^^9FU|UkN6~RZ?%==mA{=d!$>!8Pz&)FU{zLsj7%O=I>c=fWyC3Lh=uD4>Jpa+Qu2jx zAvOSFOT)m#Gn`JJ_ZSw424lf#H9oQQn8+rz5Z4x;LW_I_dTEavsJP1VS%VzuJ1rS% z5W0Xa4W?x7$P;*%3r_fNc{nLV9UhtKQ-z~y$g;G#$pL{?{X>j0Bb&&?Z6o2+wmdke zVa}C~hJzMnLG`m7mas|KVe}6Gx1rJOtL;Fl>fFrkjkW_9!#a4;S4G?c|CIfE7eGhR zwMb+Zft`@ilHTWy4JQowp&|u3Fx-Y-X<7$k2G*0h*H&=Y^(5@rv;ilXeFck&F)+}1 zxzPC$FyHy{ zb@l@&)*Qy0W7MeRt5M+oVh~jCmgki!kMZh#GafPT2HsN?a>04`F|2hc90{m}6)xu> z*)J4jBo$C$S3Q&+QpYK37ue>A+h86SNw(XVAnUfGb{mgCT!~Otzb8Sr%Nfy0%l6^2 z0!{dks6huuXwd1211WsC${Gw?pv+v4A1cgZ;r$KJ{Br~e99)EV6pIB1R}*OE`D4iZ zp(NdTAWd9nM0ek+wynQz3|+N?-(+c@z(iNV#J9G5{OWkI?C^zPSmJ;SU*0ZD9%fHZ zX2!7p@DR*%Hl&psB=GdEHj?ft1B3e2>8q7?%d+OOPFK~Ts;`X@XFwy<3Sa*yCvzLj6M~|$)cfxw1`!@t;us1}!s|$}B zu7vXwqp>7ga4~pnL$?DNr1(aSZB^|}k?QGjwAd$$xxe`!-qdpn_k@fAFDDzU@ahUvydRu}m^~IpUMj|J!xU1|nu%Fw^wFzW z0$do0?FNNhlJTbO~p#aYmr7FqjUW7>>@%?a3p*KP2So z7t*II3o=K{#p*Rn@T|NHkDP2rv+}2~sm`?!>Y9o7f|{_YX%%^!lg)f5>B5f*gZP6C z4ZJs(<25-O-1Bw1z)aTXeg+EkXV4dL&N>c%^)z{k&P}v*D+Mh*LtMBo4eJIsEFE-L|Zfgez~uN}MW z4Y+f(3Uk{&fV5s-hH z7fO~^Ujc&!Yj}mgW2auBgTA;1qsOnsrXMA+EB>80ea1ENRPkt8 zSa2nd^*Rr$n)6}%ARCM-Uqb)I$C1D{IpXcvp3s#qF!haZgO8dGl@I?U_=&60GFuNW z?7EDKcl}tr_kMhItsS(N8^Y{0ny|e`kVsrEz%yfmVQc2vrhlgH*z`GxD z-sr0W%h4G>FO=dz8FDmf*&IH%dN=Bhx*#6;@{dU7*;uSdX#w@l5-hxN##VaFQ}E7R zfilM|p?KaXIwL&_?P>gLe#3js7B945&s(>|h zmfY)M14%QSK>rL_z^u*)J@{+I#N)>m)+HB+f8A=~LD@w#${IpPc8Kw_XP@njK@U;) z@lw3u@)~R=b=b~691MRQr$Fma1-f{MG*5dnojLHSpqVw44DIiP7q8DlS$h!7tdr&8 z?megxT?#ojC2(e|Bt1Rh3Q5scqAw^0FCW<=&&-q+|B0FlLh#nHW$b(DHNj_@gxMh#xLjF--Zq~| zi%QSIxApa+;=_m^%*^;m?+UTIbQrvOZp1&j51^B#iqYidbKDiZk)P2B#E%E!@y*vZ zZ1wiURVS>mWU?f*X6sW|x(}LGjE0(`MkqS$D^}SdcmQn+5l+XVN#i6w$F74IJE_ye z!o~1$|5=Q+Fy@OqHJN{jE1&wcACs17lModZUh!^+D9861Ip8kza^?rK4~_zVeEA|e z!ul4@`ICvuhkwH_j zd>$kjW#O$LMXE5>jlDXgPrs)ag2!qJc;=(VdVS~6ubM)KMrjDdIt=BSazkOLd@Dvg z9>)jB{$K~(tOehB4@uh{2_-XHg($%^oO3t!oLd!vrkjKvy<#J?6ROGoJ!llw#uP#M&u`4|@eJPN zqQRVZw&MJw$8mw+#~pgr3^&g=6ZP+GfH&Fs0H2OxidHk*>;D`>wU@9hS0;hnPi-DJ zW+z^hmtzJ)!&vXwFsMA=Cn~+J$3IR(@T~mJo+e9z@#F-7L+~5&I%eXT&=F)7)1m7e z!}0I8OJr=A5-)f*W6qKiqV^K>}n-`=8!k_ zKlu-jMYoga_RaXJRFck6?qEI=R#=+(2xdnO;kVL1&6x&)@OmS9C5{C)zh z+46u58utzl{#lMMebT_8-h})-F7WP_Z6oVf%%#mYzd+3FCfxFT6aA`xoc`-hXF(+c zVYuoPI$vOL8g&hT{b%MtSobM>wsJSNCJ65WXIY*be@GOOa*F8KIk5f=X-JX1j%}+W z>0;w$v^=B{jRp&SooIKc(cQqS501sH?>+H(=LraztI1=3UVvD754!)GiFTI`;E1p< zXx0=f>{ll6``f+ve;)1V{d)!-y26UC^IR#mE762z$lXyiXuJ&VdgxA_teos!{Q$k< z{=n~Z~1pPZ}SkJOnApMMn(b2yM$V< zCfuxPIa&4f8f%??o-DBnM57iPoOKbImf-&!c=b3I40d6Ia_>WQ{R9=jN@M7&}^lCHaEzhtD1=Y26Xl2yU^P`nz#1f z#?BlBml|_^r_c;Pm>&c0G%b?lUqZTU9z#Z?gupe)Ao=$lVe;ki@KX96?hn5OllQ8^ ztmq`%ceo5kJ2kKwrYW$XZ!YWmoeuutMQF6*9{9j2IxG4q9+FxES6}VJ+f!xerrhH& zB@C!RkC+@?a0p-RNyn3(MMUef8c2SV$FHOMVA`eAIN^;IzFQ&m0M{$?;2cRhqU{K& znCQqGPTpso<{YK0C8*4}QQV~bA>5v61bGvHMmrDYx(^FQnMXh1n?!RSWoQdU_~4fWUVJRamo^n(-lqkS*Le~QF2rN- z^t}St={IKm7*DJH-jZcP2DavBI&RZfrBif9(Rc-4an{E=&X$PpMdG0>^F3`e}b&Ys?G6bGd)hwGCj;%&zk2->4YuTOR3sgJfoVd)-N zEbwYx8XmQEI4KEJ-6p~}&c6%bfhH=n z*8UKl959q>SPwy36$s?K5jQE&5E~lnL#BK(R7@QtIA`y$m0wz5(FI99`MfhM9xDNH z`wv3s>Gx2la}9?V-$0WXQ#S5bFqZz*EM1iG5{7J4r;h{%NK^MLaaDpbFFCXUMhT2a zr}dpAOd?IxXKzfszqVr2_8u^EufTi0=l^H#-Q!~FzrOJ)NeHQ=L~<;In*G_+X=a2d zo-bW|xqQiPO_GW)Zq(@c_6NY1C6l8|$fgz#In|j8 zzOGPUr)s@2@1^>}EG27PVWMW1XnzgVr$9dvyJJEr0&XN+?lr?cp9E>Au{bUUGt zbFlcHXrOi)XNqmK=#p&|C)iZJ5L;D=TpnbJ8eB`wN0eVR-(m_H*nOUG?iG7;Qi`iY zbt9jcZ6^XbHa0;bi#0)_E2dKmh2=cX{TIHR4s#*)FRf%3O#CEz9(Rg8wsOBHa;yP& zG|)WR!w4$9`Ht3Z*9Zw(3ru#=5|}OUCvwNb?Y$4UFa$b%RRuJ`$J1~b;dYR znTDmPzezT`QQMwF-H8?%Ifz8NjDK(n@(o4v&995xU*6{Qm^)o~EA*Xc0plDel=p=l zQhEk@>pKctD}3jBn=@ei9roUVJJ>}V_jC3gyk0PH z|7=lGgOIZ^@sY^Q-?;Fm!Zp!8mI7DR_ps<{hKBivq;OI6fn_4^#Ob1Lh1=NUk9`w% zhaRR}t^Fcv9lgSsIa4`?-*gMLZ!G65yX7Zh(4R$P)%*)Le&T^{ zKE7HQQ?AD4c>0U%>Ta=L%|hIT-|d7pQB%1Ao;jS_&S|2@C)5gc=VgOlc`UnRk$fRD zXO=Lp*BegEV;=Y9lt%X0!0p^Vdp3xojI2Zt-x!Lf@73V`aG5CLDFuiGyE51hjnp}x z*4`DF-p~_u)HyF2(9ut{yN69d-DxH6%zQP`({H0iGvD85@2&}E9|*P(?h`UO5u=uI zG6j#JPq{=Gvs<;$WnqF){=l5Vbu}X4EsMs2!AnG(>f;)mCq4}#PnCDS5@Y>#tUL>%jt%o7!!W(wpfbE5AW-Uqds|>f&JN_#EI;UQWBc~y z3UwZHSUuFZ&r;yNcEHCTQPt(9P8wPmc#T!qc)6TY+6Z7`*jDbKYOYAJ<`H|Kw?5a$ zV>~A-QptQTQ?79B5F^p8MGwut`S&fHeOrYiTD*_r(`S~@@lsI1l?}CQ`PheSM$j>l z)`_E{!K*G5ZoNSJ)S>7jgO- z8x)piuHY2zu;1<$|6Ik6OxK&b4oT0;nuy-60Y)iE86zTfr|$(VZXV* zi({KmE^^Kp!X02yB`R5ABaFLvnWNTwfyg3<$6mNOu;7UNe0IOP8ime%zp%fJg!|Gz zdt|<0hiPH-HZ1IMqHE!T%ck6!U3!bwZ4BVPH?rawR30n1lW>cj=oZB39Jx&-ayTPe zLVg$h^$45qa^EbP4mH!{AALB5c{@eZ&JE&5_8!5ZhSK?qgS84>I8*Uc_&l^w)A_i_wRBFQOFZa6{C$K|+~_W<+14oPcjTaGM0!ur@n>nAK0EIh z9Gf;m)WhpJ$Jp-xdsoLy(dS!3xxvM>h%9<1>M#dt#)UeZ?x~ZYr!HJL{pn!QU~I~c z?f6Y}NBt%HuRWJUoAGD!fNq<)edeYK^Iuqr)av>RHwP7Py0A`hu5CIXOpnkm9Dd{p zr>H@NW7lmDNBMlLQ1yqK=&Z_i&i4>kj!R7(dw0cq(U{4dxlu+BI2#|C30K!I5?Y=8 zi<7x!ktpf$8}`;0yaENA(;^f-O_Y5xmb2^HB#yy!&B7r&Msq)JcrCJZisIPXhH+}C zZ=#K10fk+h6bfAr_bKc*sY-arJ6|NHab4&=L#5D>ULv}qs4sH=VIeFt-pjcFI*;aM zpExRu_vhP9oWz;6d_G6}tEzC$#KR)WPoG=WnJk?5$&fq9as^lIWfo`4iDN>>DFKI2 z*AXSJxFG7uA-NU$pE*-c$8#<{50IG1+qixLI( zNEcmLvIFLNy0ACAOXtXc7|6XcZ?ABh=r3-Wse0jT+x6VoQfIRTjt@BJzwcq!EuL$B z!?c8RVQvxUUQ}R#`$`K@wCg;M31!2XbWX2uWlRRga9+7+dh%4^Zr2`c#q4m-lAH{V zeuw*_Fo!`L+mrdC=)x}CB~|N0op2H7XtMRMzF5gzl)9?#4(+&OGEM(zfld_7?T>hu0dFiVsu^tRtlB;8@o6qZJ znm1x@tl50U9%jm}4!J4m9SY7L&CGu{;bTr8mPOvMTidNU#4 z1Bc`Z-PyUtw>z4~+?6-0$o0uHw=>Q6pmxy-L!$E5tvFFb4l=8|9%6D+ zpEAqOz$OzH^fcwKVB{U!vNP{h0cqy*V}V&+G2d)O_)HVKT~_&rcpr0e2Mo$zyJeP{ z^3l2Zvy-;vhR)xYKSz68-evCi{7%|ma|Tsj&p$SKbsmv%-SnngasJ(7=7Nc4!%fx7 z2-99&>P$Lot;pRxNZG7@`peu^v;Fd}WnL1T-Lf|?C;5c&+=a>c6 ze;_7}V}*v``L?@K!B#?f9c z9@F|qBUyu2N0Z7SB{V<0ufUKZ>6*UR(A=;NtTRqSS>e00SiIb7a+5cJy-5s~^~kYg zCH+cZwpU58SYwso^~!Dnb;~DYRrUnIczPl0M9nS%?~MRo3tCTcq|pj&3Zae|>-J(z?-2 zug?rn5bwL(Mn%x{y1#a?_;X#W+=_d5x>9xy;H)-X&p+8etn-Z4HWMqx}&Rj z-^Ryy%%=6_+d7DslkAs^_mfn=waxQLd;Ajdc9|VMQ>S9L7{rKbnNt>Mi_aH7wVvX2 z&Hu0B%p|?|8z;rbL+O24i*-$(`Fc|>z4^1v%j{)KTAgzl&Uqt>>hJ0_e+KL!K8L^_ zWb=Ffv;=!lzpev&w0R7F{S4S+VDoFR$DpR?V2=#2hxizQJq(-P1ADY-Td>C{ut%%k z2KLAVdmL}tw)p|}5bp!*A>KFGLwuaT9^xg~L%bibhxmUsZ`Zs8dx*CKdk|oc46p|u z>>>6Gu!neE^Jl>xDPRxr@c?_YSl9F!u!q?8&7W^tf<46k`|EpPk94rd{^s|tbn+GZ z#p%Q?f3!!HX?P2J80buIb)1^_+q|6mrTc&EF(+c6*jHSvI;ZnD3=#i^4JK*g@A#-H zG_!e|UzZy{DP^tknU(tMdri;Jg|agGL=0(Rk9B#chBvJfc1RHWjr>wbMGe~)i<4RfB^Kh3gGYhUx{WY??aBf(&_hwIg+dA-Hgt47~t zE#lSBZ~5~Xi~WH3`3kPfmx}&)y^PcBRWUSQv%&(f`DUKgI2PC)H=EBjLDWC5ciI16O^*ix) z&HHIuj)_ujb-m*332b$}>ihXjx>}Isukk|`&!q>lJ@|+0diC?HZYTDT*lOK$LBhzylci#Oqv>-^53|oaaeW%DuvWb9nMMKP_*@XBAYNX(wL!cekKr0( z3`DZk&%Yn|%f#FH+@z>;-+~RiTx*$%QamyHl4FZ)`pmS|BMkbAYemsJ$#40&Ck7*+ zQ-}0lUpGD1k666dDf|N;r6J{`Qh|@k0X`}i_^7GU_~H5+AC(Jy)J`cM)mYP- zkE&~fk4kTYk2(l^RA5U!O6DK!