diff --git a/Audi_Classification_ML/.ipynb_checkpoints/cleanup-checkpoint.ipynb b/Audi_Classification_ML/.ipynb_checkpoints/cleanup-checkpoint.ipynb new file mode 100644 index 0000000..517b3f7 --- /dev/null +++ b/Audi_Classification_ML/.ipynb_checkpoints/cleanup-checkpoint.ipynb @@ -0,0 +1,509 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib as mpl\n", + "from tqdm import tqdm\n", + "from matplotlib import pyplot as plt\n", + "import eda\n", + "from python_speech_features import mfcc, logfbank\n", + "from scipy.io import wavfile\n", + "import librosa\n" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " fname label\n", + "0 5388d14d.wav Saxophone\n", + "1 c685f05f.wav Saxophone\n", + "2 36d20ab5.wav Saxophone\n", + "3 d6665734.wav Saxophone\n", + "4 7352e28f.wav Saxophone\n", + ".. ... ...\n", + "295 3c713bcf.wav Clarinet\n", + "296 2fc00271.wav Clarinet\n", + "297 b0c06255.wav Clarinet\n", + "298 71c6451f.wav Clarinet\n", + "299 5de123c3.wav Clarinet\n", + "\n", + "[300 rows x 2 columns]\n", + " fname label\n", + "0 5388d14d.wav Saxophone\n", + "1 c685f05f.wav Saxophone\n", + "2 36d20ab5.wav Saxophone\n", + "3 d6665734.wav Saxophone\n", + "4 7352e28f.wav Saxophone\n" + ] + } + ], + "source": [ + "df = pd.read_csv(os.path.join('data', 'instruments.csv'))\n", + "print(df)\n", + "print(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [], + "source": [ + "df.set_index('fname', inplace=True) # Set our index to be the fname collumn" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " label\n", + "fname \n", + "5388d14d.wav Saxophone\n", + "c685f05f.wav Saxophone\n", + "36d20ab5.wav Saxophone\n", + "d6665734.wav Saxophone\n", + "7352e28f.wav Saxophone\n", + "... ...\n", + "3c713bcf.wav Clarinet\n", + "2fc00271.wav Clarinet\n", + "b0c06255.wav Clarinet\n", + "71c6451f.wav Clarinet\n", + "5de123c3.wav Clarinet\n", + "\n", + "[300 rows x 1 columns]\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [], + "source": [ + "# Read in the rate and signal for each of our wavfiles\n", + "# and add their ratio to our df as a length collumn/feature\n", + "for f in df.index:\n", + " rate, signal = wavfile.read('data/wavfiles/'+f)\n", + " df.at[f,'length'] = signal.shape[0] / rate" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " label length\n", + "fname \n", + "5388d14d.wav Saxophone 4.14\n", + "c685f05f.wav Saxophone 1.54\n", + "36d20ab5.wav Saxophone 4.90\n", + "d6665734.wav Saxophone 10.50\n", + "7352e28f.wav Saxophone 6.24\n", + "... ... ...\n", + "3c713bcf.wav Clarinet 6.14\n", + "2fc00271.wav Clarinet 4.20\n", + "b0c06255.wav Clarinet 4.08\n", + "71c6451f.wav Clarinet 3.56\n", + "5de123c3.wav Clarinet 3.34\n", + "\n", + "[300 rows x 2 columns]\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a class list and class distribution\n", + "classes = list(np.unique(df.label))\n", + "class_dist = df.groupby(['label'])['length'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "label\n", + "Acoustic_guitar 6.948667\n", + "Bass_drum 1.937333\n", + "Cello 5.000667\n", + "Clarinet 6.596000\n", + "Double_bass 3.206000\n", + "Flute 8.054667\n", + "Hi-hat 3.357333\n", + "Saxophone 7.124000\n", + "Snare_drum 3.987333\n", + "Violin_or_fiddle 4.530000\n", + "Name: length, dtype: float64\n" + ] + } + ], + "source": [ + "print(class_dist)" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEJCAYAAAA3l/RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3gc1dWH37O7apYsyd0qtuVesLAx2MZVsumhhY4TQicQIIR8AeIEQkQKIaEklJhOMD2U0GISCDaWuy0b94p7lS3JVm9bzvfHjGxJVtdqV+W+z7PPzs7cufeMtPubO+fee46oKgaDwWAIDI5gG2AwGAwdCSO6BoPBEECM6BoMBkMAMaJrMBgMAcSIrsFgMAQQI7oGg8EQQIzoGgwGQwAxomtARG4UkUWtwI40EXnL3u4rIoUi4vRT3S+IyG/s7VQR2e+Peu36pojIVn/VZ2jfuIJtgMFQE6q6F4iqr5yI3AjcqqqT66nvDj+ZhogoMFhVt9t1LwSG+qt+Q/vG9HQN7R5/9ZYNBn9gRLeDISJ9RORfIpIlIjki8lwNZZ4WkX0iki8iq0RkSqVj40RkpX3ssIg8Ze8PF5G37DpzRSRDRHrVY0t/EUkXkQIR+R/QvdKxJBFREXHZn28UkZ122V0i8kMRGQ68AEywXRG5dtnXReR5EflCRIqAafa+P1Rr/9ciki0iu0Xkh5X2zxeRWyt9Pu5+EZEF9u61dpvXVHdXiMhwu45cEdkoIpdUOva6iPxdRObY17JcRAbW9XcytC+M6HYg7B7fv4E9QBKQALxXQ9EMYDTQFXgH+EBEwu1jTwNPq2o0MBB4395/AxAD9AG6AXcAJfWY9A6wCktsf2/XUZPdkcAzwAWq2hmYCKxR1c12O0tVNUpVYyud9gPgj0BnoCZ/dW+73QS73ZdEpF4XgapOtTdH2W3+s5qtIcDnwFdAT+CnwNvV6p4BPAJ0Abbbdho6CEZ0OxbjgHjgflUtUtVSVT1JkFT1LVXNUVWPqj4JhHHCZ+kGBolId1UtVNVllfZ3AwapqldVV6lqfm2GiEhfYCzwG1UtU9UFWGJVGz5gpIhEqOohVd1Yz7V+qqqLVdWnqqW1lKloOx2YA1xdT50N4UwsX/RjqlquqvOwbnQzKpX5l6quUFUP8DbWDc7QQTCi27HoA+yxf+y1IiK/EJHNIpJnP7LHcOLR/xZgCLDFdiFcZO9/E/gSeE9EDorIX+xeX23EA8dUtajSvj01FbTLXIPVqz1kP5oPq+da99VzvKa24+s5pyHEA/tU1Vet7oRKnzMrbRfTgAFDQ/vBiG7HYh/Qt8JPWhO2//aXWL2+LvYjex4gAKr6narOwHp0/jPwoYhEqqpbVR9R1RFYj/8XAdfXYcshoIvtOqigb22FVfVLVT0HiAO2AC9XHKrtlDrappa2D9rbRUCnSsd611NXZQ4CfUSk8m+rL3CgEXUY2jFGdDsWK7DE7jERibQHvyZVK9MZ8ABZgEtEHgaiKw6KyHUi0sPuyeXau70iMk1Ekm2/cT6Wu8FbmyGqugdYCTwiIqEiMhm4uKayItJLRC6xRbIMKKxU92EgUURCG/OHsKloewrWTeIDe/8a4HIR6SQig7B695U5DAyopc7lWKL9gIiEiEiqfV01+c4NHRAjuh0IVfViCcAgYC+wH+uxvTJfAv8BtmE9FpdS9VH9fGCjiBRiDapda/tMewMfYgnuZiAdeKsek34AjAeOAr8F3qilnAP4BVYv8iiQAtxpH5sHbAQyRSS7nvYqkwkcs+t8G7hDVbfYx/4KlGOJ62z7eGXSgNn27IQqfmBVLQcuAS4AsoFZwPWV6jZ0cMRkjjAYDIbAYXq6BoPBEEDMMmBDi2K7IWriAnv5rMHQoTDuBYPBYAggxr1gMBgMAcSIrsFgMAQQI7oGg8EQQIzoGgwGQwAxomswGAwBxIiuwWAwBBAjugaDwRBAjOgaDAZDADGiazAYDAHEiK7BYDAEECO6BoPBEECM6BoMBkMAMaJrMBgMAcSIrsFgMAQQI7oGg8EQQIzoGgwGQwAxomswGAwBxIiuwWAwBBAjugZDIxCR+SJyXrV994rIayLyYT3nporIv+3tS0RkZkvaWosN94jIZhF5uy4basttJyKvi8iV9vZ8ETmjJe1tj5jElAZD43gXuBb4stK+a4H7G5NoU1U/Az7zs20AiIhTVb21HL4TKynoLvtzi9hgqB3T0zUYGseHwEUiEgYgIklAPLBfRDbY+8JF5B8isl5EVovItOqViMiNIvKcvf26iDwjIktEZGdFT7ImxOJxEdlg13+NvT9VRL4RkXeA9bWc+wIwAPhMRH5ezYb+IrJURDJE5PfV2ntORDaJyBygZy11n2uf/62IfCAiUfX+JTsoRnQNhkagqjnACuB8e9e1wD+Bymm177LLJgMzgNkiEl5P1XHAZOAi4LE6yl0OjAZGAWcDj4tInH1sHPCgqo6oxfY7gIPANFX9a7XDTwPPq+pYILPS/suAoUAycBswsXq9ItIdeAg4W1XHACuB/6vjGjo0RnQNhsZT4WLAfn+32vHJwJsAqroF2AMMqafOT1TVp6qbgF51lJsMvKuqXlU9DKQDY+1jKyq5DRrLJE5cx5uV9k+t1N5BYF4N554JjAAWi8ga4AagXxPtaPcYn67B0Hg+AZ4SkTFAhKp+a7sZKpAm1FnWwPPrOlbUhHYro43cX4EA/1PVGc1sv0PQbnu6InKZiKiIDAtAW7Eicmelz/H1jWT7se0l9nuSiPwgEG12dFS1EJgPvMbJvVyABcAPAURkCNAX2Oqn5hcA14iIU0R6YPVEV/ih3sWc6L3/sFp719rtxQEn+aeBZcAkERkEICKd7Os21EC7FV0sX9oiTnyRWpJYrFFhAFT1oKrWOhjiT1S1wseWBDRKdEXE6XeDOg7vYvlV36vh2CzAKSLrsfy9N6pqWQ3lmsLHwDpgLdaj/gOqmln3KQ3iZ8BdIpIBxFRr7zuswbnnsdwZVVDVLOBG4F0RWYclwi3e2WmzqGq7ewFRwAEsP9qWSvsfwPryrAUes/eNxvqSrMP6gnWx988HzrC3uwO77e1TsHoWa+xzBmP98ErsfY9jCeAGu7wTeMJudx3w0zrs/h6wBetm8Qzwb3t/GnBfpXIbgCR7u9B+Xwbk2Tb83LZhIfCt/Zpol0sFvgHeATYF+39lXubV0V7t1af7feC/qrpNRI7avrde9v7xqlosIl3tsm9gCWG6iPwO+C1wbx113wE8rapvi0golqjOBEaq6mg4Po2ogh8D/YHTVNVTqd0q2KPbLwJTVXWXiNT02FoXM7GE+SK7vk7AOapaKiKDsXpmFRPZx9n2NnXQxWAwNJH2KrozgL/Z2+/Znx3AP1S1GEBVj4pIDBCrqhWPTLOBD+qpeynwoIgkAv9S1e9E6hw3ORt4QVU9Fe3WUm4YsLOSEL6LJdhNJQR4TkRGA16qjp43Z5S7xUiaOScaSLRfCZXeu2Fdj8t+Dyk/vdsuX/fwAYAH6/oKgaM1vHKwZg/szZw22hfQC2oGIpJM1VkEAGWqOr4B53YD5tZw6Cy1prwZgki7E137CzcdGCkiitUTVeAj6h+FrYyHEz7v43MsVfUdEVkOXAh8KSK3AjvrMqmB7dal3JVtqWJPHfwcOIzld3QApZWONXeUu8kkzZzTFRiPNc1pAFXFtXND61GXwwVMaUTT5b2/WbML2F7ptRVYlTltdG03wqChquuxXF9NOTenqecaWp52J7rAlcAbqnp7xQ4RScfq9dwsIu9UuBfs3u4xEZmi1hLOH3FioGA3cDqW//bKSnUNwOqRPmNvn4rlI65NML4C7hCR+RXuhVp6u1uAASKSpKq7gWsqHduNNWke21XSv4bzC6rZEAPsV1WfiNyAdfMJKEkz57iw/j5nYgntmVg+8KZMqWouoViT/IdWP9D7mzXfYf2fl9vvqzOnjS4PrHmGjkJ7FN0ZnLyi5yNgONY685UiUg58AfwaayL3C7YPdCdwk33OE8D7IvIjqk4Ivwa4TkTcWCt3fmeL92J7Geh/gL9XKv8K1qP9Ovucl4HnqhutqiX2tLP/ikg2VacBfQRcb088zwC21XDd6wCPiKwFXscaQf9IRK7CGjhr8d5t0sw5kcA5WKuWzsS6aXVq6Xb9wGD7VTFVqrz3N2tWYt0wvwQyMqeNri2WgcHQKES1MU/chpZERKJUtVAsJ/Hfge/05OWarQpbaC8CrsKafRERiHbLxvdYqLGhjXEvNIejwH+Bz4H/ZE4bnRegdg3tECO6rQgR+TlWzzsUWA3cVjHw15pImjmnE1WFNuC92QCLbmXcWD3gN4DPMqeNLq2nvMFQBSO6QUBEPuZkv+wvVfXLmsq3BmyhvRC4miAJbWWCKLqVycOa7fImsDBz2mjzYzLUixFdQ50kzZwzBGu10vVYi05aBa1EdCuzG/gH8HzmtNFZQbbF0IoxomuokaSZc87BWiRyAcGZbVAnrVB0KyjF6vn+NXPa6M3BNsbQ+jCiazhO0sw5TqzZGTOx4qe2Wlqx6FagWDNZnsqcNrqmhQqGDooRXQNJM+eEYrkPZgIDg2xOg2gDoluZ1cBDmdNGfxFsQwzBx4huByZp5hwHcCvwG6xVYW2GNia6FSwAZmZOG7002IYYgkd7Du1oqIOkmXPOxFpo8SJtTHDbMFOBJb2/WfNJ72/W1JhSx9D+MT3dDkbSzDk9gT9jzQdudQNkDaWN9nQr48UKsPSrzGmjjwTbGEPgMKLbQbAHye4EfocVdL1N0w5Et4Jc4FfAS20pCpqh6Rj3QgcgaeacKViBzJ+hHQhuOyMWeP5MXfSPufMGnhJsYwwtj+nptmOSZs7pjZXJ4rpg2+Jv2lFPF5e6d7/Mj3qH4nYAfwD+dNb0HZ5g22VoGUxPt52SNHPOeViRx9qd4LY37uavx0Jxh2PF3PgdkDF33kATD7ed0h5DO3ZobN/t77D8hG12oKyj0Fd3LxrL8snVdo/GEt4/AY+cNX2HCSvZjjA93XZE0sw5cVhpWn6NEdxWj6gv51ek1TZ1zIU1f3rO3HkD/e6HF5EHRWSjiKwTkTUiUm8aoJZERNJE5L5g2hAojOi2E5JmzjkbKxNwSrBtMTSMK3lvSzQFNSYqrcR5wIq58wb6LaW5iEzACs05RlVPxcrjt6+ZdbbIU3NL1RtMjOi2cZJmznEkzZzzO6wMBz2DbY+hYXTWvNXf56NJDSw+GFg+d97AC/3UfByQraplAKqaraoHRWS3iDwiIt+KyHoRGQYgIuNEZImIrLbfh9r7bxSRD0Tkc6wYw4jI/SKSYfegH6nLCLu3vVVEvqZSGiURmS8ij9pptn4mIq+LSOWUWYX2e6qIpIvI+yKyTUQeE5EfisgK2/5WuaTdiG4bxp6d8DXWY6j5X7YVVEsf4uEujTwrGvhs7ryBv/KDBV8BfWyhmiUilZ+OslV1DPA8UPG4vwWYqqqnAQ8Dj1YqPwG4QVWni8i5WDeIcVh+6dNFZGpNBojI6cC1wGnA5ViJSisTq6opqvpkPdcyCiv0aDJWjsMhqjoOK03WT+s5Nyi0u657RyFp5pxRWFGs4oJti6FxTGThskT2pzbhVAfw6Nx5A08Fbj5r+o6SprRvp4Q6HSub8jTgnyIy0z78L/t9FZYYgpXkdLaIDMaKnhZSqbr/VUq0eq79Wm1/jsIS4QU1mDEF+LgiM4qIfFbt+D8beDkZqnrIrmMHdo8bWG9fW6vD9I7aIEkz50wE5mMEt80RouU7bue5hroVauNaYNHceQP7NLUCVfWq6nxV/S1wN3CFfajMfvdyolP2e+AbVR0JXAyEV6qqcsJTAf6kqqPt1yBVfbUuM+o4VrleD7ZW2fkDQysdK6u07av02Ucr7VQa0W1j2MHFv8KsLGt7qOq9/KXIhTek/sL1MgZrWlmjBVxEhtq91gpGA3vqOCUGOGBv31hHuS+Bm0Ukym4nQURqG2dYAFwmIhEi0hlLzGtjN1ZmaYBLqdrTbnMY0W1DJM2ccwXwbyAy2LYYGs8AdiwazepT/VhlL2De3HkDr2rkeVFY7oJNIrIOGAGk1VH+L8CfRGQx4KytkKp+BbwDLBWR9cCHQOdayn6L5UJYA3wELKyj/ZeBFBFZAYynai+4zWGWAbcRkmbOuQnry1frl74j0daWAYv6sl7kxtBIimJaoHoPMOOs6Ts+bIG6DX7G9HTbAEkz5/wMeBUjuG2WH/DGdy0kuGD5Lt+dO2/glfWWNAQdI7qtnKSZc9KAv2FWmLVZYvXoyu/x+cQWbqZCeK+ot2QAEZFu9oq36q9uwbYtWBj3QismaeacvwD3B9uO1kibcS+oFj/J3Ud7kxmo7Bwe4Kqzpu/4JEDtGRqJ6em2UpJmzvkFRnDbPCnMywig4ILV431v7ryB0wPYpqERGNFthSTNnDMDKw6uoQ0TqqVbb+GF5s7JbQphwCdz5w08vd6ShoBjRLeVkTRzznTgdYwPt22j6rufRz1OfMGaoN8Z+M/ceQOHBKl9Qy0EVXRFxGs71dfaQTZaerChevuFgWyvXtJiThkj2x6n6oobQxtkKJsXjmBjsNPv9AC+mjtvYHyQ7TBUItg93RJ7ueAorKDbfwqyPYhIcKZlpcV0Bz7/KDRt8MWOJSuDYoPBLzjUe+h+Hh0TbDts+gGfzp030NzIWwnBFt3KRAPHAEQkSkTmVgoxd6m9P1JE5tg94w0ico29/7GK1TUi8kRtDYhIfxFZaoee+32l/aki8o2IvAOsF5EkEdlQ6fh9IpJmb88Xkb+KyAIR2SwiY0XkXyLynYj8oUlXnhYTgrV6p78InZ8JeW70L13v1hQkxNAGuJFX9kRQUuNKrCBxBtaqMkMrINiiG2G7F7ZghWKrEMJS4DI7xNw04Ek70MX5wEFVHWUH3/iviHQFLgNOsQMy1yV8TwPPq+pYILPasXHAg6paWyT/ypSr6lTgBeBT4C5gJHBjE+cfPkel4OMiuH7i+nzqGyF/Sgczp68xFH3wFtk3XUH2zVeS+/uZaHlZlePezIMc+8Xt5Nx6NUd/fiverMMAePbuJuf2H5Bz69WUb1wLgHo9HLvvdrS04cG8uuuR5Wfx1Zn+uyK/8bO58wZeGmwjDMEX3Qr3wjAsQX3DFlcBHrXXhX8NJGCtM18PnC0ifxaRKaqaB+RjifQrInI5UFxHe5OAd+3tN6sdW6Gquxpod0UYuvXARlU9ZAeE3gk0LvJTWszdwI9rOjTVuT5lQejPl4dT1qQQfh0Nb9YRij9+l24vvE331z4En4/SeV9WKVPwwl8JP/dCur3yPlE/+jGFLz8LQMm/PyTqtnuISXuc4vffsPZ9+gHh51yIhEc0zADVwod4uMmRvwLAP+bOG9g32EZ0dIItusdR1aVAdyzn/w/t99NVdTRwGAhX1W1Y0YbWYwXgeFhVPVi91I+A7wP/ra+pWvbXGErOJrxa2crh46qHlmv4aHVazOnAU3UV6es4cmZG2J07e3Isq8H1dmS8XrSsDPV60LJSHN16VDns2bOT0DFWOrCQ08ZStmS+dcAVgpaVomWl4HLhKyygbOkCws+tK/hVVc7hP6t6kNWaB626YM3hbZUhDzsKreaPb6cGcQI5WKHkjqiqW0SmYQ0GICLxwFFVfcueeXCjHUauk6p+ISLLgO11NLMYKxbpW1jCXhuHgZ62q6AQK59UfWLeONJiImw76g1T11lKTlkcds/+S8t/v2OTJgUsBUn2F3+jZEcGzk4xxN8yC4DcBW9SvH05iODsFEu3792Lq3NVj0rpnnUcnffy8c/unP30uOQBOg2ZQNbnj+PO2kPEwLF0SbnBqnPxu4T27E+nwc17Knf26Enk1deTfe0FEBZG2BkTCBs7oUqZkIFDKFswl05X/ICyhfPQ4iJ8ebl0uvRq8h77DbjL6fzzhyh640Uir7sF68GrfsK1ZNP1vNb6V8hZmR7+CPwy2IZ0VILd063w6a7BCvN2g6p6gbeBM0RkJZY4brHLJwMr7PIPYvlvOwP/tl0R6cDP62jvZ8BdIpKBJew1oqpurDTmy7FCKW6prWwzeAJocLLBEPEmzgn9dffzHcu/bQFbaiQq+Wx6XlU1zVX0+CuIv/k54m96loiBY8lb8u5J54X3O5X4m54l/qZn6XXtozhCwgjvfxrlRyzvTfzNz1G2fyO+siI8hUcpP7St2YIL4CvIp3TxfLq/8296fPAVWlpCyf/mVL2mO35O+dpV5Pz4WsrXrcLRvSc4nTh7xdH1r6/Q9bk3kPBwvDlZOPv0J+/Rh8j93S/x7Ksj3Kyq95f83uFAg/17aij3z5038IJgG9FRCWpPV1VrnJ6lqtlYd+Tq7MYKlFydcQ1sb1e1eh+z98/HysRQuewzwDM11JFaabvKeZWP1UlazAXAnQ0qWwkRYp4PeTr5ae/lC//mubLFe1XhfUbiyTtcZZ8jrNPxbXWXUt8ajuKtiwkfcDqOkHDE4UI95aj6UK8HxEHewreInXKdX+wtX7UcZ1w8jlgrwW7YlOm4N64l4pwT+Ryd3XsS+zsr7ZavpJiyBXNxRFWdaFD46t+JuvlOSj5+l/CzL8DZO56iN14k5sFHqYmRrFs0hK1tKQuzAG/MnTdw9FnTdxyot7TBr7SVO3P7IS2mG/BaU08XIeRe17+mvBLy+PxgzWw4tuAN9s+6kaJN8+sVzKLNC4gcbulRSPc+uDr34NDrPyNy2GQ8xw4BENrLPx4TZ6/euDetR0tLUFXKv12Bq2//KmV8ecdQnw+A4ndeI+KCqgP65WtX4uzeA1diP7S0FMQBDoe1XQMO9e7/OX8+wy8XEFi6A+/MnTfQhAsNMK3Gp+tPRORBoHo0/Q9U9Y/BsKcaTwO9m1vJ2c7VqfPkviUXlP9pTBmh1Qf6WpQuU6+ny9TryVv6PgWr/k3slJrd457Co7izdhPR/8Q6ga5nn5ioceTDR+h63t3kLfkn5Ud2EZ40ms6jz2+yXSHDkwlPOZuc238ATichg4YRcdEVFP5jFq4hIwiflEr5mpUUvvKsdfc6dQzR95xIrquqFL31CjEPW1NaIy66nLw/Pgg+L53v/XWNbd7GrEPhlAUyoI0/mYqV3fe3wTakI2FCOwaStJjzsTL4+o087bR+WtmT8UeJaZH4pJ68wxz58JHjA2lVjx3hyIdpNR4DyF/5Ke7svXQ7/+RM2MXfLaP88E4iR6SQu+htelzyAJlv/5KeVz+CI6T+e0hrCO3YSw8tfYq7a3KDtSU8wKizpu/YFGxDOgrGvRAo0mIisRZT+JUYKU5eHnZ34VDZ29A5xs3CffSEC7B4+3JCutbeySvadMK1UBn1eshf+RnR4y9HPWUc9wurgtfjb5NbBtW8h3h4QLDN8AMuahi7MLQcRnQDxx+xp775mxDx9vtP6MwuZzlWrfFnvVmf/YXMN+/DffQA+/9+AwVrvyI3fTYHX72Tg6/dTemub+liuwvKDn1Hzn9O/HY9eYfxFmQR1nfkSfUWfDuHqJFn4QgJJ6RHf0A5+OpdhCUOxxEe5c9LaDEu4pO1XTnaK9h2+ImzmpDc0tBEjHshEKTFjAWW0cI3OVXKH/dckzHLe2kwYrgGlGC6Fzpp0fqXuH6ktK/wm/uA4WdN39GmM+22BUxPNzA8RQD+1iKEPhDyz0mzQv6W3tJtdVhU3b8iLbydCS5Yy9cfDLYRHQEjui1NWsyFwORANvk954qUL0MfWByCpzyQ7XYETmPl4gHsHBxsO/xNeXn4qtXffu+StLS0FnGBGU5gRLclSYtxEKQYwUMd+yetCLtzcywFx4LRfnvEqZ499/Bka4wg1mR8PsfOrVsmZSxfdtXphYXdTuFEpD9DC2FEt2X5IdbS5aDQRQpHrQi7K3eAHKxjDauhodzF33JCcQd0TnRLocrRA/uHpS9eNKPvkSMDxlY69MO0tLTRQTOsA2BEt4XY+GgPF/BIvQVbmFDx9P869P6oqY6164JtS1smUfcuHs/SMQD79pVz+4/3H39dcvEuPvoor0r5ggIvv304k9tu3c9ddx5g1y7L05Ob6+VnPzvArbfsY/GiE2NWv/lNJtnZLT9dThV37rHe6cuWXu3YuXNsCjiqL5ByAH9ucUM6MEZ0W4hrE3rfOrlvQl56RPjaYNviEO02O+TPQ29xfrEk2La0SVSP/Zq0oRUf+/QJ5cWXEnnxpURmPZ9AWJiDyZM7VTnlnXdyGTgojJdfSeSXM3sw6+/ZAHwzr5Bzz+3MM88m8P77uQAsXVLE4MFhdO/esgtES0sjV3y76uL969efk+LxhMXWUfTctLS0s1rUmA6MEd0WIHl2cgjwqzync/TdvXuOSumbsHpxRPj6YNokQthDrrcm/DXk7/ODaUdb5HLe3xBDXveajq1eXUJ8vItevapG6Nyzp5zTTrOCn/ftG0pmpodjRz04XUJ5meJ2KyKC16v86195XH11rUHvmo3X69y2adPUbzNWXD6uuDi2f/1nACb0Y4thRLdluBE4HqH/qNN52h29eyZP65OwakV42MZgGSWCXOZcnDon9FeLXHjcwbKjLRGl+Wuu4P1a5wN/800h06afvKBj4IAwFi203AdbtpRy+LCHrGwv06dHkbGymF/NPMT1N3Ths0/zOeeczoSH+/+nqErW3r0jFy5ZPGNQTna/xibKPCctLW24340yGNH1N8mzkx3U0kvIdjlPvyWu1yln94nP+DYsdHOATTvOKY49k5eH3bUhmsK8+kt3YFTLHuK3tXZB3W5l6ZJiUqZGnnTs2hmxFBZ6uf3H+/nk43wGDQ7D6YSoKAePPhrHrOcTGTw4lGXLipkyNZInn8zikbTDbNpYczSzxplN2dGchPlLl1wTtmf3aVOsUGlN4uSgGYZmY0TX/5wP1Bmr8LDLNfaG+N7Dz0uMX74+NHRbgOyqQjcpOC0j7K7sJDm0LxjttwXGs2RpH/bW+ji+YkUxgweH0aXryb7YyEgH9z/Qkxdfsny6ebleeveu6oJ4881j/OCHscybV8iQIWHcd38PXn31aLNsLinpvGzlykuPbNw4PdXrDY1uVmVwfVpaWsv5PTooRnT9T4ODkx8McY3/QXyvwd9LjFu2OTRkR0saVb/rShYAACAASURBVBNh4h44L/S+8ImODUFzebRWXFq+806emVhXmW/m1exaACgs9OJ2W0vsv/iigORTw4mMPPFz27/fTU6Ol1GjIigrVURABMrLm7Ys3+NxbdqwYdralRnfP7O0JNpfyTEjgVv8VJfBxoiuH0menZwENC4NiojsCwk58+r43v0vTohbsi0kJCDRwipwiPZ4O+TRAdc7v1wayHZbNar6M54ocOEJra1IaamPVatKmDz5hGvh88/z+fzzfAD27nFz6y37uOnGfWSsKOauu6pG3nzttaPcdJOV4WLa9Ci++rKAn959gKsaOaCmKod27xq9aOmSa4cfO5o4qlEnN4y70tLSjE74ERPwxo8kz07+M/BAsypR9Q52u5c9eSQ7sb/b0+AlmaUeZeo/iijzgscHVw538ci0qvP49+b5uOGTEnJLFa8PHjs7jO8NDmHxXg8/mVPKUV+nAr38qc4hXeLxlRaS9emf6Xn17xqcnDGQtGTAmyTdufCP3N+qk0yqUpyd3Tdj29ZJY30+V6f6z2gWl6alpX3Wwm10GMwdzE8kz04OA25udkUizu9CQyddkhCXcFV870V7Xa79DTktzAnzbohk7R1RrLk9kv/u8LBsf9XJ9n9YUMbVI0JYfXsU710ZwZ1zrEGbJ5eW89HVEfzjfF/nsctnHnDi9eQueY+YCVe3SsFtSUR92TP53cnxKFsJqmhRUczijBWX5W3ZnJISAMEFuCcAbXQYjOj6j6ux8k75BxHXlrDQyRcmxvWaEddr4QGX82DdxYWoUEsg3T5we08OgyVAfpn1ZJNXqsR3tv79IU4o8UCxWxkWVZjwev7tWyQ/0x3eN2grmIPGNby9tTMFXYJtR014PCHr1687Z9O3qy6ZVFYWFRfAps9KS0sbEcD22jXtMkdakLitRWoVCdkQHjbl/MT48tFl5QseP5I9pLfXW2OONa9POf2lIrYf9XHX2FDGJ1b996alhnHuW8U8u6KcIrfy9Y8sf+SvJofx489LiQiBNy+L4L6vskfOn16y+x45ErJPeya0yHW1QmL02KqL+aTVxSL2+WT/rl2n7z14YHidA3stzN00IYO14WSMT9cPJM9OjgMOEIgYq6qlY0vLlv85K3tED6+vR01FckuVy/5ZzLMXhDOy54lkr08tLUMVfjExjKX7PNzyWSkb7ozEUcmFsGCPh0+2eLjjjBB++XVZ6QrfsDLHub+McUa2rs6f3326qiVPcE9WHAf71l84MKhSeORI/1XffXfmePW5gh1o5wgQl5aW5guyHW0e417wD5cTqKDWIuEZEeEp0/skRP64V4/0HIcju3qR2HAhtZ+L/26v6tN9dbWbq0+x5opO6OOi1KNkF5+46aoqf1hQxm+mhvFIehl/Oiss/KXTd4T3WPpEna6N9sBk0pe3FsFVxVdQ0HXhiuVXFG/bOjmlFQguQE+gXYW1DBZGdP3DFQFvUaTT0k4RKal9EyLu7NUjfVsxx3JLLQEtcStf7/IwrHvVf2/fGGHuLkuIN2d5KfVAj04n7hWz17q5cLCLLhFCsRscAiFOCZvq2hz3e9dr7TYbRYiWfXcbs1qFW8FdHrZ67Zrzv1uz+sIp5eWdegbbnmpcEmwD2gPGp9tMkmcn9wCmBs0AkciFnSJSvorqXpTz932FvdUb4QTn1aeEcNGQEB7+ppQz4p1cMjSEJ88N57bPS/nrsnIEeP37EcdnJxS7ldlr3Xx1nTUY/n9nhnLF+yWEOuHdKyJkiOvrlGGOvQuuKX94kg+Hsw6L2haq+gseK3XhDam/cMvh8zn27Ng+9nBm5pBxwbSjHi4BZgbbiLaO8ek2k+TZybcBLwXbjuOo5p1XVLzmt9lHT+us2txloCdxSLtmnF32+PAiIoKattdfPt3BunVBGr8O2k1TlbzMQ4PX7NgxdoKqs9bFGK2IwWlpaduDbURbxrgXms+VwTagCiIxX0ZFpkzql+ib2aNbepFIoT+rj5OjYzPC7jwQT/Yhf9YbDER9h+/nDy2xiqteVPHm5/VYsHzZVZ7t289MaSOCC8bF0GyM6DaD5NnJMcC0YNtREyoSOycqMmVCv8Syh7t3TS8RKfZX3Z2kbOjCsHs5Tb7b6q86g8GPeG1XJMUBD+hSXhaxcvW3F+5eu/b8qW53eLf6z2hVGNFtJkZ0m8dUIKi+wPpQkW4fd45KGd8vsej33bqkl4qU+KNep/ji/hX624QrHAsy/FFfoOmq2Rnn8Z+Ajsb7fI4dW7ZMWrl8+ZVnFBV1rTMSXStmUlpaWtdgG9GWMaLbPII3gNZIVKTH+9GdU8b3S8x/rGtsejmUNbdOEaKeCHlhzEOutxb4w8aAoVr0EA8HbEWXlQRy+ILFi2b0yzoy4IxAtdtCuIDvBduItowR3ebRZkS3Ap9Ir7djolPGJvU5+mSX2IXlUN6c+kRw3ur6Yuo7IX9IF3xtYuL8WXy1sheHE1u6nUpJIJ07d54xtYYkkG0V42JoBkZ0m0jy7OQooLEpUFoNPpG412Ojp4xL6nPkmS4xCz3QrFS0E52bUhaG3ZsRQZnffMctQZiWbL6RVya3dDulpZHLv1118QE7CWR7CwSeGmwD2jJtUnRFpLeIvCciO0Rkk4h8ISJD6ihfaL8nicgGP5kxkXYwz9krkvhybMyUsUl9Dr4QG73YC96m1pUo2eMzwn6yuxdHj/jTRr+h6n2AP+LA12LzjL1e59ZNG1NWZ6y4fHxxcWxSS7UTZHqkpaXFB9uItkqbE12xZvN/DMxX1YGqOgL4NdArwKa0OddCXXhE+v69S+yksUl99r0aE73EB01yFURJ6YjFYfe4k2Xnd/62sbkMZ+PiYWxukWSLqmTt3ZO8cMniGYNzcvqe1hJttDJGB9uAtkqbE12sKVpuVX2hYoeqrlHVhSJyv4hkiMg6EXmkrkpEJFxE/iEi60VktYg0dupXuxLdCtwiSX/rGjtxbL8+u96M7rxEodGrZ1ziS/gs9KFeFzmWrmoJG5uCQ70Hf8Gf/O4OUqUsJydh/tIl14bv2TO6OUkg2xpGdJtIW/yCjARO+jGLyLnAYGAc1hfidBGpSxjvAlDVZGAGMFtEGhRYxM74e3oj7W5TlDtk4F+6dZk4tl/i9vc6Ry1rrPiKEP1syLOj7nP9c2FL2dgYbubF/RGU+nUVXUlx56UrMy7N2rRxeqrXG9LZn3W3AYzoNpG2KLq1ca79Wg18CwzDEuHamAy8CaCqW4A9QK1+4WoMAAIRsT/olDkcg//YveuZ4/olbvsoKnJFY84VwXW369Mpr4c8lg7BW2/eQzOXTWOu32IaeDyuTRvWT1+3cuX3J5SWRrf4LIhWihHdJtIWRXcjNfcyBfiTqo62X4NU9dU66mlOKMYOl1Kh1OEYmtaj27jx/RI3fR7VaWVjzk11rkuZH/p/y8IoL20p+2pFNf83PJzkn6rk0K5doxcvXXLt8GPHEk71R51tmIFpaWlBjb/RVmmLojsPCBOR45kaRGQskA/cLCJR9r4EEakrNN4C4Id22SFAX6Chy1pbbQ6tlqbY4Rjx6x7dz5jQL3HDfyM7fdvQ85IchydkhP1ke3dys1rSvupcwOdrupFTY6aNhqJKcVZWv/lLFl8bs39f8iQrWXqHxwF09BtPk2hzoqtWWLTLgHPsKWMbgTTgHfu1VETWAx8CdfnZZgFOu+w/gRtVtaGrtIY11f72QqHDMfL+nt3HTOqbsG5up4jVDTknWkpGLg37aelw2bOjpe0DiNDijT/gjSbPybWSQMYuzlhxed6WzVNTA5QEsi1hXAxNoE3OM1XVg1iJIKvztP2qXj7Kft+N3UtV1VLgxiaaMLSJ5zWJ7K+yOZZ+DBS6pHSh+3lV8196i7zsf3U/5UfKcYQ4SLglgfDEcDz5HvY+uxdvsZdel/ci+nQr0uOep/cQf308IV2aHzYi3+k89d5ePYj1etc8mpXjmFJSWmfvJ0S8fb4I/VXeHe57V3/pG9dyU6tUPb/ikRAH2qSOhdsdum7zphRXXl7vVhHcvJViRLcJtLmebiuhrgE6v1K6v5Rj6ccY+PBABv1+EAVrCyjLrNohz/o8i4i+EQz+w2ASb0vk0NtW1MW85XnEToplwEMDyP6PldUnf3U+Ef0i/CK4lcl1Okff2bvnqal9E75dFh5W5wIUEWJeCPnbyJ85P1rkVyMqMYrViwayvaEDo8fx+WT/ju1nLF229JpT8/J6mwy4dROUsJhtHSO6jcTOFOH34OC1UXawjE4DO+EIcyBOIXJoJPnf5lcpU3qwlMgRVmbfsPgwyrPL8eR5wAnqVtSj4AD1Kjlf5dD9Av9liq9OjtM55ra4XiOn94lfmREetqm2ciKE/Dzko8kvhTw5398zG5zq2fcznmjUbAVVCg4fHpC+ZMm13Q8eHD7Bn/a0Y/o09gQReVBENtpz6deIyPiWMKxam6+LSKuJe21Et/E0a1CmsYQlhlG0tQhPoQdfmY+CdQW4c9xVyoT3DSd/lSXExTuLcee4cR9zE3tmLAXrC9j95G56fr8nR+cdJXZSLI6wlv+3Z7lcZ9wc12vEOX3iV6wNC611gPJc56rUr0PvXxqKu9lRzyq4g2cPh1HWIP9rRRLI5cuvKN22dVJrSQLZVuiRlpbW4C+TiEwALgLGqOqpwNnAvpYyrrViRLfx1Jj2vKUIjw+n+/e6s/vx3ex+cjfhfcIRZ9XB8x4X9sBb5GX7b7aT878cIvpFgAOcnZwk/V8Sg9IGEdEvgvw1+USfEc2B1w6w97m9FG9v+dg0mS7XuOvieg05PzF++YbQ0BqXBg9yHJyYEfaTrV3IP9rc9uJ0/5KJLGpQ+MTKSSDd5Z0C+n9tJ7iAxjw2xQHZFQPWqpqtqgdF5GF7JekGEXlJLFz2vlQAEfmTiPzR3j7LXkW6XkReE5Ewe/9uEfmziKywX4MqtT1VRJaIyM6KXq/dzuN2u+tF5Bp7f6qIzBeRD0Vki4i8bYcfQEROF5F0EVklIl+KSKNDhBrRbTwBz9DaNaUrgx4ZxIBfD8AZ5SS0V9XMLs4IJ4m3JjLo94NI/HEinnwPoT2qljny6RF6XtyTvGV5RCRFkHBLAoc/PByYCxCRAyGu8TPiew26KDFu6ZbQkJNmL8RI8anLw+4qGCz7dze5HdXcB/ltvf52n8+x+7ttZy5ftuzq0woKegRsUPTTTz/l8ccfZ9asWScdW7JkCY888gjFxTXfCNesWcOzzz7Ls88+y5o1awDweDy89dZbzJo1i4yME7HkP//8cw4dClg2pcY8+X0F9BGRbSIyS0RS7P3PqepYVR0JRAAXqaoHa6D7eRE5BzgfeMReNfo6cI29mtQF/KRSG/mqOg54Dvhbpf1xWAuiLgIes/ddjjUYOAqr1/14JRE9DbgXGIG1GGqSiIQAzwJXqurpwGvAHxtx/YAR3aYQ8B6RJ9+KulieU07+ynxiz4ytctxb5MXnseLTHEs/RuTQSJwRJwJplWWW4c51EzksEl+57/h/3ecOcPhbEdkTEjLhqvje/S9NiFuyPSRkV+XDoeLt92XoAzHTHKvXNqX6S/lofRdya/3/qJJ38OCQ9CWLZyRkZg5ucV9idUaPHs1111130v68vDx27txJTEzNESBLSkpIT0/n1ltv5dZbbyU9PZ2SkhJ27NhBXFwcP/nJT1i1yloZn5mZiaoSFxewGO0NFl1VLcRa2PRjIAv4p4jcCEwTkeX29M3pwCl2+Y1Yq0Y/B25W1XKsmUO7VHWbXe1sqsZBebfSe2Xf/Ceq6lPVTZwIjjUZeFdVvap6GEgHxtrHVqjqflX1AWuAJLvtkcD/RGQN8BDQ6BWJbXLKWJAJeE9373N78RZ6EacQf308zkgnR+dZT+Jdp3el7FAZ+1/eDwLhCeEk3JxQ5fzDHx2m1xXW9yz2zFj2PLOHnK9y6HlZwC/FQsSxMzRk4mUJvb2D3e7FTx7JTuzv9vQDcAhdXgt5PPIxz4zFL3ovbvB0rUgtXHcV79Y4J1cVT35+jyWbNqaO9HjCU2oqEwj69etHbm7uSfu//PJLzj77bN57770az9u+fTsDBgwgIiICgAEDBrB9+3bCw8PxeDz4KsWO/+abb7jooota5gJqplE53lTVC8wH5tsiezvWIoszVHWfiKQBlf3qyUAuJ4SyvoUpWst25TEDqfZeE5XLe7G0UoCNqtqsgVYjuo0n4D3dAb8ecNK+rtNPpKnqNKgTQ/5c++yovnf1Pb7tinYx8KFWkp5LxPldaOikSxLiPCPKyxc9cSQnqY/HkyhC6K9C3p2U7NiVfrf7nvpFUrX8QX4bKTX8iMrKIlZu3DC9S1FR11YZFW7r1q107tyZ3r1r7zAWFBRU6QVHR0dTUFDAKaecwrp163jllVeYNGkSW7duJS4ujs6dAxp7p8EB2kVkKOBT1Qrf/misVaCnAtn2atIrsRY2ISKXY4n6VODfIjIO2AIkicggVd0O/Airh1rBNVjug2uApfWYtAC4XURmA13tdu6n9sVPW4EeIjJBVZfa7oYhdo+8wRjRbTxmwMXfiLg2hYVN/l5inDu5rHzhE1nZg+I93riLnMtSBsv+xReVPzrWjavWFOVjWb6kH7tTK+/z+Rw7tm2deCwrq3+rzUnmdrtZuHBhjS6HymgtM+ocDgdXXHEFAF6vl7feeosZM2bw5ZdfkpeXx6hRoxg6tMVd1o2ZPhkFPCsisViZSrZjuRpygfXAbiADQES6Y4nnWXYP+DngaVW9QURuAj4QEZdd/oVKbYSJyHIsJ9qMeuz5GMsFsRarV/yAqmaKSI2iq6rl9iDcMyISg6Wff8OKB9NgjOg2HhPko6UQCVkfHjblvMT4sjFlZel/OZIzbCj7J60Iu3NNatlTSXlExVY/xaXu3Xfx1+OPe6rkHNg/YuOuXadNBEcr6dLXzNGjRzl27BgvvGBpRn5+Pi+++CK33XYbUVEnvmbR0dHs3r37+Of8/HySkpKq1JWRkcGoUaPYt28fTqeTK6+8kldffTUQotvgnq6qrsLKuFKdh+xXdY4/vqnqM5W252INdNXE31W1SixtVb2x2ueKFaqK1bO9v9rx+VgukIrPd1faXkMzY2mbgbTG02KpXgw2ImHfhoennN0nPuaW3j3TPa7ihBVhdx7rLwf3Vi96N389FoInTBX3MSsJpGvXrtPbRBLIXr16cf/993Pvvfdy7733Eh0dze23315FcAEGDRrEzp07KSkpoaSkhJ07dzJo0InZUCUlJXz33XeMGjUKt9uNiCAieDzNSnvXUNpb/rcWp9V/MVshJsJUoBAJXxERnjK9T0LxxJLSTe9lzUz8Ren96xf5kpMB+uruRWNZPrm0NHLFhvVn9SopiQnaIFlD+Oijj9i9ezfFxcU89dRTpKamMmZMzcksDh48yMqVK7nkkkuIiIhg6tSpvPzyywBMnTr1+KAaQHp6OlOmTEFEGDRoEBkZGTz//POcfnpA4uxHBqKRhqCqScG2oSFIbf4iQ80kz07+BpMNNTioFk4qKVvBwYvDvhp9ScljnX/Z5fDWUxwdJCdZa+WltLS024NtRFvC9HQbj+npBgNV7ZVLni8zNOaUvf/NHaR6eIvzgoE+oX+wTevglATbgLaGEd3GY/zgLUhUsR7rf1gPDD5I3sBD6u6TpeFdCukW6iFRIAFI2B8/ddk6766x5/a6ZI83KjZ/pWtn4TEpPA3pGCmUWhlGdBuJEd3GY3q6zSTEo6V9stg36KDmDD6oZf2OqLNHHrERZcQ7rPmSXWo7tyw05sjWQZcmkjcrbvHhfw2ZzBXzr+g0PrUcT/46156FG537urjF22EzewQBI7qNxIiuoUUQVV/PXA4NPKSZgw9o0YDDSu+jREaX0NvhI06smMSNjku88vQH9vg8B8Owl18uOvxR6qSel81PjBySeoZn4JQzPAPJloIdGa7t+w84jo5AzLzqFsaIbiMxott4CoJtQGuic7Ee7Z+pB4+7A7I1PNZyB/SpcAf4q60d/S9ZWBYWO8VXlFF5BRKLj3ycOqnn9+cnRg5NBeiunQde4D5toA+fZ5vz0IrVrl0UUTYGMd/3FsCIbiMxX8LGkxNsAwJNdXdA0hF1drfcAQm2O6BrvZU0k6KIXnv29D13DIDPs++k1WmLj3ySOrHnpfP7RA5LrdjnwOEa5k0YN8ybQBFlR1a5dmze7szs6xM1g2/+w4huIzGi23iaHfO1NSKqvl7HODggUw8POaCF/TNV4o4R1bmEng4fCU11B/gDRbyrxtyXj0g/APXl962p3JIjn6ZO6KHpfaOGnzRfN5KwnlM9I3pO9YxgvyNnfYZrR16OFIxGzArDZmJEt5EY0W08bVp0o4s0p/9h2x1wUD2J2RrRpYhuIdbsgESaEKqupdk07EcLPSGdUgHUV5QFvlpdFkuzPktRdH6/qBGptZVJ9HVLTizvhhtP0Xrn3kUbXPuiy8Vj0ok3DSO6jcSIbuNp9e6FULeW9Mli/6CDmj34oJbbswO6RJQTL1bUpkaF4wsmudH9txzuNe54iEeve/du6gk6tCzr81RF5ydFnZJaV7kQXJFjvAMmj/EO4KgU7spwbd+z35EzXOV4GEFD/bR8+pF2hhHdxtMqerqi6ut9lAMDMvVIhTugt+UO6OVQ4oPpDvAXPnGVrRl1jwsrhJ61z72jqCHnLs/6d6qqzu/feWRqQ8p31aj+57lH9/eh3u3OQxmrnbt8BVI6BsG/aZPbH3nBNqCtYUS38QRUdGOKNCcpUw8MOaj5Aw/hSczWiNhCuod4SRQrG2ujM7K2FdYm/2SZzxlaxT/r8xxscLDYFdlzUkHn9++cnNrQcxyIc4g3fuwQbzwllGevcu3c+J3zUIJXfIPqP7tDsj3YBrQ1jOg2nkx/Vxjq1uK+R9g/6JDmDD6g5f2y1NU9j9iIchLamjvAX2R1O3XNsS5DTw6hp8WNCte4IvuLVEXnD+h8ampjbYggtPtkz7CUyZ5hHHQc25Th2p6TJfmnIiayls2xtLS07GAb0dYwott4Tkqq2BBsd8D+gYf0yOCDWjTAcgd0jrLcAXFSKXZoR8fjDM/fcMqtPbAzsFbg8+bsAfo1tr6M7P+kqvrSB0aPbnIUsnhflxGXlo/Fg7dkg3Pf4vWuvZFluEchHXqFYo3ZnQ11Y0S3kay/YX1B8uzkLGoZzIkp1Oz+h/XgkAOaP/AQ3oQcDa/kDuiL9TLUwarT/m+9Opwn5UfzuXceoAmiC7Ay58sURdMHRZ/WrPCPLpwRo71Jk0Z7k8iVor0Zrh279jqyBqsQ35x62yjb6i9iqI4R3SYQXqYb+mSTYC8WKO97RF3d84mNKCdRoDvWy9AE9sdPWVYUlVBjQkqve1ezonKvyvkqRdH0wdFj/BJ3N1Yj+57jPrWvor6djsOrVrl2ludLyRiEMH/U3wYwPd0mYES3CbzxlHcfMC3YdrQ3ykJjjmwbfHWtMy7Ue6TZK9++zflfiqovfUjMGX4LeC6IY6Cv9+kDy3tTSvmx1a7dy7Y6D/T2iK/Fc+UEGdPTbQJGdJtGoxLRGRrGyjH370EcY2s6pup1o+V+mUGw+ujcFEXTh8aM9XumiXBCu0zwDEmZ4BlCpuRuyQjZfuSw5J2KcFJ+t3aA6ek2ASO6TcOIrp/Z0f/ihWXhXabUdlw9h3ZQe2rsRrPm6LwU0AVDY8a1WGr23ho77OLyM4Z58ZVtcu5fus61J6yE8tFIu4nJbHq6TcCIbtMwoutHiiN67t3T97w6U+543TuP4EfRBVhz9JupCguGRo+dItVmSvgTJ46wZG/fCcnevuRLyYGVrh3bdzmODFDRtjzH+nBaWpqJuNcEjOg2jT1AEa0oKV9bRRHfyjH35yJS56wOn2d3i2RhXnv0m6mqvgXDYsa3qPBWEK0RCdPdIxMU1d2OrNWrXDtKcqV4DEJ4S7ftZ0wvt4m0l8ecgDJ8y2YFVgTbjvbA5mHXLfSEdKo32Ix6j/VuKRvWHUufujlv2SINYJZWQaS/r+dpV5ZPmPijsqllyZ6+C0PUuSlQ7fuBlcE2oK1iRLfpfBNsA9o6edH9t2b2Gj+xvnKqZfngbdEYuOuPLZiyKXdpQIW3gjBCYsZ7Bk+5oSx1xKVlY7+L83ZJR1t9YKV5wTagrWJEt+mYL10z8ImrbPWoe5yVg9nUWta9dycB+K5uyF04ZWPu4qAIbwU9NHrwhe4xKTeVTes8wT1kWScNW4niDZY9teAB0ustZagR49NtOiswft0mszb5jpOC2dSGz70jYJGsNuYungIsOiV20kQRCVqnxIkj9BRvnzNP8fahkNJDK0N2bNvpOJzkE23Sijw/k2EG0ZqO6ek2keFbNruBRcG2oy2S1S15zbEuw2qdHlYdn2d/QAeZNuYunrwhd+ESVfUFst3aiCI8LtV9SsrNZdP7nVs+al1XX9QiNKhxbOcGse02j+npNo95wHnBNqItYQWzua07jehFqq8g4L27TblLJ6vq4uQuUycEs8dbnb6+7qf2Le9OOZ4CK+X8/i5u8QQ65bwR3WZgRLd5mMG0RvLtaT9fpw7n5IaWV19BJmiLzVyoi815yyYpuvjULimtSngBQnF1rkg5nyMFO1YELuV8CbC0hdto1xjRbR7fYkXOD3h81QcPHSK9qJCuTief9R8AwDPZWcwrKEQEujmdPBoXR0/XyeNUn+Tl8UKOFQb1jm7d+X5MDOU+H3cfOECmx82M2C7M6NIFgN9mHuKa2C6MCG/+E/6BuMnLCqMSGyy4AF73rj1AUEQXYEve8knA4lO7pJwpIi0yV7i5dKuWcn6NazeFlLZUyvnFaWlpZS1Qb4ehVd292xrDt2z2AguC0fZlMTG8lFh1QdPNXbrySf/+fJzUn5SoKGZlnzzrKNfrZVZONu/1S+Kf/ZKYlZNNntfLouIiRoSH80lSf97PywVgS2kpPvCL4JaFRmdtHXJNnFmzFgAAHfRJREFUo9MH+dw7SpvdeDPZkrd80tqj3yxX1QbNIsgrLeD2j39D6svXMe3l61h1YMNJZZbuXc15/7iZs165nivf+SkAOcW5XP7WXZz16g38d9vC42Vv/uhXZBbUHyu8IuX8tWWTxv2gbPKxoZ74+Q6VnQ29zgZiXAvNxPR0m8/XwMWBbvSMTp044C6vsi/KeaIjVuLTGqNrLy4qYkKnSGLtshM6RbKoqIjODgdl6qNy7MRns7P5bW//5GhcOeaBXYhjXGPP83kyo/1iQDPZmp8xUdElo7tOH19fjzdt7jOkDhjPi5f9nnKvmxJ31ftGXmkBD371FG9e/QQJ0b3ILjoGwKebvubKkedzyfCz+NEH93H+kCn8b/tiknsNoXfnxkUL7URYjyme4alTPMPZ78jZsNK1IzdbCkYhNDjdUS0Y0W0mpqfbfD6A1jOP8m9ZWUzfsZ1/5+fx0+4n/1APe9zEhZy41/Z2uTjscTMxMpJsj5dr9+zmlq5dmVdYwIjw8BrdE41lZ9JFC8vCuzRacFVV0ZJGpedpSbblr5y4+ujcFapaa1zfgrIilu9by7WnXghAqDOEmPCqOvfJpq85f8hUEqKtG1r3SMuV43K6KPWUUe4tR8SBx+fh1ZUfcMf4Gc2yO9HXbeT3y8dNvqEsxXG6e8DiMHWta2JVOVguNUMzkCDOA283bB42/L8EYRbDAXc5P9m//7hPtzIv5eRQpj5+2r3quMqrR3Nwq3JHN0uQn8/OJtwh3NT1RBo2tyo/3r+P5xISeS47i0NuD5fERDM9qvGdpOKInnuXjXu4KyJRjT3X5zmys7zgrZMvLsgM6jxm6ZhuZ48VkZOeFDce/o5ffvk4g7slsfnIDpJ7D+GRs+6hU2jE8TJpXz+D2+dhW/ZuisqLufmMK7ly5PnklxXy089+R1bxMX6dcgfbsnfROSySq5Iv8Ps1HJPC3RmuHXv2ObKHqjTYZz4rLS3tLr8b08EwPV3/8EawDajOhdHR/K/g5PnrvV0hHHKf6Khlejwn9Wbfyz3GpdExrC0pIUSEJ+PjeTGn8atSrWA29+U2RXABfO6dh5pyXkuzveDbCatyvlqpqu7qxzw+Lxsyv+P6077Pf296lU4h4fx92dtVy6iX9ZnbmH3ln3nr6id4eslsdh7dR3RYFLOv+gtf3PAyI3sP4esdS/je0BQe+M9fuP3j39ToG24qXTQq6Vz3qJSbyqb3SCkfkdHZF7EM5aTrqcabfjOgA2NE1z98DOQH24jd5Sd8vN8UFjAg9OSsMZMiI/n/9s48PMry6v+fkxD2sAUwYFiVZVg0KqiAQbRKFfeWShG11moba31fNWpt+7Ol9dXGaltrxeJPX8W9sWqrplZcIvumbLLMgJCEJQmEBBLIPst5/3gmkED2zMwzM7k/18WVmXnu537ODDPfOXPuc5+zqqKcUq+XUq+XVRXlTOtxYlNdqdfLkrIyruvVi0qfD/F3Xqz2tf4XkWvMvGWeuB7NFrNpDK87N2zCNiez+9imC9cXf7L+ZOEdFD+AQfEDOGfwOABmjZnB1oP1C3INih/AjJHn071zN/p178MFSWezvbB+J/OnVy7inim38v72z5mYOIanZj3ME8teCPjziEFiR/kGTZ5TM/XCedUpRx2e05fGakxDxcm/mT9//pqAG9ABMaIbABwuZyXwTiiv+UB+HnP37CG3poZLdu/i3ZIS/nyokGtzsrk+J4dV5eX8YuBAALZWVfLIActp7BMbS2pCAjfuyeXGPbnclZBwfFEN4G/FRaQm9EdEuKhHD7ZVVXJdbg6z+7QuK640fviOgsQLmy1m0xTqPRTWveZ2H9t04VfFizfUFd6BPRMY1Gsgu4v3ArByz3pG9R9e77yZZ17Euv1f4/F5qHRXsbHAyZkJJ/Z/5Bzex8GyIqYMTabSU0WMWF991Z76C6eBphudE6Z5xl78w+pLRl1Vfe72gb5ey1Fqt2C/HtSLdyBMTDdAOMc6LgaW2G1HOOCTTtXLLnpyry+2c6tTxGpR9VRXlzwjQOcAmhYURvQ8a93k/lcki0hnsOK6D378B9xeN0P7DOaPs37Bh06rPtIt51wHwMK1b/H2lo8QiWHuWVdxx+Qbj893179+w0PT72BEvyEUlR/hjvd+ybHqctJSbmfWmBkhfW4evJXbYvdt2NJp780P//ZXuSG9eJRiRDdAOMc6BMgGhttsiu1sOuvupYf7jWtX/zGve+82d9k74wNlU7AZ0XPiusn9rzwuvFHGZ0npKZfbbUS0YMILAcJf2LzDLzQUJUzYfLivo8XFbBrD594d7vVk65FTtuX8dUUfbVbVaNyt9bzdBkQTRnQDS9hlMYQST2yXY1vG/zihNcVsGsPn3htxG3dyy7ZOXlv076+jTHgPAO/bbUQ0YUQ3gDhczl3Ax3bbYRcbku/brDGxSYGYS31HBgdinlCzp2zb5DWHMrdEkfC+lJSe0lwqmaEVGNENPI/abYAd5A+aurYsfkiritk0hvoqS8AXDsW628Te8u2T1hz6cIuq2l43op24MaGFgGNEN8A4XM5VdLBWPtVx8Ydco+cGbLuuz7M3GxosHREx7C13Tlp96INtqlppty3t4KWk9JS9dhsRbRjRDQ4dytv96ryHcpCYgOXUet27o6IVzL5y13mrCt93RqjwVgOP2W1ENGJENwg4XM4lwPLmxkUD2cOvWl7dtV+ri9k0hc+T1635UZHB/ood564q/FckCu+LSekp++w2Ihoxohs8ot7breg2YF/usCuTAz6xr2x4wOe0kf0VO89dWfgvl6ra2desNVQBj9ttRLRiRDdIOFzOT4G1dtsRLKxiNg8eQaS99Vnr4fOW5oEODOSc4UBexc5zVhS+tzNChHdhUnpKvt1GRCtGdINL1Hq7rjE3tauYTWP43NlR+5M2v2JXsl94y+22pQkqgHS7jYhmjOgGEYfL+W+isOjz0fhhOwsSp7SrmE1j+NzZ0ZLf2iD5FbuSlx98Z5eqltltSyM8l5SectBuI6IZI7rB5yG7DQgkPulUvSH5XiFINQZ83oN9gjFvOFFQmX32soPvZIeh8JYBT9htRLRjRDfIOFzOz7Fa+kQFX0/8yer2VA9rClWfF606MxhzhxsHKrPPWnbwH9mqGk7pcX9OSk9pvgOmoV1E3P72COV+YBbQo7mB4UxRwoTN+7sPmf7mJ/MpOJILCPMufoCRiSeKgX2du5LML19GJIYYiWX21J9yxqCJHCzZx6LPH8Pn8zIn5V5GJo7H6/Py3EcP85NvP0rnuK6otzAbCIqghyMHKnPOWnrw7S0Xn3bjcAnwgmQb2A383mYbOgSmtGOIcI51/JwIXqDwxHY5tnzak6WvLH0y6czEiUx1XIXH66bGU033Lie68VS7K+ncqSsiQl7xbl767FEembOId1c9x7ih55MQn8j7a1/kzpnzWbL1n3SN686FY6z2cu7KVSu8VWsCspU4kjit6/AtFyfeOExE7Ox8/O2k9JRPbLx+h8F4uqHjT8CtwDi7DWkLG5Lv21ThqUrZXbCFW2b8HIBOsXF0iq3fX61L3Il9DdXuKmp388bGdMLtqaHGU01sTCwV1WVs3bOau2edCCH63Llt8gAy1m1me0EhPbt05sErrDK+i7fuZG3OXnp2sVoWXTlxDI5Bp2aiLd+Zw5psa6frBSOHMn30CAAyNzvZceAQg/v0Yu4FViry+tz9VNS4SfGPCRQHq3InLjnw920zEr+fJCKta9ERGP5uBDd0RKToikgi8DQwGWu7Yi5wL/Ceqk5o5VyrVLVNK/Eichvwiao2m9PocDndzrGOO4AVRFgsPT9xyrqy+CEpxUW76Nm1N68v+QN5xdkMGTCK2VPvrie0AJtzVvDBuhc5VllC6hXWTtLp46/j1S+ewOOtYe70+/jP+lf59jnzEDlRYkG9RW3Kz500Iolpo4bz1tpN9R6fPmoEM8Y2XhKioPQYa7L38t+XXURsjPDisnU4Bg2kZ5fO7Ck+Qtq3p/PGmo0UlBylf88efJm7nzunB3Tz3XEKq/aO9wsvIRbeEuC+EF6vwxNRH34AsT6l/wSWqOoZqjoO+CVwWivniQVoq+D6uQ1ocQlCh8u5Gni2HdcLOdVx8UWuMTeNAPCql31F35Ay7loenv08XTp15dNNfz/lnLNHXMQjcxbx45m/499fLQKgX/xp3Hvtn3jghmfp3KkrpRXFnNZnCK9k/Z6XPn2UA0eyq8DTpqI5ZwxIoHvnuOYHnkTh0TKGJfSlc6dYYmNiGDkgga15BxARPD5FVXF7vcTGxPDFjmwuGjWc2JjgfWQKq/aO/+LAW3mqWtr86IBxX1J6yoHmBolI2Un3bxORZ/23U0Xk1gbOGS4irWphLCLXi0hE/hpsKREnusAlgFtVF9Y+oKqbgONJ9f7/7OUissH/b6r/8Rki8oWIvAls8T9WVufYEhF5R0RcIvKGX+ARkfNEZKmIrBeRxSIySERmA5OAN0Rkk4i0tF7AL4E9AXgdQsL68x7cjcQMAOjbYwB9egxg+GkOAJJHTmdfUUONYy3OHHwWRUfzKausryEfrnuJqyf/kCVb/8nkM7/FrEk/4P01C6oI8C+vlbv28MfFy8hYt5mKmlNLwib27kn2ocOUV9dQ4/HiOlBISUUlXeM6cVZSIn/+dAX9enSna1wn9h0uYcLpiYE0r0EOVe0bl1XwZr6qlgT9YpCZlJ6yqL2TqOpCVQ1UAf/ridAQXEuJRNGdAKxvZkwhcLmqngvMAZ6pc+x84Fd+D/lkzsEKU4wDRgLTRCQO+CswW1XPA14CHlPVd4CvgHmqmtzSgiYOl7McuAMI+xXM7OGzlld1Tbig9n6v7v3o23MAB0us77cdeRtJ7FO/7O2h0jxqF2f3HdqJx+umR9cT60Pf5G+md48EBvZOwu2ptrIcYmKorD7iCaTtU88cxi9mXcJ9M1Po1a0LH27afsqY03rFc8nYkfz/pWt5Ydk6BvXuRYy/6cUlY8/g/pkpXJs8jo+37uSKCaNZm72XV1dt4LPtjX/RBIKi6v2OrII3CoIsvEeAHwdiIhGZLyIPNHI4VkReEJFtIvJJrXMiIneKyJcisllE3hWR7n7n6FrgSb8jE7ByoeFERMZ0W0Ac8KyIJANeYHSdY+tUNaeR89ap6n4AEdmE1WSyBEvoP/U7vrFAQXuMc7icnznHOh4D/l975gkmVjGbWacUs/netHtY9PnjeH1u+vcaxM0zHmL59g8BSBl3DZtylrF256fExnQiLrYzt1/2yPG4rary8YbX+dHlvwZgmuMqFmU9js/n5aqJZxwAAlYeMr5rl+O3Lxg5lP9d/mWD4y4YOZQLRg4F4KOvXfTu3rXe8bwjlpfeP74H/9q4nbsvncLrqzdw6Fg5A+KDlwFYVJ3n+LzgDde3Bs1TEekbhEv8V1J6Smvex938n4la+gEftOC8UcBcVb1TRN4GvovVzv09VX0BQET+B/iRqv5VRD4AMv1OTVQSiaK7DZjdzJj7gIPA2VjefN0K/k3te6+7BdWL9foIsE1Vp7Te1Cb5DZbXPTPA87YbfzGbw4gMOflYUv8z+fl3/1bvsZRx1xy/fXnyXC5PntvgvCLCPVc/efx+Yt9hPPxdqzFB1ZGne4MvIPYDHK2solc3S0C37j/AoN4Np8Eeq6omvmsXjpRXsiXvAPd8a1q94x9v3cnsSRPx+WO8tc/D7fUGzNbGKK7OG/t5wes7vjXoZhWRfgGc+uWk9JTXW3lOpaoe/xL2LyJPasF5Of7wH1i/UIf7b0/wi20foCewuJX2RCyRKLpZwOMicmedb8rJQPc6Y3oD+1XVJyI/wPJO28oOYICITFHV1f5ww2hV3QYcA9qU1O5wOX3OsY6bsGozDG2HfQHHNWbuMk9cjxmhup76KorBd4rAt5TXV29k96FiyqtrePTDz5k5fhS7Dx0mv+QoAvTt0Y3Z500EoLSyin98+TV3+LMQXl21nvIaN7EifOfcCfUW5LbmHWBIv9709ov3sIQ+PLV4GYN6xzO4T2hSaour88d8VvDajssG3UKAhHcdcFcA5jkFsb6kP/TfXYjVL/BkR6Z27WMRcL2qbvYL+Ixg2BSORJzoqqqKyA3A0yLyMJYXm4sVi63lOeBdEfke8AVNe7fNXa/Gv2j2jD+VpxNWuto2rDfOQhGpBKa0tlC1w+Usdo51fA+r4HlQahm0lqPxQ78pSJwaaK++SXzu3Bwgoa3n3zzlnFMeqw0ZnEzvbl2PCy7A3Zc2nrwy4fTEeotn1ySP45pGRwePw9UFYz7Lf23nZYNvURFp8+uE1dn3O0npKUEpKqSq+4C63vDwJobHAwV+J2YekOd/vM2OTKRgdqSFAc6xjruwvihsxSexNcsueirXF9t5dPOjA0dNWeZSn3vnxaG8ZiTSt3PiN5cPvrWviLQl9l0DXJKUnrKqLdcWkTJV7Vnn/m3AJFX9mYjMB8pU9amTzhmOFZ+d4L//ANBTVeeLyF1YxaD2YGUSxavqbSIyDXgBy0Oeraq722JvOGNEN0xwjnW8Ctxipw2bJv506eGE8SEXv6qS579Cy1sSH+zw9O182q7LB9/aW/xpfK0gNSk9xXT2DQMiMWUsWknFnztsB0X9xm8+3G9cii0X1/LA7quNYo7UHDzzk/xXjqr6DrXitOeN4IYPRnTDBIfLWQF8Bwh5aT1PbJdjWyb8pB8iIX8/+LyH99KOeG5HpKSm8Ay/8Ba2YPgK4J5g22RoOUZ0wwiHy7kLK4UslNtA2Zh87yaNiW1z9kB78Lmz99tx3UinpKbwjMV5i8qaEd48YHZSesqp2/EMtmFEN8xwuJwbgStpR8ZFa8hPnLLuWPxQe8IKgM+dYwShjZS6D41cnPdyuaqvofY6xVjlGk3rnTDDiG4Y4i+Mcy31N3UEnJo6xWzswuctDGTSf4ej1F004uO8lyt86qtbtKYUmJmUnrLNLrsMjWNEN0xxuJxZWDvvguYJfnXuiWI2dqDq86DVHaI9TzA56i4asTjvpSqf+gqw+pxdmZSeEnUNUaMFI7phjL+b8DysnTwBJWfYlSuqup0oZmMH6j2wmxM7lAzt4Ki7ePjivJdKveq9Oik9ZbXd9hgax4humONwOf8B/IgAViWr6NZ/f87wq84O1HxtxVuzuyWr74aWUXHUXfzTYU/MWGq3IYamMaIbAThczleAuwmA8FrFbB4qxv5GiPg8e6T5UYYWUAbMSsvI/MJuQwzNY0Q3QnC4nH8Dvk87F9d2jJ673BPXw3YvF0C9h1vV7cPQIAeBGWkZmcbDjRCM6EYQDpfzbazOGW36WX40fug3+YOmXhhYq9qGak1ZW9vzGI6zE5iSlpHZXFF/QxhhRDfCcLica4ALgFNbITSBT2JrNiTf60OkS/Ojg4/PvXc35v3XHtYAU9MyMhsryG8IU8ybPgJxuJy5wFTgs5aes2XCnat8sV3GBM2oVuJzZ4eiB1i08j5waVpGZrHdhhhajxHdCMXhcpZi7Vx7sbmxxX0dXxf3mzA9+Fa1HJ9nX1h43BGGAr8DvpOWkdmq2s2G8CHiipgbTuBwOT3Anc6xjp3AE1itherhie1S9vXE1D52FLNpCvUdDatuGRFACXBzWkbmv+02xNA+wuqDaGgbDpfzSeA6rP329diY/N8bNaZTWAmc+soKQQfbbUcEsRmYZAQ3OjCiGyU4XM4PgbOAz2sfy0+8cN2x+GG2FbNpDK87J9duGyKIRVgZClHXQaGjYsILUYTD5cx3jnVcDjxYE9fzPteYeWFZHNznzjbxyOYpAn6SlpH5nt2GGAKL8XSjDIfLqQ6X8w8bz/6vK5CYA82fEXp8noKezY/q0HwATDCCG52YHmlRzILUrM7AI8DDhMmvGlXV6pI/HwV6221LGHIUuDctI/Nluw0xBA8juh2ABalZ5wEvAxPttsXnLcqpOfpqWIY9bOYd4P60jMx9dhtiCC5GdDsIC1KzOgE/BuYDttXQ9VSuW+mpWjHNruuHITuAe9IyMj+12xBDaDCi28FYkJrVCyvccC821LKtPpaxTD15YbVRwybKgf8B/pSWkVljtzGG0GFEt4OyIDVrCPAYcDMNbKoIFlVHnt0GNeNDdb0wxIOVBvbbtIxM05SzA2JEt4OzIDXrHOAp4NJgX0vVW1Nd8hcFOuIWYB/wFjA/LSNzl93GGOzDiK4BgAWpWVcBjwLnBOsaPve+7TVl/xgXrPnDFAX+Cfw6LSPTNIo0GNE11GdBatalQBpWMZ2Ahh3cFUuWeas3dJR4bhXwBvB0WkbmVruNMYQPRnQNDbIgNWsccB9wE9A9EHNWl766Un1F0Z65cBBYACxMy8g8ZLcxhvDDiK6hSRakZvUBfgCkAmPbM1fVkb/kgDdac3RXYJXZfMtkIxiawoiuocUsSM26BEuArwH6teZc9VWVVpc+14sQZkqEgGzgNeDVtIzMbLuNMUQGRnQNrca/0eJi4AbgeuD05s7x1uzc6C7PDNoiXQgpxOrc8BqwIi0j03yADK3CiK6hXSxIzRLgfCwBvgEY3dC4mvL/LPXVOC8OpW0BZCvwEZbYrknLyPTZbI8hgjGi2wAi4gW2AHFYyeyvAE+raps+bCJSpqqnVNYSkUVApqq+08r5lgAPqOpXbbEnmCxIzRoPXA1cBEwBEgCqSl9ch+/o+Xba1gp2AyuB5cBiUw/BEEjCovJUGFKpqskAIjIQeBOrKtZvbLUqArh74aXbgG3AE34veAwwFa2eiPUlNsH/N1w4hmXvaiyhXZmWkRmWJTEN0YHxdBvgZM9UREYCXwL9sXZT/Q2YhOUF36+qX4jIbcAkVf2Z/5xM4ClVXSIiZcDzwCXAEeD7qnqorqcrIucBfwJ6YhWwvk1VCxqxbwmwCetnfS/gdlVdJyLnA09j1VSoBH6oqjtEZDxWlbHOWDWUvwvkA28DSUAs8KiqZrT/1WuaP865ugtWFsRoYNRJf/sH6bIeoADYD7iwRHYbsD0tI3NvkK5pMDSI8XRbgKpmi9XYcSBWrQJUdaKIjAU+EZEG45h16AFsUNU0Efk1lsf8s9qDIhIH/BW4zi/Gc7DqItze1JyqOlVEpgMvYXmQLmC6qnpE5DLgcSyBTQX+oqpviEhnLJGdBeSr6lV+G0JS3zYtI7Maq+fX5pOP/XHO1T2wKqAN9P+tvd0X6wsjrs7fOKznUYlVPKaizt9jWCKbD+QBh0wc1hAuGNFtObWpThdhCSSq6hKRPTSyeFQHH1DrRb4OnNwRYAyWaH4qImCJSYNebh3e8tuwTER6iUgfIB54RURGYW0/rf0Zvxr4lYgkAe+p6jcisgV4SkSewPK2lzdzvaCTlpFZjiWcuTab0ix14v61XA8Mx4q1X93EeX2Am1T1ueBaaAhXTLueFuAPL3ix0oUayzP1UP/17NrElCfHdATYpqrJ/n8TVXVmM2adPIdi1U74QlUnYOXSdgVQ1TeBa7G8wsUicqmq7gTOwxKO3/s9cEPLqazz/5WsqrktPK8P8NMg2mUIc4zoNoOIDAAWAs+qFQBfBszzHxsNDMUqRJ0LJItIjIgMwYq31hIDzPbfvglr91JddgADRGSKf944fxy2Keb4x14ElKpqKdZiX57/+G11nsNIIFtVn8Hqv3WWiAwGKlT1dawqY+c2/2oYWoqIzBeRB+rc3yoiw4F04AwR2SQiT/qPPSgiX4rI1yLyW3ssNoQKE15omG4isokTKWOvYS1yATwHLPT/PPdgLXhVi8hKIAfLc9wKbKgzXzkwXkTWA6X4BbMWVa0RkdnAM/7YaiesBbGmqlIdEZFV+BfS/I/9ASu8cD+QVWfsHOBmEXEDB4DfAZOBJ0XEB7iBu1r20hj81L5HAHJU9YYWnvcwMKFOdsxMrIXE87F+8XwgItNVdVnALTaEBSZ7wWBoAw3lXovIDPwxXRGZD5Sp6lP+Y1ux8pfBiqFP8D/+FNavoBL/sZ7A71X1f4P/LAx2YDxdgyE4tDTGL1gi+3zwTTKEAyamG8aIyAJ/7K/uvx/abZehReTij5OLyLlAbXW1Y1hZJrUsBm4XkZ7+saf7N+QYohTj6YYxqnq33TYY2sy7wK3+uO+XwE4AVS0WkZX+cMN/VPVBEXEAq/3pgmVYueCFNtltCDImpmswGAwhxIQXDAaDIYQY0TUYDIYQYkTXYDAYQogRXYPBYAghRnQNBoMhhBjRNRgMhhBiRNdgMBhCiBFdg8FgCCFGdA0GgyGE/B9GbR3dVih3FwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.set_title ('class_distribution', y = 1.08) # 1.08 to move title up slightly\n", + "\n", + "# Setup pie chart with autopct to round off floats\n", + "ax.pie(class_dist, labels=class_dist.index, autopct='%1.1f%%',\n", + " shadow=False, startangle=90)\n", + "\n", + "ax.axis('equal') # Make the pie chart a circle rather than elipse\n", + "\n", + "plt.show()\n", + "df.reset_index(inplace=True)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we have an idea of how the classes are distribution. We can see the bass drum constitues a disproportionately small amount of the data. In order to even out the data we would have to throw out a lot of data which is not ideal." + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "signals = {}\n", + "fft = {}\n", + "fbank = {}\n", + "mfccs = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [], + "source": [ + "def calc_fft(y, rate):\n", + " n = len(y)\n", + " freq = np.fft.rfftfreq(n, d = 1/rate) # d is our spacing between signal (time that passes between each sample)\n", + " Y = abs(np.fft.rfft(y) / n) # Find the magnitude of our fft, scaled by length of signal\n", + " return(Y, freq)" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [], + "source": [ + "# Grab a sample for each class then calculate its signal, fft, fbank, and mfcc\n", + "for c in classes:\n", + " wav_file = df[df.label==c].iloc[0,0] # Use iloc to select by position\n", + " signal, rate = librosa.load('data/wavfiles/'+wav_file, sr=44100) # Read in signal and rate with sr coming from scipy.io\n", + " signals[c] = signal\n", + " fft[c] = calc_fft(signal, rate)\n", + " \n", + " bank = logfbank(signal[:rate], rate, nfilt=26, nfft=1103).T # Get nfft with sr / 40\n", + " fbank[c] = bank\n", + " mel = mfcc(signal[:rate], rate, numcep=13, nfft = 1103).T\n", + " mfccs[c] = mel" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hcZdnH8d89W7PpPaQuKSSEjnRDR1pAsSEKCOgroKgoCgQISAcrKipY6QiIAkroSIcACYYWEiC9957sZnfnfv94zobZ2dmamZ3Zne/nunKxc8pz7gl59pxzP83cXQAAAAAAAMgtsWwHAAAAAAAAgPpI2gAAAAAAAOQgkjYAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOQgkjYAAHRAZubN+DM3Ovb22p9zgZmdZGYvmtlyM9tiZvPM7GEzOzbN13nezJ5PZ5kAAADpZO6e7RgAAECamdkBSZsekvS2pCsTtlW6+//MbISkbu7+v7aKryFm9n1Jv5H0N0kPS9okaYSk8ZI+dPeL0nitsZLk7tPTVSYAAEA6kbQBACAPRD1pXnb307IdS2PMbL6kqe7++RT7Yu4eT8M1Sty9cnvLAQAAyDSGRwEAkOeSh0eZWXk0fOpcM7vBzJaa2QYzu9vMysxspJk9aWYbzexjMzsjRZl7mNm/zWxNNMTpFTM7uBnh9JK0NNWO5ISNme1oZveY2QozqzSzaWb2+aRjroy+y661MUt6INpXb3iUmfUxs1vMbFFU5gwzOzvpmAFmdoeZLY6OWWJmj5pZv2Z8PwAAgGYrzHYAAAAgZ10i6XlJZ0gaK+lnkuKS9pL0Z0m/kPRtSbeZ2RR3f1+SzGxvSS9J+p+kb0naLOlcSc+Y2UHuPrWRa74h6Qwzmy3pEXf/MNVBZjZE0uuSlkv6oaQVkr4i6Z9mdpK7/zvplEck/VXST6PvkKrMbpJekdRJYRjZHEnHSLol6p1zc3ToXZKGSbpQ0gJJ/SUdKamske8FAADQYiRtAABAQ2a5e20vmiejnjKnSzrd3e+WJDObIumzkr4k6f3o2J9Lmi/pCHffGh33pKT3JF0u6aRGrnmupAcVEkQ/M7NVkp6WdJu7P5Vw3JWSTNKh7r4qIcYhkq6WlJy0+a27/6aJ73u+QjJmN3f/KNr2jJn1kPQTM7vF3aslHSjpUne/J+HcfzRRNgAAQIsxPAoAADTk8aTPM6L/Plm7wd3XKPR2GSJJZtZJ0qEKSYy4mRWaWaFCguUZSYc0dsGoZ81eURnXSZom6fMKCZmJCYceK+kxSetqrxFd50lJe0S9ZhI91Izve6xC7505KcrsrdDbSJLelHShmZ1vZruZmTWjbAAAgBYjaQMAABqyJunz1ka2l0Y/95JUoNCjpirpz3cl9TSzRp8/3L3G3V9094nufpSk4ZLeVejt0jM6rJ+kr6e4xs+j/b2Til3S2DUTyjwkRZm1vWhqy/yKQk+eiyS9I2mRmV3R1PcCAABoKYZHAQCAdFqrMGfM7yXdmeqAlq4A5e6LzewvCkuBj1KY92aVwrw5P23gtMXJxTTjUqsUeg2d38D+mVE8yyWdJ+k8MxutMOfPVQrz6tzSjOsAAAA0C0kbAACQNu6+ycxekrSHpLdamqAxsyHuviDFrjHRf2tXlnpCYW6Z9919S6sDrusJSd+TND9KzDTJ3WdKutTMzpW0a5riAAAAkETSBgAApN8Fkl5UmIfmrwpDk/pI2ltSgbtPaOTc98zsOYU5aOZI6ibpeIUJih9w9/nRcVco9Lh50cx+J2mupJ4KiZPh7v6NVsR9k8LQp5fM7CaFnjWdFRJGB7v758ysu8LcPPcozPFTJelz0bWfSlkqAABAK5G0AQAAaeXub5nZvpJ+Ium3krorDB16S9KtTZx+sUKS5mqFpbRrJH0oaYKkXydcY76Z7aOwitT1kvoqDG96T9IdrYx7nZkdpJAQuljSIIXhXjMl/TM6rCL6Ht9SWGkqHu0/1d0fac11AQAAGmLuzRniDQAAAAAAgLbEKgcAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOQgkjYAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2uQgMxtqZhvNrCBL199oZsOzcW0AANLFzMrNzM2sMPr8vJn9X7bjAjoCM7vSzO7ejvNvNbPL0xkTAHREeZ+0iR7g1phZSRZjmGtmR9V+dvf57t7F3WuyEU907dlRbLeb2bXZiANoz5JfFgFsHzP7mplNiRoWlpjZ42Y2LttxAR1dpuqeu5/r7tekIb7DzGzh9pYDdBSNNVCk4/nUzM40s5dbHyFaKq+TNmZWLulgSS7ps1kNpoPihRVtIUp8bokeKNeY2SQzG5LtuACkh5ldIOnXkq6X1F/SUEl/kPS5bMYFdHSZqnvZ6k0O5IqEZ9cNZrbWzF41s3PNLK/fz5Favv+j+LqkyZJul3RG7UYz62RmvzSzeWa2zsxeNrNO0b7Pmtn7UeV63sx2TjjPzWxkwudtvVTMrI+ZPRqdt9rMXjKzmJndpXAD/E/0wnlRiu7cvczsNjNbHL2QPtzUF4vKWRKd83+JsSVnX5OzpbXHmtnZkk6VdFEU23+i/RPMbFb0S2a6mX0+qaxXzOwmM1st6cqW/A8BtsOJ7t5F0g6Slkm6OcvxNMiCfP/9CzSLmXWXdLWk89z9X+6+yd2r3P0/7n5hdC+tvS+tMrMHzKxXM8qNmdnE6F6/3MzujK4FQE3XvRTH/8PMlkbPzi+a2S4J+243s1vM7DEz2yTp8KTn5MPMbKGZ/Siqj0vM7KyE80vM7BdmNt/MllkYWtXJzDpLelzSwOhZdaOZDcz4Xw6QHie6e1dJwyTdKOliSX/NbkjIRfn+0vB1SfdEf44xs/7R9l9I+pSkgyT1knSRpLiZ7STp75J+IKmvpMcUki3FzbjWjyQtjM7rL+lSSe7up0uar+iF091/luLcuySVSdpFUj9JNzV2ITM7VtIFko6SNFLSoc2Irx53/5PC383PothOjHbNUuih1F3SVZLuNrMdEk7dX9LsKNbrWnNtoLXcvULSg5LGSpKZjTez/5nZejNbYGZX1h5rZqVmdnf0orfWzN6s/T0QJSBnR8nJOWZ2amPXNbOC6IFypZnNljQ+af/zZnadmb0iabOk4ZY0NNIS5gdISN6eFcW9xkILzL5m9k4U7+/S87cG5LQDJZVKeqiB/d+XdJLCvW6gpDWSft+Mcs+M/hwuabikLpKoU8Anmqp7yR6XNErh+e8thWfIRF9TeC7sKinV0IoBCs+WgyR9U9LvzaxntO+nknaStKfCs+0gSVe4+yZJx0laHD2rdnH3xc2MF8gJ7r7O3f8t6SuSzjCzXc2se9SYsCJqXJhY2+BnSfNJWeohTyPM7I0oifpIQ40Z0XX+GiVKF5nZtda8nnBmZjdH5c8wsyMTdpxlZh9Ez9CzzeychH0pOzJE+y6OYthgZjMTy8x3eZu0sTAWd5ikB9x9qkIi4mvRP5pvSDrf3Re5e427v+rulQoVaZK7P+3uVQrJnU4KyZ2mVCn0ABgWtVK85O7ejDh3ULgZnevua6JzX2jitJMl3ebu77v7ZoXEStq4+z/cfbG7x939fkkfSdov4ZDF7n6zu1e7+5Z0XhtoipmVKdTVydGmTQoJ2h4KiZRvm9lJ0b4zFB4Qh0jqLelcSVuilrvfSjouagE5SNK0Ji79LUknSNpL0j6SvpTimNMlna3wwDqvmV9pf4WH4K8odFG/TCEhu4ukk82sVUlZoB3pLWmlu1c3sP8cSZe5+8LoXn2lpC9Z08NzT5X0K3ef7e4bJV0i6ZRmnAfki6bqXh3u/jd335BQD/dI6r32iLu/Ej0/VqQookrS1dGz7mOSNkoabWamcI/9obuvdvcNCsO1TtmO7wbkHHd/Q6GR/2CFHuPdFRoVDlV4lj2r4bPr+brCO+1ASdUKz7Wp3BHtH6nwDHu0pOZM2F/bSN9H0k8k/SshMbRc4Zm4WxTzTWa2d7QvZUcGMxst6buS9o2evY+RNLeZ37XDy9ukjcLL2lPuvjL6fG+0rY9Cq8KsFOcMVMKLlrvHJS1QyPY35eeSPpb0VJRxnNDMOIdIWu3ua5p5fG2cCxI+L2jowNYws6+b2bQoQ7pW0q4Kf28ZuR7QTA9H/x7XS/qMQp2Tuz/v7u9GD4nvKPSWq010VCk8lI6MErRT3X19tC8uaVcz6+TuS9z9/Sauf7KkX7v7AndfLemGFMfcHiVTq6PEb3Nc4+4V7v6UQgLq7+6+3N0XSXpJ4QYLdGSrJPVpJJkyTNJDCfekDyTVKDwMNqbOPT36ubAZ5wH5oqm6t03U2/RGC8MU1+uTl62WPB+uSkoQbVboAddXocf51IR6/kS0HehoFiuM9PiKpEuiROhcSb9UaPxrrrvc/b2oN9rlCg19dXrQRL3Lj5P0g2j443KFER3NSYguV3jurYoa8Wcq6mXu7pPcfZYHL0h6SiERJTXckaFGUomksWZW5O5z3T3V+3heysukjYX5aU6WdKiFsbdLJf1Q0h4K/4gqJI1IcepihYfD2nJMIamyKNq0WeGmUmtA7Q9RhfuRuw+XdKKkCxK6fDXW42aBpF5m1qMFX3GJpMEJn5MnZN3UUJwp1InNzIZJ+rNCJrS3u/eQ9J4ka+gcoI2cFP17LFH49/mCmQ0ws/3N7Lmoe+k6hd40tQ+Rd0l6UtJ9FuZ/+ll0o9ikcLM8V9ISCxMbj2ni+snJ0lQ9aVqT0FyW8POWFJ+7tKJMoD15TeG+fFID+xco9IrrkfCnNEpsNqbOPV1hfrlq1a1jQD5rqu4l+prC5MRHKfQOKI+2p+P5cKXC/W6XhDrePZrHbnvKBXLRIIUGhGLVb1hoTkeBWsnPpEWqm0SVwj2wSOFZtzYh+keFIY5NWZQ0amSewrOwzOw4M5scDX9aK+n4hGun7Mjg7h8rTEFypaTlZnafMT/VNnmZtFG4+dQozHmxZ/RnZ4VW669L+pukX5nZwKjl4EALS4I/IGm8mR1pZkUK3bsqJb0alTtNYYhVgYV5ZbYNWzCzEyxM7msKPQFqoj9SeEAcnipQd1+iMEb4D2bW08yKzOyQJr7fA5LOMrOdo6EiVyTtnybpC2ZWZmFy4m82UlZybJ0Vbo4rou91lkJPGyAnRD1m/qVQv8Yp9KL7t6Qh7t5d0q2KHiKjDP9V7j5WYQjUCQq/A+TuT7r7ZxQSuTMUkpWNWaK6CdKhqcJL+tySBCqQl9x9ncJ97PdmdlJ07yqKHgp/plCnr4saFWRmfc2sOSvb/F3SD81sRzProjDc4v7mDgUBOrpm1L1EXRWeiVcp3NeuT2MccYV78E1m1k+SzGyQmR0THbJMUm9jInG0c2a2r0Ji5mGFHinJDQu1jRHNeX5MfiatUkiAJlqgUG/7JCREu7n7LmraoOi9NvEai6N35n8qTCPSP2pQfUyfPHs32JHB3e9199opTFxhLisof5M2ZyjM+TLf3ZfW/lGYgPBUSRMkvSvpTUmrFf7BxNx9pqTTFMYYrlT4h3aiu2+Nyj0/2rY2KidxladRkp5RGJ/7mqQ/uPvz0b4bJE2MMpw/ThHv6QoVbYZCV7QfNPbl3P1xhXGLzylkMl+LdlVG/71J0laFm9wdqj9RXKK/KnRTW2tmD7v7dIXuea9F5+8m6ZXG4gHakgWfk9RTYZhEV4UhhhVmtp9Ca2DtsYeb2W5Rd9H1CvWsxsz6W1gprrNCvdmoT5KsDXlA0vfNbLCFiRObMwRymsIcGkVm1tA8OEDec/dfKUywP1Gh0WCBQo+6hyX9RiEx+5SZbVCYz2r/ZhT7N4Xedi9KmqPQo+B7aQ8eaMeaqHuJ7lRoaV8kabo+mVcuXS5WeKadHA2/ekbS6CjGGQpJ2NnR8yqt82hXzKybmZ0g6T5Jd7v72wrPldeZWdeoUeICSbWTD0+TdIiZDY2SlZekKPY0MxsbNeBfLelBd6/zLBt1DnhK0i+jGGJmNsKaN19iP4Xn3iIz+7JCB4jHFHoIlSj8vqg2s+MU5smp/a4pOzKY2WgzOyJK+lQo9K5r6tk7b5g3PRcu2jkLy5K/J6mEFkR0RGY2V2EeihqFzPw8STe4+z1m9iWFRGMvSS8ojLPv4e6nmdlXFbphDlZIzNyvcFPsq3Dj3DMqb5qk70RJy4ZiKFTo8vl1hZvQLxQSwUXuXm1mzyvciP+ScM5whQfNXaLYZknqFcVWrvAiWVRbb81soaTTahO+FlYOmOHu17bubw4AAABtLeHZtVphHsXpCkmZW929JmoAvFlhQt4Khd5m10Y9z2Rmv1foJLBSoYPBn1T3mfM1SUdKGqPwjHmWu69Mfr6Mkj43KnQ86KowufBP3f2+RmI/U2Fy8P8pdC5YJum70fyLMrPzFHrplUj6j8IQrI/dfaKZ/VCho0NfhdUe/+ju15jZ7pL+opD8qVIYyXK2sxqcJJI2HZaZfV7SJIXhTHdIirt7c8YkAwAAAACAHJCvw6PaPTO71Mw2pvjzeHTIOQrd0mYp9D74dtaCBQAAAAAALUZPGwBoJjO7VWFeq2R3u/u5bR0PAAAAkG488+YWkjYAAAAAAAA5iOFRAAAAAAAAOaiwJQf36dPHy8vLMxQKkNumTp260t37ZjuOVKibyGe5Wjepl8h31E0gN1E3gdzUUN1sUdKmvLxcU6ZMSV9UQDtiZvOyHUNDqJvIZ7laN6mXyHfUTSA3UTeB3NRQ3WR4FAAAAAAAQA4iaQMAAAAAAJCD0pq0eW7mcj03c3k6iwQAAAAAAMhLLZrTpiln3famJGnujePTWSwAAAAAAEDeYXgUAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOQgkjYAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOSgjCRtlq6ryESxAAAAAAAAeSMjSZvK6ppMFAsAAAAAAJA3GB4FAAAAAACQgzKStHHPRKkAAAAAAAD5IyNJmz+9NDsTxQIAAAAAAOSNjCRt7n19fiaKBQAAAAAAyBtpS9psrKxOV1EAAAAAAAB5L21Jm9Ubt6arKAAAAAAAgLzH6lEAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkIPSlrQxS1dJAAAAAAAAoKcNAAAAAABADiJpAwAAAAAAkIMylrRZsHpzpooGAAAAAADo8DKWtPnH1IWZKhoAAAAAAKDDy1jS5rfPfpSpogEAAAAAeWRTZbUe/t+ibIcBtLnCdBXE6lEAAAAAgEy44pH39c+3FmpIrzJ9aljPbIcDtJm09bTZUFGdrqIAAAAAANhm6fotkqTNW3nvRH5JW9LmvzOWp6soAAAAAADqMTHEA/mFJb8BAAAAADnt7QXrsh0CkBUkbQAAAAAAOW1jZRgWtXbL1ixHArStjCZtaisWAAAAAADb67v3/i/bIQBtKqNJm7cXrM1k8QAAAAAAAB1W2pI27l5v2+wVG9NVPAAAAAAAQF5JY9Km/rbbXpmbruIBAAAAAADySvqSNim2zV65KV3FAwAAAAAA5BVWjwIAAAAAtBvlEybp5mc/ynYYQJsgaQMAAAAAaFd++fSHisdTjfcAOhaSNgAAAACAdmf3q57KdghAxmV0ImIAAAAAADJhY2V1tkMAMi5tSZt4A1mbiqqadF0CAAAAAAAgb2R8eNTj7y3J9CUAAAAAAHmohnlt0MFlPGnzw/vfzvQlAAAAAAB56K8vz852CEBGFaarIPKbAAAAQMPKJ0yq83nujeOzFAnQccxbtTnbIQAZlb6eNsxEDAAAADTbus1V2Q4BaPd4C0VH1yZLfnNDAgAAQL5aX1FVr5eNJO1xddstV1w+YVLKGID2bv0W3jXRsaVteFRjUt2QZl57rEoKC9ri8gAAAEDW7H5l2yVnEqVK0pxz1xT98fR9shANkBmPvrNE1560VT3KirMdCpARaetp09JuaaMnPqGPl29I1+UBAACAnFNZXZOV6zbUq+bJ95epfMKkrMUFZMJNT3+Y7RCAjGmT4VENOepXL+rsO6dkMwQAAAAgI6pr4ho98Ylsh5HS6IlPMFwqzW55fpZ2uaL+/+/T/vK6yidM0ppNW+vtq4m7nLlBt9uSdRVatbFSl/zrXS3fUJHtcIC0St/qUa38XfPU9GUpbxj/+s5B2ntoz+2MCoAkubv+/sYCLd9QoR8ctVO2wwEAIC+MvOzxJo8pnzApLatItTYBs6myWp1L2mTGhIx6f/E6jf/ty3W29Sgr0rQrjt72+cbHZ+jWF2bpC3sN0q++smeLynd37XjJY5Kkcw4ZrkuO31mSFI+7hl/6WJ1jG/p/sdc1T0uS/vPdcdptcPc6x8245liVFjF1RGs9NX2Znpq+TJL09zfmS5LevfJozVy6Qf27lUqShvQqy1p8wPZI45Lf6c0Qf+EPr0qSbjtrXx0+ul9aywbyzRWPvK+7Js+TJH3viFEqiFmWIwIAALXufX2+vrb/0Faf/5eXZrf63F1+8mSdz3NuOF5m7e85ITlhI0lrN1fVSYrd+sIsSdK//reoyaTNmk1b9eeXZuuiY8fUS8z88cXZ+uOLszX3xvH1EjbNceLv6sc65vLQQ4fkTfrs1sRcUr//2t46fExflRW3/6QlOra0/QuNZ6hX31m3vSlJemXCERrUo1NmLgJ0cLUJG0mqqokr7qY3567WQSP6ZDEqAAAgSZc+9O52JW2unfRB2mL55h1T9Lcz901bec31wocrdMbf3pAkHTi8t/5+9gH60i2vasq8NXWOu+/sA/Tihyv0ncNHqktJoV78cIX227FXo2WXT5ikD689rs62/81fo70a6dVf2yvmD8/ParTcdBtz+RNp6XmFpp1371vbfj7tgKE655AR6tu1hKQZck7Wh0c116dv/K8k6Z/fPlCfGtb4L2YADXvxwxU6+66p2z4fPKqP9hrSQ0vWVei/M5Zrl0Hddec39stihADas6qauN6cu1p7DempqnhcpYUFKi7M6hR6QIeROEQnU/47Y3nahmw1V3Ly47XZqxpMiJzyp8mSGk+mpLLTxLpD1T7/h1c1+ZIj1atzcb3fUe8tWteistOtoqqGxEEbu3vyfN09eX697Z8Z21/jd9tBB43srX5dS7MQGdBGS36n0xdveW27yzhoRG+dsPtAfWZsf/XpUtwuu4ACrZWYsJGklz5aqZc+Wrnt84sfrtAXb3lVP/3i7hrcs5Mqq+LqXlbU1mECaCV318I1W1RWXKCNldUa1ruz3F3zV2/eNq6/pDCmuEs/f3LmtuEC7ckVJ4zVvuW9NKp/FxUVxFQTd8XdU77kxOMuM3GvR857Z+Fa7T64R8p9s1Zs1JG/fKFN4ymfMEmPfm+cdh3UfdvnWn88/VM6566pmjh+Z31z3I4trl/rK6qytgx6ogNueDbbIaQ05vIn9PLFh2twT+Zgybanpy/T09FcOQ05frcBqqyK6/yjRmm3Qd3lLsWYigBp1O6SNunw6qxVenXWKl360LuNHvfZPQbqkuPHqLSwQJ2KC1RcELLwW2viqqyKq7ImLJXYo1OxigqsWTcsd+fBETlv6rw1OupXnzwcTjhujEoKYxrRt4sO2alvvePjcVdFdY1KCgu0papGy9dXqDAW09aaGnXrVKTenUtk4gYGtFZ1TVz/eWexfnj/29kOJSdc/ej0bIeQUklhTL/+yp4yM40Z0FWFBaYuJYXqUlKowgJ6G6Fxn/3dKyl7t8xYul7H/vqlLEQknXBz/blXJOmcqAHo2kkfNDg06+PrjtNJf3hF7y1an7H4OrJxP31O7191TIeYJLqje+zdpZKkZ2csb3UZh43uq1dnrVK30iJdfsLOeuzdJdp9cA99ce/BevL9pTpoRG8N7V2mj5Zt1Mh+XVRcENPWmrhKCmO8W+aBtP0WWLpuS7qKyhn/fnux/v324myH0eFdevyYbIcgSfrqfkPVtbTj9SiZtmDtdpdx4+MztrsMM6lTUYE2b61R19JCFRfE1K1Tkeas3KTy3mUqLIhpeJ/OqqiOa1CPUvXrWqriwpi6loZfUxsqqjV98XrNXrlJ+5X31JrNVVq5sVK7Duqu/81fo7Wbq7Sholqj+neJhmesUU3c1atzsQZ0K9VHyzfo0J36abdB3bVpa7Ven71Kh4/ppw0V1SoqiKlbp0J1LS2SKQzvcNe26dWTl+Ks/Vg7Afsnn5s+5pP9qc9NPK7B8mvP3Y54av9z26tzNX63HTQ0YUWFxHu/yeptT3w0qHNsAw8Nn5xXv6xGy4v2fHPcjh0y4ffU+0t19l1TdcFndlJJYUw17orHXTVxbfv5d899nO0w0QKV1XF9+563mj4wQ/Ye2kPjdx+oa6Kk1veOGKmy4kJtrY7rpmc+3Hbc5/YcqEemheebw0b31dJ1FepWWqQ35q6WJHUtKdQho/vqifeWqibuGtG3s2at2KTvHzlK8bjr8feW6MyDynX6geVt/h3bwt2T52niw+/p4mPHqLQopsKYqSAW/nvRP9+pc+wPjhqlksICFcSkmJliZiqImWIx0+PvLmnxtTvSEtzNWTkLjUucJPqgEb316qxVDR57wPBeOmrn/urVuVhf2HtwW4SHNHp+5gpJ0sqNlTr/vmmSpCffX6afPzkzm2HljJLCmCqr45Kkn5w4ts6iKqmmaUl+dt+2PdW2VOenPK7588GkOnRIrzIdu+uAZpeRyFpy8X322cenTJmSct+Rv3xes1ZsalUQQC5oarJrM5vq7vu0YUjN1ljdvOf1ebrsoffaOCJkWnICpTZhYvX218+OJKY/am+AuWzW9cc3uuJZrtbNxuql1PTLWcwyN8k/sL2KC2L68LrjGj2mo9ZNIJftMrCbJn3/4EaPoW4Cbe+IMf2anOS9obqZtp42RXT7bRPlvctUVeOKxaSaGtfidRX1jhnQrVTdOhVqVP+uKjBTYczUs3Oxlq2vUMxMpUUxFRXEtHjtFnUuKdSGimoN7tlJhTHTlqoaDe1VplWbtqoweknq3qlIGyqq1bmkUAUxU0lhTFU1rqICU3U0j0CXkkIdu8sAfbxioyqqajR35Wbt2Kez1ldUSQovlIUxU1VNXFu21mhkvzi/e30AACAASURBVC6qjruG9+mcM90+O3XQCd9O3X9Y2pI2nYsL9Jmx/fX2wnX69mEj1KusWPe9OV+j+ndVzKSy4kLNWblJVTVxxcy0aM0W7bdjL1VHc0oM7F6qLVU1KozFNKp/Fy1cs0WlRTEdMLy3Vm3cqjfnrlZ5784a1rtMrvBveUtVjbZsrVH3siK5h2REdY2rsrpGGyqq1amoQO7S5qpqdS0tUjzuWrR2iwpjpu6dirR0fYVq4q6xO3STTNpYUa0uJYUqjjL2RQUxFRaYNlVWqyBm2lxZoy6lhSqKRb/TahMdrUiSJHc8ST6mqTLrHJOhrq+1ifva8hMT+XV7/aj+/jrlJB6buoyWHJt4WgfsZCNJeufKo7VkbYUGdC+NWvITWumjOViqauIaRWt1h5bYeljryDH9tGrTVh0yqo8GdO+kjZVV6t25RN07Fak6Hn6/bq2Ja9/yXmG4dnWNigpi6tO1RGs2bdXyDRXaZWB3VVbFVVwYU3FhTBVVNZqxdIN6lBUpZqZenYv18fINGtyzTL06F2vN5q36cOlGlfcp0/TF67XzDt0Ud1dFVVwFMdNHyzbo8Ciu3p2LVVmV+wnf1pp+9TGqjrtiZqquias67qqJu6rjrjWbtirurlkrNmr/HXurd5dixWt7x23rLeeKu7ShokpHtGIemj0Gd9d+O/bSn1+ak4Fvh/ZmzyE9dPNX91J13PWD+6fp7agH9YXHjFY87tptcHftNqi7CgtiipkabeQAMqWsuEC9uxRr2bpKDe7ZSZ2KCzRz6QaNHtBVO3TvpGc+WKbxu+2gj5dvVFlJgY4eO0DTl6zXkJ6dVFwYU1lxgYoKYupZFt5ZR/TtoqLCmLZsDXPzDezRSR8sWa/enYvVq3Nxveunek5uqCakeqS2VEen2tRAoak2J8dUsB3P8ml7Wy4rbl8vvNd/fjftt2NPDevdOWXCKflFBs3Trxuzqnc0w/t01kXHjtGYAV01rHdZvTpx1Nj+abnODt07bZvsMFFjSb0d6h8uKXQ/rDWqf9c6+/p1TT466FY7NK6B/R1V8v/PxM+pf/3xOzFdupUWqduAxodkFhXE6sxxUV0T19xVm7VqY6X6dC3RoB6dVFpUIHfXba/M1RPvL9Ubc1ZnOnQkKS6M6aJjRuvgUX01fck6HbfrDioqiGXl5alLSeG234GJEzN3LinUp4bVXd44cTXOfl1Lt62Mkmry05H9ukjSth6pHXllm7Lihu87td+/oQmDE/XtWtLiayfW98vGj932c3vrYTDz2mNVUljQ7uLONXNuOL7OffmR8z6dxWiQSVecMFYzl27Qfjv20kl7DdLmraFhkvnQPnHA8N7ZDiFr0pa0+ea44Xrr3uyN45akL+w9SD/94u56c85q/eD+aVq+oVJSmKvksvE7q0sLenSQrEE+GNmviz5evrHOth26l+qgEX10xJh+6lxSoE+P7ENPOiBHFBbENLJfl20v0LXMTN8Yt6O+MW7HZpdVE3e9NmuVTvvr6+kOs028dNHh6lRcoKJYTF2iua9qeyhl0+gBeZb5RZv4wt6D9K+3FmXl2g+f92ntOaRHgwmYgd1L9eolR6bc19iy4SR0Gvaf747TboMbaJlCu3Dd53fVV/cd2uo5+TriPJtovbQlbUqLMv9S986VR2vd5ipd8+h0VVbH9a2Dh+ugEb3rVYaDRvbRG5cdlfF4gPZoSK9OWrB6i+765n46eFRfvfjhCh00orcKC2KKx71DTvgKoL6CmGncqD6NvlQlm7Vio+au3KR3Fq7TiXsM1JyVm3TkmH71fm+sr6jS9MXr1aWkUNMXr9fRu/RXt9Iifr8AjfjRZ3ZqcN+vTt5TX9lniL7yp8ltGFHdpMsrE47Q2s1btcvA9CQTasuuibtGXPpYWspsrdnXH69YzLRg9WYd/LPnshqLJBI2Oewbn95RY3boqs/vNYhGTbSZtCVtWjCfcYu8/ZOj1b3TJ5nGbqVF+tPXc27eLKDdeOmiI+p8TlzCmxcqAI0Z0beLRvTtoiN3DsMik3v81OpWWrStG3OqYY8A6vvuESMb3b//8N51kigXPfi2vnfEqLQnGfp0KdGUifUbPwf16NTogg2tVRAzzb7+eJ1x2xt66aOVjR77+PkH691F63TRg+/o51/aXe6qt6JXSyQnrYf0KtPcG8dr0jtLdF6WRxAgffp0KdbFx47RoaP7qm+XEq3fUq0upYXM/4N2I+fmtPn+kaP0w6NGZb17M9AR/ZmEJwAAOamlz74/+9IekkLiIZ1DjW45be+0ldVcsZjprm/ur58+MUN7Demho3cJy+K+t2idLnhgmhas3qLpVx8jM9POO3TTyfsM2XbuyfuGn5v6O5hzw/Ha8ZLm9egZv/sOOu/eVn4Z5IRbTt1bx+46IGW96l7G0CO0L2lL2qQjyfLAOQdqvx17NX0ggBa58JjR+v1zH+szaZo0GAAA5I5HvzdOJ9z88naXc/kJY7VvefaexS8+dkydz7sO6q6nfnjodpe7X3mveu8qM645ttFzPrz2OP3rrYU6Zb+hisddw7M8hAstc9xuO2Q7BCBtcmYg3kfXHUfCBsiQ8w4fqelXN/5wAgAAsqMlc0ulkq5hiN9swWTm7ckD5x4oSdpr6CerfjW1AlpxYUyn7DdUUsPDx885dHiaIvzEmQeVp73MfHDq/kM198bxOuPAYbr2pF2zHQ6QVmnradNag3t20ssXH9H0gQAAAEAHs70Jm+01ZeJR6tOl5cuT55o3LjtS+133bL3tiavHPvSd1i+ZnWoY2iXH7aw/vjC71WWmcuVnd0lrefmiWzQH6lWfI2GDjidrPW0GdCvVzGuPJWEDAACADmmfYT0b3f+9JiYfbom5N47Xe1cd0+LzOkLCRpL6dS2tt+3pHx7Sqr+T5njmgjBsq7VJt7k3jldxYazeNrTO948Yle0QgIxp0542Uycepd4d5MYAAAAANOaW0z6lfa97RoeN7qvbzty33kS4Pzp6dFqv16WksEUT7nY0M689VqMnPqFrTtpVpx8wLO3lN5RU+c93x+nE3zV/TqE5NxwvKcybc8vzs7Tfjr30qSYSfGhcpzQtigPkojZN2pCwAQAAQL7o27Wkzov+3BvH64IHpumVj1fqgXMOzMg1zazZK0p1tJ4dJYUFWflOuw3urrk3jlc87qqsjmvnK57Ytu+UfYfovjcXSJJ+fPRO+m5Sj5BvHzaiTWPtiF648LBshwBkVJslbZ74wcFtdSkAAAAgJ/3q5D2zHYIk6fdfa/ulvTu6WMzUqbh+4ujInfurV+dietNkyLDenbMdApBRbZa0Gd6nS1tdCgAAAMhrYwZ01YylGxrcP353lkRuK58Z2z/bIQBox9I2EbG7N7o/eaItAAAAAJnx+PkN93LvaMOikL9u/MJu2Q4ByLi0ZVImz16VrqIAAAAAbAcz03mH150vZXT/riRs0GGceVC5TtlvaLbDADIubcOjquKN97QBAAAA0HYuPGaMLjxmTLbDADKicwkrRiE/pHF4VMP7dh/cPV2XAQAAAAAAyAvpS9qo4azNL768R7ouAwAAAADIc+ceynLpyA/pmx24kZ42O/XvmrbLAAAAAADy1zmHDFfX0qJshwG0CZZ0AgAAAAC0G/uW98p2CECbIWkDAAAAAACQg9I4p01qj35vXLouAQAAAADIc2bZjgBoO2lcPSp12mbXQawcBQAAAAAA0FJtsuQ3AAAAAAAAWiajc9qceVB5JosHAAAAAOQZhkchn2R0TpsfHDUqXcUDAAAAAADklbQlbcaN7FNvW4+y4nQVDwAAAAAAkFfSlrQZ2a9LuooCAAAAACAlE+OjkD8yOqcNAAAAAADbq2tp4bafy/t0zmIkQNsqbPqQ5onFyHYCAAAAADLnxQsP19DeZdkOA2gzaetpQ8oGAAAAAJAR0co33cuKshsH0MbSl7QhawMAAAAAAJA2aexpUzdr06cLK0cBAAAAANKATgLIUxnrafOlTw1JV9EAAAAAAAB5J2Nz2hw8qk+6igYAAAAA5DPPdgBAdqRvye+krM3ug7unrWgAAAAAAJhLFfkmY3PadC1lVm8AAAAAQPo4PW6QZ1g9CgAAAACQ23jfRJ7K2Jw2AAAAAACkBT1skKfSlrTpVFyQrqIAAAAAAKiHER7IN2lL2pQVF6arKAAAAAAAgLyXvtWjEnxqWM9MFAsAAAAAyGNMRIx8k5GkTRlDpQAAAAAAALZLRpI2AAAAAACkG3PaIN9kJGlz6v5DM1EsAAAAAABA3shI0maH7p0yUSwAAAAAAEDeYHgUAAAAACCnnbzvEElSSSGvsMgvrNMNAAAAAMhplx2/sy48ZrRKCln0BvmFpA0AAAAAIKfFYqbSGAkb5J+M9C3bbVD3TBQLAAAAAACQNzKStInFWIcNAAAAAABgezCLEwAAAAAAQA4iaQMAAAAAAJCDSNoAAAAAAADkIJI2AAAAAAAAOSitSZseZUXpLA4AAAAAACBvFaazsMmXHJnO4gAAAAAAAPJWWpM2pUUF6SwOAAAAAAAgbzGnDQAAAAAAQA4iaQMAAAAAAJCDSNoAAAAAAADkIHP35h9stkLSvMyFA+S0Ye7eN9tBpELdRJ7LybpJvQSom0COom4CuSll3WxR0gYAAAAAAABtg+FRAAAAAAAAOYikDQAAAAAAQA4iaQMAAAAAAJCDSNoAAAAAAADkIJI2AAAAAAAAOYikDQAAAAAAQA4iaQMAAAAAAJCDSNrkCDMrNzM3s8JsxwLgE2b2vpkd1sA+6i3QjpjZXDM7KttxAAAANBdJmyyIHhq3mNnG2j+SBrbgfF4UgTRJ9RJnZmea2cuS5O67uPvzGbq2m9nITJQN5AIzG2dmr5rZOjNbbWavmNm+2Y4LQO4zs9vN7NpsxwFkgpndamaXN/PYbc+LLTmvLZjZtWa20syWmtnQ6N22oIFjrzSzuxspa9szeVPH5hte+rPnRHd/pvaDmZVnLxQAANLLzLpJelTStyU9IKlY0sGSKrMZF5CvzGycpJ9J2kVSjaQPJP3A3d/MamBAB2RmT0p63d2vSNr+OUl/lDTY3atbWq67n5umELebmQ2R9CNJw9x9ebS5SxZD6rDoaZOjklv/k7KNL0b/XRtlMw+MjvmGmX1gZmvM7EkzG9bWcQMdTTOHU5xqZvOjlobLEs7dz8xeM7O1ZrbEzH5nZsXRvtp6/HZUj7+Sqe8AZMlOkuTuf3f3Gnff4u5Pufs7ZjbCzP5rZquienOPmfWQpGjfajPbO/o8MDrmsITP/46O+djMvlV7wehe+aCZ3W9mG8zsLTPbIymuPc3snaj3z/1mVppw/reiMldH1xiYsM/N7Fwz+yi6z/7ezCxhP/dg5KyEJOrNknpJGiTpKqU5idpWvcDpbY524HZJpyfeJyKnS7qnNQmbbGiirg2TtCohYYMMIWnTPh0S/beHu3dx99fM7CRJl0r6gqS+kl6S9PdsBQjkmXGSRks6UtIVZrZztL1G0g8l9ZF0YLT/O5Lk7rX1eI+oHt/ftiEDGfehpBozu8PMjjOzngn7TNINCkODd5Y0RNKVkuTusyRdLOkeMyuTdJuk2xOGKf5d0sLo3C9Jut7Mjkwo+3OS/qHwYnqvpIfNrChh/8mSjpW0o6TdJZ0pSWZ2RBTTyZJ2kDRP0n1J3+kESftK2iM67pjoXO7ByHWNJVHPNLOXzewXUdJxjpkdV3uimZ0VJSQ3mNlsMzsnYd9hZrbQzC42s6UK9VVmdoKZTYsaLV41s92bCtDM9ooSrRvM7H5JiQnVetexhKHMCcclDiO53cz+YGaPR40jr5jZADP7dfQ9Z5jZXtv59wo05GGF+9DBtRui++AJku60pOF/jTUaJEo8L6Fe/MjMlkcNhGc1FZiZdTezO81shZnNM7OJZhaL9p0Z1ZWbzGy1ontzijKOkvS0pIFR/brdkqbwMLMdzeyFqE4/rfA8nFjG6dH1V1lCo2cD1zsg+l2y1szetgbmm+yoSNpkz8PRP7q1ZvZwGso7R9IN7v5BlLm9XqE1kZY+oGmJ9XGtpD+08PyrogfgtyW9rfBCJ3ef6u6T3b3a3ecqdIc9NK2RAznK3dcrJDRd0p8lrYgeRPu7+8fu/rS7V7r7Ckm/UkLdcPc/S/pI0usKCZTLpG1dscdJutjdK9x9mqS/KLRc1prq7g+6e1VUbqmkAxL2/9bdF7v7akn/kbRntP1USX9z97fcvVLSJZIOtLrDl29097XuPl/Scwnncg9GrmssiSpJ+0uaqfBS9TNJf03oIbBc4UWzm6SzJN1kUU+4yACFl9Nhks6O9v1NoV70Vrj3/dvMShoKzkIv1Icl3RWV9Q9JX0w6rM51mvm9T5Y0MfpelZJek/RW9PlBhd8RQNq5+xaFocFfT9h8sqQZ0fPiNs1sNGjIAEndFXrPfVPS71PU72Q3R+cMV7j3fl2hbtfaX9JsSf0kXZeqgGiaj+MkLY4aH89Mcdi9kqYq1LdrJJ1Ru8PMxkq6ReH+PVDhd8XgVNcys0GSJkm6VuF3wI8l/dPM+jbxPTsMkjbZc5K794j+nJSG8oZJ+k3CS+dqhZbMQWkoG+joEutjD0W9YZJZwuThZjY0YdfShJ83KxrPa2Y7mdmjFiZnW6/wIlenlQHoyKIkxpnuPljSrgoPZr82s35mdp+ZLYrqxt2qXzf+HJ1zc5REUXT+anffkHDcPNW91y1IuH5cn/TKqZWyvkbHzEs4d6OkVUllN3Qu92DktMaSqNEh89z9z+5eI+kOhRfH/tG5k9x9lgcvSHpKCb0HJMUl/SRKwm6R9C1Jf3T316NePXcoJEwSk6fJDpBUJOnX7l7l7g9KSp5rJ/k6zfFQ1IBSIekhSRXufmf0Pe+XRE8bZNIdkr5sZp2iz1+PtiVrTqNBQ6okXR3Vm8ckbVTo/Z2ShUmCvyLpEnffEDUq/lJ1Gz8Wu/vNUaNjc+ta8nWGKvRMvTyqsy8qNJTU+pKkR939xeg7X65Qx1M5TdJj7v6Yu8fd/WlJUyQd35rY2iOSNrlrk6SyhM8DEn72FMcvkHRO4ounu3dy91czGiWQR6KWhNo/85txyi2SZkga5e7dFIZPJI9tBvKCu89QGOO/q0KLokvaPaobpymhbphZF0m/lvRXSVeaWa9o12JJvcysa0LRQyUtSvg8JKGcmELL3eJmhLhYIflSe25nhZa/RQ2e8Qnuwch5DSVRo91LE47bHP1Y2wBxnJlNjoZtrFV4UUpMsq6IkiK1hkn6UVIP1iFqfKXUgZIWuXviM+68pGOSr9McyxJ+3pLiM5OmImPc/WVJKyR9zsyGKyQx7k1xaHMaDRqyKml+nMQGhVT6KCwMkFi/Gmz82A4DJa1x901J10ncn9jIsknhO6cyTCH5lfg7ZZxCcjkvkLTJXdMknWJmRWa2j0I2stYKhUzk8IRtt0q6xMx2kbaNVfxym0ULIJWuktZL2mhmYxRW0Um0THXrMdBhmNmYaJz94OjzEElflTRZoW5sVJhQf5CkC5NO/43CMKf/U+gSfaskufsCSa9KusHMSi3Mk/FNSfcknPspM/tCNKb+Bwot/JObEfK9ks4ysz2jYRzXK6z8MbcZ53IPRruSlERtUFQX/inpF5L6R71RH1PdBojkxsQFkq5LSmKWuXtj8zwtkTQoYUiWFBKydcJO+lyngdPMBgjIPXcq9LA5XdJT7r4sxTHb02jQUisVeuckDt9NbvxI1UGgpZZI6hl9l8TrJO5PbGQpU/jOqSyQdFfS75TO7n5jGuJsF0ja5K7LJY2QtEZhdv9tWdmoBeQ6Sa9E2cYD3P0hST+VdF/U1fw9hXGGALLnx5K+JmmDQnf05MmGr5R0R1SPT27j2IBM26AwLv51M9ukkDh5T2F50Ksk7S1pnUJS5l+1J1lYDvVYSbXLml4gaW8zOzX6/FVJ5QoPuQ8pDJd4OuG6jyh0/V6j8JD8hWh+m0a5+7MK995/KjxMjpB0SnO+KPdg5LomkqiNKZZUotBgWG1hguKjmzjnz5LONbP9LehsZuOTesgle01StaTvm1mhmX1B0n5NXOdtSbtEidZSNTBhKpBld0o6SmHYYKqhUdL2NRq0SDQ08AFJ15lZ12jutQsUhimn8zrzFIYwXWVmxWY2TtKJCYc8KOkEMxsXzWl1tRrOTdwt6UQzO8bMCqJGm8Nqf5/lA5bLywJ3L0+xba4SWi3cfbbCw25DZVwh6YqkbXcpTOAGoJkaqI+3K7RAptyfcNxcJQ13cvfDEn5+UdKYpNOuSNh/q6IeBEBH4+6LFCZVTOV9SZ9K2vbL6LxHFBIvteVslDQy4fNChUlRG1Lh7qc1EFN50ucrkz43WCfdPbmun5n0mXswclltEvUCM+shaa3CEuAXKqx6lpK7bzCz7yu85JUozEnx78Yu5O5TzOxbkn4naZTCMKSXJb3YyDlbo0TNnxUmG31MCcncBs750MyulvRMdI1LFCY/BnKGu881s1cVFqlIWXfc/Vkzq2006KnQo7RZjQat9D2FyYhnS6pQqHd/y8B1vqaQqFqtkJi9U1IPSXL3983sPIWEVWeFScEXpirE3RdEDTo/U1iZsUbSG6rfg73DsrpDRwEAANonM7tS0siGkjYAAADtDcOjAAAAAAAAchA9bQAAAABkVLQE8PQGdo9t5qqMAJrBzN5X3cmGa53j7vek2N5QObcqrPCY7G53PzfFdmQASRsAAAAAAIAcxPAoAAAAAACAHNSi1aP69Onj5eXlGQoFyG1Tp05d6e59sx1HKtRN5LNcrZvUS+Q76iaQm6ibQG5qqG62KGlTXl6uKVOmpC8qoB0xs3nZjqEh1E3ks1ytm9RL5DvqJpCbqJtAbmqobjI8CgAAAAAAIAeRtAEAAAAAAMhBJG0AAAAAAAByEEkbAAAAAACAHETSBgAAAAAAIAeRtAEAAAAAAMhBJG0AAAAAAAByEEkbAAAAAACAHETSBgCALKqqiauyuibbYQAAACAHkbQBACBL3F2jLntcoyc+QeIGAAAA9RRmOwAAAPLVnJWbtv38zsJ12re8V5tef9HaLbr+sQ806Z0lKff/5pQ99bk9B2Xs+ne8OldvL1yrX355D81ZuUnlvTsrFjO5u96av1YVVTX69Mg+dc5xdy1eV6GB3UslSWbWYPnTF6/Xxspq7TOsp2KxT45bs2mrbnlhlmJm+vHRO2lzVY26lhTWK+uVj1dq76E99db8NdpQUa3PjO2vgljD1wMAAEg3kjYAAGTJEb98YdvPX771Nc29cXybXdvd9ekb/9voMeffN03n3zdNc244vtHkSEut3Fipfa59Ztvnf721qMlzav9udrzksZT7J19ypAZ0L1X5hElNlrPXNU9v+3zrC7PqXUOSdpr4uLZWxxuMAwAAoC0wPAoAgDy0x1VPNfvYxesqtutaP3rgbZVPmKSVGyv16scr6yRsmmvz1upG9x9ww7PasrXpIWaNHTN59qptP6dK2CQrnzBJ5RMm6Y8vzFL5hEkae8UTTZ4DAADQEiRtgDzyzPRlemDKgmyHASAHrK9oPAmSqLV9bN5btE7lEybpn28tlCTtc+0z+tpfXm9VWWOveLLJY86+a0qTxyQmZpKd8qfJTZ6/eO2WettueHyGJGnz1hptrGz+3ysAAEBTSNoAeeT/7pyiix58J9thAGhnZq3Y2KLj127eqvIJk3TCzS9nKKLUXvpoZZPHnHfvW43uX71pa6P773htrqQwX04qu/6kbnJpy9Ya3fv6fI25PPVwKwAAgMaQtAEAAI36aFnLkjZ7Xv100we1wtsL1m53GZubGEK19zVP68UPVzS4/48vzJYkfdzMRNbOVzyhSx96VxVVce008fEm59wBAABIRNIGAIAO7KWPVuje1+dvVxnPzVyepmi2z+d+/0qbXOfDZRuaPOaeyfOaPKYm7im3r93ceG8eAACAWqweBQBAO+HuqqyOqyBmKipout3lV0/N1G//+7Ek6av7DWn1ClArNlQ2+9hnpi9r1TVyybWTPmh0/3uL1un1Oasb3P/uwnU68XcNDw3b8+qnWYUKAAA0C0kbAABynLvXW+r6D6fureN326HBc3a54gltShgK9NtnP9b5R41q1fVnLG2650mt/7uz6cmA27uzm/iOjSVsAAAAWoLhUQAA5IiG5jtJTthI0nfueUsH3vCsyidM0gUPTKuzb/HaLXUSNpJ00zMfpi/QPLe9S6ADAAA0F0kbAAByyOPvLqnz+flG5pNZEiUP/vXWItXEXX95abbeW7ROB93434zGCAAAgLbB8CggT7innhATQG759j1vae6N47Vla42WrNuiM297s1nnjbi0fm+ctlZVw5LWrXHQDc9q8boKvXzx4Rrcsyzb4QAAgBxC0gbIA+6u0/76erbDANBM7q6dr3giY+Wvr6jKSLkfLFmfkXI7osrqGo2eWPf/8bifPqc5Nxzf6gmjAQBAx8PwKCAP/P2NBXrl41XZDgNAM/3tlbkZLX/qvDUZKfcPz83KSLkdUXLCplaq+YsAAED+ImkDdHBVNXFd+tC72Q4DQAtc8+j0jJY/Y0nzV4NqiSfeX5qRcgEAAPIVSRugg5vZgqV6AXRstXNb3fna3KzGgcYxNxAAAKhF0gYAgDyzhCWrc9pPH5+R7RAAAECOIGkDdHCvfLyy3rYDb3g2C5EAyLbNW2syVvbazVszVna++cvLc7IdAgAAyBEkbYAObvaKTfW20coO5KfVm7bqrNveyEjZT09flpFyAQAA8hlJGwAA8sSWqho9N3NFq869e/K8Rvdf+OA7rSoXqTGvDQAAkEjaAB2ey7MdAoAc8eg7S1p97sSH30tjJGjK2wvWZjsEAACQA0jaAB1cnJwNgMhvn/0o2yGgmb5062t1Pt/+yhztd90zWYoGAABkC0kboIOLO1kbAJm1cM3mbIfQoS1dV6Er/zNdyzdUqnzCDK8fRQAAIABJREFUpGyHAwAA2hBJG6CDe6YFk4P+9tmPNHn2qgxGA6A921RZnXL7oT9/vm0DyTMHsOIfAAB5i6QN0MGtr0j9kvXg1IWqTpro8ldPf6hT/jS5LcIC0A7t8pMn9ZeXZtfbXsM4zIzxFL0l73xtbpvHAQAAsoOkTQe3tTqu9RVVqqiqyXYoyDE//sfbOuO2N7RsPct/A2i+ayd9UOfzhoqqLEWSH3a85LF626545P0sRAIAALKh8P/bu+/wqMq0j+O/M5NeSEghhFACCUV670JoCmHFdS3LWlBcxb66q74GWBsquLbdZdW117Vt0XWliEgTFQQRlI506ZGWUBJS5v0jySSTTGZSZuZMJt/PdXll5pznnNyRnMzMfe7nfswOAN7V4Y/z7Y/jI0P0z5sHqUVMuMJDrCZGBX/x1fajGjBzkXY/Pt7sUAA0IJ9tPKRim02D0xPU/aHPzA4nYFWuhgQAAI0PSZsAtulAjsPzo6fPadTTyyRJu2ZlyjAMrd59TJ9vPqwvtv2s2RN7qn1StBmhwmQ7sk8pLTHK7DAANBBT3l5jdgiNQvr0+e4HAQCAgEbSJoBlzl5e7T5n5dZj/vyFltyTobYJkd4MC35o1NPLtGnGhWaHAQAAAACogJ42fmb5j9n6bu/xGo8/kpOnc4XFKigqdiijfn/V3jp9/xFPLVVq1lwdO32uTsej4Vq/76TZIQAAaqhyr7riYpu+/+mESdEAAABvodLGz1zz6ipJ0tZHxyo0yHXfmbV7j+uS57922Pb6df0UEmRR1ofr6xVH70cW2qdQeVpBUbEWbzmiCzoneeX8qJvb3v3O7BAAADX0yJxNeuySbvbn7aaVV9DSpwwAgMBBpY2f6vjHT92OqZywkaTJb6zWVa9845EY/rZ4e62PKSwq1smzzlcSKSgq1sx5m9V++nzd9PYajZ/9pdNlYguLivX19p+VmjVXt7/7nRZuOiyp5K6is6VP4Rk/n6K6CgAaine+qVtFLQAAaFiotPFjqVlzNXlIqh68qIsp3/+Zhdv0zMJtNb5jd+XLK/X1jqMO2zo1j9a8350vi8XQr57/Wuv3l0/B2XQwR2nT5mnHzExZLYaKim1Km+bYa2fODwc154eDDtv6tGmq/9wyuI4/FQAAgaX3Iwsdnp84c06xESEmRQMAADyJShs/9/pXu/Xish2mxvDDPsc58kdy83TiTHlVxjc7jyo1a26VhI0kbTmUq3bT5ik1a65DwqaitGnzNHvRj1USNtVZs6ek54/NZtOSrUeovgEANGqV+9D1nLGwmpEAAKChodLGj5wrLHa6fdb8Lbp+aFsFW83JsU149it9/ofheuDjDQ6JmUmD2uij7/YrN7+w3t/jmYXbajX+SE6e+s9cZH/O/H3P+njdfl3cM8XsMAAAbizdesTsEAAAgBdRaeNHzpyrPvnRfvp8H0ZS1ehnllWppHlrxR6PJGzqomLCBp535/vrdPPba3TmXKHeXrmnViuaAQB84+DJs7ru9dVmhwEAQJ18uuGQUrPmKjVrrl77cpfDasgoR6UNAKc+3XhIYR9a9N91ByRJq6aPUmGRTet+OqHMbskmRwcAGDRrsdkhAABQa3N+OKDb313rsG3GnE2aMWeTy+PenzJQA9vFuxzz3qq9GtguXm0TIusdp78gaeNHnCyk5MBms7FENnyqLGEjSf0fW6S4yBAdO33O7XS03LwC5eYVqkVsuLdDBAAAAOBHbDabjuTma0Dp7IiU2HDtP3G23ued+NJKh+fdUmL08W1DZLGUfEZOzZrrsH/XrMyA+PxM0saP/Ovbn1zu//eafbq8bysfRQNUVdbs8t1v9mpCzxaKCnX+JyRz9nL9dOwsvYYAAACARiQ7N1/9HvvcYZsnEjbOrN9/Uu1cLGbTduq8gPg8QtLGh5ZsPaLJr6+u9hdn1vwtLo+/998/kLSBX5j20Xq99tUuff6H4VX2bT6Yo5+OeecPMwCgZo7k5KlZkzCzwwAABLAb3lytzzf7d0P8t1bs1qRBqWaHUS80IvahyaXNAie+tMLkSID6237klJZsPaLs3HyH7eP+utz+uMjdnD8AgFd88ePPZocAAAgwZ88VqduDC+zNg/09YSNJD3y80ewQ6o1KGxOs3HnM7BACDv1+zFGWiKyueixt2jwt/78RahUX4cuwAKDR+/C7fbqsT0uzw2iQsnPzte/4GfVq3bTaMd/uPqZgq0U9WsV6NZacvAJt3J+jQWnVN97cdCBHOXkFbptzBhKbzaa1P51Qr1ax1b7/y87N15o9xzW2a3MfRwc0fDabTZNeW6Xl3ADwCyRtfMRmo+LAm/YeO6M28YHTIbyhSc2aq/vGdtLH6/ZX2Xf+E0v08qS+Gn1es2rfWC3/MVs2mzSsQ6K3QwWARuHrHUfNDqHB+sXflutwTr7LPgiXvVBSNe3tXgm3vfOdlv/4s9Y9MEaxESFOx2TOXu6TWDzpyQVb9NySHXWO+eN1B3TXB+v014k9dXHPFKdjJr22SpsP5mjjwxcqspoefEBjt/foGV3x4godyskzOxSv+nTDoQadwGV6lI+cPFvgkfPkFxZ55DyB5uDJwP5D0xD86dMt2nIo1+m+G9/6Vm2nzrOXUlaUV1Cka15dpUmvrfJFmAAAuHQ4p2Ta753vr3UzUnr6s61ejWVr6evqhX/5wu3YG95c7dVYqrNsW7ZW7nSdJPzxcK4mvrRCP+w7IUl6bskOSdLBk+U98D5YvVfXvb5Kp/ML3X7PHdmnJEl3vr+u2jH7jp2RJHV5cIHb8wGNxb/X7LO/H0/NmqthTy4J+ISNJN38jzVmh1AvpJ195JtdjlOi8gqKFBZsrfV5fv/BOj1/VR9PhRUwJr60skHdYWrsyhI3UaFBSowOtW+/4oUVeuKy7so+la9+qXE6ceacCopsys0rUHRYsMNYAAC86eN1B/TxugNaOXWUmsc4b+r8t8Xb9dyS7do5yzvvQSylFaqHc/KVmjVXn9w+VN1axjgd+/nmI0rNmqvtj41TkNW792V3/Xxazy/Zrn+t2Wff1jouQu/eOEAtm0bo2OlzCg+2KnP2cnVvGaOP1x2QJE149isNTU+wHzP3h4M6kpuvpCZhemTOJkklSZa//LqnftnLeQWN5NgzLzVrrh6e0EXXDk51GFOxuDc1a64W/n6Y2idF1+fHBhqck2cK1GPGZ2aHgXoiaeMjN73tmN3LnL1ci+/OsD/PK6hZBc289Yf03qq9usTFC1lj9f6qvZrYv7XZYaAWTuUX6lSFO2qrdh9TxlNLXR5z7aA2apsQqUt6tdTh3DxFhQZpz9EzahUXruSYcB3OyVNyTJgMw1B2br7+sXKP7hzVXhYLPY8AALU3cNYi3T2mg24dkS6rk9eSYltJUmDmJd00sV8rj77eVL4DftGzX+rG89vqngs7KjTI+c2/9Onzde+FHXXL8DSPv/ZVrpataO+xMxr6pyXq0SpW3/90wr5918+nHcZ9ub28R8ajczc7PdddH6zTXR+s04aHL1SUk6lNldc5ePB/G7Vh/0ndf1FnNQkLliTl5DlW7Iz58xf6dd9WeuSXXRUSxGQDNDxFxTZNePZLbTyQY3Yo8DGSNj5QVsJZ0c7s00rNmqsOSVHadrjqflemfrheUz9c76nwAkbWh+vVPilKfdrEmR0KvOjNFXskSQ99sqnGx/x10Y8u96clRmpH9mn9dmhbXTc4VRaLodjwYIc58HuOni7pJ2CTXlq+QxP7tabBMuqF1dWAhuPphdv09MJtkqStj451OmbaR+s17aP1ahIWpO8fvMBrCyS8vHyXXl6+S5K08eELnY55csFWPbmgZOqWpypvajpFv2LCpr66PrhAQ9Lj9Y/fDnD4/+lsCtW/1uyzV/58/ofhTs/3wbc/6YNvf5IkbZ4xVuEhta96BzytrPdp2e+4zWZT26nzzAwpIKVmzdXa+8eoaaTz/mD+zKhNg9y+ffvavv32W6f7Tp4t0J6jp2XIkGGUlHNaLKVfy56X/mcY0qz5mzW2a7Jax0Wo2GZTSRglX21SyVebTcU2ySab9h07q/SkKIUHW2W1lJzTsJ9T2nP0jP67br86JEVraHpCeQxGxbFyiKHimHOFxRr25BJJUkx4sF67rp/2HT+j2Yt+1I7s005/5qsGtNaVA1rLZit5811ks8lms6moWCq22VRcuu2aV+nVYZbWcRH606XdFRMeLJvKf9ed/dp3SIp2eefFMIw1NputrzfirC9X16aru2KAv/vk9qHq0qKJy7vF/npturoupZLXjbRpvCmDd/VvG6fMrs11cc8UHTh5Vp2Tm9Q7mbDn6GntP3FWg9MSXI5rqNemL143bxuRprFdku1TeAxDDu+hS56XVIf4yn9uGWz/viUxlTwqe37xc1/5LBZ/Uva5IMQLU868kdcLC7YovZnraWAN9drcmX1Kp/IL7deKVH7t2B9XuJYMlf0/rrBfJb/bhhzHljEM5/tz8wo0+hnfXY/wrZTYcKXEhuv2kemKKE3mlv9eGA7Pq/sb6TjG8RhJig4LcrtwTnXXpseSNp9tPKQpbzfsBj9o3L7KGqmU2PBq9/vrC5xE0gaBzd1dYn+9Nv3hgyFQG5f0SpHFMGS1qPQGmWH/+sWP2dpZ6SaWu15yXJuA73VObqJ5d57vckxDvTYnvbZKX2zL9mFEgOeM7NRMr13Xz+WY6q5Nj02P6tW6qV6ZVHL+4rIKGVtJpUmxvWrGpuJiqaCoWFkfrlffNk1124h0qZqsp8VQ6T5Dn28+rB6tYhViNcorWUordIptNn3y/QEt2ZqtdomRmjruvNJ9Jd+72EkMZcfaVLJv18+n9dIXO+0/z+uT+2nTgRx7aWl1Xri6j73yx2IxZC2r7imtMrJaDF1euiwkzHHnqPY6L7mJJMdsZ+UsaVw1S2kCMM8LV/d22kMCgOd9u+eYiovLq4fLKoaLimzKrcGKPqidVyb1LXk/KlWpOC97n3rHe+5XsPKUF67uo9Dg0gS5reyLzV6d/Ns3q/8wHej+flVvBXu40sZbE2Sd9QAKFL8f3V6TBrYpvWYqXjtSlRkbFZ5L5VOQHPZV2l96GTocW3b+42fOuf1ciIbvhat7KzI0yP7vXuX3p2xghb+R9k22Sl8rHZtQjwVVPHZVJ0aHanTnpBqPr23D2EFp8S73/6p3y1qdz5lpmec5PB/RsVlJUqmeFt89XCOfXlbv88C9S3u31NNX9DA7DDQwyTFhOngyT9cNTlXruAj9sleKCouLVVhk09bDuWqXEKmY8GB98v0BpSVGad2+ExrVKUnnCouVHBum8GCrwoOtKrbZdLagSFGhQQ7TD07lF8piSBEhgftGCrX3zbRRGjBzkdlhoJGZc8dQtYmPUF5BsRKiQlRQZKt1U9ayFf0aqyX3ZGiEi6b56c2i9Pp1/TzS98xd0mbpPRluG/gvunu40hKj6h3L9w9cYNoqNJUbK3e6f77yCoqrHf/Pmwbpihdd3zRddPdwtWoaQVPiBqRX66amfn9PfC6sjfzCIn264ZCWbc2W1WI4rNaGunv8V90a3OI1fILwgXbVvFCWlRV/vG6/Nh3M0YvLdjod58z7UwZq4ksrPRJfICFh03isnDpK0WFBCrIaWr3ruNrERygs2Krs3HylN4vy2JuwFhWmzF0zKFWSNDjdeR8HiwxFO7kTF8h3vVB3SU2cLyEMeMobk/spo2Mzp/uiS3/9QoJqX8nWGBM2vVvH6p83DXI5VfPuMR10x6j2Xo8lISpEy+4d4dAsv7Jf9U7RM1f09Oj3jYnw/b/7538Y5rQ/S8fmTZw2PHY31T06LEirp49WWDANiOH/QoOsurhnii7uWbJq8JOXu/+ck19YpB8Pn1KXFiWzDM4WFOmCP3+hfcfPejXWhuCDKQM1oJ3rQhB/xScJHxmSHq+vth+1P181fZT9cdnFWJOkzTs3DNCQaj4wNnbu5tajYXj12r6at/6Qnrq8uwzDUEFRsV5ctkO3jUiXYRhas+e4zkuOdqhaGdq+/JpIrEfpIQAEkuoSNqi5wWnxeuv6/i6TNe/eOMBtU2ZP2fboOJc3JZ65oocu6ZXitZWrvrxvhNbuPaHx3ZI1Y84mvfH1bof9S+7JUGx4sHo9slDPXtlLkSFBmvzG6lp/nyHp8fr71X3sy3dXdkHnJIekzZZHxrpNxOycmenxJdABfxMaZFXXlBj784iQIH1530iHMXkFRbr8hRVav/+kr8MzzZJ7MtQ2wXUTYH9G0sZH/n51H3V/qLyktFl03e6wkrBxbny3ZLNDQA1Vbiq78cBJ/W/dAR3KydNfJ/aSJI06r3yqZbDVottHlt+57NPG3NJYAEBg+/Su8zX2L8slSbN+1c1pwmbZvRka/uRSSfJqwuarrJEa8vhiSSVTfpwlbCpOtczsluy1hI0ktWwaoZZNS6Z9PTShizbsP6mY8GBd0a+VrIZh/1BU8UbaiqkjNWjWYr16bV/957t9euKyHur64AJJJSsEdmsZo2Onz+mT7w9oeIdE/W3xdreV0zcPT9MbX+9Wdm6+JvRo4TRhs3nGWJ33wKeSpPl3nk/CBigVFmzVJ3cMrfH4ya+v0pKtDbcBdJOwoAadsJFI2vhMdXcK4Bl3jfZ+OTJcG9mpmRZvOeJ0n8WQhnVI1BOXdq/y5rdLixh1aRHj9DgAAHytU/Mmbqt328RH+qTCNyU23O33SWoSZlq18b9vGex2THJM+c9QdlPmF92TNeeHg+rWsuT1Py4yRNcOTpVUs6nuVouh1dNHuxwTHmKlChvwgNcn91dhUbGufvUbrdx5zOxwamVEx0S9Prm/2WHUG0kbPxISZNG5wuqbqqF67ZOqzneGb+yYmSmrxdCWQzlOkzbuSrkBAEDj8pdf99SfLu1udhgAaijIatH7UwZV2Z5fWKSFmw5rzZ7jev2r3b4PzIWaTJtsKEja+JHIECtJGzQoZUveSyV3JnfMzFTatHn2/SFBFhI2AADAQZDV4rJPEICGITTIql90b6FfdG+hBy/q4nb8F9uyNem1VV6PK9Cq7EjamGBiv1ZOt99wfjs9uWBrrY8DzHDT8Ha6sEuSwzZrpfni2x4d58uQAACl7r2wo9khAADgYFiHxGoTKg/9b2OV5uY18dTlPZQSG67OLZooJjwwW5KQtPGhXbMyNX/DIY3r2tzp/sQo16vePE4ZKUxya0aanl+6w/78uSt7a3x3182f5/3ufG+HBQCoRq9WsWaHAABAjT00oYsemuC6Wic1a679caBV07hC0saHDMNQpotVjjo0py8L/MvVA1srr6BYvx/TQVf0baWMp5ZKUpUKm4qGpifoy+0/q3OLJj6KEgBQWWK06xtBAAA0NI0pUVMRSRs/0iYuwuwQAAeP/rKb/XFqQs1Wynjl2r46nV/ozbAAAG7QoB8AgMBA0saPWAzD/SDAR27NSKvTcWHB1oDp1A4AAAAAZqJtuz9xkbPZ8PCFvovDibtGt9eaP46u8/G/HdrW5f7nr+qtKwe0dnuepCahmv2bXnWOAzX3f2M7mR0CAAAAADRqVNr4EVeFNlGh7v+p1j90gU6cKVBKbLjaVVh2ub5m/6aXJvRoIalkHuHeo2e09qfj2nf8rMZ3S1ZuXqEWbDykZ5dsr3LslkfG2qsu7v9FZ4fmUWXKptxkdkvW3WM66FR+oYY/uVT9U+P03FW9FRcZUmVVot+9t9b+mIa3nve7kelmhwAAAAAAjR5JGz8SYq174dPfftNL0WHBig7z/DJnZQmbMq3jI9Q63rH/TreWMbp1RJqeWrBNVw1srRCrRa2c9OjZ/tg4pU+fb39euUdKfFSo4qNC3fZOeffGAbry5W80eUgqDW+9oH/beLNDAAC4sWLqSA2atdjsMAAAgBcxPcqPVNcHpFVcuNtjL6qUWNk0o/7TqVrFheuVSX1rPD4iJEgPXNRZaYlRThM2khRktej3oztIkt66vn+dYxuclqDdj4/Xgxe5XhYOAIBAlRwTrmX3ZlTZvmNmpu+DAQAAXkGljZ8a0zlJL17dRxsOnFT3lrG1Pj4ipO7/tNGhQVrvxR46d45urztHt/fa+QEAaCzaxEfaH4/pnKSXa3GzBQAA+D8qbfxU1rhOslgMlwmbtfePkSQNbBfndP/WR8fq/PYJVbZHhwbp7jEdtPvx8dr9+HjFRYZIkr67f4x2Pz7eqwkbNAw1qe4CAPiHaZkljeNfuqaPyZEAAABPo9LGz6ycOkofrd2vtMQot2ObRoa47P0SGmTVW9f3V9up8zSyUzM9cVl3WQ1D0WFBCqrQP+e70uQPUKbinVsAcGZUp2ZatOWI1j0wRlsP5erXL600O6RGa8qwNE0ZlmZ2GAAAwAtI2viZ5jFhuiXDc2+8DMPQ5hljFRpkkcXiYnkqBKzOyU206WCO2WEACAC7Hx+vL7Zlq0l4sHq2Kq8E7dYyxsSoGqdds+hbAwBAY0DSphEID3He4BiNg62W48OraYgNAJI0rENilW1BFmZb+9LmGWNlGNyIAQCgMeBdFhDgbLaapW3uKm0OnRgd6s1wAASgkCDeTvjKrlmZ3IwBAKAR4V0W0EitvX+MKt6onVC6bDyz6IDAlRAVYnYIqIfdj4+nwgYAgEaGpA0Q4KortGkaGaI7RpZU19w1ur39g0CwlT8LQKD69o80ngcAAGhI+HQGBLjiGk6PSo2P0C0ZaXrl2r5ejggAUBOuVogEAACNA42IgQDnKmnTOi5CktSyaYQMw9B9Yzv5KiwAASY5JkwHT+aZHQYAAEBAodIGaMQu7Z2id28YoEt7p5gdCgAfufH8tl4570e3DvHKeRurnTNLlvSellmSTF81bZSZ4QAAAJNQaQMEOFeTowzD0OD0BJ/FAsB84SHeeelvHhPmlfM2VpbSrvBThqVpyrA0k6MBAABmodIGCHROsjYfTBno+zgA+IWwYF76/R29bAAAQBneuQEBLi6y6hK/A9rFmxAJAH9w7aDUOh3XNiHS7RgSQgAAAJ7FuysgwF3Uo4XZIQDwI5GhdZseldQk1O2YS3rRH6u+Ft893OwQAACAHyFpAwAA3LppuPu+KreNSPdBJIGtXWKU2SEAAAA/QtIGCHC2Skt+D05jahSA2hvePtHtmJZNI3wQSeAqWzEKAACgDEkboBFJbxald2+kCTGA2itbzQjese6BMfw/BgAAVZC0AQJcRIXlfR/9ZVcTIwEAVCc2omrTeAAAAJI2QIALDiq/c5vejF4JAAAAANBQkLQBAAAec/XA1maH0CC8eX1/++PbaeAMAACqQdIGCHDxkeXL9FoN+iUAkNomRHrt3FPHnee1cweSbikx9sfXDUk1LxAAAODXSNoAAW5Yh/IVX5pG0jMBaAiW3pOhqwaUVKz0S23q8fNfNzjV4+csExka5H4QFFfh73FCVKiLkQAAoDEjaQMAgJ9JTYjUY5d008uT+uqdGzy/4tuYzkkePydqbvOMsZKkXbMytWsWy3wDAIDqkbQBAMBPjemcpJCgmr1UL7p7eI3Pm9QkrFZx1LZPzSNeWqnuvrGdvHJeXwsPsUqSDMOQwbRVAADgAkkbAAD83Jo/jnY7Ji0xSq9M6qtLe7d0O9ZqqV2iYFC7hFqNv7J/a6XGR9TqmJrI6JjofpCPtIipXeILAACgLkjaAADgRy7q0aLKtvioUD15WXe3x47unKSnr+jh8Zg6No+q1XirxdDSe0d4PI7QGlYd1dcdI92v5pRYi2qlNyb3046Zmfo6a6S2PDK2PqEBAIBGhqQNAAB+pF01Kztd3reVhndwrDRZcNcw9WgVq9XT3VfimOE/twz26PnaJdYueVRXTSNcN21vEx+h6ZnVr5L1v9uHODzP6NhMVouhFrHhCgu2eiRGAADQOJC0AQDAT2R0TNS1LlZ2evP6/npjcj9J0vNX9VbH5tH6+LYhSoz2z9WH+rTx/MpXvhAZ6jqxMnVcJ3VMina6L6Njorq3jLU/v3l4mkdjAwAAjQvrcgIA4CfemNzf7ZiMjs20+/HxLsf8++ZBuuyFFS7HtE2I1K6fT9corpZN696fZlC7eK3YebTOx5thTOfmuu8/66vdP7ZrcpVtlf9Nds3K1KaDOerSIsbj8QEAgMaDShsAAAJM39Q4rX/oAodtQ9LjHZ4vrsVqU/WZ0vPelIHqllKSuEhqYn5F0Ag3zYyDrYbiIl1Pj6rs7jEdqmwzDIOEDQAAqDcqbQAAMInFkIpt3jl3dFiwMjomaunWbEnSOzcMdNhvGIYentBFD/5vo8vz7JqVWe9YPrljqP2xzWbT0dPnNOyJJTpzrqjaY9ISIxUeYtWG/TlKjgnTknsyJEmbZ4zVeQ98KklaNX2UdhwpqRbq1DxaMeHBOltQpC4PLpAkXTuojd5csUfNokP151/3VPtmUWrWJEwnzxSox4zPHL7fnDuG6qdjZzSuW0kVzcqpozRw1iLde2FH3TI8TQdz8nTBM8v014m97Me4q3gCAACoL5I2AACY5Df9W+udb/ZKkj661bNNe6WS6Vb7T5zV7mqmQV07OFXXDGwjSbLUchnwujIMQwlRodo0Y6zOFRbr7LkixUQE1/j48BCrQ7KkWbTjKk6RoUEO+x++uGuVc8REBDtNuHRNKa+MaR4T5jAmJTZcG2ew8hMAAPAtkjZAIzCoXXyty/0BeN8jF3dVp+bR2n7klHq19k7T3pTYcKXEhle731fJGmdCgiwK8dEy3gAAAA0RSRugEXhvykD3gwD4nMVi6JpBqWaHAQAAAD/F7S0AAAAAAAA/RNIGAAAAAADAD5G0AQAAAAAA8EMkbQAAAAAAAPwQSRsAAAAAAAA/RNIGAAAAAADAD5G0AQAAAAAA8EMkbQAAAAAAAPwQSRsAAAAAAAA/RNIGAAAAAADADxk2m63mgw0jW9Ie74UD+LU2Npst0ewgnOHaRCPnl9cm1yXAtQn4Ka5NwD85vTZrlbRkwLy+AAAAZklEQVQBAAAAAACAbzA9CgAAAAAAwA+RtAEAAAAAAPBDJG0AAAAAAAD8EEkbAAAAAAAAP0TSBgAAAAAAwA+RtAEAAAAAAPBDJG0AAAAAAAD8EEkbAAAAAAAAP0TSBgAAAAAAwA/9P59ZF3PmdD6AAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hdZb328fuelkISQug9olIVUcFyjl2PiuARFTsqHLu+x2M5igUVBSxYUBHFDggqCIIFkHJo0pSEIsUAISak9zqZvn/vH8/aw5qdPTUzs9fMfD/XNVdmr/rsyTyz1r6fshwRAgAAAAAAQLHU1boAAAAAAAAA2BahDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAwwmyfaDt6+XpFDcpzqu0Y4XPc1Md7zn/NHslyDIXtF9meY3trVsaDa10mAAAwMTXUugAAAEwgb5K0pGLZQzUox88k/WWEz/FhSTNyr78g6ShJ/1mx3fIRLsdQnCdplaRjJLVIWljLwgAAgImL0AYAgNFzb0TMr9XJbU+KiLaIWKJtw6OhHrNRUmdE9Oi5ExEPVWy3WlJ7RNw5mLIORxkHw/ZkSU+S9LOIuHEYjmdJjRHRvt2FAwAAEw7DowAAKAjbB9m+3PYG2y2277T96optzrO9sMq+N9m+Kff6JdnQnjfY/mkWmqzM1m0zPMp2g+3P2p5nu832MtvfzkKM8jazs2N+2PaZtpdJapM0czvf9wez4z4/e/8bJd2crSsvW5L9TObZ/rLtSRXHuNP29baPtn1vNrTpftvHVGx3qO0/2l5tu9X2ItsXl8uh1LNGks7IyjQvt+9J2THbsv1/aXu3iuOvsP2z7D09IqlD0sttH5wd779sf9P2KtubsmNMztZfb3uL7Udtv3Wg5QYAAOMXPW0AABg99bbz196IiC5Jsr2XpFslbZb0/yRtlPQRSVfaPjYirh7iOc+WdLWkd0qa3Md2F0p6raRvSLpd0iGSTpM0W9IbK7b9vKS7JL1fUr2k1iGWrdLFWTl+kB1X2fnvkvRzSVskPV3SFyXtL+nEiv0PkXSmpK9JWi/pZEm/t31gRCzKer1crdTL6AOS1kraR9Kx2f6/l/SwpBsk/VDSr5SFOLY/Kul7Wfk+LWk/SV+V9BzbR0ZEOeyRpKOVhoJ9ITvHfD3xs/+SpOsknSDpGVlZQ9JzJZ2Tlf+jki6yPTciHh1AuQEAwDhFaAMAwOiZV/H6NkkvyL7/hKSdJD2/PITK9lVKc96cofShfSj+HhHv7WsD2y+U9BZJ746IC7LF19teJ+lC20dExL25XVZKen3lkKhhcFFEfC6/ICJ+kyunlYKtFknn2v7viNic23wXSf8WEYuy7e+XtFgpdPqOpL2Vwpb3RcS1+fNm51ple2u2bHF5KJftJqWw5ZqIeGeuPI8pBTDvlPST3PFmSHpGRKzJbVuezPjB3P/HtbZfKukkSW+KiEuzbe9V+hm/QSlE67PcAABg/GJ4FAAAo+f1Sj0wyl/vya17kaQ783PeZL1wfiPpCNv5SX0H4/IBbPNqSe2SLsuGSTVkPYLKAcGLKra/YgQCG6lKWW3vlA3TWqA0FKtD0k+VeuI8uWLzB8uBjSRlc/dsUAo8JGmFUm+Vb9l+j+3K/XvzNEmzlHrZdIuI65XClRdXbP/XfGBToTJ8Kwd51+SOu0qpp9C+21luAAAwxhHaAAAweh6IiDm5r4dz62ap+pOUVkiyUi+coRjI05l2k9SkNPyoI/e1Klu/8xCOORTVjnuhUk+UsyS9Qins+kS2rnK417oq+7eVt4uITkkvk/QPSd+UNN/2fNvvqbJf3qw+yrcit159bFe2vuJ1u6Suih5D5eXbW24AADDGMTwKAIBiWCdpjyrL91Ca86QcSLQqBSyVdlaa66TSQHrErM2O+8Je1i8bwjGHonJy5OlK88N8OiLOzi0/asgniHhU0gm26yQdIeljkn5me0EfT4sq/+x7+/95oPI0Qy1fb4ZYbgAAMMbR0wYAgGK4WdLzbM8uL7BdrzTXzD25nhiLJO1ue5fcdk+WdNB2nPsvSr06dqzoCVT+qgxtRstUpV5GHeUF2bw2797eA0dEKSLulvS/2aKn9bH5A0rBTeUTnV4uaXdlT7oaDYMsNwAAGOPoaQMAQDGcpfQ0pOtsf0nSJkkflnSgpPxjq3+n9FSni2x/R2ny3c9K6m0OlX5FxE22fyPp0uyYf5dUUnpy02sknRwRjwz1+NtRrpXZpLyfsb1GaX6a9yu950Gz/RylJz5dIukxSY2S3qs0FOmmPsrRbvvLkr5n+5dKT7naT2mC6IdUMdfNcBtquQEAwNhHaAMAQAFExDLbL1B6WtCPJE2SdK+kYyLiL7nt5ts+XtLpkq6Q9IjSHC+f2/aog3KCpP+W9F9Kj/Ruk7RQaYLcldt57O3xJqXHb/9YUrPSxMznKT2ee7CWKs038ymlJzK1KM0T85qIuL+vHSPi+7Y3K/2s364Uql2pNHSrpa99h8GQyw0AAMY2j8zDHwAAAAAAALA9mNMGAAAAAACggAhtAAAAAAAACojQBgAAAAAAoIAIbQAAAAAAAAqI0AYAAAAAAKCACG0AAAAAAAAKiNAGAAAAAACggAhtCsj2fra32K6v0fm32D6gFucGAGC42J5tO2w3ZK9vsv3eWpcLGA9sn2r7wu3Y/1zbXxjOMgHAeDThQ5vsBm697Uk1LMNC268ov46IxyNiWkR01aI82bkXZGU7z/bptSgHMJZVflgEsH1sv932nKxhYbntq22/oNblAsa7kap7EfHBiDhtGMr3EttLtvc4wHjRVwPFcNyf2j7R9q1DLyEGa0KHNrZnS3qhpJD0nzUtzDjFB1aMhiz4bMluKNfbvtL2vrUuF4DhYfsTkr4r6auSdpe0n6QfSnpdLcsFjHcjVfdq1ZscKIrcvetm2xts3277g7Yn9OdzVDfRfyneJelOSedJend5oe0ptr9te5HtjbZvtT0lW/efth/MKtdNtg/J7Re2n5J73d1LxfYutv+c7bfO9l9t19n+ldIF8E/ZB85PV+nOPcv2L20vyz6QXtHfG8uOszzb5735slWmr5VpaXlb2++X9A5Jn87K9qds/WdsP5b9kXnI9usrjnWb7bNsr5N06mD+Q4Dt8NqImCZpT0krJZ1d4/L0yslE//sLDIjtHSV9RdJHIuL3EdEcER0R8aeI+FR2LS1fl9bavsT2rAEct872Kdm1fpXtC7JzAVD/da/K9r+zvSK7d77F9mG5defZ/pHtq2w3S3ppxX3yS2wvsf3JrD4ut31Sbv9Jtr9l+3HbK52GVk2xvYOkqyXtld2rbrG914j/cIDh8dqImC5pf0lfl3SypJ/Xtkgooon+oeFdki7Kvl5le/ds+bckPVvSv0maJenTkkq2D5T0G0kfk7SrpKuUwpamAZzrk5KWZPvtLulzkiIi3inpcWUfOCPizCr7/krSVEmHSdpN0ll9ncj2qyV9QtIrJD1F0osHUL5tRMRPlH42Z2Zle2226jGlHko7SvqypAtt75nb9bmSFmRlPWMo5waGKiJaJV0q6VBJsn2M7Xtsb7K92Pap5W1tT7Z9YfZBb4Ptu8p/B7IAckEWTv7L9jv6Oq/t+uyGco3tBZKOqVh/k+0zbN8maaukA1wxNNK5+QFy4e1JWbnXO7XAHGX7H1l5fzA8PzWg0J4vabKky3tZ/1FJxyld6/aStF7SOQM47onZ10slHSBpmiTqFPCE/upepaslPVXp/u9upXvIvLcr3RdOl1RtaMUeSveWe0t6j6RzbO+UrfuGpAMlHaF0b7u3pC9GRLOkoyUty+5Vp0XEsgGWFyiEiNgYEX+U9BZJ77b9NNs7Zo0Jq7PGhVPKDX6umE/K1Yc8Pdn237MQ9Q+9NWZk5/l5FpQutX26B9YTzrbPzo4/z/bLcytOsv3P7B56ge0P5NZV7ciQrTs5K8Nm2w/njznRTdjQxmks7v6SLomIuUpBxNuzX5r/kvQ/EbE0Iroi4vaIaFOqSFdGxHUR0aEU7kxRCnf606HUA2D/rJXirxERAyjnnkoXow9GxPps35v72e3Nkn4ZEQ9GxFalYGXYRMTvImJZRJQi4mJJj0p6Tm6TZRFxdkR0RkTLcJ4b6I/tqUp19c5sUbNSQDtTKUj5kO3jsnXvVrpB3FfSzpI+KKkla7n7vqSjsxaQf5N0bz+nfp+kYyU9U9KRko6vss07Jb1f6YZ10QDf0nOVboLfotRF/fNKgexhkt5se0ihLDCG7CxpTUR09rL+A5I+HxFLsmv1qZKOd//Dc98h6TsRsSAitkj6rKS3DmA/YKLor+71EBG/iIjNuXr4jIrea3+IiNuy+8fWKofokPSV7F73KklbJB1k20rX2I9HxLqI2Kw0XOut2/HegMKJiL8rNfK/UKnH+I5KjQovVrqXPan3vbfxLqXPtHtJ6lS6r63m/Gz9U5TuYV8paSAT9pcb6XeR9CVJv88FQ6uU7olnZGU+y/azsnVVOzLYPkjS/5N0VHbv/SpJCwf4Xse9CRvaKH1YuzYi1mSvf50t20WpVeGxKvvspdwHrYgoSVqslPb355uS5ku6NkscPzPAcu4raV1ErB/g9uVyLs69XtzbhkNh+122780S0g2Snqb0cxuR8wEDdEX2+7hJ0n8o1TlFxE0RcX92k/gPpd5y5aCjQ+mm9ClZQDs3IjZl60qSnmZ7SkQsj4gH+zn/myV9NyIWR8Q6SV+rss15WZjamQW/A3FaRLRGxLVKAdRvImJVRCyV9FelCywwnq2VtEsfYcr+ki7PXZP+KalL6WawLz2u6dn3DQPYD5go+qt73bLepl93Gqa4SU982BrM/eHaioBoq1IPuF2VepzPzdXzv2TLgfFmmdJIj7dI+mwWhC6U9G2lxr+B+lVEPJD1RvuCUkNfjx40We/yoyV9LBv+uEppRMdAAtFVSve9HVkj/sPKeplHxJUR8VgkN0u6VimIknrvyNAlaZKkQ203RsTCiKj2eXxCmpChjdP8NG+W9GKnsbcrJH1c0jOUfolaJT25yq7LlG4Oy8exUqiyNFu0VemiUrZH+Zuswn0yIg6Q9FpJn8h1+eqrx81iSbNszxzEW1wuaZ/c68oJWZt7K2cVPcpme39JP1VKQneOiJmSHpDk3vYBRslx2e/jJKXfz5tt72H7ubZvzLqXblTqTVO+ifyVpGsk/dZp/qczswtFs9LF8oOSljtNbHxwP+evDEur9aQZSqC5Mvd9S5XX04ZwTGAsuUPpunxcL+sXK/WKm5n7mpwFm33pcU1Xml+uUz3rGDCR9Vf38t6uNDnxK5R6B8zOlg/H/eEapevdYbk6vmM2j932HBcoor2VGhCatG3DwkA6CpRV3pM2qmeIKqVrYKPSvW45EP2x0hDH/iytGDWySOleWLaPtn1nNvxpg6TX5M5dtSNDRMxXmoLkVEmrbP/WzE/VbUKGNkoXny6lOS+OyL4OUWq1fpekX0j6ju29spaD5zs9EvwSScfYfrntRqXuXW2Sbs+Oe6/SEKt6p3lluoct2D7WaXJfK/UE6Mq+pHSDeEC1gkbEcqUxwj+0vZPtRtsv6uf9XSLpJNuHZENFvlix/l5Jb7A91Wly4vf0cazKsu2gdHFcnb2vk5R62gCFkPWY+b1S/XqBUi+6P0raNyJ2lHSuspvILOH/ckQcqjQE6lilvwGKiGsi4j+Ugtx5SmFlX5arZ0C6X7XiVbweTIAKTEgRsVHpOnaO7eOya1djdlN4plKdPiNrVJDtXW0P5Mk2v5H0cdtPsj1NabjFxQMdCgKMdwOoe3nTle6J1ypd1746jOUoKV2Dz7K9myTZ3tv2q7JNVkra2UwkjjHO9lFKwcwVSj1SKhsWyo0RA7l/rLwn7VAKQPMWK9XbXXKB6IyIOEz92zv7XJs/x7LsM/NlStOI7J41qF6lJ+69e+3IEBG/jojyFCahNJcVNHFDm3crzfnyeESsKH8pTUD4DkmfkXS/pLskrVP6hamLiIclnaA0xnCN0i/aayOiPTvu/2TLNmTHyT/l6amSrlcan3uHpB9GxE3Zuq9JOiVLOP+3SnnfqVTR5il1RftYX28uIq5WGrd4o1KSeUe2qi379yxJ7UoXufO17URxeT9X6qa2wfYVEfGQUve8O7L9ny7ptr7KA4wmJ6+TtJPSMInpSkMMW20/R6k1sLztS20/PesuukmpnnXZ3t3pSXE7KNWbLXoiZO3NJZI+ansfp4kTBzIE8l6lOTQabfc2Dw4w4UXEd5Qm2D9FqdFgsVKPuiskfU8pmL3W9mal+ayeO4DD/kKpt90tkv6l1KPgv4e98MAY1k/dy7tAqaV9qaSH9MS8csPlZKV72juz4VfXSzooK+M8pRB2QXa/Sus8xhTbM2wfK+m3ki6MiPuU7ivPsD09a5T4hKTy5MP3SnqR7f2ysPKzVQ57gu1Dswb8r0i6NCJ63MtmnQOulfTtrAx1tp/sgc2XuJvSfW+j7TcpdYC4SqmH0CSlvxedto9Wmien/F6rdmSwfZDtl2WhT6tS77r+7r0nDEf/c+FijHN6LPkDkibRgojxyPZCpXkoupSS+UWSvhYRF9k+XilonCXpZqVx9jMj4gTbb1PqhrmPUjBzsdJFcVelC+cR2fHulfThLLTsrQwNSl0+36V0EfqWUhDcGBGdtm9SuhD/LLfPAUo3modlZXtM0qysbLOVPkg2luut7SWSTigHvk5PDpgXEacP7ScHAACA0Za7d+1UmkfxIaVQ5tyI6MoaAM9WmpC3Vam32elZzzPZPkepk8AapQ4GP1HPe847JL1c0sFK95gnRcSayvvLLPT5ulLHg+lKkwt/IyJ+20fZT1SaHPwepc4FKyX9v2z+Rdn+iFIvvUmS/qQ0BGt+RJxi++NKHR12VXra448j4jTbh0v6mVL406E0kuX9wdPgJBHajFu2Xy/pSqXhTOdLKkXEQMYkAwAAAACAApiow6PGPNufs72lytfV2SYfUOqW9phS74MP1aywAAAAAABg0OhpAwADZPtcpXmtKl0YER8c7fIAAAAAw4173mIhtAEAAAAAACigQQ2Psv2XkSoIUHRF/v0vctmAkVbU3/+ilgsYLUWtA0UtFzBailoHilouYLT0VgcaBnOQGTNmvOrII4+kaw4mqk21LkBvqJuY4ApZN6mXAHUTKCjqJlBMVevmoEKbpz71qZozZ87wFAcYY2w/Wusy9Ia6iYmsqHWTeomJjroJFBN1Eyim3uomT48CAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAFN7qzW36whUPqKOrVOuiAKOG0AYAAAAAUHhf/tOD+tWdi3TtgytrXRRg1BDaAAAAAAAKrxRR6yIAo47QBgAAAAAwZoQIbzBxENoAAAAAAArPcq2LAIw6QhsAAAAAAIACIrQBAAAAAIwZTG2DiYTQBgAAAABQfIyOwgQ07KHN2i1tenDZxuE+LAAAAAAATEOMCWXYQ5tjz75Vx3z/1uE+LAAAAABgAqOjDSaiYQ9tlm9sHe5DAgAAAAAATDjMaQMAAAAAGDOCmYgxgYxYaPOe8+7Sl/7wwEgdHgAAAKipTa0dOumXf9fKTfQ0B0aDzQApTDwjFtr837xVOv+ORSN1eAAAAKCmfj93iW58eLV+eOP8AW1/8V2P68p/LB/hUgEAxpOG4TxYa0fXcB4OAAAAKKxSNkJjoK3/J192vyTpmMOPGakiAQDGmWHtaXPyZf8YzsMBADDurd3SpnXN7bUuBoAhKGXzajBiAxgdVDVMRMMa2ty3eMNwHg4AgHHv2adfr2eddl2tiwFgCO7J7n0vvmtxjUsCTCzMQ4yJZFhDmzqaGQAAADBBLFjdLEna2s4UAcBo4OMmJiIe+Q0AAAAMQR0fIIGaWLGpVS2EpZgghjW0KdFPDQCAIesqhf5w71KVSlxPgbGAXubA6Cp/3Pz61fN0ws//VtvCAKNkWJ8exS0mUEwPr9isfWdN0dSmYa3yAIbRBXcs1ILVzTrv9oVqae/SW5+zX62LBKAf9LQBRtcf71vW/f3cRetrWBJg9NDTBhjnOrpKetV3b9EHfjW31kUB0Icv/uFBnXf7QknS6s1tkqQb5q3UzY+sliSVSqHrH1qp4FoLFMZ9SzbWugjAhPfwis1cGzGuDW9oU9p22cu/fZNuenjVcJ4GwCCUw9Q7F6ytcUkADFR5dNR/nTdH7/7F3yVJv/7743rvBXN06dwlNSwZgKHa2t5Z6yIAY1q1JxXf/fh6veq7t+jHtyxQF0OLMU6N+ETEj61u1ucvf2CkTwOgF1bqu82FDBg7ukoltXf2bAlZtalVkrRsQ/p3XXO71je3j3rZAAzND26YX+siAGPaQ8s3bbPszL/Mk5TmuHnRmTeOdpGAUTGsoU1v3dI6q3XBATAqIpttiswGGDu+f8N8HXjK1T0XZhOelnvPPeu06/TM064b7aIBGKIf3vRYrYsAjGkdXdt+prxzwbru75duaNHv76Y3KsafYZ7TpvrylZvaNPszV2r2Z67UkadfX3UbxiECI4OqBRRTc1unzs/msOnPOTfO18MrUgtjnd2j59xHLrpbt81f0/2aJ08BxbN8Y0utiwCMec1t/T/i+xOX3Kf5qzaPQmmA0TNsj5JZuKZZK7Ku231ZsyUFOAfvMV3zVmzWkfvvpDm5mb8P2GUHPedJs7TfzlO1pbVTe82cotaOVEEb6+u0qaVDdXVWS3uX6uqs3WdM0qSGem1s6dDyDS165n47aXNrh866/hE9fe+ZetGBu2hza6d2nzFZjfVWfTbN//INrZrcVK+pjfVauLZZMyY3avcdJysiuh/fWF/nHh94yz0WysvKT3m0rFDIskq5/ct6exrkSD9wIH/b3t+5ytsOd5nsoYcGo/0UzRcfuJumNNWP7klHwUd/c0/397M/c6Uk6XVH7KXD9pqhhro6TW2qV1NDnVo6ujS1qV6N9U9kuZX/d+WXDdvxuIyI9H87Wv+9lb9+4+lBH9XqSLX6NtafSPvKQ/dQ3Th8RMuzTrtObZ0D64n6zWse7v7+rOsf0VnXP9L9+sr7l+vK+5dLSk+yKYX03y97iuYsTNfWPWdO1u/vXqqTX32w9thxkq59cKWWbmjR8w7YWXvtOFmTG+s1Y0pjd90ISWu3tGnHqU2qt7WptUNdpdCsHZrU0VVSU33f7T3D/ftWec1FMTQ11OllB+9e62KMiAvvXKRTrnhAZ7/tmd3Xu/Lv3/KNrdp52iQ11lktHT0/QF5+zxJdcc8yveWofWVJXRG69/ENOmTPGfrk7+7rse1Xr/qnzr99ob7+xqdrckPPe4+Vm1p16p8e6n598qsP1uydp/bYpnx/9aGL7u6xfLfpk/SV1x3WY1nPe9k0jOTxdVu18w5NOuP1T+uxTVTsEwpdfvdS/d+8VTr9uKdpl2lNvf3YhqR8TzDQbasZjr8NEem9e5iOV0vTJzfq35+yS62LMSLOvuHRAW333vPn6LlP2llb2jp17OF7qlTl3rP8/1021v/fUXy7Tp+kZ+8/a0j7ejA9XI488siYM2dO1XV3LVynN517x5AKARTBbZ95mfaeOaXX9bbnRsSRo1ikAeurbn760vt0yRy6imLsmn/G0WroIygoat3sq15KT4SowFi0y7QmzTnlP/rchroJjL5D95yhq/7nhX1uM1br5ku+eaMWrt06iiUChs/LDt5NvzjxqD636a1uDltPmyP330k3fPLFWtfcrifvOk1rtrSpvs7q6AqFQl2l6E7TWztSy+K0SQ0qRVreUJ+mS23rLKVW//Yu2Wmbxvo6Nbd3qt5WY32dOrpKmrVDk9Y2t2uHSQ1q7ehSqRTa1NqhHSY1yLJaO7q058zJWt/coZlTG9XS3qWuiO4u5eUeMU31dWrvShM+Tm6sk7LeMuVtLPdIXvMtkWXl9xXxRCtneZ9qPXXKPXOKptxTKP9+B9PCWblt/r3ne9wM5lijaddpk0b/pKPgGwQ3Qi8AACAASURBVG88XP/zigMlpfq045RGbWzpUHNbp+pstXeW1FkqaUpTvVo7St3jhcv/TdX+v7pK6u5dJvX83e5LKNW7cr3vradIf78jg2mZy5ert3pXebyx0LLfVx2p9l7Gsvpx2MtGSmHUuTc/pmmTGhSSVm1u04sP3DX1fJncoAWrmzV1Ur26SqF/Lt+kOlsrNraqqaFOR82epQN23UH3Lt6gSQ11mjm1SZtbO3XIntO1vrlDm1s7tLmtU5Ma6jSlMfVG3XunKWpu61J9nbWlrVMzJjdoSlO9Nm7t0Iwpjd3lsqUtrZ2a0lSv+jqrztamlg411NfJkiY11lWtI+Phdw0Dtz09Lotu3mmv1uX3LNUR+87cZt3KTa2aMaVRUxrrZadJ/nebPllrtrSpFKFVm9u0x4zJklKdaO8qaVJDqjML1mzRkfvP0oPLNmrm1EY9trpZB+8xvUcPV0nasLVDj69r1nUPrdIrD91dT99nxx7r7fTEVjs9OadUCl370EpNaqjXh15ygKY2bXt7n783e2DpRl1+z1J95KVP0awdmrbZpnzNLL9e19yumx9ZraOftsc2ZR0O1Xqp96ZyM/7ubGtSw4g/Z6Zm/vKxF2lzdn3asLW9+/Pl1vYuNTWkz4gNdWlkRVf22XBqU4Pq7KojJvKf4YCRNm3S0KOXYetpA4x3RW2VkKibmNiKWjepl5joqJtAMVE3gWLqrW6O3ygWAAAAAABgDCO0AQAAAAAAKCBCGwAAAAAAgAIa1Jw2tldLWjRyxQEKbf+I2LXWhaiGuokJrpB1k3oJUDeBgqJuAsVUtW4OKrQBAAAAAADA6GB4FAAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2hSE7dm2w3ZDrcsC4Am2H7T9kl7WUW+BMcT2QtuvqHU5AAAABorQpgaym8YW21vKX5L2GsT+fFAEhkm1D3G2T7R9qyRFxGERcdMInTtsP2Ukjg0Uge0X2L7d9kbb62zfZvuoWpcLQPHZPs/26bUuBzASbJ9r+wsD3Lb7fnEw+40G26fbXmN7he39ss+29b1se6rtC/s4Vvc9eX/bTjR86K+d10bE9eUXtmfXrigAAAwv2zMk/VnShyRdIqlJ0gsltdWyXMBEZfsFks6UdJikLkn/lPSxiLirpgUDxiHb10j6W0R8sWL56yT9WNI+EdE52ONGxAeHqYjbzfa+kj4paf+IWJUtnlbDIo1b9LQpqMrW/4q08Zbs3w1Zmvn8bJv/sv1P2+ttX2N7/9EuNzDeDHA4xTtsP561NHw+t+9zbN9he4Pt5bZ/YLspW1eux/dl9fgtI/UegBo5UJIi4jcR0RURLRFxbUT8w/aTbd9ge21Wby6yPVOSsnXrbD8re71Xts1Lcq//mG0z3/b7yifMrpWX2r7Y9mbbd9t+RkW5jrD9j6z3z8W2J+f2f192zHXZOfbKrQvbH7T9aHadPce2c+u5BqOwciHq2ZJmSdpb0pc1zCHqaPUCp7c5xoDzJL0zf53IvFPSRUMJbGqhn7q2v6S1ucAGI4TQZmx6UfbvzIiYFhF32D5O0uckvUHSrpL+Kuk3tSogMMG8QNJBkl4u6Yu2D8mWd0n6uKRdJD0/W/9hSYqIcj1+RlaPLx7dIgMj7hFJXbbPt3207Z1y6yzpa0pDgw+RtK+kUyUpIh6TdLKki2xPlfRLSeflhin+RtKSbN/jJX3V9stzx36dpN8pfTD9taQrbDfm1r9Z0qslPUnS4ZJOlCTbL8vK9GZJe0paJOm3Fe/pWElHSXpGtt2rsn25BqPo+gpRT7R9q+1vZaHjv2wfXd7R9klZILnZ9gLbH8ite4ntJbZPtr1Cqb7K9rG2780aLW63fXh/BbT9zCxo3Wz7Ykn5QHWb8zg3lDm3XX4YyXm2f2j76qxx5Dbbe9j+bvY+59l+5nb+XIHeXKF0HXpheUF2HTxW0gWuGP7XV6NBXn6/XL34pO1VWQPhSf0VzPaOti+wvdr2Itun2K7L1p2Y1ZWzbK9Tdm2ucoxXSLpO0l5Z/TrPFVN42H6S7ZuzOn2d0v1w/hjvzM6/1rlGz17O97zsb8kG2/e5l/kmxytCm9q5Ivul22D7imE43gckfS0i/pklt19Vak2kpQ/oX74+bpD0w0Hu/+XsBvg+SfcpfaBTRMyNiDsjojMiFip1h33xsJYcKKiI2KQUaIakn0pand2I7h4R8yPiuohoi4jVkr6jXN2IiJ9KelTS35QClM9L3V2xXyDp5IhojYh7Jf1MqeWybG5EXBoRHdlxJ0t6Xm799yNiWUSsk/QnSUdky98h6RcRcXdEtEn6rKTnu+fw5a9HxIaIeFzSjbl9uQaj6PoKUSXpuZIeVvpQdaakn+d6CKxS+qA5Q9JJks5y1hMus4fSh9P9Jb0/W/cLpXqxs9K174+2J/VWOKdeqFdI+lV2rN9JemPFZj3OM8D3/WZJp2Tvq03SHZLuzl5fqvQ3Ahh2EdGiNDT4XbnFb5Y0L7tf7DbARoPe7CFpR6Xec++RdE6V+l3p7GyfA5Suve9Sqttlz5W0QNJuks6odoBsmo+jJS3LGh9PrLLZryXNVapvp0l6d3mF7UMl/Ujp+r2X0t+Kfaqdy/bekq6UdLrS34D/lXSZ7V37eZ/jBqFN7RwXETOzr+OG4Xj7S/pe7kPnOqWWzL2H4djAeJevjzOV9Yap5Nzk4bb3y61akft+q7LxvLYPtP1np8nZNil9kOvRygCMZ1mIcWJE7CPpaUo3Zt+1vZvt39pemtWNC7Vt3fhpts/ZWYiibP91EbE5t90i9bzWLc6dv6QneuWUVa2v2TaLcvtukbS24ti97cs1GIXWV4iabbIoIn4aEV2Szlf64Lh7tu+VEfFYJDdLula53gOSSpK+lIWwLZLeJ+nHEfG3rFfP+UqBST48rfQ8SY2SvhsRHRFxqaTKuXYqzzMQl2cNKK2SLpfUGhEXZO/zYkn0tMFIOl/Sm2xPyV6/K1tWaSCNBr3pkPSVrN5cJWmLUu/vqpwmCX6LpM9GxOasUfHb6tn4sSwizs4aHQda1yrPs59Sz9QvZHX2FqWGkrLjJf05Im7J3vMXlOp4NSdIuioiroqIUkRcJ2mOpNcMpWxjEaFNcTVLmpp7vUfu+6iy/WJJH8h/8IyIKRFx+4iWEphAspaE8tfjA9jlR5LmSXpqRMxQGj5RObYZmBAiYp7SGP+nKbUohqTDs7pxgnJ1w/Y0Sd+V9HNJp9qela1aJmmW7em5Q+8naWnu9b6549QptdwtG0ARlymFL+V9d1Bq+Vva6x5P4BqMwustRM1Wr8httzX7ttwAcbTtO7NhGxuUPijlQ9bVWShStr+kT1b0YN1XfT8pdS9JSyMif4+7qGKbyvMMxMrc9y1VXjNpKkZMRNwqabWk19k+QCnE+HWVTQfSaNCbtRXz4+QbFKrZRenBAPn61Wvjx3bYS9L6iGiuOE9+fb6RpVnpPVezv1L4lf+b8gKlcHlCILQprnslvdV2o+0jldLIstVKSeQBuWXnSvqs7cOk7rGKbxq10gKoZrqkTZK22D5Y6Sk6eSvVsx4D44btg7Nx9vtkr/eV9DZJdyrVjS1KE+rvLelTFbt/T2mY03uVukSfK0kRsVjS7ZK+Znuy0zwZ75F0UW7fZ9t+Qzam/mNKLfx3DqDIv5Z0ku0jsmEcX1V68sfCAezLNRhjSkWI2qusLlwm6VuSds96o16lng0QlY2JiyWdURFiTo2IvuZ5Wi5p79yQLCkFsj2KXfG6RwOn7T0EFM8FSj1s3inp2ohYWWWb7Wk0GKw1Sr1z8sN3Kxs/qnUQGKzlknbK3kv+PPn1+UaWqUrvuZrFkn5V8Tdlh4j4+jCUc0wgtCmuL0h6sqT1SrP7d6eyWQvIGZJuy9LG50XE5ZK+Iem3WVfzB5TGGQKonf+V9HZJm5W6o1dONnyqpPOzevzmUS4bMNI2K42L/5vtZqXg5AGlx4N+WdKzJG1UCmV+X97J6XGor5ZUfqzpJyQ9y/Y7stdvkzRb6Sb3cqXhEtflzvsHpa7f65Vukt+QzW/Tp4j4P6Vr72VKN5NPlvTWgbxRrsEoun5C1L40SZqk1GDY6TRB8Sv72eenkj5o+7lOdrB9TEUPuUp3SOqU9FHbDbbfIOk5/ZznPkmHZUHrZPUyYSpQYxdIeoXSsMFqQ6Ok7Ws0GJRsaOAlks6wPT2be+0TSsOUh/M8i5SGMH3ZdpPtF0h6bW6TSyUda/sF2ZxWX1Hv2cSFkl5r+1W267NGm5eU/55NBDwurwYiYnaVZQuVa7WIiAVKN7u9HeOLkr5YsexXShO4ARigXurjeUotkFXX57ZbqIrhThHxktz3t0g6uGK3L+bWn6usBwEw3kTEUqVJFat5UNKzK5Z9O9vvD0rBS/k4WyQ9Jfd6idKkqL1pjYgTeinT7IrXp1a87rVORkRlXT+x4jXXYBRZOUT9hO2ZkjYoPQL8U0pPPasqIjbb/qjSh7xJSnNS/LGvE0XEHNvvk/QDSU9VGoZ0q6Rb+tinPQtqfqo02ehVyoW5vezziO2vSLo+O8dnlSY/BgojIhbavl3pIRVV605E/J/tcqPBTko9SgfUaDBE/600GfECSa1K9e4XI3CetysFVeuUgtkLJM2UpIh40PZHlAKrHZQmBV9S7SARsThr0DlT6cmMXZL+rm17sI9b7jl0FAAAYGyyfaqkp/QW2gAAAIw1DI8CAAAAAAAoIHraAAAAABhR2SOAH+pl9aEDfCojgAGw/aB6TjZc9oGIuKjK8t6Oc67SEx4rXRgRH6yyHCOA0AYAAAAAAKCAGB4FAAAAAABQQIN6etQuu+wSs2fPHqGiAMU2d+7cNRGxa63LUQ11ExNZUesm9RITHXUTKCbqJlBMvdXNQYU2s2fP1pw5c4avVMAYYntRrcvQG+omJrKi1k3qJSY66iZQTNRNoJh6q5sMjwIAAAAAACggQhsAAAAAAIACIrQBAKBAlm9s0YLVW2pdDAAAABTAoOa0AQAAI+v5X7tBkrTw68fUuCQAAACoNXraAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUUE1Dm7bOLv3v7+7Tyk2ttSwGAAAAAABA4dQ0tLnuoZW6dO4SfeVPD9WyGAAAAAAAAIXD8CgAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACigQoQ2oah1EQAAqLl1ze21LgIAAAAKpKahjeVanh4AgEJ5YOnGWhcBAAAABVKInjYAAED0OwUAAEAPhDYAABREKZ6IbbpKRDgAAAATHaENAABFkctpOrpKtSsHAAAACqEQoU3QmAgAABPzAwAAoIfaTkTMPMQAAHTLN2LQoAEAAIBC9LQBAAAENQAAAOipEKENN6kAAPSciJihUgAAAKjt8KhanhwAgILJxzQ0aAAAAKAQPW0AAEDFnDa1KwYAAAAKgtAGAIDCyA2PoqsNAADAhEdoAwBAQZToaQMAAIAcQhsAAAqCR34DAAAgj9AGAICCaG7vfOIFoQ0AAMCER2gDAEBBPLRsU/f3PPIbAAAAhQhtuDEFAIDJhwEAANBTTUMbO/3LPSoAAD1HRHFtBAAAQI172ri2pwcAoECCp0cBAAAgpxDDowAAgNSZe+Z3fqjUmi1t+sENjzJ8CgAAYIIhtAEAoCBK+dAmt/yTl9ynb137iO5+fMPoFwoAAAA1Q2gDAEBBlCLf0+aJ5VvaOrNl9LQBAACYSAhtAAAoiB4TEedelcMcMxUcAADAhFKI0IZ2QwAAen9iVHm5SW0AAAAmlEI88hsAAFQMf6ryLZdNAACAiaUQPW0AAEDFnDb5Fd3Do4htAAAAJhJCGwAACqIr37sm9335oVJENgAAABMLoQ0AAAXR85Hf235fR08bAACACYXQBgCAgugqVX/kd6mU/iWzAQAAmFgKEdr09rQMAAAmkt7mtOEyCQAAMDHV9ulRtTw5AAAF0yOoyQc4wfAoAACAiagQPW1oQwQAoOecNnnl/IbMBgAAYGKpbU8b7j4BAOjWY3hU/klSTEQMAAAwIRWkpw0AAOilo80Tj/wmswEAAJhQCG0AACiIXnvaZC8Gmtm0dXYNY6kAAABQKzUNbf61ZoskadHarbUsBgAAhdDz6VHbPklqID1t7lywVged8hfd8djaYS4dAAAARltNQ5vL5i6VJD26akstiwEAQCGUSr2s6B4e1X9qUw5r7lhAaAMAADDWMTwKAICC6NG7Jjc8qjSI4VHdvXKGr1gAAACokRo/PaqWZwcAoFjyPW3ycxKXvx/Q06PKAQ/XWADABLFmS5s+8uu7taWts9ZFAYZdTUMbKhUAAE/oORHxE9+X534bTBBj+toAACaI713/qK78x3JdNndJrYsCDLuahjYzJjfW8vQAABRKz4mIt0UQAwDAtsqNGvkGD2C8qGloU8eMOgAAdCv1eMz3tuvvWriux+vNrR3a2t6z1yq3qwCAiYYmDYxntQ1tGHAPAEC3ni2E28Yv65rbe7x++qnX6vlfu6HqsbjEAgAmGhouMB4R2gAAUAOL123V3yoey90V1Z8e1b2syu3oxpaOQZ23rbNLHV29PVscAICxx3yuxDjG06MAAKiBi+9arLf99M4ey/JZSqlKaPO96x/t97jt2UHuX7qx6vqDTvmLXvO9vw68oAAAjBFMaYPxiJ42AADUQF2dtwlm8sOjuqqkNs3tXd3fP5ALZTZufaK3zaMrt0iSrntoZY99l25o0WOr07pHV20ZesEBACiY8sfK0hBSm9aOLl19//JhLhEwfGrb06aWJwcAoIbqyjeYuXAmf7PZ343n167+Z/f3z/jKtd3f9/bkjH//+g16+bdvHkpRAQAotO15uuKX//SQPnTR3br78fXDWCJg+NDTBgCAGihfA3sGNU+sr9bTJu+2+WurLqdnOAAAA7dobbMkqSXXmxUoEua0AQCgBurryqHNE8vyAU7XILt4l3vsbGnt7GdLAADGl+35XNnSkcKa8nUZKJqahjabuLEEAExQ1cbf53OaUj89bXo7Xn7em8pHhG+vUil6HX4FAECtlOOW3i5Rtz66Rv9cvqnqunse3yBJDI9CYdU0tOmt4gAAMN7VVxke1VWqPlRqMHaZ1tT9/Y9veWxoB+nFAZ+7Sq//4e3DekwAALZXfxMRn/Dzv+nofp6cuKll8B0KHli6Ud+9/pFB7wcMRk1Dm6G65/H16sg/FxUAgDGmPKdNPqjJd+/ub06b3vz10TXd3//45gWSpHsXb9hmu65SaH1zu2Z/5krd+PCqHuvmLlqvH99cPfCpdqxqTvvzQ7rinqUDLTYAANtte4ZJNQxheNRx59ym717/6KB7xwKDMeZCmweWbtTrf3i7vnrVP/vfGMCIWbxuq6Q0/OLLf3pwu4LUlZtah/wBtZrmtk7dVPEhFCiauipz2ixau7X7+8E+tvTxdVt7XXfcObdts6y9s6R/ZI8N//lf/9Vj3Rt/dLu+dvW8Hst6GxYVkcKfSj+/9V/62MX39ltuAACKoLc5bWZ/5kod/6PqvUw7s4t4R4kOBRg5Yy60ufmR1ZKkX962sLYFAcaxJet7//AnSX95YLleeOaNumHeSp36xwf1y9sW6rqHVg7qHFvaOvXwis1avblNz/3q/+nMa+ZV3a5UikEFOhu3duj4c+/Qib+8qztYam7rVGcfoVJXKbqfHDBvxSYt3dDSve7exRtoPcGIqPbI77zBBpkL1jQPKjy9d/EGbWrpkCTdOn9N1W3yx+voql6eb1/7iJ552nVas6Wt6nrmwAEAjLThuNRU62lTvobNWdT3fDe9XSMfWrZJm1o7tr9wmNAaal0ASdp9xqQBb/vnfywf9PFLpdABn7tK3zz+cL3pyH0HvT8wkVz/0Eq994I5Ouftz9Jrnr6HfnDDfL3lOftqUn29fvLXx7R4XYu2tqcxv2ffML978rYPX3S33nzkPrpkzhLtOKVR933plZKkzq6SFqxp1ivPukWS9B+H7q5dpk3Sb/7+eI/z/vjmBZo5pUmN9dYu0ybpmMP3VClC//71G7RmS7vu+OzLtGR9i5686zSta27XrB2a9KzTrpMknXLMIdptxmR1lUr6+MX3dR/z4RWb9fd/rdMnf3efXnfEXvreW5+pB5dt1DHfv1UH7j5NHV2hM48/XG869w5J0jePP1yfuvQfkqS/fe7luvnh1fr0Zen1XZ9/hXadPkldpdCW1k7tMKleDy7bpNdlPRhOP+5pet0Re6lUkiY31WnVpja1d5VUKoVKIR20x3Stb27Xuq3t2nvmFE1urFdzW6dumLdKpQi1dZS0w6QGHXP4nlX/XyJCttXW2aWOrtC0SYX4843t0NaZApF8j5pXHba7rnkwBaCdvbTatbR3aUpT/TbLV2xsVXPbtuPxWzuqP8L00rlLdNndS7pfn3PjfH3kpU/psc3cRev11p/cqbPe8gwdvs/M7uX/WtOsJ+2ygyTpBzfOlyQddcb1evT0o9VQX9fjnG2dJU1uTOWNCP1u7hK96dn7yDxCEgXX3llSQ527e8UBmHhaermGVmrvLEkVH2k7ukp6zffTPDoLv37MNvssXrdVN8xbpXf/2+ztLSbGOQ+mBezII4+MOXPmVF0XEbrmwZU6ZM/pqrN1/u0L9bNb/1V122oa6tzdvaw3xzx9T115/xOhzSsO2V1b2jp054J1evfz99f0yY1avH5rd8vg/Us3anJDvR5dtaV7n6Nm7yTL2nunKdp3pym6+oEVetZ+O6krQrc+ukbTJjdo352maGt7l/72r3Xadfokve05+6nOkmWFQvvvPFWN9XVqae9SfZ3VUF+nKY31mtpUr7XN7dp/1lQtXNusmVObtM9OU9RYV6f7lmxI+3R0qlSSVm9p06wdmtTZFdp31hSt39qh6ZMbtLWtS3csWKPpkxv15F2nac2WNq3Y2KrGemtTS6c2tnRo1rQmrd3SpoP2mKGZUxr1koN2lW0t39Cits6SWju6NKmxTpMb69VUX6eOrtDUpno11Fs7TmnU6s1t2nvmFG1o6VBXKdTRVVKdrT13nDzg/6+85rYuTW6qU0NdnTq7Smpq6NmBK/8rNpB79PLPufL7atsNp+mTG/q8MbM9NyKOHNaTDpO+6mZHV0k/uWWBvnnNwzrp32fTSw2FVueew4WOf/Y++tabntHnPkWtm33VSyl1t57I9p01RYvXtfRY9qlXHaRvXvNwj2W7TZ+kNz57H/3opp5z7Hz3LUfoT/f9//buPbap644D+Pfce/12YicmToKTkBAoJVmahTZijKpjpbzasKqt2qmbqsGEpk2Vqv3BH0w8pDFQ90e1P5g0rVJX/uhYpbaqVB4tagdaW+hCANFUJZlCyKMtIYQ8mthO7Ni+Z39cx7HJg4AC3ITv56/o3mP7XDs/+57f+d1zu3Dif5mXQv7jV4/gUk8Ip1t7U+v77HpqORxWFce/7s5Y8+df21biXOcAhkZi+OrKIBra+1Hqc+K5FUUYjiXw9ZXBVPtnagKIxBJo7w2jusgLj9OCyz0huO0aqou8WJznwpfffo8rAyNYs8yPbIeGUCSO4lwnjjR24dkVRSjIvr3fWVMSgMdhmb7JHI1NKSW6BiNY/eeTU7Zx2zS4bCrqHlqI850DiOs6WrpDGL2h2m2J343WtPNQGmdRBfxZdlwPRWHTFCxe4EK5341v+4cRS0isKMlBZ18YS/xuFOU6oQqBjr4wRuM6Cjx2OK0q7JoKX3Lx9ZZrISR0HSU+F3KcFiR0iWAkjo7eMLIdFjisKvxZNnidxnl0KBqH26bBYVVh01QIAfQMGX1x2TT4s2yQAIKRWCpZrgiBhC5R4LHDqt78goWRmDFWUBWB3lDUeD2LiuHkXf7iuoTLpsKiKIjGdcQSOtw2DUIYSQAhBKyqAgljAkjAOJcWMCZxLMk+pJ9fj8Z1+G/yXTNXY7PlWhBHG7uwdXUZElKiezCCohwHpAR+d+g86tv6se3RMry0ahGcVg0SElICFlVJTfRd2L0OCSlTn6kqBGqS+7b8uBS/f2IpAGP8IgG09oTwwuvG5F7DzrVI6BLxhDF+iusyNSl5cGstaoq9qcfqUuLQmW/wl09aUq+bThEC1Xs/BgDU/2EtLKowPmNhPP7StSB+8cYZvPpsFR57IA8Oi4r0Ycrhxi6U5Drxw+LxCZWxMVc0rmPLwQYc3FoLhyVzkkdKY5KmMpCNny7zZ2wfTeg4096PV96+gLM7n8ioPBr7H/vjkSbUPVSIhxflTPh8rgej6OgbRm3p+L6ZjNckJNp7wwhF46gKeCYcz3i79OPIvImDogioQkAmZDphkgAAA/ZJREFU9+nSeF5I47zyxvdh7HWHRuLGGHCSQepY3KmzNMmkqQKum0y6ThWbs5a0eeu/Hdj9wcUZPxeR2Zze8TgCXseU+836AwdMH5tvfN6Gfce4BhTNXV/uWQev0zrlfrPGJpM2NJ8tcFtxbte6advM1dh89cNmvP5Z213sEdHsqS724oOXV0/bZq7GJn83aS57/EE/3txSO22bqWJz1urrf15bgj8dbZ4ww0B33qrFPhR67Hh/BnfpyLZrGIrEJ61s2l1XAYt6a5nE3mAUB062YnlhNhRhZLJ/Vr0wlSVOT0zqEphJhfFYu+kqdO7EEgnZ9vl5uckzNQG8eaodXYORe90VotsyXcJmLmvdvwlLdn40YfvGygIcv9g9YfuBF2vwytsXMrZVBTz464s1WPPafzK2766rgCKMGbF0GyrzsfEHBRmXEdLds6eu4l53YdbYJ5m1nC/WLs/HdwMjGdXdROnysmx4eU35tG16glH8LVkh6M+yoSdorPv1y5UlOHRm/BJxj8OCDZX5eOeccbnqjk0PYmgkhrMd/YjEdGyuLkTz1SB8LisCyaqShC5xuLEL6yvy4bRpqVoGCcyvir4bvPZ8Nba/24gnqwrw/XAMX1zuS32vNl0dwnvnv8Nvf1KOv396GaU+Jx7Iz0Kuy4ql+VnYf6wJugR+89hiDI/G8c/6b7D36Uokkmsn7jvWjLIFLrz0o0Vptw837oS4siwXhR47Hi7NhaYIaIqARVWgqQIt10I4cOISdj65PLWQcTgaT1Vm7T3ahBUlXmyuXphxLFICxy92o6G9HxsrC/BIaQ7aesOwaQoCXgfq2/rw7+YeVAU8yM+2YWWZL/X8upSpCdk9dRUZ4yQB4GznAI59dRXbHi3DwrQJ6fRqmeJcB369uiyjP1ZNQUN7Pw43dmHXU8bxCIxXuIy9T06riu3rl0143rfqO9F2PZzq062M1/YebZryeNKlX1o99mc4moDDokBirBpNJCvSjD6fau3DqnLfpDU/De398LmtKM9zz7yzt6koZ+rigJuZtUobovnOrLMSAGOT7m9mjU3GJd3vGJtE5sTYJDKnqWJzzt09ioiIiIiIiIjofsCkDRERERERERGRCTFpQ0RERERERERkQre0po0Q4jqAzjvXHSJTWySlzLvXnZgMY5Puc6aMTcYlEWOTyKQYm0TmNGls3lLShoiIiIiIiIiI7g5eHkVEREREREREZEJM2hARERERERERmRCTNkREREREREREJsSkDRERERERERGRCTFpQ0RERERERERkQkzaEBERERERERGZEJM2REREREREREQmxKQNEREREREREZEJMWlDRERERERERGRC/weESwT1hQdGiQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEhCAYAAADFzF13AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydebxdV1n3f09ukmZo2jTpEJoOl7bM+IIIgiAiAgICCq8KKMigqKjIK+gLDuiLgqI44CygCAqIIsokgxUVZIYi1VIs0JZ0SkPTpGnSjDe56/1jPb9z1vmds3Jv2tCcNr/v53M/6+6911577bXXdJ7nWc+KUgqMMcYYY4wxxhhjzHSx5FhnwBhjjDHGGGOMMcaMY6GNMcYYY4wxxhhjzBRioY0xxhhjjDHGGGPMFGKhjTHGGGOMMcYYY8wUYqGNMcYYY4wxxhhjzBRioY0xxhhjjDHGGGPMFGKhjTHGGLMAEfGciCidv0dnnEfn8bc2930sIj7UHD8gIl4eEWtvp3xfMCG/N0bEhyPiMbfTs59zG9J4QkS8LyK2RsRcRGyJiHdHxPccxazqM0+MiLfmM0tE/E6ef1hEfDYiduf5+0bEWyLi8iNM/3l5/1lfnzcAIuLFEfHkr1f6xhhjjLn9WHqsM2CMMcbcgfh+ANfKuS9m+BkA3wLg0sPc/wAA/w/AmwDsONqZOwyvBPC+/P8MAC8E8L6IeGgp5aLbMR+LJiL+EMBPA3g7gJ8EsAXAXQB8N4B/iIj7lVIOV9a3lhcCeCqA5wK4HMDmPP9G1G/2JAB7AFyB+i3XHGH67wbwBQA3HI3MdngxgA8BeNfX8RnGGGOMuR2w0MYYY4xZPBeXUiZaVpRSdgL41O2cH0TEcgBzpZRymGhXlFI+1dzzrwBuAvAUAFMntEnrnJ8G8DOllD+Qy2+PiD8AcPPX6fH3AnBNKeUtTX6WAbgAwMtLKf/WxL3iSBMvpWwFsPU259IYY4wxxwVeHmWMMcYcBSYtj5LrzwPw53n41Wa50ll5fWlE/FJEfCki9kfEdRHx2xFxQpMGlxz9eET8bkRcD2AfgBOPMLt7ARwEsKxJe2VE/EFEXJpLgK6PiPdExD30PTIPD4qIt0XEzojYHBG/3+a1Uwan5RKjSxdYHvSLqAIyFdgAAEopny2lDCyeIuK7IuLTEbE3InZExDsj4m4Tnv99GW9Pxnu7lH8B8EwAd22+z8sAHAAQAH41z12e94wtj8rlVa+OiCvyO26JiHdExGlSfmfJfc+PiP+OiH25NOvP22V0zF8ur3tRRGyKiF0R8e8Rca8m3rUANgJ4dvMOf5HX7hkR74qIG/I5V2cZeD5ojDHGTCkepI0xxpjFM5M/nvk3cwT3vhvAq/L//426lOpbMFwm8zYAvwDgzQCeAODVAH4MwF9PSOtXAMwC+NFM68ACz17S5HkjgNegWtv+QxNnZf79GoDvAvBTAFYD+GREnD4hzbcC+FI+/3Woy4pe0stARJwH4BOZ14e3QheJdw6AuwF47wLvxPhPBPBPqJZDT8183w/AxyJiQxPvBahLrS4B8L0Anp/xPhwRJ5ZSDqJ+jw+hLoHj9/krAI/IZF6X576vk5cTAPxr5uGNqN/xBahWQV0/RlH95vwRgH9GXf71UgBPBPD+CQKV5wD4TlRLpB8BcB6AdzV18Umoljzvb97hN/La+wFsAPATAB4L4OcBzKEKpIwxxhgzhXh5lDHGGLN4LpPjjwOYaFmjlFK2RsSVefj5UsomXouIR6IKAp5RSvmbPP2hiNgB4E0R8cpSyiVNcteVUr73CPL9hvwj+wA8r5Ty6SZ/21GFRMzTDKoQYSuAp6EKFVreXEp5RZPXbwHwAwBeIfEQEd8I4AMAPgvgqaWUvYfJ69kZXrWI9wKqv54vA3hCKeVQPu/TqN/qxQBeEhEnoQrM/qKU0r7jZzPecwD8cSnlUxGxDcB+WU7G5UzXtucn8GwA35x5eX9z/h29GyLifAAvAvDLpZTfaM5fAeDDqAK0f2pu2QfgSSlkQgp13gbgmwB8ppTy+Yg4AGCrvMMGAHcF8ALJ29/AGGOMMVOLLW2MMcaYxfMUAA9q/n7kKKX7ONQf4+9sLXkAXJjXHy7xj9TB7K9imOfHAvhLAH8REd/fRoqIp0fEZyLiZtTlU7egWt/cA+O8T44vAXDOhHiPBPARVCuPpywgsDkiUhhzPwB/S4ENAKTfoU9haCHzMNQlZG+V8r0KwFcAfNtRytJ3ogrU3r9gzNF7lkzI28dRHR5r3i6kwCahMG9S2bfcgPq+r84lWhccQR6NMcYYc4ywpY0xxhizeL7Qc0R8GzkdwArUH+mTWC/H1x9h+ptkl6gL80f77wP4ewCIiKegWmy8EcDLAdwIYB7V2mbFhDS3y/H+TrwnoAp+Xi/Chh7XZHjuIuKuy3BSeWxBFegAtXyBarkyiSMtzx7rMb672EIwb5sOk2bLpHIHJpf9gFLKfEQ8CvXb/haAdWn59VullNcvOrfGGGOMuV2x0MYYY4w59mxDFdg8onN9sxwfbqeoxXIpgO+MiPWllG0Ang7gslLKDzNCRKzAYXyxLJJfRPXP8s8R8bhSyicPF7mUcnVEfAXVN8uvLJA2BRgbJlzbgFquaMIfwvgSNwDYtcBzFsuNAB5yhPcwb48CsLOT5lGhlHIFgB/KJVX3Q/VD9LqI+Gop5V+O1nOMMcYYc/Tw8ihjjDHm9oNWESvl/AcBrAKwupRy0YQ/FdocDf4X6pIsCixWoS6JankWbvtc4QCq499/QxXcPHQR9/wGgPtHxAsnXYyIB0bExtxm/WIAT20d9qbT44egLssCgI8B2A3g/E75funWv94IFwI4KyIef4T3FABnd/K26VbkYz/G69iAUsp8KeXzAH42T933VjzDGGOMMbcDtrQxxhhjbj++mOELIuItqDv3/Fcp5UMR8feoPm1+D8BnMt4sqiPan00riVvL+RFBC5BTADwZ1bLjD0sp3HnqgwD+OHcy+gCq/5ufwmTrjyOilDIXEU9FXX71zxHx+FLKxw4T/00R8QAAfxARD0NdwvU1AGegWu08A8D9AVwH4JcBvAfAeyPizwCchLoD1jbUXbJQStkRES8F8PvpkPcD+V4bUX3u/Esp5e9u63ui7jT1PABvj4hXAfh05ufxAF49aWldKeXLWeZ/llt3/weq0OVsVH83f1ZK+egR5uOLAB4REU9ALbetqMusfht1B60rAMyg+mSaA/DvR/qixhhjjLl9sNDGGGOMuZ0opXwuIl6B+sP++ahWLGej+kH5AdTlKs8F8DJUK5hNGO7gdFt4Wf4BdfvpK1C3ff7zJs5rUYUYzwHwk6gChydi3OHwrSIFN09H3Sr8AxHxhFLKfxwm/gsj4sLMy2sBnIwqiPkUgCeXUi7NeP8UEVxK9Q5Ugce/AXhJKWVLk96fRMRVAH4OwDNRhRbXoQpJ/usoveOBiHg0qt+YH89wG4CPAthxmPteEhGX5ru+EMAhVN8+/4r6rY6UlwJ4PaqwayXqzmEvQ33fn0P9zvsA/DfqTlcX34pnGGOMMeZ2IEo5GsvijTHGGGOMMcYYY8zRxD5tjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbaaQiDgnIm6JiJlj9PxbIuK8Y/FsY4wx5mgREbMRUSJiaR5/OCKed6zzZcydgYh4eUS85Tbc/9qI+OWjmSdjjLkzctwLbXICd1NEnHAM87ApIh7N41LK1aWUE0sph45FfvLZV2be3hQRrzwW+TDmjoz+WDTG3DYi4gcj4qJULFwfER+IiG891vky5s7O16vtlVKeX0p5xVHI37dHxLW3NR1j7iwcTkFxNOanEfGciPjYrc+hOVKOa6FNRMwCeDiAAuC7j2lm7qT4B6u5PUjB596cUN4UEe+LiLOPdb6MMUeHiHgxgN8H8BsAzgBwDoA/BfA9xzJfxtzZ+Xq1vWNlTW7MtNDMXXdFxI6I+EREPD8ijuvf52Yyx3uleBaATwF4E4Bn82RErIyI342IqyLi5oj4WESszGvfHRGXZuP6cETcq7mvRMQFzfHASiUiTo2If8r7tkfERyNiSUS8GXUAfG/+4HzJBHPudRHxxojYnD9I37XQi2U61+c9z2vzptJXlZYybkT8GIBnAHhJ5u29ef3nI+KK7GS+GBFPkbQ+HhGviYjtAF5+JB/EmNvAk0opJwK4C4CvAfijY5yfLlE53vtfYxZFRJwM4NcA/FQp5R9LKbtLKXOllPeWUv5vjqUcl7ZFxNsjYt0i0l0SES/Lsf6GiPjrfJYxBgu3vQnx/z4ituTc+T8i4j7NtTdFxJ9FxPsjYjeAR8o8+dsj4tqI+Nlsj9dHxHOb+0+IiN+JiKsj4mtRl1atjIjVAD4A4Mycq94SEWd+3QvHmKPDk0opawCcC+A3AbwUwBuObZbMNHK8/2h4FoC35t9jI+KMPP87AL4JwEMBrAPwEgDzEXF3AG8D8DMATgPwflRhy/JFPOtnAVyb950B4BcBlFLKDwG4GvmDs5Ty6gn3vhnAKgD3AXA6gNcc7kER8TgALwbwaAAXAHjEIvI3Rinl9ahl8+rM25Py0hWoFkonA/hVAG+JiLs0tz4YwJWZ11+/Nc825tZSStkH4B0A7g0AEfGEiPh8ROyMiGsi4uWMGxErIuIt+UNvR0R8lv1ACiCvTOHkVyPiGYd7bkTM5ITyxoi4EsAT5PqHI+LXI+LjAPYAOC9kaWQ0/gEa4e1zM983RdXAPCgi/jvz+8dHp9SMmWq+BcAKAO/sXH8hgCejjnVnArgJwJ8sIt3n5N8jAZwH4EQAblPGDFmo7SkfAHA31Pnff6LOIVt+EHVeuAbApKUVG1DnlhsB/AiAP4mIU/LabwG4O4D7o85tNwL4lVLKbgCPB7A556onllI2LzK/xkwFpZSbSynvAfA0AM+OiPtGxMmpTNiayoWXUeEX4k8qJi95Oj8iPpNC1Hf3lBn5nDekoPS6iHhlLM4SLiLijzL9yyLiUc2F50bE/+Qc+sqI+PHm2kRDhrz20szDroj4Upvm8c5xK7SJuhb3XABvL6V8DlUQ8YNZaX4YwP8ppVxXSjlUSvlEKWU/akN6XynlX0opc6jCnZWowp2FmEO1ADg3tRQfLaWUReTzLqiD0fNLKTflvR9Z4LanAnhjKeXSUsoeVMHKUaOU8vellM2llPlSyt8B+AqAb26ibC6l/FEp5WApZe/RfLYxCxERq1Db6qfy1G5UAe1aVEHKT0TEk/Pas1EniGcDWA/g+QD2pubuDwE8PjUgDwVw8QKP/lEATwTwjQAeCOD7JsT5IQA/hjphvWqRr/Rg1Enw01BN1H8JVSB7HwBPjYhbJZQ15g7EegA3llIOdq7/OIBfKqVcm2P1ywF8Xyy8PPcZAH6vlHJlKeUWAL8A4OmLuM+Y44WF2t4IpZS/LKXsatrh/cR67d2llI/n/HHfhCTmAPxaznXfD+AWAPeIiEAdY19UStleStmFulzr6bfh3YyZOkopn0FV8j8c1WL8ZFSlwiNQ57LP7d89xrNQf9OeCeAg6rx2En+V1y9AncN+J4DFOOynkv5UAP8PwD82gqEbUOfEJ2WeXxMRD8hrEw0ZIuIeAF4A4EE5934sgE2LfNc7Pcet0Ab1x9qFpZQb8/hv8typqFqFKybccyaaH1qllHkA16BK+xfitwFcDuDClDj+/CLzeTaA7aWUmxYZn/m8pjm+phfx1hARz4qIi1NCugPAfVHL7evyPGMWybuyPu4E8BjUNodSyodLKZfkJPG/Ua3lKOiYQ52UXpAC2s+VUnbmtXkA942IlaWU60sply7w/KcC+P1SyjWllO0AXjUhzptSmHowBb+L4RWllH2llAtRBVBvK6XcUEq5DsBHUQdYY+7MbANw6mGEKecCeGczJv0PgEOok8HDMTKm5/9LF3GfMccLC7W9AWlt+ptRlynuxPDH1pHMD7eJgGgPqgXcaagW559r2vkH87wxdzY2o670eBqAX0hB6CYAv4uq/Fssby6lfCGt0X4ZVdE3YkGT1uWPB/AzufzxBtQVHYsRiN6AOu+dSyX+l5BW5qWU95VSriiVjwC4EFUQBfQNGQ4BOAHAvSNiWSllUyll0u/x45LjUmgT1T/NUwE8Iura2y0AXgTgfqiVaB+A8yfcuhl1csh0AlWocl2e2oM6qJAN/Ccb3M+WUs4D8CQAL25Mvg5ncXMNgHURsfYIXvF6AGc1x+qQdXcvnxMYyVtEnAvgz1EloetLKWsBfAFA9O4x5nbiyVkfT0Ctnx+JiA0R8eCI+Pc0L70Z1ZqGk8g3A/hnAH8b1f/Tq3Og2I06WD4fwPVRHRvfc4Hnq7B0kiXNrRFofq35f++E4xNvRZrG3JH4JOq4/OTO9WtQreLWNn8rUrB5OEbGdFT/cgcx2saMOZ5ZqO21/CCqc+JHo1oHzOb5ozE/vBF1vLtP08ZPTj92tyVdY6aRjagKhOUYVywsxlCA6Jx0GUaFqEAdA5ehznUpEH0d6hLHhbhOVo1chToXRkQ8PiI+lcufdgD4rubZEw0ZSimXo7ogeTmAGyLib8P+qQYcl0Ib1MHnEKrPi/vn371QtdbPAvCXAH4vIs5MzcG3RN0S/O0AnhARj4qIZajmXfsBfCLTvRh1idVMVL8yg2ULEfHEqM59A9US4FD+AXWCeN6kjJZSrkddI/ynEXFKRCyLiG9b4P3eDuC5EXGvXCryK3L9YgD/OyJWRXVO/COHSUvzthp1cNya7/VcVEsbY6aCtJj5R9T29a2oVnTvAXB2KeVkAK9FTiJTwv+rpZR7oy6BeiJqH4BSyj+XUh6DKsi9DFVYeTiux6iA9JxJ2ZPjIxGgGnNcUkq5GXUc+5OIeHKOXctyUvhq1Db966lUQEScFhGL2dnmbQBeFBF3jYgTUZdb/N1il4IYc2dnEW2vZQ3qnHgb6rj2G0cxH/OoY/BrIuJ0AIiIjRHx2IzyNQDrw47EzR2ciHgQqmDmXagWKapYoDJiMfNHnZPOoQpAW65BbbenNgLRk0op98HCbMzfte0zNudv5n9AdSNyRipU34/h3LtryFBK+ZtSCl2YFFRfVgbHr9Dm2ag+X64upWzhH6oDwmcA+HkAlwD4LIDtqBVmSSnlSwCeibrG8EbUivakUsqBTPf/5LkdmU67y9PdAHwIdX3uJwH8aSnlw3ntVQBelhLOn5uQ3x9CbWiXoZqi/czhXq6U8gHUdYv/jirJ/GRe2p/hawAcQB3k/grjjuJa3oBqprYjIt5VSvkiqnneJ/P+bwDw8cPlx5jbk6h8D4BTUJdJrEFdYrgvIr4ZVRvIuI+MiG9Ic9GdqO3sUEScEXWnuNWo7eYWDIWsPd4O4IURcVZUx4mLWQJ5MaoPjWUR0fODY8xxTynl91Ad7L8MVWlwDapF3bsA/AGqYPbCiNiF6s/qwYtI9i9Rre3+A8BXUS0KfvqoZ96YOzALtL2Wv0bVtF8H4IsY+pU7WrwUdU77qVx+9SEA98g8XoYqhL0y56vWzps7FBFxUkQ8EcDfAnhLKeW/UOeVvx4Ra1Ip8WIAdD58MYBvi4hzUlj5CxOSfWZE3DsV+L8G4B2llJG5bBoHXAjgdzMPSyLi/Ficv8TTUee9yyLi+1ENIN6PaiF0Amp/cTAiHo/qJ4fvOtGQISLuERHfkUKffajWdQvNvY8boizsC9fcwYm6LfkXAJxgDaK5MxIRm1D9UBxClcxfBeBVpZS3RsT3oQoa1wH4COo6+7WllGdGxA+gmmGehSqY+TvUQfE01IHz/pnexQB+MoWWvTwsRTX5fBbqIPQ7qILgZaWUgxHxYdSB+C+ae85DnWjeJ/N2BYB1mbdZ1B+Sy9huI+JaAM+kwDfqzgGXlVJeeetKzhhjjDHG3N40c9eDqH4Uv4gqlHltKeVQKgD/CNUh7z5Ua7NXpuUZIuJPUI0EbkQ1MHg9RuecnwTwKAD3RJ1jPreUcqPOL1Po85uohgdrUJ0L/1Yp5W8Pk/fnoDoH/zyqccHXALwg/S8iIn4K1UrvBADvRV2CdXkp5WUR8SJUQ4fTUHd7fF0p5RUR8b8A/AWq8GcOdSXLjxXvBgfAQps7LRHxFADvQ13O9FcA5kspi1mTbIwxxhhjjDHGmCngeF0edYcnIn4xIm6Z8PeBjPLjqGZpV6BaH/zEMcusMcYYY4wxxhhjjhhb2hhjzCKJiNei+rVS3lJKef7tnR9jjDHGGGOONp7zThcW2hhjjDHGGGOMMcZMIV4eZYwxxhhjjDHGGDOFLD2SyKeujzJ7NupeKu3dsUpiMgK3bt87erx/fnivGvrwFu5xRLESN/yal5Dnl0l6S+RYmZfjdkMx5kFfQ9PSNPR8SKj3L3R8OBZ7b5FQxXTM2yGJp2FglEnpaVqE5bFQHmc6aet+V/rtNR3S1jGmrWnxnrkF0poHNs0BNx4qWhJTwamnriyzs2sAnJhn+MIHJFwhd7IQ29fqNUqtyHOdY4XP3jc53ZLXuSG99g17MuQrAePtnfTqd3Suk16913ZxuPt6afT2a+N5LdZDnZDFuztDrdPLO+m03fMSCbXtLdRn6fmFyrN3X3td+8teOWraTbhpD3Djgelrm+sjytkYVu2dGa7MkOe1GFdn2HapjMOqr9WHaHe7Om88lBe0mw1mRsdSJrRSzrMesl7ta15kvcRhXWW3xHjLJWQ85mFNJ51TMjwo15kOuxh2c0uaOHyPXc219l7IMZ/JguL7s3/ai1G0fE6QPPF5JzbnWR7ML/NIbpI88dmMz/tvlrRnJD7zqu/Mrlnb1Krm3m1yL99TK+mWDPnt8ht97lrcWEo5DVPG6oiyFsPPxFdnUWn3yuvL5fochtWWxc+i4ufRqsN+gE3sBDlmenwGPzc/F9MPOc+qxk9QMKwa/FyEzZd51PfUqZ9OxflORKsS8z4vx3zOCRif1h+QY74386BpHpJ4fDbTYXPifWz62lT5TVlGK5p8LpUQJ2XIgmPiTISZzQKev66GSxjvrAy1D+PLyIfad3XmiR9gaZMZ7bvZZ2kb1Y+Qefzc16azbZ566qlldvYcDGs0C5sthV/4xgz5UbRFBIaFpa1R58b6g4O1Je+fPzh6WecrWmH4TZbIeR7PYfg9dK4Xco/OgVhndB6nv0mXynkNVQLQpqNzbP29pY0RcqzP1mfode1gNP1WNqCTIC1z7Wy0wS/UOS2R60s717WzmzvMvb1NyzV+hp/78uS2eURCm9m73hUXXfQKAPfIM6dKDDYwNiQOF9dmeIuEwLAhaRr7JC6Pd2S4W84flPgLpHfgwGgybJ/t704dQXbLMZPkvZzc8EdmO3Fs4xPex46V6eukse2A+T+foXnkaE10ZGWeZuQ686Kdh05oNb1JP6R3SZwDmIx2WMvlWNPTkbonHCJtY9By07zpwDkhrw98U+faFDA7uwEXXfRyDJv0pzNk2/tahl+owU05bTzl9Bp++YYanodhEzs1B8LrMu7G82r41StreHbG+0+MHn8iwwdleEmGrOdfyXBthtzIL5Md1GF+M6a7CXXTwvaZ6zL8SIasA2dKvLtlyO97nlx/RIZ/neGDJW9sN5on/lBZh2FRr5NrKyTcLPF4zDrI8k8uye705Dxmr3padnn8AXD+3tHbL+N53tCgjyazOSe6Lrvljfm+JfPG5rM6y/emTOCUM/LCVnkA2zi7ZbbxVU18fitW0TPkeE0TFxjUm5I/aL8A4OmYTs4A8AYA1+Txhgy3Z8gRmVWDTYPF0w4NKhLlNXZzLB4WOYtx+fzoM/hMNoWNj8t/Hpgh6zbbp35L1mtm4GQM293JElczS5ZIPJ1sLZPzRMevwa86Hah4YSmGc4NWWgKMz/jQOe5JXXVA1/i96RULdh/GpUwqVNdnq9Rmh8TTdDS93rtNeo4+Q2F5Mp7OvWqaEVde1UngmBKoVZ1Vlm2S7Yzdjs6aOXTwrXc397J/5D35ex0PzZBfm/HZZjmjztF50HbZb9w/Q+232XVyisQpI/Mx1+SF4wSPtenpTLz9bQkMawHT5nSXeWG3wTxQfks4DWD57cP4tJXlwWexv9Sp9bdmyFkO7+czOQV5WobsTi7KkP3rNRLvsRlegEaOykLnXPHb5WY+fGOGLLgHZPjLGbLgX54hx2X2p3xp3pds+7Earm/7YxbMvTNkBeCLs2Kw4jFtppHE72Iq2+bs7CwuuugiAG/NMyxc/ua8NENOuvhisxnyhbdg+CXZ+r6Uof4S35ThNjm/b/T6LdmS2h/qwLAh8dGsF3w8h6iBEGfV8BlFfiQFhVCaRwkPdn5cLc2HlPnRvCkqxDgcvQyBC9YAACAASURBVDEbch6LvK5ERwNY9IfdIu7Ve2LJ5PO9clF670x6hgRHgihnY93ktunlUcYYY4wxxhhjjDFTyBFZ2lTR8PswlFRS+qlWMFSR0uJGpYRrJ5wjallzncTbMhp9oO1RI8aOZFIlmippXIZxaxJK0VRFOSchk560nKO9T6VxaqqstJYrauWjaa+WY76L2ocSXTWjeVsr8Zg+09vZxFVVDeE9TEttWonmTVVeMxJSRcYy0e/WpqfScKZBsaWa4+u324qhZeZUsgrANzXHbEdvyMOslKybtDCZSQuba5rzs/n/l/Ljsq7tvnI0Lpv5xRlSLrwpQ34XdhdUwbGbWC3xqbJj3qglyia/5X+ADU+p/3/wnTV83H0z6VRRrqbpcWqc9ub7ruSzRS249/K8nnndlO8wy7qjdZIqOmqyWJ7LMGZZU7L7i6ynB1KzNljpkWldnWn0quhfZkgt4OszVIMkHjNLNJz4CIDzJfv6CdgUd2Ub3pTHXxTzDub9/CzHK/J4NusCq8bZN46+AzWobLIrUtW8GcDZXx19Jo95z+o9o9fX573Uh30Aw6o4bdwA4A8xVIi+J0Nqm1kd2Y0+PMMvTkiL2nd+ElZNljkN21h/qHSlFp/NaQMTImzfVEPT3IfD+xqJx2OaC5yL4dh4pcQ9U45Z4fjCHDPOkmN+XD6LmmVdLjUYG3KAolZ8Vx7PN3EO7ZycB12LoeOTrqnoWZuy/bMs9hwYjT8otz3D9AeWsnmOYyTfn+/NxqAWfyxXPvOanaPPYt7Y8DnXUG2wHs9hWNbMUy8PLK+75GB6dRao9p1TxlLUYuNn0ykVi06LiG2WU4cVTVxOEVjcrVUJMGwy5Ew5vq8c8z5deca8rMNk+MmWYHxFBKsA7+Vn1vdXw3J+djZxvvOs5EkNZ2nkSkscpjeLYZXSVZFbJOR5GqdwisBn6golNptL5HiNhMwby6L9pis5WPEj6cPU6q+nAufD1IvEIhl840la/N4zdf6qeVyMZcUxZSuA16HaPAHD33X8PUiLm7VyXa0ogeEsha2TAyBreE4CB3Nmjce0c0A8kZ1zWvms5PX8LcolvL1VIvwNenDP+HcYRM1+nI2z59WA8dUY5cD85PP8/pwk8n61cN2HYWfVNooWvU50PNR2wnbA3wX8hLszs5x3qNkx83w3DCdIHPe25L2caF25wHX+VtG5DCdLOtbxmNWRHRHLqzUN3CfXOA7q71+ixra6GkSwpY0xxhhjjDHGGGPMFHKEljbzqGIhitComjtR4lHCqB4z27WF1I2qpQ3FTmPuv5JT5byuU+/5uMljrn1fJpq5gYOudm08rXPmJz9C1+krauWiDofUMqenwWtV7z3niZqWStR7Dq+Yjj675/RUxXztWj79zGqRpFJdZaG8LTY9Taf1aaNONhdrHbUKU25pU1DrK3VKj8owj2dS9EzVk6qwqDzYhaFUebY516JS7HYBPTCUgvP70RSA6TB9arC2j16/NLXt99lUw71fHWZ5g+Yl3+Pf8vBBqfygcH7ggzQl6wNnrJknagXPz3Q2MWvbR7POUl2WEvbl2maXAHuzq5m5ZTTtM24ePeYr7Mk0KLRX91qq6Ff3OhTus/hYddtPCdRPrN2Aur5SrxXqtoRQOaIGEfzU/LTqJ+9mud5qVFmE6l9HXNiMuf7h9YuxoHLimHEagBdgWB+/I0PtVolqgHc28XRlvh6rhRbhNxw0HbUc4Ueilkkta+6XIcdKdVaxG8MKxDTZtvnx2Hdqn65Wk/ohmZeVvDHH+5K1frCWfa2EZB9GLXyBQcltVB97DHWOob5a1ONGck6al5U9w0eP5D2fe5elw3cIVWOmKm8jn5HPPp3HnO/MZrhpNK9rWS58Jt9FnFrQZQKPT1EfggcxNsc6SSdAmqdM6xwtz54J8bFlCWqps31oleVbqp+aFRKvtZ5RpbD6plK/UixBNik2Td43K3nm+bPlPNM5N0M2m/0Y9jU0ZuPUR99zYJAmed2UIZss+yb2x2r7zjyqYS2bOruRr2B8Ksc8qHszVd6r0Yoqr1nj1DJJLT85ftEqla1m5TIMKwQLmwXCh6s1Gz+ydtDab2ofqO6nZC4e6jp0WROXabF/1e5E573qV2VqOYi6UkP67EFfzi9KkwkWAPsszjgub+LyGguU96pFzAq5rqs5tH9TE5RMp9yAibDSb8P4hEy71l5d6ZnBqcNdtfpgyP6fEwz1NdjmSX/XMY2tcqzvoiaJ2gGoszA1AVSLYD5nA4bzBcI5CtPUDuIecp2w/M6V61q+tLBRp4TsaNi212E4SdaVItqhaqfH/oO/rzpMfdM1xhhjjDHGGGOMOR45MkubsgM4+E5gKVfqqn6WyaXG6WCKqZZSdJaipb17Gu1TckuzBr1F1YgqlVYNH1Ht/0I7GA3WuU+IqL5rVI2sW5bpblC67UfPF85CO2nMYbw85ptrk9JSepYmvS3Q9V013VbK2ttMYyF/MkQF1qp11Tz1VMuTtk7UqrrQN5j0zN4mGlPBHgCfw1ATwX0VUquwRcS3fG+aTLQ7manKje+tasQdEqrfJJ6nOkt3YTvczm3AQFI/soY+pfvsgVjnuFT15NHTQ7KeHsj3XZHhQEO3dTS6ZkkF7+vywrK54XnqdliVqBVkNVdLElWa6DLl3q6ELE6ifg30uWswbizFNFTDy+ZMRYIqcqiYUS30Ljnu7disuvrW5lINseSTDMpvlVzfjPGqMy3sBPAvGK6a1/fnt9ogx+y6qPi5DEOdI8+x3NTdGMuaaVKLzE1JPrVn9PrJ76vhKYNtyTKkhpkNkGZn7a5RPGbmuB5dnVQMtMy677XshnSi7o6kFrcZxixG0ftIa6PUs97t3avXe/cL3JpUt+/W9CZuUN9Lu7cjlZyPxe6I1TvP45nmf6Z5mK0VR66rP8Hf7tx3bKHdOA0qqNhdaPqmLhpahbAqk9Ug81yJp7vBn9C5zj6Pz2YeD8h1taCcR9+Virpa4tf7khyzO+BYoFZDTJ/999iUOkOOKWua+Gqcwm6E47t2I0THBqLjDLudTZJnfjOd9g4U+Osw7P/40XizWhrqznmtdTYw7BNPlvOqae/5L1Ht/goMKwpDWk6o3xBNi+cXsSHPseUg6ginvmo4SH0uwxwxD365hkuzIP4ja93ZGJ9Q6TZnakmyMtPYu3P0/GBHJ6KzTDkeWFFKH7s8j09rfNrQMpL+cdbukTTkh+8p+mxdeaJ9cGeM29jd2B64ywKrXs7p7WzI6708ZnhXtWCVeHef5J8IAFYAd7+lcy3vvXeWn/5GZHnerbOLFOPpbrOQ6+ygJu0aNSv3qEhBOzctJg4ev46J2NLGGGOMMcYYY4wxZgo5Mkub/agLUVen6m3gmTlDSpTVqcK6FBFT3XgagC0pflILGl3CSOmyxlOVJKVVlFZTjaAu8tVChcf0VL0C4xYeFG3xfXs7N/E8NZKUyvXSowRdVTpMb49cb+PwWTRY4oJlln3PKznT7Hmw5n1cw7dVzqt1UZt3VbjxG1CyrRYZmta1C+StXdMIjDvzYHosI9a3Q829N0tcVXH38rYVfUuiqeAAagHyhbhuNyXRrLvaPlhGXL57JiabQwDDMtkh5/kd1HqJZTovx/y+amKxQ6LvH33ccmCweQCze1oK3NVXiq5KXrV/9JFUetF6Y1b8zlAYzqz1DM/azca4rwFhsajmVrWv6oRfLUqYBzZtdrOE6apvhrYLpWax9XPT3tszetJyVWsY3cGIx6oNUC1su3Rbl0jre6tScLuEc6genaaRedTvrRspsD6x+bFOsBxZPrQgY7cFjHejuoGQ7ir2yQxVQcxvzPRO4QfQpf3aj3OMbjWUmyQTao7A4210KrVzNK2BUvL0/Ef8Buiuj8GBvbdbZDuhUG2tmuv2tJP6Euo/T/0sQM6rpnJSPL2mfhJUVa7x1IePwjycKsf6jswH07vxMHFYDqzVB+X8HYOVqLs16fBE41NWe1bpXt94MsZ9hqnRhG50qb7C1H+XGmv0nq3WLuxHWuPWnhUO09JpJt9X3WCwv90q8dTonW7z+FxOTdWKpjXqZa3k2NebpvNe5pl5WSfXCdOnywvmif0p49OYZtBHtpY2HHD1NwoLZrec14/DgmIlUF9ianmjPkL4cm3HL26yxgYDHQSITkammkk/T/nCj8gw+56lMln9th3NddqO7Ri9Z6X2nWIJsvKM0fhjFic6buh1HQek/1+6tH8tevfqM3o/SnrjYs9ScxKLvbdngdm7X33MaR46Oz+PvHNvTM3yiFWSZdk9WlecsP0sZsVFe5+++iGMr17R35I9J4T6jA62tDHGGGOMMcYYY4yZQo7M0mYOVVV9dnPchlQTqk8RSoVVFQiMq7LVX4Z6z9aFuLyuOwapFcDuTnxNZwZDybeqTSieV+Gm+rJRD+0q9aYqp1XTtzDeeok3CZXaUc2uaeqxSgO13Hiehhu9XaNa6yPNJ5+hanZNi++r6ij9RjzPOsLy1t2lJikpmTdVN/OeWTmv5bMC4zt2TRXLUXVaqu3MD8q2yZ2daHLCMmKb3oRxj+k8ZjmzbaqVG8+rGkx93LBNrpXzW0dvU78AWwE8aNdoHFrS/FeGWgWouesZgalPFrXiYLGxWamOvRW0q18YdQk0L/Go2VXjL7VW4TP5yZgeqzQtfLQ42Wzuj2GXxvKiYaEq9XivbhCmn5bvxu+wRELdWKB1mQQMm1frm2C3nOM9fH/15XNdc31aLW2Wo9Yd6vr4DizHe0h8NkMdUvZgXKmqmzWwfqg7A9YL9cvE89/AG6i8pPpZd2JQM7bVzfWBg5wMVRPc88GmGt81N4zG0+sDnw3bR4/JYNekVjun0xw1ISSTNHrtMcP9GEWP98l5Op5Q1dokLed+udaz/tFnqeZxIR82C/nxac/3tJo9TTU5nBb32EMrOL6pTjO0D+sZhZ+BYVPo+SVTY2v2bWzv++S8WuKwKc5mqH6rVOHb+jnT99MdlCDHarWjXjXUh9rJEo++s3QnLB3/dqE/ZWOc3XJejbZ1Ryzd2FWNYtg70M+X/iRZzZe5G4Z+Ldgf6laJfJiaKHFwZaLMJF2iMHM6D2LT1988atkIjA8QOlnQe3SOPdVW40CtGZOcSNLCsOdfTHayw8kA7tOkCYz3kbp7FI+ZlljodHcu7vl46VmMTLK00f5YfbdoS7lZrvd20VJryJkFri/FwDdt15Jysde1UnJ3rWwAnAssz56Cuy+y2PnZePsujE+qWa9lJ9oBvFdXAfXuV/N3tmXdBpWwU9yO4cSURayrOTgJZ5tk/8IfG5wsdrCljTHGGGOMMcYYY8wUcut82lBbz4WilBCpGFw1cjx/LoZqQUW1er0dhNTKordcXeP3lt9RQEn1SxuX4X45VgcXN8v1nndoSvcozVNVjlqktIo8XfeqJgW6cJmoEw7Ise4ORUmilpuWX5sey023QGDe9Juo+YOmrYpKxtddTNQ7tyo+lzR5k43Mhk5P5DxptRtTvXvUDKo4WRuAaENpaXT55MsAxrXilBxrGWk9VtMStczR9Hk+pd6HMj1V8PNNLsFw96deM9gjx/potd7ohVplmS6rmnZxcxj3F6OGh7pRF6uiuvpRbSPTuW+GbJqaB5aFamnb6t9uRNeGkOsHJFSjQ1VEaHpqNKeuuLSKtc9gN8r3Ux8+VJbwPWcxtAyaNjicsFxpscVvq8Z7HEL1Oy3DsL7oJm1sJ/wmPQMZNn21XNqblWMlKxYd6ag5gPqHY4XcDOCekvhJrBnpS6WkBU1kCZRsYXGe3CjayN0Z75R8+E35lqw4apU52LGJ6VHb16ZN/y7s/DZlqD4K1krIwYItTjWykPO8j87aJlm10NaK6jVd58+JEr1uMA98ptqfaTweM322TJYB83b/DL/QXOf0kD3UfSUOVYiEZf1NGX4E08wh1CrO9jHbiadjjBp9z2Hc7SFhk9GpirpgZB7YPwx2KZTrRKeo6rqkdSWlLujU8g5N3DaeGm8QvgufoZvw6FjBsVR9B52JYe0+Q+7RsU2NeYkaq+tUUv296X0Mz2Fn+bQMnwLgsfl/PD7/oemxtlHxv/UcKfEn7O7EZ0lku7lifjTT7LD/NMNJu8iyQrEp/l++CNt3r2/KZ/98b1vdY80y1Jdif8VJ6KYMr6jBgRz5+RonckTl+6/AmH/HsbGB/k5ybFEzLx1j1P8JJF7vt5b+vpmfcE0r8uF8p7TPWOh+ov5VerTPU0t7ncQR9as0NrnMXksddA3MvcXCRrfOa39v8Nuwg+TkmnMYblnHyaNY8w/SZrvhMMrJ5065zskVYXWk9VxrDfTZ/F99sObgcEM6GWTfdtIFo9evphPCDra0McYYY4wxxhhjjJlCjszSZj2AZ2O49kw9MkdHBnQwRWSteJsqCUq2et7Md0lIKDnjfWpdQSiJU8lkT/Xcon5NiFrWqEXBQuJ/XTyt0k9Nn6yYkCcKonUbmJ4qnegzmS5VErp+l9dV4tiaKDAt9X2ga/xU7a6o1Fh3FKPpgS6+VhVY6/RhlVxTgxSVnmu57cP495gqrgXwYgw1K6lF2JkabkqY+V5sT5fIcbvdhNYl9Smkfil0Yf4aiacS+Kxru1PdptYduinV3dA39FKrAjW8Uw2nGn2ppQ3PUxdGYbk27dbaQe9lMbEJaXfR28hNm6S6qeJSe9WIqiUP02mXyKoGUn0i6PJhos1eNbtardQoq1eOk8pNLY56RpQ8fwaGXcK0Eaj5VSsoKoDUB1BP07wGQ8Ur76F2Wl18qe8J2nI8KEPWnxlGYIJUKD8xQz5w+Tn5D1XP/Ir5Fndfi0G/s3y9xMmaFPL1AoLq0jM85aAcsxVRS7opw9S8Dmo7z98yfKbuenQg+8bBfIa1nnk/X86rDwQNmbcFdg0ZsYKkFvgCicNnrZbjBSwpu34V+O4ny7FaE7VTQvUb0fO70JtG/lSGKzvXjy0zqO1KN0U7QeKpixGdxrUbZ7JkzpQ4C00z1AcOjzfqnEbcQowNYLzOKr0fw+o+PxqVNljqi401TneqYjy6bFHLP07p1aaL4xK7GdrWtVaGOi6pQbSObTrVYPnSSJDvoBZKLBbd3WuQ+TObMO6eB7QwY3+gFnm9fqBnx8t47Ctzgnzul2uo89mVg631hs/Vj3kS34wmj0x7ISvA/8ZUUrYAB141brXCich1cjwwS86WdWbad50GYMOVo2mwsm3KkJXl0xnSbJdFRJ9ErIRqSk10q006WmRD43flp9qMcX8murtX7/dpbwtJnYipKd+hznWWc77z3suBlWzAfEY2rm0fG4mKmTNHr9/0odGkT+eKnCyHA++pIYtr47dJHvP+f8nyfsx35nkaon0I+Kc89TTOWbKPu+HzNXx3nv7RR+c/F9fgUzeOPvtJ2bR3pvEoq9OmDL89h+dL87775Pf4bL4cX53vOnsm8EHWkwwfnKsaTpkbeb3BJ/xJ1rf8Nr1FSMSWNsYYY4wxxhhjjDFTyJFZ2sRaYPkjMVz9m1LcgdZMNUspS1qaYqqlKeVduR8Die+pW0bj7k1JqYrCdV2dqjAYDnaPkFejR2q1DphkUcFrFJhTKknxnPr4oMiRElVmgSobVYEqavWiEuF2fSJVNJTmqQd7VUGovxH1Jq/71TOP1Dyor5ueqcP8hGczT7o4ureVgm6b0zNrUDU/1TK9ReetXxq+J7+RqrZ7u2ntwXhdmSrWAXgGxtQG+95bQ669pD8qrUetJJ7lzMXouoWQmgGoSYzuCKdrg0VlqdYw6gKr1UryUWop09toTXcv0o3MmJ4udWU8Fg89RFCyzue3HiWYJu+hEoV5UIfzukkcr6uPAH4adaZPVFur3c0GjOv6aG3BT8xnsitjXvjpdccQhferJlN3Q9GyWIfx5qw7geg3OU3i7cHCS7SPFUtQy0S7dLUIYx3odXFt10+0DbB+bJDrhGV+T90OhuPURRmy4s5muO7qGp7yVnlCawJ5glyjepJfvt2Voj3WOYOGZJuc186I6XIQpla8vSYlsnyFXFfrFtVSq4a9tzuSTqs0/Uk7n/TeX7X56utGdzbRHnHSjiVtSEsf1cDvw/DbiPXm4B7duUp9R0y1EzjMYLRf49uwJs9OiA8M2+aq5poaSatvm0EaefNKhlkFTxLLmUMcRLTjPU1CQk09i7ydH2bc5fnM5WIJu7KjrV8uVuza//JYdwJU1xdqVXRNc6xG1Nr/8XrPtYcaHKnritkM9ecC76MxxJYc4L/9jXliO4BHp+XLub89mim17mBFoMac22f9Z4bq74uZ4belaZKaZ/H3B33d/E+W5AkYN1n9RE6qH58PZQEMzCol7Um+DKeJOVTrCZ2fc8Ly0QxnM9Stzz7QpMMKyHem6SldbtE8i2lrJbpErucQUy6sYeR33Jn14qS0HLkuLVI25lT8c/ku35Td5JYbgQ2Z9sXZtd6fdSLb3k37R7P6JMni4PNn+K0Zsr18ReJ9o1xn/WcRPTTzcSWAuax/bFsPuXJ4rc3DA7Jc1mfHSS9pl2X4/TSCzc6R7Z/pbBR/rDfkO7NZPEbMkL/SPHswLcjhkD9vBuS9B/K9OMU5S64zC5RGDOZrNw6fCQAb8oLOxQeWNluH1YY/czmdOmXbyCMH1jzb8mOs3z56vYctbYwxxhhjjDHGGGOmkCOztMFeAJdifMcC1TjxeIucpzZnx3BNJkV8PQcPKnrndUpUVZkzI54x1GKi5+G71TJQw8Bn75E4tNJoLTjatFXFwPs1vqpO1efLpIXPTEsVjbpzFYte1UNqBaQ7fKnoUFXEqhJpLX32N/+3cSlazbzvFXMIXbesn4zLU/nqPefs+okptN7T3MPXXJ0nKOXsLRHd1pzvuV2aDgL1o4rWky+gpiRaV1s12UJrf9XqSlVvasXGwlXtTuZhJhW5p+QHXp3nWYX52E3No1VDR40B/RNo9VXlmFrKMN46iUfUaEjPH8KwmB6D0fyz6bGYqA3gkmHex3fSPCs9NweEeWf6JzT/U/mnn4aKO1XEqaGdutBiHqkk7O36wft1uf7XMFR8MU/qkJ9VdbCGWvLautOaNpaglsV95bz6jWh91/A+YHxHqPZcq+kHxsuH5bdcro851uDHUItP/XiDbaaoS2MNX4qhNQb1Y7S6oOcd9u782rrzEktAd26SHT7GLHO0pqklyYkT0tZ7T5ZjTaPnP0ZtwYhaFen8SK8D45Y0PQsZHanUGkjL40QJe56h1C5rbfOsLZ24+h76DXqmxdMBd3bTzQ45JrAf5VdXPymtoUVvV76xjWbywlrxraju3waG0V8bvT6fx2yqdCNZpAMccS+pu5ESmQuUfHiILwvextPsi9Q9xnI51p2btLWtx3DcYBy11KQGnFm9QK6rBSc5Tc4znrZ0Fhs3ixnMVa/AUB3PF5nNcKvEpTULTQcenCEtOLTb0MnLN2So22Xyo7PyXNuc123GHij3Mq9qGsw09bfItLEbQx8zwLgJhO5yy+ssD5qenInxCsh0/z1DOpjjpni0rGGZ6mTwqtFHn5YDMj///a8ZvW3L3Gh8Wn3sALAhI3FMp7WObgpMu8pNGerPNJ7naEs7S91Vk/WfbZWvyuLk/PkrGLdue0h2jKz2LHLatq7Pd+FClIGrlhzaZnaN3jeQDojZCstim15vynEw4spWo7pTHc+rr5p1cl3W+4z1C2x6arGv4oO9c8Nr/GaDn+a3jN7L8hnsJpsRF/qdaUsbY4wxxhhjjDHGmCnkCC1tDqJqvjY1x8CYJkv90uh2KsDC4iJVQfJeSp1V8qr3qTdtSrFVTam+YQ40z1L1vIrAKMGl1cqMhOqTRh1y9JxYqGVPa81CESDFkNSSZNrUsNyU56m1pnRUjX+Y9ENkLeXV+0fvo2SW6/MoJdT0gKHkldp7Whbw9flMakPaNc7AqHULAHxHhvzkVBb8W4ZqJMRjKhm2N8+k8mNZlg8ls5Q4UwmiVXYZxgXu00VgtDlzsXwecl0pP5w6CmHhUtQOjDva0O1qVNzMyqAOO1Qtpv6VxAxqeVYUXT+6FsOmdvboLYNl5Nq0qFlgs2GzZ31WTZ1acbB+0D5ALXWY9eUY73r0WWxiuk+M7uBEeq6aiNZRHrNsVPPZPotlSiUh25xabxB1t6XuiZjH9RjlNLmuBns3N2lpdej5OVC7hvthqAmZNgI131p+HHa0/HRzQH6vfU0crRdatoTfX40yr85MzNGIJcPzWdlzp4WBmkkXWa/IXK5pTEVXZGQ2nDWZ2Er1McfE1UpDrVJoedLZgelAPlsLjMetkysWcrAzZFq0Bhq8RIZUvfZ8tfC8buXD+9XPjPrvaY97UzB9f7VH1XJhmqvlPPOoPmtU/a/WSK2VDN9H89R6zZr0zOn2aaP+plhy7LNYldWNYns/UKueWoCezovSaZf8fKFzxmSlDkQy0MyooVXGD92RlOzAuLkPmwHzkPeEbmuYTVrHSqLjEacH7K/bvgsYn9KvwLDPYtaYJS0+nVLoXEw2vxkbx+RVB8zkjaeoRfp2DCesnDQ+hLMMbofDfiFL5nG6I5tauanJB+doHX9TKzM8NcNvRh+a945Z6vV8hrEtP/IwiR5DdgP4LIZmCuqrRhupmqq1O/Lwc8jvt49nPX+Y+LD5YFaSx3HcU8vTuZFgYFHB3zH3z3rDORXrpro82oeh7yo+ilWOYzzT5G8o3qtzodygaNDmWJ23STy2UdZAtcShRfBVGDe8ZV435TE/zeC3X/6j5cFiPymvs+0ONuOVbVbVHatOcHehmevki9FlrXaPvM48qC8g9sfqllMfrbam6kurXXii+2Cqu1ndlU/TVJevii1tjDHGGGOMMcYYY6aQI7S0OQPAT6KvlcnVbCtvGQ0p1T2llfup5Pfa0bhFrHUorlItvaqbdUGcqm+pNlDFFZpjPpPSXKrrVQSoGkjVniy0U5Xez3dR3zBqemRLGwAAIABJREFU8QN0xW2HUixK6SilnXyUamMHQkyRDvORzIpaGFwj53dgWKQUbDMNet5OZ+qDeN+TIf2RUHqs65hp3cNipXT4WomnGnpKOq/CuHae1kAsFz6THhnUMGsdxqvKdLEPNfcs/Vy4yxekdk0dB1H03haeWsixXuv2EGfIeRYWP9RqCalOYxvUysjjbG/LsxKfzus7gJ15TjfP0HX2asWlWlIaEagvAh7TWqW39JvPaTUeZ8q1nvcI9V2zQo5Vaaruo4j6tNkn59ltbcT42n7tmlTLrJZ4LAcaMLD8WDW2yzHjq5JK3/1kjPdN6sNGq4+WA9BsYDhlLEetS+oOrWeEqTvTtEOJDmE81vrB8mL58ZvwWdSEsd7xW654Tw03MiI7WiZIczNWUFaGVU2crRLnTPqWk/F8Zufw3hZ1XNbRco41Kt2xrh1bBzsj7hxNG1eP5nXgqoV6S8gFtbjpWQsxU+qnRtNbinHrFU1TffrQmllsBsZ2z5xkMdOi1jFqPXQQ4++hOkT19aM+gaabGdRqqz7H1N0fq+i65j5g1PeeGln3rK4HFjasc2w32ph7A492iurrUU1JNmB8QGIbGlOl12AvjeQ6c0x+fc2qap97/n1ubo45/nDshMRV/4YK+y4dV3raarVKPElNa7VDbhMf25lO671asekudD2/UovZXe5I6VnaaBueUujThj8OHlqDTTlBn9WtzMQU67qs0xu3Yvz3WLYZDm8Pa3/EYGjV8jg15xKLDx2zN0s8/UlKf4Lf1TxuZ/M/MG5VzGHsMomnw9+mDPlbicWi1hxfk+tM9ySJP+I3Rp69XcLBT/M9k+PxnU7aOXqe704rGVr6qWWw7j67A81P6Yykrl4Ho96uyXnSFSI6fdANi7Ucdf7cpqP+UHWhDq/rzq09D3nKEfYKK1CN+/U2HdR1W0/dlvNGDH893iLXEq7z2ZdfqvfLRR1S6S8AXbOgSzp0kjeHvmRDHQPzq/S2i9aRh9fZwfAXpX6tTH/n/tHHD5ylYdyvGCuAbnHMR+pqMi1GdcTE4qCgZbAlXIbsS7WCAkPjUcL8szPUpUq6LR0dWbEj6TkJ5nl2viqne0SG12BYToyjzgT5KbbL9d3NccG00060E/5y54xTe3MWFgtzD8Y9AJN2vVkLC1H9k6u9n0rXdGKqg6vM2HbPD+v9VRhF51y9bbH5k4bpsBdi1s+U+PrjmcWoS3pmMO7jT+flHFC1q9LfpZoOZWMccJknHeDV3/kD5BgY9hMq3NJlgersWOf5urhCBU2Mp36v1Qp9BYa//XWli07YOdlXAdM2DL/rtHEIowO5wvLgu2i89ie3LkdgmesyKI2nQx7RVbkD53x8KCWX+ttEvYauxfCDq5f4KyWuVnZdDkLGPLJmyErCPKhCRD2MLsH4GjTtf1iAJ/Kf3rIpdfqrS7pUUMKwM8fBLc010nPmK8KVgUJMf/jpEiW9rser5bgVPOmuBoQCH6Z1llzXH4jTyTxqDnXfCV16wP6pJ9QBhlWIw+2VIrHQZT5rcuCZp0wuUTmJNrXQKTUnST2J9qRM9pSIee/gh4oIgDi+MC865qqCT8cz9i9rm/NciKgKN53WM01VtnBsvKecZ55W9gYsHeD0Vxow/mt76zsz8QxZ9nRs+70ZcqDmRJiZaZdsAsOXXsqESLafA/Ir+B0ZrsNwXbOuz2DalC+xQFl5T8yvd8tCizCmgHngUA76M/me/G1wbk5kBssCZfLAHmvjfoy7xMgyGWwPnWVH4cFA+CKKfTrq1pW4+huIG63wU+h+Nu1Um+fYJHvKsGvlmP2MCoZYPufJ9a1yndWecypdsnMdxu0bRLY1tgeO9qO7JSy3jKbH/mLQr4gj3sEcPiMcakQBuiRLl1zxGxURoLVlP+mddPOGnt0EQ60De5pr2h/qMyHHGvbw8ihjjDHGGGOMMcaYKeRWWNrcp7mN+m7KqdT0ZEvn/Kbh9qGQS2onpmI80tHGj4n5KfWmmF9t2tQKZteEvKinT1WF61oNxtd9dcWM5YbNo9F62v1WiqfmWVQgvDtDWrBvlXhUBqhigcVCpQCLh5YnVDLwuVS+flbSAYZWCrqkQqWZRFfVUF+nSynU7J/vpFvHafpMdw/GFS1qytvUTADD96Q0fjmmfXkUkeWGKu7fKaGaU2/D8EOqd0VVnands2rReaymUvKhaFZJp4BcAqVWYa0ZOrPfc16tW3nrq6gjXTZhdhe75TrvV2fYrYW5WpncneqQZEf2ZboFMz8NFXFqXNBbMTJpk15g3MDp4UuGic2J5lfhedWyqKFEzxCC5c62qtt36wq59psyTXVGqavtdKnbHMYNNaaFpah9LMtVtXQsB3WUqWUBDOumOjPW5RvabtT5oH4z7acHvoNZgXSdiKrSWtWQjqeMo5W7V4HUzEEHk57ZJfPYmkZC4vZ87w7WGeZXOWPz6H06IGtlU+siTX+3HLf9pJh+DwqdH57zH23sB+Qf7dBWZQ+plhhsRKHurNWKqDXZyF7v4IHRKEvVyTTkWC10pgs6Cddlh7paTq2aGb+d5ukSRDWu0OUMaufAr6H367T2DDHMiuwEqN3XqrnvlnHDDrUEVUtGdaBJdPmuLknSPTJ0rrpd4u2bkKYu44Wc743jX5F4A6PAjMDl/2zKpzCiejxuO0k1R6WZ+en8WjljfYzUlHvpkiSaU+X55R0n6/qb6JrRw4H5xA4MJ880eqPljTbrQRuV9r18yi1t5gEcAGZkJwnWC5bcSnZJMokYvN0hDPs+MVEYrKAVC7OBxWm2rQNiOUPYXlh1OD6rYTkfr8tgDkw4p78F1Tid8dnfqJG7etZQA6ze/E2vt2lqXvTnrT5Lf4Lvl/j6c1iNbpk+7+NK4HZKwTKl9ZOWNdFpRM85sFpZ6v3ap+mim1ZMocvX9Vnsg1j/tL54y29jjDHGGGOMMcaYOyC3wtLmns1tFPNSl0dp7pYm/qTHbABWbqr/3pDyMxXf6dpcdTis4j21yOntg0qRGcVc++W4XQOvTlvVSicl4UXc7vR8wpH1J4wmp251KE2eZDmiCgJVFjIPlPpyaeu9O/GJKiypXOAWcKoRoTS6NUJS58W69pvrjvUTKXw3lWbulus0CGE5s/z4ifn83RivJupDQqXDLJ+B1H3qOYTqH4HanR0jwXChbqLi4NYip93nHOhrvdULF0XIh+S6mjXJevKZfHZPo9Emq9uPatLMilqjqBWCZlnjMX214DlNjlstpjrg3j3Y07CiUv6e75ueT0rNK5NXZZO6JDk0DyyZH73GnlstPmjBxHJQC5Gelwq+k/otYPrsE1RbvQ/jBh36LVWzwOutv4dp1T4E6nvxXdSpMsu151y4td5Sgxfty9WBc89djGrQmA7HjNM/kv9wATwdT6hFKTvY1iUDP45ap7D/UY/f7LTZmbNSq6kBn02VOjO9Wa6zkbW7TrNgVklcbWB8n41yrAOVfiwdPNUsVTXmrRWQTgLYMHueFVUlq/ssa2WgploH9jXbR+9TJ28t/CZq6rcsa/GyL9dQO6DWCd8UsgSjFh1qbKH9kVoLtnMHbbfqDLznpFd9/bNq8Rn6ebSvZ0Ks2nr/HMbHFX4+Hea1b1ZjdN2HQ+en7D90LqrGdO0YPLYFd4YydI6Vh1pfa59I1Bk7y4ca+oFj6P0SzmD8Nwn7qrVZAsvVebgiFjW3iAnxoC/cM/k5On9SBz/tNe0v1XpwmbT36XY3VSvGLmBvVoSV2ZdoHVqpZSmWF4fmgRk1KtJKJ/fQf8yhPL+QM+zeog+1cFOLinbPG/XvolPuPRKy3uviD51XEI756meGv9Q57LDL3ozxn8Hqa0at3fW3lLqhUwN8vU/9J/bu24/xctFn6+87nXNDzveMZdU6SA1jVRwx1/yvrm61qZ4nx1qVe0zrXNcYY4wxxhhjjDHmuOYILW32ALgIQ1nSFzKkTImeUyhzz7WcB68ejXY5xrX0Ko6kCFAXym2X+BSl875tcrxL4nPbIxX/t7vpdNbZc8npytRe6a6blH7OqDmM7iKVEc/bP3pad66hoo60+zmoFJc7xfA16B+GeaJCjlB62pOO6s4JymyGrQRTLWIULVb1G6Jet9XXAqWnvV1Qets1n4fxT6CSa76nasja6jOt2wpXqIvPJn1FyqnZFHX/OXXO0lrRqCmUqsy0zar4WRfIqgZW018yGo1as0lSb/0+/OZ8HWrSdJcndcehu5/2dh/i83QbeVVMz2CozaPWQg2LaJCguyOppqa3rl81pTzm8/RTznITnEb9eOja0Xu1HNVYSqX/apmj/lQUPa/ukHY3/6vlCKsZjSk0rVZDM61tk62yt13wTBMPGN9gsNVG9epob5twrePrJLxS4rH+HsgCX85BQ1WMun3MHMbVSL095jWTagmrDot0YOIgoB2BFnBrmaIOgtjZ97bqUYuinhMgfRdV1zEPOrC3766qOm30PfWu5mmDXG+36GnTXyMhOyWWTfvuLHt1XkJ6vn7U4cKUMoOhIRKP25Cvx0+ifqd4vi16vUd3tIdcJ/o5mS+mrVporXJqYTLYhal12qNqZnkoLRK0SaqxlzbdnnZa55KsRmx+qzBstrqxkvqO0DLXqkXjON0gjs+c0bau5lT6oHYexEQ2Sfj5LLBTZdsh+pfhy9DMnajpljrooQkDX5YvN9vkTX8v6byu51+rt5XglHFwH7Dtf4Zj1IMy3/SxOei+1AwjaS0sluW1leJcRXeJ0p+Qau2iQ1xvg2K1tNBxuJ1OL+T3Ro04D0jI65wbqCGVWs3p7z22O7VgmsP4T2u1btF5rLp+XSHn9f3154PmsbWsadPdh/Hfr2rdpH50eKy/NdXyvrcCheWr82BdDdJOhbSf5HvSipB1WMtnIf+MtrQxxhhjjDHGGGOMmUKO0NJmL4BLMRTnfinDSzNM2WJJ+SjNPhhStElRJjC+y4SKO3Udp4oEVXQ4cAme0DKnpy3S40PANi49zXCJrHnccPPosa5Zo4+OnhueFSn2Y3Gohrm31q9d50tNDF+by+Z1nTHztilD3RWGeaKljm6YRUk3UVcEpBX+q8R0pxyrRkuViZReUrPF9NTb+FY5VkOP1o0L86YWR5rn6+R6K8nt+SiaDgqG/mww1JiqTwP9CCo6XoZ+xVY1lu5YopXigFxXsw7xwzCoF/tHjwftDuNKfvXboW0Gcl61A7qeX+saX3WVHFMJphY97Tn1kXCWXO/tJKLL7FXDo9pY1eoOurRW/UBtap6ihkU1O4Tx1LpDy6nnGkkNB9Q/QusvYrnE0f6BbVbddJB1GN1laZqg3wwdZnT3PnVFov34HowboSy01p6oxoucKdfHjF962/7xhvZD9Cxmexav7AvYSfMjtxavbWZUxc5na4XTLbWAYQGxANVHC1HzSm1wuv2DFpyqyLSfU4ckhzA+qOjuWGpSsJDDPH2mqmh1sb9aBTH9/c3/PWd92hmqGd6UW9oA9VXUGkb9obGdaDwasbYbDamVDquc7hpHtAqq7xXtE1fmDYcywRkdoNjPt6Y4HWsEdVqhxrjar+g8VrXTvTLQZtK6OmqrW0tvNxi9rgYk6tqJ32iV+HTjjpWr94zmdTDutTvNcVKoZrunYhR1tKemBXzxno8VNQdWv1btN2UFUd+eva0m2e5V7T+lLF0KrF8LbOPGW/ke6ndprCzldDvurqAfo6wcA+u0AyPBoO5MsqIAxotQVwZA4hHdYa61MtbfLkTbmPpSIfobsvebqOPOZ2xjw1UYn6OofxedY0+a27X36RSg9+5qPah9wbLmf50D9dxtMr6+p35THco1T5DzOkw3U+2xaYMOm2zCWp96fR6xpY0xxhhjjDHGGGPMFHKEljZcoU9V1ZbR8PpUm1Fb1qoigFG381skjor3KW7SR1FizGeskOtEtfoUD6r4kzSiyoEfF104nGK7kiElZ9RQMKsqaFdt/mkSqjd+1Wi0/jPUykQ1zFz+qlJP1RKpVPhkiccyUG0Ld6NSKehujK91VImi7rzD9dq08iELKROp0ODSYf3Uqtlpd3c4TeLw3gdKXtQCYQ7Alzv5mQ5OBPAwDJr0Sf9aw5msXSxMflj6MlD1QhtH0bapPgzukSHboqoXGbJCs/CvGY2/XKyDljcma2x7fDS1JquysfFWlXar1oTndbMZfne1WuF13SWEtK6wVMuj7ZnoTmxa39VqSNtVT6k2sI6ZzbBp/Gd8ZjRvqkVRWG5scz0v/Krh0GX6qh1Qg4s2DyxHfkstH7WS2jUhP9PCMtQ+R/tf1eCo5kd3fGnLqecHR/vNhXaZIrozy0q2Z90KTNXR7RZXuo2Fos6SiKrEOBiqeRk7e3U40Ntuq82rqgQ1TrudR/tMNTPrqQ4nWOsCGO9jJzUytYjRvGqaatqmGnftzxfy5cFQtyPZgeF31q3gNC31W3QH0eYvQzXw0myr+yV1m6TaXU5hgeF4ohuV8XOwetN4Qz87i1ItTwZ5lg2IaEEyc8vkvM1jXPuu/m903qTafLXK7o0VamGj2m/Szkl150SdKmi17FkK9MYl3QBO33V9z+/kgeZ/fmBWhA2de9R0Vk3M+VGvkszpKoDB9pNy36Ym88wD507rmmttmhxE9T07FirTwr6DwGU3NkaeWSE4teTvn3O0Mi4ZiY45jM8XVuaJwZi8fyQYoNNXrWN6vefjidfVp2EbV33U6ByS1n4L7T6n9V/dkun9541GH5lv6HuowSq/jRpiqgEm5Pokt3PA+G5VapnUvrNawhBWd+3z1MKc6JCm0wrdratnHd8atPb8jKnFVs9/5EKW07a0McYYY4wxxhhjjJlCjtDS5iDqjlCX5/EVNShpYUMRESXFqhWjePSq5n/GhcThPamSOJCahOUq/U4J86Fc+zij6kRZy707zWHUAzglcWswvg5O1xX2fKoo+gyV+qkfmrVyrJqN3RiXMKofnB0SUtrHZ6kGVzflYDp8t2vkPO/7CkZpN+lgWmoBo8tqe/5HdJmuWvf0lvyqlqrdbUYVDEyLLhWYpj67lRZPt08bWtqQe9Zg7SdqSJG6Vmp1ad6KntUsRbdM0kqnZl3qHEB9OzAP58lxbzHxGiDyo86IiP0kFV9L+1+Z11eKWJv+pQbaAWpq8n5VFqu2pJWm9zbCiUyTWtKexUNPKa79iPo7IGoVNEk1qu18IS2zvqda+Gl7UgMAwvi6jrnd3GTMN5ik0fOdsAJ9A4VjzhJgZgVwklSOkvVOx46eleLMEqDMj8bR+tYzKCGRH3VG1NYrMRqObWugPm34IHawqzH+EbXz18yquSXv1y3C1DcOC0xNJnms22+1ajk1P1WVn5rCsvC1P5pkzdPGg5xXJ0yt+WZvayI1LejsaDn2LDXv03fvbcWmzg1aR0w6ODLP8xKqSnvKmUGtpup7QKuJzrEm7eCpQ1/P6rfnXkZdOyo9PxE6h9Jq0ja7ng9BNm99P1Zn1ZxPsuZp6flDm+RnTqurNqGFxkj9NlouPUtSpss+NbRdLcf4/GZThro9kPr2UzW8mjnoljdqqqE75KrZUeunSM0ceMx+lRVSt6Kdcn9TOwF8CEPjbX6LMd8s+d5FKko7/VM/njN5cVAEu0eSGqu3+syFVgD0XBpNWu2g3a4+U/sTyLFuQKZte9LmsMCwaunvwPb+3uoM3YBQ7+0Zni5kQaJWR70NJttr2meR3u9cjac/cXoW29qP6Ea4HOKXN2n0dg5UA1W1qurtEkpsaWOMMcYYY4wxxhgzhRyhpc0+1B2juCI3Vxhyi6FNGdIMg1qd1XJ9O/rSZooQxTnCwJv7SaPnGc7o4jxCsVVqslbr+tEJjihW51pUepZfPj+a1Z5nbrXI6WlqKClTQyTSW/a/C8OiVNcBqgxTCaKuN1T03XT9Zs9fR4vuLKPPUkMNfbailk0qXVatkq5vbhUUqpjQPOrOVKrZmlafGUNWoFrXsEk/uAZnp6WNOl5SsXmrVdaKrCo29ROli/5V+0OtD2Eh04xLteg9E6x2gbKKo3vbIBE148gPP/iu7Fey7S9n2x9s+YaRG8bc/rQqUvU7kfee1NspT93pk3xWmRt9BVoT0iroUM8BQuu3ItOKE0azuGy/pK3bqYkWcR3LJY9p4cT71tAvkTT+gUZTdj851DyK/omKlAPvKdIPt9q0wJSyFNVyQ9RQkd9mpQ4KPdXy/PAd+f1nVKMr7WVGOy/9tkQdShB1qqZtjOFqjG95RpMsdXDBdsY80EkBG5T6tqPWmeP7fjnfa++tSZlaxPTMyHi9t7vUQoMp86KmcD2tduuHr6de6w1A/Ca6O5RODNRxgFrw8DvxndvJyzaJy/6+t4Uc60fPb+AU0harzglY5U5hfZF6Q3dxqzFeNbRKKfr5iGqZ1fWQ5nsxxk3a7NUFkc6N1CeDVhnV2qsfCN0VpWdktwz98tH3V2MWTbNnqaRGwZyq6I566n8Da5pM8KbZDHUL0t5WijrH0vkQj3sOz9T0gMxj+AKspPpMdWim1j5T3kbnUH9lXtCewLALYpH0rE/bKZXWHdbXwRzu0Oi9Gk+7Tg17OzzxWK1lJnWT2l/o59RVGL3dU9fKsQ4P2pZ7PqOWob8zqPp35Pv0jGx7Fnm9FRd8LtPRac4+jFsQcVrAe+fkvPpa1F39en631CcWUT+1raUgy7S3EkfT1qa4UNO0pY0xxhhjjDHGGGPMFHKEljanAvhhAOfn8cEanL+phpel6kFFYyqKa9dT83/6qNFtTSiu4r10cEIo8qKmSDVTujBXtWHqHGYFxrRVlJytzvdYnxZEu+dHH9HTBrA41MqDy0y3S3wySXDfW5unGpmehFDpWQPxnXUtn/ql2dMcq/RRXQVQ4qz+YnRtpFoLqWKD5aKuVPTTtwoMSlxVQs08bJDzWh7tDlTTCVfok001YKa5rZhqXidpYPVDrpc4uqZb/TGo2Fr9Vk0S6wPjlW9S/N52UKTnmr63jZE2KF3bzrzodlKT7tf36e0Is5DzGim/oDVLRyQ/owt4mUf2ia2mf81oHFq3zGjeO6rbgUFA5nlGvt3gurxjtB0FgJl8x5kVGLdC6SzgZjmsmBu/PLVtM1DLStV4Wh9751u1taq2VU3Ws9rpLYzXsU/rbU8DrKr0rRgu6macs+WYHTCtN9hVcXzX7XXUGk39YZHegvpWvaXXmLY6O9AtPHTg6pnWqipNF77zHbV9t+1S1bKQOLrLlG49x+vaf/Fd1eqZziLUmUi7uF/NbXUy0VMh9q5PGTOoxdhzHzToyzoq43Zexii6m+eMjI2rs25wY6FedVYNOuk1TXXhqE27RT/LQpY1OuzoUKjdjXZpaj2A5rwOp7330qFNy0UtBzSdXtc3yCvHL36vXRjWf91SUh/KNrRVrjOTOolmH8dMqV8vbfOYcMy0aK2nfbjucNXbJmdKWYL6LQdtMN93rcRTY2XSWnWoZQyL6GSJrN22Th17fql0eNU2qD5gWt84+lk0/+qybb2c1+GWqBEXq7Xe3zMaW4/xPkT952g/2ZvKaPn3/LGSnmUTaeuAXuO9valLb3NLbT49t1S6qoPl2lr+THL516JlrlZW6m5Omdq5rjHGGGOMMcYYY8zxzBFa2uwG8DkA/1gPd/5nDak9uypDSpzVb8yW5nxP+6xaKUq5ddsTyLFqy9TPA8VZFAuqCLLdTUcdt3S0zuqTprcGEHJelfg0MlpofXIr/dPdWvSZFMqzGHppq5EE01kjx4T3U/K4Ws6353r71euSf1Vk6rvoJh4q4V3I8/eBCXnhvSqpV4lrK1mdbgnnDgDvxrBJ585u9Buj22TRSkY12/swLk7u+Ulg5VKrHV30ruurCZ9JNYFWzi/I8T6Mi/l1ob2uByeq5e45plpolxa1biCTRPhajqTnS6N3f2+xdM/dvt7XvsNCW1f1tkbo9buqRuptS6UqslZ901OL6G41ycB/Taa9fBcQPZXVsWYGVaWnlg86tvRUx+17aWerdV5VNFofVEWuKi3Nk7YNfW5rYqpqMTUJUN9QmgdVbfXiqdM1Hed1F5X2HqJ1nHlkHWZdZZ/JvNA8Qn1VEJYPB3St15Ocfeh7qymo+vhR53XMi2r5Vf3Lfp7x6XeQ1nhqZrGiSUOs5MYGatZLdYoy5ihkumh3fQLGtd6DKrTAjqPtZ9amtFvqp15XY0zdoaZnBEa0uuiQMslvhnYtOozr+2nX1NvVbyFj1kn0ur+e9c4kX4qT7tf5sQ6d3bxN8iOjFqtq7qPzG31Ib45BdPw+ICHvY3+0tnkW+/yeCb467Tmc86MpYgmk+6SFLkbDnoVNawWnw6T6f9G0e1MV9ZekxrB6Hz8N80QrF75Xm3edGvMzsn2zKvQsyHSDQnVl1HN5xOvMY+tnRX1f6XRSrUzYj/Q2V4Sc5/3aBzC92QzV3dsa9P3ksMz1Z4KWB8MDcqy/b/ns0yRU9357mvhMg+77tFkzTeZVh96FmO7focYYY4wxxhhjjDHHKbfC0ubTwKW5I82mPP2lDLmL1KczpAiJmnRqg7ZjXCPGnUOurWHoIjzVUvE+iriu62RZHaWo9kx93ewHbpobZrN9lAqzr5TrRD12a9bp8P2S4SNHUK1KuzkDpXiU+DFPNJzQdYQ9r/q63J5SVT6T6dFQg3mgRFeVD2uavJ0r99AiiQpI9bvD91dtin7qnqGGKitVybgH424KNA2+b8+tym4MPDhNKXtQreBIvhEr8ebR010N9i701YCS9Jh7dHUHz0JkZe05DFLTLBVNsw84GeNmV0Tz3FvsSnSBcW/hraodeyo8YHzxr/Y9uuBWVZS6DUfPqYCaqPVUn63Vi35D7SBIT6XZ8+mjz1TUyQNRayNg/Lv3/OtMWhQ9rY1zCWqd1ffVLRPUAgxyHhhXp6lZZa/u99TYWpdJz6+Oaoxbi67eFgi9LSM0beZls8RT9Zv6x9K2MmmBvHb+vZ3nIPGAIoZFAAAgAElEQVTYz6nVi7ZzdZhGi2LOe3rbSu7C0HpntVxTp3HaLlkOVOf18sb7dduRNg/AuAXYKoxPBnSgZZ505687iDY/MFp1e7se6fBG2vlgz9Klx0KGD72dmTRdLXK1QNgv/wPjPhjVyljnrz1fFT33cYrmrW3aPe2yxtXuoFcepHdfz/p9cB93BtuH8TnAOgkVFoDOi7Qf4O8j9uccW1kBOVFW60T2K22FY39J1HpZKxrT0n50yliG6pZn0D4ODc8D4xY3Oqy0KwV6bYPTUvVRxc/b86nS29GNRa0rAPQ+NNfVj4lOeZgn9ami/Yb2XWo8qvF779A+p+fbR9PW1R58Fx1W9V17RrJqZKsGvisw/pNB3XAutGsfp6WyufRY+eqUXfs4/dbLJuRFraM0Df3mCxmo2tLGGGOMMcYYY4wxZgo5QkubAwCuBb6Yh6q9p4RZTVBWyfUdGJhqbEtx2voUH9EtzqoUw53Oe1T8Salzxjt0Yw1V8UZF1imZx8sy/hkp9aaiqrXa2PL/2XvzME2O6sz3jdq6qqu71Kto1FoKCe1gYcRuduMxYBgzGGMDhoHBDMydO8aDx5fBBl/MxXi83cEX2+CL7QHMYmxssFlsNnPBbAKBkc0iNtGSkBBqdavVa3VVV+X9I8/7ZXxvZtRXhZZOSe/veeqJ+nKNiIyIjDznxDmyTYNFMAtcFk5UqqlSfQq3TxvOekubQusWXWO5kOWB+aaEkNfWuPEU5quBBX8rqplgHnl9VdCRfdn/6hpAFRBErXbULYZqU1SJWAqAxLTL/YiubdaoA6WAGGMYrT07uRwF8CUMuvTiNXXKDqV9lA+wK+yEVoJqWPUBEVaQWohoY1OR+rWyndfpUn2WHgI7wgg/VMXtJR8ja11o2mVtoANAyeGA+v8oRbTS66sVgzqoYqM+0pGXtaqCSane1FlWyafQas4LtByq4SyFIyB5BKq+QXU+0WeuZSxZv+RqObWUKfl/0XvpAKr1OarN63Xy++rzLznCUMcamqcRkdRaZVYrli41lL7AS+aoGnVNI1upcwQNpaghGzWciPqoWMzurea8LIf6ruE11IKGL2C1INwmx2me9aXM407L7qFaebUcJJwPllSMPYOB3Uip2Zf83HWhQ5laW5d82JCSr44uH3tA+ZUw1rFfh41Rr4SS+zbtcqU8qqsWvc8YylrjkluttRoRjrKs0fNa113q2Mk+qib4aubODwhWYCn65qgwO9o4OBm/Gs1D3BMpo4PeIr/1I2aUc6CeMI62jxigbAWjbhTz5699quWqMXaomyD1e6moJQq/Z0rR2E6R7bmlWSnwKodr5qHkPqnUP3QI1m8p1oFO9/LfOpzragV9tTNwGb+99dVccgmnxsh6Xm6Jos9bfdGUyplb6wDt+ixdd1Qd5G5wSy5AWaeMHlX6Fh1lqGpLG2OMMcYYY4wxxpgesj5Lm6VDwHUfbtZkUkNOk5MQMS3vH958Ac8PC5xvrLSVWQ8NMROF1xRWXx4ixEsikszuEEPdENt3hdjp45JVXYP26Lj+5+P3uZFS+kVF1Xh2b1UkcakpJWUsPiVklKSyDOoeg2Xlva+U48+Q34TSw6NoSwxLS911f16+PC2t/dUgHSqo1+X+C2hLa7X8qgBWyyTdr17XIdsV1a6sZjyiCm4N0kHp6IEs7WuAmppbALy/+RlupwZWb/T5pO7OV1Mb8hg2HqoeKELXRqaUzLp0Qar6X9DF9LkmSjtXKcSFNhK1ctG8a+PVhf+jLHS67kFUHURKPltISd2q6hT10UHyBquLl0v3IKX6W6sPFh1gRi3CzlGLIb02ydtPQn/JrWS0vKMi7XRZnOjASjQsRUmtr3nQqD8l30zq14jHb0C5n+iC91Hb9Xz1/6SLz0v9Py9jV2S3rnuqak+tnkrWY2rJU1LNduVNr0VK/Yjosy71jeOSMq9qYdnlE0gdRZTU2fri1RBIPUV92pTcfpV+50OhWpcg25ejw7AeX/Izo/tL2usu6xc1flOfNaOiPulrWLX3aiWgfkVKhqM5JWO/fIjpuqd2TX09laLyaFNV66GhVyov9kX5/e1IOemel5vpGMcKL/nlIiVLwHzSrQXQ8VEbUMt5D3oNI7sN2prMcUruyUhulVHqtwu64fjwNdV1YMkyTQ1P1YpDh8P8G47/b5N9/ObTFRSj+pRG3C25LOzyr5PnOb+XrlxgquXndjU41ePVGFTdLun0T8eLjWi/mvXa+mpSixqdqmtUYeaFz0W/C3VlRn59fq+Woo1xlYz6UtN6K2FLG2OMMcYYY4wxxpgekqqqWvvBKe1F4yXDmLsbZ1VVtXP0YXc87pvmbk4v+6b7pTHum8b0FPdNY/pJZ99cl9DGGGOMMcYYY4wxxtwxeHmUMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqFNT0gpzaeUqpTSxMnOizGmIaX0lZTSowv73G+NuRORUtqTUnrcyc6HMcYYY8xasdDmJBCTxmMppcP8A3DaOs73h6IxtxFdH3EppeemlD4JAFVVXVxV1f93O927Sind+/a4tjF9IKX08JTSp1NKt6SU9qeUPpVSeuDJzpcxpv+klN6UUnr1yc6HMbcHKaU3pJRescZjB/PF9Zx3R5BSenVK6aaU0g0ppTPj23a8cOwrU0pvXeVagzn5qGPvbvij/+Tx5KqqPsIfKaX5k5cVY4wx5rYlpTQH4H0A/hOAvwQwBeARAI6fzHwZc3clpfRwAL8N4GIAywC+BuAXq6r6/EnNmDF3QVJKHwRwWVVVvybbfxLAHwM4vaqqE+u9blVVL7qNsnirSSmdAeCXAJxVVdWNsXnTSczSXRZb2vQU1f6LtPETkR4IaeZD45j/kFL6Wkrp5pTSB1NKZ93R+TbmrsYal1M8K6V0TWgafjU790Eppc+klA6klL6XUvqDlNJU7GM/viL68c/cXmUw5iRxHgBUVfWOqqqWq6o6VlXVh6qq+peU0jkppX9MKe2LfvO2lNIWAIh9+1NK94/fp8Uxj85+/10c862U0gt4w3hXviul9M6U0qGU0hdTSpdIvu6XUvqXsP55Z0ppOjv/BXHN/XGP07J9VUrpRSmlb8Z79g9TSinb73ew6S2ZEPV1ALYB2A3g13EbC1HvKCtwW5ubOwFvAvDs/D0RPBvA234Qgc3JYERfOwvAvkxgY24nLLS5c/LISLdUVbWpqqrPpJSeAuBXADwVwE4A/wTgHScrg8bczXg4gPMB/CiAX0spXRjblwH8VwA7ADw09v9vAFBVFfvxJdGP33nHZtmY251vAFhOKb05pfSElNLWbF8C8JuolwZfCOAMAK8EgKqqvg3gpQDellLaCOB/AXhTtkzxHQC+G+c+DcBrUko/ml37JwH8FeoP07cDeE9KaTLb/3QAjwdwLwA/BOC5AJBSemzk6ekA7gngagB/IWV6EoAHArgkjvvxONfvYNN3VhOiPjel9MmU0u+G0PE7KaUn8MSU0vNCIHkopXRVSumF2b5Hp5S+m1J6aUrpBtT9FSmlJ6WUvhRKi0+nlH5oVAZTSj8cgtZDKaV3AsgFqq37pGwpc3ZcvozkTSmlP0op/X0oRz6VUtqVUnptlPPKlNIP38p6NabEe1C/hx7BDfEefBKAtyRZ/rea0iAnPy/rF7+UUroxFITPG5WxlNIpKaW3pJT2ppSuTim9PKU0FvueG33lf6aU9iPezR3XeByADwM4LfrXm5K48Egp3Sul9PHo0x9GPR/Or/HsuP++lCk9C/d7SIwlB1JKV6SCv8m7KhbanDzeE43uQErpPbfB9V4I4DerqvpaSG5fg1qbaE2fMaPJ++MBAH+0zvN/PSbAVwC4AvUHHaqq+kJVVZ+tqupEVVV7UJvDPuo2zbkxPaWqqoOoBZoVgDcC2BsT0XtUVfWtqqo+XFXV8aqq9gL4v5H1jaqq3gjgmwAuQy1A+VVgYIr9cAAvrapqoaqqLwH4E9SaS/KFqqreVVXVUlx3GsBDsv3/T1VV11dVtR/AewHcL7Y/C8CfVVX1xaqqjgN4GYCHpuHly/+jqqoDVVVdA+Bj2bl+B5u+s5oQFQAeDODrqD+qfhvAn2YWAjei/tCcA/A8AP8zhSVcsAv1x+lZAP5j7Psz1P1iO+p339+llDaUMpdqK9T3APjzuNZfAfgpOWzoPmss99MBvDzKdRzAZwB8MX6/C/UYYcxtTlVVx1AvDX5OtvnpAK6M+eKANSoNSuwCcApq67nnA/jDjv6tvC7OORv1u/c5qPs2eTCAqwCcCuA3ui4Qbj6eAOD6UD4+t+OwtwP4Aur+9n8B+PfckVK6CMDrUb+/T0M9Vpzeda+U0m4A7wfwatRjwH8D8NcppZ0jynmXwUKbk8dTqqraEn9PuQ2udxaA388+Ovej1mTuvg2ubcxdnbw/bkFYwygpcx6eUjoz23VD9v9RxHrelNJ5KaX3pdo520HUH3JDWgZj7sqEEOO5VVWdDuA+qCdmr00pnZpS+ouU0nXRN96Kdt94Y5zzuhCiIM7fX1XVoey4qzH8rrs2u/8KGqsc0tlf45irs3MPA9gn1y6d63ew6TWrCVHjkKurqnpjVVXLAN6M+sPxHnHu+6uq+nZV83EAH0JmPQBgBcD/GULYYwBeAOCPq6q6LKx63oxaYJILT5WHAJgE8NqqqpaqqnoXAPW1o/dZC+8OBcoCgHcDWKiq6i1RzncCsKWNuT15M4CfTinNxO/nxDZlLUqDEksAXhX95gMADqO2/u4k1U6CfwbAy6qqOhRKxd/DsPLj+qqqXhdKx7X2Nb3PmagtU18RffYTqBUl5GkA3ldV1SeizK9A3ce7+DkAH6iq6gNVVa1UVfVhAJcDeOIPkrc7Ixba9JcjADZmv3dl/1cdx18L4IX5h2dVVTNVVX36ds2lMXcjQpPAv2vWcMrrAVwJ4NyqquZQL5/Qtc3G3C2oqupK1Gv874Nao1gB+KHoGz+HrG+klDYBeC2APwXwypTStth1PYBtKaXN2aXPBHBd9vuM7DpjqDV3168hi9ejFr7w3FnUmr/rimc0+B1sek9JiBq7b8iOOxr/UgHxhJTSZ2PZxgHUH0q5kHVvCEXIWQB+SSxYz8DqkVJPA3BdVVX5HPdqOUbvsxa+n/1/rOO3naaa242qqj4JYC+An0wpnY1aiPH2jkPXojQosU/84+QKhS52oA4MkPevovLjVnAagJurqjoi98n350qWI6jL3MVZqIVf+ZjycNTC5bsFFtr0ly8B+NmU0mRK6QGopZFkL2pJ5NnZtjcAeFlK6WJgsFbxp++w3BpjutgM4CCAwymlC1BH0cn5Pob7sTF3GVJKF8Q6+9Pj9xkAngHgs6j7xmHUDvV3A/hlOf33US9z+nnUJtFvAICqqq4F8GkAv5lSmk61n4znA3hbdu6lKaWnxpr6X0St4f/sGrL8dgDPSyndL5ZxvAZ15I89azjX72Bzp0KEqEWiL/w1gN8FcI+wRv0AhhUQqky8FsBviBBzY1VVq/l5+h6A3dmSLKAWyA5lW34PKThTSrtgTP94C2oLm2cD+FBVVd/vOObWKA3Wy02orXPy5buq/OgyEFgv3wOwNcqS3yffnytZNqIucxfXAvhzGVNmq6r6H7dBPu8UWGjTX14B4BwAN6P27j+QyoYG5DcAfCqkjQ+pqurdAH4LwF+EqfmXUa8zNMacPP4bgGcCOITaHF2dDb8SwJujHz/9Ds6bMbc3h1Cvi78spXQEteDky6jDg/46gPsDuAW1UOZveFKqw6E+HgDDmr4EwP1TSs+K388AMI96kvtu1MslPpzd929Rm37fjHqS/NTwb7MqVVV9FPW7969RTybPAfCzaymo38Gm74wQoq7GFIANqBWGJ1LtoPjfjDjnjQBelFJ6cKqZTSn9hFjIKZ8BcALAL6SUJlJKTwXwoBH3uQLAxSFonUbBYaoxJ5m3AHgc6mWDXUujgFunNFgXsTTwLwH8Rkppc/heewnqZcq35X2uRr2E6ddTSlMppYcDeHJ2yLsAPCml9PDwafUqlGUTbwXw5JTSj6eUxkNp82iOZ3cHHC7vJFBV1XzHtj3ItBZVVV2FerJbusavAfg12fbnqB24GWPWSKE/vgm1BrJzf3bcHshyp6qqHp39/wkAF8hpv5btfwPCgsCYuxpVVV2H2qliF18BcKls+704729RC154ncMA7p39/i5qp6glFqqq+rlCnubl9yvld7FPVlWlff258tvvYNNnKER9SUppC4ADqEOA/zLqqGedVFV1KKX0C6g/8jag9knxd6vdqKqqy1NKLwDwBwDORb0M6ZMAPrHKOYshqHkjamejH0AmzC2c842U0qsAfCTu8TLUzo+N6Q1VVe1JKX0adZCKzr5TVdVHU0pUGmxFbVG6JqXBD8h/Qe2M+CoAC6j73Z/dDvd5JmpB1X7Ugtm3ANgCAFVVfSWl9J9RC6xmUTsF/27XRaqqujYUOr+NOjLjMoDPoW3BfpclDS8dNcYYY4y5c5JSeiWAe5eENsYYY4wxdza8PMoYY4wxxhhjjDGmh9jSxhhjjDHGGHO7EiGAv1rYfdEaozIaY9ZASukrGHY2TF5YVdXbOraXrvMG1BEelbdWVfWiju3mdsBCG2OMMcYYY4wxxpge4uVRxhhjjDHGGGOMMT1kXdGjtqZU7QYwPRkbluvk8EqdzsTm8cnh826KQJunxO/JCWD5RBwbsRhOhMHPxHgcFOKklTj3YGyeinQx0kORnsGYDowEfxjDmWJJj9fJwuLw9cY2Zscdif83yDV4zSgvIq+HFupUbZamJc/gPY7K9Zm1yBslaSfk9tiAQZ0vxs6puPiJKA+zzuLORh6X4rxJ5iE4FHnZzBOiEEfieFZr/ARjNbL+p+L6x5ebct4yfKnBI2F5eFxUGzZtlAMWh3+S4+iGZWR9Lh0d3j+5NSsAM86LsbI3yG/efFOkh4E9S8BNJ4ajh/SFHWOpmp8AwKC22yPlQ4g62rc3du+s06X4fUt22NYpOTdlOwHccKxOd7GBR3+4Kep2R9TlStQxs8RhgX15i5The5HeI9KxyMdKXHcs6y9Lx4ezprF8OS5s5b0j70eXh4qCA5Hy0nORsj70eoR5vCnSU9E0HTatjZG5A9XwPVkPPJ55YH3cECnHS5aRTZdl1fGG/YxdOX+mLBfzps+CeeFYw3GEXZPX4nkcAjfIcfpsb46U3Yll2Zr9juY0GC9vlPIwLzsiZZ2TmbjPkap/fXPHVKrmZzB4dyxGxQ3eCQxUqRXLwfFItp37+JCiIXwlrr2N95RLDiqSjYBEg1rcV6dsA2xfvA1vO8YDWMv52FJ1bMtTnrsix7GxskK0c/BePI8NScdv3occyY7jPtaDjvHaoTZIqnni8Txfxsnl/cObr4v0LJYxOsuJA9l8h5XNe+oY/P1IOfDEM2On2RsD1IHhzYO2cKVcnmMLm8RmNp68vlnHHMf5Dg0G85Mtw8fpM/3CPtxUVdVO9Iwdk6man0ZTEJnXDtoNB17pEAdjsJvbgabMPJcvDD4/nbhqe+YAGucfj/6/gQ+K1+N5fHAcPHm5aJsTHFcOdtxL5nrFcnLuHePLHJ8g+wHPPyC/2fh0wsbrc061DByP/A/KmY93+bEyp1s4MXwrVjubb0xrBu2f7yUWVR85U07xOVTkMGu8pz7KwTgp9+JwwUfFpiDV3BpOdGrK995GtKbKg2ritbS83K5Newn97JvbUqpOR1Nng++NSFkO+ZwZvDbzZ6DDNsuuzfWE7Oe92RbYtngPosMG28Hg2zJStq18eNTXps5nV+ScSvZrG5yR41iWJCnkN6+Tz1EPyjG8ps5LNW9JxrJjMQ7MMHO8Gb9R2LD5II7Jfo4j7ID5PlbufrkGxwt+sMa5y1Fx48zL1uH9g4luPPTDsX3T7uH9gzExrr8c4/P4WVledILOhnPPSDlIsYMzz1GmLxzv7pvrEtpsQR0XcG8U/PzY/s5I7x/pubGfd+PiVY7t555oJphXR8H+JH6/PB70KcvD5Xh1pOdEyvL+a6QvjOtcFJX5q7H9d6IB3Cd+/32kV0R6UaT3jhudgTrGGgDsim0Picr+dvQMxiHduTR8LTb4f4r0EZEyLunOuN474vdjojFyPsa2/PVIWUbG/T77eDNA/L+RPjxOYid+X6Rsuw9eHr7m8yMPHIjexbzFiHVt/Ga743PifXkdtr+XxfV/F8DDYtv1kV4VKeuY80yW55WR/lHkiRNL5uF+kX4xUn2f8/cTIw8XxXXY3vjx++ItaBpjdPZ90RCuiHPPp/BKzj2PPWQReABv3EPmJ4HL74mm8n46Ug5Cp9XJlb9Xpxc8q04XX1unH4/DFgA8mZ1MPyCjDt9+eZ0+88Lh/S/9Wp3+1rl1uvzlOv1mHMbx4mORPlY+hl4d/eHlHIjPrJNj36rTmbMx6GQ3x7XZ5/i8yEciZd87M940/7p/qCj4LIav88RIOabxRfyZSDm+Mr7gJ7P7sE/xEVwQG94ZYxJfdhz/45EM+uDjIn1FpP8xUo4DrC72ryXZf99IuXiZ48whAP89/o9HNyg/z2V/PztS9t1LIuX4zGf4z5EylvO5ch5/fzDSL0XKd+3zIh0H8O34n+PEn0oe2X5+PtI/jpSTokcB+BX0k/mNwOWPAvZEgE+2jUcwePX/EemuSNnXWGgOfitoBlBWbjy8h8W1+b55TaTj/GLhgPso7oj06kgZ4JMVyoGVD4DjgL4MmNfNaM8yOZBulHN4nIwpg5T1wPN5HicCbLB7IuWLjoIDdli+lK/P8sAOwmuz0XNiwnPZQdmRmDfei+dRGiNS6SNvGM76H0T6kvPiH06U3grgXvE/nyk72HyknBR8KFIOEhw0zqiTV7+7TtlP2VeeE+kjh7OIH4v0hyN9AQdK1uMimokJG228oG+O8Yx9/VIGpI1xejDQxTNO7x+0tF4xfz5w+d+gef7Mv7YHtjlt22QjmjZBodq0HMO63BMp65l9im2I/Z79QF8qfNHpFyKvx8H0xZHeJ7sGxw+Wk19lvAbLwPevKF8HZWJ9zMvxkP0M2sv6YrvIy8q+peVkXgj7AYVVLCfLrRJ+jpscZ47K8XxOHAvlRbi41FxqTg7ZxfFEJEb7Yq7F4pWEN6p80fe7yucof+O3677sGDYDdjBeg/dkGfgIeE+e/9/Rz745DuChaOqGj5PN5f6SsnwcFjlHOhdNfbMJ8DXIuuF8lHXJsZNdkU0yppx4aqRsBpdJHtgUPx+pKif5nfQnGAzfeEakfOYsJ7sMYRk4RF0r+3k+v0GfFilfL+wOHF443/vtSDkHu0+WB96D87L/HOmlnAyzgKxQPhTejO/iiyPlB9qzI/1ApCowYObjYd4c85ytY2hebDyHE3ZWKB/KYyONCeiR+EaZvTS2873HBsYJ/UPjnn8d93xpbI8PpYOxfe7f1Oli/J76HdTvdaApPx8WO91/jfT1kfJhsNzRidO3uvuml0cZY4wxxhhjjDHG9JB1WdosoxYWUdzFNycAACAASURBVMOikkoKvajxoyKKgqR/jHQvGmUWpXiUar49UkoAKcymAI3STAr5aJ1BIRWVhZRO04KAeaHQixr2wZKtLD8UtlHLfCjElxTGUYpLwRmvSSkoy8uy/ZNsp5KAwn5CgeSeSFn2a7N0r2xjuXltKmJ4HJWFlM6xbHxWFAbyPEriWV9UzvB58L48jxYNl6MtBaYAls+dyhM+Iz5L1keuVAYaKyqWhZJrSsofLudr3bDN4BFoNFpfHc6bLu9gOxhIx0O9cWSlyVefWY5MjuuyBC6P44Gxfyo20DpuSHIv5vD8rZsJjQfYiMbj3ptXhjY35qW8UORBFZjcz+Nnsl2DJUiFvOjqDNaDPmdq0VhuydJgjGN/YBvXJV9A018HS7Xi5puHf7bMadVKiJZ8tLTh9cRCfHA/9umHyX5dMga0y88+wzywm7DczCPHF7VUZZ/QMrHZcXylwoP3y+tC+5UqqdUcWcePhY5r9IYEYBKYD83NPAd5faHpi4jb+aJcRlMxojZ9efzk+DnOlx9Vfqwwnq/3oEnjsqQcBPmwVMOcm/PqA9CGpstD2DiZhy3ym+fzPOaBjYEmW1oWQjO26Sy/bNyz2T6gqftxOW6n/B6saQtUhRuNnvMCvt+pvRzkkffdlV2bqdYDuUS2M28bh0/7mUj53md1UXusVUHjo8GBuTXVtJwUdT0bZoeDcrE+z+o+vrccQz3p4oRF18Qcku2c+PEZ8KVxEZr2rCYPrAudFLHNcFLEa7IfHZKUAyon32qZd5UcvyfSDWjaLSdzOi4wb8wDB2n2C5abD5xl5eSb11OruHyAzu+TD/B8oRyVfSwP+zGvoabeS5LqOn6On0TPY32x78d5U8vAVOw7Es9ksCos8poirwfDwoaPlnMFhUMWmw2HON6aj4PVyeGFhlH5kMBi0pCazYjn6FyEj7A0lPWN46ibAPNL4w3WHR8b5z58Njtl/3S2je9HvoI5h2Ez5nOg4cfVchybHsd1dhM+Aw5//G5h3XNexhUc+WuWx+gcjuVW6x1dordftuffsUAz79LXiq5WfmWk7B6HAJwZBTozLv4jatXKCuN8gxWmVrQcN/Tlo32UmWbj5BgXFbz1QfG7a+2iWhzyfcmCxjVnHyP3JrwXz4vrbaW1srwL5+4z/HuKFrOTaE/4+ZDVYpdjG+/Nh8iBgh1fsKWNMcYYY4wxxhhjTA9Zt6XNAbQlyVQaUvKo+ylgp0BtMxqpI1FFGqWXXBZLXwyUTlPYxuX6qsWnBQrzNibb6aOCeeL1ltAIAnNHnkDbaRm3U4qtmnBKZLkWUjXm6suGygV1GUArpBU0S94ppKNEmRYDFHZSYMh7UiLLa/GZ5G4JgKa+tslxzCs1c1xCyGc9iebZ8By1IKAlBiXNvDfzTEEkBYzflP0qXaZ0mnlVhRCtgzCNRhL7/eG8ca3nl+WcgcXRUvNbHSP3iq0AngaMs5L4MPhAo6Gc84T4zeNCYjwfEur5A2gaKBsRJd8hCX82G7Z0hH/PvIi2fDclx3HPJ1KizkYcdfwLfNCUlkej3sr7bW7KQSXgzL2GDkX1nSgHs05JeeThHFkwfnbc+yI5/knhHI1Z4n6OF7oU/9TMbO4+7CxRjnvHQCJ+SAfjBy3HWG3viXRgKSb3VKUixzaODXwsVCqMo3ncbO98JBTyf1H2sx+wbzGPrD6Ou1oWnsfr0+qSZePYwPsuoWkGrB/62eAzpVKDmqznZ+fy3mqd0xvmUPshUfNM9kM2LDV93NKxXU2O4lpPDCueJ3JQo7qODYEPlRWtnhKJvuDUUkJfhLk3arW0UdOrkqWNmrydIserSnCLpOq4d0z2L2T3YGMWB+qtPLNRq3pSJynsoGzUoSmj5eeuGBMevyTH8zk8INvGxj0vx47JOcyjvMC5xF8tafUyNLZgM/wPrG8+J6q0T0HbGiTG7Sm1xOLAw8GQz4QTwr4SVnAtTadqlFnX6pdpS/ab4786meBkhvtZR9qWdFBn3akbSj1PPbKqtcxONI1Axxi1UlNfPmoNpw4xOPljvXGM4+DP/jYmx/G6x9Eup5rxsqHy3qw/rReWn9feLdvZhjUghZqKIjsurjUbKZ2YpigPHY4ziyyKfoOU3HTpEMgsqS8cdv3cqkKbAd+7+u3Fe+q3jAZW6BuTqLuM5pflpLUM5wbsinycnK98FW0jNzZDdlU2FXV2zONY7xwa98px+jwJmypfy2p4cT+0uzuHCV0Bocat3E7XLdfKcbnFDNB+D+hUYmsUYiYa29aNaAqYW60CTYHV4oWNTSeRrMCNknJ8OEV+czKqfZIdaRnNw2TBONnVsZt54pjExsA88N58MfI8Wg/p+KSTctYByzyO5h3Oa/LDl98FvPdF2TlA0zB0CY5gSxtjjDHGGGOMMcaYHrIuSxtCYRSdz1NwRIklI4tQiqgKjBU0AitKCOcj5RJXDd2m6wh5LUqzuSyfEkgKCSlg02XsVA7x+nsizT196xJ/SqspdKNigdfmNalcoYCRBgvqD4b1xjJRCKjLeHMNvVrz8Dcl7BTeUUhJaxUN0qFLiFlPK7KfZaSQkHmkEJXXeyCa8vBaRK15eM8fl+0UOGpQj7NkP58HBbPM83ykrL+B0utIdlJIUHdTHRoFHY+L0NrpAXLtPWhHcOsVE6g7CTOs2jJWii5+VedRp6Ft+kAVxOlyjmjOptjQtbFpw84tZ4BBh0k0sWCH4gOm5nZ7c80Z9W0RjS9FB55ip2KHVm1q5Glete+Rt5m4zwW8joYL5hrZ3AlObBuEPIxrnsd7aLzN+H0J1+zGcQ+ODjAX5T6H9VSwPrhUtYahXmF0u++jGW9pObQrLIp2xTk7456qdGX1cWxXK0Aet122s8i7GIs06m933Gc5U0vxGmwuF2A4LxqYSN2ZAD1eo79zC/CixwD4qfr3q9hJNsmBrIVQz9wrTL0ewkChN6EZhRkjM/b9Mo/hG4pPQSq/dU8yIak6M1E7Jj0+n0Zo7G21qzxRSPXeE7Kf9XNYtpfydGKVfbxHqX42yXGa8jos055Iaw96P/Lk99Y/OXawM6hvoK1jaGYuDNk3L7856LLVR4/80eE8zb2q/vXEzmeyluhqXbZqhTp9KetWRwHaRdP7Q+jD/9PrRt79pDCD2nRYTZw5WLJ4qinmu4TkIfC0qXDyopEYCa+pEzOdALNrR7SSQZNl3lSdz3A009mxeyLlYMlBXR8j60GtWXger8P3Mst6NobhZF6t7dgfTs+O4bVYHkZJY/2w/FpO7me9UXNesvLSySjLzLzlkc94z2BOJuzj8Z7drWYv8cwulmdeiW8/ZmEmyr4oIdJZbeqPZgHNm+AMOZaWJ1+Xc9Qo4gD6zVHUowfrSH27qIUNq55Vnq8oKAV/4zlz2bFAYyDB5q9hxkt+DXk9NUglvG/uC5X/50Z7ecr5Gu/N712ep+6jNPptyWepGtN+PXY8hAduRtOv+aHPcY8NUv2s6ZjHeT4Lx0yr5S9/6/jL/eJvaugY9tc8HHieR16bH8g8ntfiZJN55FIS3lP9z3C/djzWxflovpcIHxLvxXP1W43XHmFKY0sbY4wxxhhjjDHGmB6yLkubcdQCKgqh5iPVOPS5RBhoLB7yZfqHsv+BRlDGlEI6ET631mLqUjVKYGkpQYkrBWUUeqmwi5LpS9BWzlMJQAmsBudg+ahnoiSMwjxdpqvuDSjcZJ5osUMpKwWXR9HUi3pJ16V3FFqyftSahb+pZFIFUF4fQCMkpNBVXRDsRdtFgNYDy0Vpr0bdWi5sV8MNCjLH5TiWQY0jMImmQuajHO+vU/Wyz+WHacPwPU473vNgGEfQOGoC2gtwNRKEWm+wEW9HU6HaoNlA2Ul10S47GQcAogttVYpNDR0bABs1H8pstp/nUBFN1/8afUMjVWjYAbXm0carUT0IByTWTe4HIw9ZkF+bv9UiJvKwVdftB8txr3FdNK2hBGL7QVqNyeV2Akjx/KdDe3jkpuEsMatqyae+wtT6UKMRMEu83s1hGDF+ePj6vO8WNFVYWm+tAVTUJckY+uxvagm1XpSdhE6WVPfJmlvNkmRT4Ri1IDlc2A7ZDtmvliSjLG3Uqqbr2qO2K1rukkXNqOtOr3JMtzVK+56aasvU/QE7BV+WzMoh2b5lpfar0nkPPkPViXN/ydpprfWjMJN5mxpVP5rXW2T/D2TIfcexIQHnTAKbYzTi8+G7gs8x96WQb6e5wzTapso8lhMltfDQqEXqX0YdmxCd7Kg1Ku//wOwcmn6eEifzHUbts/rPKpWzZIHD4/W9pL/V/05uOq7qYzVnyKOa5cdr3+KE9nzZr1ZTnAfx2TJP+aRchz3WkzqUvF6O04h5kdcUx53K+ohnu0yfdzyPzzLux6lOFXOOo2j7cGHxNNqu2sDx1q1InT1jFvUUls2A01h+g7HcfHx8rGwuN2QpHwO/nfioWReci7AO1YqJsIvviVQDw7GJqnHYLjk+D1ymU0V9jrwW88T64LBwgxyngeA0mjDrgEZ2Z0bbPFOdHj4YTT8Pn3lq1T6A23efGv9cHCnnOmotK1/1P3V4+HfLUljfbdvR1Gpse6SaC7KlLEjKa/CDSJ+OvrPkvAfp+1jnSFuA89ZoVfwgnU/ItZ7xenRhSxtjjDHGGGOMMcaYHrIuVcgYaiGbBjLYIr815VItCvZX0AjrFuQYtQihlPSAHCeBZwbKEVqIqGJDfb1ooJrcib9KL6ks0aXMlOWplloE5QNJudaHLmWjAo5SZCoLcmsZ5pOS87OzfUAjP1QJPA0SdDkhpc36DKlEoASbZVdlTG51dUC2EUqyKe09V35rUANd3k1LI+aZz4PPiWXQeqYHeTwWrYWncxQ5x8MbPFuN5hCVP7MXGOtzNIyNaMzLgLY/GV3Qq2vC+VCOor22nb/VzE2jaPCa1LDx+FJkCzVB0/O7olyo4JwPjuJnCvHZaXgP1gc7q0brUK/zJdccWge5VpLnsEGyoTJvei7LJYuo5zQMRZRpkVEsbhkuwtzYcBGm4vcs87MBgzrdectwlmbFo/9s7J+Mi2uRVEPHLM7EBVeinam1mwYTUjcfADATeTj76PC19X2jgUCm0GOd/v4jwF98Grh/xEt8V2yfj5SL1NW3BQudVzj7MAc+fQFreD1W4D7ZTzjA8uGqM7KSaRNfcLlvpnHZRtjm1TyS91TLAVXGabQpdW7A/VRrMs/nZsdr39Uwblp/GkVqqrCfef7XSPls6ayNlo9/Eynrl5ORxwHYzFAZkarjBMJzHiD7ec8/rpN/iOh5j6dPkKjn90Ze2Lz4GB5I3yevjfQfI70WwM/H/yznX0b6vkh57tMwnHfWM0NZ9ZXlCrh5sW0Jwjak47CGh2E5s0hDLYeFbMeseJ00qjMO/b1FjqfKnZNpnYh1+a/ZLBY2eg+WUwdp7t8n2w9JqpGbmGeOQ3wPTslxS9n/nLjyXC0nGby4ItVJZ8k6KLfWzberFWtuzVoKxcP64r04VnMMYnvSdqM+O8QydnA/DVtEf318Ry9j8CzVuFcNjHlttQJRHX/fmEDdZTSfuqJC3ajo6oRJtIPzaAA3XvMiOY6Pa5dsZzPmddSfjH4mdBmMM++jAjLp61ItcPjtqK9BPm82NX1dDoxldCKWz2fVJw3HMGZiTLYPLGz4dHgBWphox1CL4ZKFplr+3gONFY/6l+PTvEV+q6WNhJVt+bEjalU6wjpmyEK1ZGlTsh7eUtg/jC1tjDHGGGOMMcYYY3rIuhSUU6gld5RmUrakUT5UOUAo/ZxGI0TmsbosVhXghJJlFZDTKoUKqLPleC47pfKAkkZ1/ryARnD+RMkjl8tSN0YZHqWZuryWAkhdbqwuPUTw3hLIs4xHsjywzjW8PGQ/4RpGXY6sUV/4+76yXR15q5HARjTyVT5D+hNiOdXTOZWhpSWSaohBKC2eluMeI3nc/hPxz7OzllhFy6OGm2Jxis9VkJqvLf/bQob6wASGGwH/p/qAlU7NFRuCatmAxgqAGn1dKKtWLrymNmAVCWsjU02WOg3ibzb63BmWNhoK9VXTqB1e/eWUHKho41MVCDtU7pZfOxe1hxT6a1gzlo8dQbUd+4ePmxK1zIzU95REDNsX9922BKRo3+OsB3XyJVHFpliWeIanSpQNdiMWfzbqmWN8CkXGvvCdIwG1GsOMU4Cjkc+5yL+6PlIFt7ohWkSPtQ/bNgM/+xAAz69//wpriKVUjZBqhqh1OY6ytqek2SFdkYFyRkVi0rTLl80o2DhLWiS9tk5N8npY7fwuNL8lnz0lXz+le8SzujRmRM9l3MgYEP8L7WGZd2r32AbujVZUqFbKQUQjXsVvRnJ6aZ08vqUZrH8/uVifogX92dyXjhzz4rjni5m3wkC+Ndr0M/fU6bN+Eb3kOOp3i04+VTVeCu3Cid0k2pGU2ORKVjtTkio8Twe/grWGRhQcWDltQ/Ou0kk1x/w8OmOeR6LRYZgnllH9we2V48Sac6hMmm+dCzDvaurJsmyX/TopVDN4Pkud73EiS6bR9ivEe2yU7WqawXazT7ZrcD89n3mOIe4Yo3KK5ekk2o9Qm6ZazKtBVq/9MwbjaPLJ7zuN5HtIfqvPve1opoaEb1g1AB/lv49NlCMy61JXCtxffqu/ndzIi82RedBvRQ28erbs59Sb9aCrQTjV5PdcPmQBwOJNw79poZb2oG0ZKpFTWwV96MfqdDxSjgMa/pfpZZGq70dWCj+0+QDPzvbTkm5RzlGTIl16s1OO50eq+sDS631atmsUKp73SbSXv+g0gtfSEMxMv4pV6e1c1xhjjDHGGGOMMebuzLosbVZQC6zUQoKCIQqlKDDicao43otGCLVNjlFLG7WsoYCLgnMVxKuPGlEYDySRVFRQEpnDSEm7xa/AfUMqd2Bl+Jqq7NAQ7moFo0oX1ouGhKeAk/X89ewYlkMVDLq9FNlLXQQM/GFEqmVTZYAqbabQFihSSsx2wLw8PFIKQVle1getovhs1FXDfKQU2H4+0lMZ+kk1GzjQzp2aYqmomtJdFvwoeuw4A22fNqo+YPkoHWdHOxfDHEHbXE0bCRuH+n/RtdgcGNQ6hs9HrWC0sXYtH1XVklqncDvrQqN50DREtYbcTwm+RsBQDR7vSy3CNjRr96lQZ2dSvxysX41WslQ4XjWW6mNE1+mHhmQ71SqH0NYe81rMCx1q7ZftzIsMlFxffybbiC6qj7JtlwF9pkNru4ttMvJ/qvo5KQ2goWaaXWqiU/WPRdS2qWx4Whhdz6xWM7l1DQupb0ntBLo2vGS9MoqSBcqo6Et5Hta6vXTPUevC15IXZa2WNmu9tkZ60hggrH9ayfAlsx3NYFGysNEIGqP8AZDjhe2l9nWgY/u35Zzdcswoy6Qd6DUbUL/j1PJBw7+oJUmXH5np7H+gGW/3yXadQPG4PBQe0J6ILchvNZVQy55HZcdpFCctp05guV/9UGlz1jkGx2W1ROF1jsv22Y576Dtf5wxELZH0noVANa3zifrz2oe2VY7WsYby0XpWpmS/GgCyjHHdGbYR8W2Xn6bGz2qArO4BS+6Z+sY46hFQ32z6Pcgpjk5vchdJnLrwWuqjhtfSlRLqCk6HAXU/p4+V178vhtkTae62rDSlU2sewmkam5QaA6rvIpaJ07WtDIGs/txyK0J1iMR5mjp7ZcGZ+SXZrhFb+UCYOU6NeD4zqWMfl/gAjYkRjVs5D+fHt45RrDBeQ/10fjlSlk2duNLqh2U4TfbzvlvQDtnF+uNYxLr+50h/OFKOQfqwBVvaGGOMMcYYY4wxxvSQdaneJlHrWlQaqNGQVPFOoVYe1KLl2yBS1TNxVfgB2a9O40tet9UogEJAdYRNweMt2b6DYfIxF9K3a6LgFN7RIkcDZKhSRQNBbJPjaFmigX227xjecdF3GusUDWChCp5F2U+2y3Fq6XS97FeLGl22m/sDLwUkYiCLrXwYD66TU+lISMyjLo7w9P9wfDgvqvBh2R4Y6b6Qug4sDCjpfM0KMBlPgQ/3LZGqlolrHBmKihwEcAz9ZRl1B+MDpKWQqg+Irg3PVRolMb2GJmCHHpPfWqfMS+6EJL83UV8vvF6u0dPy8Bo6IOji7VLEC82Dagc04oVK/1mmSbQHRlULsTws//WSaoQrdjKtX4V51PtTq3AETb1pHU/Jb7Io+1VdpKHyqEVgX6YWhvWkGtXc6RbrllZOB2Q7VV7UfrB+8sXkX0I/WTkOHPsGMPOp2MCHQmuFL0R6eZ18KSqK9UYNTl5fqmrRlx9RVWKSE0+sdB+nlgfaR7SdLXUcQ9QCQfOuFgZEX1wDHyDsuCVLnNX8+8ib43DcXKNtsf2pxRc5JNtpOnov5o2zCb7AWZE03WBDvwyNxQzTcDJwXeSNbXyKak4OpvQgx8X4qjLVqZ36SFILL6oqN2VpyRqHas6PR/rmOvmXqMiuNttHxieArduA6sb6dxIHM9csDv9WNXb+PuOpah2hps03yO88wh/Q1njr8bqfvyWrg2eQTsXgWW+OF82ochJ13qFOK1nWI3K8RqVSi8l8MqlWOmrNq9a4OvZoKEHN+3HZz77LtknjsUXZn+dBLVzVhF6vvU328/2lDiLVcYl+nIhFz2xeR/RrF5tmGFly//CtiL7e+x49ahJ1Nei3E18jGsBLm5ZeCyi7XFRDZVa/Wi11TV2Att/UZTlO3THNZalOv3kNDW6mwRTp5nGXHKcrKPRbfLB6IT6sZ1kp7C/5fJAfcLTaY+U+LFK24xmW6NJIaebOzsV3TbzbBqXmO08tUxW1EzsdeCSvzXcs31W8h76r9B763lNLZ6aRRxZtAO/H92Vc/3559Cgi12ptZxpf56fyaT9ebwrAljbGGGOMMcYYY4wxvWTdljb3QCP8V4mkWmdI8JMhGRclf+rtWhXdvDbvdYrsp95yTLbzOJVE0tJEJbWUbW1DI0Ckhc2xkEaqwkGXrlJIqV7JdZmturSgKxbmgUoSXYC6hPayYfXho5Y3rDddnpgbCOR5oXCVZaMcUpdY83psC4fQ6PzUQGPrhZIpVjCVh7rmL5yP3/eKOqV0mPVHxaZCIxleZzsf/tVoCsq1i/ytYnY2UtV8ldYp94lxtNUD6kNE3S6Qlew41byr1YqqP/Jz81Qbpa5PV/VAKRpDruHjc2BDZEdn2+JzU4sbXczN3+oUqhRpQ9ef0wcM62Ij2p1RBwDVBnIwms+ukecR8lvN3dS0TZ/TYCDJ4ACi5oHse6q6KoWZ4PmqHNF+or6heLxqoIG2DwQNCbFaXn6QgEZ3BGNjwMw0GusLjpJq8RAN+X4frdNjUQkzPxT7z0KjVVKfLPo7mFLrCmHixPDpZFPpvO7IRPVv/q+6Q+ZZfbOUtFEnhg9vlU3NirRTdXU2tboJjdem0MptouULtXShhjwcnVwj/ugYei8+o6dGSk0j86plZWc7kN1TFunvDsusxWtiOwemMFMdtCemGsmp5LtGUQ1jl7az5PuHFRFqyHM/XKczjOPIvP154d4nmxMAbmqayoRE6DozZjeL4s1CJ5uTaM8nSj7T9B2hVqzqx+wcOV5DZ4q/k4FVx8CXzo3AzNhwHib4/FjOuPkJsbjRiau+l4nmhbCsvCzflXwHjWd5mpdraDnVHxzLp92/5KdH5wUl30K5qYL6tVPrH+bhluycHJ5PQwR99jrf0bJzvNHu1+XbTyhF31Vjyr5Soa5mdcmoU0gt5y45Dtk1uI/naOBYXpOPS6Mfa1XrtJa2j2weB4cPH3TR3KJHm+98pGPZMUDTBdmM1a+sGrGzPmggrZGMWXZ+pE9HOs7MbUbbQmxefg+in0ZJT4sPt/lI06mSG5Yixh+GIGXFTsWT0HFIretmtqE9ryD60RHv8sF8SjvVLvktY2NrrqNzok2yPX/X63v/sGznOeq/bnVsaWOMMcYYY4wxxhjTQ9ZlaTOGWugsQZUGAuNc6Qw0gmUKhfNgKhrdiajriWk5Tj140y2KKp0pSdRANZvlOHU3sQBgO3eGF2uuG90dBy3HwkMVsKvQXnWDuiSW5+say3lWME1wouJm9wD3oLfsgPWkxgrqe0YjM1EJr75tiCoNdqvGPG4wHUrKfWiXkz5/qq/VaVJrFvUZIH5Ddke6LR7eDM+nIk/Mfc67QjLNQl2b/c+6pRRZtUdstOr06Bb0V5sPAHNjwI9NAyeiUvcWjtNFrmrNALQ7nZpjlbzF854U56uPGz4D5uGg/FbtmJq05YNPrhHI86LaATUp01SthLQzagQoJdd+qRGAhiFQFYxq90pqMa2H0nEa6i1Xw7CeWH9qgcSUz1AtZjQ8g/qt0AGHqM+Frmes53DfLbJdrYJyx12XoZ8srgDXHAXOpNMdWkyo9zYWNrQvAwsbvuFOR2O2tKmQqlmY6vHYMdf62i9FCVotAtRaIzCNisw0KspU6bhSnvN9ap6gEZlogUOLnFuGt89p5KZdkioaySnvdCVfM6FJnOK96PuI1is6CNBip6QRVLif2k9aG+2J9OvZMRpyT619YvsMB3heq8/hFoG67z0SmOAAzf7BfhPPc0oja8XvrV1aVfVbEM+X1jpqIqB+TUq+odRMWyedOpncQccTsxiMDxPfz7YBrfY/sZZyAu1IZtKuqSnX+RLzqj7u8n18Z5bKqSYH+i5QqxWivrN07qnWnONom8TrPIjNXd+hRN/vvLfmWS2aSq49WG8LaC9jiPKNx3t7Tk0vIm8zsX1O50c9YwL1G1IDlKm7H3XVp01uHI0FjE6z1C2iPj71oUm6pqVAe7qmVjKQ7Xke9kqqRtd8s/Bx0hpIDcbUc0upbGSWmWbEJt74/mimHhzudbnGvdRqhXOaeTmR6zXEwiRFOiXvoAl9F6pPtR1onMzQclmXRPDYeC/OcE0OP6A5TjOP/NhWszY+XZ1jlTr9apY2ivqVU6ude3aeZUsbY4wxxhhjjDHGN5DvOgAAIABJREFUmB6yLlXIRAK2TwBjIf5TYTihbGo8lIjbVbu/BByj9UQIl6oQfFF2R8WBLh9WXy0lRQUlk5QkVkvDx1N3pAr7M4BGoq2LICMTZ8ZJN8Y1KSebiu2LS8PXVmE+Uyq9yaAeKU7VqBZXN1miBHa+O4st3zZq5HJEtmvEK7VMajnDiQudRuUNGoMC1gerkUFLliPT45+OHXwIhJmOhlWtDOd5kNl8TTTQiNnVyz8L9YCsIFz6r9FuNITXj0XKBrgX/ba0QQIw3azLvycrU7W/olU+EWYfucZFGwfrc6s4zFmMB8VGQ8k8Gyefi16PjbS0znxO9ufmZHxepcgNaomj5m+qYVILEKIdgQYSapGTr+/VcrAtUSGt9aJWJzqoqYKBfVAVG2rpxOPz0HklrScNPUqOuPL2n29X7aE+D/4mLJtqRPNoHbqmf4Mcq9fMVWYb0E/GIfnWhypWHANtC0/i2u3taDd+dcClfmNK1hbrtW4Z4X9mTceudft686x5Kf1eyzmjUtZ3KQIT63+7bFcLm9yEjBo/1eixY/IadG6ia/m1Uyir1UN+PWoaGSrkBoyO7qHPSjWjJZOBvjCFenBmvudlP7Wy6u+gq15Uny7xTulfqopBX02jSz7E1LpS31M6ng6qnG1wR0f+5yPl8/uW7Bdrr0F5p+W3+IhiISbit5aV7wq+36fGmkme+slQPzI6oS2ZP5BRvvvUhIPkIV9LHzhqna1Wqa3Js8C5J91Y8b1eOl6/B8bR/jZhXtQ6deDbKFK19rkevWQcdbWoEbEaf+uKDXanksu9/BxeQ6c+6uNGvbSVgsjxuupuUY2RyaEsf7p6hffU77cjsl8/edhEmMc9keqMgemxOHBGD7wEbQvolv8ktfTluMETS75aStax++R3adyd6Lh3ybeNvk/1HT7qOtOF/ToG5sfrOFqa05TuvbqV7LqENisVcGSpadR8NFM75EANq6em9YvAjCyJUF9DF0U6zvloHHCzCF/4auIjUQEJe1CK+liIutZvjEFZJtHEkOYSAPYUDnBxsy03De8ej7xNycfGgggfOMAk+Qamw+NBBdOqLDNLm/7c4F8AzWCmhvHqj02tbjkIbJXlInzPDkKpD5xNyQ3igstXNPnRQWlGPspZPy1TVx1xo96T2jyqRIqokzoeT0fHz8i2XSUp80jzQOaF92YbfhiAf0B/WVkGDu9v6mYHGxE36AASHWJcnG3egvbbZyAEiwpWR3lqZ6prHNUM+JD8JvmECWg7VT6anUuBn15DJ4YqCODAoWs2VaijjooptNABIw+VqBPobLwb2q7hsgknXOpksNRvNEyqHk8OoD0TKYV11qWKpf0aipV5Pi77dVmZXu94tq/LwSeyvGvecmFeaVlBH1gGmv6nE5NwOHvwG3U6x+nbWZKejrYwoCRUIGtdKjPKLaXu12VFE6vcqxSCujRxK02GRk1VSvfPf+tyDt7riOwvpZoXneDdJL91gqdlW0DT6UtLruYjvVi2azjVtbLWNnMKup9znnK7Cq10uVlfoURVPcTyOepHCH9z4O4KJ88Xk9ZNwCUBMypVkOfIiRjHPp3IcV6ijvgHAoSvR7oDbQGflrO0kH+DbIfsJ/qBFPtTlGnqJjku/3ASKZS+65gFlpeHs5wa8luX72oWWe2j5iAbs3uozwGNxqHKLf1y1q99nT9paHGdo+g6nWW0hXSqGCsF2OC1VbjTM9gzVWDC70JdQf/VSFXndAjNG7fUynW5iXY17cmqBmWT0reI3k8FLwvZvflm11X56olARfQ6nWPeuAJ/RdLNkg6mUDHUz3FO+TG0fWdwajIYDnhXCvrnI6W6nuyJlBp+FZwMPlrk/HxyCDSlPz87lpJPjrvfjlScHg/uSc0ya0prVMd+/lbfG1rj+fjNcVAF+VpePW5ejuvGy6OMMcYYY4wxxhhjesj6HBFPAbO70ZbqU1ilzkApWKOkjlqBOTRizLBeGY/fcxrOlgKykEJvVfNQOtiK42fi93JuSgg0znw3Df9uSbfH0F6GQNEWt0cep0JcOcVy0gI2BIQphIFb1ZmpOkULZqSsLVu2ZWBWbO4GljC08pFlDbMqrIx6nuVx1GTEc6D1zyyfKfM4MH2SPIeIe+Yo2hoItSNUnhYpI6TyvE9G+r5INY6dtg31Zk3hJ5XU+9G02fNl31uyY/Jrq5fpzajjEPaVsTFg0yZgk2o9tRGJBJomaAMLvQPA4o3D12Yb4zo3rm1k/9fny9+UzKuFhPYrdaCrJlu5olvNyEtO/krLolR7oCZ+uixKPcKpKV+uwtB8q6WhekdXy5iSCbha6qi1inqd0zFtI9rqIj1HNZg8XlVXamlDlY6GDNexrDBuA2jKV/Lox1SdSudm6T11qIgl1EqgrfSUzJdFbocMYI6WFNTo/G2kH4x0Hu2wzkSXM5SW8Ywy0yVqtVKykula4