$UkK9qus?1LDM&q@wH+;N}LzV@I+ZX*zBcny^_Tb z>A`3Z`IRhwG@qHW>s8Z{koEht?DvsfuUhzr7{8L?yRvxRd{)T(qxnd*kNzuJJa1tS zS^Xj7&wuC7W%Y;DMcPCC@!!FBul|Pb`u_`jH};o#gKJWJ_dejel~R1SmlWUCz27#z z+ca-b-v+*02l(#z-|*dRDZU#d#dnRQ`0h<9zB^iq@0NdTd)}az6yMDNe3uXSZV=$R zc2azI5Q{(08w^)zId9-P z^S~ebcZtb;|I^=oFEv*@Z%{WOC?n1IlK5I(NG6N>cP;Gg+vI*NCuNO#7$V<_`z)Rm zm$^9cOpBiL+wTL!`!G~oA>McC1YdFf>bYIg=j&R#NW7m-8)mmTZ{YUCMZDb>s|LcN znwK$-ddFYvDw#L<`lPFPU30Wyi^iuE4nHC0aKFDVZLzNDGnqHPi+k;xKi{-G^Vy|U z|E|RiI{n7Jo4@k4vg?)fptXnVRqO=GJWiJHpZ#N*OH2QVApbm%GtKGeJdWlR$vn=` z#E^{bt0nU|MnRH!oQlOW+Vqd8XW63?U$>seDX5RnjHx}>!awF2Nak^b?^lV>SK}j+ zd7N9ml6f2_LNbrzY|-{S4jW14aZ-LX5c{@l$p}iV<)8jb;vb2%DlL3~88s>8^eM?a zjz?ANd7MS(TF>LWn$vn7r)*MQdNTcU9!Hk%{=A}qe~6Fy|0Ledx0c|$AASEkKREig zcs_Q_pXUd)0)O(gH=QK&gQ`bE49Ywt^Mmmb(te*+Gun(r*&njAa_U;o58@y3BfEb& z*P`F&2O*gsT=jJozv(DvejpRO4vm>?`RPbw= z`OOdiO3$<_9BRw&rVHF1MZ^)LhtlesKM)yb-sr%H{`udd1IY?ZH1} zcu5O;i2X{2C(7`|=CeW;&zp~gjE`zM5;8ujB_FlWQj%X8Z2EJ4HE}^peTE|R=lm*e z{?GghDNFLJhY2ADD^^PKtC#>uewC=zc79d$G&{@YRqOo9zb<}c@cWke)mME79Uw!;VpP~9UeTIsE&}VQ3eTFap zpwBSnH+=>y)n|y3>NBu@(`T@h>N9Np2YrUVztkT^pwF=57k!3+-}D*of<8lnRG&fd zU+Oa)Z$qCU?Kgb}S^Q`|<7M$f7C#t_-}Osm{?YFILx%54P0}9l-I@Q5{>0MX@T*n- zf{&X13m+9F<)g}gkGd%3qZFik6ys6be3TRLQ7_xzqn-gDW$+sxl_KS%)=2rN!BRfz zw3Lrhl=4x!|G-Bvquz}Kl5@1mG>OJ$gtt8*=+_7c8YxmGf&uf?@-|e=hb-p`% zTRA>gUIk*nSSE$`iWEi8}oxDzs2(f z|014y{}RuKO5^z{i01{;cwQeP#Y-Ny9Y5S4ofVOepTcc&}M$+o+HVx-la8Ax4s4#*mtaDuAeN)ueLh0%&)q!to4G&OY*A{pVs-+ zh-t0!E0YJU^Q(!`xg+lS$nvY7QT*q#_TV2`jgo%2drSY^@8dDJWxo%5@xeBG5Ptqb z21Bi&-+%hy6pix5{ct1R1!s&nE9sFrdp$+cn|8i!{oUo3*`rd}t^0kPM#X1doYb=4 zr}yTq;(92ozog%1g0ZCEXY^}%ab0nTu}s_#7ozPi`JcajQFv|>vY6TQR_E9TBJD&# z#*^are03X1zfUivmi<1lQC2AqJth4wosc4P^_({;_dwNXB8)%i?o!sJ)~g zj<>Ase$j@D*`sz8wf2v^6Y-ft3R?QdLx!XuPKht^kHD=G|2Q{O(hnDQLE;}*A_Lm= zkNNVF{;SHT4MaVAOUB_vwfyq=68~TxZ0R3ViFJx$q{Kgx@>~1I+f1%%A;rG)&PD}a0+o0cmUCIx3 zlg@uQKWICC=mS64&;~#F2K3uGzwv`vQhqQ%$`6i`@`Ghk{dT2he(+=4{i5Ba{9qdB zx90;t7zq3z=$D8!kN^6OA3Os5V7QbY{8H1}Ki;;X-+r_WesB-)gDZZ~ZwI_YR)0u+ zr9JqEPK`t#4(t56{!n0K6TiCoo!)=$XD~UY`5$~YX6!L>{gI;`Vlcb2q@SU~V+p>? zE75N=S1a-2XFc24y8Z}RA3t(gRm=KgXJ1ME@$j;w{xIAqsXqn{m((BCQ&x!a-G@YI zi$3h;-z0xSQh#)NQ%CK}+hX8U`JSn;ypLD|E*V*gbF}8q&hxd_n|tcK_;~D3ZC!u- z?bf>f=pEj=pW(s&+!0f>7XFIw%JQq9{vpmW{wMpXW!J0bGroPqbD2G4_K@AL=;t}` zJKiqiqkbM6$glp#;|BplnoZxRas8j`5966F>vQi9f3D9RU-tPAel@8?QlA$t3&}V@ zNb2)LlO^@Ju5a7(YIk;Jk6M<~x<0=sh|f&_tv;{%B*CvPWk~9CHGfHcZfz&6&(BNh z^Y2M**XP+^B>0sj)aT3Xwq%Tj`kXyiQh%J@-m*UDYfMUU4U*L7i>TK1$BoF=_4!Mk z*7bSNr`+^Z4cWZfPp|m-tUdV0&V=q_|5&&x;g9wC&Eywie{TK-x(k!qtQnfuH!VjU z`#PZcwW}&$>?`jE24@Uzkod>0#v@`ZiD!t#*lY7=o0swn%0^xO(OT>Ip;mlm-%+J4 z>WF~@d18Fm=Gj{D_dK8#z;D`*(G-b)-0QSn{6B)SUbpxi&Hrm!*QMh3D>8-?k>Md3 z)ur$F*FB$zXPPx;8MUarZkSr7gjgtxYj=mcS6b~)sSW?wL9c9u?eVmvVx@RIFPyreWndcCS_8!yoWyd=L3yyOVr zC2!u$4TNxBH$%60WTQ}c!`4)FDX%N zdB3~urzfS1k>VvqZQv!i4ZOs)4ZMT|yhQl%=k;o9R|)^I#q7`V!)Hg!_;G6P{y+K$ z=lDzHsff)lsB{TH5c@qC9%9txYx0}zC=4HjG%u%%$Ti3e#SMSX%D?i=B zKf*CgW0DG2yYo!NZZ`WE6U~d*q*Gv70?}mNpCdRKA z55xbcr|)}#FaH0{$LfaTu{Muk^ZKTxm-e@V&9AvW{$hIs0$vg{`G)uy4Kq5N-L#&U zWj3<;bH6U{kL-A?RIQU3=lJz~uhau0a~IxkF<+Z8!9#q0?6Te>-uJapq2goc-$7Bl zT%EQ}ydU1%DJ_0S^L_^?NN^Uy#G9C?v){n#;2UP-$!+4#K6?_DG9nP8 zj>b3br|BWXOC-mk>2G_$+hz8U*+Yh3{X7TSz^}yl)&J@HpTCs$i#Ff?obg}WZ{q)z z`=1|cqhIuQd(iJC_4)RO#6Q;O-TEfC$oZax{aKG}g|_y8@T=lplsMo0_9QUl=^%+7 z*{l=#k00%86rf z&Hkn0oI$^04fE$2`tzCFTS@&fLRd$(0j*sKG|1XgA;zITWr&($M_WatXJaW zvDQTLTYm0|!N^_TT90hXjn@5Fhu!G(*zxxLnzxnVyUjVUwPSQkE*9y!%WYckkl{!fx`Gj5RZA`GcJ# z^?BT~miTUs;-r*GYbE&Z_x-K$-5UlmHaCEU*uOZ|7dsq@xK*MJP`bo|M>jBpeM8ZztEGJ{9C_h zv!2ZMf6$YeDD4;B^#6mNO!@ylJsH{cO6npq{7N=o`+I#3@k8bxGXF4;@sGX0$-^R=ShE%lIDqDgwou1V%==e}*tM|Hg3n)4sAq>cXed3htc z3tP;e|8LE&4*x@b1^yw%=VW@8E%hvA@#CkL$nq;$e)W6&koiaZ@{c*v{>1+i^XE0v z`n&@A6Q4@shqiQ{6YfXfCLiVe5A}H?^e5WK?~N zaXNNv)ti;7l8_nsp(P(>WhK!A$d+>z=WfM92_MCcknmBv+y{yGQ+K``ByZJ)fEM zMCtVEyQ=h(~SQ<%Hbc>yRJZ>hRxNy3%&R_N2aCUy45A$z0xnLlW1Y z^V5haq}jTUSdc!9snK94Fp5k>XXKLcx(@1Cx8Oc95gw-g-oG97D;bKD&uh>e*Zx$> z;bMNQmOVM+x&v11d>4g8bSJ?c1lR+CJxH(z3+%xJdr)8x1ooi79wgX<3HCr>4+`u- zfIVoi2MzY1z#dGn2LbjV!5$dwfxsR#*nU=I@PL4!RAum>OPL4!S*U=JGXfxsSoum=n5fx#XK?18`@80I&Ne#!#W*@;_jXqALt9xxN>b2D#T^a{aBmcx-v&ERLJSPGg%P6bS^$v)`JerRb}l~n9X7r29RI5 z2k1er4uXq=f@p;^T%zBl45Vb$hqe3jT3W$vzJOO%%Abj&>35bkg5Jh~q|a+Uvs1xg zDz|{fDP41M>ZI4kU`^21WQ`x5$#Uvqhz@?T6r`@|fxY6s(IX#DXC>_j z5ZGHC!iqPJ3rvl|>9v1t6?p4d8EsO%*zyI!@g z>($daN#s^~AE_O9STMJnyI`T>d3?oaHyW2aly%d68ZPy~t*oe~~m z4q+(xtjT2Ej)-E-z!xc1e}c8f&XH9#M?jaeVvWp)Xd#z;6LOZ*C6u$%klaKD36xpY zq+^Vi;LwNh$VPsg@$F0jw!P7X{+MtT#qj3~5bf*y zQ?)wXH*FXmaLXE7-q?YnZn6odH_qfUojB6*W-=}-?oFl5Q^E5`mEhgWQ&2&)H@?Qw zCtVi+mY5xYt{sX%j^qj|EaeOK6a~^Z4j165<{OANk2v(=6`G{{kNH?Ze8p z#=`^p_d#>AKN5`Me%RE|43|FdMawN4N*R`)K%3vH;|lM6%u(sJgpSZ1Ip!b7HCmdbAmu5$T4lP&X7vE}%VJmFc(9JnCyEATp!)T7B;!fHOp7Bn{Ofna(2?PT$jP%6 zXr})Q95`VnIr!mjYIa9Q<|$Kx+_DSvmv?@SM*A^n=G<${w*#~Uf``|UQ@k&>HY=wX zE`yGb)QiJ+)R!Usu%}e_=RffC@OjkPgBSVdy!^>~fzz?Mr98QD358_wTo%t|*QHr^Q1ALSR@KMz>HE|m7QC#4ot^gnP8u%y= z;G;sC_^93;h%(@#ynv574}6p}@KNJ|kD3d7lpF9-TEIuW0zS$G_^3wUql$r#N(4U2 z4*00Wz(@54KI$m&QI)_)1ppsqvA{e#3;3wzz(;ukA7uu7)D_^PjshRG82G5gz(+j; zJ}LnCs9C^AEobzlDBz>k0Uu=oeAH>+qpX3C+75h_4)9TGz(<_}KFSODC@0{fVu4Rs z2YeJ0_^5Q?qox5Lo1Y@m;A5vm&oEryNe&Pd{>t5%JSWR&Ua=0A@dKJfBdt5$ofm#SAU7@dex4uSB*bx zC@$c;0aAQ-GT^(50N-r{eD@mQyTh914FKP*0esg2@ZBqb?|Mn`UFUnw#4^Bla{=F- z2>7lm;JX|tzMBg8E)VeCe86{u0pHaHeD~W;KYFkf-z@=rcL3nKLjm8l0(>_e@ZAQ$ zcL)B0?>+;3Hy!X@W59PyrTA`$6yL3o;=6HDe0Lt;yAuH4ogu|{wE^FK3;6D2z<0j` zzMBj9?jgW;#{s_U1o*Bh;Jc@P!FPF15_~rv@ZH6L@3H~ktpR*D8}MBhDZcw0@ZCu1 zyn!{~yL`ZRJpkY30=|16@LfB=cehFL-QIxjo&|i@6YyPUz;}6o?|J~fivZuv27K2R z@LgZPcV`2>I}Y&Oe86{O0N<^%RwoACWg%R2fK&?T#PX_6VUATBK{?wRp-xw_sd%j( zB#*=5r|+pF7*#fW$IEKSrfMENA^1IQc&Lu@zgfWCfc6q6#_N!pj1sEPgfzrn<46yg zY(pO~IE70?lQHkqHKME$xY^a-q`|N*sK${;MU)wkqqmKx_iqYA_xsc`xAsGX+(l1R zbIJmja~9+B!;wh+usrIbVopx(d7If~b{O6F`c!0>J(?I6Ish|jKN^;r9Y*07v?VxCzGR{$R$T2N&d%NesKO~y6b=~)W9#VutMV+JZ#tzlIKxE zS%2(8YwdW6qc%*Z6Tdym7T#A7yjCfoG>s6p^w$trFC3hmG$N9?>@yQbhWDX~3GdOD zzN+MtrS^29OA>SI5-)RE;F z1|7w=A_^u&WBh11a{gPBJhNvoQU3!o?`W9O^%3@{@aakHU92kWZ*OPwILj4mh`F!F zp@+-j$o%4tEXKhQX4#-Yl=5~PG-M-9osETg9Ls2C%o;_MIHriINq<9(>%4#-l>Qv% zrj}A4K3`?_ibx}hcWRObSt_`u;s~lXcAz)JjiqhePvFSEQ*lswDX~UXja)03(j*76gJm!| zV^kTxP+`l-U^32IkE`j)la~M!fOU=;vi*$#_ucnefRi~i|H9S!%~AvQ3JlVK#uS<%f^*S zhO}?vHX^rV0Ag>q#&*`T(c8RG+HsEqJ!@1j?dV#@JpJC2Oh4yOEMrt6rd%Z2^E8uw zwzrt*JN6@@7Cu9rS~A;!EytSd8bg$vwMDBgsIiVN{50BkA&+v}&L zti$7Wcct}0?a5qAZR&QhCo`ZMhYWc7oFC;hg{;{85toGwV}Ac;C~$U3L?+4*&pWE) z_#O|CUBAQB_(R)~+>N2wpiG0toBC5FTZ;K}@69B;pL4)-uHHdkcFX1m+uQsgT(4yH zM?0!NWbvcj;q9_`-j3qA%s<+ff7INaL@lovhYziaqvxIKD8Ql+zMS45qIiQ1R@y)l z=VN-(yvk+#8v6&@I4A)(7IVGwb-|OdgC|x1pVbyC4cJ&AM*Rb8QATx234-zA6YE4-Dii0HThsA#=4c3U>qGNVH^fAYR5q+`fO{B6cCrl_Nl;A6i;bXq$Z4^UFa zc99QIgV7->XQ+tniCMqs zGk8e#8P2l@;)pwDm=^cm_vpTSzH&yWcE43|NlVL9kCJOF(LH_&IW2Ym)B&}Uc*`V7jT z&rkyT3_((ThOo58Y^Wl2MTWD^W2Ko&4pwAEh`V6L^&u|p<8NxxI zVIAl*{0;gHb)e6%7W5gWf<8k9qb~vdiDG>Q1o{kFpwD0h`V0x6&(H_-8T3J);WX$o zxPv~!V9;kU1bqhRPs9U3pCJYG8MFa!KLGj+QJ~LY2l@r~p3dAn;K~fREY_eAGzb zqwWJAwS2V+J__>&all8}0Uu=ueAEQsqk@5tIt_f30q{|FFmI6bX(f&WKB^4(sBhh# z@S_}j$eS>4px#A;ih+59E9xDH2QY8&8u+NyFmIp^d{lSfqe6j?@_~5+1bkE{?O?k6 za2az@r6+j=_^9i^M?FN5XgKguqkxaHe_w~b1Kyqj^*LjTdA1Pd4T|Jrh$~-h(L~^* zau3&!MkJ5Y13t@@d-$;VcIP`_m1XgSMfWe%!NmFGi@X
  • u(+D}sDiKi_CQfy|Gwr{@M{usH@&=p89nHn?l+$iL1tf=FwaJ1_4NEUMp@E7Hs^p|rx z-#k`KsLlo&_XC5E%^V1nUQQd#HR!R&)@;G~Cf>4X1Fjh5K`(a8le8W^2wc<6O_3|4 zMenWH@!(y^{L)|$A9kX-(%#Tfy^Gx_^Je9@ce4Hsm$+M7*5He>o6&LErx5;n7kC=y zF~ipvk?7t>pm(3ceAkIM+Ty_38T!3ge{L$eD(3>8tJUl(F35@+=mzrBdM22;>ETyz z-_mWvTkehgpDj8p?3%tugRu(pDIm0 z^%y+b50kBE4@hMUqrOcV%x&xt(s{Cie;~}xnm7K6~e}?hVy&Mwm+nKt=C+D)pj}cRA`Q^ah1Y*aIG)TW3YDf*Z6J-mkV~TZvEJ((mh4y5#y3tBp$NFeI2Zeas?2!oH+v&8)my=tlsn-CZNGV6EVzD6-qM0tPw~_-Bw%vD6BA-je7XsX`~I%WKQNFVsmRC6M)@PeEy8~{>Hm(GTpa^y4mF&VN%p1+7N_EG8+y z6z&Qi)t*Ro?oxi>5ns}LVn01@IswNle8gL3FF_mbs!`eW88mQ1jJWjf2deo}lN+e0 zMQ2x8GR435Z9}mPZeXG3+Hx1zY#Ebr8sE#vX47|FO}l(wSZTmF#c!7JeUqA)nTDiYVd8_H!&ZQ@mj9zh2_ z`_Tti0`MxYu{bJb9}b==&ApBGW#e32Nym_nH1h3Kc$atytnDd@Rr6+!xQsfB+*wm} z96xz=2MaMYrTRf5(X&lmY^Ljrve*oY9{m$b+&uTvrH^)i`36Otep`;Ur93C>i8Y^e zNRKH?>N(Zx(agJpf^5B}*i%-~&Um388mE&iWG(Nb%;EExjKVZ()Dl1^z10Stn{D7F zH3aE?Jt@vKH-)9boo-;H4eD9+4?UH5f(#IOP^=%#Y@Q1p&0p1$LQ@6gGHE5vUs8$! z8su4>ei|8SZ%9+i3wwg)Eq? zaSc+e46u{OeaTskW}MTQ#hv&Y3I}KZ#WhN{wtU?PlF&Q{vL5Tb(znR{-M}ndnF%nTL%XQKcjEVM{}PFhLp=Kt^m#VNwnvd46W{tgRm(oH2O$1 zd|ISQ_a2mEZ%0TI9m{)sw$fHSc*ArWm--zRbbf-Wrbv3K?>G(ea-=^Yflb`*iE13C z@Q3@9Sz&Dr@)@ehuKiYE5jA`0L;XCwHTXKLF`kHxnIrkfF@ZVvEFzB=&ljHChFqZb zWL$ds8d30hC(P=nP#sNqxb^Wcgl^v_iC8qBv?QgnDTdQod29&EQCh*G>kgpQ{fqhK zr(^k_YHNtn-F@^u&P4%t+|bkh_rTn*)9CoG5_Mm15?&q6$oEfVN>wJ>A>@YhR%+r* z&lNPtbvSOd7zWDsgueRT-82)L`LLVB6sMCPySHMQ zcByjX{xVML_$c-+!x^GYd7k8}66^7=VA=X{v}CCqhK~!e(Y8U7v^j|=czrJ98gMwn zSUA&)=JLMk!!URqpb>$ZTv0|gcpWW}bV#+)UdJ@rSo?*WT$00FW;kKr^db^F{V*9L zUdfu|jF_(BXOvLe!|O+<(pYCPzkInd`D*eP7oBvWSH7;p!B5@L!pv7>`Lh|c)1i{S z*tv@pUry)zM(ax6>@B30pOeuwgLYbU>jc#|9Y7n$j=*UR#xU=JCWia3Vg6rrmVbrt ziPGw{xa1_s@qP|lUK-GUgnKyS1Mm6TjOk$Nxf6VT9pyFU4C&Qh{w(c$3w`)%3UX8! z#j^HCL5|i6vS(W~Z*ba_9GtU)2A(*MM$la-b<+}bb<;!|Sz}2(AL@{+fmPHqaWrwt znaoMN)}cRl;~{dFHtgLl>l`<3#E@{38xfUkh~ zI0aO5zny#RHx!p9l(F09Qm8d4ik|RU0A+W#L0Ql|{aXI&ey?dVfw zUguM}wEb&A(kz7^w^vgqr~!;?iK#-z9c+*%THn?Qo>g^ zeMJ@ge5iGs3s-y7X-~jlSPpZ^Pm;@}j=TdRmxV;CBN22pTfwR&0K9h|V)W((8md)7 zMW=-Yw@O`mPjy!sHQx8I}8St9w@5RH{nX=v~67bcDqxMI- zIK{Md{I;VOt;!)p%51Q$@}OVz;;dK{G-)<-dGL;;Y5CEthr?mu_lu}v@?G9f^8z^^ zrp`LQS&{xmP59~jK(c?$DA>LLv$E* zw{H#aQ~Q(XC@ABDSG95YZowm;`T^QD0Sq-;N}i}b6VH|U$wfaK0Dmj@@=iwDqTN&F z*_(+6p=FOJJ#+dVXEJXc?wWianS4G#G=KF;JTErUo>hrx)*DM^D1V1XOM|KUpPUU>GN$Kh9=x$7oq`*N2RksCnHHPDc`bE6VwG8Oi z|H}2a>VjH@D`YnEG<8!HdC}7$n&K5l+%3##o_#qDH+BX^;W<(EU?Gi&4}{_;rjmjK zpE(&ViDaUW9u6qTM*My>|y);w?dX zS}IKQN;|Q$(x-;vY;e-J!(YGWjrUEZShGWen(TYa2Mm8e?u$Oq(3?@9!X?q4`^V$> zW;N_R_asbtk^?#SP7uWrZ|J%5t&Bn{HQN-1ARn0GtwA_?$qd?S`IOfTaUgXAx6+vk zrXaQ30Te%8C0|dErv_A+m5%+%H@6PLsqSN_-}4xL*a&&BH~o&XG>%bOw?}kKULG3x zP7I#cyy%fkW5}Nu%#ttJGN*>gZ0`dpbWeIJJ}`eV`dCr~QJ=2E)>6hoC!RoxBe%ok zu~%X9ECU>x)F_FXb00SZS8(z95wIlq9~>PZDoq7_;;gw0#;zQKxpSS=K>IOG|Lufp zXdxLga{=e5KOCR2xxm+1tKnsuPw4cnDO~k_y>e&2%Mg*9K;@rE(;5d39Isf@T?aS7 zoXZL{DPEc_fAyQsw0+3mQjEqEPEMg09`wTyjaM+FsTkgBMS=Y0Ys`I0IWzQnMEZ+P zAq&C(^73yTzw3845*G#F+5JmkYN&j9n1U}0yq1dIi8;Hw^Sf}zEMo@# zK1z;EZRE%T~3bPjgz-@@|Fg|S`nKiH|jgXBzT683w|q0Yuhc>eq2 ztlzx|-%Cv zjdlTfGEUj9BQgkQoeqE_&B8n2?|XFljVO|;_=oF%tx~Sv@Lc3^D}u@Ah;ZB1OX#iQ zY+`?~ie(&;E7w`?OWw?0iGod&(W$2^&_TOv0|r6j-!CNtJ%d(DtyMi z4|t%i5iMSIfuy^R0R7*Ybk(I?I@u?m6?7}`p(d33?R|$_AGaS&L}~2Dyba9P{t^og zJR%ufx)&R4+=d?Q7=*iFA$|H?mdTuZgFIYg@#Xtp;MsP;3%m6kw?0_cZem3UMDN`| zRR1xw)8Yq+Ux<3i-?Ozyv-&dZ2)anM^v1BVb@n(=N&}S7ui^qSr{ja=>g0^@9s78F zq;ILMB=!JT-kX_8mit!GwK2+cnPd;P*4hF2LsH>(&^T)9p~Gx%c#yX`=@QK?Td7O> zP}=(2hm8F>3cKqI_h@zU^m(@~=!Ga#nN=^jkaj-7aAt;YXrV&oxNI~ZJ zSzKL1GYX4&K!ZDKX;fhjC&LKs)H+N`=3AkJ;6D=Y8K?N*kv&Ay-GV!1k}NKHc37A* zO`tA&wV`rMHb3gzC??Z$m7jf8$f3OR5La#93N{(;WYgu};JarJDqboLDkB=n*z!4pBoEfogSaQ#%lR-VRi@Xmmr8w~Yg<__$DKbvglKB) z5k>N8eCv~7JZ`#}%v|&kq$E6PzN(Ejx{m}y&jWZ3>Jw&TncQd95#-h-V~C8-BfbM< zajPNaoqvBs(HX<}8o}oj9O1tYYnPnmV-*FAOo<4zC`UD}TtUaun8Mi}9PdB7Spc7bu-EAGT6bF`>^F~~2( z)NZREmA$$FM6FW5bZxP(`6VuMOe`Ds&>J|1LFmCmeJUlTJbIG*DX?5I247zlOyHNQ zaIeNeK`4v^Y1n#VLyTmb@#g z`Fw~g`@MqS7$;^e9nGAqw>R6g;0=hpK1u8~EbTs>7CfB`vSIN_WyrMoO+{n$P+H#} z8m(&rzkdil!TLeS;r=MB6Tb zJ7RwdY-=Zynf+TJ{%8$oY}AI&X}j3`#}eA|`!Kz_LKWwKaKp_igOJwVuc%(-CAoc8 zhH2ZS@BxceXunrHINdT6AK5cd*dMIPpFcNd%qZ+8)gb_miRSB9ED$AnJ>w;5_ zB`dBBL`ktpUGQbWOI z>he|$-zF*3ebkZ4PYQufg~1Yik9d^SP%h!kOtIqgJ6ypxdw$6`C8(M5g-$+O!v`F= zz{Nb9h!d;tK}6hl{%!0I-Xb&*6;-wI#rvx{kIpg{yZJH_a%0TN3b=?7ZZvGg0&3;7 z1H^%Pv}@WZbbm%N&%fqr;4nXwDW5=%4IAmI2gB*x69=&C<%=+0Egxpg8ptkwoWs0Y zMv&%>vNS5=C35Q2#Hl&i+^|6+$R4tjhLsQDIs!&R!k#K|_F@ilbO*C=3q#i5*UqV4 zlxI`2V`$*kMx^~=A1|BqgYOwHOMiSh#I>S8PNbrT(`s{QVc0>)2)@TVFHK~s_imHx zx=T^FzZB;oX#<;XOJd;Qjt71IhIHH=AxiNlk-L#VjPpCVXthr6%Zqp5xERp2O-i)l z>29$gKc>cO$6)idSzoiRjm z$zTrpV_*dbe_sWiW?QQ2U=3@D6O0=hPcMA65#Kp@j#RE}5UZyn<`TA(FWhd;$s3QR zs`&~yyXpe>H>a0hpXJR47QUdro(@4Vy5qT1P5a1qZ8fyJzJ;&8eG@O2Zzj!i9kB6- zN=d=(B($f~6Lz(3$2aD`#oc0QE?~?reu~gf$_^|gXPuO=qFoj8O_PVWBjRYy`JrfQ zpOAMuUC9DVZy<@+L+;t8$9bA48psbzYkl$uTr%fMELHLaorHuq-q=xlw ze&l*1%~<&l4lJ+LaRv5@v_Pqb*ryzYUcV1;%=9>MU1d&}8%=`zl#w(@W);@ULipCN z8F=&ZUwngj8cX{UK-_cB(yZrI6c0L!Ltf^Pfs$0Z=4c&Nm}1N#ex4D(GkL_y4j7P1 z*Co_vc%P7yH5#35G!`kn@TWyn^x602o$y5WC7jvl#KyTEKxJ?J`H5RiSdi)!F6Z|k z_Tqda)JKW0i2i6f9aVrV#-;{v{mqj#Zi7>N&A4a>bDnVD7G&T(U#wA2t<6>@v zu=%EL@Z{VVdUo??