qRhLddqKly6N9E8lBz4duW9ZEmkFiNqIUIt3p46OXh0+LBTz4x/qGnkeV+JlMtOeB2ti01oO5dmvkNjWIVp7cAsdz5SnsfJVr4cBmhrELWMvB9flrxevvyqFOKb5fp4nRyOUN+c50zRbFVNsPvGBIaXHZKCM+GBFld16Qtonhv7sbZD1bpygqG+A+K4gZPOqPtTQ5N8QixjN0W72KR9nhOdCbSdn6vGV39fLb9Lfev8wnbVcu+T35nZy8DyKDbNsJzS1zZF49JybhfrX33/q/8DprIUv2WJA7StddS8Xy2/mQdWM69VWlI8avUg57X6Tl5BO7gB76UmGzoH4TU4/+G8t2eMo/5c1KVHurSJlGzBxtB8dmrQFr3GYHWB/NampMfzMfGTouS/eqOk09mxbDL6icjHx9GC9+I1xiXVRS6k9AnGZjOYetFtyVh2sauHz2nmdpH7TeoYQ5dFMVVzaB1f+DGq7x2OK3lH0Pe+LoMqzR9Kcxm9px6nS0P1/Nyih+UojbeKOjdePfS3LW2MMcYYY4wxxhhjesj6FkQz5jdFleo3Qh1kqnaWbEQ7/J8uJNS1mHptlZjLGs1xavl1ratqzlWrO4tGwniu7KOvm1AsDaT64kgsaXk17rY6ZNWy0qpFvQMfAnBf2cZ6U98RzDMFjyqS1bzoekUVij4H3Xw8u54+O9YPxbms+1nZTv8ykN9aLyWrHwpgWZ/0PUQF6KVzzUVuDCsSLoJVTQtTDY28B+Wwz71gFnX4Omo3S9q0WfndsT59al7OpaaOWrHobDMQSvfkelNxWJjfE0BbE9c1PJV8MNDMLR5Smho+7FghDKmG3y4Jw9U6rmstvPYxwmurM2xdf5475c33Q/arxY3mSa2BFjA8vuXnKKVxVx1CcrxVlY/mWa2BSO4LSFG/A+qnSBe070d/owsfBfDPAGajoW37lzrdxAGGjYGBSX8kUtX85A2zZGmjjXeUP5lSfx3lqLjreiULGb02U/WXMsq6h2OHWizofbrKwv9LIdC1PvlbLEUY6ntOLZtogcGw3DHeHQw1tqo/maa55tiWhi/W0nMcuyleVP8cL67TI6Xhlvr44JxELYrVSpXzL9XIb51q8kKrB15bxyn6f2OT3hkv8HF9sfeNSdSWRupIU30QlXz2MD2OtgZW2+8op768tobjlj46sWX48Fa/4fXoWHo72s6r11tO1XSvtaxdFknAsCMe9RxyYviSxXLGOKBW6RLieoD6WlPnj13vbJ0ja6znkv8YyG+1MlVfNUTLwLyq3738WI26THSo47XUZ1DPKflw0UfC4Ut9wgDNI1bXmYoaZ6vxrj7eUkwK3ls9SKkro+1o7Bw16rsuUqDtItG8qWGVor5xSv52Bs1oJ9oravTmg4PpJJ9Whhx77iEHlsYT/RZRH2Icb/iyu0d2D61lvk9pHqTzCV5bAz2opeson3v6jZIHiShZyui5eg8dn7uxpY0xxhhjjDHGGGNMD1mffnICtSCJWhy1mFDJdClCSS4mpKJR463xXI3HRom5+r7Re+l+lRaqJiqPcEMLDYo3NYQut5cizlCkq2XSdajcriH/mJ4rx08C+G78P0ppSE24erxXLb8+M7U84e8LGYpJeNQX6/Q6NM+GdakLMTUYActFoaiKwM+S36xvdd+ulgbM855Izz4ITMtacOaJy7KpLVRBbL5YtNciTg1fWgprW1qTyYo5graku6TB12gpo8L6qvnGqDC+tJ6JhpKyB1DJmnf10TIuZlElKxTdT9QST/uLMpVdU6M/qQpHjQV0HClZ8+jxuka+FMZ8Cc04Wsq/5lXX0Zd8BOl4W9JGlup3qePckrWlaiAXs+P76m9qG+rodenHYsMuSX800nMwjEZBOB9N7Hh1TITCb9UO6faSBU7J10VJQ3SiY9uoPJGSP53SmvKSI4iSpU6XFZDWC19UrGuOa9Ts3SD7JZwzHhzp/PD2uYXhtNNHDK/Ne/EFf93w7x2RpwfQNDDge0wj0XAIT2qKoL7OlAPZ/sjnRGw7NXadKlEvzonynYgOOfGw2M/JxnsL9zrZTKPuVyXfPfk7EWj6H9uPvv9yVKvK37QyofWqTkz1fKY8XvuiRh8jnNjsQDORGlVOTuA2yG8eV+rjul8jofH+zGveN9dbTnmBTYizNoZWn75x+HAWXS30NdIiH88KGosy6XJFy3lSct0xyq+OmmIoXV1WTS54b43YqRGP2ey+U7jXSWYawHkdEeE1CBaLp1WrrgvzY8clqi0vflCi/BI1bNapJuS3hvjmdnUfNI32wg8JPNxyITgmqRq9lNwnlcKXa5kGgVs/ByQGoPunSDmcPy5SGtI84n/VKY2FNz0h/rkgUjY+faertS3kOB1n+W7cgcaqZ16uwZTvU53D5O83oJl36Xux5OtmlA+cvPWo4KNkvcNzt2Mt9Poz1BhjjDHGGGOMMebuyvosbaZR+xNRrauGZSe6vjpfLKhLWUviSwrY1YpDF/FR6aVa2lJ0GF3Tmmt+6TeG3uOp9KIEXNeR574VcnTRo2qMWW8qyi0JIKfQtpxRnxPUAlADp1ppluEU2c+yUNinGnM8HZ2c/cXhfOT55j11DfyS7Cfq56hkOaALNPUZs719OdIfz/J3Ziy8Py0c31we2xnZR62cWK9Xob/afABAQt2dVWKsWjPuVw0XOSX7n8eyE6o5V8n7u3Zi1aarfwqVWkseU26aEscy6sQ0fdhER54oRJmZiuOXo7GwTalwm+MItWsl9YqqOKamGn86pfXipWhR2h9KaqXSWKnjB9twHlVNNXJ6T7WIUXG+5lnHV8h2XSyt18/vr1Y7JVWXjtU5fVU/LAC4EsCFfGlo+/xspBys1CKCDfII2tFrShYxpcgKSskqb60RnNZCKYoUUe37uPxebx66rAFGnaPh2rjOnevmtb71uuq768pI+aJS8818jN4l+6j50whW4TxuPN63+v6fYecoRQ2E/OZxG2Q/LR0m0K43mgozbyxvlGGCJsrnY5i+WtqMoa4HjXKlVqkaBYRp/m4tWXrp+1atW7ifdUvU582oCFf6vLl/R3aPUeVUmEedQ6y1rJoyb3k0KZ1LrLWcpT4dWvkJhk+NF5R+b6jpgZpujKN532i0Ql0FUPKHp+GI9B3Fe7N6Sz4T9T2fX5MckmN5b50j31lIqOs9mhyLk6KuxqP84/Fstke3qiRa7tQY2nMP9WMU86U5iQZGK5+ZOH8x6p+WOuNiSDGl95H9u0sG64jouxlV3GvQLNl2tM3JXHAxugsPn4l/ZkbNGSPvs13zKP0W/HykfFUwk9+M9GF/X6fnMPKlWgZ3RJED0LZiid/0R5m3/zmu/DhHzlErWd4jrHQWY2I/xQ9hvuM5Nqp1DH+XLHH0Gygf07S8JV9gWj+rR9js61TXGGOMMcYYY4wx5m7N+qNHTaOtIWZUD0oBKaTSdda5o2eVFOoiPWqL1X+MSv00KgrzoE6lS/4kqI3OozE9IP6fOC+O+cbwPb8o12SeaaTA+iAqmVe4/5Ac99hIWTefRFNfJT9CGv1JNedqWaPu16fkt67XVXKLJ/VjoVGyVJOuviwg+wml0Kqw1PN1HS8tdt6HJrLFI+frdCLWp5//uTqllRTLTSUi73EAPfe4P4FaWkzTkZJEWLfvk99dlLyeq4RYr62NlNvZUXh+aRjqshzgNUO7m/Qc1X6LNJ8Rr2YK60tpkbNDy6h+AFQrsAlI9AFRsFSYODychznZfyI6p/aHkh+ekuWO+o+ZRHs8gPxW8b1ei31bNFkD1JJP/c+ololj3Aa0tYaq/VRfP7p9Af1VPxwBcBmA6YgadS9a1FDDc1mkusaaUaSoAcorqWSSVLIEUWsKfYilvr9Wq5bVokfptUrWPaV7lnzclCx3Snns2laKdFXyp6F9XzVlRNfgE/pEoYpyC9paOI7H34o0tJXXiWMNjY55jD6+RGWr70j1QTWjGkdaycyjbbVB4uW4GJ184Zo6nWNbplayZILdF1ZQP2M+T7Vu0/eYtrWSBVt+rFqbdPlc6jqelKKjjOoX+btZ36OlcpYsbnh8aQJUKqtqoVcrq0asGlVOohZM/B3HL0vUSDb3kr+4fC5eUrqrtai+fzm86hxbox7q94NG0FWHJmphnh+r3zc6h9Brlnzb9YVxAJuBFNPZKV0poZbOcVyi1Ute56UoxvqdKtZXSQwwB66GSr6H9Pr67aRzrUk05dg2fAzLMa7lLVkuR9uY0jzx+7ZkxaXtJF/doNFOOVzwVcFv8/lI6bqK5bsxLjYpS1B0vqefJlPyPp2J9yn9VE4CzTuW4wK/KXTMFks+1hvfXVP6jaLzCo5L7NS8Dy15mA/e93Q073e1tNHvI/XZs0u2d9PXqa4xxhhjjDHGGGPM3Zr1L1IfQyOBO0X2qeJPndHnCnlK+NQXDdFIImq1Q03tcTmOqPSOEkn1r0N4/S0AJs6MH6F1ovadUrkz9g/noeTquyR5VYsbjYpE6eglctzXs2tqObT8Wm7VfOu6zpI78sEz1TXX0XToCyaX8PKaVA7qml61BtJ2w3pQzUS4oWlJmXkdXveI7N8O4JHMIKO1xDM9OyxtGD2Kh6nWYxIdVh19YgaNR3WgLTnWDqGNMz9+U/Z/DrVf1Dyr5k4HBI34cJP8HhVNisezk4+jrGHXKB26XSnUA/3SpGgIlWgJ1KprE8/PfQcwD5F/RroqRXsiqk0qafJU+zLqvHxdt46jWh62e+1belxJy8RHrtpJjUq12hp7rR8d29QfwRL6628qoa4r1svNDFER1pstLW5Y5Ex9NDbQ0mYTmjaroUBIyXJE+6v2HbUCUFQTz0X/0ViWMdp3nLaDEvq+IgVtaNHKLL9/qT3l1rVAo5yjZahGkNPhSvuj+sfSKIrqhy83eOLrlfdkHuhbTd/3/yq/1YKYqJaZ731aA++MTJ7y1TqdYkqzagCLUUHsu7wXlY0sz3K06YVI7zR+NEZFN2Qf1OhhXf2pZOk5KoKbhrQpmUboO6b0fuvq06PKqVpqfV9rHvm7VNaSFV1+nfWWk9fQ84hYP9Hq9ZhYsepp+n5bzo7RuaD+Xips11St/nXVQOn6GtF1Ee3vl5K/R1LyddNXJlB/B5UsorTuSxEmc0sbflfpygaOyxxj9T2h1on67QTZr981TFdbUcBvJZ1XaR7UN80R2a555XH8ztbvRX0/k4UsL3ov9d3K7zW+5zQUlYbPKkULZR62xIfeohzH53YGgNmw7txwzfAxfHZan/xO1ZU9vFdp/qBTLJ2ftFb6XJ/5meNNZHylRb32walTh48rYEsbY4wxxhhjjDHGmB6yPksbSj81aDx/c501JWlc40YJHCWbs2hLLWUpdlG7nFtP5Nsp6aLGSpeZl7xmU2k5JFX8yfjxE5HSwiA0EKf9Yp1S2kaNmWqzeU/1VaNSQbVuYT1upeQtHtMDr2+uRamlau9Ug66SQ/WSX9Ie6vbv/Q6G4HXyZ6qaSS7t02envm94D5aBkluNBKYS3FE+grjmcjMAaGSLkGbuzI/JUIuDnfjBgqfcYUyirnA2xlHRJUrr0PN9qoFT/y58kNSc6bp01ezxwRJdD6pr7zWvuWd2zataH1BbqD4B9B7o/k2LGz1NrWU2UQt7DtrawWD5muFzSmvjdb2yaiLUwkwj6ZW0LLlEX9t5l4axaz8ZrDsu5EHVAMwLmwj7LPO0hGbMZp/Ta6hPLB3jDnXksy8cA/BVNM2TzZL1TEuKloI9VEXn5VFgdHBWi7iS3wztM5Dtsra6OjicF6LtMZ8HlLTShO1FrW5L0Q1L0cxS/DMu2io9PteoMZIMw4FoX9ZrcD+tL9VKl31I/e+p7z5e7ww5nm3gKNoRadR/E/PAIFIkd4uT541zrRuGDx+853QOwusuyHGTK42Prqk4afnocDn4zNh/dZ6nxrm9g37gSpalJZ8+XdGk+FD5/lWfCDrBUr8G3F5qEESPV590au2ygGFrvTxvpFROnlfywcBOfmvKut5y6jV1zBMrQO3rGslUI5zm75GSZYxGeTwq+3Xer+frdfRbR6IYtb6BFtCuLrXuL1mpkr6+L0lC3Yz0vViyGF7N/48GUuU1OG6r9QrrX7/j1BpF5yn6PaJ51/25pSW/Z0t+PnWOx2tult9E52e5sTpQjtDJ65yCcvn3y/YrIqU1C4dCujTreicDTVnZf7iSgl2d9++a0vN7X/3j8Llr+9D3Ke/Neuf7sxRskXMItZLRb9lZNFb6pfF2ohRGTL97urGljTHGGGOMMcYYY0wPWb+lzRa0NcO6JlA1wSphW0IjdaSkTKV6qihXawuNmsQ8UVM0SspZkjieAjQiQjqVYUSPiAahkRt0zSlkP8uglkkljTqvP7AOCe79V03kqi5P5ECzVl3XIaqGfa3SY0Jpqp7HvM6i7UtGpaBsD8zLETmOZdiGbqjJU02nwv18LpNA4+L8WcPHbnpVXOuqOmV70DWgi+i5pQ21hqW17mo9U9oPtLVcqkkrWeLo8Wr+VvLQXsrLapJnNgaqT9S0rqR5VH8EwaI40ShFeiCDLDGvx+X/7KAJdhJqAfcPZ037VGk7KeVJNXhdUSZK1j4aNa4UJYpwzbBqGYm+E9i31dogf/RqhaPr89V6ELK/jyTUZWfzpKHfjsJ652NiDTI4cQva/YT72C+7KjW/BxkRkUWtWUrRy8gCmmfDZ6iGfWplqRrv8cL21jtzZTgvqmFWjSwALEgDKfmDuEF+c/gqWadR46gadfYlNf5Ta+L83GvlGI2CyTxoH1fLLfXfoPOEQ5IelXRIyxmdnH2dQy7RuYL6BFLfB71jBfV7QaNA6TtC3x36HgPa/tv0GiV/U9yuEcpozaKWJMflOM0TUzocyucEanWqjpBK19RxQq2Bbk1Zb2054zz1WaNWLGoByDbKoqgvtiW0xyIdY/SRHxk+fHBP9RdX8seFwvYuC0d9x2t5S3MG0vfoUROorSA0IixR65jS994U2nM5yG+dXqqVhs6V9Holw4mSfxR9/vmx6stNo/gyb6V3sr5nFf1m5/F6n0m056N6D7WK1dUzGtFZ60XLrJY56vMpn1NyXjnDi0cmOWfhvXVljq7+2J07s80pWDNPyHg08EHEMXJXdi318Vka69WCmufT9GgYW9oYY4wxxhhjjDHG9JD12Q5wnSFRCxqVWFKaRaF5blFRijdPVLOk11RhVkniXIpvf0h+D62JVA0LtQG3dOep5DWclKJIlSxuBhJ+sUhYQmPZolroXLOY52VUdC6tB9UqMu+noRsKC6dRjorFPM5mx+b3Um1qKaKVWhWVIoro8eMA8Kn4oQ/jRyJPV3Wcg+F66bWIcxy1VLi0bp2UokrpfqAtbR4VXUbN4FQjd4P8Zv/aJ7+ZdlkIaP5Pj1Qj5JT6sOxfFGsC1WCVfGux3Z+nVkE5Wh+RF9XyqUYN8lu16Zo3jVLRtZ6dfY9uhdj3VJuiEWJ0ff1R2T7K95hqWzTvOWqxWNKaavkOYJTD/ZPHFGqfJvRrMogwFO1Go5XNRF+byX0l8Xht4zqg0upMHZXomKCWNmpJF+00xfkzh2W/+prKnSyUrHhi+yamcTwt3Lqsw4Cm3UxE/ZyIA7XtrxYNUS1Add5Czi5s5/yF12E7VYtP5kX90PB+auWyEU17UCMIHqPRM9UiKfePA5SjvKlVMNkp+3m9zWjefSy/KDVbwclUUajKy95xHMC30dZ06vtJ+12X/xWNtFTyTVOyGFEtrFrMap70PSYRvrbuiX8m0FgZ3xblBG7bst7KcpasUka9Y0vH5dfT92/Jop7wWurzRq191A+L5mlUdMgVtMeo0tyZqAVir+eyqMuxGW0fXzqe6QqM/Hygfhaj6kYta/R7Qr9RS98n+o2lUXJLPgrza6rPMX1Xlax9SvfW+lKrF6LfzzklP0JEjft4Lb4HtR40TyW3VvreJEeze03LeFCK6KbRGXltRk/ceONw3kr+VnW+rHPT6f3NObQGUv9COg6ULLMK9L3rGmOMMcYYY4wxxtwtWZ+lzSTqdWeUKpXW25EDchxZyq6xmmUD0Ja+6T1U2qmepktSQmqY8jwN7vuh+PEzctHp4byuJXLF4Jpoa5dLkt/t8ptahqMYHT9elSkl6SjzrpY4JYmvRusiquztOoZoPemSP1KKhKXaSPWBo3UwVN9czLhHbvbR4XvquXcaseYYak14SbuuEWZ0zbhquIAmegT3UcOmljF8+Kxj3osPJHxBDVTPJe0a86JWQJn2fmCZQLU4GybzQBE87xn3ooZen29J20W0LbfaNuso77SsJ1oWybr70j21OlSTrdYs6luMdK3/1rFatXcaAYaPQjWVamlTUqrOF/LG/blPHL12ac1/SavUZ582uaUHkGmNFod/H2D7DEcgp0W66xt1uoy2dYXWSykioGpXtV5HtS+2jZ0Hu6+/kp3DPJa0kHzvlvydqTaT74jxOIBl3y/Had5zi5INGEatUrSeNJKEtnGepxpE7mdGSEaOAAAHsUlEQVQUDeaN7y21YtuCdv9Qn086Hh2S4zTClc45dJ7DMh2RVOddk2jmDtpeOMSq9lL9KfQ9Qs3AQobvGzYUVQGr5QnHd3I4O+ZItg1oW5cyPS6/eT7fW/m1AZyIRqvPQq0/mG6NeQ2m0Q4ldmvKmR93W5ZVyql+zUrl1FSt+/meUcvQtVyPx5SsdYZ8JmbbVfuu46m+r0Zo1gfkGnv9DtIVA+ovRL/BuF8fcV+gpY1a92m5Sel9M4b2t2WnJX6Gft+qLxo9rhS1k3Wv30h5u9BxW/Oi99R2q+8urR89X1dDlNpil8E9ySMldZ2r36irB0Mq+ygszZOvQlO3nHbrOKHl4BxHz1NLO6LfzyXfQS1LG7S/90ufOWrNw/oc8d6803ySGmOMMcYYY4wxxtydWJ+lzRhqqRA1Ryoh02gJ/N21ZnPIhwza1imjtMgqvVYJIn+rdUcpwsrQWr898ePqSKkZuGw4j/R2rXkjJS1zqWxkoBmU++9EO9KSWoTo2juN4EX0mfCequlkukeur/U+jvYz1HWSpXWUJUmuag00qpQ+0y4p+4DCAvvrrh8+trSGdA7t59tLSj4lKN6lelR9vOTns65KquYr5dxLI6XVCVHfGtTIhYatCjWYSslJyypmsXkuF/Jaupg1ynUsVPHUeqtlSClVDR/pivwCABfS58gWNPXx7To5EeWjE3iNVFHSDqj0n79L7a+0Jp6/L0F7vTbhtb8V6TcjvUH2az3pPXVcvX+kqgmilp51shft+lCt6KJsV+tLBoHpI9cDeCWa6HuE9UKLEY6/tIygDxyO9wto6kxdRLH9nBXpfKRqMaJ+hXgd9pEPRkrrDT6zcPc1eKZshxxKjqPxeab+lzQKGQ3kODdgtEOWX7V3zINqvXkf1lOpTEfQjkC5X479aqTzkfIZMI+s949EynrWZxTtdN/76/QDsfnZ/zb+4eucz+3fodHkxZAxaCcsL+vrAZF+JtL71Mmxt9XpIKAHnzGfB8uk0d7UZ9X5cnwe8WyPHPvlSONZfCOeMe0sZ2nkyfrpLccxbHlbirKmlqEaDXEBbSsVnvP9wna9Jq0xxWeTanJLFja6/+Y4YOvVaFsX35py5sffBmUtzcdLFp6lein5nSnNKdQaTP1m5NGj1EeNXnOUbw61BlS/GRz71OqhpHGf7NinflJK/h51Xt9X6D+1y/8L0P4O1BUF+TPQFRF6jl57o+wn+lxL0T3V4mS1vI0qh87p+P21mg83oG0dVPr+U99nXRY/JV+1XVGwgNG+n/TbVX28qCWU9otFNPnme17nkPrs1K8d76mfhbo6SPOqqX53r2Tn6Lyf9+b7n3nks9wleShgSxtjjDHGGGOMMcaYHrI+S5tx1JKpkpdj9fVyvHDcFpR9hqi1REmSqNI9SqvU87pK+0re0ylVnwJwU4jIdvx+bAzNwrEPD19TJYDqDwZynEaAKK2xpGRz8dPD17kOZf84aoFDSutlVQNOVIugeVRJfe7rprQ+U/NQKrfmrbSWVKXv2iY6feIwetT7u69FjW9JjLmEWvrfWyZQW7qodQzkt6p9uiI6hBp3oGpmR9Y161+P9MGRqk8bioxpxiEaPSryVPurmotcO8ZnfKE2EqqrTjTHAo1WnffaK6lqMtTT+ygJ+8B30A405Q5V/MSe4YtRG5BbAQBty5JRkTFK0SVK0afG0PQJtWRQKzamzBPzrGM6KWldWO/6mHj93AiL9cFnpJFz1MpCta4LKGt1TjLHloGv7AcupjWHWLG8+jt1+pzY/LFInyCH70VTpc98evyjllnxuqheW6d/GJv/d1ppsA2wvu8baVhlfP7v6vSlsfm9kbJqXxKu3miU8YhIrwBw2hVDl8JDon9cF+2Gxjq/G8c9L34/hcZ5D4yUY/rf18mr4xm//DGxPdrRq2P/y6P7XRlDygUPjePivPdcDjyFFrGhVbsxhq1TL4ztao1HSxpa3MTxvxXt7qXRJ37ua3XKrvGySGmHSIMU1e4fDIOEuY9g0P/+Me5Bg5t3RPreeOizUemLUX9Tl9RpVMNgyvGOyOO2GHJfHGnESBx0GTaJyyO9kUYS+Vh8iWyLYxb3Dxfr9ZGyPVzEZ9HTPtlwFMAX0Aw8GiVRLVBKvtiOdGzjy0wiLTFaYck6o2RBo+Os+hbT9xXH2S2fAxI7wFrLqZYyap4yqqyM9LQ4nGct06GObWstp777FuS4UuQltWDQd2b+7i35TivNX0f5ptEoMYp+NxD93ujy0zJK/a5573vf5KoO9XVG9NtAre1zKxpdbVH65ixZepT8r5a+T0orKEh+fmklCNGVE6TU1jg/U6seLfso36hbUP6OGxXNV6+l9bgiqbb7PCJxF4eya01l2/I8Krpdn52mmoeStZZG21pA2cpNfRqpfKT0bS/Y0sYYY4wxxhhjjDGmh6SqqtZ+cEp70azMNubuxllVVWk8jl7gvmnu5vSyb7pfGuO+aUxPcd80pp909s11CW2MMcYYY4wxxhhjzB2Dl0cZY4wxxhhjjDHG9BALbYwxxhhjjPn/27FjAQAAAIBB/tbT2FEYAcCQtAEAAAAYkjYAAAAAQ9IGAAAAYEjaAAAAAAxJGwAAAIAhaQMAAAAwJG0AAAAAhgL+5ZtbRD3XXAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEUCAYAAACRe8tpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydebyeVXXvfyuQECAMYQgRBCIgMoiiRMURuU61imK12jqgtr3Wqtc63OvQUmsrttbWobWOdazzPKJVUREHqEaLoogDGOYpQAxTCCT7/rHX77zPWeec5CQE8gLf7+dzPvu8z/O8+9nz3u9aa68drTUBAAAAAAAAAMB4MWdLJwAAAAAAAAAAAKaC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAsMlExLMiouXfgdPcf+jg/sM3If6TI+LkWTzXZvj70Ma+E9ZPROwbEW+NiN9ExOqIuCYifhARr4yIHbdgul4SEcduqfdvCtF5RkR8MyKujIg1EXFBRHw0Io66Bd+7Z0R8MSKuyn7ygrz++Ij4WdZri4gFEfHdiDhpI+M/ISJuumVSL0XEnIh4dUQ89JZ6BwAAwLiw9ZZOAAAA3C64WtIzJP1NuX5c3tvhVkjD+yW9s1y7/FZ47x2G/JH8eUkXS3qTpJ9L2kbSkZJeKGkXSf9vCyXvJZJOkvS5LfT+jSIitpb0CUnHqLfdf5V0laR9JD1Z0skRsaC1du0t8PpXS3qQpGdJulTSbyNinqQPS/q2pOdJWiPpOknPkdQ2Mv53SPriZkrrdMyR9Lf5/8m34HsAAAC2OAhtAABgc/AZSU+PiFe11pokRcS2kp4o6dPqPw5vaS5srZ0224cjIiTNba2tuQXTdLshInaT9ClJZ0h6ZGvtusHtr0bEGyXdb4skbiOJiG1aazds4WQcL+lYSX/QWquCpg9FxKMlrb2F3n2wpP9prX3eFyJif0nbS/p4a+2UwbNnbmzkrbULJF1ws1MJAAAAbI8CAIDNwgcl7auuvTdPkLSVutBmChFxVER8IyKujohrI+KrEXH3WyqBue3k/RHxvyPil+qWBI/Kewsi4p8jYnluUTknIl6Rgp1hHEfkdpHVGd9fR8Rrh1tBIuKA3Fry9PLdh+f1B5XrT4qI/46I6yJiZUR8IiLuPEPanxYRZ2V5/TAiHjBNPo+OiJMiYlU+95OIeFbe+6+I+OE037lrRKyLiD9dTxE+R9Kukl5QBDaSpNba1a21iW00synTQZkcGxH/mflfFREfjIhdShpfEhG/iIjrcyvRDyPicS4fSXtJemaMtsa9O++dkJ8PiYivR8Q1kj4yKNd3l/dsnc8fP7jmOA7MOK6LiHMj4ri8/8yI+GX0rWLfjIi7rKccFRHzJb1Y0hemEdi4PL/SWls9+M4zI+KnEXFDRFweER+IiD2mifu5+dzqfO4/ImLnvHdARDT1fnp0KavfZBQfyGsn5XembI+KiEUR8Y4svxsi4vxMz9xBed1UvrN19pdf5ncuzPaxzeAZ950/yzgujr6F6/MRsafjkXRjfuVvB3k4Pu8fme3/yqynsyPiLeurDwAAgHEGSxsAANgcnCvpFPUtUt/Ja8dJ+qyka+rDEfEY9W02J0qycOPlkr4TEfdorZ2/CWmI/EE3QWut+tV4hKQj1LdWXK6+LWSupK9JOlDSayT9TNIDJP2dpIWZLkXEIknfVLcgOE79h+PLJN1Zm0h0XyL/Jum96ltWdsr3nhwRh7fWhmV3tLqFxF+rC5xOkPSliFjSWluV8T1RfcvNKepClhWS7q4uUJOkt0n6fETcu7X240Hcz1Hfxvax9ST34ZLOb62dPot8zapMB7xF0lclPUXSQZJeK+lO+U5FxDMl/VN+/3uStpV0T3UhktS3GH1V0g/zfZJ0WXnHFyS9R9I/SFq3oTzMwKck/Yek10t6gaT3R8RBkh6i3hbmS3qzpA9JeuB64rmvpB0zTRskIp4n6a3qwqaXS9pbPR/3jYgjLESLiH+R9JeZhv+r3jZfK+nQ6MLC8yXdX9K71bc+vTBfcZGkr6vX/6vVy/J3M6RlF0mnZvpPULe8Wizp8ZLmaiRQqXxU0qMlvU7SaZIOlfT36tvBnlKePV59HHm2ejt4g7pg+GGttZsyL99Vr08L3c6PiJ0kfSXTd5z62LNEffseAADAbZPWGn/88ccff/xt0p/6tqcm6QBJf6Luk2O++g+tm9SFJA/NZx4++N5vJH2jxLWjupDhzYNrJ0s6eRbpaDP8HTB45gL1H3GLynefnc8+oFz/W0k3SNo1P/9Tft5r8MwOkq6UdNPg2gEZ39NLfA/P6w8a5PdqSe8qz+2v/sP3BSXtV0jaaXDtyIzvyfl5jvqP8tMkzZmhnOZIWi7pnYNr89QFWP++gTL+taTvzLJdzLZMXSZfKs89M68flZ/fIekHG3jnBZLeP831EzKu58/wnXeXa1vn88dPE8dTB9d2Uxf+XC5ph8H1l+Sze60nrU/LZx42i7LcOt9xUrn+0IzjeYN2s1bSX5XnjsrnHju4dto08R00Q7v97vBZdWHRTZLusZ40n1D6xNG1/Eo9H1b6Th0bXpHXF5U6enV5zn3ikNm0U/74448//vi7LfyxPQoAADYXn1R3SnuM+o/SSyR9oz4UEXdV/4H54dwysXVayFynriF/yCa+/72S7lP+qsXO91tr1QLj9ySdLekHJT1fUxdo2E/L/SV9r7V2ob/YWrta3VpoU3igpAWaWg7nqgtIajl8r7U2tH44I8N9MjxE3bLi3a21aS1J8vq7JD01Iuwc+onqAojqxPnmMNsyNZ8onz+u/uP7/vn5h5KOiIh/jYiHRcR2m5Cmz27Cdypf8T+ttRXqQsbvZzswZ2W492Z4n9TrdTd1650JWmsnS7pQXSgjSY9UF8rV9vQ99b61qf2q8khJp7XWfroR3/k9SaslfXaa9iBJDy7P1z5V2/pM/FLSKkn/EX0r4SZbwQEAAIwLCG0AAGCzkD9cP6e+Reo4SR+eQXiwKMP3qFuUDP8eq9GWl43l4tbasvJXnc1ePEN6bN0y/Pt+3nd67qR+0k5lumuzweVw8jTvPlhTy+HK8tl5m1/SuSEHsO9WF5w8LT8/V13wcMbMX5HUBWD7buAZM9syNZPKsHVfLqvU/dRIXSD3AvUtVl+XdEVEfDoiNvQjfsh0db9RtNauKpfWqFuX1WvSqF6mw8LE2ZSnfftMl/5LBvfdnpZrarlvp03vV5VdtfFOhhepl8d1JV0XDeIcsqG2Pi1ZP0ert6d3qG+ZOiNuY0fBAwAADMGnDQAAbE7+U11LPkfSH8/wzBUZvlL9iObKLXma03RHF1+hvl1rpvT+NsOLJU1x/DrNNTuPnVeu1x+mLodnaGSdMeTqaa6tjxUZ7rW+h1prl0XEpyX9eUScrG6B8cxZxH+SuvPaw9uG/drMtkzNpDJMR707qluSqLXWJL1d0tvTp8qj1P2cfFTr9x0zQcZRWa0N19MtwQ/UhVLHqAuk1ocFGIunubdYIwfCbk8Py7grK6a5tims0Aba2DRcoS6wOWqG+xfNcH2jad1X0x+kJc991H1AfSoiDmut/WJzvQcAAODWAqENAABsTr6uvtVlZWvt5zM880t1a4BDW2uvu7USth7+S/3H8+9aa79ez3OnSnpRROzlLVK5xegx5bmL1a0I6klY9bnvSrpW0v6ttQ/p5vMLdQuOP4uI984gpDBvU3f0+k51oUDdnjQd71L31/LvEfGI1tr1w5sRsb2k+7d+gtRsy9Q8WV3gZ54iKdTLfBKttSslfTQi7q/JwqYb1B0UbwznasP1tNlpra2OiDdJelVEPL4Njt42EfEoSd9WP3J7haQ/kvSBwf2j1IUn385LX1MXSu7dWvuAbjm+JunlEXH31trPZvmd/5L0Uknbt9a+vaGHN0TrzojXaT313boT8lMj4lXqdXqQeh8BAAC4TYHQBgAANhuttbWa2brCz7SIeL76KUbz1AUGK9StLR4g6bzW2htv8cSO+E91h8rfytN3zlC3vjhA0uPUHbjeoG7Z8VxJX4uIv1O3CHq5uuBlR0fWWlsbEZ+U9JyI+I26f5rHqfjtaK2tjIiXS3pzRCxW95fiLUFHS/p6a+3js81Ea21dRLxI3bfQSRHxTvVyPVTSwtba3w+e/W5E/FTdyuZNbXC09HriXxERT1I/9evHEfHv6qdCbaN+GtJfqJ9udJJmX6bmnnns9Ccl3U3d2e03/AM/It6jvg3pVHWnvHeT9FSNfKJIXbhxVJ5Mdqmky1tr524gWx+T9K5M41ckHZ7pvjU4QdI91K1A3ifpS+p53FvSkyQdq+7geHVE/K2kt0bEB9Sti+6sXkZnKQU5rbVfZT7eHhEHq58gdkPG90hJb2+tfUc3nzeo9/FvRoRPj9pd0hMk/Wmb/jj4k7JPfDYi3qhuaST1k51+X9JLW2tnb2Q6zpR0TER8XdJKdaus+6o7RP+cumB4gaQXqfer/97I+AEAAMYChDYAAHCr01r7ckQ8RH3rwrvVNeaXqJ9qM2tBxWZKy5qIeIT6dq2/UP8heY36tpMvK48wzm1FD5P0r+pCiRXqFivbqZ9uM+T/qFuKvCbDj6kfxTzJoqK19taIOFf9eOanS9pK/cfnKZJ+sgl5+UxaaBwv6X3qlhe/kfSmaR7/lLrQ4F0bEf/JEXFP9eOtX6IuPLhR/Qf0v6pvYZp1mQ54gbpD5E+ol9fnNDqOWupWSc9St6zZQX07zQfUj6c2L8+8fFK9Pb1H0p9tIEvvVReS/Umm8xRJfyDpVxv43s0mrUWepF7vf6KenwXqAqdTJD24tXZtPvu2iLhW3Vrlj9S3zp0o6WVDIUlr7WUR8XNJz1Mvv7Xq1lffUHcMvTnSfWVaOZ2gXr+7ZJq/qZmP+5a6oOeF6ieLHa++NW25+vHil29CUp6v3uZOVBcI/o2kT6sLql6l7oNqlboT64e11jbbFiwAAIBbk1i/9TQAAACsj7Q2eEVr7TalCImI0yRd31o7egum4eHqW+qOztOQAAAAAGDAbWqBCQAAAJtORGwj6d7qjnzvp1vBfwsAAAAAbDoIbQAAAO447K1+7PZVkl7TWvvyFk4PAAAAAKwHtkcBAAAAAAAAAIwhc7Z0AgAAAAAAAAAAYCoIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQZgyJiH0i4pqI2GoLvf+aiNhvS7wbAABgcxERSyKiRcTW+fnkiPizLZ0ugNsDEfHqiPjQzfj+OyLibzZnmgAAbo/c4YU2uYC7KiK22YJpWB4RD/fn1tp5rbUFrbW1WyI9+e5zMm3vj4gTtkQ6AG7L1B+LAHDziIinRsSyVCxcHBFfiYgHbel0AdzeuaX6Xmvtua2112yG9D00Ii64ufEA3F5Yn4Jic6xPI+JZEfHdTU8hbCx3aKFNRCyR9GBJTdLjtmhibqfwgxVuDVLweX0uKK+KiBMjYu8tnS4A2DxExEskvVnSP0jaQ9I+kt4m6fFbMl0At3duqb63pazJAcaFwdr16ohYGRHfj4jnRsQd+vc5TM8dvVEcJ+k0Se+X9ExfjIhtI+INEXFuRPwuIr4bEdvmvcdFxM+zc50cEQcPvtci4oDB5wkrlYjYLSK+lN+7MiK+ExFzIuKD6hPgF/MH58umMefeJSLeFxEX5Q/Sz20oYxnPxfmdPxumrUpfq7TUz0bEcyQ9TdLLMm1fzPuviIizc5A5MyKeUOL6XkS8KSKulPTqjakQgJvBMa21BZLuJOlSSW/ZwumZkejc0cdfgFkRETtJ+ntJz2+tfaa1dm1r7cbW2hdba/8v51LPS1dExCciYpdZxDsnIo7Puf6yiPjPfBcAaMN9b5rnPxkRl+Ta+ZSIOHRw7/0R8faI+HJEXCvp6LJOfmhEXBARL83+eHFEPHvw/W0i4l8i4ryIuDT61qptI2J7SV+RtGeuVa+JiD1v8cIB2Dwc01rbQdK+kl4n6eWS3rNlkwTjyB39R8Nxkj6cf4+KiD3y+r9IOkLSAyTtIullktZFxIGSPirpRZJ2l/RldWHLvFm866WSLsjv7SHpryS11tozJJ2n/MHZWnv9NN/9oKTtJB0qaZGkN63vRRHxe5JeIunhkg6QdNQs0jeF1tq71Mvm9Zm2Y/LW2eoWSjtJ+jtJH4qIOw2+ej9J52RaX7sp7wbYVFprqyV9StIhkhQRj4mI/4mIVRFxfkS82s9GxPyI+FD+0FsZET/0OJACyHNSOPnbiHja+t4bEVvlgnJFRJwj6THl/skR8dqI+J6k6yTtF2VrZAz8AwyEt8/OdF8VXQNzn4j4aab33zdPqQGMNfeXNF/SZ2e4/0JJx6rPdXtKukrSW2cR77Py72hJ+0laIIk+BTBiQ32v8hVJd1Vf//1YfQ055Knq68IdJE23tWKx+tpyL0l/KumtEbEw7/2TpAMlHa6+tt1L0qtaa9dKerSki3KtuqC1dtEs0wswFrTWftda+4Kkp0h6ZkTcPSJ2SmXC5alcON4Kvyj+pGL6LU/7R8QPUoj6+ZmUGfme96Sg9MKIOCFmZwkXEfGWjP+siHjY4MazI+IXuYY+JyL+fHBvWkOGvPfyTMPVEfHLYZx3dO6wQpvoe3H3lfSJ1tqP1AURT81G8yeS/rK1dmFrbW1r7futtRvUO9KJrbWvt9ZuVBfubKsu3NkQN6pbAOybWorvtNbaLNJ5J/XJ6Lmttavyu9/ewNeeLOl9rbWft9auUxesbDZaa59srV3UWlvXWvu4pF9Luu/gkYtaa29prd3UWrt+c74bYENExHbqffW0vHStuoB2Z3VByl9ExLF575nqC8S9Je0q6bmSrk/N3b9JenRqQB4g6fQNvPp/S3qspHtJWirpSdM88wxJz1FfsJ47yyzdT30R/BR1E/W/VhfIHirpyRGxSUJZgNsQu0pa0Vq7aYb7fy7pr1trF+Rc/WpJT4oNb899mqQ3ttbOaa1dI+mVkv5oFt8DuKOwob43idbae1trVw/64T2L9drnW2vfy/Xj6mmiuFHS3+da98uSrpF0t4gI9Tn2xa21K1trV6tv1/qjm5E3gLGjtfYDdSX/g9UtxndSVyocpb6WffbM357Cceq/afeUdJP6unY6PpD3D1Bfwz5S0mwc9ltJv5ukv5X0mYFg6DL1NfGOmeY3RcS98960hgwRcTdJL5B0n1x7P0rS8lnm9XbPHVZoo/5j7WuttRX5+SN5bTd1rcLZ03xnTw1+aLXW1kk6X13avyH+WdJvJH0tJY6vmGU695Z0ZWvtqlk+73SeP/h8/kwPbgoRcVxEnJ4S0pWS7q5ebrfI+wBmyeeyPa6S9Aj1PqfW2smttTNykfhTdWs5CzpuVF+UHpAC2h+11lblvXWS7h4R27bWLm6t/XwD73+ypDe31s5vrV0p6R+neeb9KUy9KQW/s+E1rbXVrbWvqQugPtpau6y1dqGk76hPsAC3Z66QtNt6hCn7SvrsYE76haS16ovB9TFpTs//t57F9wDuKGyo702Q1qavi75NcZVGP7Y2Zn14RREQXaduAbe7usX5jwb9/L/yOsDtjYvUd3o8RdIrUxC6XNIb1JV/s+WDrbWfpTXa36gr+iZZ0KR1+aMlvSi3P16mvqNjNgLRy9TXvTemEv+XSivz1tqJrbWzW+fbkr6mLoiSZjZkWCtpG0mHRMTc1try1tp0v8fvkNwhhTbR/dM8WdJR0ffeXiLpxZLuqd6IVkvaf5qvXqS+OHQ8oS5UuTAvXac+qZjF/ic73Etba/tJOkbSSwYmX+uzuDlf0i4RsfNGZPFiSXcefK4OWa+dKZ3TMCltEbGvpP9Ql4Tu2lrbWdLPJMVM3wG4lTg22+M26u3z2xGxOCLuFxHfSvPS36lb03gR+UFJX5X0sej+n16fE8W16pPlcyVdHN2x8UEbeH8Vlk5nSbMpAs1LB/9fP83nBZsQJ8BtiVPV5+VjZ7h/vrpV3M6Dv/kp2Fwfk+Z0df9yN2lyHwO4I7OhvjfkqerOiR+ubh2wJK9vjvXhCvX57tBBH98p/djdnHgBxpG91BUI8zRVsTAbQwFT16RzNVmIKvU5cK76WtcC0Xeqb3HcEBeWXSPnqq+FFRGPjojTcvvTSkm/P3j3tIYMrbXfqLsgebWkyyLiY4F/qgnukEIb9clnrbrPi8Pz72B1rfVxkt4r6Y0RsWdqDu4f/UjwT0h6TEQ8LCLmqpt33SDp+xnv6epbrLaK7ldmYttCRDw2unPfULcEWJt/Ul8g7jddQltrF6vvEX5bRCyMiLkR8ZAN5O8Tkp4dEQfnVpFXlfunS/qDiNguunPiP11PXDVt26tPjpdnvp6tbmkDMBakxcxn1PvXg9St6L4gae/W2k6S3qFcRKaE/+9aa4eob4F6rPoYoNbaV1trj1AX5J6lLqxcHxdrsoB0n+mSVz5vjAAV4A5Ja+136vPYWyPi2Jy75uai8PXqffq1qVRQROweEbM52eajkl4cEXeJiAXq2y0+PtutIAC3d2bR94bsoL4mvkJ9XvuHzZiOdepz8JsiYpEkRcReEfGofORSSbsGjsThNk5E3EddMPM5dYuUqliwMmI268e6Jr1RXQA65Hz1frvbQCC6Y2vtUG2YvfJ37fAdF+Vv5k+ruxHZIxWqX9Zo7T2jIUNr7SOtNbswaeq+rEB3XKHNM9V9vpzXWrvEf+oOCJ8m6RWSzpD0Q0lXqjeYOa21X0p6uvoewxXqDe2Y1tqajPcv89rKjGd4ytNdJZ2kvj/3VElva62dnPf+UdLxKeH8v9Ok9xnqHe0sdVO0F60vc621r6jvW/yWuiTz1Lx1Q4ZvkrRGfZL7gKY6ihvyHnUztZUR8bnW2pnq5nmn5vcPk/S99aUH4NYkOo+XtFB9m8QO6lsMV0fEfdW1gX726Ig4LM1FV6n3s7URsUf0k+K2V+8312gkZJ2JT0h6YUTcObrjxNlsgTxd3YfG3IiYyQ8OwB2e1tob1R3sH6+uNDhf3aLuc5L+VV0w+7WIuFrdn9X9ZhHte9Wt7U6R9Ft1i4L/s9kTD3AbZgN9b8h/qmvaL5R0pkZ+5TYXL1df056W269OknS3TONZ6kLYc3K9inYeblNExI4R8VhJH5P0odbaT9TXla+NiB1SKfESSXY+fLqkh0TEPimsfOU00T49Ig5JBf7fS/pUa23SWjaNA74m6Q2ZhjkRsX/Mzl/iIvV179yI+EN1A4gvq1sIbaM+XtwUEY9W95PjvE5ryBARd4uI/5VCn9Xq1nUbWnvfYYi2YV+4cBsn+rHkP5O0DRpEuD0SEcvV/VCsVZfMnyvpH1trH46IJ6kLGneR9G31ffY7t9aeHhF/rG6GeWd1wczH1SfF3dUnzsMzvtMlPS+FljOlYWt1k8/j1Cehf1EXBM9trd0UESerT8TvHnxnP/WF5qGZtrMl7ZJpW6L+Q3Ku+21EXCDp6Rb4Rj854KzW2gmbVnIAAAAAcGszWLvepO5H8Ux1ocw7WmtrUwH4FnWHvKvVrc1OSMszRcRb1Y0EVqgbGLxLk9ecp0p6mKSD1NeYz26trajryxT6vE7d8GAHdefC/9Ra+9h60v4sdefg/6NuXHCppBek/0VFxPPVrfS2kfRF9S1Yv2mtHR8RL1Y3dNhd/bTHd7bWXhMR95D0bnXhz43qO1me0zgNThJCm9stEfEESSeqb2f6gKR1rbXZ7EkGAAAAAAAAgDHgjro96jZPRPxVRFwzzd9X8pE/VzdLO1vd+uAvtlhiAQAAAAAAAGCjwdIGAGCWRMQ71P1aVT7UWnvurZ0eAAAAAIDNDWve8QKhDQAAAAAAAADAGML2KAAAAAAAAACAMWTrjXl4t3nRlgxPhK9GOhv6PN31DRn6bC5DoI2J5+a+09+PDdwfZ24LadwQmzkPy9dKK9a1mWp1i7JrRNtn8HldhmvL583ZJDe2u8/0/GzvD9lYafPGVtpMaYkN3N+YuDb0/MaUx3TcmhL5Wr41jTOV26YwXbmslHRtG7++uUtE21vjMZzOVDi+7vYyp16on+sXY5prs/1sNnYdsDkLdEOtZuxa1c1gtvWxGfnRNVrRWtv9ln/TxrHb/GhLFgwuzLRu25Q2u7nL9dZsg7NZt2/K982tmZeN7dse47bS6NdRHQc3Nv1boM9tkKyjH509nn3T8+ZMbI716s2Ja7rv35Z/7t2SzFQ+41AuG1rXbwmchl9q+r65UUKbvW+Uvv47aeET88L9MlyS4b0z3N+j3OIeXJMndS3YM68foH4CmCTtluHKwb3pkrY8w2lkZwAAACAASURBVHMz9Gzr792zPO+Tredn+JMMH5XhBTM8t7Wkncu1rWZI091LWlaXNM2f/PjEc8syPCrDLCddk2F9/yUZ3nnwjNN/RYZHlHf5uysyPKik0Tj/7yxpdJoeWOJz2o/M0GVy0yDuEzN0OTiu+5XvnJXhkpK24UpKkr6XofPu77v8lmgyzpPLbf7gO/+d4fIM75zh/uXdTru/d42WLj1O48pdFkjLDlc/qE/qh05LkrvcjRlel+H5Gfp5d6ud1M8bk/pBfJL04wwPyfCcDN3lfAi2m+3yDD0efDXDKzP0wX1LS/x5/bzf9HCfg3t47S9GST7oMf3/07OJHZ7PXJjP7OXhZF4P1mSc85xWV6tXBN/P8LE9OOMLPTzMw5DTOhRWS6Mm53LdRtIv8/+5mY/senvl5VUZ/s5R5DB59rrJUV0+ORr9Y4a/n+EHMnSPvDpDF//55f6+knbN//fL0MI8v8N4lPh1hu65azJ0cbhq3RT2LWlxnv0e58nF6BH1Eo163tkZLhnck0b5cpr2Ks9/Qv28yHFkV0knaFRO7gI7ZXhphp4x15XP7opXaFQOtc7Wlc++7++6KR+e4eK75T/uA4/O8NkZLvSg4bHPX/DY6JblziaNxu5DM/SA4jHb84g7oOctD1Qel91RPS57LP92hl58eB5yGpxWp3H54L7vzS/3HLe/47ny3PK88+be4LXLz8tz/r7T7vltcXluOL+7JQzn0eE7a9qdVsfhuXEPTeaGkgavD7wO8mBVB8bhWsbvrGukBSVcXtJqevlEvOlcjSFLJC1bqNEc6EHJnc+DmedMD9CusrtmOHdwb/vBNWlUNJ5L3RT8Lhe7B0a/q+L7jn91uX51ue7n1g7uOU05N07k+8bBs0PWlvsO3XU98Fxb0u7Bvk4ybpK7ZOgyGKbboQd/p9FpdtxZBy27XLhO3C38fa9Z/C6n3eXjPHlp6p8Hdx/k58KSfufH5epu4Xw5354kX5qhh9V/ycxclrPql/O6J4PHZbhjhn9Z8uI8StLDy3e9lnK5+SfKL8v1bIdxtMayb+53xD21bNlJGv3OeVWGuUDTezJ8b4Yeezw2/2mGH9do/HLl3zS4J+mmu2QUj8jrL8/wqRm6095UQq9c3AA8xr63fHbaPAeeOLju4vdvmVz8TqxucsE7scLy+F1/vz5IkzktQ6/o6u+a5Rl6VeB4HO8STf295ZWn52B31kxT+2kP4wl53eXy6R5cle194dGTk3rVtyZHd6fS0M/LRbr73Z3uO8rHr37VQ4+vCx+Q//ysB7/IVffBHkBcB7neuDA7+V7unFkO7bIeerxZlJ15VXYwj7tbO16n9bJRc5mXHfj6TMPyvO5114KcaC5eN/ldmZfYc/q+yfYoAAAAAAAAAIAxZKMcES+NaMvmSJ9JwdDKct+C6TPL9ftnaC3jWk1WBEgjDbDjsCDLAjTL3rZNQer1KfW2AN3CfguhwxHMKTeqWnpuCecNEuXILby14NDSeReA4zRVFWphnOPdvXx2pi0Fr9qSPQafnS+rzh1Htajw56oFMM6b03pq+Wxp4N3K81Z320piQvk2TxMS2dOum5y2wzLc8Q/zHxe+JbeWijvjlipnrZ73z9OnedEDyvNDze8w/oM0oQW9MHXey/OWy+ku981/rMe36sLS8k9r6dLLtWzZmnEwbp3C0j2iLfsjjdqq26Tb1IMzdGe0FsfYlGLBdhqVo+vJUno3ulTbXJ9SblfbwmPyH2ug3XisebYU35J7q3+qrYUl/EvK89topJGw+suafWsgLOaullPOi/PgPDptPyvvcqZm0qIbq/RuGqT3bRl+uHzXKjOn2XE7TR7FXE5Os+NxW/y3DK1GW17uZ9mc8oMenqNRO3jigfnPn2To8qmWCh7cqtWfn7OGvpaL026swXHeXF6LB59rn/O7nAbny+3DaVie4Y+0dOkXtGzZirHrm0uXzm/Llu2rkXbKlhHuqG7HHuSrFcvQ8sFl7PbiNu8ydn9zv3JdLC7X/bz7WbaFNcf38A96sPbE0ZulkQWXrYaGdqWe2z1teDix8shDt6eEYe0P71dLJLc+T197l+er7Yrf6+YuTTVeuKRcr9O5P59ZrntIHe6gGD7vd9YWXo0iPK1fPohz7xLWtLrcnE+vl5wGK9j9Di853Ko8vbscXW5nDNIijcrk7hotU1wnphodOi7bQrkcbIjyVulHrbWlGjOWHhZt2Rc0yrQL28OQG5MtSpZn6EoYWqi4kdgaw5XugvU6wxXuuGx26QbvwnYhOy0u1LXlOa+FqqWKh4gbNTLxdKPwu9wQPTS7Me1S7jsttdMal4MrvFryOT7n1WWwUqP15PnlGZebF/4eLo3f5e85306Lp3N3lGvLddet33evDD0VrZTWpgGA+9bbM/QKxEmvv2H8Cts+vDVDF7uNedzsqpWqi9n8vwzdH/fUqDnV2fl9GdpwqC7fHYez/5xx7Zs7R1v2IEk2fnEhO6XVatsF4Lbq3xznaNSWXMCO6yVZii+7aPJ3npEN9i35Evexah13nwzdth6TM8Mbc8B4bEnrkbk+PvGLPdxbo8bls5lsle52aUuqRa/r4S9eMTkv7qOH/k3+89oenJ5pONwdKBv2iq/30OPKoW5duRY4O1v5/jYTkybWIG87pYfPc5y5xj4582Or9b/yDPn4/N5ne+gO8+IM98nKelX2BHeIJ2d43z/u4f/9aA8d7SslLVzU//+LtIhZkvde7sEm8/OX2dIfkpefmOV0/Wt6+Ka8bivjan34pQyfkb9dv/7JHnr567bk8fa9kp7rRpgjxWlf6aGNif/S5fcPPfj0sT20kVXmP/abvm9iaQMAAAAAAAAAMIZsnKXN0kVt2bInabTXz5o7y4a9V69ozs9L6Z0l72dqqnMDS8wt1XTUlmKmkG9CMVmtLpyEumfVWgFL4otPjzW/m3x7B0mx2+CDNLJKqJYyzoMludXNzHDP7iCta8s7LST216rBzXBLcd1l7+xbmFu96Fju6CRWQaKTuDjz0q6bHL+1jVY2WcBoHa+lfvMGcS+xSsEvSX503ehZSTosn/tVloeVHC4HCy+3v8vgJYOXXvGLyWl0U3HavVvzCo2antO4bdl/fEamwc3LVexyO0zdp8hPxtDZqSQtXRxt2dM1agDfyfCg8qDzba2CVTZDtw21XfvepeU7LiQ3wqrStmS9tIOJ510Z7vuO39ZAVl0NHaSk0H3CFUb1p1PN/KzGuqg8Z02FVVFu0L+Xmft5fsHl6cbljuZGOtSsOi6XwyMyA9ekbUL1Dm0ti8uzmg+4/I/ISvuvovmp5opLMnT/W2CrmgWa0JacngOpHZ1UM4FaTleU5zzO2tzCqny3EZer8+q0uDNbS7XL4PmqTVZ55tzy2ezjAeFILV36Yy1bdvXY9c2ld4227M2SHpOJX5F16PJxXbtOJwamoeMCSVotrcrKqf4vdvQo7BEvVTarUsXuMnff+WaG1oylxvCE1CzbC4pjc1NxU68uK6SpzeE35fp+5bOz4O7kHFjB6Hiqvx7bGrnY3GSsu3Iz9Xi/dpBuf7fGaYY+oKSpLi28DHB3re6u/Hx12WFDB793OOx52NmzhO5OXgbVtDl/HkJcJ6aWRzXMrUYV/uy8rBykwXXpru26OWzwrDQaxo3z9qJx1ebvHW3ZizVaI7oQXbEuZM9ztdG5Mf9ao0JwI/G450p3xbrBn13ue+6oVtbLM/S4W83CqtV28Yug+Ro1zDrvOn+e2zwOOw6/w2lxY6kNvppx2CrGja5as/9u8Fz1E1PdQnrgMNXf3uXlOX/fJmRe/7juflg+146TY+O1PxhZjlXrwSPKWnni94IfdNxZZ5ekoYGLffvn5D+eW+u6qZjbrX1XD7f648FFDyru6I6jms7tXu67rrMcY9l49s1DI9rHNFrGps2GTsrQVkwT9tM2SM0lwY+ynw2bTx337bnmLRm6a2ZxT7gictdyU63jnJuqDSlsSVWN376boV0WDX8zednqz3uW7/i+rbxcrY7bU7q7h73GeIiqSyg3Mbdxd2l3l+Ua/dzyOxynx3UPRa4LDwN+p+f0Ohe5vFwf+5bP1QiuDnFXr+c7rsP9c5Jae+nk+667A91esl9clhEtqmNXJtabR450AXp8z352fRr2bHsXjSrBBVEtF50hLyxU7mcjiFOxtAEAAAAAAAAAuM2wUadHaeXl0ufeLi1LyxmL5+xaxCKgKjm2lsCqmjM01edKVcX5O1aP2QWDVUv1IAhTN2dbmuX4bQ2T0q95maZ5/t4lmnmTe1Wt2ZKgqq2ct0qK+bbKtMz/n/ycUr9FKcpdWywTHP06jYrY2a8KFitsLFm9onyeyejh0VlellRaw2etaz1z6vQMh9JYCxDn/G5yui389/ZAp+Gx+ZylyNUqyE3gQb/toSXdFoZ+raTJVe2ysTT5Zxrl381g8ZWT32UH/m6irkIrn67TSEkxjpx3qfS8N4zK0MqcS9Ow4j5Wl7sirSatIvb7a9QILJau+/GtDqiaOFeAC37nct0i92ou5g3YbhiL3p//vDDDl2V4g7RH7kXd+h49vC491t8jP6/Nz27AzstM1hzu085bKxY21erIHdDWP0NnWv7/Ef7SU3qwIE86uP6yyd/xGOV3O//10Dh7vL8x9w57u/Ei13b1R5P6mPfnDvetNBooPFZbjbE8Q9eZB4QqzncaD0zfT1ekv5zq96FqMOtJI1Wjuqumlq2fdflYq+jsus72sW+WR2pkDzBmbKc0WcmCsSZ+nivRKh2PbrZStU3juaPPO1qXl/ne0aO9G3fxGbVjFvKO2Vgfm3urvU/ec222u+PtJ8Ldzu3Pfcn93UkaTgr1VLblGdrBg1Vj7o8eG2y2UR3leKCuKkEfoeZJxWlz/B6zXIyrNCqealXn/lYP1cw0rTplchK3Le6xdnX7dJpdfraiyPFusfPmPOfYu9eF0v2yG02cfuNqz8nz3mn95Hl2q+wja7KPWPPqV3gYd1ey4davstyrIYhblJcyQ1cKLnrPs65irwlc1HbtYMMtF/3/0pgzX71N7Df4LE1Vkbu91HWeT127UaOxqlqvuN0uLvfruOm26T5Xzdq8Dq5uv+p4W+fa1Zo69zkffqfT6sbhNFQHSR67nX+ffuLx5qbMVF0nV+dPvn9nTV3UeTiMeoKdfafVHwaupHtOfv73XGnFIeXSHAON68cdIMeC7feQHn3p5Dds+9z8J/0DTjHr9Dpm/8nz8uKLL5sUt7ZOfxwTvto8MHiRNtl34FbvtI9A98CbNPVkour/7XvlfrVh9PFRtjMZL7bdSjpsgXR6JtvrczdR1+6EQVZaOrg7eQj+b00d3utZgG4RXqq4O/x7htWVTV0e1wNYPRbX3yNeoVwyCL2M9G+g6tnOyzafmeU43ZWcX5ePm6AtlFzrznP9aerm7xZos47zNdXSxvn1+O8hz8ZrbrW/LqEtj+rhsqZuBnA9+H12a+Qh81xNNRZcPbgnSXtk311S4rTl0qOvmZwmD0lb5Xi0R/kZ4LzMt7F7hi4D19MOv518Mqok7ZkPTVi75prl8/nZ+5YmzqquPnELWNoAAAAAAAAAAIwhG+fTZnG0ZcdpJKK0mMlCbovtqhXNhzK0Jmqtpmo3ziyfq7OW5RlaXGXNmkWO1iBbrFqPn7D40wrOun/Zz9+gqXt2q8VNOuCeEJNa9HVlec55qXt9nRZ/3zjPw817w3TsNHjWYki/s/rTqOK+3UtYT5XyZtHqn+TJ5bpVc1avOa+rNRJRu779Dmt6vEnUafc7h57epVE5XTr5+TX52VlebMWE25LzVv2b7D5Im+vdkbiM3X6sobL4eEmGv5aWLpOWrRpTnzb3jrbsFI20X9ekDN5lbLXnjt4Ybc2VKzStQvRAjWTA1tZYjl3OKvhtnh5lsfdu1oMsKe+witpaoOxQa1LHUdv7ojRBmzhxxwPMTdKP0trkiBPy2jcytI7ANmDWMGXFX5Nqc7frRalHuD7l927HO2YeTl81OW0eA9xOqoXOHI2sCpwUF63F/7ZwqCeAVKdW7ms2nLBG16Zqjqceuec2fpd9evje8zSB+5zHP6sorKKplkV2aOKxzfm0WsT9w1SnGE6T81R9Mrhv3k2j8nDzOat8x83PffPH5f4xDxlfnzaHRVv2OY3K3+OxT3NzedlyxGVweBb8edmP99lOowyXfnVNNkZbnVRrsgOz4K7JQl/w6PKAtdbLM/TA6r6V72vZYF13noPPHfy/wDvfPVZUXZ4r0xNWVv6a7J+ue9e18+Tycf/zOF4tbt2n9h3c37486xM66gb/Hcpzlbo33aYlbvvV0Vy1cHBde330y0FcLg7juKoFktNw73LfY4/jcRrc39x/PW557NiuPOeyWLTdyGmH69t92XP/ttaBpl77F5kYz8M5fsW9xtNvxtJDoi37oEZtzeOQy/QebsvVk5JtiTw//kSjk9iKtePESW0m51Y7+POauPoU81ju+tg2E3l9Vobb3LwcJy7MccLjstdUV2s05tSjhtxH6hFvbp91nlpdPlcHSVX9bV9bF68bpUUa9endNZpXHUd1aOg4XR42JagWRtXXXDVFcF6rUy3PzY7f5XY3jY5cc/v3CT/VR8/CHJTOywFhn1ybXJ+n8W1ryxq3Ba+DPJn6lNO0qJ0oaBew29arMtxao7aXg9lvc1K8y6fy+t9nODx9cEg/wTLig2PZNw+IaK/XqLrrzzR/drVXa5ph060/R32vuuGb6QAzL4H8Ti9tbH1Rh1pby9iqw0Ny9VJ3kUZDjy2H9ijPzPRz2GE9VK66jXLeqjvAOk1O56fOS5F66qGn6F01Ga8aTi3X3bicf0+bLi+vRhy/rYTcVX2wk7vyVzUaNl5Q0u/h76Jy33XlpaPf9cgMbQVVlxVLy3WVz7Vt7Snpf8qz+5XQyw8PeW7j1Vfes2bwBYelDQAAAAAAAADAGLJRljYHRbT3aKTUeUC5f5gVEhah1b2yqbz++TVTDWisvLH0s0r+LMmyhO2cct3xWSpoBYbjs/Df+xdtzGEJ7XCrfT2FyBJFv9P6F0vn6gkMZrty33sE71P2pc+ziNIRDLX30mT/Iy7bueVZi4mr1q/6Dqh7oV2g9cSEat3jeC2ytIjXhTNn8M7/GVwbxl20+b9KBa7Lxa9aaOVAVs6q9GmzY37vqkzbQhtgOA9VQzqsfKe3nuzlhmaRd7WgMGukpRdKy24YT0ubrSLafA1O8MrwnzN0VTzw7vmPtW/Ot/1YfEkjDXE9ialqt/wyt7EqzvdzdY+mv2dLM4veXfYvK9fdkXbUaFPvMzOsrvz92eoNNy6/0wXhNDv/zmt122/jBuel5nFZhgdoJEqvp8lVvwROSz0Bw+J/x2NLHafRdTY8TWsYzxHOrDV6TvzDpPbB/q8tFoy1ns63B0intVrIWC3i/lO1037e9TD0+TMMrVraTlOtmKwOqZvFrXOoffO+T9DSpd/SsmVXjV3fXLpftGX/oFGejNUrnqiq9trjsOtrvqaeLladd1kFVgeBRXmK2MVpGVe1+fUYIMdbfb5sm36jrkq/UQuzYf7qzFE7OiatvMyKtPZy0/TGdLcDq89skLM8Q5eP+4bLr/q+c791GVjNZz9INwzidFm7nOqmfZP5v+rKURTSVOOHWqWO3kk+KE89XJ7zl6t2f582M5yvPI/W+daqwyPLy7yASZXq9TlebeujPDzmuu5cXu5jHsc8xniM9eLuQRqNCXao4HWKy83zr9/1jxnaIiHnkfjomFraHBxt2fskHek2mwuS35ZjLt0v3ABcpksyvFpTHVz4meUZ7liue26rVhvGY5wbm991Yblf19ru226MW2lkfFotzlznNa46zlbfa86r24PHfDdwz0/V96P7utdge2vU9+pawDgf/o7HKo+X7uc3lrBafrrcPZ7WunXe/tAV9USNJvAcrC7+ZA+dZlu+LsnwTRnaEvYNGXo943LwKX7ug+777tNeU7hcbbTlUzUv1WgcdRpct8/P0P26Wv2XdhofHtO+uX+0Za/XqKy8XrBPszRYW3Pu5O/Z8GyiDobONquDF5uZeK1Xjsc7K0+nrcac9SQ+h+4m1SWqq/mu5frVGnX7erBoXQZUQzxXo6vdQ7WLw0vFaozt7uLu4+5U3dEu18jY2kOL43Sv8Dvr0OX8edlaDfnqT81qJVSfd/W5XJcP4nDXMLV83LAdl6d+V7WXGfXwNS9P6tBWf9LUw2jnazRU+V496ctLFhtbG3dp//x6IpY2AAAAAAAAAAC3HTbq9KgFe0gPPE56YPUrYzFT9ZRvMdbHM0yR5aGLNSEBf7BFhfWgelPFcRNunjO06GxJhpeU5y1RT/HXkU5T3f8/1D5aRFY1m7sPnpFG4rl6SLzTYKG9RY8pIrPliB+fmyY7Fo5bemjJ4vkXjJJqCZ+LbXFq5uxl3dLN6prGSXRWJk6jSKnyZSne84lWVfnv71c3P2Z3japqnq16qlVL2SN9YJZHSzFzVCuQrIcdrZm0Z/+UgF+f0ndLly1dddonRJTnjnahO0mWeroczvzN5DjuXZ6/pybv9xw37jVfWnaARpXgPvkd59CF+JgM6y7abEDXnTLqE7ZWOTg19RMVk5YcJ2ZrcL9wH7IGtmpHvlkS7fvHZehG+7DcA/6xPHXBaogdNFJ32CV9bhvXn2foDbFWa7hTOZvuIBOnIWXezkkrBKsmlmRo3zdnZw+wKN5ptUbnwsF3nC+7D3KDdN24GK3hMe7w9XmPs8sztOrG49CE1Uqm0Xn7SVbI/14xevYemcETz5kcl+u6Wux5wLCmvmqlPJ5aQ2+qtUa1nvH3txvE7XHXJowedKyFtQpieXnHfU8cvGjMmKveP6oFn+usmoR6MLNWdUmG1r5Ko/7mQdh1YAtHW0m5rtZm2846WvWfeTlvL7TpqIvQ/dFa7wlrxLSw8XFCT8hJ23OpJJ1/3uS4/jVDD8DW+rt9Zdu+Nk9R2t5WllkuP888Vfcw7s4ulj3L56FhqZvXnssmP2OqwcDuOazVQ6HqNOZu7BF2eYYujtU5z3+2pHHlitFzE5bEOccvyc/u+h/J8LHpm6weNhRZ187Tg63NdzvL7t6y7i/PBxfluuH6HPa3TaugSSf/ZAYvy7a6yAUyZ/CMNNEOr818be+x4DSNN019jFmTbdZjn8twYgGWYVWzDtXjftZ90evZaulR/So5jqFPRWm08HCj8bzlBVlVT7u+zy3hdhqNp/cqcXsBWv07ep6uPmq87neHsao4cr5eddnk+DxvVecYQ2vXalLv0AuwO+WXdshOWZ18LC6fqxXwxJEsGboeDvbEV30OPS3D1RpVRv5MutPnJn/n/3gtlT5njvEa6609+CvH6X+yA707B7mLswK8RvHvJw84Xmx7PB+2Nw9qtmqzyYTrxu6m6umNNrWw1cmHNZ5cJunNmurnz/0m63XeTFsr7C5oF43q3P24Onpx2bhd5nh2kAf2fMeS6tu0+hGt/pXc30ymeS8/v8sgLW6vdaJz/8/128KcJw6tzmxy7bR/tTx3uXj9VyyTJibKctTvg7cf3HM3qBZ2ntNtDVr7sq1DzyjXnX//3vP45Dx5YvX2G68ZPI5cqKlHFtY69jre5Wl5g+vQa8rlGeYY9wiXTz1FNd99SY6Ri+eU53JsPPuiUVI8VPtRR+1hs26GqacmzwSWNgAAAAAAAAAAY8hGWdqcdal05D+PBGePz9DCwsdlWLfnW9Hu7/1OI6mSBV8WWlbDmupGw1uy7Xqhatz8PUurrMBwvJeeMvm6n3Mehj5tLDGryhALJasipnr4rvvg/A4LP6vbB1/34Uu1DFYP/rcUb/eUmLscZnIjUhXhLvfVKYl0uVpLaAG3y9VSQQs4beA0PAjD5fKgSyen0d+tChyfVzSR5p9N/rw6NXdWMm21YnJ8Vt67XGuevz24Xw8RqAqq6k7ovRlamHy+ploXjRM3rpYu/Jm0lzUwLrT/SHOFk1JEvPd/9PDFed/7qE8dfK/uh35fauotEnale9NrlWq7s7kx2WLCFevObq2kO8DyDJekxu4p5fpdjpFeladH7ZUZ+LPcSH7kMzL0jtslPTjWJzMYi//dI7JWJ07AesDk+zelamr/VLuszsxYk+pOO0cjDa2vucF7QPAA6UboOKwlq6emubwPzso898zJ8ft0jh3tHCuv3zc1n/OyHHXuqIH/IBuItarupB5Q/U4Pdk7LIeW+81Tz6DxcUD47j9X3wzqN0ua2W08K8X2rGJwmtzst0Eh1OGaE+qA9kw8yW8NkeZyVeTtozuTrOl9TDxVxlutG7uq3yO0sy9fKKXfTy7/VwwmD0u9Ojt7ddo8Te+hm/kCn5xLpqnx4oSeOHJxPyzH7yMz3D/Ozq/ihmb+JAxlTab00LWyqoZZdKu2T5bk4H/DY7OI61OU3PJUptWFPyvzFwXl9SYb+jtubx8G55bnk2KrVzPZ4RNnwfrg1h8VPyRHnaOqpTfZZknG9xGnw6X/VQV5qIR/g/mYz3eWT8xJp/bjIBZWWDNtaS7pXCe82Sv8iT6TOV/Wbl337ik/3cHuP9x5KbZk1bsxX18jPy8LcYc3k+9VixGOg62B4qtIO5Znq0MEWAS5D14Pr0RYQXqiYeiJmHtQ1xVeJx/HqWHGdpjpgmOl0tLqAdVo83+84+fGRf8PLJl+viyqXV837wnnSwuKg694Z15184lKyyBYx6bRlUTa2mqkFVtvbZM+dL00vDkprwYmV/6EZpgnHj97ew+F4OzHfpIMVW/nOy0r+Rg6wD3tlDz+Szp2e+pCSRpsg57tcHsfmWubYelqnO6MHhVyTtHVS7FiezZOlfpGmx3vlemgvm3Q6LqfF2x9qgxsTrpP0Y+nCtMrYK9cRP0+rj0NtGVgtzrxucT9ZranOVNwkavvepTxna1dPhPUkUS8ll2foucZV4vVLdQLjHwvAkAAAIABJREFUeWaxRuYXXie571XLIeehTnTG3/M8Uv2kOu1Oi38wenyx9Yt9ou2tqVZtXkfY4s7ftUWR07okQ5enl9ouV6fNY6RPuPWY5rHSggMv4d1012okfMjuOrEW9DhoK553Zei5aOhPSxr97nHdOI/1WK/syos/kZ+9nvW4vaQH+39+8C4vcjJfSxxXzifbz5v83GLfd7nWH+0JljYAAAAAAAAAAGPIRlna7CPpHRopRC0QswzXQqeJU5JSQndGSpos3NpPI0HVjtU/g6V4lu7ZMUnxTfMCSwZT2v+HlnJW3wHzy3VL+SyptCTS0tcbBmkZHr4+TNucyZ+XVPOeqlWtJiDWUDw2Q0tJJ8xfMlxXPg+fsVTSalP7z7DU0mnJ7/6vvSd/nsivNUFZnkuc5pSeHmuBviWzlkR6z6iVU9trqnmOybT8fj3RIp8/yHsmi6Jros4zrVekxmPX1JDum75tFlrq7vJym0opdrtypIS20Lz6+HHzsIsSF8NQQO3kjCNzlP3RbdNt2PVlqxdnzKZSPhlk6B/D2le3d5en1d3uDz4txNpdWw24TdkKw23SiiZXhtvJSzP0Zs8d08nGq9IEwLzwi4O+kJo394Off3Dyuy2V935wa4vXZYdxPKtz1JrY65v3Pcj5ucVrJqfdbfj0wXPWyLkROS2WoFcRuft91UgOTcQk6dlZiS7PibEyG7z7nSX8ay6blBV9/cxROTmfrjOPRY7T/br6pKn7tb233KYPLg9riJxnx2dNiONzWfxGo7HI5eCxy+3N1gb1RCGn/YdXjjRI48Y69bHVA4z7Y/a3y3LsW5Tl58cOcn+15ug7Gpk5ug48B7ou3F+N68Rao6zz3/PJG1lmbtIe316doQ0MPKyuLOEFmcYvauS35e/SqsLNx+Pnr9PCxs3CirKzUjFeFYmRfWHxlZOzcqjnkJyP5uWLFjl0W7I2/CCN+kG2wXDbc3l6bnMb8js8Pnmt4EnDbdpaXReQ52DXh8dJz70eUx6Z4Q0ajbVVGe/vukG4YJZnWHwheJjavp46VHwVTGDlvcesesLjWZroy79K66e7puYv6hyTw7SVlnunNXPY2GGcmSOpZcW6sbq+awfwuFN87mlvTbVmWZi96eqM2+Xs9acXwK4492UvqquZsnE9eTx1Wh2f5zvX4zqN+r/HT7elqs33POJFUvVpY1z/1crHbcr9wvFV7b7ngLZm4MgwG8ud3Ghs4+wJa0mGdZDz8+44/jXiTnra5OciByKfFKa02Hl/VnL6+9JKTT2S1oNWjp9anYO5y/5duSByG1iTHcH53yl9J3l94HLYPq2Ft7V10REZumxsNpKO++IxGlWa852JmnBGmesh52FNWhh5kB9nB41S7097a2LdekbOk25CbqPX5vXtl+f1bLNXpT+xhXOlNVnOE0u+DBdV65zqm9Ghx33Xl8dY96M6QXod57rw7xu/z+1pZ436ffU9VLeiuE86je6DM/0oOafcX1Xue+z+dbnu+eJKjeYgtyGn0Wlzf3d7d3nVtNbtH15w1KOZqs/YOs663K7TqC58z2OQ8225geuiWiz53Y7TeXW8Hqfr2tRjqcdf14/zsERT/Wk5jc63x10PZY7DbcH+vLC0AQAAAAAAAAC47RCttVk/vHTraMt20kgKZQmcpVmWHNWN6NZYpLbhjItGW/gstLR83F6Zf7Vu8isstKq+asy2dV9iPdzdkrGq9a5WMfM1Ve1nKV11VlNP0bK0z2mwhM0MT0wZxmcJpgvBkl1L7JzplYN3VM2ZNTkpzbs2497+zuW+01oL1NLN+s56mozTbk2wy10aaWScNsfhsnccltDakKIeCbJVCc8qn+t+8eJ1fG1K2beyEmKORu3hW4NrgzQvT42v29XCvH/eutGrf1/ST1oLjSFL50Zbtqumuh73vtx6opvbwZcydB3trlG7/Vn5jp91/7cm2qfPGNeT20j1/bB3Ca1ttpS81ru//0pJ787/vf379Rlae+U43DasHau+VKrm0wq9h2bnPS07ULVMqxL7cwfX3afctnyyg9P0w/Idjy+2erEE3pZJfpfjseOPJRm6npZn6HHH73P93G/wLpfLMzOspzr5vvc2W2tSNf/W3DjPdiXgPjzTaQhOq98zbxCHn6kaGefH7dBj+kAzvPQz0rLLx69vLj0w2rK3SvpyXvCYn+W59nU93OqFed0OzZ6Qocew6zSywHL5VGWr56N6ioPvu9w8B7oN1xOd3G/9njq/uS15TLlCWntKyYfHeJvgVAdmViJ7DLCVnjVk9uHiMeB9Gf5Bhs77D8t1W9W432+nUb48xzl/bqu28BuenCRNNSn2vLOu3F9Z7rsdL7xvD1fl0VjO+/6pSrv+x6O6qGsql70tId23XeZ+h8canwJjv1kun6vLZ2v97YfAbcr91PPkURrVodPg9uTxyP3W77B/AY/FmdZ4kX7UWps4zHFcWHqvaMu+KWlhmhOvykHN66/d8mTB89Knm8cj59vtyGUmTdXset6ovotcZra8cxy1rVZtrdu75wynoY6JQ2eNvmcLL4/pdx48I009vqQeVWr2327ygyuyI3he81rC7cV5tNW283qJpjp4dFqsbXb7dp+bl5FcmHXlflDL22nePyO4LCNwWThvbv8ep5YP0lisIi9J4xxPfR6yXBU2CH1q+W2xKi0tJk5utXWq8Xs8x5YyuSzXrEMfji7ie09+dGIIm1vuW4k/cZhWWqfHb8ezb949on1G0oG5IP9VttkDc8y+MMcrV2ftLjZ23FlTh8CZfhq6+PfPH6dnZ715SK7GLdXnqJueDa88LdRThBb5FOF1U7/r4SHcxfKBVf49l5e38v1MxITFkQ3PSiInTgms/qU0+bmJF9yoUUF5PKxWLb5eLWuc8fp7zjizft7jgoUCF5X7/r77+g81mrM93nnt4/m0+nZzXF5b2xLXaXHcHk+95qkObB2fK9nvd/xnDu7Vk6jcEL32ubyE7qTZCOJd0/dNLG0AAAAAAAAAAMaQjfJpoz3Unbdbw2QplbefVkch1sD7+ZQgHfbfGkn2LH3KvXXXpjT7QEsSdynPFcuQS1JztK0lXhZDVU/5FlPXfb2WGlrEeYVGUrW6n9zSPWugTNVU/Lpct/mGy8lSvbov2c8ba8UuH1yb2LOaocvJcaUGbWJve/VDMnFESIaWKNY97S53a3YscXS5+vt+/zxN3tcnjdqHy8NSTqfFEkh/z3s/HWfdO12PEjOXTP64lSWZfs9KjerX2iZLovNdS6wltVg937HPYP/p3OqrZ4y48ibpI5dK+6YG4oEuA2uoXNbVmsWS6XmD+/7/OxkuL991m3CceajChGWO66nWQz2KrFq9uW+67fn9bpurNer/Pu2onsDkvmSptVUw/12e83WrqP4lw+2yAVS/FO5HluA7L24fO2m0jf6dJS31pCBL+Y3Ly3nxeFF9LNxQnnc5uk86fve3eYPnLPX32FYt9Xz9zPLZfcv9w2Nhtdzzc7aMqNaWLkf3XVvmvHCQj7XlOx7TbCnid/jUMvsxW6nxPaFmjroGyX2laFO3elx53mXgNj/0J2ENrPM93OMtjerGbduWm27zrnPXpa2p/i1Dt5EXZegxfnEJtymft5K2shXYE1O327ISfUjJH92jhyvSt8JurtxszA/Phud568jM3JFLMi153ydKVN819WSalYPr1p7ZAsTjlN9l6xzj9lb34tex1ONXVfe6b9wtLWzcvq0N3CPL5lyNxlRb2nhe3yvVj/fy6XV5fTinSaOxwX3GafFYtLaER5XnvKaplrbzJM1LJ1kP+P7kd9p31tZOTDaEQzIRbrN75cD+ojE9oeZG9TreOcu4nqpkC5vq98FlZyvW4SlgnlfrmsVjtPue66uajteTQ1zEbhf2g3jf7B93vW5yfNZu28Tico36vdu759XqV6eulatFne+fn+/cORuv+0O1ZKt+0daUcKVGfeyM8my1vvRzy4tzjuon0U3NfXNlXjhHk3GdOo/ufx4T52o0XuT6xifV+cTWA+1LMcfq/bOOWi4hfuL5OnHWLsy1y5Jyfd8cf7dP51BestiVXXq+0Z6SHpH/e+j2tG0DRRdbMeycGBbG1gdcMn9O/w24phwKuSrHVpeNl44XTX5s4v6emmp06CHQzbAeoLc2682G5XVJ6ZnLyzp37XpIoLtBMerX7tkkf6ZRd3UzdFzX5ct2v27yfS+NL71u8menbaf0P1aHowkDwCsnX3fePD34hF5JmlsK1V2tHobl63W5u+sMz3l6dN6jWP9cmw94eTNxymNW5LW/lZRT6/a+57Vu9us1+VtznvtoTqdX5biw0P1/aCUpjcYJJ3p4rPQgDRPji3Hm5muqJbMzUv3QunNWy8S6M6GApQ0AAAAAAAAAwBiycT5tto+27BCNpE6W2NdzyavU29fNOYPvDPbFS5oq1rQE3qJGs6R8tjTL2kJLyKq1xu/K9brf7mpNtYSxiNQSML/LkvSqEXf+69FE5dz2KZqIuh+6nBChrTSS6PlZl7ElgxbLWxttx/MVx+3yqJtCnQa/2+9ZnqHz6LZw7eCZ6jU837X2oslRb7/H5OfW5vddNROnTzgvzntqgtZm2quBV2xTnt9fo43IE5tCM6z+hWpkgza89FJp2Zrx85shSftEtJdqqkHVMd4/Xf0rWS3g/mcfB/M1UtvUtmCqd/R62o8/1z5WfWC5X32/POfvWQv8qQyP1mgP+vEZ2rLDPizqaSyub48vFvNbFWPNpS1rji7POY/WhFoS734z9CNj7abTWC0brHqwRdFnMvT3rJqpPkhsWeH4qqVAVf24PF0GKwfpfkC5Z82ixyiPZW5ILgeXX9VG27+Fy8+qPD/vNNbTUfz5QRrVr8vSqhznu56kULXY95OWvkpa9tvx65tLD4227BMajcseT4qhyZTT3lwv7hMnadQuHLq9mOXls1WKB2ehfzELvaoE7S+mWm75vndVu67dvw9Pnx8/+NVUNWbdA35wdurfZgHcJS1vfKrLqnJq2+FuKGkMfHIO4A9NPzHu+D/I62771cfHfI3aj8vc/oWsnXN5uv3VU0JcHtWPTFXvVj9OrtNqBWMLh/MHcVvT7363JEOfVONxzGOJxwy3F/sl8tjieP1Oj0mry3N1bDdLNNV/XfV/53ne86zbkdOW747nj6ffjKWHRFv2EY3qP/4w/7lm8oMtTSMmVMJ5cqEL+ZrzRm3lTm7XNo36eYbudH+aoQczq2U9kbninIaXlFR7IDkuw29k6Ery956Y4U7STa/o/26dg//12de2dUXlu1uODzYxqP1h6ItGGuW5+omp6wLPW1Xlfp2mWuc4+/VEGfctr++rvymfBFctOquFsdNcT2x9UoYuku00yte2Waftp5Pj8He95vDc6nnea8kFHjC8oJ0/+fOaTNy8fK7lGDnR3lyXdgy2vaQf5f9eyLgA7dzLE3J1oOewvzti1Vj2zcMj2jc0mj5cpGeW5zzseSh3kQ+tOdwMveSwAbhLpi5p3HS8hPGQW43o6s9aD6XF6GOiSTm+nQf3l+T/9VBNNzG3gPrueohpdTdXp7w6pTmttUuuHDznaUqDa9KoThx32bQwUfYzuc9xV/T3XbfblPtOsw2MHc+5GtVzTYPL3EOUu6TjGuZvGHf9ye3nvAT191Xu17YzX6N2Vn9C72ofVzdOjnPiEL4sQA/Dc4RPGwAAAAAAAACA2wwbZWkTEZdrJKAEuKOxb2ut7oIcC+ibcAdnLPsm/RKAvgkwptA3AcaTafvmRgltAAAAAAAAAADg1oHtUQAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQ5v+3d+7xdlXVvf9NkhxyeBwTEkIghBxIRSA8IgkQC1papdWqlYto64OKtV7rbetta1urrRbbWnrt7dX6qLbU1relpZWqxY8iVRFRNKGA8hCBHsCESAKJSSAhJJn3jzW+e609zjkkkUc28Pt+Puczz157PeZjzDHnHmOsOY0xxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttBoRSymgppZZSpu7pvBhjWkop15dSTp/kO/dbYx5HlFLGSinP2dP5MMYYY4zZVWy02QPEpHFzKWUTf5IO2Y3r/UPRmEeIiX7ElVLOLaVcIUm11kW11q88Ss+upZSfeDTubcwgUEo5rZRyZSnlR6WUe0spXy+lnLSn82WMGXxKKR8upfzZns6HMY8GpZQPllLeuovn9uaLu3PdY0Ep5c9KKWtLKatLKYfFb9spk5x7Xinl4w9xr96cfGfnPtnwj/49xwtrrV/iQylldM9lxRhjjHlkKaWMSPqcpNdL+mdJQ5KeKemBPZkvY56slFJOk/ROSYskbZd0o6TfqrV+e49mzJgnIKWUL0i6qtb6tnT8RZL+VtKhtdZtu3vfWuuvPUJZfNiUUuZLeqOkBbXWu+PwfnswS09YHGkzoGTvf7I2Xh7p+rBmPiPO+ZVSyo2llHWllC+UUhY81vk25onGLr5O8YpSyh3hafjDzrUnl1K+UUpZX0q5q5TyvlLKUHxHP742+vEvPlplMGYPcaQk1Vo/VWvdXmvdXGv9Yq31ulLKwlLKf5ZS7ol+84lSygxJiu/uLaWcGJ8PiXNO73z+TJxzSynltTwwxsqLSikXllI2llKuLqWckPK1uJRyXUT/XFhKmd65/rVxz3vjGYd0vqullF8rpXw/xtn3l1JK53uPwWZg6RhR3yvpAEnzJL1dj7AR9bGKAne0uXkc8GFJ53THieAcSZ/4cQw2e4Kd9LUFku7pGGzMo4SNNo9PnhXpjFrrfrXWb5RSzpT0FklnSTpQ0tckfWpPZdCYJxmnSXqapGdLelsp5eg4vl3Sb0uaLekZ8f3/kqRaK/34hOjHFz62WTbmUedmSdtLKR8ppTyvlDKz812RdL6aV4OPljRf0nmSVGu9VdKbJH2ilLKPpH+U9OHOa4qfkvSDuPZsSX9eSnl2594vkvQvan6YflLSxaWUaZ3vXyrpuZIOl3S8pHMlqZTyM5Gnl0o6WNLtkv4plekFkk6SdEKc93NxrcdgM+g8lBH13FLKFaWU/xtGx/8upTyPC0sprw6D5MZSym2llNd1vju9lPKDUsqbSimr1fRXlVJeUEq5JpwWV5ZSjt9ZBkspTw9D68ZSyoWSugbVcc8pnVeZO+d1XyP5cCnlb0opnw/nyNdLKXNLKe+Oct5USnn6w6xXYybjYjXj0DM5EOPgCyR9tKTX/x7KadCle12nX7yxlHJ3OAhfvbOMlVKeUkr5aCllTSnl9lLKH5VS9orvzo2+8q5Syr2KsXmCezxH0qWSDon+9eGSlvAopRxeSvlq9OlL1cyHu/c4J55/T+k4PSd53rLQJetLKdeWSdabfKJio82e4+IQuvWllIsfgfu9TtL5tdYbw3L752q8ifb0GbNzuv1xvaS/2c3r3x4T4GslXavmB51qrStqrd+stW6rtY6pCYf9qUc058YMKLXWDWoMmlXSBZLWxET0oFrrLbXWS2utD9Ra10j6f+r0jVrrBZK+L+kqNQaUP5R6odinSXpTrXVLrfUaSX+vxnMJK2qtF9VaH4z7Tpe0rPP9e2qtq2qt90r6rKTFcfwVkv6h1np1rfUBSW+W9IzS//ryX9Ra19da75D05c61HoPNoPNQRlRJOkXS99T8qHqnpA91IgTuVvNDc0TSqyW9q0QkXDBXzY/TBZL+Z3z3D2r6xSw1Y99nSil7T5a50kShXizpY3Gvf5H04nRa33N2sdwvlfRHUa4HJH1D0tXx+SI1OsKYR5xa62Y1rwb/cufwSyXdFPPFHrvoNJiMuZKeoiZ67jWS3j9B/868N645Qs3Y+8tq+jacIuk2SXMkvWOiG8QyH8+TtCqcj+dOcNonJa1Q09/+VNKr+KKUcoykD6gZvw9RoysOnehZpZR5kv5D0p+p0QG/K+lfSykH7qScTxhstNlznFlrnRF/Zz4C91sg6a87PzrvVePJnPcI3NuYJzrd/jhDEQ2TKZ3Fw0sph3W+Wt35/37F+7yllCNLKZ8rzeJsG9T8kOvzMhjzRCaMGOfWWg+VdKyaidm7SylzSin/VEpZGX3j4xrfNy6Ia94bRhTF9ffWWjd2zrtd/WPdnZ3n71AblQMT9tc45/bOtZsk3ZPuPdm1HoPNQPNQRtQ45fZa6wW11u2SPqLmh+NBce1/1FpvrQ1flfRFdaIHJO2Q9MdhhN0s6bWS/rbWelVE9XxEjcGkazzNLJM0TdK7a60P1lovkpTX2snP2RU+HQ6ULZI+LWlLrfWjUc4LJTnSxjyafETSS0opw/H5l+NYZlecBpPxoKQ/iX5ziaRNaqK/J6Q0iwT/oqQ311o3hlPxr9Tv/FhVa31vOB13ta/l5xymJjL1rdFnL1fjKIGzJX2u1np5lPmtavr4RLxS0iW11ktqrTtqrZdKWi7p53+cvD0esdFmcLlP0j6dz3M7/9cJzr9T0uu6PzxrrcO11isf1Vwa8yQiPAn83bELl3xA0k2SnlprHVHz+kR+t9mYJwW11pvUvON/rBqPYpV0fPSNV6rTN0op+0l6t6QPSTqvlHJAfLVK0gGllP07tz5M0srO5/md++ylxnO3aheyuEqN8YVr91Xj+Vs56RUtHoPNwDOZETW+Xt057/74FwfE80op34zXNtar+aHUNbKuCaMILJD0xhTBOl8PvVPqIZJW1lq7c9zb0zn5ObvCDzv/b57gsxdNNY8atdYrJK2R9KJSyhFqjBifnODUXXEaTMY9aX2crkNhImar2Rig278mdX48DA6RtK7Wel96Tvf7rpPlPjVlnogFaoxfXZ1ymhrj8pMCG20Gl2sk/VIpZVopZakaaySsUWOJPKJz7IOS3lxKWST13lV8yWOWW2PMROwvaYOkTaWUo9TsotPlh+rvx8Y8YSilHBXv2R8an+dLepmkb6rpG5vULKg/T9Lvpcv/Ws1rTr+qJiT6g5JUa71T0pWSzi+lTC/NOhmvkfSJzrVLSilnxTv1v6XGw//NXcjyJyW9upSyOF7j+HM1O3+M7cK1HoPN44pkRJ2U6Av/Kun/SjooolEvUb8DIjsT75T0jmTE3KfW+lDrPN0laV7nlSypMcj2ZTt97nNwllLmypjB46NqImzOkfTFWusPJzjn4TgNdpe1aqJzuq/vZufHRAECu8tdkmZGWbrP6X7fdbLso6bME3GnpI8lnbJvrfUvHoF8Pi6w0WZweaukhZLWqVndv2eVDQ/IOyRuOmanAAAgAElEQVR9PayNy2qtn5b0fyT9U4Saf1fNe4bGmD3H70p6uaSNasLR82LD50n6SPTjlz7GeTPm0Wajmvfiryql3KfGcPJdNduDvl3SiZJ+pMYo829cVJrtUJ8riW1Nf0fSiaWUV8Tnl0kaVTPJ/bSa1yUu7Tz339WEfq9TM0k+K9a3eUhqrZepGXv/Vc1kcqGkX9qVgnoMNoPOToyoD8WQpL3VOAy3lWaB4p/dyTUXSPq1UsoppWHfUsrzU4Rc5huStkl6QyllainlLEkn7+Q510paFIbW6ZpkwVRj9jAflfQcNa8NTvRqlPTwnAa7Rbwa+M+S3lFK2T/WXvsdNa8pP5LPuV3NK0xvL6UMlVJOk/TCzikXSXpBKeW0WNPqTzS5beLjkl5YSvm5UsqUcNqcjj57MuDt8vYAtdbRCY6NqeO1qLXepmayO9k93ibpbenYx9Qs4GaM2UUm6Y8fVuOBnPD7znljSq871VpP7/x/uaSj0mVv63z/QUUEgTFPNGqtK9UsqjgR10tako79VVz372oML9xnk6Sf6Hz+gZpFUSdjS631lZPkaTR9Pi99nrRP1lpzXz83ffYYbAYZjKi/U0qZIWm9mi3Af0/NrmcTUmvdWEp5g5ofeXurWZPiMw/1oFrr8lLKayW9T9JT1byGdIWkyx/imq1hqLlAzWKjl6hjzJ3kmptLKX8i6UvxjDerWfzYmIGh1jpWSrlSzSYVE/adWutlpRScBjPVRJTuktPgx+Q31SxGfJukLWr63T88Cs95uRpD1b1qDLMflTRDkmqt15dSfl2NwWpfNYuC/2Cim9Ra7wyHzjvV7My4XdK3ND6C/QlL6X911BhjjDHm8Ukp5TxJPzGZ0cYYY4wx5vGGX48yxhhjjDHGGGOMGUAcaWOMMcYYY4x5VIktgG+Y5OtjdnFXRmPMLlBKuV79iw3D62qtn5jg+GT3+aCaHR4zH6+1/toEx82jgI02xhhjjDHGGGOMMQPIbi1EPHuvUkefDC9UUSu5rNi3droHxSPElPR5RycPjzWTScq2R+FZLPX4cMtaOiltmduU/O+Y5Fqo0tgOae2Omr8ZCGbP3quOjnYbabLKq7vw/WRF3Nm1uXJTpe4sSw+HyWRmZ/d+uM+myBNtfPpo52V3zi8pnexeu5vnXX3uZPfblftzzkPca2yVtHbd4PXN2cOlju6vndc/TFYfA1eyJyCPB//VIMrBTuptxd1aW2s98LHJzK4ze6TU0QM1vm/uyhA5GT/uGLerenFX9fS0SLtzn0eynI/UdQ+3nJMdf6TPeySfsbv1tit52dnxSc5bcd+A9s1ppY5O166Ph7tS7l3Vnbsw33jE2V29/uPmZXeew7l5Wp+PZ73yaI1R3Xb5cedRmUEaT1NeVvxw4r65W0ab/ar0uu0Sm8vvE+l3I+XubPEwEunqSO/rnHd/OnZLpE9L99qSnoGc8HNwTaTHRjoa6VXp+NxIV0X6nUgPSd9Pl/Rn2/vPPSLS9ZH+aqTsW0jep6XzDkh54vzvRUo9PRDpnZFujPTfIx9sYP8MNUvwd88l39iRru6Uo3vthki5Pued+o5HaizSoUgvjC9oD9qPbXCu7jyL/NO25JF7U5/Uw2mR3hvpteqHZ1Kmp6Tv9430aek4151zrHR3CBB72bF0+/+M9DnpWupzRqTT1NT/oLLjnqrD73mwJ3svipTPyPn5kdJuF0VKn5ak00LjUQektBtbutAPxiJ9Z/TKV6dn027HREpf/ulUhisipS1GI0XWj+2c++lIaWNkjmdxzc9EemKkN0VKu5J3dBWyiP5AZrnfUDrv9yJ9msbbWCkHumZWpAelz/+Zzidela1x0Hk8mzwBeooy0j++EelKSc+M/z+X8sC11Bt1TP8+IVL0yrxIaVva9Ki941kP9N+PbT+4HzqSsh2oVvZGQ2F+OxQBMsuzFsWmjnfEvgLUx9ynSEs3aSAZnSMtf5NaZceARSOhkHNn47x70nGpFXrSKyOl0kcjzRvrdpWZ1HYanoVQ0Bm2RkpFM+ADeZqu8ULJZ65FiOkkDA7ZWE7epqc01wNKPw8O5JlBdVrnHPLPtQ92zunmLeeBemSQvCedz/2px++n56BM6EwMiKvVtgmDJ8+gLWgjOgmDHM+gk/AMBlEmH0Pp/FyvBM3nqeEWteXqHpPaNuMeSyOl/NRr5L38gW7XALLXRmnZRunL8RmRRN9QTESX5mQcRCf+vFqxo7nyWIAIZXGlqvJckPuh02nWsUhRGxn07NmR3qBWPXw15ZE0/yajnIgW5URn57l7Zlb6ft/0GRF+UG19UE7q/rZI2XaR+qBNuI480o2oT8Zruhz3zeqI6+guP4p0H7VtSFvxTNqfe1CPMCWlnIdaIY90uTXpe+C5w6G3VkfF769WBXFtVqvIC9BmqGXu/WINZt+cs036+03jVMm4YeSg9Jl27pLvcUD6vDGdh3zem45Td7mdkEmGF/KAvNAf8jB7b+deyMISbkIDxc3qjv57k2fmb92hWGrmfJJ0Jvqdh9IBUEhUBjcmI3M7mePcB9I1KY+9TGVBxwBARdA56fSMTZSdijou0qxwHuzkk2fc2sl3N088k7zRKFzPPGxNSrkO5fdzkd6W0hPS559Vs7m5NL4T8mx+PPBDl/qlMaP+ymcm7ptPhrgZY4wxxhhjjDHGmMcdu7WmzdIjS13+frWWISxjmPB/MlLcAFi7sKRhaZqn1mzJMZYlOynSbA7FXZBN6ljxcANgBv9SpFjruB8WMaxcuDhGO/fHNY73aw6ux8jst8Luj1WP8zG5kmfqCXcAVk9CDbIbgLxRX5SRfMzo3Iv6It+Y37AM5vATrH7UD6bpb6f70C7ZhP/HKU/UO2EBt6ktb3jCe585N79W9q5IkRvqgfAIQg+QESy0tB3yx/W0MV7J93XKwL1OiRRL61XpGsqd5W1/aemXpeUD+AqGJC09qtTlf6e2HD8VabZy/+9I/zTSd0faXRbw9yOlfrF04975rXQe/eDv0z2JLkCugXAPLM7RXzZ/qEmHXxzHcbMRHvNUjY8OoE/R97BWE0JEexNCgq4Kj8PWkKWed+wX4p/QH+vu7/vYcyKciaxhgf8favvg5ZEiY9QL9UlbRP/Y/vl4doRy/VuEyJy1X3wfUSRT4v6ro6xEz6FOyMq+4T24NNyG8yUdRbly2BTtTltFNIv+q78M31nVXwTUCeplJCJtrg9vzCLC0rJ3HnnkwvulzeGZGJ7dpP+5tv8UuujzIv3nSLuO/jMlfacOXt88oZR6idpqJqXLUN0MmTl4g66zRm3VMQTgFf5IpDmiDVXOEDg/HecZRFvinUOFLEjnZY9iN/Irex9R/TmAKHvfD0jn5+AgujtqGFWESshRnNwXVbWq8wy6I+Ugz5SPa3FKzk/HuSfdl2EalcN9UD3kibwz3PPcH3XyNC2dS55pyxz9MRYpQyKRo7leCIL5lPrh/pSF6Eiu20utLNIGlJ9nwrJIaTvamOtfLK2otS7VgHFiKfVrGu8hp45nRaNsCOGlfw2FrlsRum7J4Rrnlt8agops5Gfk6I2FkTJ9Y3hj+MpTaeQkD61ch3o/RK0MDcf4sSEKiHzOjMxtvr//PBrwmijT4sPTQ4LNMT6hN7Lzmv5DGdB112p8OZE1ysW90Js5wh6hQr8gc0zfGEO4nrzkiJM87Z2l8dE99K3F6RrIUR7ox71THunrBBrk6Kusb9H3OeJDasUOnZV/gnA8R30gH3sPaN9cenypyz+nVpmg+CkwygYlPS+EeGWcyHXTNHmkSA7TpoIXRgdYG7VJpdLACNFe6fhkUR00wg/S540aH8U5ldZGGvbji0iZBUSnu3tD/7Py79zj+e3KOhBx4uYoFPXJb1iE83tqJ14RLn1zPJJ5x50ppY/lqC9ujY6jBP8jUh7TfbTUvi2ADmV+slGtTqP6+EmBXFMdzH24B/0bsUE/XJtS5mVE//9hpEyLvxYpYzrBNW/sXJPnF4gXP0X5TYE45YCj/5qkbzrSxhhjjDHGGGOMMWYA2a01bbRFjTkN209+Zyu/FzYWaXhO+yycGBIx2032zjVmpRz5gRkcs112/2RrJ99zfnaDzegcXxIP/XpYI2/Y0J8XXApT0uf8QinW07zIS84D98EcSJ2Mpfsfqtaqy7n5Zc7u4iRSa4rMbUVZeGsuv/SaX9S9ModLxUuEa89s85xfCsfUSF7JAy478obrhdCB7JbKcjU/nYepEtMlplsicDZ2jhH1cEakmG+pRwzdmGB5FsUfVDar6ZvUBXVP/qlropiOjhVlXhNv9F/ROQ/zMeS1LLDivyV8SXdFZ8TcTV8i2odn4g15fQjbHGztTWcffn34g5ecE8dPjfTrkS5RawN/aZNsij6KjPHs8yI9koYmM9jSRyVJQ70VeoBVjj4qSZoZyusl163qP+34NzfpX8YqQU/T+Do/OernlKgfQheOxMfW+Ben6LL4/HxJ0lkrIgRtye/F93SEJi9zQ5jnhvo+8q7YIfXgF8Z5jXfmjHVRn9eq1dm4BNCveZGfM2lsPDO/Lkk6rhdS15y4sKfEfjHSJZKkRb0OFfE/34rVh5AZXPmnHx//zNNwT2k19fEz+tv43IRinbU1QpeGPihJelVvRSa8UM/X3ksv1CAybUSat0w64IvNZ5phZkQVKcSoN1agf0Ivz6Oap2n8QhiRvoqIQvo4os4CRIyVOayDcQYX2RHpvLzYAuM3HkvGiKeoHT/IG89EH+V39bl3Xjclh+CQF8ap+9Lx7N6/N6X7qB1HJlvAArrvzEvtmBD3HqV+Ii+j9HOIMr8OFYOs/12kLDTCfT6n1g2PG5L2596EXvxjpFHuBeGOnBORwj9/S38RhvpP129EioiQtX2RwzwPmqF2nkIbpVCUrVHHQ0RG5jWA8FBT/gFjryX7a9/ly0RtzOwVkAWymuMjWtH3Gd24ZG3Ec8z+TbX6stGDQyEko1rU98w5vXtnwW8a8qTepA89+vOSpFm6RJK0UNfE8WdLkpb1zqMDXBIpYbBflXrXHBrlYUKOtDQD03BvbEQYm4na4g2hf0d+O45Thp/qu260N3Fo9PLMngA149S8Xv0ujrLeorZj/0KU87K41/V9z1jS+4yAMm4zR6Cem/r/mV5IMfGnTHAYMwjjReHQEWjrn1P7w4VnMg8hLoh6YEENypuiGnptxAQgL4rF5+jEm0KZ0n/oT2ORDqnVn8yZN3a+k9rwBvpkdvtTpF/WYLJFTcgFv0fymivT0/l3R53lhUEPUFsn1FleGCevSbZ/VPxYOo9xIeu3PPZxv/z7kPt1f5Pl9em+muaZeRHSvC4d49z2lPJ7ZXkICKJJXnLYJOHaXTmJOvzOjv5bECly0iHpACegBgjy+WakdLm8OCyLOlI22qG7MJfU/r7brnbaGVFL5xNBTz1RHuZC3JN5KNFOqAfGWZ5FXvhNw/SX35GEexNRzvMv6OSTOma+RLnf0CRviQj7nhomPDDavBDek3CkjTHGGGOMMcYYY8wAsvtr2rxH7cuYeacLvEZYlvCuYUzHSnqAWosehu6xSHFmpPdme5ZTXmbL67+w4AEWWDzK+aXX7OkD8laGpN/f2n/uaHoWURjkZbIdLbInDisgFrjsDsNqjuUWqx75eIbGv8RM3rByphWoe1ZP7ol1FCvwWHpG9oDSHgQ/UEbaA2vg99TWB/fEo4m8rErHj+YfPOd4U77QJJsigoAy88zRSJGvmXOa9LK7mxQrK7xLvTq/I5wjh7GWEfWE1TevSn5Me97Sc6TlNwzeuhmStPSYUpd/Uq2luOdtjzreFib5v4rjr48Uh1V395GXxf84hkYjpR1+M1Lanv5wXjrOPbFCY73GoozDKtrg5r9s0iPx/lD33Sg85BeZ4qVVPEtYs69N36ObKAN9D0s6HgrW2bmi/3gNZ2PBIff2SNkC6+gj1Oss667sK1cE7bQyhdzyPbqKNmOtJ9qIl3zzlhF5pXwiy3gO9X+K2gCiYdz84UW8bkP/M2gjXtrldNow6+uzIkXX4VQ89+T4JxTTuujL1PPsaNxNN4zf3gFnMZEiyDSBWUTLkdcTpaVvkJbfPHh9c3Ep9TK1AU2oYYYC1C7qeGX6vhtgyjmICQ4aujTdkGXhUOEn4ZrJi9pEva8L71te3oihIwetZuftg2rFAtDs5JlH5jUYDsvbZ+R1tKgA9HVkhh3EDqNfQ8jEfVGm76gtdu4u5CnvoEZWZqTzv52O590lF0ehVsazKfvcPBbHDbeymFDnGRQbOZilfqjXvLbHNelzDqxk10Qgz5z/8kiJ17hfbfnIW97FjjxyD+SEe6OODhrUdTNKqVepDQobpp0O6j9vLGSNoYehBpX4SklzaJi8EFfexSsqk8AAmBOVuy4aFof4UTHefDvUNTK7jMykgB123qO7zNxb2hzz8TwFHiJv7E4U5Zwbfeo7cR1DAdOCmQhJyPP2GBunEMSC0KL6+T3A9XHefZtaGToyyrkiykl1HUdBUqT419IOg8j7nGi7z0YF5ilEd3nI7nXUCQ73ZdOk1VFhiAP3IA6JNea2pjWCqOcR5k+QowTzojdEJlC/KFWiLRhE5qutD2SWTkfBiKBAPnJBQ/7KWwe0by4udfmX1JYTJdML5kIbxcsi26IX5wC2/Q5TLyJqQ9yMuihR4TXmQIXBh4kpkVUhsL3QQiafocC3xfV50aEcDUTe9gup3dqJqhmKZ3/s/v5rWYsxRxihbOlryEFJa/uwfSdwfX5TI0chjWp850LxUT15F8YvaGLoVMzFmceyDi3zX/QRujMvaoPCvUcEILb1wu+YXD/dreqk8WthpqbsRf2gKIiaYQ1QJknUK3lkC8I3dPJJfyeil/ZnfUl+Y+Q5dXwuX/KaNsYYY4wxxhhjjDGPG3Yv0mZhqcv/Qq01F7J7hxQrF5a27ircWMhwBRFlMjvMz7eG5XQsPQM3I1YqzN+8m5Z3bsrvr2M2x8JIhArW7FWSFuLixnWA6btZc0J3PL1J85o05BGDLZZz3Ak8A6sfXn/ymqOP5uFShn+Xrvts/7VY2POaNcAzxyLFgogVELcqVlXKgBcAN9QXU14p49zOZ9waq1L6KxEJsy4iYWbig+PdX8znZBJTbLh+1sZ1tDmyg+USa+nMsEFeF4L2gSjCB6Uh3j3k5f5owp5cIAdYaqlP6uUmaen50vLbB8+bL0lLjy11+b+ptfLS97pyLbXW8LeEcN4aHY/olwPUrveTvTTIO+1wOgtyhKn8gkub9JVxOL8fujAqc1tkZirrmjTv5+uaCDFZzF4mvFOOnJying9yXTTuzBBUdnSjP6AHDifig4ZlCf9QGFvjPkMIfLj2tkXmWc3/+rR90uGhI/4yrn+dpBEqjgLzTDw2yDnlQfio0NdEyho3KDXcAIQsUgaWJOM5KEcWmcBlcWEnT2NNwnvz9H/W8erdg2fFWgFbQ+8MpQiaXpQceSFaLl4C/mzUG7KAl+b016olv+tP+VAuCC3Pek+k6OWjtHTphVq+/IcD1zeXHlDq8jPUeqmQT7zPRHYRGYb+ZczArXuA2mZGd/OZ96tZ7ilvF8U9GQuzjsuesLwDBeSxo7tuTA7HYYyjCfMaNYgPXSCvgcP51BddADFFr+XtdPK6abM0fn6SI4DXp89cm8vAGJJ3aCQveEWRcYa590f6rEhRNf+o8eMOcwnyined/vOq9Pn16TNlw9PO/fLcIssS53e3BLshnZMjj7mG8tJNmedFBEH51oB68+eVuvz1amUP+UcdIf9E7hL1gc7EK/v7arcUWhgNcHnoV2QHkDHaKa/jQB3zbNQxbUG/WBLj0l2hX+lXeSfXL6jVLbQja0vQt5DB76XjXMfcgGVymFscHfO6r9zdXxZkl76ZtyrrrnnIMylnnhMvisysu63/GXjWkeu81RK7ndI36bOUnb46mvKEnl7cyTfzHoZT5rnomvUpZd7P9ZRxLFLqF31Km/FsZIExIvK6LraumXm42vYmD5QjwqJWxrU5wAYo0j6DGgX39FKX/6fa/kIfzTs95d8heY2XUzT5OqD5HqPpWcgiMkS7IGPkhcodi5Qxm+gZ5lo8d5gHbpHqjv68INfkn3LNTynjQv4tRP9Az+edS/Puy8goddOV1fQ2y00xHT8qRSJSL+xKl3eLQ70sYrpG2SjLLf3Ht8d9pqT+d33MFRbtpbYPAuWnrbIdIMJk74gyUA0j6LK8Hiv3oQ5ekL4nAof1fL7cOS+vr5vXlWXOhz4ZjTSt61uucKSNMcYYY4wxxhhjzOOG3Yu0ObrU5R9RuyvK5jBJYiHCKprNu2ORYh2botbahqV8NNLhw+KfMGltiEiAlek8LGC8aI5ngXeFsaCRt+w1mxdeghXhJcCqd6ekD8b/2LiyNZPPec0aLGlYFPPK31Oj3nj/Eut/fume43nDpuPUWnmx5uUX77NVOO/gdCqutPCMr7i//zzuA9znxefFP7hERvmicyGVHt72r8c6FqeGbXBtmFBnR2jMtigo0QzYZL8V51FuPA5ZZqgDsnL6S5p05b80Ke2w35x2vRteFuda6piNEahPzMO0yT3S0pdJy68f0Egb1ptCBl8e7bw2ZI2++dZI8ZpRx8jcvWoDGlgogWvpz7Epkd4Y6akp2uXkcDXdEX03e/rou8g9eoHV1HnnE6s/Mjmq1gvOwh3oBdoVUeKZOYotezopN/3m/nQcSzrXIRfom+5aBrgY8ppVXJN3KMMbgBc17wB3QErz2k60HZ47ZJU8UwdL1dY11+QoC+SeNuqstyFp/IIe9B+Ch3g2bYbupE3zDkWsBTRF49cxwbOb1wjDo483inp6mrT0Umn5vYPXN5cOlbr8QPXqdUN4ix5M583C85s8ietCb/9IrQOQ9R849+LQjwQKZMfOUdnLRn2GWt4c3icCCuj2z+zPSk+M80ZQWzR+07q8wUZePwZxHGU9h27EptQr2+YIuhpOa5BtuLFJe+tG8ADG5uhL6/67s1MXnn7qmMzSX3OUz4z+87dHBU2J/rs6CkNZezsxBWNRr3T3IfpEN+KJPOQdKOlfKdLo7mhUVEleyovuNxopXYb92KgCxI3HvirqfXP0wa588n/e8yZv6ElWZ6ETorzlQ4PpzX96KfWrkkaYJ9Au6KE832PqE5V8aQRInnGs2vW2iPpFhzF34V6soYbc0v6QF1fBw0tl0ynJE88hKBPv7Vikn5dWE/RDX0POUSi9xZciRWhi/Lg00jMQGqLjiRzDy5x3DaWsRLfQR7u/Dygn+afuT0nnch7jBuNKXjwr6uObsc7OMr6nzxNhTd/u/iaRWg/6EWrnIXQAdnDLa8cx7c1vGvBsxmHqiV1xkCc6MXmkHmkn8swONmerjarMEfd0aO6ZI5GQl2jr8geD2TeXLp1aly9/inRXKLw8V8o7OaVA4l57/rTGvzUwm1gFKpHIZ24SynZDXDCSor1ol96iUEsiJaKahqUxIiwG5dqN4i8IYOThWzc3KRGoeQ2WY9Jx9EBmZiiii6/uz3PeSZL+RuTO8jYdC7ll3KcJzjg8/klrVfUGFdoEeWdMo9/kwQudh+7k+hypT0bG2mevCznoNcnR8U9aM6w38aDp81qYcZ87op+wVt598Ry6WZ6KPzP9dF23o+1qnMsyQ9sjT7xURJYWpSjkrTG+7D1JFJwjbYwxxhhjjDHGGGMGkKk7P6XDfZK+IWn/rf3HsZzl9+Ow5uH+waI2X601DesZ1tDpEZ2R3wvL793md/fwhON5vyedjycdK+fWiLzA0kYZ5kt6R/x/OK4EXAthelz56SbFEnirJgZDK56cGVv78473Basp1mO+/yUqFEvwdOn6u/uvpfzUF94MwCRI/UyLPNwfKe/TZhdpjkw6+7wmxWuCkRrX3VJJt9/Wfy1t8LEd/XlYf3V/3o4JgenukiW11lIssNQT2xlwPW16eriZkIF5bCn2fOnZZBjwPVKRCEq4R6+O+kEuFh8pDVOAAQbLL9FcREzkdRZ4rzJbpKXW6p5XN39DpHh1lkRk090R2US73xy2ZGQJ7wAWd9rzSF7+Dvl+amRmJApxPMKHmjpIbXvFui9rQrbw7h4ZZu3juBd9iPaPnQR67rG8Q0DIIrJ7cNi174rnIINY6tlJi4gtqdV7rO1D3Zc5qTyjTXI6F+LmiLxcH4JNfdPH0a/k5SWRx5WRR6IVqOfbJYXK6rUFckIVL0u6prejQhzfFHnZLyIh16ad3dBZhFBQfwwVeY0S+vpxanUWOpr6I498j67B69Rdp4zwkEFjjhoZifoY6a7rJrUe5uy1DXmaGeI+c4faeiAkJrxBZ6K6aG8eTV0zTnE9Y23kaTja8KSIXjtpQbou8nwcnjTy2l3zCj1CH+cz7RwiyrJWPb2E/OR1ZKJ/DSOvRBDEM0fYPYI8omvGIo2dx2b+lMZHjVEO8o8aypGcpCHbU9B/8cy5OFSZm+D9j6iL0einld30KCOusgfbe4+LWEMOKF8MmXOO6z9+OusLMNfIWzjF5/MpC7ohR1dEGYajnof3UusyDGalXTEX8myiP5Bp2pS51YAyZZ408pvq3zJLaiNEGCupS/pF9Lcz0L/ddR5z5HjeFQ09mCME8Kei45Eltmzq7gTYhQi0Z4VQnRCNhhzMl+Z2d22V2vkSaxBRzrxbZMjkGe+Lz38RaV53Kcssn/dNn5F7dN6dasvPLixEpVDOybYky2tzfL//+2XouF+PlDZlfOK+6CPGVNzg09QurQZ5YRjOzfP4vPVf9M0NMQaPoGcuSnlBBsgLupTndHeT5Zn0NcpxbOccSYqIxF79EDFLfQ4qdXuz42lewwYZY2dJvkcH53Hnqs65cHv0kafGHGYEYYm54TUxaaEvPzUqeWaaC86NjlTid8HWePgQPwhDIdY4PhyNtHc08LclzQhFzryV/I9FSjszdlDOHPFMX6Ov7x8DBuvdIRgec0oAABXmSURBVIvoOqKx6cvICfX8amk08jCKbFGneQ7HM4/nLZnINGtdIcdEx6MLiWrL6/XMiRMui8pgXkhdHHmEtLVpk5msK5bXbOOZee0evl8Uhbq5f02ww5Cnw5q23jfWHDoO/RFlnkc7nBOys7WRmZk3aHzfCrGZEveeGfO3mUQ+pjWCh2ir52hCHGljjDHGGGOMMcYYM4DsXqTNNDUW3bzC/UnpPAIStqQUi9khGv9y++FhsbourJxYyvJuB2ORcj0WLzxVo5GeHvaoY1iKOo5jacZCyX3J8wFqvVtXxIuxWyLFC8D6J5i88NRhYd+avsd6NyWllB3PB2XCEvnX9/bf75gN47xfPQtqjm6iXNlryHm0Cd6xk9LxfD/2qT+awsZ2CddH3cxS69HMa1DkNTuI5MB6nFc4xxp8RDq+ONyuW27ozxtcnrz/14a76rufb+UJOaH98eSelfKY1xO5+Obx6/0MEnupkT/6C3KCHPBi5dKwXlMWvDdEXJ0o6bkhuEfETZD7vMPC+oiwIQLiVHaD4kBcuC3kGC9CbDKl5Skip2e5D+E7INLuTjP0hefHy+2HxIuzyPe6eAhBK3fGsw+MFFlan95PPiLlBQs96zAdHBduiftTB+/rRAvdHd8hW9lLNCNF9y2I8s1GCEf5oknWREXldasoQ28V/3C3fiHeh6a+6D+/dLJ0ergNN6zqz1vPexju0Bujb6GTNsY/9KkTo48tCxn5QdoyAM6NsI8XhMeHSADqgrLcp/FRguQpr+B/decaqZXxp2i8XhwUfijpXZ3PoRvXRZTQ5z7Ufzo9BycLYv2gOsMHG3jhIFyZTibyJq/5tT2lyBX98p1NclO0UW+XiGiPDe/p+6ih8BTVB6SyX/+5vX60sT9dHe+IzyWvC9L5yAdBreEpnDe7/7wN0e1HyCPyhFeQbvnPauUIqBd0O2M/FUz/QqbxuONtI0rxvCapkdfSjaCRVD+fjv8gpU9T288+EteEs5fDs3hHP++8g1eeaEjalChUyhhzjO+EV5N4w946P0SrEQ1Efd6i8Tt0jKU8UE+MHXntgcnWWxgUtqqpp7wTC+VCRilPjmLorg+WA3ZZzyGvd8L3eU2Jr6bz8q5ieQygvWm/KSnChoiUuWrnX8ghz0am8saKtHtaX6onlJyfd9FivGHuONnuY8jsPhpfzqw3uJbzIK+feUs6L0cX/WQ6niNOiJojcmmx2nko9cSmlnlOTQTGV3b0l6UXvdoox5ET7uh/FmTdx5ye9jo8GuSpUaHd30/oIu5JffF9b34TKXNy2vg/NLjs0PgFtEYjJRp7JH7C7p/e0OD8LWrbL++Ciqzw5sjG9NuTyNUhKi8GuTXXtfmTpP1v7r9uVnxm9yh0w3D8w7g92vmOuWPemSkvVkaU7QnpPMpL+fdJ5+VdHdmYlfGX5zLenK22fHNiXr85yk2bDIWA3p0mX5tjnkv/QEfxOyK/9EDeqL+1aWG1vOvjXbf171wpjVt/btybIvxu6EWxxT/o37zr5PdTX6YdqC+e85Wt/flYrrYtiKSBvMYl9+LZ6KadzGUdaWOMMcYYY4wxxhgzgOxepE1RYz3DmoclLVux8jvN3RXZpcb6jWW854lIO1GxMjWWL6xtWMZ4Np41IHoFD/kP0/dY3rDMYf26vfMZqxnWOiyzrOSfPQdY1Dam87OVO+/+wnlYGmFhpNlT1bXA7Z++yxbW3hpBkVLuA1NKm5FH7pvWENDRrMfx7EjDhLsIN9U26YTklaf+sO7zLjNuZKJ2/mVDf95pCyyQyNFJ4WlAZpCBJWF7/HBUENboS5rknhvbYh6HvKQVu/XaSLGovipS2urv1VqnB5EhNbJPe9MsveigaEjqjgoBvBHHqLWc5/e+Z4YMnBufN4RFveclDEs8cn1kCCF9diTa+0XR3nlbGvoLeduYju+rtr1uDFdm9lyORooVG08DsrUfLngE+9RIn69+WEcKF9ayJjmcCv3zSP+6SW7d2r+ujdTWw8lH8vAmWcICLN21eqRWWb2iSU6ncJGHeVQ015HHyMvZsS0F9TaPBRFWq1fJeeep3vu00a+PPqVzTTdPuB1x7UWjLP67/hvNo2yRzo51wXo76+QtoUbVul5w4czoT+fEO+LLWISBvOAWlfTHF2kgOVJNtAfyOadRPDO3NsrtnKHoIzfG+Ieexnsb7v0hTVWvc9/FFiAB1YZHrKcAQ2bXxfn0Q8arXjRVpEuavBxFGMemuC766chM3NW0XaMQi2arlcX+73oyHzI7t9ffeO8/5GTT/f2Xhz6aV0J+NkRE53bywjYyaU2qdVGo3o6NJ7bP2BZ6bWoo/81x7nAeLPdLKf0N5cn2Zc3OiYWy3h06ac5L4nj031uv6y8bLFCrA6O9y+Ymj6hjXRgpXkqW1yO6iqjfHJV6cP/ugcfNpox0RNb2ij62IjzVjKlHqR0j83oSiAHjQt6xEijvv2owOVTNOi3MT/MuJqwfRLlOfn2kK5p047ea9GWSpsZ6Dpvu6L9HXjuMMYJnoWaZt7JmIM3FzpvTQ3aXECKxKNIIlfjvFGE6ErvCvmmWdEfIOdElqGBUPe3HuPusGDeeFbuAbgz5ZY22wngWk3ii2RlzKQsRNcgRZadej1E7Rp4RBT4o9ODxCBkLkoQQsb0L8xueyZw8zxmJ9mHNjjzHRLanpc9bOs/gGG2GPPCM0cgTUwOaaEFk5qpIGb7I62ikzN35nvYgmm5+FIJ5dXdtHcozHOsLDkebfTeuoS1Qt4+XKLhtauqZNuithxnprSGs1HVeD1Sd8ylzjjTj9xShkKwJOG6dx7xIU0C75V3D0HtDMW7Q3t9HOIPjND56nTxxb67N5yELTB3JYpZR9BBRyswVkAeGg7wmzg61UZtTov/TBui0LZFZ6n5+6D768qkxpz6VCmEuHSGLRzNHyAv1xLj5XArNeYTs3CQd/Jb4HyXGHPL6dM8t6TPzVSqK+Qj6lDww5sf1p7LoVjznWVek8+O5J29Tq5TIE/mPClyWF7Jj7hT6dBHGj4kXtXGkjTHGGGOMMcYYY8wAsnuRNg+qscbntViImsmRNxjK8BLhOD5F498bz7sfYGDHEp89Flj38DjhQMdCiYUWQxsWTIxcWBTJK16kQ9Va53kveXr6/PqUF6yfef0drJ2UgfoiT9QX7xJjqQ0HaS/KiDwv6FzDs9enz1jp8/uEeDtgLNIT0vd51y7y/syIqjjlU3H+p/qfe6za8lJOrLovx22EN58wnrBOvgQraKyTgyf9gojIwPKN/PAcyn5gNC6eIurxN5pk1jtaz+W6OGcm8keb5l0F2DGhu85BOK8Gkr3U5JG6z1Efl0YdIRe06/OjIk6JSp790+pZiOdQ4QgJ7RbthecOj9DB4f3eSqVGuNIIDRXe3alhgZ8alufDcTFFiNkBsc1CL0In3AWbr5aGw8s3J1wER6WoA/pMLic66MEN/cenR15PiRQZQt9MxasIoTI/G0qCsh/UuWY43N6Xhjvkm/GO81h83wtYCOWzfzwbHbgYhYCFfjRSjueXssPdMhKRFrzn3Wu3Je3Np0W+6SN4cvT+JsGTmdeZeRaRDRSCiLtga7hy2OkCXThMB0J2QmGsjLqZprYf06+5ZDLPJhF7Wy5ts7ROg8lKSW9Rq1+nRwelrdeEDLBeBg6c2/BiNV6u+qBUkGmCnfJ6F4eGR4zIgdujbxCFQVsz/qC7e+ttNHnZENeNkKdojw3XNsfJxnCojq3339E7xtJZvfLu6F+XbeXa2/oePQVP4STrOtx6fxNhsxCPYJR18y1Nnxnm+jXxHPQ4+bjt6vHRuPemaJz1Tea2b4ryhxDn4XpNTAzaDa2aNb3oZYcxhzgl1vpCB3MBfQq1upd65b0v1oZan05dRjm4B6oSpyVtTZ9ArjZEhTPw3cDOlaHgqLfvRYdFj3WdwcgXfZnMMedCpz63SVav7b91yeszDBrr1Ozgw3yPaUr23qN/7v5Ak+LqHIv0CkmHhJc57wxK0BvzT/QpMsA98nqHvXVi4kKCuw6MzM5I0Rd0wJ4bNvT5xfe2HnLOzTKVndE3fqo/L1xHno6J8Syvs5Pnu6Q3pBSZnCYpAuh0XMgn60YdeGV/ufiN0dOjKW8MjZSf3w9ELtGWOcI46waeM6tzDGf+aCffkhTi0Ks/9CwBrvvFgSMik9Qnc8y8/iQOep69iOj2qOgZnXqPNbB68/1jQufMjgoisgJnPf2a+srz/EFjm5q5HHVLuyNza1Kad41CKd+mVj75jvpHV/L7gd+Qx6Tze504BIF2RL+hH5E9flNuCN2aAmx6ZSoj6k2YaPMcZU5fZcCE3tw4UsY98nR8ZObytEAKcwB0HfJAcAdBzBvV1g91Tz9ATtEry0bSCb8YKZEmDFpZKfbCrwMipxlgeOWE+SzhQaeqbRzOjejH3jwThcCPaQZnXqGgwomgQSETgcrcm8id0Ug/ESkRvigYKv4nOvdigOSeVChRPcvTefl38MQ40sYYY4wxxhhjjDFmANn9SJs1aq2AeJKWpvOw4mEV/dlIfyHSjWot3yyBABgGs3cQI9VY+pxXj943nYclHWvrDel7rIVYV7+rtjw5qgcrKNZILKrURy43VuCuZ01qLexHpPOoC6IFnpme9321HoQc7YT1n3rBaMm9e17FSPFa55XVuQ+Waq5nPR88fJQdo6nU1n3aMUTfipOPie00MCyeys2wikam127oLwv3IagC7yIWb9qL+mQnLKJljmnLMRNZxChMnvP7qUCbTVdbZ4PIA2q8RFjF8cAcHx1kc5jmhxH0sUjDnT4bVbBM2np+8y+rw2Mp3hydh/enn83WA8l1Tx879oImnRoeoxrRWoWG5V1O8hLRG1OjIUewdofFfcrV6lmjt4XXaWp0us0hYxj9h54X/4QCORirNmCpJ5wgBH7+eyOPh/Qf77my47rnxQv+6IT71eqJeVGXBKdMjdC8ZQg+Vnms9aNNcmCskdCLYomtc3r9A7KLh3rEM9FdL0aSVkjrolGQj6kRvTTCuh1xbSzNoMNYP4d6ovwoM64Lt8vq5E3kshpRRPSvGXEeen3/TjbpexSLyCGU3hl4U/DkhDJbslY6n7ocMOap2XmPsh0ecnV3cvkiGjiC8FLHWFEeVCtf6EF0M21K1+Y9dnQATYbuz7sa4rX71SYZQY9+p//7EXQmbRdRnEP7d/LG2JV3monyzzshfT+W8sYYGmPeQhxZRPWFaA/jjOJ6xrG8c9uhGh/BhXyt7j8+JfI4M8bAmXlNO1RCdKUXxhJSPfklupcxMa9dR3uwLs1B6o3j+8Y6H/uGup5HHplj0aXJA57ReRzgHf/XRIp3k9CBN6qfvMAOkzMq/AS1QtkN9ZXaRv1/TfKKxq0/N68FwVziaRpMtqjpG+SbqGTWfMKxSz9A7aKOuztw0gzIP32Obo5DGFn8r861UlulnJ/XZkEdMydlbEFOaCL6xboIM16tVi6ZW9N/cxQLeSYv9CXqhTzl+TBRHXkHm/x93rVtZeca5gx5fSGmiGmZM+X+T/3mtZ3oe/RJnkPb0dZ559er1Io71xCVQD30op/SPSk3Yx1ljDUWe/XANOjpkdLdkKXVMV9aH2lMy3SS2rZDfnrzkMgcckNbAbKeu/+gwnyO9mQMYmqUdTTt2P19dG06N0db5Z2YxiJF9y6I3yOHx49F6i7vakQ/SmN3b3xgPn0NHXFT+wwO0Td6kZCR5mi2/LuPPsYYMxI3vCqdxxwBPYJuoI+jTz6uVl6Z+jHG5rXLbo36WR+Rz9Mipd6Zeuf5B32Z3+BM2fNvsBwZ3M0D9Ufbci8ivo/5svoYjbS3C9TvNin1RB5z3qZ9oD8vzB3mfbY/zwepncMgB9Q9eoTf8MCYQfn2SnlOONLGGGOMMcYYY4wxZgDZvUgb1s3I60VgxcY6jmdlafoe6+f31FoncQ7niBisfFhFt6fPWNawAmbr3HHpc89iFikW573S8VUa5x0c97491l/yinPqgHQ+987vEeY8UC9YW4mSGUvPOUKt9w5jHB4GvIjUE14BLJFYJnkGnrq0W0eP9el7PJ3kHUtvd32FvNsPlkPaDA8DXqZ3RrQEFtkFsSYDjnReeeQ+5GVK+kxeWSsEazMe57PVWjmzdxqPDfKGJfrMiA7ZGl6Or6ndyWMQ2fdgadnr1JqS/ybSs5pk+DPxGdcVbiI6YCdUrRelQkeId1OHeRczPKzjdln5lSZZzHugRMpEQxZcGlR67AixNcziQ4SU0eC4VeL+Q/u0eZqatoEbRumQZ95Vxcwfrott8e737dH5FhLeFkI0RhZCaFfF+QvpaEvi+eHqPAwlN13jdqSaell8pt4oz3uaZF3I1kzKhFJMK9f3Ut7PzYtnYaoHzl/RnjcT5UN+T+2/pOc+5j1k8oqLlw6S2pTOe9jJKU+cF21+GHI32iQjfxWfL5O2pt030FEjeUciUqJqwt2xYVWr9waN7Wr0Ym+3jigTTY1e6r5LLo1fs6HrGc3dE93NeIO3Gu8bkYd4kbkX4w55y2MGTYbocL+8c+MWteXB0015gPGG7oa6+cn0mTLktbmI9KTMzCmIWqFMecOFmzR+7QjG3d66O5HincubSZEnxrHnxwlfiQqlDRk7jkjpTBa5wG0albB2R9veeW0S6vPontu9SW7d0X/vcTte0V9jV7ueLn15pPSpqPB6Qf/z9w8v6YNqvbDMZ5hTDZ/R/2za7vCoqHU7+q8bVLapkTO8plQ1QwY65Uvpe7zSeNbPVqu7uJa5AnVARAfX5ugMnoWHHZWOBxiVz/3w1l6UzmduhI64Vq2M0acoxzciReaI4Mtr1TBvI89r0vmUFT1Ev8p6Jg9T89TOjam3HFHDtf8WKXNwypSjrOmDrI3DHJAyoh/GIs2RC0xRFmp8tA7dN++8OCudl/OYd4vKuwyhf/Kwjr5BB9JHj1Cr06d3jknj13bhGZSF+iAPEfw+kExR22+Qg6khvIdG5VB3vfVpIqU956r9jTKUzqG+50Sl1BjgaK8cLXdg/F6hfXPEGvJNXg+jsjs77ErqDcR1R9sOPANZQk/Qnrx1kWWRcZZ+T9nICzJDWael8yfbXXh+5xj6j99p6APuGVFdW4m8RYfxLMrI7+Ssj7jfp9L3eXdldN76Cb7rLZKXnkn90VafS+fltV6RJ+qVts71hQ1gazp++wT5Rx7IKz8lyBt6hOu45yQ40sYYY4wxxhhjjDFmACm17vqWOKWUNWpjVox5srGg1nrgzk977HHfNE9yBrJvul8a475pzIDivmnMYDJh39wto40xxhhjjDHGGGOMeWzw61HGGGOMMcYYY4wxA4iNNsYYY4wxxhhjjDEDiI02xhhjjDHGGGOMMQOIjTbGGGOMMcYYY4wxA4iNNsYYY4wxxhhjjDEDiI02xhhjjDHGGGOMMQOIjTbGGGOMMcYYY4wxA4iNNsYYY4wxxhhjjDEDiI02xhhjjDHGGGOMMQPI/wdEuDii/vi7PwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "eda.plot_signals(signals)\n", + "plt.show()\n", + "\n", + "eda.plot_fft(fft)\n", + "plt.show()\n", + "\n", + "eda.plot_fbank(fbank)\n", + "plt.show()\n", + "\n", + "eda.plot_mfccs(mfccs)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at our time series, we can see a lot of empty space which we can remove later. Looking at Filter Banks and MFCCs we can start to tell each apart. We now create a function to find the envelope of a wave, an example of which we see here. This can help by ignoring, for the most part, portions where the values fall to zero.\n", + "\n", + "![](figures/signal_envelopes.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "def envelope(y, rate, threshold):\n", + " mask = []\n", + " y = pd.Series(y).apply(np.abs) # Convert to series and apply absolute value to deal with negative signal portions\n", + " y_mean = y.rolling(window=int(rate/10), min_periods=1, center=True).mean() # Get rolling average\n", + " for mean in y_mean:\n", + " if mean > threshold:\n", + " mask.append(True)\n", + " else:\n", + " mask.append(False)\n", + " return mask" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [], + "source": [ + "signals = {}\n", + "fft = {}\n", + "fbank = {}\n", + "mfccs = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [], + "source": [ + "# Grab a sample for each class then calculate its signal, fft, fbank, and mfcc this time with the mask\n", + "for c in classes:\n", + " wav_file = df[df.label==c].iloc[0,0] # Use iloc to select by position\n", + " signal, rate = librosa.load('data/wavfiles/'+wav_file, sr=44100) # Read in signal and rate with sr coming from scipy.io\n", + " mask = envelope(signal, rate, 0.0005)\n", + " signal = signal[mask]\n", + " signals[c] = signal\n", + " fft[c] = calc_fft(signal, rate)\n", + " \n", + " bank = logfbank(signal[:rate], rate, nfilt=26, nfft=1103).T # Get nfft with sr / 40\n", + " fbank[c] = bank\n", + " mel = mfcc(signal[:rate], rate, numcep=13, nfft = 1103).T\n", + " mfccs[c] = mel" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3ydZf3/8fcnO2nTpHu36YAuoMwyZINsBBFBQdZXVPy5F5YpG0QRFVEUByBLZKmUrcyyRymlFFq690xH0uzP74/rTjk5PRltz8k5SV7PxyOP5pz7vq/rc9Jcue/7c43b3F0AAAAAAADILFnpDgAAAAAAAABbI2kDAAAAAACQgUjaAAAAAAAAZCCSNgAAAAAAABmIpA0AAAAAAEAGImkDAAAAAACQgUjaAADQCZmZt+FrfrTvHY3fZwIzO9nMXjSzlWa22cwWmNmjZnZMkut53syeT2aZAAAAyWTunu4YAABAkpnZfnFvPSLpPUlXxLxX7e7vmtkoST3c/d32iq85ZvZdSb+R9FdJj0qqkDRK0vGSPnb3C5NY13hJcveZySoTAAAgmUjaAADQBUQjaV5296+kO5aWmNlCSW+7++cTbMty94Yk1JHv7tU7Wg4AAECqMT0KAIAuLn56lJmVRdOnLjCz681suZltNLO7zazIzEab2VNmtsnM5pjZOQnKnGhm/zazddEUp6lmdlAbwuklaXmiDfEJGzMbYWb3mNkqM6s2s2lm9vm4fa6IPssujTFLeiDattX0KDPrY2Z/MLMlUZmzzOzrcfsMMLM7zWxptM8yM3vMzPq14fMBAAC0WU66AwAAABnrIknPSzpH0nhJN0pqkLSHpNsl/VLSNyX9zczecvcPJMnM9pT0kqR3JX1NUqWkCyQ9a2YHuPvbLdT5hqRzzGyupH+5+8eJdjKzoZJel7RS0g8krZJ0uqSHzOxkd/933CH/kvQXST+PPkOiMntImiqpUGEa2TxJR0v6QzQ655Zo179LGi7pJ5IWSeov6QhJRS18LgAAgG1G0gYAADTnE3dvHEXzVDRS5ixJZ7n73ZJkZm9J+pykUyV9EO37C0kLJR3u7jXRfk9JmiHpMkknt1DnBZIeVEgQ3WhmayQ9I+lv7v50zH5XSDJJh7j7mpgYh0q6SlJ80ua37v6bVj7v9xSSMbu6++zovWfNrFTSz8zsD+5eJ2l/SRe7+z0xx/6zlbIBAAC2GdOjAABAc56Iez0r+vepxjfcfZ3CaJehkmRmhZIOUUhiNJhZjpnlKCRYnpV0cEsVRiNr9ojKuFbSNEmfV0jIXBqz6zGSHpe0vrGOqJ6nJE2MRs3EeqQNn/cYhdE78xKU2VthtJEkvSnpJ2b2PTPb1cysDWUDAABsM5I2AACgOeviXte08H5B9H0vSdkKI2pq476+LamnmbV4/eHu9e7+ortf6u5HShop6X2F0S49o936STo7QR2/iLb3jit2WUt1xpR5cIIyG0fRNJZ5usJIngslTZe0xMwub+1zAQAAbCumRwEAgGQqV1gz5lZJdyXaYVufAOXuS83szwqPAt9JYd2bNQrr5vy8mcOWxhfThqrWKIwa+l4z2z+K4lkp6VuSvmVmYxTW/LlSYV2dP7ShHgAAgDYhaQMAAJLG3SvM7CVJEyW9s60JGjMb6u6LEmwaG/3b+GSpJxXWlvnA3Tdvd8BNPSnpO5IWRomZVrn7R5IuNrMLJO2SpDgAAAAkkbQBAADJ90NJLyqsQ/MXhalJfSTtKSnb3Se3cOwMM3tOYQ2aeZJ6SDpOYYHiB9x9YbTf5Qojbl40s99Jmi+pp0LiZKS7/992xH2zwtSnl8zsZoWRNd0UEkYHuftJZlaisDbPPQpr/NRKOimq++mEpQIAAGwnkjYAACCp3P0dM9tH0s8k/VZSicLUoXck3dbK4T9VSNJcpfAo7XpJH0uaLOnXMXUsNLO9FZ4idZ2kvgrTm2ZIunM7415vZgcoJIR+KmmwwnSvjyQ9FO1WFX2Oryk8aaoh2n6mu/9re+oFAABojrm3ZYo3AAAAAAAA2hNPOQAAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSJgOZ2TAz22Rm2Wmqf5OZjUxH3QAAJIuZlZmZm1lO9Pp5Mzs/3XEBnYGZXWFmd+/A8beZ2WXJjAkAOqMun7SJLuDWmVl+GmOYb2ZHNr5294Xu3t3d69MRT1T33Ci2O8zsmnTEAXRk8TeLAHaMmZ1hZm9FHQvLzOwJMzsw3XEBnV2q2p67X+DuVychvkPNbPGOlgN0Fi11UCTj+tTMzjWzl7c/QmyrLp20MbMySQdJckmfS2swnRQ3rGgPUeJzc3RBuc7MppjZ0HTHBSA5zOyHkn4t6TpJ/SUNk/R7SSelMy6gs0tV20vXaHIgU8Rcu240s3Ize8XMLjCzLn1/jsS6+i/F2ZJek3SHpHMa3zSzQjO7ycwWmNl6M3vZzAqjbZ8zsw+ixvW8mY2LOc7NbHTM6y2jVMysj5k9Fh231sxeMrMsM/u7wgnwP9EN54UJhnP3MrO/mdnS6Ib00dY+WFTOsuiY82Nji8++xmdLG/c1s69LOlPShVFs/4m2TzazT6I/MjPN7PNxZU01s5vNbK2kK7blPwTYASe6e3dJAyWtkHRLmuNplgVd/e8v0CZmViLpKknfcveH3b3C3Wvd/T/u/pPoXNp4XlpjZg+YWa82lJtlZpdG5/qVZnZXVBcAtd72Euz/TzNbHl07v2hmE2K23WFmfzCzx82sQtJhcdfJh5rZYjP7UdQel5nZeTHH55vZL81soZmtsDC1qtDMukl6QtKg6Fp1k5kNSvkPB0iOE929WNJwSTdI+qmkv6Q3JGSirn7TcLake6Kvo82sf/T+LyXtJekASb0kXSipwcx2lnSfpO9L6ivpcYVkS14b6vqRpMXRcf0lXSzJ3f0sSQsV3XC6+40Jjv27pCJJEyT1k3RzSxWZ2TGSfijpSEmjJR3Shvi24u5/UvjZ3BjFdmK06ROFEUolkq6UdLeZDYw5dF9Jc6NYr92euoHt5e5Vkh6UNF6SzOx4M3vXzDaY2SIzu6JxXzMrMLO7oxu9cjN7s/HvQJSAnBslJ+eZ2Zkt1Wtm2dEF5Wozmyvp+Ljtz5vZtWY2VVKlpJEWNzXSYtYHiEnenhfFvc5CD8w+ZjY9ivd3yfmpARltf0kFkh5pZvt3JZ2scK4bJGmdpFvbUO650ddhkkZK6i6JNgV8qrW2F+8JSTspXP+9o3ANGesMhevCYkmJplYMULi2HCzpq5JuNbOe0bafS9pZ0u4K17aDJV3u7hWSjpW0NLpW7e7uS9sYL5AR3H29u/9b0umSzjGzXcysJOpMWBV1Llza2OFncetJWeIpT6PM7I0oifqv5jozonr+EiVKl5jZNda2kXBmZrdE5c8ysyNiNpxnZh9G19BzzewbMdsSDmSItv00imGjmX0UW2ZX12WTNhbm4g6X9IC7v62QiDgj+qX5P0nfc/cl7l7v7q+4e7VCQ5ri7s+4e61CcqdQIbnTmlqFEQDDo16Kl9zd2xDnQIWT0QXuvi469oVWDjtN0t/c/QN3r1RIrCSNu//T3Ze6e4O7/0PSbEmTYnZZ6u63uHudu29OZt1Aa8ysSKGtvha9VaGQoC1VSKR808xOjrado3CBOFRSb0kXSNoc9dz9VtKxUQ/IAZKmtVL11ySdIGkPSXtLOjXBPmdJ+rrCBeuCNn6kfRUugk9XGKJ+iUJCdoKk08xsu5KyQAfSW9Jqd69rZvs3JF3i7oujc/UVkk611qfnninpV+4+1903SbpI0pfacBzQVbTW9ppw97+6+8aYdjgxbvTav9x9anT9WJWgiFpJV0XXuo9L2iRpjJmZwjn2B+6+1t03KkzX+tIOfDYg47j7Gwqd/AcpjBgvUehUOEThWva85o/eytkK97SDJNUpXNcmcme0fbTCNexRktqyYH9jJ30fST+T9HBMYmilwjVxjyjmm81sz2hbwoEMZjZG0rcl7RNdex8taX4bP2un12WTNgo3a0+7++ro9b3Re30UehU+SXDMIMXcaLl7g6RFCtn+1vxC0hxJT0cZx8ltjHOopLXuvq6N+zfGuSjm9aLmdtweZna2mU2LMqTlknZR+LmlpD6gjR6Nfh83SPqsQpuTuz/v7u9HF4nTFUbLNSY6ahUuSkdHCdq33X1DtK1B0i5mVujuy9z9g1bqP03Sr919kbuvlXR9gn3uiJKpdVHity2udvcqd39aIQF1n7uvdPclkl5SOMECndkaSX1aSKYMl/RIzDnpQ0n1CheDLWlyTo++z2nDcUBX0Vrb2yIabXqDhWmKG/Tpzda2XB+uiUsQVSqMgOurMOL87Zh2/mT0PtDZLFWY6XG6pIuiROh8STcpdP611d/dfUY0Gu0yhY6+JiNootHlx0r6fjT9caXCjI62JERXKlz31kad+B8pGmXu7lPc/RMPXpD0tEIiSmp+IEO9pHxJ480s193nu3ui+/EuqUsmbSysT3OapEMszL1dLukHkiYq/BJVSRqV4NClCheHjeWYQlJlSfRWpcJJpdGAxm+iBvcjdx8p6URJP4wZ8tXSiJtFknqZWek2fMRlkobEvI5fkLWiuTgTaBKbmQ2XdLtCJrS3u5dKmiHJmjsGaCcnR7+P+Qq/ny+Y2QAz29fMnouGl65XGE3TeBH5d0lPSbrfwvpPN0YnigqFk+UFkpZZWNh4bCv1xydLE42k2Z6E5oqY7zcneN19O8oEOpJXFc7LJzezfZHCqLjSmK+CKLHZkibndIX15erUtI0BXVlrbS/WGQqLEx+pMDqgLHo/GdeHqxXOdxNi2nhJtI7djpQLZKLBCh0Iedq6Y6EtAwUaxV+T5qppElUK58BchWvdxoToHxWmOLZmSdyskQUK18Iys2PN7LVo+lO5pONi6k44kMHd5ygsQXKFpJVmdr+xPtUWXTJpo3DyqVdY82L36GucQq/12ZL+KulXZjYo6jnY38IjwR+QdLyZHWFmuQrDu6olvRKVO01hilW2hXVltkxbMLMTLCzuawojAeqjLylcII5MFKi7L1OYI/x7M+tpZrlmdnArn+8BSeeZ2bhoqsjlcdunSTrFzIosLE781RbKio+tm8LJcVX0uc5TGGkDZIRoxMzDCu3rQIVRdP+WNNTdSyTdpugiMsrwX+nu4xWmQJ2g8DdA7v6Uu39WIZE7SyFZ2ZJlapogHZYovLjX25JABbokd1+vcB671cxOjs5dudFF4Y0KbfraqFNBZtbXzNryZJv7JP3AzEaYWXeF6Rb/aOtUEKCza0Pbi1WscE28RuG8dl0S42hQOAffbGb9JMnMBpvZ0dEuKyT1NhYSRwdnZvsoJGYeVRiREt+x0NgZ0Zbrx/hr0lqFBGisRQrttk9MQrSHu09Q6wZH97WxdSyN7pkfUlhGpH/Uofq4Pr32bnYgg7vf6+6NS5i4wlpWUNdN2pyjsObLQndf3vilsADhmZImS3pf0puS1ir8wmS5+0eSvqIwx3C1wi/aie5eE5X7vei98qic2Kc87STpWYX5ua9K+r27Px9tu17SpVGG88cJ4j1LoaHNUhiK9v2WPpy7P6Ewb/E5hUzmq9Gm6ujfmyXVKJzk7tTWC8XF+ovCMLVyM3vU3WcqDM97NTp+V0lTW4oHaE8WnCSpp8I0iWKFKYZVZjZJoTewcd/DzGzXaLjoBoV2Vm9m/S08Ka6bQrvZpE+TrM15QNJ3zWyIhYUT2zIFcprCGhq5ZtbcOjhAl+fuv1JYYP9ShU6DRQoj6h6V9BuFxOzTZrZRYT2rfdtQ7F8VRtu9KGmewoiC7yQ9eKADa6XtxbpLoad9iaSZ+nRduWT5qcI17WvR9KtnJY2JYpylkISdG12v0juPDsXMepjZCZLul3S3u7+ncF15rZkVR50SP5TUuPjwNEkHm9mwKFl5UYJiv2Jm46MO/KskPejuTa5lo8EBT0u6KYohy8xGWdvWS+yncN2ba2ZfVBgA8bjCCKF8hb8XdWZ2rMI6OY2fNeFABjMbY2aHR0mfKoXRda1de3cZ5q2vhYsOzsJjyWdIyqcHEZ2Rmc1XWIeiXiEzv0DS9e5+j5mdqpBo7CXpBYV59qXu/hUz+7LCMMwhComZfyicFPsqnDh3j8qbJun/RUnL5mLIURjyebbCSeiXCongXHevM7PnFU7Ef445ZqTCheaEKLZPJPWKYitTuJHMbWy3ZrZY0lcaE74Wnhwwy92v2b6fHAAAANpbzLVrncI6ijMVkjK3uXt91AF4i8KCvFUKo82uiUaeycxuVRgksFphgMGf1PSa81VJR0gaq3CNeZ67r46/voySPjcoDDwoVlhc+Ofufn8LsZ+rsDj4uwqDC1ZI+na0/qLM7FsKo/TyJf1HYQrWHHe/1Mx+oDDQoa/C0x7/6O5Xm9lukv6skPypVZjJ8nXnaXCSSNp0Wmb2eUlTFKYz3Smpwd3bMicZAAAAAABkgK46ParDM7OLzWxTgq8nol2+oTAs7ROF0QffTFuwAAAAAABgmzHSBgDayMxuU1jXKt7d7n5Be8cDAAAAJBvXvJmFpA0AAAAAAEAGYnoUAAAAAABABsrZlp379OnjZWVlKQoFyGxvv/32anfvm+44EqFtoivL1LZJu0RXR9sEMhNtE8hMzbXNbUralJWV6a233kpeVEAHYmYL0h1Dc2ib6MoytW3SLtHV0TaBzETbBDJTc22T6VEAAAAAAAAZiKQNAAAAAABABkpq0ubVT9boyRnLklkkAAAAAABAl7RNa9q05su3vyZJmn/D8cksFgAAAAAAoMthehQAAAAAAEAGImkDAAAAAACQgUjaAAAAAAAAZCCSNgAAAAAAABmIpA0AAAAAAEAGImkDAAAAAACQgUjaAAAAAAAAZKCUJG1emr0qFcUCAAAAAAB0GSlJ2qytqElFsQAAAAAAAF1GSpI2d7wyPxXFAgAAAAAAdBkpSdosWrs5FcUCAAAAAAB0GSlJ2qzeVJ2KYgEAAAAAALoMnh4FAAAAAACQgZKWtKmqrU9WUQAAAAAAAF1e0pI2lTUkbQAAAAAAAJKF6VEAAAAAAAAZiKQNAAAAAABABiJpAwAAAAAAkIFI2gAAAAAAAGQgkjYAAAAAAAAZKGVJGx4BDgAAAAAAsP1SlrT54m2vpqpoAAAAAACATi9lSZv3l6xPVdEAAAAAAACdXtKSNpasggAAAAAAiFHf4HrgzUWqq29IdyhAu2IhYgAAAABARrv3jYW68KHpuvPVBekOBWhXSUvabKquS1ZRAAAAAABssa6iRpJUXlmT5kiA9pW0pM3Lc1Zv9V5NHUPXAAAAAAAAtkdKp0e9u3BdKosHAAAAAHQBs5ZvSHcIQFokLWnjvvV7D7y1OFnFAwAAAAC6qMffXy5JWr2pWp7o5hPopJKXtNHWDeehd0jaAAAAAACS4743FumvU+enOwyg3fD0KAAAAABAh/Hy7FXpDgFoNymdHgUAAAAAAIDtk8TpUQAAAAAApFY9N5/oQpI3PYqhNgAAAACAFOMpxehKWNMGAAAAANBhbKyq00UPT9etz81JdyhAyuUkq6DmxtnU1jcoN5vcEAAAAAAgOe57Y5Ek6Yt7DVG/HgVpjgZInZQvRPzkjOXJqgIAAAAAgC0mXfdfVdXWpzsMIGWSlrRpaCZr86cX5yarCgAAAAAAmvjPe0vTHQKQMimft/T+kvWprgIAAAAA0EWZWbpDAFKGxWYAAAAAAB3W7BUb0x0CkDIpX9MGAAAAAIBU+SNLcqATS/nToyRpxYYq9WdFbwAAAHRgZZOnNHk9/4bj0xQJAKCrSOJIm+bTNpMfmp6sagAAAIB298i7i7d6r7yyJg2RAAC6kqSNtGnJcx+tao9qAAAAgKSLH2HTaPernknbaJvGmBjtAwCdW7skbSSpocE18uLHm7z39qVHqnf3/PYKAQAAANgmi9ZWpjsESdKMJet1wi0vS5ImDOqx5f3z/vaG/nbepHSFBWSMsslTSGKiU2q3hYjjEzaStNc1z+o7972brBAAAACApDroxufSHYIqa+q2JGwk6YOlG7Z8/9xHq1Q2eYreX7w+HaEBGWXOSp4ihc4neUmbFpcibt5/3luqsslTtHJDVbJCAQAAAHZYc9OiYm2qrkt5HOMvf6rVfU783csqmzxFD7y5KOXxILEn3l+msslTVFPXsNW2URc/rrLJU7RqY3XCY+sbeBRvMmyuCT/7T1Zt0lX/man1lbVpjgjYccl7etQO/p2ZdN1/E77/uzP20PG7DpSZ7VgFQBdXUV2nGUvW69FpS3XNybsoO4s2BQBAc756x5tt2m+Xnz2lOdceq5zspPWFtilZ1JwLH5qu0/YZmrRYMlVzP6P4/4udL31CNXUNuuO8fXTomH7bVVd9g2tUNGuge36O3r/iqC33Ji9+vEpn//WNJvvvfOkTzZa1z7XPbvm+cSpP7GeZfe2xyk3i71JXc+LvXtZJuw/Sv6YtlST9deo8SdIlx43T1w4eqdkrNio7y1RSmKt6d/Ur5gnHyHzt8sjvHfHte9/Vt/WuuufnaMaVR6eoFqDzm/CzT3vpDhjVWydOHJTGaAAAyGz/nbWyzfuOvuSJpK2lsSMJm0YvfLxK58QkEjpbImBtRfNP7Rp9yROad/1xW5IqjaNezv3bm23+P/rV0x/p7APK1Kd7vmav2KjP3vzilm2bqus04qLHNfvaY5VltlXCZluUTZ6iy08Y3+S9nS4JCZ9bvrwH12rbqTFhE+vaxz/UtY9/2KbjLz1+nI4Y11+DSwuVl9N52g06rowZadOaTdV1Kps8ZavsNoBt99QHy5tcCLw8e7X2GdFT+TnZaYwKAICOa8aS9dplcMkOlfHJqk1JieWcuETCTklMKu0Id9eIi8KIlS9PGqaJQ0r0pUnD9L37321yo71Tv+5avalar0w+Qlf8+wPd8IVdZWb6aPlGFeVlt7rO0IiLHtfH1xyra6fMbPL+tEXl2n1oaYvHHnD9f7V0fZV++785Gt67SAvWJF6IujG5sqOuemxmwve/c9+7JG3S5JopH+qaKZ8meEb06aZrP7+Lxg7ooYLcLBXltduzfABJ7fj0qGRpzG5L0tTJh2twaWGaIwI6nsemL9N1p9SqR0Gu3pi3Vl/5y+uSpLu/uq9em7tGZx8wXLc9P1c/OmpnXf3YTB01ob/+8vI8jR3QQ5fF9QgB6Lqqauu33ATV1jcoPyebXkl0Wafe9opmXX1sm/aNTV60l3Q/Wee6xz/Un16cu+X1fW8s1H1vSJMffn+rfWevDMmrcZc/KUn6x1vbvk5PoilKJ986Vf/+9mc0vHc3lRTmbrXd3bV0/afrbDaXsGkvR938gp7+wSFpjQHSvNUVOuP215vdXlqUqytOnKDe3fM0tGeRhvcuYoABkippSZvyyuaHKabKZ274X1LKGVhSoH1H9NKhY/pp/1G91a84n4aGTm+3K57W6xcfoRc/XrXlvcbkzepN1br/zUXqlp+t+99cpPujRQ2nzlmjMQOK9ccXPtFT3z9Yy9ZXaXBpoWobGpRl1qmGXgOZbn1lrWrqG7SxqlYDSwpVmJetuvoGzV9ToZF9uquuwZWXk6WaugZd9uiM7brpyRTXn7KrdurXXROjHvJsM1XW1qt7fuLLmPoGZ90utLuq2q0Xn413yC+eS2sioHHq1dzrjlNW1EZip2M9+q3P6ORbp0qSXrrwMA3tVbTddT05Y7kuuPvtHYg2NT73u6npDqHNPl6xKe3JNrSuvLJW3//HtDbvv9uQEp20+2AtXFOhQ8f002dG91FeThbnLjQraUmbD5d33MerLVtfpUenLdWjCeY/JvKFPYfowmPGqCAnW/m5WcqPehXrGlz1Da6a+gbV1bvqGhrUoyBXBblMOUFm2jdmAfA+3fO0elNIvj730com/8a68MHpkkLP2INvL9bZ+w/XuwvL1bc4X1edNEEXPfy+fv6F3fTshyt02t5DW/39r6tvUE52lurqG1RV16Du+TlaW1Gj0sJcra2sUX2DqygvWx8s3aD9RvbW2ooa9SjIUXaWqcGl7CyTu5NoRYdXU9egB99erIsf2brXuau7KEFPfCbZuX93XXzcOOVmZ2lYryJlZZm65WWrMC+baaddzOJ1lRrSM3GiIxlr1STLyIsTj/JpTNhILT/q/OqTd9GZk4Y1Ww6Si8RN5zJ98XpNX7xeknTnqwt2uLyy3kWaHyWDj57QX3sM66mnPliuLDOdMWmYhvQs1BMzlmtwaaFOmDhQJtNrc9dop/7dNW5AD22urdfS8s0a3LNQRXk5aojuZ/Nzsri+zhDm27AYzd577+1vvfVWwm1H3/yiPlrRcRM36PwuOW7clu8T/f05fZ+hKi7Yeqjsp8fY2+6+dypi21Ettc1pi8r1zMzluvW5T1JSd35OlqoTPNpSkk7fe6hemr1KS9dXqbggR4NLC7VsfZXycrJUXlmjQ3buqxc+XqXjdx24JWn63cNH67f/m6Mz9x2mf7+3VAW52dp3RC89Nn2ZLjp2rH7z39k6ZOe+Kq+s1brKGh2360D96pmP9f8OHaXH31+mPYf1VElRrmYu3aBDx/TTc7NW6oDRvVVZE05Iuw8t1cxlG/SZUX00fXG5CvNylJ0V1uUa1qtIKzZUqzAvS7nZWcrLCf/W1DVoQ1Wtqmrq9eb8dTp6Qn9V1NRrw+ZaVdTU6cWPV+vMfYfp+idm6VuHjVJRXo7KK2s0qm93vbd4vcYNLNb81ZUqyM1Sz6I8zV9Tod2GlOiGJ2Zpz2E9NXZgsdZW1Gh0v2LNW71JEwaVaPn6KvUtztfqTdXKNlNJUa4Wra3UiD7dtWBNhQaWFGhtZa0Kc7OVnSXV1ruKC3K0ckO1+vfI1/rNtSouyNXm2nrVN7hyskzVdQ0qKcxVeWWtenbLlZlpc02dqmob5K42T2tpy/m7raf4tpR1/oEjt/QIJy4jM9tmS+1Skl6Zs1p3vDJfT89c0Y5RoTMZVFLQZCqHJB20Ux/1Lc5X9/wc5WZnqXt+jipr6nT7S/M0cUiJKmvqt0w9aclX9huml2av1uJ1m+q6gSgAACAASURBVDV2QLGO322g/vTiXOVlZ2nlxmr97MTxOu8zI1oso6O2zd8/P0c3PvlRO0YEJM/g0kJNnXx4i/t01LaZSYlPoNG3DxutXt3ymryXKMMytGehjpowoMWymmubSUva0IjQ0bW2RlKmnuCkltvmPa8v0CWPzGjniDJbbraptt6Vl52lmvoGZZmUEyVnkiU7y1Tf8Onf1yyTGnZwwfb4Ms1Svwh8JmjtUbqZ2jZbu/i86emPdMv/5rRjREDy9O6Wp7cv+2yL+3TUtsk1LTq6T647rsVpNrRNoP0dPraf/nruPi3u01zbTNr0qK5y89AR5Gabdu5frLp616pN1RrWq0jL11dpbWWNaurCULfGtUe654dpJkN6FqpfjwI1uGtgjwJlZ5uqauo1qLRQqzdVa+n6KvUqylNBbpZysrNUWpir1Zuq1S0/R5U19SopzFV1XYMGlhSoorpuy+9Cfm6WCnKz1ZgcbLwp7lGYq4rqeuVkm/JzslRb7yrMzdbA0gJ9sGS9enbLU5/u+VpbUaPCvGzJpY3VdTpgVG8tK6/Syo1VKi3K