+BjvaFasV>U8-YP_~0%UXrRI;`~Bit;+9f{zo${eO9d7<;t(+_ zQKAW_MbNN%7wIYX#NVe~!VOb)lObVO`C(F*$;9k0)cCUCXWO-pCVzIs($}@{R+l_@ zuX-3{=AR%|L;j%=>Fb$UQV^}a7J{yKS+SWeCU`ztNWvr%C0s6v|}LgBz;MSAX$ zG;^9elypE9ZzY+9=ae|nfbmaY*Wy;_8$O@RzcGo*$fdJ?zDku#(WSiGn8D~<*(@Qm zNzg@C4Ix)ElzeMepl_$kgU_j3G|8dPC8ElI1Se9W)6WLkJIG8 z({Uk>a7SDPL@MONdY8-O?FJRrc|DSK9PywVR!5<;&&8}d3gMoZ?R4aUcl?ZBV@Q@_ zBs~UW;Q6dM(Ba@q%L9hcJvTH zrl3_ertm>!3XR|90ppEhS#zxy6BS0X*+ZJRPUkf^YVcO%E-f@V?!)(nw9XU`dDDAkh3v*!YZmik7a#OKg_Ik9 z0+&;FVA(Zc_VWG&{pN4Rv|fv8?B6j&mPLKP$Ki@f28jR znZug&@mzt0N?Gyu^WuA(OUTQrk7SUoJYIdxijK*Y#+_Sa`GSaiW;Y-hJ-5g~XKZsx zN5e62r>~LGKWnjpwmFi2eFA+-_{i&~+tX$(IedNdAE-~-jF-qA=T^rnvlV-b`BBv+ zbbt0a@X$%2XAk?6zc=03leep>rKdhyHRTi^DVNLiz6rga0T>J(X0V1&cgq?q8jxFy z78)1d!;jxxkNp02LgeuXnpioMuKiOZ>6WgdiXRVfO^aqRbNPwjIYY$NW**1BFXCbQ zy@?PUxBxwVHlGcXK1{cDYtX$tH7K=0m_b<{;jZ?M;w}2EvG=;ssP6b~ARAv$FK>Bj zw?C4q%|lG*^mVqT(}OeCi{u_ENT|P0CE74so$b_*6W*tQdZ~}X2_2u%u`M2Wg8X_c zo83vr%4n0KziL!{Up6he-vqtNOX)-tD{MS58&17XgtzK>kacVoiEquO&$QxMtKSD| z?YspQX?n7^qI+O_TaG?-f5cxuI)#MS#|bk{B{;K52aNTq&=m1b>U2Zc`53B8jGvmI zHLr|m;M<2{yMxb>?Y%fi%1owG)SW~$zCIWO8W?MrR3Lh$72oqZ?sHw$n z&Ubk~8@EszH_h;+lAmvg$0~Q4V}F9u&M9yu_%<oD$3lXP=V`EpK0gw)Pw?rFG=+#G zg+%+)T>L4i5l25s;Ga*v&vy)}B41uAv*KC|XY#V>y1icbQQj#05>cS+6x_6{BCX36 znWlUcQ{6V7MrlT&f;osi+-ZZmVm8re(!u-RcOV8rH{p9Vf)0;qP*FF9cKkA;9s|wU zql%Bb^^e*3`A%nQ-SdurIBXDDwhKGjt`^dn?)uE`TRPhK$_$?G^`ypa&aiRrPUiPS z*s)R=#!@=lxYQ-fh0nSP4Ow?v*xzyzv>%;is|zYnvH5Li8uAR%=h)-uu)z|IH9~&b zZX=pGeLnQ5tJp<9Jz{HlW&!!u7zo~aL-F$O-E@byl<<7?#&t7ilZ~lsIi=lzdrF`3 zmJjXliFF_7NhRR?9Y>U}vMz+AD@W+@H!4D2ya)odyNK+xcxb5{Ogk0Snc`z%j&$lO zZ?Yi(7Yp;l)tc?__M8mP^nb;hcl{<75wR@d)MHkA^8i1rb`&z~xIjcT2`KB!9opM_ z4%H;SBCVq$iOfMG$|YFgW$Jaf;At@E;Y+-cqbdo#sv(^F*SX_$(KK}FD6H@5fuk(< zf%C-mP>^?lg%nUNO~K2uu_DUKkcOFN`~O$qr>TQ`78XG6H-K!JBkM64u_DN zUJ%=1NPRQD5`zvyW|Ogy|Du(MO{)Sa=yvk+3X~vFMujwPNud7vh~;`4BfWvI(S_&o zbaI0y=`U(OB5@DBc=8jmT&sb;T1FJp95o&$qyyABl!oky+yR~*(pBjuo|)X z=th${S=e)Z2xKPhB;JjNv^((?9TXwqi~JPu$ae;`Ak~TQw0??$mmNjN?nh8zwJx1i z6^d-vX@HTI39b4j4Hq27v8)tLrg7egSsM`UwX_A^e10sd+Poi>KE}h7L&+@ULL9my z3Iy%XnJ{6-4=}zIBe}QfG_Fz5=ZM7w*fFdQw)VKtWj!su-OA@5DB?eDcf)33!|0fGm!bM*30RFUL@ukQ2+%YSYhJ3y{~twX z9#+%$M)50Y)}%>=WJ>cr``u}hgd~+psD#X!lPQE$QVB^aNh(D&sI&J@NRlLkObMZZ zP)U;XP4YXx|L^nMd!KXfIs0AjTAyVf@W;Hm?>S$SzYT&OWs|rogHXx!qBtc*u)TDZ ziaHDmuTQpRCE~NpzGgC{*|l=BT<)TqDlcLFv`~6bI~Zh=OxT)VgLM4yc)DuLDJp&U z6x#mz9;}xSz!m@E;XwW};`+z{%Y7T9)7Oe&TT>ku{l-40z^GzW0oY9K70i7j%P#Q<1CV(GMVaDSwY`_igap$ z8*Y6*1~<1F0<8L`>%u7t+!!2{yh#j^lrp zu+Sq{ik>{(LJLej2n=ywGiCQ-=yISZ4GB?Zs+*s}hPZ3O9?FC%Ym}mO9~^l%ZFy#r zlEvvQYoV4GO2M;x62EA;jK#9&rSvh`2Ad-~QJ~&`B*54Na+WNmTU34_Be^z+zgo&k zraa&>Lql2ZFk6^${4dqp`;-b}4U)TR3H4TqI7H|-_R5OlibP|{#0*>LyIVkB2|11O z7ZbUm8~>s7*ds*idJpn3Tfk(GG%@#038cgM7B@Q}9c9f@!+{G#^!iBw<}t- z*~%Wc3U?aY8i7s1+_6<#IDYJWi{Ed#g`FO`o2>L~pex3NQ8&eG{NJf^V&2_N(|5n8 z7Jd#)(8KavYx_gIup7dCgCL3sO11?b-zu(}(zATqO zZa25^$bSkOEpFyqy63Ryfw>-#_1BS_x?=Q@x>h^RzIW`4YG`yKPSgeXwc9G9lp_^hR*(Tm9yxdBJjt; zX)v9DBJ>Z@#{M{ZV6dFb`%e#_40DI)imA{gWLEI>;jGX%S?~|MB`&u9XkbVwkQk2C znc2hezF9PMd@Qm@DiFN)sJO6Qo!hS_%a$hJrePC1xKhVPDw@_))Sz{rdm8np$a(W~ z-td(SO}}uT3yvjX=L`aG0naeZFC*B@I@Pj#qO4 zbN6Sr=+5WoP*)q}KQ0U5a})*kLvuR0qp=nw6k|c!h8A`;OQAi*qd;|LIs}hiM9cjY z5kGhcLM$}s{&!o%7Y*cK|9s`59}3~rlD|PVu3o`i`uvy%oy`YJpV$0Js~%qQp(MNW z?io+bp~34H!|83Z4d6#z|nZ@poP^0!$_fhqW zOGV|vbMS)IB|hZQ7VHm0A?N*kxKQ?&3<)eH`9fC4a!3oB7paLCrR$*5hGR50FQ6#M zd@7xA%nC2eJj+5Pd-zA;%b4mHMApuiWp4&e$zsFjRBz95+Vr&!)B;yfwa0?*f67Jl z#bhiXi89a>$(HPBo66Z!2tMZZ+Wm}~1Srf+t5aB1p6O!U;4Z+$zTvp=W6m5m>X z%L-1Ru6|2?)r$b8mN`fjwhu=SEGoEhFEt4^R7EdV|KXkgwBpg%q-ewvVUKdCkVxh( zN7+7Buy0lz-q+lZ>(}{md;aQ@z}GXOO`K0=1CmzLeA(tcVe|UvbEU+S`QJ8cq4EXTCLz}=P1~GViMl{=NT86 zxSs8K?*U$sZ@FJz)oI){OpN|yLvn^bR&$ReUS^{OZ_qSQj&`D}YC>`PD`%W_Aq3l< zEarFoTFw3jY$bInb=2}xI9>f;7GAgQ2FV%INZ*CLq_h1oYgA}8Pb5E?z0?}gALvRS zU6d>Saz|8HHOwEy?sKDSO*PnF?jzW&mcXjMvstypSoE`aEx-AW& z-C1gpW_|7z6M0P+hYfwoW&bEf752mNOmlO(K_d+k&$%%#&YX1z6w@&S*>v&u zGE^2Oi!18);f4Y)m{_o%$fzS+s%XvzeS$$F`YV@gYK6Xx+6Tf*sNok+n*7HJI`}cL zF?AxIboDFOleU=s`Zo&_F7O|A8m;&4P0@ZQm6vHo8tEGi&LdlD8DMS+TCsD&jvC z-OODsh&0?;NR<~V6bGV9S0ryQN3TCFrM9l4SoPX2s0tZ^)xF%9LC-vt^L8`OOJY{F z_$@cl#F}w$+u?GJ5$}~@V6o04hnAiYXiYi8A+?=Qtxs=}NBd#g7^Dl4u1dJlMGYys z2zuhUrEEi*C)|y1rVU>uS%jlDGWs_J^rE-n$CeMVt@cK)u0)o|D11XwOZJhhYmdM? zR)wf8euP3DYdL!KGqQd>j@?zF!n`FxkNnE#xZN%&ddGiIt|OeAq=KOD>nPTZ7~u`;q>H$q!xBile+;B}s8WNW zMs%Zt7-r6UgMs#N>R_dlIrj z23&udQta%G>r^IVBPoAuxyP0ti)`4Y#nZ?`wNkp>Q;K@8U5D#}QpwC`E!4<3kFGkc z#YAB_S56##%<2sfk$rn*sq@5UX3#fD;QOpVO=)U$K}aKgrIro7IiFz6ZY|bWA<60W zP2n42<=D4Lxm>pUSmriR3NhB#i-t^E2mGZ>9=+ zRPAh#1D&=u6iqaDVOeHv@W@k}hOchqjaRvn z*0Iraw7VL3nd?K`gvCg2M+nu;s-feW)JS8a5qR>(G_-TSdA{v;q zQtvHFF!X{RxfQgnuN{pU>B{U9)!0%mIhIo;Mt{#6;nX-cRO=iB9RX_Cn>}MOj}Icz z%kxDmlL$nVe1Vd$L43@zd>q#+OTssw7Z?cdaATo!Vd2A_{21eK=(=KnM-BZ!=l(cP zgQy)IDA1ys(>=KDt%~^A{j+>+V=`nH+@%|LgmLDsvc*fc{Dr+AHqf~bdx_|MCt0L= zidyL{hEbX=WcAo@v`)X6AL7x+%Y3+my-Z!H51NQ~B$PqWS5Ig>KN^-lJHSN^Ho;0@+DD=7)~P>W+U;Z1EBoVgx!`Dv*Mw-Y`d=)S<*Qb@6!Ixg?7r} zx;8JisbV2swbu*xWF%zyu%{q{G}2_m2>Ass{w!XkR#uPx{86?Gh88{vg2{Z3BjT{lGkJ8{M9yK(F67XT4`%^7Xy@ zvC#xqnwY0S5`A@{{CN_m9FR-b2XRd1csQy(uLU6&rV01`1rQz?$@2WYSW;Rf+n-y? zEwBv2Eh>A_boC}EIe!4Y_+~TFu?o}|_#c!kX@VygW@1sQ$kgQMAolu{io#TEA+k!@ zB3VnpTuMHIe2MV@{)x~z+uBZBq~zG^URPXx?+^cOVGtL1+7kE2e&oG`Ynl}Fol2}x z;I7M>6mOrL0GkhHQjvl(?HTbI{QrcLuEtn+Id?n_P#D43axD@g^l|CVpM^hv_N1QO z47~?I04xK{65~cbXG&@s1`RmY+o4qq}KxpCUxGrIQdypj}pb zXgm{G$07-f`p7bPyu_Cu|85vbi!x+6s}7PELZ89ZAuiamb2YZuSPGZ-#DeUt_aq`s zpA{rIG4~QVlrYj4X=@B+?kn7|qeT*(P*KPK>rf!Bc24xQ(o~2t41ijn`&2a5kE|BB zX6r}9@NHuVP8jAS_<2{8{sBEm_wFbC0#7F9{4Q3#uAA%fx{FL*HE2881;JTIm`vnK z=HYgZ6@C$M>uL_-p{MtvAvcF&QNlKEWBDf51us$aH(R{Frv)@V_~X=;QQWh~vKHE= zvXC<}1ARKHZjt%?vib8#g=BTT7C4Ikz`e~+=(`+Uwn$|<{&IX8Qa`nxyBBAN)$4ls z%iZC)r?QgeA3@l1Ce|73i}A_SoIK0IBXi4kLrbwEXx879%0#Xsm;I zr}vj&l8i0w(sF{T6*Re_7%Bc;4Ze9+K!YqU}pBBA0DaER=l| zI}h(7qNj(rLaIP>F1q3gPE9y;%Nz7BD35nIe3H=ZD$HE+IZC*ZMqi1XvFj`wtgBxP zdOc@ALcfC8=qa)_1?!mY0%=<9um#1v8_RIZ6ukIAIPE|4h7WyZKnf;opjUn(klgPD zZd=2sZqy%Qc-D-4-S?1RIU^Knznexarl^zjTn!LiKWl!y?SjByL(FT|4xQ<*6(N5-E2z<>K|c;+($ zi^Lt~{%*fwaN#xh>qSP3mOe-85L= zmqTnLrEue}tDOD9J`}j}4zWM*RLBszuw$yvnf6=BNO|Gq-u@)>)TdGc_WjKi@*UviQvD_DikRN!9>Md`~`sEA3DVM8(@b@3Ri z)q9YLj;qsAK{oJUrUNZG6N2@}&cw}&cHqapclga4RGDS?-i3OWs9UC-pD5m`66O-LM(vT+!mc57)PFKbJ_WN|Io#n>2hB-Jy-! zGEn)hFk10f6RPxO@q2$QbgQz6EAE=Xwy&KDiaphIhVl?*bKefuN5_JO!WD>ocmfwj z|KUUJO$x8M)x*>IjHLTX;=di$Af4g?s34qGUW=jC(!i=4F3{^c?J=2efqrWmfb9ZV z(Eh5n|YF=^>+D=uGmCAR?O3MP8Uz`o0H!G22>{z7zN)G>6EM)g*sFAePBodKS zONC@2*hXKYReNRV^Q&8^YRwV|xci#_x&J?CNy~)VxGiX%)?&iFze3M{k|%vyj>Ol> ziJg=GfZc6B@lM-b!!hZN)cy7g5-0nSOTT2o79`2RdZkCSb!0R{f7{H19qRbVACdII zIDPg&`zbiJy+9X-X|l(i+aU9vHs4oxk=o8x=9R4tY1!GwXd;z)y2y`VXAwgcL)%^Gz_# zk}{%Izn8IVCBxCN$ho|IXgxh`oQP6eI_T;ZA83=R1x-G;9h>{bz;fRaSov25n&0Wc z)ZL^=x2u>MC}^R+g_?Nsk(cC9);;LCMG; z5h1Maw-Qe9&LC}W5yX3_4YQm7i)v{mqtd-uyr0D~+OS`aza`(xD-D$3f^cbS+-im! zj|XrsZC#*#+BPWMy^L&{qKjjb9ZAaDC!9gR4{%J0AhVrbfxppEOe*HVf%3y_dt?FS z_Y7ePxjf7_Jc!*2Mxa*N*|2Z78y!2=jA@_KMG0sZo%pp862@I7hbsK3VsAH&SMw!mH0uP!CZ8hl z8P+J?Djx55$`FqaN+KJrFn@A(KUKUx5%&BxV;jzNktttR(fs{uA@Vyz`iz5wvxQ{u zkrujU*fvscwUo@P%;S6BSi{l~UzQ?WgF_#*7M<;!j8A{(iTUX`}2=w_-o{t6S(xtlWd^f>p7aLU zl(Frt?@>~@8EcZ51az7*StbJd#5jfhnK85&l+*Ze6DA3HTXTB%Yd#9NBF{p(7IFH_ zPEww8i}T(uM_qCk;EpL@ak}0+)NR4@hb|-$h0j_{=4mZT+nY@@O+4|p9tRw(dlTrG zO!)V>hAetKf`!CyW3gQd)Nt}1RP@Y%$=TTAz4H&z?*r|;&IU7Ls3fm`m+rm-_85R03-Ao6z*k50*@wMN#g)n_-lK1UULzT48D z8@=JbCx=<(t_4ilC7NYLT;=4}@4%u_`%qg#3&izo2Ezv#Y+hm|GS3={qc^s|oRT?M zw7byUKUm-={>VowzL`OBnTmxdQ^&mWNfc?`<^~U1HL&844%%^EfyM84!-b94dG)9u z&brhFpS<#g4=`MSqsDYmA2V4ll{YD_>OKMs_$(Ugq)f|$e?p+O7rA^Y7AhSk&^t;a zSg+b>;yJI7FZ?+LD@VA|a1`a5B`feL$VqDU;4%F|+LL)!eW4YK<*Xr0F( zM2&1l7avWB%{!uCl#pp}Q!}M*|5meAr~c5~(=KSNu9yw3TLkH6c9VC>h5UfDIjNkv zmJSTuM#`-f$Zwe&{8ktI4FB}$dKWnoAd^bvhyEo2$1ZYDZX}{}0+;c@LSfhO#12N@ zX+Vd!&xFSx?5XW*jLttEq%Wc_(bP0UI@E3oBL26b^N|etzoz$kzQE8iy2+fb3`03z z4%73iH-fU64Jbi2Kl-5^ULzvp_xNmha82mGJ)K*aEb`-;*93sR?Qp#0Q8`ugQl{e{ z566>ETG3@nBe>M7JbczM=B?m{Ir7l}k_(o{v0pjA<5MPP-s7r+*?tK{Fm=SdTKh*8|lE-K51eB+NShtU=-(>wGnMxF6^VU zEs4U&G;rQGgWViHm8EYhqQ6GP(;CGpq->{%=lJ{L#=0C-X0VF1n5g4=cf?|j?iH8< z?>O5#+9*$b5lEgkqZy(?TN-L_P963h z!Hu0IWc*4QW_`bo5;T+5#`+h%nB2qC>mL#KNyF%$UYX)rJ+s1{b5A0@^@xTXmtp}6 z>!HL*2HPY|Wuk@K#D|?%@c!QBY{09LOSJG}KSJL@@AW%HyZgpkgux=pPe_I2QBolD zU4n&rZ{iwGhSQGGy0G+~4DOh&gkauDuK2SeOYyOVy*E>7MvWXhdZ-nxIJN+4by~rr z^Cb2QIm8G4=TxMXeF4f;PLVZw?J%kB1guaS0fu^d%uwJm#eLCbwtDL9udKjl@qNKP zTpWn{2F)7j`=@-QySFnw~S2#g4ofmVDrp#a)Z%#wEhs0B9c8v8Li8hZrI+eFS zvyo=?NUgBI#` zS{+VG<)VVEMety6HUuB;C*#L$Lw<27ush`pH)r=Fu4`)?TPY_8lFABfvz#FnbzdQA z-a@u~%_ZL5@;%+yafYirIG6vn`YB1|T!M9*&QRm5c=E_^EUpqX?JC_1Q2x%6 zy!j~b?i}3twJsk>i1%@n^REn!tUFHj_xeNiveh)Wpc$!H33+nYM6qbOxp-Wr2Gg^< zP1{FEpdg*^0te_3XS}7G3kjactF3C_wI5BQetA#1gh73-a_1BDd%ZMu8k~-djhc8% z$FVHR?F2V)-jG|~6U{ly2?W#Z3bJchIe3XvklL*dlrA-d1`Zuc7Tg_88%=e2tsOJq z^9Ez&A9xcfDKF+m>)j_F`{l9Rmc6X}mW}zqjJvcdunKkkXySI>S;Uv0isb6Y1(MZk z7J_-!Ie0PqZsE%I7EU{D5PlLS)JrLtCFVSiY(-KD)n7{f-8Uf$Gijzh@8ZkqS&Ur{F3?J zI3#WXd1+k-BI;@$>*#|j?yVxe;Zf|wr)qY&U7lQ47?12*_H!>%ry&EK3pDHw2gV^$ zyycHZI%RS+?Ut6tslOU<%86DGNoN;`UP~9f_#neNy2jDDjz{RW6dl~#F%>(trGZS* z9FRL-MDlEhu^nYYS+blC#5~hM(Z!i`#ZoaI_j3;&p^?FRjmhQzxDTU+|CC|)dkhO5 zKhU_(#hmp+BethQiC@iU<7QbA)rj6pR-NxdaXz!?=CnQZSK}&H&JLN|Z<~x3HD4zg z*POxh&{8H74$Q0W5EI2UnO=AC!nJlz=<4^k5a<4y*sU1K{6FNOvC&ho(@X*rSIokX zMS+~H*&D2RMHlRchVu)h+OVMyF*hA{iTt;|1VLvyq_rHSg(pR9QLex({+Nd*w2QgI zP#s+T<}rVI=?*O8OR0VM0kbnDQpKUSMid#NBUIJn6-myr#$hK$!iHmBFtbyEZh7>9 zHjf-h>ML7|{N1Jz_gvwuBxS_ug?)$W_W7i;X$D;$bc!`yk|>TFyNjQ9aWsmYGLNP= zQk3#iiIvB+^6-5awU_TfGS8loQK7!Lsr&;@|0{*IOn<`f=oI#dXGbuZMY>?5nMs#C z@WelMS!0p?4d~x^5r)~`BO|vevYzmLY+%83YOfiJyag?I&u)wzgG1@5SwHyoYc0vl ziTmi^A=c2DW69OexLv=u;1b6WG{or*xW^{Imc#jM{*qg$ ze!?gCB4~`?b?mX;jT?pKKl`!!omj_)rdqvBgxPouiA3ci_1;F1UK` zG4v*A8Ic|Oh6cM_;nc$3kg@~XYzon&TlQbU6MSXywywM43i6I6W@WHFF9vyERU?`( zM;qHsvcu)Qw!lvbr(t_{vDkTIY1E#z$oKShq`l!EXf;z>Rd3AR*QYm z-7YW_UyHqMuJHadYDpHmN*0XLq2<5DxM*!0of$kCD+G(kLOrQs%{95m^J_gS-d;p% z->BomCJ9KfstEf#HX^CC$sqCL3(?&kL?@~$Y zT?&5K`tLz@HTEdEm7Ky(wRq6fI2&fYa|8+ARK_Iqj!?_lx4?4vS+>w*UeU4^Sy1>f z2~ItC0l)7%$+!J77(ZoX+F&Aud(lN}%d)6)X(qRzF_kS4YlDt-HMhDw4ZqVHjvZU( zL)R?_WS?Eis?O^&HhCna_y3>|#e2X%{yx`ywt&w&copjh^I|Qpad@_CAB87H=;o&R za3Em^7M$Q%bjd_q{pvgaOCb!_O7LXEQ8`?a--=8GO;twa5>4+<K>7zMwe5e*5EM=Jj)@`CoSmJ9j-9%{1~dVcMTTRnqe>LS-3o@pMQD5 zi7mEWMj|9~>7ZUUZMaj6Bc(Ekxor@2%)3o>#;CLEY5$4mIy_~etCsT*Rvn~<s(=wbWnbLRF<%XVWXV^TwI? zKcZ=IYEc!C`VTaTRWN28{WL6suntU z*2`h!f#xsfk`YbbYrjU3`;>_`XMh(DkK*{ad_3frz{9d$4`JpS^qsi@tvq%Guq&Nf;?`TJR@@GQXkq0m&Wh$K-`wSXp)}c4-8oj+uvQYLz64l&tl+${f z#;iQ{qxF@^T%P?f?AlZM;4*cbq}r3>2Y{@xxhYaR~3C zE=l96uA(o~+lalTH;(FW!lE5}(V?^V`5n1gL^4F3+3LzeXLSbcJ?4S8-I3+XBwai?qAb5f$7et|fRimKUbOvp0 z@BrUWhuFoNp3K8If~~Qx{JL&Z5PbH;5n5ZMWl`i;<&KONii zQwxjz2C&+lI5hs~EXdJNwlF{N&#XKxghab7fSjY+ICJASdjF?1OF!v`EnCz{uv!pT zlsN^ToY>4S9qEMSw|u9s9n`qx(Z_aT8$@M%kJ4VdDmaxAO7m2r(1T&7cg_+0cp&f!|d!V>3P5B==!y5g>OzwBh9Dw z(LQfd{=C=*O4!u|C&VaKJ*WpDR4L`E`o2<|rtvhJ&{AGT-$r#*!w1=p~AIE(w zRiQaAT;QebrJEj3rX|(V$o_LO^tSlpDa|Qpea?7VQ|HIUAK+=4XEgSo|CzlENafEx zI>hu+CvlbAlc}tc4AC{zWjj0lY2lJVP({*o>-kwll34>NVZ&KrUY5o&Tpr!)lmSt@ zNwcPO{eTU0f26?@7kSF@IpGUo-IiigaL@Bnb?U0=`O{$@6QW zU`;9~|1Oz>$xqRnELr+1+ng%BBOsFRD!ME;8V4KXiz7atV->+8VIlaSPYInQ@Q@)C zL@$F(kudYeS{2!s4kwfToj_jNbLrNPbMX68Q%rTjaX>;ZJ()(9pEO}{+q3A}r6w%o?G#=@>lxeVCn@Y$zltpz->@Uj`Gqx?&m-y@O^%wM zp!KhJK(+8a7N`$Ud!IApeu_T-u2GVeSQm3OcNQ^8t!&V$r5i9JI76;8qA@sqw zSNyh*he=m#C+Y3o4peg=IU;cY{H^8T$b~~_mB|m}axa0msQW`Myn0Km>%(bY=T$E5 zayHeE)rAy=Bx0j+wdnE2TRd@pM}8WuMS~vxNYY3T7P^k7nTtl!CnStdzj~E-@)CN9 zZb+iu#TLk0&m3NV9zyLO-{!_f%|$i=U(v~NO~j!|7A5~mrVodCQUBdzDSfnw+c#}J zL^Yk`3}W(7LHt4J@~~%(x4&_ID-7ykRY zU+})G7JsfCQQT3IMJAdT(95<{vBmOI?2~T+23>cHdQ&d2d#{Jm_fb($6Y~_!%9?;B zf|3}&wVWx&PD9-^nmvwpW)oIrgJq#SU*8%=UVTWRc6zHxLy0`?T#$pyd<(z&Jl9q<4jrFgC@LY*5qPlpG#c!3@d(cU4xEOIK-B@Boh<6SM2qh ze>B2+KAxQ#!D?H|ias|j0Oc_c;k%C|MsB6FO2|d>>tY~%%Scu}VXxWxn6uRJStX~L z*vE!_a6_t>5xVK%jzdzIs;%T9JxL#}S-q0D zob|GZy(LKteJXH(jWo-0nTt{cT|sI}3cj^@m__LK2rhodcw%|Z87y;)NmsH8_Gjn0 z;WMN`&%25wuj@dOSCl(t#KH?6B}_ zGW+AR%xfA%#a-qJq&|Eu&Dk`fSgY>OmCbuY(d`3%)bh<}rv2$BtSOYk2R{q!__?Ez z!}MT2GS!wP{QS&WZ+2n#On$+S7#;r85p#=ah36<9%!22EBS7o#TN==G0ZoPD)P4O# zkRGXlyO-*qj`};CB=TZUxB5W%=hyU>E_Ws~tA(^#2wC;OJHKz{}iK&W0h3(+6>&jAc0Q%dW~Ne z{GMOOyU#%l95id-KGejke!$S-jy4sClyHhwo^ z6Fq8>U#v4OIQAIqB)ss(-_tqCr$a6Nx+{YDTp48eM$RJkNUgd4E<(}{*CR{Uhj8b@ zWvU}RlARoDfU{~-(SCUkE@Z6{?*G!v%jt$=aCl2ao5D=BJ@kvy3w@AH-8mt<`iDH* zya;=xXo0+16r`6J(p3R6?8QM-vO?N|*D_Uv*%J+@Xh{VUA5g(jIpy5oi!Nd+eV#dw z6BUntB1uNRwm_1yCy4!te z*rD4lI6dk(y)^zIAEc~6BBfoa`vMF;gNvZ`!xtJS^O|2W#gV0u6u#!kMO-j`47F$v zA*VY>g88FC(qWxN-TSw&kNV%Zdp8SFqKqcJbZ`TlIx2LVeOkaYr=4cOJ7;l0_x9n5 z{yR~@!=F&QZwAUdyMbAUJwlF^7#pl>h8*)%*ucb+%h8v#kWAMBdOQ~OYpPhJ@QLPO z3kwKdtp~+szu`^dOB(cDlkv0daj5ESDJfol7b?uMg-22gV{-{&_uPQ`@Hx!fDTc{$_vu)d)l_@=AgUa1hbJki zuUiqVw=}7Zz_%}BLDs=O)=+{=x|4lT{2`#c|+$kC~a1!^b?8a@C zmAI>1gG)YjoFz2wBb$?TSul$MiBX@yb#Di$8FPfKa{oau_eZhRzFR!#k1U>|5Jb1X zPe$Ssql@2fQ!0|o{fG39UL-o~DrGNUpR7)@?saiA@yJP9>E{4H_0@5_(QH(5>7aQ0u4LF_ zISTAk^3mvjrYvOZ7bLQgfe3?V)P1c5{rOUjxDSyD3TN#mf`%Kp)U>XPmR_1fHtijOYO8hd^D0NqRK$qC z&KwdSv5dAJeE~ycKZBo667Rjf4BpoIgYEBMOe zkQd@ae^1V)9lSAn^}&W@cJG3QjG5xND@ib8?HFbkxd8i}{=*q(n&YT02h=6CA7a{% zb5HJJeA?m_T6$wW6$&@t)p;p#TYoI+_Ryt)`@CuVePu{5i=u936~y=&z}YoYW}^#k zamBm&BCj}sN8#SYkMKOp8}@w^I8lsRlQbf-(dDoEZNQ)ZJp<@VS4xTSfSK;B6UClADnPrtXw3*&hhC?ZQwf&>E47qKb7JQ z`GcswSD4)f-4Tt$!DZ28?p3NTF1^w~lxwEiyx?o&1W8o{*cp-z>-Yi9lMVycqzQOc*j}wo* zgu76)3k94Rg3G_vkg^enAdZ+am7qy%XL}O0REwgH3$CE)nVqn&XAaIeJRBa}b|ni9 zhhtmy5o}AK7qA`AxHV0x$fS1`lwa4O4rnUn&FrbcWkJ)SQK51mA`e`g-Xv z8qB$qFL!59+v%rS>O09|m!N}uyyG}DTI@o@b{3-!XB9zrF6OQ6WoXx}=O{g~m0Yu4 zf@k@C!sXWU(EENpzgJx3s^kSnyt!i4==d=zcS(1$RCIW$(q3!ZF>Vw;n%K29gdxxoZzK`;1?A#v;EOgc-$6H^Zo0e3go(W2L<*U8;h2VA4TeP2agqq{xN(*-P+d)9@J2@-uDM)w6ZU~aF zp|3n9N#8>q|^;o0#%7aPEB0+nB>;`k<- zb!$3n{2gt+L~no$0(p;Jh*AS8^ zN{UJnQOQu9z4s%-C1kus;?gBlri?e4-SD2cLtVx9_qp%q`Qtq6oc*k|_F88R=Q(?? z<#pPVp1Uy_`o87rJB!Lt-%)A!{98SeDQ`pNSxjRT-7D(HoMN0;*^p~0Yrw53*GMK) zh~Xcx1g!K{!yLD*aO>N3^o$@5L?qe5d8#?E zX~6RkYG|_;G^K^v%1}Bluhmr#xrs6nc+i-a4UORNXae!o`>?dnB^HF(O zI$q*$#Q3t$;Ju&LvuC!Ph6CpplEy$WMxgSH7J6sF)bUJl9F|op=Zo-7%yWSl%bCm|&$EzDvn zLlB|{9K5@ztN!`S4aCbT%i_1GD>29`g&2U~yd3nG;X+mU6*`uX^h>ik0R za?>LG>Cs{+8BSr|*i10d=ODNyP{j@YvgFX!ND`%Y8JjP%VIGkoBx{u}jEWFq6DVNw zPPnsTa~I&JdzXS&@rS{#4Vv(Af;c%jiy=?nNmV#37Q%fu`;!CCfGO?p0TOM)K+$s{ zR=CI28a+_U98SmupI^_wZ^y0&Q%)3+ghe|@V@N(RyZgR;n06x@qUMO@n|?3ND%Rz+5@ z#h?b;&*zi(*L+~>nNRH6d&>k5VqSn7C(VCZvw-dsNTLPY|$aB4OZE%eQ*T2F{7pl+Mi-Q8akxu5XC~2?} zyX@XIHa_(rF2ViiXl_~DxW+tEv|}P#u+J1l`B82y+is};;b*)|yf4+`)|XV~dy}?b z7K7?~hDv6bpof^FC zIFXq0XRM{IDoiR`2zHI$L##gcr?aIpLD(2QxWn6-c+Rzh#9=wzALvZIow*w5(zluR z$~nlmJ^}oZcM-~QHS;%BmeFkWLm=7nA~b2a0W%JdKy`Tr6{|oyvc5ALXzcZYsr54E zB{vIA+oERTyiFS!uuGKQb#X=BN>lL3=t$<(dw>%5HL!!p2-N!U30d!H z!rZbo6nZ(9!qf73r1^6{;#OPE^-*oYZ68)a^Vgch^}QUOu|O5qaq+xhlRv7DcPF2W z@4+Xf63ED?Kb$vw8612;6p2I>Bd@u8+4So-DulDDpgLgjAwMbPVp;@uaed;^VRxEg zKaxb1jG%7%I`sZ(Rg^SV4OAuehgI_@!OdD7B*4=g3W}7uwWK;ETP2(f+?Yo^elY~| z3#P(LG0PA?RtjZXhjZ@$oRFRLCUSeh0T3B^f;m=f2cjgF!@8<_SjXxyj&HLim)zFF zx+61T^QrzI_2V)aXetBS2JT`9FJy7S+d|^@Faa8F9Y|zmKF7PwW{`$#U&z}t8w*|f zqnOkhSe_aJr@wc^iVkh$wzeUz-tiP)T{oOwoOT5*A7hNG)fd7Cx@(Ey&=q9 }7u zLojWhu^$8+!-O|%H@z6Q&#WqT4D0H!f}HNFP35LHzyn;J_+7IH(*@(~pnUT%wqSAt zIX2dtNji9ioxtq{>({)I{S|f!Tm)#V9HBX@&0#eK^vuWv;(zsLu%kQ@ggpkd{mcaFXvfEz>omZ|J?5~_AGZX3 z%CxZ_*K2m4)=Q>*zA;VG%_Y8L4dIN<+2{jng!YKm3Y7IX1C#peL}7jznL1LQER{}! zyzL}19K5;B<_1kLrYiCc>c18s}ZD|8o|lsV$1({e$bcN*Du<_aEc>rJEH zSmHn{0gm30%9Nbeg{uriXklCjNv`psSs|@#DYuS2YE=~zt#}C1&<3*W@>;lSQv}F% zvqUd8KzR7nYq;iC8sq*Z3puvG0*?>LkPjKF(J-?Pv&)Jbuy2kh?%1ryyyi;k@$9Qe ze=$3#*;g3`TIC8Zg=E4}C&O74C40n3jwDZ?>aj9T+1z^;5AxPfpFEjA5qn4bBBr(g zPO0t(?;fbd!#@8+-nX=}BblQDvyD7jRX7?CZC*%X-|gYnl_g`ZdA7vcGKF4T-$r9n zG}xxa{eVQ1FHs6S01_K`w9X;|7Zu8r^jsI{G=4Q!|Ky5h^3I^7B4w;laGO;#qB!fi zIIWt?y(_!7k*M=*k+QKKTIgE>m(I+G`k5@Ak@b;WZHT3HmUGDS`WWCc#+a^49)!rW zIi&8>E%wtefLmZJxzFv5XZJe71`%#w>T@IFW7(f>-`B)0(Xd0#N9~DO+95VMP!3vj zh~w7(LWD=MH&cHk6Um)fReq?Snhl zZX}OuB#F9XE^G^Yfh9tg!R_2y@PhI_^lAUT`1#Y*teAK(m)E+GmvRrG-GjGKYVsER zn(-jpG}lu8v=6k^oyYpTlI9*5?AA+=)12A)95!{nUag9KXhI%Zc@rEmi z%)q69ox{D~7wRF?$T0HE?*V(kU@V?>YALbz6F}qK@i5*>kxc)|oP3z9MZFHcVaw}A zqv~QuVyMTmybM0%jXewAy(uQi!BW)EVJC>PHiLE_xIRpmE#Tv^i>Uu=8+!X`FugAE zlCh7TiLNe)0Z{iO6e+HRejW$ulff+5r?3|$5C0Xqois*H7Yi$dCXWzTEgQ%_iiHk5 zp1H^?WmA|v4)4gH!|eyrLG>42khK?Ik-%yfWaha6?~)5=GDeu7GWHU?;f5|cI;)ig z{5+OX&(js=`5uPZ%~|B$3TXl-tcAYIm5IfKl@NYVA%(I1s8fRsw)U-OtJ(R;<;E0p z$n*mo^Z6qjxiuOTc)zMxQnQJur#&T$4IJ2{K7#VffUB%N{oZq97UkEUJmCIiv~8J4Rr(Mh3RdS;{>J z>Q=<3XcB$jNU~ZZ3vB%*i#gq2lPuc0307`giM^+&3uc%8UZLx`4W}m_Wy<4H1RDa* zk@D6WP*WU0&Y3x}gg*+dY5EncQQ_g1DQg+u=5l;~=rLTiA(mu%>ab1OA1fkm%)%Si z?O=|^Eg;j1Bk&ewGvfFpoY4zj0bf^cV%k78Q?I> z0s@)T-8&*&7?U~9!;Oy;{!xNh}2_BlF$9Jk*^J5GgxM`dA{aQj@Z zkK|$g7Orloub5PG#wGHtgmA8`bl&LShe4!9lnrAYX zOPv`J=UqT5QlIR9J%#ui3sCrPvZSEzY~(+`U&Y1r4(gw&2+uel1zRPQ$gxq?FlOXR zn0u)VH98uAh;1(zzl{QrGHN}^I+BEn2hBt!UPqDiy;8<4ZYdpBH3?rh#qIkx{|#1x zTo7Hu; z8_`#>`Y3xs5Vmr|>Thqqv^K z5;Vd4Gy8zck*w;5l6&II*k2Px;j3T?_*pxbxYSi~b!qp2F}KZN?r|6L$xjXH%LUM* zuMOyOVoA+T@<6h?9h$m)I(Tv;AND)K^H0!gUH1Z+73h{NsgTEMLqj0hp@9ru-6vJ&YsiENR!IFS#j^9JGJOgLqSLB} zSc@77RGfI3Nbd4r-nH_D9uH2!Z2`%oBl06|h!*4al#M2tC=~8GBSKOyejww9zGR1t zy3EE`B_XFWdvc{%1jQRSK!@^1QmI-?V%y8mnHV=@{rD5mI=%~A>G;s`Bl5xPw&P@W z@_Kr|Nl0w0hnp8AB%-YA+`KyUgvT`b!Z`OF{QS2<(s%zfWZ!;}>l2y)8zvbLmsUzM zl*bcxyC*ykKY(`&Y*0$(e0n4Q5LKHj1MDtD(oYhhw92s(ZXIx>++R2Y2Wu`T4$ltb z%~wpxVA(QsD}4~{NLz{W6~&%OpKQ~hYulTvnf;aGah@fwP zs&tSitmt>=E;$kSJ0sjFE>ubH2UTwk1NBXNkd}QG+LyK-s;Y{B`v-M|kFRW`liIYo zcd&z@>iq>!zt0%(w!as?cgM-R^~q8E=nX|XwG5~fT?H(L8FRHG$0NPMBdFD-NYIje zg*9++fD`*~#2O3lz+G!{0rGneM%S(+)_R)E0lA?Rjmw}7&uRg;JCLbZn+MLUzX*j( z$C1?$v!Iu@CY|r`fmAmyBjock;`-|ba5MclygGC|nsqD!W*FMxO9=|-Y~g*9d3O+8 z&BfVUtt#MbixU)+??c*T2NLVyabWloO{jnOCd}|S#^lO~(8{BF&?#dziIbp|QTh@nP3A@^F0t z+4~|L9dB8TV{+Vx!mypBUC>70?7ITC>Hrlv5W&``IuPNq8d`OKpUD|@4e)!M8MzHQ zh;qeISo7f^TpX-Lv*R`brB4i7)AtYJx@I$T%4&Dbhm5Z^XX1zld;@gP#I)B*2 z)em?#Wf*D8`~>2i-N?YE7O=DES6I5Tl5tJk%_u5Qr4tJb;I5t5NQFu*iBKDl?{fQu zTlQ?CH`_nc?7)TW$MFNeS`Rz2qNWTicq&7iHkGrMabm=}_9Cc+jktd7WOV;}BeHIG z08PJ~Wp)1G)(c7SDVZ)0XFbX%%BHTUF3SQr$P1x2+6fnBRbywXe)K?V0`-nY#Km?# z2+%jChf5glzuP5bgU4gG;536b$;FZ24s&=eVG5LJo=!v(l!<(t5nZKogN=9|iCnKb zlO=0;czKpORCq22>KjYQ;j{X5Ug2tBF;fdpH?|?ei3@C=v4VPAy3)tDlIS$mvy638 zI0{cs1h*_3;G1=8;f(xZdbH^%c*Wl5dS5ic^P9#X>wzoEAGE$f5);;e$6M`T+hkeu zkf4XAjkgnUKPxY|@|ik19`Kl)Ku6^_%%Czn!WiSNuhs55sr-jKQmUd_=aP0|X~Ws(x!Ed4Vp;_r&W#oS5# znk#T>3J=-bw}r;so&egqkMg4r(LS3q@fej&;Qi=oc&yPy;2f@p*T2_CCxc7Cxr>gVCl{VMl|>% zz7i;)({_Fa9XkX_Ch3eo=gu5>qS6D!8?mIs%z?eFq`>rV82|=Ft3$)3L2xk!GlYEA;B&Q0%&6E_(6K0PGoRiu?xqQ!QYEhW-8531)Mq8zb#CCP+wjqP+Oqy8{zcHN2JYh<9O$Y$# zY$d5uy@<0Fv$6lVk?IHbUl&6nMR+r<}=#1AGgcZe1FAl?r9 z)UAg*qaxw){ONFUK7;MW(#W_4hBT#-A#ro{LGZN~@eECsvOT*#}diDbf0 z6G6%!jo|$d8Dh7t49F>}(9NKREZN;cB<@~jHn)qR5TpcjRV?8Mv={d5Uy)2#T&UA+MZie$mttLMYdr($pfzK^T;7rB0_`DAs0 z2XpKLVEv-3$)m9!nV>t~WCORKU>Y^WIXMqu{kp#JU5Y;xIg?&4jHn}{9-Xg{C@jIB zszSib&&jYVFAUEbY6Ml9tVys>8DL#M0<)R`LERJs2G4CKq5G4`i}{xrqss?LlT8aV zIIM|@5s0%+D3{GR@EeXTE?`{TQw7xnY(Rl}Id(D}1diR@!#*~8N6fdsU^(`71r=NJfPq!fd_yAR@w%gyY8-PdrHiiF_&I_@2=gcNwZd^Kpz8O`uT zbMZ_4EAaVkbDE^FqkMZ!2GO$H42;J*g1K*0SZgMjeK)a=4L=|cM}3?I#~S37Ti__h zEVi^%M#ea{c!V0#n1Jv)VGguD@v^)% zI~I>o7)v&Xt)$hvf2VFKs_bNINsw6LN2>Gog21OdYW-m)_BtU$bfzKL=9r7Gd%GaD zpHCx^kLGxH!Z|h^AH}YUe~_kfI|!#_keAukNc5T}GFVayi`=)tlV*FcgI@=U7mcGK z@_uCR+PNUvkE^YJPLJy&8%9P9t6^uyF?dW%0*O0s0G|%GhFV+n*6|* zYHYs4_>c2Jrz^t2;FKd!j9WvO(ojm}n#(|50*30Zxn2{yjgj>O<%$cEcTl>WJ#alT z4XQ_onYX=7GtEvl#bb@8!=FZ}qUAC7N!+7WviKhN{4vfK4|4Ehwn-VIoRKwbVw({X zmuw;H$53$PAyW#t-uB!YA>rPktm->6bHRoJa$2+q#)&IKog$k2sBu^iZk-#0NJHZ)*XL{OZx8jr_UijNHljp~H`{<+Yf*O#vn z8#E^&f*ZRqAU-rY$}b{1E{^++EKi!>H#{gdAkHr!CRAFEC&QPH3!M`c5T6jsUH0Gx z^y^MTwl^Abz0;8IN+Uv=$5Y@-1O`P!aP$;8dhr4AL4I*DL4h1Kes^k0y-`!{otnzO zsj2==P3>RQ)Vovb-y1cJ-l=JJr4}MB&C}vbaRQAB>YV2QzQnB1fKD+F>`qC$H%dCa zQySEjQm1AHcgH!TH=Me?Yea_E^rhF8+C!BIe1tXIEI6byTEff zcz72$mV-^Yz;PUG+69i6wvd+OD2SSIhhcnC0e3Lwi!$6{IA0WS2NS+1}Q^(z`QJW{=Yku_>J)52;kKwCDai-Xl$tv;y zC-P3m;};ne9~&C@9rKpqL4KdVMt#TDMWnxezVMB@@ZHVAwRz@0;(NsR__p|#?_OMn z3~yvtzI*i_OE@tb{cTjroQf4bvFyk-ppcj?`AQkt67Lh zt8lkV5BFCur$wX>b>10PT_oJit7-Gb{z$^sy-Qe{XTz8J;xgkn!yNamw0m)xGCbR^ z((cuNc1nAA7ipXHC~ecfrES+;+V;Ik+o5-9JANx|&Tu=enKRr@Yvv4>`J#j#PX8%w zr!La&=GC=%&Oeg&`0q)3LKkVfd@JoYd&oJMKQEe^*m!w)IFFm`W$$U)9gp-BzSlRn`~8KxGc0Lv zZ>TywOt)-?G3~tcJ-l+9MmQhZsUOaV3Z(xH|LGZByJ)0a^wZ`|`jJN5de?{|&;461 z^b$^GcphD~&}(e%;uk%;aNRAwYV*8)#P#IwaXsZ*u6qgCGQ6o>x$ZT3JM!(n(J#-_ z(ay9perpWNn=L)yIQKXPNf-*aO#zI9{0Bv>-M znO)sjuh~`~ZsrP|Gw(j-9zuO*zSYC&KjV#GmnnBkO0;?YKbmsD_oh7S+bQ>w<;d^? zyH2^+l&5pbs@1V&`-|uY`BU644dQKV1CtttSusl{*c{ImWO5A(;O8 zB*HnyFN}ZBK6*s>WsW@~{Br4g2s^E4_E#$k>a-&Hf6J;zieLEbiK5{D_Y?%CKb(Td zmwYPZ>m)+|nnX8MtrO+17X8N6YkrN`T~o(@LZeTQncmlEW@<9Y&C7YB^E7)8KTnrQ zUZ(%IFuF>VpZqO1{kwAWC8PW+Bx_9Vk(aMo=YQfPLzJKPEhkJTCqD>-e+uGn7M;7r z_y5FHo+v-(Tc$?;4@~_#uKlCUF6?m`!GB^eU6jB6TlUQU2ll!vwF^sJ4)LE@`rp*p rQ*i!{8o8|FKQZ;csj(-f{wFnZdCGrc?|)NcPwe%oMlQ4YFD(5(ItFRf diff --git a/kaggle_time_series_air_passenger/my_checkpoint/variables/variables.index b/kaggle_time_series_air_passenger/my_checkpoint/variables/variables.index deleted file mode 100644 index b7842381b7dd2d518ebe11879457238aeb5847c3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1750 zcmZQzVB=tvV&Y(AkP(P?_HcFf4)FK%3vqPvagFzP@^WFngSk)%>GNKrVm zhaGILf?TvOmyC!Je&>L4MvB6ZeM}&~B>dVg$ZI1)p;I76_I%|88F{;QegT(^q%nS1 zz!GtaLdPK{u`1UE#JtoAu=fp1-us&gpl}^-j&z%iCU~^}l zpL!G+OQ!hU0}0ZO&EORGIQ;ubYQ@r=mwcdD`g&{=F9Q&)XJ%kv0x_oEo3aN)GlGZ% opB8RlU}P?5XaFk$i`@<=ZEEG^n8eEuQh^_Y|8D43DRsXM0RC#}9RL6T
  • Sb4tJ9UXzVzu6 zBXRsle}dj^L?7J5A!D}&VZE#m{KvOUsK=K#;h`V6XdqgMc-fxV#$FBQT}HGKs^A|w z$Rka1r{ki}+LU2Jf23=6hMD7@ja73It&kf+7owfL!f?bE1#X+6AWaBsSsP?rjydxAf% zaSD05W;RZUzm8`3_8=ji%kV21ekJSo`R9HgnSZn+|Jd~1hPp6fJkE!BJ`UnJhIpO^ z@%(HrTbvE?yaU8@=YG5S%ORdeMMHmyG@e&NJm)=kCdwCF<5Ta`D1V6OMZ0??;t@g&krD zcZlcHAfD?UsUN)w;`#d+Cu9Wi{4T`vN{Hu+A)ebcYEwdp=dlpaLm-~JK|BwEc-{%( zISbuqo_8)$ zo?LZ$;BsHuYvm~X#KfOq=NQpde{snD9zi%O{{w<N5g^VH3Xbii?T{EJPKGp7`}{ zHEb+EwEpr6zWQn&Iq3X!T)0=8dawiV#K`kZJGX4?>xt+?Z$pS6R)4fy!wQFtaztaT z!ss`<9O=U+Lg>oZ=b52%y~r2x0mO(-RVZj&DC*cXgO0m;iipvK{EGV=MT~^}D%AYg z;;(Y7*aPu|=fjC;sG~Z|V61{+J$DNg5-}IWHuNLA-}-=;ep04K0G?=lxGU91bptc0 zBbTf>`hvgvu^m}0Uyp?bLz&iIMuM>`<5B8|WL#^gj%(Icq3W}{s6B7DqbbMq@b-Sa z>30HM>U6{je*V0vWT?CYj(mR|DXf;|SM5!IH)>x*|nZ_SqYyQ% zbLDu195EGIsX{W==rNP6Iv`$A3>8H+64s&fX~yuEH1A0am1kDU>~-e|(YtdWa&f%^ zR#Zqq{LK#ZyF26QsO3eVp?nlCH!LHT?p7xQrbWH8j&yWa_F#=LFmZ# z56tJ$CWNWSCbU&~40d!{h`nBWA)&J>qDPWsTGk_GqLDwH8a^F8RPINp=Jv-$4|4fj zUN*v^B+2U;LcR0T!DBKeqC1o$-tl)B$*piC6p+{7c^)epiYNQz|Z{D1zS@Uvl+v-5}IG;;4-Qo zJv!+FVlD1Q+DF*axdS>8VR{?*3#_%e&s3XfMC5*W$b`Vwh*cz!%ps5{;dXhz7{h8{?9Z}6$nqru~CwhOM zPb*tg)6S1Qsj=s;FdfWN33iPpx%^HyT%ezf9!zkcb4QP(=kibBE~cq?Qm0Eq+!{49 zcf22YB@-cc2Y+f^D3e@b$EGcc1JTk!bnlxlhBW@Csd=+{GGsLam$qI+RTK z;6ScF6HM0Rm-0RT-ay|g@TaPCD)C~caD3Y=leAPiMO6zvVWnfwu)--Tn%7g&@RpyP zKzZ*T%4UEK?%t>-&~^ECjD5hL$S9bHU88j9b>?*_d9X6MW|uu(?bnOwa^I8h>CB-I z`&2U-iBoBhvma6P3Vpu!2qRWmhXZ)sf@HK>T^%`RJi-;$`w6GQ?fC3SJ@odC1{wan zKjH3klKK7hblSts0Xb{k#ycO2`43tB(T?hmqd#njQNRyEe>+KnetQh?gD$`i7HQZb zA?UXc0e-M(&~9dVx*}rifpbdA53U9McIW%fR50*^(ZCPd06#bw_(3-CgWEvAoe%o$ z(ZCO4&~M)k{NT_!RkGoxANhK<3Cab25c=Cmec%U20Y7K~{9qdJgEjHKNE`IqCjdXF z^l2q3pQ(v5fgkJ*{Gg_T4-NVys08@IFwk$e(C9#w0zY^N_`y`*2kn3#Gy;BbIq-v? zzz^yGKlmN^!KuIxDpq>ZpkG2I0YAtB{q`xq5B3FqQ2l)!u7~SY81RFPIp&7hzz+(6 zA2b1e&;s~D#-aLS<-iY40e)}+@PluGAB+QjZ~^dxu|KqlY~Tm|K)>Ar_`zqu4?=%C zdJ6pD0N@8-MI_>Dzz=Q!elQC7LCu20#CqTdO@JSyfFGO<_4!=j2MvH9Gy;Aw8u-C@ z2|pP=VGD5H3bBY0!TEYdQ13@Mmdh#K~$ zpm#bKsHGliw7EajAAb?J^Z}1JdBTYPdmEc{ITnbYOnt|GTT6FsuA%{V4~c6umrJf=VL*Rsa@ z-rJ*m`%pS^|18?fDwwv=yToLU_9Ph|{zTtl6)3xQ8xpR|phfqKiJEN>;P|H{A2VE4IY*M9Q1we_9GQK!2Ko$D$@_9*poHFZdBIS z^-T1NLtaaG&S!m}Le80Ak3C~XGu<~C3NDOGKyxFG;GMfvv0($;Z(_$0>gl{ll;Si5 z_Z_MMdDI}P*8BwjboNxT?~hryR_6wa8QHA~-z8-Cn`l4xn~>q{?MshLW)GP?pr3(| z-LFV?zoP#e?pNg4&yrv!jYW?2apbw0jx0AuICJ#tL6q4uE5v<)DGLXfSKH^tbl2#J z7>lx~qYpn2#JTx&|Ga8i_Y9A++IyMFJ9U(BAErezK6J&GXD6fCa~x<}-Z=WsqZ2rP zNGcvW?Gh2jS0f|4_>peuOjI)8pK^6!lGhU1^wiIRX!%g6&v~Wotb_(5bc+OMmQcmp0|lfr$(y(`ls->LlOG51Fl=fnu`CvDe3)l);6WG_LohbwnS~@UxwX@eKn} z#%m9Bk9`mK3R{H!&eEb?bGdk5XFuHI`c5qHRV0*VT|mn?A*4v|KFn-+QLd_1WbZU( zdS!(r+TH()(NnuQ#917U7F2zuE}lF`h0HrgBt%-FvHRsndXhO|5tB`gPAvp1=@q|3 z?L6g@8H{%yNkc{R#-ZXL0_xd}8Q4oP2&uZJP#Uq5;QmYZP{{tz=+IRo%FbXoEgv?8 zN^BU0%bir|IsRqjx)=MXq8(gn;_YONCUmBiJ~kS?tIec!p_gWJuUwov?G~-Xh#eiz zis1L(y%WFm8%U?;$dM;MXQD@ywsg_L`$TZ4CBN6gQS^0}Wai*P5ms=iL1Pbo=CkfA zvT~->;qy}*kb2Dp!uifZv~O50nvr6P?Ji{z%k3W{G}4t=>r%m7dMJ$cxH1NrzEPxg zM_b^MuQtS>5#y2a$xXmZA^|Uv1H5Di;3dX@m&^dXWG~<)%3oI^G(!{3`obg!bbG?I zpW{Ox0KBBSs|FzgyriN_2kIH%CAvO_Pe0K8<7x#1VUOPo5!P)=WLu@~Sa zcB%Ep%ve0aJH`ortI?s;0WV=~?Mg0cy5HSrZQ>%}C6@s&sR6uXDmjHt0=y(BZ5V$B z;3ezB6ETucMqz-LSQp;MQS@OV9`KU=fS23^yyP_CB^HN@nF_t_>C$TsC{FP%t_Qrt zDXtq~b{?U|+(dF@c_&teMJ6-K(|~%o+W;x=$)=JwcPDjUY~?>1{+?hYJ{YY(O%pwT zF^{hMQA>x+>4+1|^Oyr1b`dL=_9tWK=Tgq{>Bw@QBYj$BGVL383VU2Vf;}EyC+xmz zk=@5YAJjE@bmp@k74J2I%)V<$=R0ge=DprCy$lKBi}!l8de~UZ=)VNVtloi~O@9y; zli6g*sT<72>EU##-Be_Fm>~8l55&B8pN$5rJdQ5NO(eU-c~ZW|)Ufjm3sgF2AucKp zCxZb)xIH+EG&qX+m+$$~cOC>#D+F(FW6m3yEsc%mD9+WHk@gi1+|Z)=J>H|(-D+g)VSBn}Mi?_@pBKN- zY8*X!&wFOcO=sGDdjmpIz4+Ca2o~WRhQkM^qhYGO&>hDPbmCn@!uMD-K6`frvJ`5P zn_dhdy7=;${A!Y}?O~6u7#HHsVQTa<&Ia65HwiB<#Y9hHK7DEFc4G4*1M21qBYLW+ zfKWcym+pUeJRR-56RT9xWRlB8)Zj6StVueBzn>G(#}%|G&b(dNQg9W$)#8!*m-kQy zSJ6m!E|*RW9)m3Ir=soW{D?-gVq$at0eYbKa{Bf4Erj#!0NQZtD8xvf&9CGe8C4eg zQdPb3u(iV{=8Jg*RXXc9Dsm~pJj5Y-bqS|tt6iao*G3ZAAFmKs&YUyyW9X9JSGQo{ zDPQvVtzKwoZ5n#3o`*Zf4aL`w9K;jnnxaSMlSn0#9OBN5!RS%%;lz*y(YU5lEIG_e zU7%o-z#L}hN?WT`5zZH)n1?Q0mwojg;eYJsxALs2Hr0<3Q9Nv!e6%&Lb1m1pJs4 zOQ}bBd9=>5DfF5tm-vcL-ZGP4YUA`DwiN#nlTvi4Bd2t_M-51rPwGZo!7{w0ef76n zjGRj`5-f1o#J#lj2L*w12XFqU)!Ibd^J&=Quj54R3l*Ao@+#kYb{A~1Gnr5tdY>vh zF`qp1{xNAWU6Y8Nb&cQs07b2Veo&=d>S*@rLzsDOI{A5yDfy*559!1uAq9MjIzy?_ zgWY{;^)76@r3;S;Tw+8o(=sR3_iV)qJD&1$j+;~ES{t!?h&h_s%O1tN^uomp)bNzM zO#1u27yP=j?xg&INm%uq9HkznjS`JV6HaHcvA)k}TIXCS5$n?*sR}0H`CaVLlf%LE zp4oQvP~SkBeeMb~$J(9Tf7Oq8J?So5JUI#p?q<;5aVH7uYah_4gHO=b4HHPl`MhJv z77W&%m;@sEF5vo9PnMnKhtW#?JSn+QXOz0TAGu8RBOYJWm1a$cexC!~sLlO6m`Cq( z$oMzVk96CbT=VS{e(>3X`L@ewfr{RK=f~RbElFIEA8=Vs~f18>MZLQZD;x=GW<%0U&-*R|MGs@GJdcf@q?xJt%%Z& zCdlzhJUM2hB1>g^DDy~dU+VRo@yL2uCbgg2gDkqG%?!Q={JCx(|4u?3v2^NudfND> zv`S5xJWn}3Gl+bPhF>QAxLZ5z5sAuL<5P+qX9a~`$h zyA9s?KvmH2xo5T+@+XpKIpM~jKD5roI&{FfCpqGyJbz?IP>HYG?gdDz`0&9iJ_bhs8efQD;S#JpgO42tx6CbTV`{Vl)tdRVD2h1@HBPX~!l9{VQ$e6Ad`5Se;Xm#xXYAAk!@sKb~F9&>g>nUpS z<1aY3&vTr0&6;K`-9EZ|xt!qs<2dTpHY=<%R$ahwlh1BA7eKgmn1?O(b?Csd59sz$ zWir(Z`V(JuC#H4Uz^{ZJ%UN??FfB*h(Y-ExL_O!}@dI3pSkv_raOt&V6l>oj_J9|x3r^9EL*Cc}5z8@?;6&)ZjhE~`J< zUHu{J_i0CZO9oOs88_$`9R>VHlb+0C=oi%hJsHqLrkeF+dP?_g zP)L%TlEmI?UQ_6Vh(zfmm84SXB$cF+BqSuEQb|&TkiF)d5-RDWlT<2|B&3r{I(e1! zUHAQcjq&-6dyLQT_YdzsVUNA{n(J}R=ksyh_#ZwQW#RrKvilqTuk+*o_Q^Q?>yr`o z-Tk*uCjMWaOo)&d{VLplY!mXLKEnM+!~gKf@Iqd6s&N02^FMqtA^-YhH2?L?y(5r+t9;JtFw}Zr38k zJ6)tzH2{x{6Z+>0OHi%n1HQSrh}_+(&kUDn!S(t)8j0rOVPVc#cljk)y}b}tq}?G6 zzqFZb{SMZL?P+E7PNZvsSl-#Of(t*6HUxd+EhY#)JAVk#sR`%Ql*Z%4<~Mwf zyEl&6^qq#3j^tMV5|w9c&Vj88`7};;AdPNo2ER2YN!0OuF!PQDJ$_r4eO*6{EZJYn zTm3T&f4n)D9)I5ihxY%+hy1^g&;N6N{OA1m&-wBHI6waLzWcxHeb-pv^EpDFGhERhIbDIzMS|}&LE!UnfzKBReNL%ofn=e;=gt56Ua7$6 zj{oxcA%V{${^j%NfB9Tl@V$l#zSm3t^7&wa&j$(lL~nu5sleyT|N374i_g6TK35m` z{DjcwbP@QxSm5(dLOyY((C6GG@Ohx%d%Z8@6B7kKe=hKOu+Zn6_OI_XSjZ>p34H!c z=yQhu>wB#h_R&$3{Fl!|g?yr&kWZ`>_*~dW4+s9`a}&Y$D(oxzZ{MrE(B~`= z`kWhteByucd6AG$v=;b0L+EpE5cu3%=yNvxA3p!j{OW(v{3=j;3%^P4JZjB4g0JMi z$A(V-aQoLzCZYjtoWI*P5_|6^6zkj3*B6hWiuJ{if+OL{2rKr%@DuC3|Cm-D3gQBX zujD4yo8s2oM+m)12Ze2j^(Zf4R@uks=i^IgW$S&^u}2S|4luz9CCTK&HWB&4-GSjb zj?8UPDlETCxLqUObBA6S!Sv0eX~*8V^q_qi)E#m}?+=g1({vE``;mmj8F<63SZAca zZy*(X*-+@24$pelka-Z{$|u-#U#y_r{!ES^SLiEe&G|FPgw9-?S`xn6X{7 z_$-0GBcOccCra${UkaZ|y>8=@46>>1y=KadlSa z^O#frW&xR*S=eE>jGdnu;gpZqkkT2tU=etl6cxzhvVD4F)Pfcicw-c*kTwBL-iKxA zd}2ATttqd6nhVW|LBB=~#ofxgNTy>Rd{FmcWcyV1(YlJ7AI_pX@O|{tMi>8F7mQm6 z-bKAS>&e9J!|=C;2`oN70otVAadPz*h>utX;UQyb^_fLj=jM}qHUwG0_V zvx(y91N-=c!#I3XSp~O@(jd8Z!acB|yF{v9r>uS8R8CJ>6D1uG!--ID5-o>G)2s%1 zHX$9F&iavet3GhnM{Myh<=d$F?i_L;Qk5tlxA#vud&A6$ao20ov?Y)Ciqu6E_LYJ%jq^tXGint}-q-UEOHN4qI0}SFI2z-cD5~XwdX2YHRMH0yp z!PADQXws}QaPb)oDw;8Tg|{O%J}D#Y6|zLWO4Cv51wC9n?FPuXq?1pj67FvMD5zUz zAvqNIhMO-U>{_8LJae^RK52=(kK!%hepZ5)N;0e5-%qVJwUdsid(k9&cO19p5K-y8 z0(akT#miTofvF+7O76cWR`J-C&=6C^t0|ZoIT-IWzKDQ_Up$wBZtR zdU+Jv6zRja*WNTbv56$_8_eu(ugBHi`FMMkDtX@)fUVZq;WD*-v_@WJBbz%9?LHj^ z4=fT<&mKL{jL%@OMHo-dBfN*|h=XVUGLw zKk*jmmd#k201||Es4=MpGbLGG(loFy7>xrNI*|I|zw_SUZU=(&|EcBe1xL}!7{S-4 z@e|dLJw>y;X5nR}F1Tw&6}Y@V33jvY5ZBY%?5ECV<}_|NZ4KInK7Jd;eAUL{jM_N* z&!#SZpaUXtU&4gDl5tR{6#!jL;q=ZEHEIip)ha&Wmw4>NsCgQ-k{(2=j|_$A4XIr3 z>=N4l1laFCG05B90HRb~X!BEFxc_lCo2cu{0&eVPYs#v)llQ~07m7kb$?Z_4yB)@D z%x59N*O306KXBq*8>rMz#?h4twvM}`>|AZKk=2Ls@YG1#?yCAg(JH@PL?6$Bu!g}n zV*f{aWVj0Zd3!nzUHgS!G$M?%KIe!p7j^QMgMIK|-yXVkn@m)(XEx%x_eRjeB}UNxI$U%L&bmZ@R=Ya-GXC8i~Z z(wSUVAM3gv&*#iFL8UqzHN94dCcl?wQYXyB+~2=Msvr=RdHx}f&Q8a^H(y{WlPWaG z^(sGM?Ezxuufuw?KcK<#Su`ll6CYbJ0e{-b!?dm}C>LELoysX)j%$vOD&u!QRO{4rq zd4lWoz_>Vr>wlIG!xxVPv zqphS0Jiue94&HsOm1^CRW6>}f=eTt8$5*W6%D0R0{VUJ-rVo?xEz5UwL!ts#W@TCK zx^*9fSRbQ0VioFd`36!GR}rsmd%)w4F$D_^_IHII>2hQIxW5yzXty_QntK)KI|ZD2 z`70N5P7Qnu*5Pk&@8W{n%Q)ZDzj&i`9SEDfn>2>K0IBsMVz(PtP_#IV?@+jn7N4+W z!LJBwh~G&fRgyXFo+vc>;v0xqbB;VKkA^+UCQMc$9Lt7O0{oHD{PVLX)<8nN!U%iy?F3W%Tld8s2VK z#>pDGv)--R(6r?}cja9-ky3Q#_YY5iaZMUHbEF$tcczmVuF!{AX>(dPU=}{1Yl7{M z&BBH4hxmmPCa{Bru4MDRGqgB+3QZatjjwMxLb{LKqP)9=t`He9DV?mchl+K~Z+!~! zUZFvcFKA<_U0r8?_)kZAS4L3Zn2&UAZ8c=oK8Fl*Q`T*n%K4lc&(Dk<#5DJna|!Rv zSgLLf91oY{^*t2qs&_1;6U(E(bHED}nO;VvzAQs(@8(jq?BB>~Ob3W2$f4$tJ=_3K zbyjlP7+hiw(n!xIRB9@4c5Qsjui^Ij5J=?C%NOuaqEkGs+N4ExXS@o0$i}@20ZE&t5FPvWkXt z2kEWsdgNuKk6mB-$JbSGx>pPJQ>1UsE(IbbV4Icgwy4arH+Tu^& zJ}!jd-2|;!G9G^$!gC^nL+sJ<2@tq^BI1LFP@jiEDB=2PD36_m-+I{*JIf!WYsx5S z-5E$X+}n+Rz468U)~Wa^*~z~fxrG@_-$vBbKGVJ)dHUWm8OxX6A`MxFOk1jze(0RV zT3s(l!p6#!pE~!7nB+^-GO<>9L(%%OD=!bAmQGA9dKH=0?`M#vu7z!w8*?fh&+iRe z%~ywwV;7P>a_TQuvw-tm;OYEC(tmc8U48vDx?n{fT((n%v}9djccv=u!6nkk_9Ng! zjV2b2w?bx{4svBb1~6MMXV9)np=Cl}%lcU)x_)mtS-xQ}JC)GD7EIP9sUfB)@Z((W z#fFI}wX2Nwtw11E@J6C}@gI8kM?4L=rGoE0Z^O@4w}Za=bg@)#jb!o`6{h;pmX>9w z(Ko~pqeWxzEra7QF4`SLmOS~fSB-h=sIi8(!yqZq0tF5%rfVVq|25o7yDw$%T5XKq zJV~9hFfGv9WdpyoWSQ|QKcqgNW0#o&e|OUr7pExOh94MVklK>ZU;OhKpL$m+dNY;~*(r5MPAearNZv1dthq=X z%%kT(-yKEzGvF2NTxCYCI-ZnBCA1Nr!{3OM(=?kFjbC6~Q!8G+Nfi%H^g>X=NF;%bX0N%FY%G0Cj|{U~tx=7fx*wWwxA zFlsG73U(H5xOU8FGU8D)N!~LQs+DF_!`MiCWU~jJ9=IESQjO-7RfE~yNh`>p_sukU zl{DQwDh4nASxJ0~HJRq62h{to8}rbo65TsJELx?Bh?+ae;vEX*VHbSM5@l17&q7Pu zkn@)we19LtL@VIDbq*}2b2NYNgFnA}iHPl3-pZ-_`?GJc&q47)g@ivb%&sVDJk`uP z0vYu((D+V;InA-=yCIskln#M=H|6m7wMNLYIG)QX=%y9BIJmPeo<_`3V146$Baa#> zsNXu3R!m%k!V7-!uht}RnN6FaCH)P*qtOb~BGSR2`3<_4XUmcsSJDIXooQ=JGxYds zVa1YKF0{HD$z&SRZDCib;CST|8kQ2po@B7>`ynpSts_4-74u^gWoU{{HM~=}28(l& zczOGLusbmT9?sZAh8;>1FOoXO4fM)EbzAO=7Iv3$n}6riBirraO}hQnfJfazvH7rb{HG5|T-4{;ynfF!S}_)UgW#qVWN$bU|N1(c%og6cT`w%cR{M8BSW+Kz z&Bn}!xzeoxGImDd4m`ou9p%`>L2`yOyOXe&=?Hg?8eRy-Oh1P0?ka(koB_>T)=3mK z^;x2$1IBg2uHU(j_?{(z^Hof7)$(|{a_bGr;cRpC*mV}nGAc#cxmMuNw2md5YzOON zH+G7ffjDQ8U2?}6vhSWAZSSo>i+|5z#%W2szWfK~zk4Lj-Iq#bB9=hhjU!;ORhelo zvSTxs-(#(B3dyJ!qj2Zrsa)#WVR*OrBbO z?pUjp-^x=(x|)%!$jBIL{?MQ>crH!oR-~4Rh)sIY!i9d(;8iG)~U=%mnDHkDLR za!{Rq|LTV~S8N84ly6WL7K&bPvu3~gU-SN7)TmTIm}K?qAHWet#=k9vkT{;QHx%Wdk7`V8qs^qfy8_y zm5K@BXFpD)KKK3**Np?fbiyR0des)Vno7<-L`*&yTH#}>ixg2x*iw*iRPq*(8gnZ5f1S zW+icni!C{q_HY#W;G!rta|mai^~J^{`vF%T*UDYEe1TV3izU%BRk^{fJ>s(m%Xs6H z^|txGJ8T;bO(Z?L9O%dOiQzg0f^f1q@u_IRWe%a1m2mYXv9f>Y^#05*wq2#0z-75* zOQifSh>!ZJA;X)>NY-~XzdcEfPblAZwgG?V`<_1&%{YqrVwFvjz@KMJcZ|cNHPI1e zmmCyx>Cuu2XNx&&r61LM`)3e)xqmp` zKW#5o`;p3j?j45B+5iWQ-zMzlsS$;K8HQp^$HDp$F=*w}Cn$0MQ8sy@3jSi~$$C46 zqp)$q>=FboxRQ?rO+A%}YN}`k zGnBP{Nx~D~M~mn6JJMhLTDsfp84a=4h2X(MS@+p-WJLEX_;Aiq9P{xZtULXX&rG|8 zGsr~}a{e>#@oX(K3SGrEty)OE&RyoOE4{|AZKva|m6uWCw7X>SAuC$mTFcj{k3?%8 z4lCb)4kKPZiNWB0_&Knd4|NMAUU>mzL*`bhYW+hz^|UmvkkUaWPTtC;y-=lxMXGc{ z%tJob-2v*B1|Z`hvJl<51I4BWQ>pUuvu&4`k?Xfyk$bKNOpi1rJ9=-RghUlO(^>e8 z;zP*F>!!HXKbxh|IKy@$le@$pUl_*MrLU$^rw39gO>