07qKGvXrka+6aCSBeyg7PydLWWZqcNfaihoN7VW05eQVm6iM/ZXt3klXgj9z3+Ea0KNAX72z+ZNgSwmFxsRGIkeN77/VKIHrPr+rLn7kff3k6DF6euYKfevQUZq5bIPeX7xeFx03TovWVaowN1u7Di7R5Iff1yl7DNaGqlqtq6jRTv2L9b9ZK3XqXkN016sLNHFIiVZvqtbMZRt0yh5DdP+bC/Xtw3fSUx8s126DS1RSlKuXZq/W1w4aqbtfW6DDxvTT1E9WK9tMp08aqidnLNdnx/XX3NWb1K+4QJtr67VqY7X2Gt5TU+es1q5DSsLvYZapZ7c8LVxTqdH9uqumvkG1dQ2qrW+IkjqmnkV5WldZo5LCXG2oqlW3/ByZpJUbq1XWu5vmra7QkJ6FWr+5VrnZWSrIzdLsFZs0flAPLVhTob7FBaqsqVN1bYMGlBRo9opNGjuwWMvXV6m0KFdVtQ1atbFaO/XvrnmrKzS0Z5FWbqxS9/wcmdmWdUuWlG/WkJ6FWrGhSiWFuapvcJlMWVnS+s216t+jQKs2Vqt39zytr6xVQV6YmrG5pl6lRbnasLlOpUW5WldRI5lUmJutgtxsmcIUz9a05e+8J+xf2L6yJHXa+d0/OmqMvnnoKL2/eL1O/9Nr6Q4HaTKwpEDLor8D5ZW12nNYqQ7ZuZ+q6+o1ul/3cE6VNGlEL328YpN2H1Kqj1ds1MShpcoyqaa+QTlZWWrwMEW7vsHVtzhfKzZUqV9xgfJyspSdZVpfWavq+nrlZWdp8brNGlhSoMXrNqtXtzz171Gg9ZtrtaR8s3bqF9ZDKsjN0owl6zVmQA+t2FCl4vwcFeRla8X6KhUX5Kq0qPmRqR3dvOuP06bqOu16xdPbXcYxEwboqAn99cMH3ktiZOjqjhzXT+ceMEIj+nbTP95cpN/+d/aWbVefNEEVNfU6c99hnfa8ia5rUEmB1lTUqLquQX2L88M96sZqVdbUqaxPN/Xulq/lGzarurZBo/p2V35ultZW1CgnyzSgpECSqbKmTnnZWerfo0C1DQ1qaAj3nwNKCpWbbVpXWaOC3GwV5obpzVW1DSouyFGvbnlavbFa9e4q691N/YrztWpTterqXaVFuSotzEscdFwzzNmBdpm0kTbjL39SlTX12x1IunXLy9aNp07U6H7dNbx3UbPrcDT+vJjf1/Vkaq+E1HrPxLRF5U3mqTdqTLZ+4+CR+mPMEx0kaeLQUr23qFyn7DFYD7+7pMm2XQb30IwlG3Tv+fvqjD+/rqPG91ePwlwdOLqPTtp9kD5ctlHjB/VIzocDWpGpbbO1dtmcsJhwpapq65VlplH9uikvO8wrf3vBOt3+4lw9+cHyFESMbfWFPYfo4J37aGSf7lq0rlJHjOu35f8KHb9tbk+vfkvrjpz559c0dc6abS4z01x90gSdtX+ZNtfUb3m6E1Lrnxfsr33KeiWtvI7aNhlpk1i3vGxVRPfhPzl6jMYOKNYHSzdoSM9CHbfrQOVmZ2lzbb0KcrJaHLmM9Ev5SJtzDyjT759PzZoZ2+ue8/fV3mU9NX3xev38iVl6a8E6SdK4gT308y/sql0Hl2zzhRUXYuiIendLnAHef2RvvfLJGg0qLVSf7nn67PgBqqiu07/fW6qrPjdBNz3zsX567Fg9/O4SlfUu0iE791VVbYO+dvAIPf/RKu0/qrfuPX9f7TygWH26528pl4QNsP1ysrM0ul/3hNv2Gt5Te5211zaVV11Xr5c+Xq3z79r2BFImefWiw5WdZcoyU6+iPDV4eMpGppyXdx1Sku4QkOHuOX+/jLrpnHHl0eqen9NiTBcfN1ZfP3hUwm2FedmtLo6bSZ+3o2IB4q5h3MAecnftN7K3fnz0mGafjthWR4zr3+T1jpaH9Era/15hOz4h6aCd+ujO8yZpSflm/e5/c1S+uUafmzhYR4zrl3CEzD5lvfTgNw9ot/iATFMSN4x9r+E9td/IXvr8HkN0zZSZOmXPwTrngDJJUnlljb6y33BNHFqqu/5vkqQwVDz+xmh0v2JJ0gGj+6T+AwDYbvk52TpyfP9tuvCvrqvXK5+s0ZpNYWjxsN5F6p6fo537F2+1b3lljWav3KQeBbmatmidjhzXXz2L8lpcPDoZstq83DWQOeZed5x++fRHae3ovPT4cTr/oJFbXr95yZGavrh8q5u8ZIj9u5NpCZzHvnOgdhlcInfX/DWVOuyXz6c7pK0c08qipchcX540VLsOLpVZWMukX3F+xnQyoOPpMCm3u7+6rw7cqenN4dBeRfr5qbulKSKg4yiKS2Y+FJPEvOO8SU22lRbladKIpkNwOckAXUt+TrYOG9OvTfuWFuVtGbY/ZsDWSR0An8rKMl14zFhdeMzYLe/d+OQslfXppj2GluqzN7+YsrqbS9z2Lc5PScImUf1vzFur0/74aqv7zr72WE1bVK7v3Puulm+o0kPf3F+lRXk64qYXtqnOi44dq+ufmLVVHLHMTCP6dNP8G45XQ4Nn1GPMrz9l13SH0KmcutcQPfj2YknhqbITBvXQTv2L1bMoVznZWVq/uVbd8rKZQoSMk9SFiJPpj2ftpaPG9+dmEUiC2JPPrWfsmcZIAADonG764sTtOi42gTP/huNTMiLllD0HJ73M7TFpRC+997Oj9JN/vqc/nf3psg0L1lTo1ufm6IG3Fmva5Z9VbnaW9inrpdcuPqLJ8Y0JlxuemKXbXmh5tNLXDx6prx44YqukTUuyskw/OXqMfvFUeOT79CuO0m47sCD1jurZzPR2bJsv7DlE15+yq/JysvTLFtppSWHnXWAdHVvSkjbJfHJU4xxbAMlTmJut7xwxWsfvNjDdoQAA0Ol8fo/MSIzEe+ibB2iv4T3THcYWJYW5TRI2kjS8dzfdeOpE3Xhq2xJfPz1mTKtJm4uPG7fVex9fc2yrZX/rsNEq691N+4zoqR4FuXrgG/u3aXQQMsv+I3vr1blh4e+bTtu+hCqQKTIqM7L38J6sPQOkyIdXH5PuEAAA6DDO2HeY7n19YZv2nXX1MUlbx+mlCw/TQTc+l5SyJGVUwiZZWhuJf/vZiR+MlJfTtmkvsR1c8VPGY+XnZKm6rqFNZWLH7T60VNMWlbe4z82nT9Tn9xgiSbr6sZka2rOwPUIDUipjpkdNu/yzKi1iCCAAAADS75Cd+7YpaZPsp/sM7VW0w2V09ScOfXb8p2v0JONnMe/64zTioqZr3Xx0zTHKz8ne4elsUycfrs/c8L+t3p9FZ9tW8tqw1kxh7qe3t5edMD6V4QDtJu2rLE2dfLjm33A8CRsAAABkjP1H9W51n5N3H5SSuuffcLymX3FUSsruLGZedfRW7/3prL1SkrCKH9lzyh6DlZ8THvLw5PcP2u5yp19xlAaXbj0SZP4Nxyd8Ii5ad9T41C+qDbS3dp8elejRwQAAAEAm6VHw6aKk8284XusqarTH1c802efXX9ojpfVvz8LEr8ct3ttZFeXl6MnvH6Rjfv2S7vvafm1Ksu2I5pJBYwf00GUnjNfVj83cpvKe+/GhW37H5l1/nK6Z8qHOP2iEBpYwnWd7PfadA5M2TRHIJO2atHnzkiNJ2AAAAKBDiL1R79ktTx9fc6x2u/Ip5edk678/OqTdYmhr4qarTYsaO6BHRnzmrx44Ql89cITcXZuq6zRl+jJNfvj9hPt++7DR+vHRY5q8Z2ZM5dlB5+w/XBMG9Uh3GEBKtGvSpm9xfntWBwAAACRNXk6WZl3d+hOIku2FnxyqQ37xfLvXi21jZiouyNWXJg3TlyYNa7Ltrlfna+/hvTSexEJK/PCoMQwOQKeVUU+PAgAAANDU8N7dWt0nE0acoHln71+W7hAAdFAkbQAAAIAObN71x6U7BCDlXL7Vez89Zqxmr9ioHgXc1qLzStrTo1objvbjo3ZOVlUAAABAlzL3uk8TM41PyDlrv+Gaf8PxTAtBl7V3WU/96vTdaQPo1NotJfn/Dh3dXlUBAAAAnUpWljEFCohDqgZdQdJG2rRaEY9fAwAAAAAkCSNs0BUkLWnjvvUcQwAAAAAAUmGPoaXpDgFIuXZb0wYAAAAAgGT4348OYTYHuoR2GWnz9A8OTlY1AAAAAIAubmTf7ukOAWgX7TLSZuf+xcmqBgAAAAAAoEtot4WIAQAAAAAA0HYpT9qcOHFQqqsAAAAAAADodFKetPnN6bunugoAAAAAAIBOJ+VJG1b0BgAAAAAA2HasaQMAAAAAyGgtPKwY6NSSlrQ5YFTvrd77+Rd2TVbxAAAAAAAAXUrSkjYj+3Tf6r3BpUXJKh4AAAAAAKBLSen0qM+M3nr0DQAAAAAA22v3oaXpDgFoNzlJKynBesNmLEIMAAAAAEiOO87bRweM6pPuMIB2w0LEAAAAAIAOoVt+jvJyuI1F15G033YG1QAAAAAAACRP8pI2ySoIAAAAAAAAyUva5GYzRA0AAAAAACBZkpZpyclirA0AAAAAAECypGx4zHeP2ClVRQMAAAAAAHR6KUvaHD2hf6qKBgAAAAAA6PRSlrTZqV9xqooGAAAAAADo9FKWtMnLYWFiAAAAAMCO83QHAKRJ8h75bSxEDAAAAAAAkCxJS9pk8/QoAAAAAEAKcLeJroo5TAAAAACAjMb0KHRVJG0AAAAAAB0CI27Q1ZC0AQAAAAAAyEApSdocNb5/KooFAAAAAADoMlKStNltSEkqigUAAAAAAOgymB4FAAAAAMhox+86UJI0pGdRmiMB2ldOugMAAAAAAKAl532mTF+eNEyFednpDgVoV4y0AQAAAABkNDMjYYMuKSVJm9P2HpqKYgEAAAAAALqMlCRt8nPJgAIAAAAAAOwIpkcBAAAAAABkoNQkbTwlpQIAAAAAAHQZKUna9CjkoVQAAAAAAAA7IiVJGzNLRbEAAAAAAABdRlKTNjv1657M4gAAAAAAALqspM5jmvLdg1TX0JDMIgEAAAAAALqkpCZt8nKylMcDqQAAAAAAAHYYGRYAAAAAAIAMRNIGAAAAAAAgA5G0AQAAAAAAyEDm7m3f2WyVpAWpCwfIaMPdvW+6g0iEtokuLiPbJu0SoG0CGYq2CWSmhG1zm5I2AAAAAAAAaB9MjwIAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSJkOYWZmZuZnlpDsWAJ8ysw/M7NBmttFugQ7EzOab2ZHpjgMAAKCtSNqkQXTRuNnMNjV+SRq0DcdzowgkSaKbODM718xeliR3n+Duz6eobjez0akoG8gEZnagmb1iZuvNbK2ZTTWzfdIdF4DMZ2Z3mNk16Y4DSAUzu83MLmvjvluuF7fluPZgZteY2WozW25mw6J72+xm9r3CzO5uoawt1+St7dvVcNOfPie6+7ONL8ysLH2hAACQXGbWQ9Jjkr4p6QFJeZIOklSdzriArsrMDpR0o6QJkuolfSjp++7+ZloDAzohM3tK0uvufnnc+ydJ+qOkIe5et63luvsFSQpxh5nZUEk/kjTc3VdGb3dPY0idFiNtMlR8739ctvHF6N/yKJu5f7TP/5nZh2a2zsyeMrPh7R030Nm0cTrFmWa2MOppuCTm2Elm9qqZlZvZMjP7nZnlRdsa2/F7UTs+PVWfAUiTnSXJ3e9z93p33+zuT7v7dDMbZWb/M7M1Ubu5x8xKJSnattbM9oxeD4r2OTTm9b+jfeaY2dcaK4zOlQ+a2T/MbKOZvWNmE+Pi2t3Mpkejf/5hZgUxx38tKnNtVMegmG1uZheY2ezoPHurmVnMds7ByFgxSdRbJPWSNFjSlUpyErW9RoEz2hwdwB2Szoo9T0TOknTP9iRs0qGVtjZc0pqYhA1ShKRNx3Rw9G+pu3d391fN7GRJF0s6RVJfSS9Jui9dAQJdzIGSxkg6QtLlZjYuer9e0g8k9ZG0f7T9/0mSuze244lRO/5H+4YMpNzHkurN7E4zO9bMesZsM0nXK0wNHidpqKQrJMndP5H0U0n3mFmRpL9JuiNmmuJ9khZHx54q6TozOyKm7JMk/VPhxvReSY+aWW7M9tMkHSNphKTdJJ0rSWZ2eBTTaZIGSlog6f64z3SCpH0kTYz2Ozo6lnMwMl1LSdRzzexlM/tllHScZ2bHNh5oZudFCcmNZjbXzL4Rs+1QM1tsZj81s+UK7VVmdoKZTYs6LV4xs91aC9DM9ogSrRvN7B+SYhOqW9VjMVOZY/aLnUZyh5n93syeiDpHpprZADP7dfQ5Z5nZHjv4cwWa86jCeeigxjei8+AJku6yuOl/LXUaxIo9LqZd/MjMVkYdhOe1FpiZlZjZXWa2yswWmNmlZpYVbTs3ais3m9laRefmBGUcKekZSYOi9nWHxS3hYWYjzOyFqE0/o3A9HFvGWVH9ayym07OZ+vaL/paUm9l71sx6k50VSZv0eTT6pSs3s0eTUN43JF3v7h9GmdvrFHoT6ekDWhfbHssl/X4bj78yugB+T9J7Cjd0cve33f01d69z9/kKw2EPSWrkQIZy9w0KCU2XdLukVdGFaH93n+Puz7h7tbuvkvQrxbQNd79d0mxJryskUC6RtgzFPlDST929yt2nSfqzQs9lo7fd/UF3r43KLZC0X8z237r7UndfK+k/knaP3j9T0l/d/R13r5Z0kaT9ren05RvcvdzdF0p6LuZYzsHIdC0lUSVpX0kfKdxU3SjpLzEjBFYq3Gj2kHSepJstGgkXGaBwczpc0tejbX9VaBe9Fc59/zaz/OaCszAK9VFJf4/K+qekL8Tt1qSeNn7u0yRdGn2uakmvSnonev2gwt8IIOncfbPC1OCzY94+TdKs6HpxizZ2GjRngKQShdFzX5V0a4L2He+W6JiRCufesxXadqN9Jc2V1E/StYkKiJb5OFbS0qjz8dwEu90r6W2F9na1pHMaN5jZeEl/UDh/D1L4WzEkUV1mNljSFEnXKPwN+LGkh8ysbyufs9MgaZM+J7t7afR1chLKGy7pNzE3nWsVejIHJ6FsoLOLbY+likbDxLOYxcPNbFjMpuUx31cqms9rZjub2WMWFmfboHAj16SXAejMoiTGue4+RNIuChdmvzazfmZ2v5ktidrG3dq6bdweHXNLlERRdPxad98Ys98CNT3XLYqpv0GfjspplLC9RvssiDl2k6Q1cWU3dyznYGS0lpKo0S4L3P12d6+XdKfCjWP/6Ngp7v6JBy9IeloxowckNUj6WZSE3Szpa5L+6O6vR6N67lRImMQmT+PtJylX0q/dvdbdH5QUv9ZOfD1t8UjUgVIl6RFJVe5+V/Q5/yGJkTZIpTslfdHMCqPXZ0fvxWtLp0FzaiVdFbWbxyVtUhj9nZCFRYJPl3SRu2+MOhVvUtPOj6XufkvU6djWthZfzzCFkamXRW32RYWOkkanSnrM3V+MPvNlCm08ka9IetzdH3f3Bnd/RtJbko7bntg6IpI2matCUlHM6wEx33uC/RdJ+kbsjae7F7r7KymNEuhCop6Exq+FbTjkD5JmSdrJ3XsoTJ+In9sMdAnuPkthjv8uCj2KLmm3qG18RTFtw8y6S/q1pL9IusLMekWblkrqZWbFMUUPk7Qk5vXQmHKyFHrulrYhxKUKyZfGY7sp9PwtafaIT3EORsZrLokabV4es19l9G1jB8SxZvZaNG2jXOFGKTbJuipKijQaLulHcSNYh6rlJ6UOkrTE3WOvcRfE7RNfT1usiPl+c4LXLJqKlHH3lyWtknSSmY1USGLcm2DXtnQaNGdN3Po4sR0KifRReDBAbPtqtvNjBwyStM7dK+Lqid0e28lSofCZExmukPyK/ZtyoEJyuUsgaZO5pkn6kpnlmtneCtnIRqsUMpEjY967TdJFZjZB2jJX8YvtFi2ARIolbZC0yczGKjxFJ9YKNW3HQKdhZmOjefZDotdDJX1Z0msKbWOTwoL6gyX9JO7w3yhMczpfYUj0bZLk7oskvSLpejMrsLBOxlcl3RNz7F5mdko0p/77Cj38r7Uh5HslnWdmu0fTOK5TePLH/DYcyzkYHUpcErVZUVt4SNIvJfWPRqM+rqYdEPGdiYskXRuXxCxy95bWeVomaXDMlCwpJGSbhB33ukkHp5kNEJB57lIYYXOWpKfdfUWCfXak02BbrVYYnRM7fTe+8yPRAIFttUxSz+izxNYTuz22k6VI4TMnskjS3+P+pnRz9xuSEGeHQNImc10maZSkdQqr+2/JykY9INdKmhplG/dz90ck/VzS/dFQ8xkK8wwBpM+PJZ0haaPCcPT4xYavkHRn1I5Pa+fYgFTbqDAv/nUzq1BInMxQeDzolZL2lLReISnzcONBFh6Heoykxsea/lDSnmZ2ZvT6y5LKFC5yH1GYLvFMTL3/Uhj6vU7hIvmUaH2bFrn7fxXOvQ8pXEyOkvSltnxQzsHIdK0kUVuSJylfocOwzsICxUe1csztki4ws30t6GZmx8eNkIv3qqQ6Sd81sxwzO0XSpFbqeU/ShCjRWqBmFkwF0uwuSUcqTBtMNDVK2rFOg20STQ18QNK1ZlYcrb32Q4VpysmsZ4HCFKYrzSzPzA6UdGLMLg9KOsHMDozWtLpKzecm7pZ0opkdbWbZUafNoY1/z7oCHpeXBu5eluC9+YrptXD3uQoXu82Vcbmky+Pe+7vCAm4A2qiZ9niHQg9kwu0x+81X3HQndz805vsXJY2NO+zymO23KRpBAHQ27r5EYVHFRD6QtFfcezdFx/1LIfHSWM4mSaNjXi9WWBS1OVXu/pVmYiqLe31F3Otm26S7x7f1c+Necw5GJmtMov7QzEollSs8AvwnCk89S8jdN5rZdxVu8vIV1qT4d0sVuftbZvY1Sb+TtJPCNKSXJb3YwjE1UaLmdoXFRh9XTDK3mWM+NrOrJD0b1XGRwuLHQMZw9/lm9orCQyoSth13/6+ZNXYa9FQYUdqmToPt9B2FxYjnSqpSaHd/TUE9ZygkqtYqJGbvklQqSe7+gZl9SyFh1U1hUfDFiQpx90VRh86NCk9mrJf0hrYewd5pWdOpowAAAB2TmV0haXRzSRsAAICOhulRAAAAAAAAGYiRNgAAAABSKnoE8MxmNo9v41MZAbSBmX2gposNN/qGu9+T4P3myrlN4QmP8e529wsSvI8UIGkDAAAAAACQgZgeBQAAAAAAkIG26elRffr08bKyshSFAmS2t99+e7W79013HInQNtGVZWrbpF2iq6NtApmJtglkpuba5jYlbcrKyvTWW28lLyqgAzGzBemOoTm0TXRlmdo2aZfo6mibQGaibQKZqbm2yfQoAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAADSqLa+QdV19ekOAwAAABmIpA0AAGni7trpkic05tInSdwAAABgKznpDgAAgK5q3uqKLd9PX7xe+5T1atf6l5Rv1nWPf6gp05cl3P6bL+2uk3YfnLL673xlvt5bXK6bvjhR81ZXqKx3N2Vlmdxd7ywsV1VtvT4zuk+TY9xdS9dXaVBJgSTJzJotf+bSDdpUXae9h/dUVtan+62rqNEfXvhEWWb68VE7q7K2XsX5OVuVNXXOau05rKfeWbhOG6vq9Nnx/ZWd1Xx9AAAAyUbSBgCANDn8phe2fP/F217V/BuOb7e63V2fueF/Le7zvfun6Xv3T9O8649rMTmyrVZvqtbe1zy75fXD7yxp9ZjGn82Iix5PuP21i47QgJIClU2e0mo5e1z9zJbXt73wyVZ1SNLOlz6hmrqGZuMAAABoD0yPAgCgC5p45dNt3nfp+qodqutHD7ynsslTtHpTtV6Zs7pJwqatKmvqWty+3/X/1eaa1qeYtbTPa3PXbPk+UcImXtnkKSqbPEV/fOETlU2eovGXP9nqMQAAANuCpA3QhTw7c4UeeGtRusMAkAE2VLWcBIm1vWNsZixZr7LJU/TQO4slSXtf86zO+PPr21XW+MufanWfr//9rVb3iU3MxPvSn15r9fil5Zu3eu/6J2ZJkipr6rWpuu0/VwAAgNaQtAG6kPPveksXPjg93WEA6GA+WbVpm/Yvr6xR2eQpOuGWl1MUUWIvzV7d6j7fuvedFrevrahpcfudr86XFNbLSWSXnzVNLm2uqde9ry/U2MsST7cCAABoCUkbAADQotkrti1ps/tVz7S+03Z4b1H5DpdR2coUqj2vfkYvfryq2e1/fGGuJGlOGxNZ4y5/Uhc/8r6qahu086VPtLrmDgAAQCySNgAAdGIvzV6le19fuENlPPfRyiRFs2NOunVqu9Tz8YqNre5zz2sLWt2nvsET09IxvQAAIABJREFUvl9e2fJoHgAAgEY8PQoAgA7C3VVd16DsLFNuduv9Lr96+iP99n9zJElfnjT0/7d334FNlesfwL9J9y7dCwidjEJLKaOsliVQVFARr6IiV8XrVtAroIBsFSeOn1uvV9HrwFmGUECGDAGBsttSCpRCF907Ob8/SgNpkjZJk5yM7+cfkjPe80A5TfLkfZ/H4A5QxVUNOh+7+fhlg65hSZZlnGh3/9GCCuzNK9O6P+tCBW56R/vSsMQlm9iFioiIiHTCpA0REZGFEwRBrdX1e9OTkN43VOs5fRZuQM11S4FWZ+bgybExBl3/5KWOZ560euCLjosBW7tZHfwd20vYEBEREemDy6OIiIgshLZ6J20TNgDwyFcHkbIyE7K5GZj97SGVfRfL61QSNgDwxubTxgvUznW2BToRERGRrpi0ISIisiDrswpVnm9rp55M4dXkwdqDBZArBHy84wyOFlRg6EtbTBojEREREZkHl0cR2QlB0FwQk4gsy8NfHcTZlyahrlGOwoo63PfZXzqdFzVffTaOuTXJ2dLaEENXZuJiRT12PjcKEV3cxQ6HiIiILAiTNkR2QBAE3P3JXrHDICIdCYKAXgs3mGz8yvomk4x7orDSJOPaooZmOeJeUP0ZD395K/JWphtcMJqIiIhsD5dHEdmBr/edx66cUrHDICIdfbrrrEnHP5B/xSTjvrc11yTj2qK2CZtWmuoXERERkf1i0obIxjXJFZj/Y5bYYRCRHpb+dtyk458s1L0blD42HLtkknGJiIiI7BWTNkQ27pQerXqJyLa11rb6YvdZUeOg9rE2EBEREbVi0oaIiMjOFLJltUV7ef1JsUMgIiIiC8GkDZGN25VTorYtZWWmCJEQkdhqG+UmG7u8ttFkY9ubj3fmiR0CERERWQgmbYhs3JniGrVt/JadyD6V1TRi5mf7TDL2puOXTTIuERERkT1j0oaIiMhO1DXJsfVUsUHnfrknv939z35/xKBxSTPWtSEiIiKASRsimydAEDsEIrIQvx0pNPjcF346asRIqCOHz5eLHQIRERFZACZtiGycgjkbIrpqdWa22CGQjqa+v1vl+ee78jBo+WaRoiEiIiKxMGlDZOMUArM2RGRaF67Uih2CTbtUUY8Xfz2OoqoGyOZmiB0OERERmRGTNkQ2brMexUFXZ2Zjz5lSE0ZDRNaspqFZ4/bUVdvMG4idGcKOf0RERHaLSRsiG1dZr/lD1vcHLqC5TaHL1zedxj8+3GOOsIjICvVZtBEf7zijtl3OdZgmI2iYLfnF7rNmj4OIiIjEwaRNJ1ypaQQA1DZq/lBMZMme+e4wZny2D5cr2f6biHS3LOOEyvOq+iaRIrEPPeatU9u28OdjIkRCREREYnAUOwBrJAgCHlvzNzKyVLtwjIgJwGOjopHQ1RfltU0I8XEVKUIi3ezKKcXgFZk4+9IksUMhIivy+7FLUAgChkYHoN+Lv4sdjs1qOxuSiIiI7A+TNgZ4c3O2WsIGAHZkl2BHdonyecYTwxEX7AVHB9UJTbtzS3GltmWWzs6cEoyIDkBiN1+E+riZNnAiLXKLqxEV6Cl2GERkJWb994DYIdiF6OfXix0CERERiYxJGwO8pWPL1Emrdyofv3NXf5wtqcGrv59WO27N3nMAgM2zR0Lm76GW5CEytTGv/YHjS8aLHQYRERERERFdxyqSNvVNcny5Jx8zh/WAg1RitHGrG5rRLFfA190ZQEshRblCgLOjetLkYnkd/swtxTPfHTboWo+t+bvDY8a+vl35+JMZyegb7oMgby6xIvPIulAhdghERKSj+iY5XJ0clM8VCgFZBRVI6OorYlRERERkbFaRtHl7Szbe3ZqLZRkncHzJeLg7dz7ssyU1SHt1GwDgtqQITE4Mw72f7gMAPJ/eCzOHyZCRVYibE8JQVtOIoS9t6fQ19XH/f/YDAHY+NwoRXdzNem1DHTpfjgBPZ6uJl1Q9uuag2CEQEZGOlv52HMtv6at8Hjn/WsFi1ikjIiKyHVaxDudSRYPyce+FG40yZmvCBgB+OHhBmbABgOXrTiD6+fV48ptD6DFvHQYs22yUaxpi+MtbcSD/isaWn8ZU1yjXuwtWRW0TVqw7gcKKOsjmZmDKu7sw/OWt2JVTgoo63buJNDYrUFRVj+2niyGbm4F3t+bgQP4Vtbayjc0KFmU0oZLqRrFDICIiHX11dWk1ERER2TarmGnzw8ELKs9lczOUjxfd1BvTB3fXuKTJVtz2f38CAJZO7oO7h3SHRGK8JWKyuRmID/fG0YJKjfsTuvris/sGws/DWWX7n7kluOujvQCAD7erJlemf7xX+Thn+USNNXryS2tw10d7UVBep7Zv1cZTysdtW8te76dHhyGR08CJiMjOJS3dpPK8vLZRufSbiIiIrJvVZzoW/3ocsS+sR02DfrNErNGCn4/h7S05HR6XU1QNuULzzJzLlfV45KsDWHvwgjL5pS1hAwCHz5cjaekmyOZmQDY3A+W1jZDNzVAmbDoS/fx6yOZmYPa3h1BZ34T80hrsyC5G6qptGhM2+pjy7i61bWdLapBTVN2pcYmIiKxJWY3qTMnEJZu0HElERETWxipm2uiiz6KNyJyTavNti1/fdBr3D++Bv86WIS0uCADw0fYzWL6uZUZKcvcu2J9/peXYaQmoaWjG5P7hmPb+bpy8VKUcZ13WJYOub+gbwbUHC7D2YIFB5+rqs115WPzrcQAtnbiig7xMej1b9vOhAkxODBc7DCIi6sC2U0Vih0BEREQmZDNJG6ClbbE9FN/rs6ilrk/vUG8cL1SdJdOasAGA2d+2dLpa8PMx8wVnZrK5GTj70iS8syVbpZ362Ne328X/BVN58ptDWJ91Ca/fkYAfDhagT5g3krp1ETssIiK6TmFFHe777C+xwyAiIjI6QRDww8ECle7Nax4cjIEyPzhpKL9hy2wqaQNc+xBvD9ombOzV1/vOqSRsyDg2HLsE17VS/HToIgBg3/Nj0CwXcOh8OdL7hoocHRERpaw0b2dLIiIiU9t0/DIe/GK/xn26luhoFR/ujZdu7Yf4cB+9zluXVYhwXzckWEj9VJtL2pD9mbc2S+wQbFZrwgYABi3PhJ+HM8pqGjtMjFbVN6Gqvhlhvm6mDpGIiIiIiCyYXCGgur4ZCUt+V24b2ysIm0+Ydonv0YJK3Pj2To371j0xAr3DvFW2PfXN3yqff1qJPSnE4pM2Dc1yvc+xp9k2RObUWuxyzd5zuDkxDJ4umn+FpK/egfNldbwPiYiIiIjsVG1jM3ov3Khxn6kTNh1JX71D52PFzi+YJWlTUt2A5GWb8f2/UpAs89Pr3L1nykwUFREZav6PWfh0Vx42z05V23eisBLnyzrXGYyIiDqnqLIeQd6uYodBREQ2rL2kjK0RM3FjlqRN8rLNAICp7+/W+y8qFzS3ru5Ik1yhtUCRQks7bLItgiBAIpGIHYbNyimqxtZTRYgP80Ggl4ty+8S3rmWt5QoBDlL+DIiIzG17dgmmDogQOwwiIrIRzXIF3srMxttbcsQORTTfH7ggymur2ZdHnS+rRVc/d52PP1daa9B1hqzIxIEF4zTuyy2uNmhMsi67c0sxNDpA7DBs2syrXUu0JWOj5q/Djn+P0uueJyKizlt7UJw3lrbgSk0jzpRUY0B3/WaHC4KAr/edx61J4XB1cjBRdEBFXRNOFlZicKS/XucJgoDvD1zAhPgQeLk6mSg6+9AsV+B4YSX6RehfpHTjsUtI6tZF5QsvIktQ1yhHv8Ub0STnBAdtnvnusG0mbSrqmlSej3hlq16zbd7cbFhXoNKrtTc0+WJ3vkFjknV5c3M2kzZmIpubgecm9MTPhwrU9o14ZSs+ujcZY3sFaZ35tCO7GIIAjIwNNHWoRER24c/cUrFDsFrTPtiN7KJqvWeHbz5RhPk/ZiGnqBoLb+ptouiAB7/Yj315ZTi+ZDzcnXV/K3/wXDme/f4I/swtxRt3JJosPjHJ5mbgsVHReGZ8nEmvs2rjKXyw/Qw2PDUCPUO8Oz7hqrpGOR767wH0DPHChqdGmjBComvkCgFHLpTjnS05yDwpbh0ZMozJkzYLfjraqfOv1DZ1fJAWCoUAqYalGf/dw6SNPdh3lvWQzOnlDSe17mvbtu/6N8L1TXLc88k+te1ERERiyC5qmZEtm5uBQwvHwdfdWafzqupb3rN+uisP5XWNeH2aaRIjJy5WAgB6L9yIPfPGIMRHt9pF5bUtX2j++HcBKuua8Ml9A00SX0cEQcDJS1XIKarGTQlhep9/5EI5dmSXwMVRigdGRKrtf2drjsakzclLLTX3fjtyEa/dngBHLWUUdIuhAgAw4c0d2PjUSMSFeOl0nuJq2YeTl6owYOkmrasCiAwhVwjIyCrE0/87BDnLgZjM+qxCTOwbatZrmjxp88th9ZZZP/1dgCn9w019aUz7YDe+f3ioya9DlutEYSV6her+DQiZh2xuBgDA08VRZXrwtPd345Wp/VBc3YCBMj+U1zaiSS6gqr4JXq5OnEpMRERmlbhkEwDg7iHdsGxK33aPvf4z0tqDBVh7sGX2qSm/kBiyMhMAcHNCGFbf2b/dYw+dL1c+zjxZpHwtNvUXJoIgtMx+jvJHUVUDHv/6b+W+2d8ewpTEcNye3BWDelxbjlbT0IzGZgW6eDhj68kizPz8L2x/dhQ2HCvEinXXviRalnECtyaF45G0KJwprlFur2uUw83ZAe9uzcHYXsHwdnPEhDev1dz7+WpL3y1zUhEZ6Kn336mu6Vp32/FvbgcARAV6IHNOWrvnXT/huLSmUfkzOLZ4PDy0dOQk0qRZrsDsbw9r/KxNpvXwVwfN/kWzSX873PPJXo3bn/rfoXaTNs1yBQB0KgMOAPvzr0A2NwNPjonB0+NiAYBZRzsz8a0d8HV3wpf3D0Z8uI/Y4VAb1Q3NqG5oVj7fd7YMaa9ua/ecGSnd0SPAA7f0j8Dlqnp4ujgiv7QWXf3cEOrjhsuV9Qj1cYVEIkFxVQO+3JOPJ8fEaJx1R0REpIsv95zDl3vOYfa4WAyLDkBiV1+1QvuCluYZsrkZmJIYhgEyP9zaP7zTH86rrnvdbPXL4Yv45fBFzBkXi4E9/DBQ5qcWn1TLEmXZ3AzclBCG/l19MTU5At5GqHfTmowYGRuI+kY59p0tw1uZ2WrHNckFfHfgAr47cAEAsPyWeDQ1K/Dir8fVjh25aqvGa12fIGvVa+EG5eNVG09pjXP0a38AAMb1DsaH9wzQuYHF9QmwVrnFNZDNzcALk3qhd5g3UiL91cbT9jPos2gjRsUFIlnmh+mDu+k8u4usT0VtExKW/C52GNRJ2lb0mIpE2wuMJsnJycL+/fs7PhDA6sxsvL5Jt3o03/0rBZcr6/HYmr87PpjIQG/9IxGTEw2f4SWRSA4IgpBsxJCMpr17s/WNE2kXFeiB3OIa3D+8B+4bKoNUKoGvm5PKG+v80pqWN1EC8OGOXPxjYDcWWLYQlnpvdvSaKVcIiJq/zowRkb0Re8mptd6b+rxuujs7YO/8MfB0ccQbm7OxWkNiQpvMOamIDPDQu9Olvq/rhxfdAB83J7y1ORtv6FEr8venRyImyFPv+HbnluLOj/bodY4leWFSL9w9pHu7xaT1/Rnsf2Es/Nyd0ShXoOeCDR2fcNU3s4ZgkMzP6B8OrfXetBStn5/b3hsKhYBRr21DvoGNdMj65K5IN2qnXG33ptGSNhV1TcgpqoKDVIop7+4yPFIiEfQM8ULGEyPaveks9QUOYNKGbNevjw1HnzDvdt+wWuq9yaQNWYJBPfyQHh+CyYnhuFhRh96h3np/CG8rv7QGBeV1GBrVfrF/a703Lfl185kbYvHq74Y16TCHlbf2xby1WWKHYdd0+ZLSWu/N2sZm3PnhHhy+WlOIyBoM6uGHh1OjEB3k2eEXvtruTaMtj9qXV6ZWbJTIWpy8VIXc4mrEButWSI6IzOOmd3YiZ/lESGF7y9uYsCFz2JdXhn15ZRqXm7R1S/9wSCUSOEgBB6nk6uOWP7dnF6vUDAHEn8ljjyw5YQOACRsL8OQ3hzo1s9xSCYKAxMWb0Hi1jAaRtWh9HR4VF4jPZg4yaAyjJW0SInzwwT0D0CwX8Oiag8YalshsmLAhsjzv351k1GmnRKTd/vwyKBQts8DkggDF1T/lckFjHRUyPz8PZ5TVNIodhlZ9w32QVcBZEGKaPrib2CGYhEQiwfv3JOGfn3OSAFmfVVP7GVT0vJXRkjZB3q4Y3ycEADCp3yRM+2A39uWx5TJZDk8XRxxdPF7sMMgChfq4orCiHvcNlaGbnzum9A9Hs0KBZrmAU5erEBngAR83J/x6+CKiAj1x6EI5xvQMRmOzAqG+rnBzcoCbkwMUgoC6Jjk8XRxVlh9UNzRDKgHcndkZgq7ZO38MBq/IFDsMsjO/PT4c3f3dUd+kQICnM5rkApwd9Wv80NrRj1q6AR19cTzKahqRumor9Ol38dOjwxDs7YIATxc46dF8Q9/lW8cWt8S3Zt85/N+2XJ3P+2bWEPQI8ICvuxNcHLXXd2lr/o9ZWLP3nF4xWprZ42IxpleQ1uWE+v4MDi4Yh6r6Jrg7O2Lg8s06n/fGHQkYERMId2cHvocAMLpnsNXM8KtuaEb25Sr89HcBFALg6eqo1/1H1mN0zyB8MiO500uP22Oyu//bh1Lw3PdH8L/95zXu13bD7T9bhv/uyccb0xIhlUqMtq74xJIJcHNuecGx5LXKZDpM2NiWPfPGwMvVEY4OEvyVdwXd/d3h6uSA4qoGRAd56v0hRJswXzfl43tSZACAodGa6zhIIYGXhjfenmzjSRoEe7uKHQLZuM9nDkRaXJDGfV5X//s5O+r/JtOeEzbB3i5YcGNv3NgvTGW7h4sjRsQE4o/TxVrPfXpsLO4f0cOkrwl+Hs5YcGMv3NI/Qi0+RQd1LJ8cE4OZw2Sd7ly0dHK81SVtXJ2k+PGRYegV6m2U8V69PQG3JYWrfIjz83BGRV1Tu+c9lBqJ+4bKEOrj1u5xZPk8XRzRv1sX9O/WRbntuQk99R5HoRBQVtuI8tpGRAddWxUgVwjYeOwSHvmKK1zEMCImAP+9f7DZrmfSTxIvT+2nNWmjTbLMD8kyP6Nc/5fHhiHIyxUhPnxjbK+6+blj+79HiR0G6eGTGclYl3UJr97eDxKJBE1yBT74IxePjoqGRCLBgfwr6BXqpfKN0/CYa0mUQC8XMcImIrI42hI2pJ8RMQF4584keLs5tvtN6tPjYtWSNtnLJ8JRKjHpN7Dhvm5Y9+QIeLu2H9/UpAh88McZlW2nlk2As4PUqPE5SCU4vOgGZBwpxF1Xl+qcLanB13+dw/bTJThRWKl2ztZn0hDo5QJPF0eU1TQiaekmPJwWpfyQ++7WHOzOLcXOnBK1c29LisD4PsGobmjG7G8PA2hZiuDp4oiHO/hA++5dSYgO8kRciH5L5Cf1DUVGVqHKtmOLx8PNyaHdwvluGjpSHV50A7xcHM3aPpish1QqQYBny4y86zlIJUjvG6pxIoQgCMgqqMDN77A5kCmIMdvL5F//RgZ6qBWuy14+0dSXBQD0i/A1y3XIcv3xbJrYIVAbOcsnwvG62SjHLlbgl0MXcamyHm/9oz8AYEyvYOV+JwcpHhsdo3w+oPu1byyIiIiMbcucVHy19xw+2ZkHADp/m5rY1RdrHhiMuz7eCwD48v7Bei170tWOf4/C53+eVcaXOSe13fbUrWKCvfC/WUNwx4ct7bjfv3uAXsue9OHj5qRM2ACALMAD8yb2wuSESqSv3oGNT41EXIgXPtmZh2HR/ugR4KE81s/DWe1D0aOjovHoqGi8vuk0/m9bDrKXp+NieR1e3XgKq6b2UyY8WpM2tyd3BXDtw5VcIeDTnXm4J6U7XBylWPzrcUwdEIH4cB+D/n6v3p6APuHeeGXDKQDAzudGwUOHGVTOjlL89OgwZafdBTf2ho+b/c5cI9OQSCToF+HbqeRCXaMcvRbq3p7eXpgrj9GW0Vp+a1PT0Iw+izaqbNPnP1BnljJpu86Xe/Lxwk9HDR6XrIcxM6GW2h4RsIyW36N7BmHLySKN+6QSYGRsIF65rR+CuCSEjMxS701dXjO5XJdMSezaD9Z8b5J1ks3NwNAof6x5cIjYoVg03pukj22ninDfZ3+JHYao0vuG4L3pA0x+HZO3/NZGl6xze0bEBGBHtvpUyI6svrO/1n2TE8OYtLEDPzycInYIdiF3RTocpBKcvFSpMWlzetlEo9WXISIiItLm2OLxcOF7DiKjSosLavdLgGa5AnvOlKG0pgHfH7ig9tl9WnIEvt1/wdRhmsTYXkH4eMZAscMwfdKmrd+fHqnX8bf0DzcoaXNzQpjWfSwKah/6hBk25ZV09/7dA5TtmHuGeCN3RTqi5q9T7nd2lDJhQ0RERGbR2S+LiUh/jg5SZX3JyYnhGo95ZWpCu2McPHcFt773p9FjM1RUoAcy56SJHYaSWX6zPZQaqSx8FhusX6GvCfEhyvWpxmLKYnBkOXRZ302Geyg1EuP7BKtsc2hTRO/0MnHWfRIR2btnx8eJHQIREZFOkrp10WlJ79GCCtz49k6jXfe96UkYEumP7aeLMSE+xGI/P5olaTNvYi+MiguCowFV0V0NKJDGD4pExvVIWhTe25arfP7uXUmY1C+03XPWPTHC1GEREZEW/buyGQMREdmW+HAfveq1CYKAHvOurQJYfHMfzBgqUztuSn/NM4QshdnmEA6J9DfoPEPa33E5BpFx3D2kG+qbFHh6XCymJXdF2qvbAEBths31hkcHYGdOCXqHeZspSiIiaivQy6Xjg4iIiGyYRCIRvSi/Mdjcws/Xbm9/vRzZlldu64d//3BE7DBs1rIpfZWPZQEeOv3S+3hGMmoamk0ZFhERdSBGz+XoREREZJlsbkrKbQMixA7BrPqEeWOgrIvYYYjm9mTNP++0uEAzR2J7HkmLMug8VycH+HvyG14iIiIiIqLOsqmZNrPHxXZ6DGcHKRrlCpVtQV4uKKpq6PTYxrL/hbH4Ync+UmMDMaB7S8Lm27/Om3TGyROjo+HoIEVSty6obmjCz4cuYv3RSzqde29KdyRE+GJyYhikEgm++es85v+YpfO1V97aF/PWZmFacgTuTZFh0/HLyC2uxopb+2otKv2pBbRms3b/ntBT7BCIiIiIiIjsmk0lbZ4YE9Op81uXfjQ2K3C5sh6BXi7KCtI9F6xHfZOivdPNJsDTRS1BNW1gV0wb2BWNzQpcuFKLvJIaDI8JwLqsQoR4uyElqqWm0IH8Mrg7O2JXTgne3pKDiromrdf5fOZApMUFadw3Ib6lCO2g5Zu1JrTuHNQNK26JV0us3DW4G+4c1BXF1Q3wdnVCZX0TVm04hayCCjycFoXeod6IDvJEs0KAk4NUOVar+HDVVt4pkf7YfaZUZZshtZDomidGR4sdAhERERERkd2zyqTN2Zcm4Ymv/8Yvhy8abcz3picpHzs7StHVz11l//HFExA5f13b08zqlv7heOOOxHaPcXaUIjLQE5GBnlfPUV0+NKC7HwCgV6g3HhgRiar6Jvxy+CJigrzQM9QLbk4OKKluQKiPm04x7Xt+LIoq6zFoRabK9pzlE+HooH31nUQiQZCXK4CW5TSrNNQicnLQLfHy9awhuPW9XThyoQJ3DuqGpVPidTqPtBvUw7DC4UREZD67541GysotYodBREREJmSVSRsAWH1nf5WkzebZqZ0aL71v++2LpVIJDi4Yh6Slmzp1HUO8cUcC9uVdwZwbOr/8qy0vVydMH9xdZZuuCZtWQd6ueOW2fvhkZx7G9wnGmF7B7SZsTGHtI8PMej0iIiKxhfq44Y9n05C6apvK9twV6eIEREREREZndUmbIZF+ysdnX5qE/NIaeLs6oYuHs17jPD02Fm9sPg0AeFXHjlN+Hs7IW5mu0utdVxP6hKBHoAc+3H4GcoXQ4fEHXhirUsy17YwZS9O6PIuIiIjMp7u/h/LxuN7B+OjeZBGjISIiImOziqTNF/8chHs/3QcA+GZWisq+69+s6OPJsTHKpM1UPTpOSSQS7HxuFDKOFGLl+pNq+2/sF4rfjhQCAM6sSMeiX47hnpTuiL3aevO5q8Vdsy9XYdwb2+HsKMWPjwxFnzAftbGIxNLVT7/ZVkREJJ756T2xYt1JfHjPALFDISIiIiOziqTNyNhA/PrYcJy+XGXUcVsLD+sroos7HkqNwoT4EKSu2obHR0fjqbGxKKluQLC3K169XY4muQJSqURrfZWYYC+Dr09kaoYmQ4nIfozpGYTMk0U4tHAcTl2qwh0f7hE7JLs1a2QUZo2MEjsMIiIiMgGrSNoAQN8IH/SNsKzZKN39PXBs8Xi4OztAIpEg2PtaYd3WrlNEYusd6o3jhZVih0FENuDsS5Ow/XQxvN2ckNjVV7nd0l6f7UHeStatISIisgdWk7SxVB4u/Ccky9ZxBSVVbkw4ElE7RsYGqm1zlJq3+Ly9O7FkAiQS3TosEhERkXXjuywiGycIuqVtnhobAwAI9HLp4EgiIlXOjnw7YS55K9Ph5szkOhERkb3guywiO/X3gnG4/ovamxPCAABSfnlLZLMCPPXrtEiW5exLkzjDhoiIyM4waUNk47RNtOni4YzHR7fMrnlqbIzyg4CTA38tENmq/S+MEzsEIiIiItIDP50R2TiFjsujZP7ueDgtCh/PSDZxREREpAt2mSQiIiJW0SWyce0lbbr5uQNoaWMvkUjw3ISe5gqLiGxMqI8rCivqxQ6DiIiIyKZwpg2RHbstKRxrHhiM25LCxQ6FiMzkwRE9TDLuj48MM8m49urMipaW3vPTW5Lp++aPETMcIiIiEgln2hDZuPYWR0kkEgyNDjBbLEQkPjdn07z0h/i4mmRceyW9WhV+1sgozBoZJXI0RETVfMJBAAAGoElEQVREJBbOtCGydRqyNv+bNcT8cRCRRXB14ku/pWMtGyIiImrFd25ENs7PQ73F7+BIfxEiISJLMCNFZtB5PQI8OjyGCSEiIiIi4+K7KyIbd1NCmNghEJEF8XAxbHlUsLdLh8fc0p/1sTpry5xUsUMgIiIiC8KkDREREXXoodSO66o8OiraDJHYtshAT7FDICIiIgvCpA2RjRPatPweGsWlUUSkv9SYwA6PiejiboZIbFdrxygiIiKiVkzaENmR6CBPrHmQRYiJSH+t3YzINA4tHMd/YyIiIlLDpA2RjXO/rr3vsinxIkZCRETa+LqrF40nIiIiYtKGyMY5OV775jY6iLUSiIiIiIiIrAWTNkRERGQ0dw/pJnYIVuE//xykfPwYCzgTERGRFkzaENk4f49rbXodJKyXQERAjwAPk409b2Ivk41tS/qG+ygf3zdMJl4gREREZNGYtCGycSNjr3V86eLBmglE1mDbM2mYPrhlxspAWRejj3/fUJnRx2zl4eLY8UEEv+t+Hwd4urRzJBEREdkzJm2IiIgsjCzAA8tv6YuP7k3GVw8Yv+PbuN7BRh+TdHdiyQQAQN7KdOStZJtvIiIi0o5JGyIiIgs1rncwnB11e6nOnJOq87jB3q56xaFvnZqlJupU99yEniYZ19zcnB0AABKJBBIuWyUiIqJ2MGlDRERk4Q68MLbDY6ICPfHxvcm4LSmiw2MdpPolClIiA/Q6/q5B3SDzd9frHF2kxQV2fJCZhPnol/giIiIiMgSTNkRERBbkpoQwtW3+ni5YNbVfh+eO7R2M16YlGD2muBBPvY53kEqw7dlRRo/DRcdZR531+OiOuzkF6jFb6fOZA5G7Ih1/zh2Nk0sndCY0IiIisjNM2hAREVmQSC2dnW5P7orUWNWZJhufGomErr746/mOZ+KI4YeHhxp1vMhA/ZJHhuri3n7R9u7+7ng+XXuXrF8eG6byPC0uCA5SCcJ83eDq5GCUGImIiMg+MGlDRERkIdLiAjGjnc5O//nnIHw+cyAA4L3pSYgL8cLPjw5DoJdldh8a0N34na/MwcOl/cTKvIk9ERfspXFfWlwg+kX4Kp//KzXKqLERERGRfWFfTiIiIgvx+cxBHR6TFheEsy9NaveY7/+Vgqnv7273mB4BHsgrqdEproguhtenSYn0x+4zpQafL4ZxvUPw3A9ZWvdPiA9V29b2Z5K3Mh3HCyvRJ8zH6PERERGR/eBMGyIiIhuTLPND1os3qGwbFu2v8nyLHt2mOrOk5+tZQ9A3vCVxEewt/oygUR0UM3ZykMDPo/3lUW3NGRertk0ikTBhQ0RERJ3GmTZEREQikUoAhWCasb1cnZAWF4htp4oBAF89MERlv0QiweKb+2DRL8faHSdvZXqnY/n18eHKx4IgoLSmESNf2YraRrnWc6ICPeDm7ICjBZUI9XHF1mfSAAAnlkxAr4UbAAD7nh+D3KKW2UI9Q7zg4+aEuiY5+izaCACYkdId/9mdjyAvF7xxRyJigjwR5O2KitomJCz5XeV6vz0+HOfLajGxb8ssmj3zxmDIykw8Oz4OD6dGobCyHje8/gfe+kd/5TkdzXgiIiIi6iwmbYiIiERy56Bu+GrvOQDAj48Yt2gv0LLcqqC8Dme1LIOaMVSGe4Z0BwBI9WwDbiiJRIIATxccXzIBjc0K1DXK4ePupPP5bs4OKsmSIC/VLk4eLo4q+xdPjlcbw8fdSWPCJT782syYEB9XlWPCfd1wbAk7PxEREZF5MWlDZAdSIv31nu5PRKa3dHI8eoZ4IaeoGv27maZob7ivG8J93bTuN1eyRhNnRymczdTGm4iIiMgaMWlDZAe+njWk44OIyOykUgnuSZGJHQYRERERWSh+vUVEREREREREZIGYtCEiIiIiIiIiskBM2hARERERERERWSAmbYiIiIiIiIiILBCTNkREREREREREFohJGyIiIiIiIiIiC8SkDRERERERERGRBWLShoiIiIiIiIjIAjFpQ0RERERERERkgZi0ISIiIiIiIiKyQBJBEHQ/WCIpBpBvunCILFp3QRACxQ5CE96bZOcs8t7kfUnEe5PIQvHeJLJMGu9NvZI2RERERERERERkHlweRURERERERERkgZi0ISIiIiIiIiKyQEzaEBERERERERFZICZtiIiIiIiIiIgsEJM2REREREREREQWiEkbIiIiIiIiIiILxKQNEREREREREZEFYtKGiIiIiIiIiMgCMWlDRERERERERGSB/h+deLCzg5ujWgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hcZd3/8c93SzY9IYQWSiJdQEEMoj6gPMAjIvCIDZUmWHn0Z8MGCghKEwsiICigdARRsISOhF5MMPRACgnpPdmS7fP9/XHfszk7mdmdrXN29/26rr0yM6fds5l7z5nPXY65uwAAAAAAAJAuZaUuAAAAAAAAADZHaAMAAAAAAJBChDYAAAAAAAApRGgDAAAAAACQQoQ2AAAAAAAAKURoAwAAAAAAkEKENgAA9DEzO8XMvMDP4SUoz7lm5n18jOkdvOfkz5S+LEd3mNkHzGyGmW2MZdyz1GUCAABDU0WpCwAAwBDyKUmLc157tQTluFbSfX18jK9KGpt4frakAyT9b856y/q4HN1xvaSVko6SVC9pQSkLAwAAhi5CGwAA+s8sd59bqoObWZW7N7r7Ym0eHnV3n5WSWty9Xc8dd381Z71Vkprc/ZmulLU3ytgVZjZc0tskXevuj/TC/kxSpbs39bhwAABgyGF4FAAAKWFme5jZXWa23szqzewZM/twzjrXm9mCPNtON7PpieeHxKE9Hzeza2JosiIu22x4lJlVmNmZZjbbzBrNbKmZ/TKGGNl1psR9ftXMLjGzpZIaJY3v4fs+Le73ffH9b5D0aFyWfW1x/J3MNrPzzKwqZx/PmNlDZnakmc2KQ5teMrOjctbby8z+bmarzKzBzBaa2e3Zcij0rJGkC2KZZie2PTXuszFu/0cz2zpn/8vN7Nr4nt6Q1CzpMDPbM+7v82b2czNbaWbVcR/D4/KHzKzWzOaY2WeKLTcAABi86GkDAED/KTez5LnX3b1VksxskqQnJNVI+n+SNkj6mqRpZna0u9/bzWNeLuleSSdJGt7BejdLOkbSzyQ9Jentkn4qaYqkT+Ss+yNJ/5b0ZUnlkhq6WbZct8dyXBH3q3j8f0u6TlKtpHdIOkfSZEmn5Gz/dkmXSLpI0jpJP5D0VzPb3d0Xxl4v9yr0MvqKpDWSdpB0dNz+r5Jel/QvSb+VdJNiiGNm35B0WSzf9yXtJOlCSe8xs6nung17JOlIhaFgZ8djzNWm3/2PJT0o6URJ+8ayuqQDJV0Zy/8NSbeY2Ux3n1NEuQEAwCBFaAMAQP+ZnfP8SUkHxcenS9pC0vuyQ6jM7B6FOW8uUPjS3h3PufsXO1rBzA6W9GlJn3P3G+PLD5nZWkk3m9l+7j4rsckKSR/LHRLVC25x9x8mX3D32xLlNIVgq17S1Wb2dXevSaw+UdL73X1hXP8lSYsUQqdfSdpeIWz5krs/kDxuPNZKM9sYX1uUHcplZsMUwpb73f2kRHnmKQQwJ0n6fWJ/YyXt6+6rE+tmJzN+JfH/8YCZ/bekUyV9yt3vjOvOUvgdf1whROuw3AAAYPBieBQAAP3nYwo9MLI/X0gs+4CkZ5Jz3sReOLdJ2s/MkpP6dsVdRazzYUlNkv4Sh0lVxB5B2YDgAznr390HgY2Up6xmtkUcpjVfYShWs6RrFHri7JKz+ivZwEaS4tw96xUCD0lartBb5Rdm9gUzy92+kH0kTVDoZdPG3R9SCFc+mLP+48nAJkdu+JYN8u5P7HelQk+hHXtYbgAAMMAR2gAA0H9edvcZiZ/XE8smKP+dlJZLMoVeON1RzN2ZtpY0TGH4UXPiZ2VcvmU39tkd+fZ7s0JPlEslHa4Qdp0el+UO91qbZ/vG7Hru3iLpUEkvSvq5pLlmNtfMvpBnu6QJHZRveWK5Olgva13O8yZJrTk9hrKv97TcAABggGN4FAAA6bBW0rZ5Xt9WYc6TbCDRoBCw5NpSYa6TXMX0iFkT93twgeVLu7HP7sidHHmMwvww33f3yxOvH9DtA7jPkXSimZVJ2k/StyRda2bzO7hbVPZ3X+j/5+Xcw3S3fIV0s9wAAGCAo6cNAADp8Kik95rZlOwLZlauMNfMfxI9MRZK2sbMJibW20XSHj049n0KvTrG5fQEyv7khjb9ZaRCL6Pm7AtxXpvP9XTH7p5x9+clfTe+tE8Hq7+sENzk3tHpMEnbKN7pqj90sdwAAGCAo6cNAADpcKnC3ZAeNLMfS6qW9FVJu0tK3rb6zwp3dbrFzH6lMPnumZIKzaHSKXefbma3Sboz7vM5SRmFOzd9RNIP3P2N7u6/B+VaESflPcPMVivMT/NlhffcZWb2HoU7Pt0haZ6kSklfVBiKNL2DcjSZ2XmSLjOzPyrc5WonhQmiX1XOXDe9rbvlBgAAAx+hDQAAKeDuS83sIIW7BV0lqUrSLElHuft9ifXmmtknJZ0v6W5JbyjM8fLDzffaJSdK+rqkzyvc0rtR0gKFCXJX9HDfPfEphdtv/05SncLEzNcr3J67q5YozDfzPYU7MtUrzBPzEXd/qaMN3f03Zlaj8Ls+XiFUm6YwdKu+o217QbfLDQAABjbrm5s/AAAAAAAAoCeY0wYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG1SyMx2MrNaMysv0fFrzWznUhwbAIDeYmZTzMzNrCI+n25mXyx1uYDBwMzONbObe7D91WZ2dm+WCQAGoyEf2sQLuHVmVlXCMiwws8Ozz939LXcf7e6tpShPPPb8WLbrzez8UpQDGMhyvywC6BkzO97MZsSGhWVmdq+ZHVTqcgGDXV/VPXc/zd1/2gvlO8TMFvd0P8Bg0VEDRW9cn5rZKWb2RPdLiK4a0qGNmU2RdLAkl/S/JS3MIMUXVvSHGHzWxwvKdWY2zcx2LHW5APQOMztd0q8lXShpG0k7SfqtpI+WslzAYNdXda9UvcmBtEhcu9aY2Xoze8rMTjOzIf39HPkN9Q/FyZKekXS9pM9lXzSzEWb2SzNbaGYbzOwJMxsRl/2vmb0SK9d0M3t7Yjs3s10Tz9t6qZjZRDP7Z9xurZk9bmZlZnaTwgnwH/EL5/fzdOeeYGZ/NLOl8Qvp3Z29sbifZXGbLybLlpu+5qal2XXN7MuSTpD0/Vi2f8TlZ5jZvPhH5lUz+1jOvp40s0vNbK2kc7vyHwL0wDHuPlrSdpJWSLq8xOUpyIKh/vcXKIqZjZP0E0lfc/e/unuduze7+z/c/XvxXJo9L60xszvMbEIR+y0zs7PiuX6lmd0YjwVAnde9POv/2cyWx2vnx8xs78Sy683sKjO7x8zqJP13znXyIWa22My+E+vjMjM7NbF9lZn9wszeMrMVFoZWjTCzUZLulTQpXqvWmtmkPv/lAL3jGHcfI2mypIsl/UDSdaUtEtJoqH9pOFnSLfHnCDPbJr7+C0nvlvR+SRMkfV9Sxsx2l3SbpG9J2krSPQphy7AijvUdSYvjdttI+qEkd/eTJL2l+IXT3S/Js+1NkkZK2lvS1pIu7ehAZvZhSadLOlzSrpI+WET5NuPuv1f43VwSy3ZMXDRPoYfSOEnnSbrZzLZLbHqgpPmxrBd059hAd7l7g6Q7Je0lSWZ2lJn9x8yqzWyRmZ2bXdfMhpvZzfGL3noz+3f270AMIOfHcPJNMzuho+OaWXm8oFxtZvMlHZWzfLqZXWBmT0raKGlnyxkaaYn5ARLh7amx3OsstMAcYGYvxvJe0Tu/NSDV3idpuKS7Ciz/hqRjFc51kyStk3RlEfs9Jf78t6SdJY2WRJ0CNums7uW6V9JuCtd/zytcQyYdr3BdOEZSvqEV2ypcW24v6QuSrjSzLeKyn0naXdJ+Cte220s6x93rJB0paWm8Vh3t7kuLLC+QCu6+wd3/LunTkj5nZvuY2bjYmLAqNi6clW3ws5z5pCz/kKddzOy5GKL+rVBjRjzOdTEoXWJm51txPeHMzC6P+59tZoclFpxqZq/Fa+j5ZvaVxLK8HRnish/EMtSY2evJfQ51Qza0sTAWd7KkO9x9pkIQcXz80Hxe0jfdfYm7t7r7U+7eqFCRprn7g+7erBDujFAIdzrTrNADYHJspXjc3b2Icm6ncDI6zd3XxW0f7WSz4yT90d1fcfeNCsFKr3H3P7v7UnfPuPvtkuZIek9ilaXufrm7t7h7fW8eG+iMmY1UqKvPxJfqFALa8QpByv+Z2bFx2ecULhB3lLSlpNMk1ceWu99IOjK2gLxf0qxODv0lSUdLepekqZI+mWedkyR9WeGCdWGRb+lAhYvgTyt0Uf+RQiC7t6TjzKxboSwwgGwpabW7txRY/hVJP3L3xfFcfa6kT1rnw3NPkPQrd5/v7rWSzpT0mSK2A4aKzupeO+7+B3evSdTDfXN6r/3N3Z+M148NeXbRLOkn8Vr3Hkm1kvYwM1M4x37b3de6e43CcK3P9OC9Aanj7s8pNPIfrNBjfJxCo8IHFa5lTy289WZOVvhOO0lSi8J1bT43xOW7KlzDfkhSMRP2ZxvpJ0r6saS/JoKhlQrXxGNjmS81s/3jsrwdGcxsD0n/T9IB8dr7CEkLinyvg96QDW0Uvqw94O6r4/Nb42sTFVoV5uXZZpISX7TcPSNpkULa35mfS5or6YGYOJ5RZDl3lLTW3dcVuX62nIsSzxcVWrE7zOxkM5sVE9L1kvZR+L31yfGAIt0dP4/Vkv5Hoc7J3ae7+0vxIvFFhd5y2aCjWeGidNcY0M509+q4LCNpHzMb4e7L3P2VTo5/nKRfu/sid18r6aI861wfw9SWGPwW46fu3uDuDygEULe5+0p3XyLpcYUTLDCYrZE0sYMwZbKkuxLnpNcktSpcDHak3Tk9Pq4oYjtgqOis7rWJvU0vtjBMsVqbvmx15fpwTU5AtFGhB9xWCj3OZybq+X3xdWCwWaow0uPTks6MQegCSb9UaPwr1k3u/nLsjXa2QkNfux40sXf5kZK+FYc/rlQY0VFMILpS4bq3OTbiv67Yy9zdp7n7PA8elfSAQhAlFe7I0CqpStJeZlbp7gvcPd/38SFpSIY2FuanOU7SBy2MvV0u6duS9lX4EDVI2iXPpksVLg6z+zGFUGVJfGmjwkkla9vsg1jhvuPuO0s6RtLpiS5fHfW4WSRpgpmN78JbXCZph8Tz3AlZ6wqVM492ZTOzyZKuUUhCt3T38ZJelmSFtgH6ybHx81il8Pl81My2NbMDzeyR2L10g0JvmuxF5E2S7pf0JwvzP10STxR1CifL0yQtszCx8Z6dHD83LM3Xk6Y7geaKxOP6PM9Hd2OfwEDytMJ5+dgCyxcp9Iobn/gZHoPNjrQ7pyvML9ei9nUMGMo6q3tJxytMTny4Qu+AKfH13rg+XK1wvts7UcfHxXnserJfII22V2hAGKbNGxaK6SiQlXtNWqn2IaoUzoGVCte62UD0dwpDHDuzJGfUyEKFa2GZ2ZFm9kwc/rRe0kcSx87bkcHd5ypMQXKupJVm9idjfqo2QzK0UTj5tCrMebFf/Hm7Qqv1yZL+IOlXZjYpthy8z8Itwe+QdJSZHWZmlQrduxolPRX3O0thiFW5hXll2oYtmNnRFib3NYWeAK3xRwoXiDvnK6i7L1MYI/xbM9vCzCrN7AOdvL87JJ1qZm+PQ0XOyVk+S9LHzWykhcmJv9DBvnLLNkrh5Lgqvq9TFXraAKkQe8z8VaF+HaTQi+7vknZ093GSrla8iIwJ/3nuvpfCEKijFf4GyN3vd/f/UQhyZyuElR1ZpvYB6U75ipfzvCsBKjAkufsGhfPYlWZ2bDx3VcaLwksU6vQFsVFBZraVmRVzZ5vbJH3bzN5mZqMVhlvcXuxQEGCwK6LuJY1RuCZeo3Beu7AXy5FROAdfamZbS5KZbW9mR8RVVkja0phIHAOcmR2gEMzcrdAjJbdhIdsYUcz1Y+41abNCAJq0SKHeTkwEomPdfW91bvv4vTZ5jKXxO/NfFKYR2SY2qN6jTdfeBTsyuPut7p6dwsQV5rKChm5o8zmFOV/ecvfl2R+FCQhPkHSGpJck/VvSWoUPTJm7vy7pRIUxhqsVPmjHuHtT3O8342vr436Sd3naTdJDCuNzn5b0W3efHpddJOmsmHB+N095T1KoaLMVuqJ9q6M35+73KoxbfEQhyXw6LmqM/14qqUnhJHeDNp8oLuk6hW5q683sbnd/VaF73tNx+3dIerKj8gD9yYKPStpCYZjEGIUhhg1m9h6F1sDsuv9tZu+I3UWrFepZq5ltY+FOcaMU6k2tNoWshdwh6RtmtoOFiROLGQI5S2EOjUozKzQPDjDkufuvFCbYP0uh0WCRQo+6uyVdphDMPmBmNQrzWR1YxG7/oNDb7jFJbyr0KPh6rxceGMA6qXtJNyq0tC+R9Ko2zSvXW36gcE37TBx+9ZCkPWIZZyuEsPPj9Sqt8xhQzGysmR0t6U+Sbnb3FxSuKy8wszGxUeJ0SdnJh2dJ+oCZ7RTDyjPz7PZEM9srNuD/RNKd7t7uWjZ2DnhA0i9jGcrMbBcrbr7ErRWueyvN7FMKHSDuUeghVKXw96LFzI5UmCcn+17zdmQwsz3M7NAY+jQo9K7r7Np7yDDvfC5cDHAWbkv+sqQqWhAxGJnZAoV5KFoVkvmFki5y91vM7JMKQeMESY8qjLMf7+4nmtlnFbph7qAQzNyucFLcSuHEuV/c3yxJX42hZaEyVCh0+TxZ4ST0C4UguNLdW8xsusKJ+NrENjsrXGjuHcs2T9KEWLYpCl8kK7P11swWSzoxG/hauHPAbHc/v3u/OQAAAPS3xLVri8I8iq8qhDJXu3trbAC8XGFC3gaF3mbnx55nMrMrFToJrFboYPB7tb/mfFrSYZL2VLjGPNXdV+deX8bQ52KFjgdjFCYX/pm7/6mDsp+iMDn4fxQ6F6yQ9P/i/Isys68p9NKrkvQPhSFYc939LDP7tkJHh60U7vb4O3f/qZm9U9K1CuFPs8JIli87d4OTRGgzaJnZxyRNUxjOdIOkjLsXMyYZAAAAAACkwFAdHjXgmdkPzaw2z8+9cZWvKHRLm6fQ++D/SlZYAAAAAADQZfS0AYAimdnVCvNa5brZ3U/r7/IAAAAAvY1r3nQhtAEAAAAAAEihLg2PMrP7+qogQNql+fOf5rIBfS2tn/+0lgvoL2mtA2ktF9Bf0loH0louoL8UqgMVXdnJ2LFjj5g6dSpdczBUVZe6AIVQNzHEpbJuUi8B6iaQUtRNIJ3y1s0uhTa77babZsyY0TvFAQYYM5tT6jIUQt3EUJbWukm9xFBH3QTSiboJpFOhusndowAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAqefuWlHdUOpiAP2K0AYAAAAAkHo3P/uWDrzwYb26tLrURQH6DaENAAAAACD1np63WpL05uq6EpcE6D+ENgAAAAAAAClEaAMAAAAAGDBcXuoiAP2G0AYAAAAAkHomK3URgH5HaAMAAAAAAJBChDYAAAAAgAHDGR2FIYTQBgAAAACQfoyOwhBEaAMAAAAAAJBCvR7arKxp0KxF63t7twAAAAAAcO8oDCm9Htp85LLHdeyVT/b2bgEAAAAAQxijozAU9Xpos7q2qbd3CQAAAAAAMOQwpw0AAAAAYMBwbh+FIaTPQpsFq+u0fENDX+0eAAAAKLl1dfQyB/qLGQOkMPT0WWhzyC+m670XPdxXuwcAAABKaubCtXrXTx/UPS8tK2r9Sx98Qzc+vaBPywQAGFwYHgUAAAB0w4uLN0iSnp2/pqj1L3t4js752yt9WSQAwCDTq6ENw6EAAAAAAH2BwVEYino1tPnSjTN6c3cAAABAarVmwmSo1Q0tJS4JAGCw6tXQprqhuTd3BwDAoHft4/N1/ZNvlroYALohO5fNXf9ZUuKSAEMLN4/CUFLRmzujuxoAAF1z/rTXJEmn/NfbSlwSAF2V4Ysj0K+yN4/61u2zlHHXx/ffobQFAvpBr/a04RZsQPq0ZlxTzpimax+fX+qiAAAwqJSXce0L9Kf1GzeN7Dj9jhdKWBKg//RuaNObOwPQK5pbM5KkS+5/vcQlAVAMJvUHBo4KQhugXz36xqpSFwHod9zyGxjksh3gnMG/QOo98MpyvfeihzX99ZWlLgqAIlSUE9oAAPpW74Y2nLeA1LFYMRl3D6TbPj++Xz+86yVJ0ouLN5S4NACKQXsI0H/y3fRmZU2Ddj5zmv7z1roSlAjoH30+PGrGgrXa2MRtEIFSy3BlCaRabWOLVtc2SZJa2m4j3Nx2kTp7ebWmnDFNc1fWlKyMANp7at6aUhcBGDLue2n5Zq89PW+NMi6d949XtXR9fQlKBfS9Xg1tyvJMRPzJq5/Wt2+f1ZuHAdAFrvDlj8wGGEBihX3nuQ/onec+IEn6xwtLJUn3vbz5RSuA9Ju3qrbURQAGtJY83cavmj5PkjRr0Xq9/+J/9XeRgH7RL3PavEQ3bwAAitaaJ2Utjw0j2YvWx+es0lNzV/druQB0H3e6AXqmJZPZ7LXZy9v3Pl20dmN/FQfoN70a2uRLPyWpOeNydzW2tKqhubU3DwmgE/SwAQaeW559S++76OF2r5WXhVN2Jp5rT7ruOR1/7bP9XjYA3fPCovWlLgIwoLW0dn5Re/Alj2jxOoIbDC69HNpsnn5K0qqaRr3tzHu0x1n3ac+z79tseSbjqm1k3hugLyTr1qK1G9XKjMRAKrRmXDMXrs27bP3GZi1L3Pr76kfn6Z8vhuFRc1fVak1tY9uyo37zuKa9uKxtn/VNNI4AaTNjQf66DqB4bxXZi2Z54vwJDAYVvbWjBavrtGhtcZM/TTljmrYYWal1G5s1dniFqhs2fakcO7xC+0/eQofsvpVqG1s0buQwzVywVntPGidJenLearlL+++0hRat26h3T95C5WWmqooyNbZk1NSSUUNzq1bWNGpVTaPetdN4/eX5JXrfzltq70lj225/bDLNWVmj0VUVqm9q1dZjqzSqqvu/DuvmrbPyTAPUhWN2T/Ire1/f8Ksn76+/fXD3rTViWHmpi9HrPnjJI22PD048Pm7qDsq4tOe2YzSsokwbm1o1bkSlRlSWq7ys8/+4zv5v8/Xwyd2mUL0x42Z0ndl0K/ee7yPtPrTXtior4jM50Hz298/ouSK/yF187+y2x/e8tFz3JCZjfGVptb526/P62q2b1v/01B1V3dCstXVNmrzlSN0xY7G+ffju2n2b0frL80v05upafWrqjho/olJLNzRot61Hq7LctLauWWYh/Bk3olKVidsZZ1za2NSq6vpmjR8Z/lZI4XNU7OewJ5+5+uZWDa8oHzCf28FuWEWZDt1zm1IXo088MnulvnDDv3Xl8fu3vZb83LmHa6n1G9vfyebKR+bq5/e/rt+esL9W1TRq6YZ67bfDeGVc+tqtz7db99cPvaHXllXro/tt33a+29jUqpHDypVxqa6pRd+/80VJ0tcP3VV7bTe2rRzZ+patdlf8a65eXVYtSZo0brjOPnqvzepJcpt7Xlqmf8ag96oT9i+4bttzSbOXVWubccO15ahhhX5tcpeWbmhQbUOLths/XGOHF76uzh6jtrFFV02fp+8esYc6+jPvLjW0tGr5hka9beLIwiv2kPvAOTcWMmZ4pf5r14mlLkafuO25t4pa75NXP63tx4/Qie+drJ0mjFRTa6vKzGRmKrMwD2tf/jcP9M8Q+sZWY6r07skTurWteReu+KdOneozZszIu+yhV1foizfmXwYMBE+ecai2Hz+i4HIzm+nuU/uxSEXrqG6edN2zenwO815g4Jp7wZGqKC/cMTStdbOjeimFBgxgoJo4ephmnPU/Ha5D3QT6317bjdU93zy4w3UGat089BfTNX91XT+WCOg9h+65tf5wygEdrlOobvZaT5vD3r61LvzYO7TbNqO1y1ajVdvQomfmr9Fek8ZqwqhhWlvXpJaMqyLG6Bn3th4y9U0ZjR9ZqfUbm1VVWaaahhaNrqpQa8bbWvyGV5arqqJMdU0tamrJaNyISo0cVqGNTS1qbs2oNSONHBbWKSsz1Ta0aLZJsj8AACAASURBVGNTq0ZVlauyvEx1iSEiyZhqWHmZGlpa1ZpxDevgS0FHutvQ3ZMWcu/2UbtwjHiI3FbUYtPjgTaXylajq0pdhD5x3ecOUHVDs4ZVlGlkZbkqysviHFMZbahvVsZdJtOIynLVNrWosbm1re4V0tn/rSv0lMltmcxdJ3ef2c9af3y+B7Lc32V3WnQGUv0spufXQDTvwo/o1ufe0qtLN6i2sVXv3mm89txurIZVlKmizPT68hpNHF2lhuZWbahv1uzlNaqqKNO7dtpCo6sqNLyyTI++sUrjRlRq8pajNGZ4hUZXVWjZhgaNHV6h2sZwftxydJWWrKvXrluPVnmZKeOuDRubVV5mGjO8UtUNzRo3olLuoTdLmUnNra5RVeXt7grZ1JJRZXmZmlozqqrY/HxZzOewJ5+7jHveu1SiNCoGab2UpPkXfkTPzF+jLQr0Ksmer0ZXVWjEsHJVlJkWr6tXVUWZ1tQ1tdWnxes2aoctRqq8zNTY0qp5q2r1X7tO1JwVtRpeWab1G5s1afyItv21tLoqyi32CJAu/9dcHbH3Ntplq9F5e7Rl68OCNXV6ZPZK1Te36nPvn9LWC66Q6vpmPT5ntSrKTUfsvW2nvw8zaV1ds0ZXVaiivOP/95ZW18qaBm01pkqVRVxXNzS3asGaOu257dhO121pdVVVlvXJMO/B0MMmK9/f58Hinm8erOr6Zo0YVq6WVld9vGatbmjWsPIyDasok8lUUW7a2BTmUq0sL1NleTj3uYdeo315nTmQrq/Qv0b3ZFRPb/W0AQa7tLZKSNRNDG1prZvUSwx11E0gnaibQDoVqpuDN4oFAAAAAAAYwAhtAAAAAAAAUojQBgAAAAAAIIW6NKeNma2StLDvigOk2mR336rUhciHuokhLpV1k3oJUDeBlKJuAumUt252KbQBAAAAAABA/2B4FAAAAAAAQAoR2gAAAAAAAKQQoQ0AAAAAAEAKEdoAAAAAAACkEKENAAAAAABAChHaAAAAAAAApBChDQAAAAAAQAoR2qSEmU0xMzezilKXBcAmZvaKmR1SYBn1FhhAzGyBmR1e6nIAAAAUi9CmBOJFY72Z1WZ/JE3qwvZ8UQR6Sb4vcWZ2ipk9IUnuvre7T++jY7uZ7doX+wbSwMwOMrOnzGyDma01syfN7IBSlwtA+pnZ9WZ2fqnLAfQFM7vazM4uct2268WubNcfzOx8M1ttZsvNbKf43ba8wLrnmtnNHeyr7Zq8s3WHGr70l84x7v5Q9omZTSldUQAA6F1mNlbSPyX9n6Q7JA2TdLCkxlKWCxiqzOwgSZdI2ltSq6TXJH3L3f9d0oIBg5CZ3S/pWXc/J+f1j0r6naQd3L2lq/t199N6qYg9ZmY7SvqOpMnuvjK+PLqERRq06GmTUrmt/zlp42Px3/UxzXxfXOfzZvaama0zs/vNbHJ/lxsYbIocTnGCmb0VWxp+lNj2PWb2tJmtN7NlZnaFmQ2Ly7L1+IVYjz/dV+8BKJHdJcndb3P3Vnevd/cH3P1FM9vFzP5lZmtivbnFzMZLUly21sz2j88nxXUOSTz/e1xnrpl9KXvAeK6808xuN7MaM3vezPbNKdd+ZvZi7P1zu5kNT2z/pbjPtfEYkxLL3MxOM7M58Tx7pZlZYjnnYKRWIkS9XNIESdtLOk+9HKL2Vy9weptjALhe0knJ80R0kqRbuhPYlEIndW2ypDWJwAZ9hNBmYPpA/He8u49296fN7FhJP5T0cUlbSXpc0m2lKiAwxBwkaQ9Jh0k6x8zeHl9vlfRtSRMlvS8u/6okuXu2Hu8b6/Ht/VtkoM+9IanVzG4wsyPNbIvEMpN0kcLQ4LdL2lHSuZLk7vMk/UDSLWY2UtIfJV2fGKZ4m6TFcdtPSrrQzA5L7Pujkv6s8MX0Vkl3m1llYvlxkj4s6W2S3inpFEkys0NjmY6TtJ2khZL+lPOejpZ0gKR943pHxG05ByPtOgpRTzGzJ8zsFzF0fNPMjsxuaGanxkCyxszmm9lXEssOMbPFZvYDM1uuUF9lZkeb2azYaPGUmb2zswKa2bti0FpjZrdLSgaqmx3HEkOZE+slh5Fcb2a/NbN7Y+PIk2a2rZn9Or7P2Wb2rh7+XoFC7lY4Dx2cfSGeB4+WdKPlDP/rqNEgKbldol58x8xWxgbCUzsrmJmNM7MbzWyVmS00s7PMrCwuOyXWlUvNbK3iuTnPPg6X9KCkSbF+XW85U3iY2dvM7NFYpx9UuB5O7uOkePw1lmj0LHC898a/JevN7AUrMN/kYEVoUzp3xw/dejO7uxf29xVJF7n7azG5vVChNZGWPqBzyfq4XtJvu7j9efEC+AVJLyh8oZO7z3T3Z9y9xd0XKHSH/WCvlhxIKXevVgg0XdI1klbFC9Ft3H2uuz/o7o3uvkrSr5SoG+5+jaQ5kp5VCFB+JLV1xT5I0g/cvcHdZ0m6VqHlMmumu9/p7s1xv8MlvTex/DfuvtTd10r6h6T94usnSPqDuz/v7o2SzpT0Pms/fPlid1/v7m9JeiSxLedgpF1HIaokHSjpdYUvVZdIui7RQ2ClwhfNsZJOlXSpxZ5w0bYKX04nS/pyXPYHhXqxpcK57+9mVlWocBZ6od4t6aa4rz9L+kTOau2OU+T7Pk7SWfF9NUp6WtLz8fmdCn8jgF7n7vUKQ4NPTrx8nKTZ8XqxTZGNBoVsK2mcQu+5L0i6Mk/9znV53GZnhXPvyQp1O+tASfMlbS3pgnw7iNN8HClpaWx8PCXPardKmqlQ334q6XPZBWa2l6SrFM7fkxT+VuyQ71hmtr2kaZLOV/gb8F1JfzGzrTp5n4MGoU3pHOvu4+PPsb2wv8mSLkt86Vyr0JK5fS/sGxjskvVxvGJvmFyWmDzczHZKLFqeeLxRcTyvme1uZv+0MDlbtcIXuXatDMBgFkOMU9x9B0n7KFyY/drMtjazP5nZklg3btbmdeOauM3lMURR3H6tu9ck1luo9ue6RYnjZ7SpV05W3voa11mY2LZW0pqcfRfalnMwUq2jEDWustDdr3H3Vkk3KHxx3CZuO83d53nwqKQHlOg9ICkj6ccxhK2X9CVJv3P3Z2OvnhsUApNkeJrrvZIqJf3a3Zvd/U5JuXPt5B6nGHfFBpQGSXdJanD3G+P7vF0SPW3Ql26Q9CkzGxGfnxxfy1VMo0EhzZJ+EuvNPZJqFXp/52VhkuBPSzrT3Wtio+Iv1b7xY6m7Xx4bHYuta7nH2UmhZ+rZsc4+ptBQkvVJSf9098fiez5boY7nc6Kke9z9HnfPuPuDkmZI+kh3yjYQEdqkV52kkYnn2yYee571F0n6SvKLp7uPcPen+rSUwBASWxKyP28VsclVkmZL2s3dxyoMn8gd2wwMCe4+W2GM/z4KLYou6Z2xbpyoRN0ws9GSfi3pOknnmtmEuGippAlmNiax650kLUk83zGxnzKFlrulRRRxqUL4kt12lELL35KCW2zCORipVyhEjYuXJ9bbGB9mGyCONLNn4rCN9QpflJIh66oYimRNlvSdnB6sO6rjO6VOkrTE3ZPXuAtz1sk9TjFWJB7X53nOpKnoM+7+hKRVkj5qZjsrhBi35lm1mEaDQtbkzI+TbFDIZ6LCjQGS9atg40cPTJK0zt3rco6TXJ5sZKlTeM/5TFYIv5J/Uw5SCJeHBEKb9Jol6TNmVmlmUxXSyKxVCknkzonXrpZ0ppntLbWNVfxUv5UWQD5jJFVLqjWzPRXuopO0Qu3rMTBomNmecZz9DvH5jpI+K+kZhbpRqzCh/vaSvpez+WUKw5y+qNAl+mpJcvdFkp6SdJGZDbcwT8YXJN2S2PbdZvbxOKb+Wwot/M8UUeRbJZ1qZvvFYRwXKtz5Y0ER23IOxoCSE6IWFOvCXyT9QtI2sTfqPWrfAJHbmLhI0gU5IeZId+9onqdlkrZPDMmSQiDbrtg5z9s1cJrZtgLS50aFHjYnSXrA3VfkWacnjQZdtVqhd05y+G5u40e+DgJdtUzSFvG9JI+TXJ5sZBmp8J7zWSTpppy/KaPc/eJeKOeAQGiTXmdL2kXSOoXZ/dtS2dgCcoGkJ2Pa+F53v0vSzyT9KXY1f1lhnCGA0vmupOMl1Sh0R8+dbPhcSTfEenxcP5cN6Gs1CuPinzWzOoXg5GWF24OeJ2l/SRsUQpm/ZjeycDvUD0vK3tb0dEn7m9kJ8flnJU1RuMi9S2G4xIOJ4/5Noev3OoWL5I/H+W065O4PK5x7/6JwMbmLpM8U80Y5ByPtOglROzJMUpVCg2GLhQmKP9TJNtdIOs3MDrRglJkdldNDLtfTklokfcPMKszs45Le08lxXpC0dwxah6vAhKlAid0o6XCFYYP5hkZJPWs06JI4NPAOSReY2Zg499rpCsOUe/M4CxWGMJ1nZsPM7CBJxyRWuVPS0WZ2UJzT6icqnE3cLOkYMzvCzMpjo80h2b9nQwG3yysBd5+S57UFSrRauPt8hYvdQvs4R9I5Oa/dpDCBG4AiFaiP1yu0QOZdnlhvgXKGO7n7IYnHj0naM2ezcxLLr1bsQQAMNu6+RGFSxXxekfTunNd+Gbf7m0Lwkt1PraRdE88XK0yKWkiDu59YoExTcp6fm/O8YJ1099y6fkrOc87BSLNsiHq6mY2XtF7hFuDfU7jrWV7uXmNm31D4klelMCfF3zs6kLvPMLMvSbpC0m4Kw5CekPRYB9s0xaDmGoXJRu9RIswtsM0bZvYTSQ/FY5ypMPkxkBruvsDMnlK4SUXeuuPuD5tZttFgC4UepUU1GnTT1xUmI54vqUGh3v2hD45zvEJQtVYhmL1R0nhJcvdXzOxrCoHVKIVJwRfn24m7L4oNOpco3JmxVdJz2rwH+6Bl7YeOAgAADExmdq6kXQuFNgAAAAMNw6MAAAAAAABSiJ42AAAAAPpUvAXwqwUW71XkXRkBFMHMXlH7yYazvuLut+R5vdB+rla4w2Oum939tDyvow8Q2gAAAAAAAKQQw6MAAAAAAABSqEt3j5o4caJPmTKlj4oCpNvMmTNXu/tWpS5HPtRNDGVprZvUSwx11E0gnaibQDoVqptdCm2mTJmiGTNm9F6pgAHEzBaWugyFUDcxlKW1blIvMdRRN4F0om4C6VSobjI8CgAAAAAAIIUIbQAAAAAAAFKo5KHNs/PXqKU1U+piAAAAAAAApEpJQ5sZC9bq079/Rr95eE4piwEAQGrMW1WrlxZvKHUxAAAAkAJdmoi4t62saZQkzVlZW8piAACQGof98lFJ0oKLjypxSQAAAFBqJR8eBQAAAAAAgM0R2gAAAAAAAKQQoQ0AAAAAAEAKpSK0cS91CQAAAAAAANKlpKGNlfLgAAAAAAAAKZaKnjYAAAAAAABoj9AGAAAAAAAghQhtAAAAAAAAUigVoY2LmYgBAAAAAACSSjsRMTMRAwAAAAAA5JWKnjYAAAAAAABoj9AGAAAAAAAghVIR2jhT2gAAAAAAALRT4tCGSW0AAAAAAADySUVPGwAAAAAAALRHaAMAAAAAAJBChDYAAAAAAAAplIrQhnmIAQAAAAAA2itpaGPMQwwAAAAAAJBXKnraAAAAAAAAoD1CGwAAAAAAgBQitAEAAAAAAEihkoY2dY0tkqSV1Q2lLAYAAAAAAEDqlDS0ues/SyRJLyzeUMpiAAAAAAAApA7DowAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghUoa2riX8ugAAAAAAADpVdrQRqQ2AAAAAAAA+TA8CgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiLtHAQAAAAAApBA9bQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghZiIGAAAAAAAIIXoaQMAAAAAAJBChDYAAAAAAAApVNrhUWJ8FAAAAAAAQD70tAEAAAAAAEghQhsAAAAAAIAUIrQBAAAAAABIIW75DQAAAAAAkEL0tAEAAAAAAEghQhsAAAAAAIAUIrQBACAlZi5cV+oiAAAAIEUIbQAASInaxpZSFwEAAAApUtLQxqyURwcAIF2cGfoBAACQwN2jAABIieRpsaG5tWTlAAAAQDqUNrQp5cEBAEgZetoAAAAgiTltAABICTIbAAAAJBHaAACQEsnQhgAHAAAAhDYAAKSEt3tMagMAADDUEdoAAJASyTlt6GkDAACA0oY2XJACANAmkxweVbpiAAAAICVKfPcoLkkBANgk2dOGcyQAAMBQx/AoAABSgpwGAAAASYQ2AACkhBd4DAAAgKGJ0AYAgJTIMBExAAAAEghtAABIiZeXVG96QmgDAAAw5JV2ImIuSAEAaFPf1NL2mMn6AQAAQE8bAABSot2cNmQ2AAAAQx6hDQAAKZEMashsAAAAQGgDAEBKtJ+IeNPj5taMXl6yoRRFAgAAQAmVdk6bUh4cAICUac0kQpvE6xffO1tHX/6E5q2q7f9CAQAAoGToaQMAQEpkCkxkM2vReknS2rqm/iwOAAAASozQBgCAlMgk57Rp9zg8KbN+LhAAAABKqsS3/GaAFAAAWe0nIt70ZFOYQ2oDAAAwlNDTBgCAlMgUuH1U9qGR2QAAAAwpJQ1tnn9rfSkPDwBAqrS7e1RyQdvwKFIbAACAoYSeNgAApEShOW2yrxPZAAAADC0lDW323XF8KQ8PAECqtO9ps/ljetoAAAAMLfS0AQAgJZIT9HueXjdkNgAAAENLaUMb7h4FAECb1kz+8yKnSwAAgKGptLf8LuXBAQBImUz+m0e1DZuipw0AAJt7cfF6TTljmhasrit1UYBeV9LQ5vXlNaU8PAAAqdJ+eNTmTRvMaQMAwOb++vwSSdK/Zq8scUmA3lfS0KaxJVPKwwMAkCrJ4VHt7x7FRMQAAHSGkRwYjJiIGACAlCgwpc2mW36T2QAAsJlso0a+XqrAQEdoAwBASmQK3j0qzmnT3wUCAGAAKIsnSDIbDEaENgAApES70EbJx0ExPW3mrqzRlDOmac4K5o0DAAwNZTG1yZDaYBAitAEAICUyhaZ6axse1Xlq848XloV/X1zWS6UCACDdsmfHQsOMgYGM0AYAgJRo17smz0TExQyPauuV03vFAgAg3bLDo5iKGIMQoQ0AACmRbCFMXnZmHxd196hswENqAwAYIjZNRFziggB9gNAGAICU8HYTEW96vHDNRkldC2KMvjYAgCFi00TEpDYYfAhtAABIidbM5pMPJxHEAACwuez5kTltMBgR2gAAkBKdXWy+snRDp/vgehUAMNT05JbfD726QlPOmKYV1Q29WyiglxDaAACQEu2HR22+fPG6+nbP3372ffrIZY/n3Rdz2gAAhors3RW7c8vvm59dKKm4hhGgFAhtAAAogXV1TXpzdV2711oLzGnT9lpOP5r65la9uqy6bwoIAMAAYT2Y0yY7NLm8jK/GSCc+mQAAlMB1T7ypw3/1aLvXMpnE4zzXnX99fkmn+822Mr61dmPe5e88936d/Ifnii8oAAAp13b3qG5suyT2Ym1NnoSBFCG0AQCgBMqs/cTDUvtu3bnLJGn28pq2x4sSoUxTy6YLzdnLwjp3zlzcbtu1dU1aUd2g6oYWPfbGqp4VHgCAFMmOCO7O8Kj5sdfrY2+s7sUSAb2notQFAABgKCqLsya6e96x+J1deP7wrpfaHu9+1r1acPFRHW63/08f7FF5AQBIq03n1B7sg8ngkFL0tAEAoASyF4fJHjXJzjX5etokPT4nf4sgd48CAAw12byl0Knz3wvWau7K2g73UVlOaIN0GnChTWvGdcG0V7klGwBgQCsvy/au2fRau+FRXWwuzMQdbWxs7XnhAAAYQNrmtClw7vzU1U9vNo/cZvso63poc9X0eZpyxrQubwd0xYALbZ6dv0bXPP6mvnfni6UuCgAA3bapVTD/bb4znfS0KbS/DfXNba/VNrZ0u3wAAAwU2bilJ71Nu5HZ6Gf3zQ7H7cm4LKATAy60aYkXsdWJi1IAAAaa8k7mseliZtNmm3HD2x5fPX1e93ZSwJQzpunUP3LnKQBAuvznrfWSpCXr67u9j0K3/D7yssd10zMLO9x2RXVjt48LdGbAhTZ1sdVw1qL1JS4JAADdl29OG+/CnDaFJO8MdcUjcyVJLy/ZsNl6mYxrQ32z9jrnPj01r/38OC8uXq8bnlqQd/+PvF7cnacuffAN3ffy8iJLDQBA9933SjjfPDm3+3eAKi8wEfFry6p19t0vd7htTQMdCtB3Blxo8+S87lXE1bWNam7NdL4igKJk55Vav7FJF987Wy09qF+raxu7PBSkIxubWjb7EgqkTVmeOW3eStzGu6u3LV28rnDr4tGXP7HZa40tGb2waL02NrXqt4+075Hzv1c8qR///ZV2rxXq+u3ueS9WL3t4jk67eWYxRQcAoFf0ZJRSeZ5vxsVe3za35j/wyuoGNTQz1xx6ZsCFNq8vr+nyNvVNrZp6/kPa58f390GJgMFn+YaOJ/p+4JXlOvDCh/XoG6t03j9e1dWPztNDr63o0jHqGls0d2WtVtc2aur5D+lXD76Rdz1379I44Q31zTrh2md1/DXPalH8Alzf1Nphr4XWjLetO2dFjZZt2PTl9+UlG3o1UAKysmPnC32+utrTZt6q2i41TryweH3b/DdPFGiZTO6vpUB5Lnt4jt5x7gNaU0vXcABAafX23DKFwphche489Z4LH9bHfvtUbxYJQ1BFfx1o/cYm7feTB/XlD+ys3z82X7N/+uEO199Q36xVNY3adevR7V7/94J1XT72fa8skxRaFQF07F+zV+jz18/Q1SfuryP23lZXPTpPn3r3jhpWUabrnnhTS9bVqzq2ql/xrzltdfK0m5/XSe+drJueWahtxw7XMz88TFL44vnm6rq2GfuPfud2mji6StfnDL244pG5Gj+yUhVlpoljqvThvbdVxqVDfv6Ilm5o0LM/PEyL19Vr161Ga93GJo0fWan9fvKgJOncY/bSNmOHq6k1o2/+aVbbPt9YUaOZC9fpW7fP0if230G/PG5fvbasWkde9rj23WGcmltdPz12H33iqnAyvfTT++rbt78gSfr3jw7XE3NXtT2fedbh2nJ0lVozoVfBqKoKzV5Wo2OuCD0YvnHorvrKB3dRS8Y1orJcq2sb1dSSUUsmhE67bTNG1Q3NWlvbpG3HDdfwynJtbGrR9DjUpL6pVaOqyvXhfbbL+//i7jIzNbaEAGrksH77840+0hTPSckeNR/aaxs98GoIQAuFNg3NrRpeWb7Z68s2NLQNIU5qbMnfwvfX5xfrjhmL255f+/h8ffHgndut8+Li9frEVU/rN599l96x/bi21xeuqdPkLUdJkn790BxJ0kE/e0Qvn3eEysusXatisrzurrtnLdGx+20vK9ANHUiLb/7pPzpu6o76r10ntr2W/UKY1s9vbWOLVtU06m0TR+lvs5ZozopafedDu6e2vEDatWSK+/44smrz67IX4nQery2rzrvNob+crvmr6rTg4qO6X0AMCdaVNHLq1Kk+Y8aMvMsaW1p138vL9c4dxuvN1bU69++vtuvmPdCNqapQxl3DKsq05egq7bvDeO0/ebzqGlv0wqINmjR+uFbXNmnhmjrtse0YjRpWITOpur5FwyrKlHFXRWxW/dfrK7VkXb2qKsp14M4TtGRdvfbdcbxGDSvX9luM0EX3ztbx79lJb6yo0Yb6Zr2xorZguXaaMFITRw/TO7Yfp+XVDTpgygS1ZFwrqxs1dcoWas246hpbNGHUMLmk7ceP0Jq6Jq2qCcNRdtl6lMYMr9TwinKNqtr8S0DSmrombTlqmMrMVN3QrLHDK1XX1CIz0/CK0Gkre1GQvTRobMloeGVZ25eP8k6mZc9+HJPXFu7huanvLjhcrjHDKzssn5nNdPepfVaIHuiobja1ZPT/27vz2CjOM47j35k97F3sZV3sNT6CMcEBDK1tjiBEoBAgCeJISlMlTZS2Qo2qNK0aRUmbqkCVA6lqqipJlUZVCYpQlSpp1JarKCoUkCERKQkYBDbB2Jw22GAbn3ivt3+ss2B8AKrjrM3vI+0/M7M77+zso5153vd558+lVbz64TFWzs5n/d7qQW6dyM2zravlQpOzfYxKSWLDyrv7fU+ixmZ/cQnc9o8IzfF7ekwY+djMMby773SPbV9YPJHfbKvotuy1R4rZXFbDjoq6bsv/8N0SDpxuoupiK3uOXyQcNbz+aDEZqUm8XVrNJ9UNtHSGWfL1LB6elsu+6gYa24JsL7/ApbYg4wMpPFScTVswwpGa5vgcQd+emktHKMyJujZKxvjxeVycqGslJdlJ8R1+8tNHcPBME+caO5g3IUCyyyYUiZKb5mXzoRpWlOQy2pfMsGHBSI+r/02GaGzWNV+hsq6Vx9btG8RWCYDbYRPsZcSgw7aYPT6dz041Yowhy+/hyTn51DV3UlnfStZID/84cJaiXD9+r4tsv4eogc5QhPV7q8kbNYIFkwL4kl0YY0gb4aa8tpnWK2HGZaQwfWwajW0hdpRfYGJWKo3tIYpy/XSEwrgdDiwrNvLQadtkpCaR5nXRFoxgW9AejCWms0YmE44azl++QmNbrIMmPSUJh23dxPWvoT0YIclp0xmO4nU7uBKOEo0aLAu8bieXO0J43Y7Y51lWt2vlqInNx9IZieB22Pi97n73N1Rj8/MLLWwuq+GJWXmcaWjH63bS3BGiIDOVqS//O77dgdWL6AhF8LgcRI0hamDG2u0A7F+1kGA4SvOVEKO7OvzuXrsDgB/NHcdT8+4karpGegNHapr5/vrYBPyfrV7U7TrFGMO0V2Kf+8+nZzN2lLfbupe2HGXjwZp4myDWUWNZsbuakq4273puHj6PbiZB2wAABNZJREFUK97J0RmO8Nd9p3njP5W4HTa7np9HktMmFDGEIlGCkSjv/fcMOX4Py4qysbh672RM7J5t4e93s+cX8/G6nUSiJvYyhkjEMPfVnawoyWH10kK47r3PvHeQ3Z/Xs+kns7kjzXvNky5jo+Sfff8gJWPS+HHX9xQMR2OvSITy2hbe2nWCd5+c2ev52/DxKe6bnEmWzxNfZrqe93WpLcjJi21Mz/tan+e/Lw3tQZJdNi6Hjd313V57TG3BMF63E4dlxfd3M4y5ei87EPehTofFiF6Se9fqKzYHLGmz4eOTrNl4pNd1IkPB3hfuJcfv6XN9ov7BQf+x+faeal7ecnSQWyQycCrXLsbZW6F5l0SNTSVtZDhLT3Gzf9WifrcZqrH51F8+ZZsm0ZYhakqOjy0/ndPvNkMxNo0x5P/yX4PcIpGBc+/EAOt/MKPfbfqKzQEbX//IjDtYs/EI49JHUHWxbaA+VgbJipIcisf4+1zf0Bbkte3H+eZdGUzJ8fHmzhMsL8pmU1kse/zi8snxbb9IBJ5r6qDifAvzJgQwXaOUbjSvSGtnmJEeV48RNwNcntorX/LwLDd5qDibdaVV1N5gnhqRRBUxZvBqeQdR5drFjP/Vth7L75+cyYdHes4R9fqjxd3K/wAKs3y8+fhU5v9uV7flq5ZMwrKsHgnb+wozeWDKaJ59v+z/PwC5ZWu6ejWHg95K9IaLb5XksP9UI/UtmqdJbt7yomymj03r1ontdtqsWjLphtexn1Q3sPVwLQsmBthRUceyomw2d11j+5KdzCnIYOvhWopyR1KQmUogNQmv2xEvle4IxSoeMn3JLC/O/tKO8atkWRa/ffgb/PyDQ6woyeHvB87F1/3wnnze+egk4ajh+fsnsK+6gUNnm/jZggIcdmyMxFu7TnBnIIXcNA/HzrcQjhoeLM7B7bSxgFVdT4das7QQ24rtr+VKiK2Hz1Ne20xBIIXHZ44h2lUB8MUTIHdU1HH4bBNPzx8f3xfA5Y4wPo+TFzcfZf6EDObelRE7Dq6O1Dl4polNZTV8b1YeyS4HR2uaWTApwAefnuWegnT+tLsKgImjU3lgymgCqcm4HBZupx2/Hvj1sqv/K8bERiyfvNTOOx+d5JmFBfg9LhwOG4dl4bQtbNviub+Vxd97/W9z57E6So9f5DvTcinM9hGJGmzLwrZiJWDrSqvwuJ08WJSNbYHb6cDttHE7bf64s5KK8y2sWVrI9RWZxsBLW46Sm+Zh5ez8Hue39Hg9O4/V3/L/ZNQYXtlaTkEghSdm5WFMbNm1x3W8rpXxgZT4ubnZatFgOIrTYQ9YrUduWt+DA25kwEbaiAx3idorAYpNub0lamwqLuV2p9gUSUyKTZHE1FdsDrmnR4mIiIiIiIiI3A6UtBERERERERERSUBK2oiIiIiIiIiIJKBbmtPGsqx64NSX1xyRhJZnjMn4qhvRG8Wm3OYSMjYVlyKKTZEEpdgUSUy9xuYtJW1ERERERERERGRwqDxKRERERERERCQBKWkjIiIiIiIiIpKAlLQREREREREREUlAStqIiIiIiIiIiCQgJW1ERERERERERBKQkjYiIiIiIiIiIglISRsRERERERERkQSkpI2IiIiIiIiISAJS0kZEREREREREJAH9D6fTbQcqlxHEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEhCAYAAADFzF13AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eZilV1X2fa+u7uop3ekxadIZmgQIQ5DIIKMCMgsoOCAKMigiKvIK+oH6oi8KiuKAigPgAAqIIMokU0QBGYVEghAMkIRKOkMnnU46PXdVV+3vj73uc/a5z3m6qpImfUjfv+uqa9cz7Wc/ez5rrb12lFJgjDHGGGOMMcYYY8aLJcc7AcYYY4wxxhhjjDFmGAttjDHGGGOMMcYYY8YQC22MMcYYY4wxxhhjxhALbYwxxhhjjDHGGGPGEAttjDHGGGOMMcYYY8YQC22MMcYYY4wxxhhjxhALbYwxxph5iIjnRETp+Ht03vPoPH5Y89ynIuKjzfF9I+IVEbHudkr3XUak98aI+HhEPOZ2evdzbkMcT4yID0TEzoiYiYgdEfHeiPiBY5hUfedJEfG2fGeJiD/I8w+NiC9ExP48f15EvDUiLltk/M/L50//1nwBEBEviYinfKviN8YYY8ztx9LjnQBjjDHm24gfAXC1nPtqhp8H8GAAlxzl+fsC+H8A3gxg97FO3FF4FYAP5P+nAngRgA9ExENKKRfejulYMBHxpwB+AcA7AfwcgB0A7gTg+wH8c0Tcp5RytLy+tbwIwNMAPBfAZQCuzfNvQi2zJwM4AOBy1LJcs8j43wvgKwBuOBaJ7eAlAD4K4D3fwncYY4wx5nbAQhtjjDFm4VxcShlpWVFK2QPgc7dzehARkwBmSinlKLddXkr5XPPMvwO4GcBTAYyd0Catc34BwC+WUv5ELr8zIv4EwC3fotffA8D2Uspbm/QsA3AXAK8opfxHc+/li428lLITwM7bnEpjjDHGnBB4eZQxxhhzDBi1PEquPw/AX+XhN5vlSqfn9aUR8X8j4msRcTgiromI34+I5U0cXHL0MxHxhxFxHYBDAE5aZHIPAjgCYFkT98qI+JOIuCSXAF0XEe+LiHP1OzIND4iIt0fEnoi4NiL+uE1rRx5sziVGl8yzPOjXUAVkKrABAJRSvlBK6Vk8RcT3RcR/RcTBiNgdEe+OiLuOeP8P530H8r53Sv4XAM8EcOemfF4OYBpAAPjNPHdZPjO0PCqXV70mIi7PctwREe+KiM2Sf6fLcy+IiP+JiEO5NOuv2mV0TF8ur3txRExFxN6I+FhE3KO572oAWwE8u/mGv85rd4+I90TEDfmeqzIPPB80xhhjxhQP0sYYY8zCmcgfz/ybWMSz7wXw6vz/B1GXUj0Y/WUybwfwqwDeAuCJAF4D4PkA/n5EXL8BYBuAn864pud595ImzVsBvBbV2vafm3tW5t9vAfg+AD8PYDWAz0bEKSPifBuAr+X734C6rOilXQmIiLMBfCbT+t2t0EXuOxPAXQG8f55v4v1PAvCvqJZDT8t03wfApyJiS3PfC1GXWn0ZwA8BeEHe9/GIOKmUcgS1PD6KugSO5fN3AB6e0bwhz/1wR1qWA/j3TMObUMvxhahWQZ1+jKL6zXkdgI+gLv96GYAnAfjgCIHKcwA8FtUS6acAnA3gPU1dfDKqJc8Hm2/4nbz2QQBbAPwsgMcB+BUAM6gCKWOMMcaMIV4eZYwxxiycS+X40wBGWtYopZSdEXFFHn6xlDLFaxHxSFRBwDNKKf+Qpz8aEbsBvDkiXlVK+XIT3TWllB9aRLr/Jv/IIQDPK6X8V5O+m1CFREzTBKoQYSeAH0UVKrS8pZTyyiatDwbwYwBeKfchIr4TwIcAfAHA00opB4+S1jMyvHIB3wVUfz1fB/DEUspsvu+/UMvqJQBeGhFrUQVmf11Kab/xC3nfcwD8WSnlcxGxC8BhWU7G5UxXt+dH8GwA35Vp+WBz/l1dD0TEOQBeDODXSym/05y/HMDHUQVo/9o8cgjAk1PIhBTqvB3A/QB8vpTyxYiYBrBTvmELgDsDeKGk7R9gjDHGmLHFljbGGGPMwnkqgAc0fz91jOJ9POqP8Xe3ljwALsjr3y33L9bB7G+in+bHAfhbAH8dET/S3hQRT4+Iz0fELajLp/ahWt+ci2E+IMdfBnDmiPseCeATqFYeT51HYLMoUhhzHwD/SIENAKTfoc+hbyHzUNQlZG+T/L0SwDcAfM8xStJjUQVqH5z3zsFnloxI26dRHR5r2i6gwCahMG9U3rfcgPq9r8klWndZRBqNMcYYc5ywpY0xxhizcL7S5Yj4NnIKgBWoP9JHsVGOr1tk/FOyS9QF+aP9jwH8EwBExFNRLTbeBOAVAG4EMIdqbbNiRJw3yfHhjvueiCr4eaMIG7rYnuFZC7h3Q4aj8mMHqkAHqPkLVMuVUSw2P7vYiOHdxeaDaZs6Spwto/IdGJ33PUopcxHxKNSy/T0AG9Ly6/dKKW9ccGqNMcYYc7tioY0xxhhz/NmFKrB5eMf1a+X4aDtFLZRLADw2IjaWUnYBeDqAS0spP8kbImIFjuKLZYH8Gqp/lo9ExONLKZ892s2llKsi4huovll+Y564KcDYMuLaFtR8RRP+BIaXuAHA3nnes1BuBPCgRT7DtD0KwJ6OOI8JpZTLAfxELqm6D6ofojdExDdLKf92rN5jjDHGmGOHl0cZY4wxtx+0ilgp5z8MYBWA1aWUC0f8qdDmWPAdqEuyKLBYhbokquVZuO1zhWlUx7//gSq4ecgCnvkdAOdHxItGXYyI+0fE1txm/WIAT2sd9qbT4wehLssCgE8B2A/gnI78/dqt/7wBLgBwekQ8YZHPFABndKRt6lak4zCG61iPUspcKeWLAH4pT513K95hjDHGmNsBW9oYY4wxtx9fzfCFEfFW1J17vlRK+WhE/BOqT5s/AvD5vG8bqiPaX0oriVvLORFBC5D1AJ6Catnxp6UU7jz1YQB/ljsZfQjV/83PY7T1x6IopcxExNNQl199JCKeUEr51FHuf3NE3BfAn0TEQ1GXcF0P4FRUq51nADgfwDUAfh3A+wC8PyL+EsBa1B2wdqHukoVSyu6IeBmAP06HvB/K79qK6nPn30op77it34m609TzALwzIl4N4L8yPU8A8JpRS+tKKV/PPP/L3Lr7P1GFLmeg+rv5y1LKJxeZjq8CeHhEPBE133aiLrP6fdQdtC4HMIHqk2kGwMcW+6HGGGOMuX2w0MYYY4y5nSilXBQRr0T9Yf8CVCuWM1D9oPwY6nKV5wJ4OaoVzBT6OzjdFl6ef0Ddfvpy1G2f/6q55/WoQoznAPg5VIHDkzDscPhWkYKbp6NuFf6hiHhiKeU/j3L/iyLigkzL6wGcjCqI+RyAp5RSLsn7/jUiuJTqXagCj/8A8NJSyo4mvj+PiCsB/DKAZ6IKLa5BFZJ86Rh943REPBrVb8zPZLgLwCcB7D7Kcy+NiEvyW18EYBbVt8+/o5bVYnkZgDeiCrtWou4c9nLU7/1l1HI+BOB/UHe6uvhWvMMYY4wxtwNRyrFYFm+MMcYYY4wxxhhjjiX2aWOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGgzhkTEmRGxLyImjtP790XE2cfj3cYYY8yxIiK2RUSJiKV5/PGIeN7xTpcxdwQi4hUR8dbb8PzrI+LXj2WajDHmjsgJL7TJCdzNEbH8OKZhKiIezeNSylWllJNKKbPHIz357isybW+OiFcdj3QY8+2M/lg0xtw2IuLHI+LCVCxcFxEfioiHHe90GXNH51vV9kopLyilvPIYpO8REXH1bY3HmDsKR1NQHIv5aUQ8JyI+detTaBbLCS20iYhtAL4bQAHw/cc1MXdQ/IPV3B6k4PNgTihvjogPRMQZxztdxphjQ0S8BMAfA/gdAKcCOBPAXwD4geOZLmPu6Hyr2t7xsiY3Zlxo5q57I2J3RHwmIl4QESf073MzmhO9UjwLwOcAvBnAs3kyIlZGxB9GxJURcUtEfCoiVua174+IS7JxfTwi7tE8VyLiLs1xz0olIjZFxL/mczdFxCcjYklEvAV1AHx//uB86Qhz7g0R8aaIuDZ/kL5nvg/LeK7LZ57Xpk2lryot5b0R8XwAzwDw0kzb+/P6r0TE5dnJfDUinipxfToiXhsRNwF4xWIKxJjbwJNLKScBuBOA6wG87jinp5OonOj9rzELIiJOBvBbAH6+lPIvpZT9pZSZUsr7Syn/X46lHJd2RcQ7I2LDAuJdEhEvz7H+hoj4+3yXMQbzt70R9/9TROzIufN/RsS9mmtvjoi/jIgPRsR+AI+UefIjIuLqiPilbI/XRcRzm+eXR8QfRMRVEXF91KVVKyNiNYAPATgt56r7IuK0b3nmGHNseHIpZQ2AswD8LoCXAfib45skM46c6D8angXgbfn3uIg4Nc//AYD7AXgIgA0AXgpgLiLuBuDtAH4RwGYAH0QVtkwu4F2/BODqfO5UAL8GoJRSfgLAVcgfnKWU14x49i0AVgG4F4BTALz2aC+KiMcDeAmARwO4C4CHLyB9Q5RS3oiaN6/JtD05L12OaqF0MoDfBPDWiLhT8+gDAVyRaf3tW/NuY24tpZRDAN4F4J4AEBFPjIgvRsSeiNgeEa/gvRGxIiLemj/0dkfEF9gPpADyihROfjMinnG090bERE4ob4yIKwA8Ua5/PCJ+OyI+DeAAgLNDlkZG4x+gEd4+N9N9c1QNzAMi4n8yvX92bHLNmLHmwQBWAHh3x/UXAXgK6lh3GoCbAfz5AuJ9Tv49EsDZAE4C4DZlTJ/52p7yIQB3RZ3//TfqHLLlx1HnhWsAjFpasQV1brkVwE8B+POIWJ/Xfg/A3QCcjzq33QrgN0op+wE8AcC1OVc9qZRy7QLTa8xYUEq5pZTyPgA/CuDZEXFeRJycyoSdqVx4ORV+If6kYvSSp3Mi4vMpRH1vlzIj3/M3KSi9JiJeFQuzhIuIeF3Gf2lEPKq58NyI+N+cQ18RET/TXBtpyJDXXpZp2BsRX2vjPNE5YYU2UdfingXgnaWUi1AFET+eleYnAfyfUso1pZTZUspnSimHURvSB0op/1ZKmUEV7qxEFe7MxwyqBcBZqaX4ZCmlLCCdd0IdjF5QSrk5n/3EPI89DcCbSimXlFIOoApWjhmllH8qpVxbSpkrpbwDwDcAfFdzy7WllNeVUo6UUg4ey3cbMx8RsQq1rX4uT+1HFdCuQxWk/GxEPCWvPRt1gngGgI0AXgDgYGru/hTAE1ID8hAAF8/z6p8G8CQA3wng/gB+eMQ9PwHg+agT1isX+EkPRJ0E/yiqifr/RRXI3gvA0yLiVglljfk2YiOAG0spRzqu/wyA/1tKuTrH6lcA+OGYf3nuMwD8USnlilLKPgC/CuDpC3jOmBOF+dreAKWUvy2l7G3a4X3Eeu29pZRP5/zx0IgoZgD8Vs51PwhgH4BzIyJQx9gXl1JuKqXsRV2u9fTb8G3GjB2llM+jKvm/G9Vi/GRUpcLDUeeyz+1+eohnof6mPQ3AEdR57Sj+Lq/fBXUO+1gAC3HYTyX9JgD/D8C/NIKhG1DnxGszza+NiPvmtZGGDBFxLoAXAnhAzr0fB2Bqgd96h+eEFdqg/li7oJRyYx7/Q57bhKpVuHzEM6eh+aFVSpkDsB1V2j8fvw/gMgAXpMTxVxaYzjMA3FRKuXmB9zOd25vj7V033hoi4lkRcXFKSHcDOA81374l7zNmgbwn6+MeAI9BbXMopXy8lPLlnCT+D6q1HAUdM6iT0rukgPaiUsqevDYH4LyIWFlKua6Ucsk8738agD8upWwvpdwE4NUj7nlzClOPpOB3IbyylHKolHIBqgDq7aWUG0op1wD4JOoAa8wdmV0ANh1FmHIWgHc3Y9L/AphFnQwejYExPf9fuoDnjDlRmK/t9Uhr09+NukxxD/o/thYzP9wlAqIDqBZwm1Etzi9q2vmH87wxdzSuRV3p8aMAfjUFoVMA/hBV+bdQ3lJK+Upao/06qqJvwIImrcufAOAXc/njDagrOhYiEL0Bdd47k0r8ryGtzEspHyilXF4qnwBwAaogCug2ZJgFsBzAPSNiWSllqpQy6vf4CckJKbSJ6p/maQAeHnXt7Q4ALwZwH9RKdAjAOSMevRZ1csh4AlWock2eOoA6qJAt/Ccb3C+VUs4G8GQAL2lMvo5mcbMdwIaIWLeIT7wOwOnNsTpk3d+VzhEMpC0izgLwV6iS0I2llHUAvgIgup4x5nbiKVkfl6PWz09ExJaIeGBEfCzNS29BtabhJPItAD4C4B+j+n96TQ4U+1EHyxcAuC6qY+O7z/N+FZaOsqS5NQLN65v/D444PulWxGnMtxOfRR2Xn9JxfTuqVdy65m9FCjaPxsCYjupf7ggG25gxJzLztb2WH0d1TvxoVOuAbXn+WMwPb0Qd7+7VtPGT04/dbYnXmHFkK6oCYRLDioWFGAoQnZMuw6AQFahj4DLUuS4Fom9AXeI4H9fIqpErUefCiIgnRMTncvnTbgDf17x7pCFDKeUyVBckrwBwQ0T8Y9g/VY8TUmiDOvjMovq8OD//7oGqtX4WgL8F8EcRcVpqDh4cdUvwdwJ4YkQ8KiKWoZp3HQbwmYz3YtQlVhNR/cr0li1ExJOiOvcNVEuA2fwD6gTx7FEJLaVch7pG+C8iYn1ELIuI75nn+94J4LkRcY9cKvIbcv1iAD8YEauiOif+qaPEpWlbjTo47szvei6qpY0xY0FazPwLavt6GKoV3fsAnFFKORnA65GTyJTw/2Yp5Z6oS6CehNoHoJTykVLKY1AFuZeiCiuPxnUYFJCeOSp5crwYAaoxJySllFtQx7E/j4in5Ni1LCeFr0Ft07+dSgVExOaIWMjONm8H8OKIuHNEnIS63OIdC10KYswdnQW0vZY1qHPiXajj2u8cw3TMoY7Br42IUwAgIrZGxOPylusBbAw7Ejff5kTEA1AFM+9BtUhRxQKVEQuZP+qcdAZVANqyHbXdbmoEomtLKffC/GzN37XtO67N38z/jOpG5NRUqH4Q/bl3pyFDKeUfSil0YVJQfVkZnLhCm2ej+ny5qpSyg3+oDgifAeBXAHwZwBcA3IRaYZaUUr4G4JmoawxvRK1oTy6lTGe8/yfP7c542l2e7grgo6jrcz8L4C9KKR/Pa68G8PKUcP7yiPT+BGpDuxTVFO0Xj/ZxpZQPoa5b/BiqJPOzeelwhq8FMI06yP0dhh3FtfwNqpna7oh4Tynlq6jmeZ/N5+8N4NNHS48xtydR+QEA61GXSaxBXWJ4KCK+C1UbyHsfGRH3TnPRPajtbDYiTo26U9xq1HazD30haxfvBPCiiDg9quPEhSyBvBjVh8ayiOjyg2PMCU8p5Y9QHey/HFVpsB3Vou49AP4EVTB7QUTsRfVn9cAFRPu3qNZ2/wngm6gWBb9wzBNvzLcx87S9lr9H1bRfA+Cr6PuVO1a8DHVO+7lcfvVRAOdmGi9FFcJekfNVa+fNtxURsTYingTgHwG8tZTyJdR55W9HxJpUSrwEAJ0PXwzgeyLizBRW/uqIaJ8ZEfdMBf5vAXhXKWVgLpvGARcA+MNMw5KIOCcW5i/xFNR577KI+BFUA4gPoloILUftL45ExBNQ/eTwW0caMkTEuRHxvSn0OYRqXTff3PuEIcr8vnDNtzlRtyX/CoDl1iCaOyIRMYXqh2IWVTJ/JYBXl1LeFhE/jCpo3ADgE6jr7NeVUp4ZET+GaoZ5Oqpg5h2og+Jm1IHz/IzvYgA/l0LLrjQsRTX5fBbqIPQHqILgZaWUIxHxcdSB+K+bZ85GnWjeK9N2OYANmbZtqD8kl7HdRsTVAJ5JgW/UnQMuLaW86tblnDHGGGOMub1p5q5HUP0ofhVVKPP6UspsKgBfh+qQ9xCqtdmr0vIMEfHnqEYCN6IaGLwRg3POzwJ4FIC7o84xn1tKuVHnlyn0+V1Uw4M1qM6Ff6+U8o9HSftzUJ2DfxHVuOB6AC9M/4uIiJ9HtdJbDuD9qEuwLiulvDwiXoxq6LAZdbfHN5RSXhkR3wHgr1GFPzOoK1meX7wbHAALbe6wRMRTAXwAdTnT3wGYK6UsZE2yMcYYY4wxxhhjxoATdXnUtz0R8WsRsW/E34fylp9BNUu7HNX64GePW2KNMcYYY4wxxhizaGxpY4wxCyQiXo/q10p5aynlBbd3eowxxhhjjDnWeM47XlhoY4wxxhhjjDHGGDOGeHmUMcYYY4wxxhhjzBiydDE3b9oYZdsZqHuptE/HKrmTN3Dr9oODx4fn+s+qoQ8f4R5HFCtxw685CXl+mcS3RI6VOTluNxRjGvQzNC6NQ8+HhPr8fMdHY6HPFglVTMe0zcp9GgYGGRWfxkWYH/OlcaIjbt3vSste4yFtHWPcGhefmZknrjlgaga4cbZoTowFmzatLNu2rQFwUp7hB09LuEKeZCa2n9XVKLUiz3QcK3z3odHxlrzODem1bziQIT8JGG7vpKt+R8d10lXvtV0c7bmuOLr2a+N5zdbZjpDZuz9DrdOTHfG03fMSCbXtzddn6fn58rPrufa69pdd+ahxN+HUAeDG6fFrm8sjymr0P21thjq8sYjaKt5e3wtgIw+ynA9mc2JTWMp/tF7lcwfz/MqVg9f3Zfs6Sc7vz/OrWa+ymbIaLmvrlbSTubx3yfI8z7j35m15f+QHz+bxBONkX0CyW5u+pYaT/LbVGbIO8fk9GR5Bv12wa8zvms1wgl0i6xPTfEjOr8mQ3Zl2d4yf5XCzPK/pALB3R0bNZ/g9rAjZ1o9kWpZOyn1MA/OL389vYD7o2MqKyPiuyZDltKL5DnJdhmvkXnKLvCPDi2ZwYyllM8aMyYjSjobMUmYNqxg/c0L7zHx4+mC/ya3akP909cmEL85yPbArn9dNqjn2sXwPDh4uPzn/2SeJZ93bCOCm/J9xs61c19wD4JZMw8mMQ6cQrFv5/N5dg69mAXP4ZnVgFWT+slpdD2BT/s/PZHZxiNNX6/DE6zrFXCLnGa8+x0/V5rME/SJkdb8hw62ZL/uzz1qdNxzKvm0FI+XPHrZR5ifbJsnEcF9XFt0GJprP8WNmgFvy/5M1Uw/KM1kYc1kISxhnhhftG8+2uWnTprJt25nod8K9Gp8hS/DGDLXVTjfHrJGMY5ncw1B/cGSB9jLxyOBlna8cGby9NyYukfM8nkG/nHSuF/KM9h+sU9on6W/SpXJeQ5UAtPHoHFt/b2m9hBzru/Udel1/62v8rWxA5zqa5zo35v3aFuc67tcOZGnHdZ0/zxzl2a5Ny/X+DC/6+ui2uSihzbY73xkXXvhKAOfmmU1yBxsYGxK77asz3CchMDw7OyThPjneneF+OX9E7p8nvunpwWjYPtuJmI4I++WYUfLZHMR6IxAH5iVyP+Fz7HgZv45c7YSO//MdmkaOMEQnXkzThFxnWrTzYFq64hv1Q3qv3DON0WiHNSnHGp8Ka7qEQ6RtDJpvmjaWe1fDmgDu/+aOa2PAtm1bcOGFr0C/Sf9Xhmx712f4lRrcnKP4+lNq+PWckpyNfhPblAPhNXnv1rNr+M0ranhG3vffGDz+TIYPyPDLGbKefyPDdRlyI7+MtleHWWaMdwp108L2nZwkfyJD1oHT5L67ZsjyPVuuPzzDv8/wgZI2thtN044mHVc3/7fXVkh4rdzHY9ZB5n/y5exOOT9nr7o5uzxOis85OPj4pTzPBxr01WRbzomuyW55a35vybSx+azO/L05I1h/al7YKS9gG2e3zDa+qrmfZcUqeqocr2nuBXr1puTs9isAno7xZCWAh6Kf9N/N8BEcOlmPtmTIb2c9busQh2+2G9aXVc09QL+Oqnx2Rs5z/qu/WPR+5r/Gz3ASwxMPHqsUSgUdXfepkqad6LbXFfYxHGsnRrxD4ybLO+5TNE1ap+UHeed75tAf40lXPuh15n2X8oplppNUTTPTooLxJU1cPKfzF80nLdsct+M8XIkxZAlq18OselKG350hm9u9l8kJdrDn1WD/5/syr7s9Nf9hg2ffpnlz7wy/WoPpN9Zw8hflvi9myDEzx9Je//zoPP+pDHn89gyfAuBd+f9LMmQ5/laGP1SDizMN5z8iz7Of2Z7hfTPMcv143s8xhPm3NuvUv2Uav5DnOXQz2j8D8ML8n0l8sBxzSvCDGb4jwydkqFNtznrYrJjNm+X8OzN8TYZfkfevQL+YWR/elOEvZ999aY5Pd39YDXflFiAbH5E3Ztn2MogVTeci2Tq4oTGnTw89J/9hhvFjp4B/yDH9x++X5ziOfEmeyXG4vK+Gcec8n38B/m8AACAASURBVPUyPjaebXPbtm248MILAbwtz2zNkAPnJRly0sUP3pYhS28Hhjvkr2Wov8SnMtwl5w8NXt+XM672hzrQL0++WsdN9rk9Ic6q/juK/EgKCqE0jRIe6fhxtTRfUuYG06bo+HA0usZRyHks8LoSHRrAogPoAp7VZ2LJ6PNd+aIsdE6w0PhGIeNobBjdNr08yhhjjDHGGGOMMWYMWZSlTdXxfgB9SSWln2oFQxUpLW5USrhuxDmiljXXyH07Bm/v2RovlbBDMqkSTZU0LsOwNQmlaBTXq2aJIaMetZyjfU6lcWJ+PkRruaJWPhr3ajlWbVmXFQylwZq2dXKfmm/vae5VoynCZxgX36GaYE2banonJKTpAfNEy62NT6Xhqnns0kySnRg2ax0rVgG4X3PMdvQ3eZiVknWTFiYTaWGzvTm/Lf//WhYu69r+KwbvZTO/OEPKhacyZLmwu6Cai93EarmfGimm7SEZZpPf8b/AltRkfvjdNXw8tZ2pKlt9ej6T6qqD+b0r+W6+IzVTBy/L65nWqfyGbaw7WiepTacGlfm5DEOWNSW7v8h6yqUdTMr6jOuqjKOriv5tho/LMBWcQwZJPGaS7p/hJwBQacfkaxGwKe7NNjyVx18VDTHTfk7m4+V5vC3rAqvGGTcOfgMVz2yyK9Jk/1oAZ3xz8J085jOrDwxe35jPUh/2IfSr4rixCrUc2BSY7xdn/mxhqOuktO+7O4CPyjmqkbtWH+ayhyHLmJ1y/awM2Ta4nOJcOe7qb9dg2OpH+1FWMB1HWIi0NFKLTz7HNDCtVMHzPRxbWEEZ33b0rb4YFwuB2mlqxHU6ow1Mre54ny5pIcwLfhPH+daC9J75PzXkTL9aqjGt7EtV3cbvZb6xjLdlyHzmN2kZMv/a6dVqDMK8Z35pHVXNMtM6pkyiFh0/XQ3JekbLLAvWf9bhLJvVy4F1XXMfNcPX+VWW4+SpODpS3moUNzQ3audCXdbRMgdao9e7npfTZ+lt+TzzdbNcZ7iq/+rePSwDGqNsbe4F+gaxtENgFWXaOUYy3i6jw9+Q86fL8YombsZ1F4mD1YI3bFRLBH35ssH7e+Rx5PWNC7B+0LweuiDvCM38sWcngDegn+v8Xcffg7S4WSfXdeUF0J+lcALPxsbONieBvTmz3se4szaexM40rXxW8nr+Fl3P93asEuFv0CMHhsuvd2vOvdU6lszK/WqMMj03+jzrBSeJrUUq0K8fh9Afc/mMpkGvE8alluY8z8bM8aE3dmdi2ei/IfczzXdFfwxix7Ejn+V4esU81/lbhR2Hznk4fq6QY1ZHWq8zvzin2IJ+nupKEf39S3g/36WrQQRb2hhjjDHGGGOMMcaMIYu0tJlDFQtRhHZhhifJfZQwqsfMVkVF3aha2lDspJYzZJOc57vVd436uMnjSHXXspR2qkYrWicutM6ZG/0K1UQpauWi6/7VMqdLI9Kq3nVNOtG4VOrf5fBKtX+ky+mpivlaDZIWs1okqVRXmS9tC41P42l92qgvgIVaR63CmFvaFNT6SpXrozLM44kUPdO/DJswJc1UHuzFsJZWrU1Uis28Y7lQCs7yo/kF49H1/jcNXr8ktZb3mqrhwW/2k7xF05Lf8R95+IBUfqjCf2VK1mez3CcyTVSen5PxTDFpNw0mnbm6jI5Qtc0uAQ5mVzOxbzDuU28ZPOYnHMg4KLRX91or5FgV/RTuM/tYdduiBGoRazegrq/EjU6vemgXR+UIFct8F4uaRat+8m6R63z/DgwbMkDuVddHM3L9YsyrnDhuzKGmTQ1MqPCZZEVlSAcKtKygdn8N+o4cWFiqDWJGqVNbwrjUdxgzlH6eWDj6vGrceN9aDFpctvdMyr1Tcl+XA15WLLXg0QzsNaYMl8t952JYs8VrjJPONngfGyL7Nx07WZk5/jDfe2Zkkia1gqUCt210TAvzgx2ONnr1k6cWourTR6+TWbnOeM9q7lHnzuo2gvBdaom1BWPNEdQiUEsbfm7P+IXjlOYlH9gCbL5SznWZeKgJCNvHaXJMlsv5jG/tYTnP+0ZZd6jFmA4Ck73PqKhvJq0j+f0b5fJK6R82Z/1nVyafgAn0qwrHWbqS47ScxoX8PDZ3NlGmgWOg+t1m2pgGbU68TuPec5rr7F7V0J75w3rTi+w0OVZfNJqvc3Kc1zlfGKpLy/vnV+s9XWXFUPumIVOtceMI6koNbZ38XcfOkw2PmaNusC9r7uU1/obks2oRs0Ku62oO9c2qjTzjKTdgJOw/dmG4ouqiFf0NxFepf1WtK/obSX//0FSNDUb9srVp0t91arHb1a+wselvUTZudbE7KdfV+rAdG0+Wa/eROLV+nyvXCfPvLLmu+UsLG3aS7HA4sWNHtAH9SXKXT8CpDHWM5tjN31cd2NLGGGOMMcYYY4wxZgxZnKVN2Q0ceTewlCo51c8yulyofyTFVEspOkvR0sEDwEpRKexLkZWuwaM0Ste4q7pZLUVU+z/fDkaUcu0ZcaP6rlE1su4mobtBqZaryxfOKMsaYFB6qvnRbAM4Mi6ly9Kkawt0/dauNbQTGPapQObzJ0NUYK3qc02Txqf3tZpirarzlcGod2ocY8UBABehr4ngPgqpVdgh4lvdKrbdyYySX/WGr2tLd0uofpN4nlpz3YXtaDu3AT1JPVM+AfSk++yBWOeoeD958HSfrKfT+b0rMuwp4XcO3q5JUsH7hrywbKZ/nrodViVaq7CaqyWJKk10mXLXroTMTrJBjvW9azBsLMU4qCDgdTZnKhJUkUPFDNPIqqAGD6qU1r3+2pA2l2qIJUXSy79Vcv1aDFedcWEfqk8h1gnq7no+hTLDzsvwTDZbWsSxcLegXwg8RyUkM5uFebKcp1ZNtfy6XWzXfuPouN6qzKkV03FYNYVUeWvc3O1iyMJ2kcbAQz7t2nOqrR1176h36nU9r2nV93Sk407Ne+7R8Y676TvUElnj7mKhaT3SnNd7WQEOd5yXAfkU9jL/M0/ajg+HUZWi5+cxmwuVrSt1hzf1B8R2ONPfjXbIR4JaUKnlGA0EzpDzRJ225PGEWl+ok5d1zfFmuTYr92TcqzcNHg9Z2knaqJxeqdZt+TytVXsu8ST6ZehnIT+ftZFdWbqs6ym42T2yzJgk1kB6L+E4RAW7dkt0l8HdophF7DpXNeeYxm18OPN6ko5wmI9aT1Srr5YIrEfi62L9hJxXa6s1wBoOmqv65wbeqe/Sj5lvlcBx5wjqzED7Pc6yLsowZztHvl7DpVk4/5kzlTMwPKFiOXUtBFmZcRzcM3i+t6MT0VmmHIeOaclkHm9ufNpwhQf946w7IHHID9/1+m5deaL9ufb3ydaucQHAneZZ9XLmPOPmmV1pzPDOutOz3He3Uf6JAGAFcLd9Hdfy2Xtm/ulvRObnXTt2keJ9usMb5Dp/gIzyVbZNnlGRAp/VCT9hG/1tjMSWNsYYY4wxxhhjjDFjyOLUWIdRRdSrU/fd88ycIb0+q1OFDSlyp5PuzQB2pPhJLWh0CSM1FnqfOl2gtIqaDIrWN8h5tVDhMUXvKzBs4aEu7rt2buJ5LtClVK4rPqoP1CKH8R2Q6+09fBel75T6M++7vJLrOnu9zue4hm+nnFfrojbtqnBT7apaZGhcV8+TNl3vr848GB/ziPVttnn2FrmXcbE+daVtJ7oticaCadQM5AdRbZaSaNZdbR/MI5oAnIbR5hBAP092y3mWg1ovMU/n5JjlqyYWu+X2w4OvmwR6mwcwuZtT4K6+UnRV8qrDg6+kRo3WG9vE7wyF4bqZjRqetRs9cF8DwmxRwzt1h6NO+NWihGlg02Y3Sxgv36NL629C3xCi9XPTPttl9KT5qtYwPFa3RaoN4Hk2r3bpti6R1u9WI8CbJJxB9eg0jtALHK3F2F3r5ke9ri0Lv6fFbbff0jGS19o18sCw2dQGCYlazKl2Vi09uywlZ9BXjatFpjaULXLcI0t5NucFmzPUPkjj1fFfx4oJDDuH6vIzor5odAwgakamnQPfvVI1rdkXc2ePyUl0WryU1PLGKXle/TKof4VtGU5lNLRynpT7t3Tcpw43NqE/IGsaG2cubVydfifGk1MAPAf9vp7TFFblXpaqFQzrQzvYqPWaWvvq3EF3VOk5TZN3aLGoZYW2WfU/tAzDvq7UzwmfYUboHJyhWGesvItcF18/k/nNZ+egq+PatuZV7O7YRdGK55Cc/0E5ZshaTovbLpcfXcZGZ8lx+6mRL9na+z0jH8K83ybXiZr58CXML71fLSjVJHdN4+5jtYRq3cNnOWlg5R57nzbA6J+n/CDuI5Z9zVIZAL5nd3OdTkZ2Dz6zsueVSN6X4cpTB+8f6nvVqqXLirHDYmTp0u5r0fWsvqPrR0nXLsoLtSJdzLP6g22+59tdpEeloWPn54Fv7rKSzfyIVZJk2T1a+1n2owtZcdE+p58+i+HVKzqP0NUy+rt5HrNxW9oYY4wxxhhjjDHGjCGLs7SZQVVVn9EctyHVraploBicUuB26xJVZav2T9fEMxTP90M7BqkVwP6O+zWeCQwvlOX36a4RRLV+k3JevfdzSXirpm/hfRvlvlGo1I5qdo1Tj1UaqPmmO0B07RrVWh9pOvkOVbNrXPxe3X1Cy4jnWUfUJ0OX3yM0aduIQfjMNjmv+bMCwzs7jBWTqPoq3cktC5Rtkzs70eSEecQ2PYVhj+k8Zj73HHIMvqJ3nuWj5hi63dE6Ob9z8DEqoNroHrB38B5a0nwpQ60C1O51GYGpTxa14mC2sVnp/gKtoF0NHNQl0JzcR8MjNf5SaxW+k0XG+FilaeGj2clmcz76XRrzi4aF6s6Ez+oGYVq0/DaWwxIJdWOB1mUS0G9erd+a/XKOz/D71ZfPNc31cbe0oc6Ou6P8QIZ3V5Ux+9tRGnPdfWFC7iVq8aHjl96nBhE6Vnb5tmnHcfUPQFTLrOO93qcWnBwru/yZqfYKcn4Ww/MURa8frZG31zWf1WfQ0PQq++bJ9gWqMczj0MFG+3UmTjWvm+TValbECpWd+9KuKeA6DO+aopY0bM0cKOh8Q3u+8fRpcxKAh6D/FT3XLGys50qo5hrtoMKOkgauaiKi81qNQ526sP7SjQbbmlrNMNws11s/Nvxf50XbJI10FMM+SHfLVGufh2SojsvEgmQynzsrBx8qwR94oG/hwqTw1ZoN6heHz3GsYHbqlFp3rmqN1tvrusvU5BJgDV/OwZ/fzZfr3EnLgPnK51Wzrv2Mzk21n292GOrdullCHQu0P2baxtpqHKiZNcpSj5aFXT7P2Ge1W/rdq4kTGLbc0N2jeMy4xEKnc+fiLh8vXRYjoyxttL9W3y3aiG+R6127aPE60zwxz/Wl6PmmHbpGFnpdt1nk7lo5y2aj5VaaJTtLZruaxe3F8KSavx1lJ9oefFatkbueV/N3tj3dBpWwrd6E/sRUrSg54ecknH03LRz5Y4OGYR3Y0sYYY4wxxhhjjDFmDLl1Pm2orefe6JQQqe8S1Uzw/Fnoq40VXSfatYOQWlmo1Fq1ZLqYVaGAcg7D6mSGXVo/ir5uketd3qEp3aM0bz6fAXxvG5euT6ZJQav9bFHfApBj9UWgKgz9Jn0e6Ocb85JxMW1aJmr+oHHzuzU+1jdV2+tzZEmTNtnIrO/0RM6TVlMx1kv0J1DFydoAZN0uVTSXjb4MYFiLTcmx5pHWY1WwqmWOxs/zKfWezfhUacQv+TL6uz91NYMDcqyvVuuNrlCrLONlVdMubgbD/mLU8FA36mJVVFc/6oKD8XAnDTZNTYO6VSBt9VfjC+0OeH1aQjU6VEWExqdGc2rEoFWsfQe7UX6f+vChsoTfuQ19y6Bxo6B+M8uMm0Kxft2dNzJDWOnvnSErx8PRN4/iuMvMY//IjLo0Q+6AoP5g2MB6Dp0y/O8M1e+MOjbi+VabRRX2Crm3a1syppn9DyuomoTpmKGVfLuc13XkGzHsTEP7L2rCGRfTpJWcfedUhudkeLlc78WfreeU9Euz54Yark29f9nTaBlT3XYwa3JvB5N8hmU3ebcaTuduKZP3zQsXS+Kp9aRfmodleGGGLGRCrej9MrxoAfdwLx9mRJfWdjwpqNWKVfUBtKh5Zobfn+F3UBVKOzma07Q+FqgRz17rBZoXqsXP+56Q5cs2xjrIenH/DLt2R9V5L61AXsbKfhKGp/n57odlJKxbP5nhJO1SWH4r5DjDnxbfRdNX1XAqT7Pd5XFImh+zF7029hiZU2/Je+7Ojj37wR/kfUwiB9GunfV0tySdVOjgOdEPV3MQY7tWqxZWnN6uQl3WH/P9zFJLti7fIf1QjXKG0WfkPK0cfnfeiI4Ty1D7HxYCJ6FTGWanO50VhBOVk1gx2EZXYMi/Y6/RiKUI84RjljpG0t8t+rtDxx6dXOnvm7kR1/Q30dF8p7TvmO950uWnTWnfp5b2OokjakE2NLnMDkAdJ/banljYMB71JXYT+mXD9s3JNftRbnPKOZFY8/fi5hDHSSW77T1ynXMBwurIpt9aA30h/1cfrNlv3PDZGrK1r73L4PWrPoujYksbY4wxxhhjjDHGmDFkcZY2GwE8G/21Z+qROTpkQNyhoFXHUlpNyZYuNiV7JSSUnOnad4WSOJVMdqmeW9SvCVHLGrUo0IW1akmiPlpU+qnxkxUj0kRBtG4DM986fn0n46VGgpLHSbmuEsfWRGHUrgrA8Bo/VbsrKjXW3QyojWI11LJUrcma5l41zdBdHPidmm+HMFweY8XVAF6CvjYstQh7RJOnWvIvy/Ec+nmldUl9CuladpanmpxoefM469r+tLpT6w7dlOqu6Db0UgM9VUBOd5xXYzhVItDQQY0PWF34qatGPMtsYhPS7qJrIzdtkuqmSg0o1CBPl+u2S2T5LhbZFjmvy4eJNntV/Gq1UqOGrnwclW9qcdRlRMnzp6LfJYwbJwP4PvTzg8PR91K78vwMqRGiUv9B7R4rQLVmoMZwnTzEvVfy+oM4KHRpflPbfy928tlXPEidU9EclqV3SYZpynNV1tAp9Cu3GvixYDgGcNxXjTjP08JE08o5hPrHUkdO2iEcwrCGfJIvF0uQUxiZar45KGb+niK+Cu6h/gYYL52jZLxrWX4ZxlJgkq2aO5ZIWekx75vUsu0qa9W4d9kWsvdofUZonMyHdRKqRQZDxtVl/nt8WYKaUraWnqX46XLc84nBUC2QWksbtRPssrTJtrc068Kdsk3NZD1XizLVNjM6DhI94xjWbXYwqzFcJ7Ixrs92fSR796XaLrp2y+nl2CCTGd+K6cE06+5S7Vxf/UGplbla7PHZLit2nfdykJ2QUNFBeBLDZaBNht/V81E1n98ppWu3ofna8NHo2olH6O1OdO3o68ebsgOYfvWw1QonItfIcc8sOeveafldmwFsuWIwDpb1VIYsXxoO0rpLtzZjF6mm1EQtUulokdZvak16LYb9mehWo12/T3XHR51bqzUL0zTbcZ35nN988DJgJZs535Fbs+361MCtmDht8PrNHx2M+hRaBmc+TL+vhsyurd8jaczn/y3z+zGPzfPZ9+3/KPCveepHn5D/ZNdzwxdr+N48/dOPzn/SEPVzNw6++8lpvr7nKzVkdZrK8BHZPV+Sz90ry+ML+XH8dH7rttOAD7OeZPjAXNWwfmbg83pF+HOsb1k2XYuQiC1tjDHGGGOMMcYYY8aQxVnaxDpg8pHoa/9Sshy8QT1hpyxpaYqplqaWYeVh9DQOm3YM3nswJaUUXakbed09SpU7vV0X5NPokbrL0337CbxGpQmlkhTPqY8PihwpUWUSetsRSBoVtXpRiXC7PpGaFUrz1K2+WjuovxFKTdUqpd0lCehrJVUD0mXqwG1S2nczTboNjvopUmsqla6rWYOq+XVdc5fFDdMJ9MtId1Dp2k3rAIbrylixAcAzMKQ2OPT+GlKBTX9UWo9aSTzzmUoY3UJInamoSYzuEKNrg8WHk1rDqAus1viJr1JLma6N1nT3It3IjPHpUlfex+yhiw1K1vn+dkcjxslnqERhGtThvG4Sx+u6EQ+LRp3pEzVk0u5mC4aVhLTWYRHznezKmBY1jOiCz7NL1KqgLsjaHcK0OasyWctks9x3APMv0T5eqN8MNsOrUvtyJrV7qaXqZeSu7CS3ZINd99V+v6i7jUyemf+skwvq0E13lCAd43YvzLGaYzPfz8awBcPjBP08fEfXrhdMi1prqFVHPr80w/V5ej2/TXfLOJrWuvVB0h6r5yu26iNyzIFfbb1oQaODJP3JMJ4tctxas9ACQ61UNF+64tLJBb+JdYFlrqa5fM86Od6Ifk92pDnXPqsmCGqRQWc/48l+VDdOVHJPpAr0HPozYOf4kBxDZzJklWv9KLCDZHt+XIafyZAdbrvbJtDvGOivik6u2Cl+JEP6oPuzDJ+XIV0asWp+MUe0+3++hhvQr5b0k6VbIjLNq/LZr2ZISyNqgukWSeeKvM541TfWVIYcRPPbb76p21BAXU3oxqs87mn7da7NfJ3Ph43ukNfOFXX+SMM52R2rN0PZmvmm/snY6fMjdXtEnS+x6TI/1bJ5Gv2myN8carGov0XUH0nXyoZxYQbVekLn52yTn8xwW4bMU+b5h5p4OIFkHtF31Scy5NjLuNX/iTqiy7wtF9Qwsh7syeJfm5Yj16RFytZsXxflt9wvh4sdNwJbMu6L8yfy+axTWT43Hx5M6pMlicwedjPaRL8h932nXKcxELPoIZmOKwDM5JDBavmgK/rX2jTcN/NlY7ZBjnp0rfcjHAayjbFaM56t4o/1hvxmWog/RlYJfKN5d6+DSPMU/rzpkc9O53fRo9vpcp1JoDSi9xP8xv47AWBLXtC5eM/SZme/2rDZ8nfA+l0Dr+x1i7uyMDbeNHi9C1vaGGOMMcYYY4wxxowhi7O0wUHUde275HzXOsodcr7xnD+d4iWK+LocPKh1hUqxVUk2IZ4x1GKiy8N3K+qnFJrvVk/9lF7r+tiu9ca6rhZyHXJ9Rq63aWRcqgzVnauY9WpZo1ZAumxfRYdq9aNb27SS+8PN/+29ojE4KOYQuqpei4zLU/npXc7ZtYgptD7QPMPPXJ0nKOXsWiK6qzk/3sqJQC1UNukU5/MD1JRE6yqvL8P8a39VoUztjlpYqZZEHaVkGiZSMbs+C3h1nmcV5munmlermyNqDKgc1OqrS5/VUkaVZ+pCS42G9Pws+tn0GAymn02P2URtAHXefI7fpGlW1JBMs5VpZ/zLm/+pBNWioWaTCkrGqQpI1dMzjVTaqhGWblyk7qeuR1/xxTSpQ35W1Z5WVdLautMaNwrqd+l3D7lW6PLF0KqAdEdFZjpy15aNVw2+hJV5KUtRrVAIS581VvzIqNWrFvIKNBauWht1J6FNcqx7na2Q+zQeHfAZzzq5r7VAUTU7dw1RSxlNA3sHtUbh4EnVe2s50z6v38x4SGtpw7hpUnG4uaeFOkK1zFE7P8bHiYFaIjHtJ8t97Q5BTLdaYvH7Cd/F/FKz3/FkE+qGSTr291S87KjZ7nqWNxkeau7jLk/MCs5P6c+BlhGMi01yUu7nIEFoBcAOjk2VnabuhvlAOX8a+lXkVLlG1JJWLWK/t+NdOndmuF2OqVLPajG7r/+4Gp2o6xn9BaHucXrT0Kz26zKclcFT3R9qzTxHLXWaOCZYVk/KkHEzUn4v84n5yP6ZqvYuS/o9cp2ZslHC7c394oOks2wI71eL+3FlP/oWYMCwCYTucsvrzEOanpyGYdNjxvuxDOkaLv2a9Cxr2KZ1Mnjl4Ks3Z31gNT9/++BjO2YG76fVx24AW/ImVila66jHIfo5mcpQf6bxPJs4q4zuqsnent0OP5XZyfnzNzC86OBB2b2zGjLLadS1Mb+FRn89Vy3Z3if2Dj7Xa9titsK82KXXm3zstV9xIcb86s0Hdw/GOZXhBrku6316z7Np0npIjeO0Czw407/GMuv9NN83+Czzp7ebbN443+9MW9oYY4wxxhhjjDHGjCGLtLQ5gqqlmmqOgb5cMI/VL41upwLMLy5S7R6fpfWJSl71OZU4UyquUnL1DTPdvEvV8yoCowSXUnpVE6hPGnXI0eXEQtUBrTULRYAUQ+Zxybi5gdfNeZ5aa0pH1fiHUT9I1lJedXjwOUpmqTSglFDjA/qSVyqFqLDi5/OdVPDwHSyq1roF6CswWORUVv1HhmokxGMqOm5q3knF1bLMH0pmKXGm4kKr7DIMC9zHi8Bgc85KxgrAdaUsOHUUwszt7ZiBvrie91CMf0DOq2WYbuEku0UNaXvEDGoyK4quH12HflM7Y/CR3tJ+bVrULLDZsNmzPquvFbXiYP2gYlMtdVqFqXY9+i7d14PoDk6ky1UT0TrKY+YN39vWW76LeUpXC2xzqzAaVRKqMlbdrJDNcl0N9m5p4tLqoEZ9uiyf3Ad9Tci4MY06WqpG60EZbqW2j+oY+n1Qc6o16GeuOn9iZd0gz/QMTGjSJlaovW3MqE8S1GJODShas7eZjHN57lanFgSr2ftfNZg2NlD1paYWsUvZkbW7GwGYFnPVyXyAVkJL12LYwiWtSY7kdy+VQVMrmDpm0n6O39rVr53U+yfD1tJJfdXcOJh+dVQVzFCxqBza0kZ2EeyhvnJOkvOtj53WK1Yb1zo51rSIL6QxZ8hfl5pxUGX60gzXc8uStHr6kXWYf2cthmrinOHWjl3ANmX4XXn6J7u+QmktztRSShybnDmVxyw3lqP6gNLd5XI3ucd/oIYX50j0yLzMQVg2hJvIZnfKtfUPwLDfSM4BdG5MNEldgwfbaPYr69UyZaMc8/oaYEL9ZqqJN/tPDqJ3UvMXMs8ufr2PYDtTq0G2M+b70uZehifLM13b6UpGPv9jo2873uwH8AX0x0X1VcNxYo2ELJt2Rx5mp/x++3RW14eKD5sPZ9f7eNZFrxvhuAAAIABJREFUtUqfGXwVuwf+jjk/6y7nVKwVTBLnqocAzB4eeHXvNxKrI+Pkbyg+q3Mh2meyNrCUd8l9nMKrOyqSmynhSgy7WmVap/KYRdP77Zf/aH4w29fmdTb1nmc92WZV3bHqBHcvmrlyfhhd1g5ZTR4aTIP6AiqHB9+l4gS+mj+PunaZbReeaC+p0ya+Qxc/dLl8VWxpY4wxxhhjjDHGGDOGLNLS5lQAP4chy5reca5mW7lvMKREeX0r99O151cP3lvEWofiKtVmqbpZF8SpBJ5aMXWkguaY76Q0l0JsFQGqm2e1uJlvpyp9nt+ivmHU4gfoFLfNpliU0lFKO/kq1eb3hJgiHeYrmRS1MNgu53ejn6UUbDMOet5OZ+q9+34gQ/ojofT4WrmP1j3MVkqHr5b7VMlCSeeVGFae0hqI+cJ3cjm7GmZtQLfuYjw4hJp65n4u3FVtlzoOoui9zTy1kGO9bv3etM+qmoAFtVpCaqhVMw05zvY2mZX4FF7fDezJc7r0n8fqZof1dM3g7b21qvwUVZ7RWqVr6Tff02o8TpNr6klD24caE/KYaWUbVvdRRH3aHJLz7La2NudYFNo18TzzTS3xmA9UTDL/WDVukmPer0oq/faTMdw3qQ8brT6jPGXEiHPjwBHUvGFfxHx6Q4ZL8sTZuXPNmaoKY0e1BsM+1a6Xe8+TY3WKNMrMCRgeS9S/jo5fWjk2YLiirJJj3fWRhcpKStS4o9cw90h8HT7rDskAuGLPsFpyZs/gu+hfT79Pd3Mhap6n57VfWzM3+A0r9vTvVzWbquMYsow2yy6YjEudTzFt6uuut1vkntHf0MI4114rcVw1+K7efXn+aA11jCioSdWxZDqzeJLqVfqlWc9BlLaSdIZxEoZ9K53cXBsVdu1ypv6mFjlF7zHK0kYtbmjBoVZW6+S4q5JK2ntWdRly4OKgoAPe6uZ/9fvYtQOoTvaI+odUVThRRx1du4W2KnPty0Y5VQOAgxnZytYipkXLWn2B3ho6LLQ6643+dhtT6NOGPw7Sj9RUTtC36VaSUhbXZFFs3Ynh32NZp/g74qHtjxj0rVoer6b1Mi5weNXfLbxPf5LSn+D3Na/b0/wPDFsVc250qdync8qpDPlbidmi1hzXy3XGu1buH/AbI+++ScLeT/MDo+/jN63dM3ie304rmVg2+Hxv2JXdZ3ej+SmdN6mr114vund0mnSFiG7gphsWaz7q1KiNR/2h6kIdXtedW7V37WKRI8IK1AFrPjM/3fpRO7Eb0f/1qANGwnU+nIR1/XJRh1T6C0DXLOiSDt7XbivWJdlQx8Asla7tolWwxOvsYNRhm9SIPYcHX98asav1JyuAbnHMV+pqMs1GdcTE7KCgpbclXIbsS7WCAv05DmH62RnqUiXdlo6OrNiRdDkJ5nl2viqne3iG29HPJ97D473NPUC/UfP6/ua4YNxpJ2gJ5460t9TenJnFzDyAYQ/ApF1v1sJMVP/kau+nEy6ViOjgKhOp/XP9en8lBlkjj3Rti83fu4yHvRCTfprcr/M1ZqMu6Zlo0qBzOmYjB1TtqlSwofHwdzwHXKZJB3id995XjoF+P6HCLV0WqHNm/e2oBuAqaOJ96vda5+QrMLzqp2sezd+fKmDahX65jhuB+q36u5+wHp7JoZLCCnUcfwaGHSoywzgwsBPTLXl1UFAn/qpM0PFMK4dK8CdG3KPvVof3LDz9oafCHU2bokKHUQJhHV+1kqo0nn2mSnL1HUvkukppJ+RYJcerMDxr1Fmgblms0lO+e7ccE+0YIce6BrH9Ya3bBau9vEqCWR+5HGxmXN2DVyYBnLkEvTydzW+f0O9kp/lP2dBmX1dDOi59MPp7yT41Q5YHJzkqsNCOcGVm9hFRVrJcuL7yTRk+V+IlPe+oGW5BfwBBc66Nm05bua8w1wKz/OncmP0L84cD0jsyZH4xHtEqlK8NvvYA+tVbHQ7z1TqnU8VG1z4ZZEXKpVTMpOMas2s1B/hpDGsN2C9sk0Rou9+dGbEuy5L5toVLSPN4yDWDOJTXfO5JBaaBs3LWe3aGLFNdwq4ZOPSrdoyZA2Zz0J/IAuZvg7MyL4JlIJMH1qethzHsEiO/vbc9dFZICg962SyK/TIz8Ioh2TSzmhutaBNWwcKB5hy7/S5l2NVyzKqogiHmz9lyfadcV5m+Ltm5BsP2DSLbGtoDR/fv2S9h2TcYH6t/b6gTR7y9IStvmG1EAbokS5dcsYyKCNDavB/1TXwnv73LboKh1oEDzTU1eNB3Qo417MLLo4wxxhhjjDHGGGPGkFthaXOv5jHquymnUtOTHR3np4CD4m5HxXcqOlMnwB3a+CGLHEqpKUFXmza1gtk7Ii1qLq2qcLWv5f26r66Ysdxw7eBtXdr9Voqn5llUBrw3QypJdsp93OVOrU2ZLbSOYfZQOUCTPr6Xy0a+IPEAfSsFtZRXaSbRVTXczFSXUqgvRn6Tbh2n8TPeAxi2DFDr2aZmAuh/J6Xxkxj35VFElhuquH+PhKoM3YV+Qer+2moKotsvqskIj9VUSgqKZpXUcHIJ1KgdRRkFk9/lvFq38tZPUWUxmzC7i/1yXbcg1Z1b5zCswL+bLP3YnX2Zbo7MoqHyXA31dKt7NaQgWkx87rsbbfJMZkjXqgg18FAL8a5dSzXf2VZ1+25dIdeWKeOklkkNstTvLpnBYD80TgRq2tRogfVMNUY9VZh6bj6EvnpNK4aqg9ipq/kR42ZF00bCwqXTcs14HWvJliZtVFPyHWopwlAdgvK+Lq/cahqpFjWqIkNzXucGXeo0og1TG5quKVTrIHVcqj5qW3M1Hai77OQZxyq5X00VNJ91L2XNV+3YWuuiriVsRMuyZwIo1tFjyiyq7+kJ+unO86tXNTcA/cGBkwJOlp7OhbubgCfqshQWpCxFoupXO1Ba2KgpJNs02ybNh3WpMp3h0rJnXXNd+xIN+X30r8yJji4rVKfArMdc78E6xPrCNGZ8kc+vZec3069id8u4uFJRX9m1jEGNgbXZaDaqUZwaCPZeuLG5yO9luhkZr7NeqEWT/l4g6mlU+yfC/onPPzjDFRgeNFnddCcBtezaJs+NK3MApoEJ2UmC5c0sW8kJheRHL4tn0Z90iIlCzztFRtbbepnns95Oi+UM4U/TrjG9Z0CVoS6DmR5xTn8LqnE67+ccSY3c1bOGGlB2zd/0ehunpkV/3uq79Cf4Yblffw7rsn7Gz+e46pBp249+ntL6SfOaqJFtl3Ng7Tf0eXXorItuWjGFGuLqu9hEWf+0vnjLb2OMMcYYY4wxxphvQ26Fpc3dm8d0ISUX5qvaR1+zBVg5Vf+9IeVnKr5TbZ46HFbxnlrkqHaBUGQmWoDe8RL0xW3qtFXF9WmOUkSxpMY7ysblg9GpWx1Kk0dZjujy8i63BZT60o/lPTvuJ7rml8oX+rbUtcSURrdGSOq8WDe3vHuGWkQKv02lmfvlOg1CmM/MPxYx378fw9WE39dloMX8GdoOdGyZRfUPRc3e7oGgv1A3UXFwa5HT7nMODIurqdXo8r8wK9fVrEkcpkzku7s0Gm20ulW3Rs2kqDUKy1F9jaohAO9j/GrBs1mOW18v6oB7f29Pw4pK+bt837BIVEmuaWX0qmzidSoAZ+eAJXOD19hzq+ULLZh092g1olL4TbpzKuNnn6AWSofQLwvtstXCCHK9NT4YV+3DHAZ9WpKpDD+Y4c7M4HNTId9zB5EGcyvQHzd6qBkZO3kawEqnPpuOyCa4o6+s9Z/ONefMX9YvtgHVSjP6bZf1/98p96qBjCqdJ1lh1OcWYSXgIn06QFPv3WqG1lY0dfCmXubVoSgbx1RH2q6QY370Rjmvnsn1/SvQN2lVyximRQeqLh9BauLG/GL86tmSdPndW9E8w45E06bWUZwG3iL3jykFg3O0XhvNdrBaJ3Ts5DiWnpbb26+8EcOzmYyNamKdxKhjDKKeL1k+LEe+m3mv1l06PwaGttweGpdZn9XnFdNAKx6+m9/C9qMmz5x80rIvB5dy9eBrl6Hx0zg3cGvvM7T6nyHHkGPNji6LHJ329ByN5kA1cy2wOb9Xx+u1m+SEtuEux3pTGTIfdZDlxzNf1bSB8bfWNF0TEzURUIsbTdu4MQdgL3Aw+5KV4oee5bZSTVPE8mJ2DphQyyb9YSbP0H8MfVx1GZjK40P36dCkFhXtnjfq30Wn3AckVOPXDtc+PVgN1M8Mmyy7cLbHazH8M1h9zai1u/6WYlmp3xe19tGhjee7njuM4XzRd2u/oW0Ycl77A8ixzt2ZFu1uZ5r/1TWg/lY5W461KncxrnNdY4wxxhhjjDHGmBOaRVraHEB1k09ZEt3nU6ZEzykUtafa8MhVg7ddhmEtvYojKQLUhXI3yf1U6am3dF0Ey/u57ZE6Y2g1G3otRYB0w7My11keFHEmpZ8Tag6j0u288ezDg6d15xpqFcghDEvl+AruFMPPoH8YpkmX26rjepWO8vxGjGZbhq0EU5VJimar+g1Rr9vqE4fSU5VEajy6XfPZGC4ClVzzO9X9QFt9xnVb4coSVHVKNunLU07Npqj7z6lzltaKRk2hVOOobVbFz7pAVk1ANP4lg7ep2wY0x1o+LHN+DpVVusuT7rikivqu3Yd0wx52YWpBMIG+ZZe65WAaqfDU3ZFUU6NuLIgaE/CY79Oi3EaNYKMEnr168FnNRzWWUum/Wubw/i6LND2v7pD2N/+rFSCrmSomSauhGde2uQLVzxiVscwvfiONYuiLjPmuxh2TJ6FX8PszY1iGK3UnGjWLZPuifwAW3pbB65Oy7+dkxrOF8bKCbxx8DmuBySyMtWqymR+yUZ1DMW1b5H7VAOvOS+fJdVUpqrpzDsOma1qpdTcXzXxe57vUcuH8DLXj0kGXtJ2K7uSjKlZ+d9f24moVQfjcaXL+bDnWQbZVfzIfzh5xrX1WdwCjZcaYW9pwxGT10J0Fh3y+8Hvo0K83n50DzshGOZXn7i0v08lcmwhg2ISAHS3rB3dwol8TdTrGMZVWTjub82vkGuulPtu1Gxrn3JxLsB/h83T8pxM/mUyqlWvrZ1DnoZotqrXXbkKbh3Y36sJvyOIvw7ZpTiwfvDZk1bItQ9Z37gTPMmO7UKtm9ZGp/faotggMzrPUJJ5lqiYYRDNYLa/HjCOHgF3/2zcCe0Cmmz42WX5r236+oc2yZdyJXZyr6C5R+hNSu2K1lOjaoFgtLXSu2U6n5/N7o8PptIS8ziqmw4g2aa0GHMq1+5nB8E9rtW7ReaxWazX+0+/Xnw+axtaypo33EIZ/v6p1k/rRUTdd2sR0cQHR/NXuWVeDzGB4eFRDTXbDrMOaP/P5Z7SljTHGGGOMMcYYY8wYskhLm4MALkFfr/21DC/JMGWLJeWjlPYzpGiTokxg0CU0MCzu5LNqCtK1kE41TurpvWvRGpkFdnEZcoZLZM3jllsGj3XNGn10dLnhWZFiP2aHapi71vq1LjKo7OBnU5OrfnCYtqkMuxQ0tNTRDbMo6SZHWxrfJdXdI8eqPdG1opReUsHJ+NTb+E45VkOPVpnAtKnyU9N8jVxvJbldPorGg4K+Pxv0NTCsKKxkWggqOl6G7oqtu6LoFkxaKablupp1iMv2Xr04PHjcuprQpfyqUdM2Azmv2gHd+EXrGj91lRxToaUWPe05VVieLtdVc0FU8a8aHn4ri7ZrY5kB9cPE4LPUsKhmh/A+tUDSfOpyjdS1wY5qYVo/RVqWDNlmmce6mc0G9PNs3ODuUVTGqpaE6Wbf3u54BzSuTfb1mw+bWc+XUWb6OfT3ohYQmbE350vWZ6Q3ZwXTMlRt3eqMf02Gk5k4jpNrMNz+ei4UWNm14NV0jbCCqXMcrRzqbImZoQ6fZjGsElUzSjT3tmniNIfvYGGpWo5p1YatFoW8v93l62p5RtOkHZmahai/Pe0gOQh2Wb2oyUG7EJ9x0RndlKSJZUHHeUTTNqYcRDUSUV9hHDrX6q5Bal5JNmPYeYpuR6IbqLJO6S5qh+Q+nZ92be+nu0Py+m4MO3hQZ4q6ZSIzgnWHk0O2B77jsgzZ7+j4n0zLfLdtZl272Kh1go5TuoGVdgvMPt0gTptu1yZ1kwCWZ7rVsnXz/9ZwPS98NMPHZsgFCA/JUHcEVP8y6lCPiWDiRvnt1MFxa4a6e5ROMjQjxpSlS4GN64BduVgDzVgDNONox3eo9QIArMiDyMLvWdRNDwS9ujHKigIYtpzQlQGQ+8hyOd9aGetvF6L1VX2pEB1iun4Tdbjz6T3fWqbrDsPq30WHplFzu/Y5tbDp+nb116rWSMswbHE3n7tNnR7MtwvqKJ+VLWoV01rudP2+1X5Eh0mmWd2cKba0McYYY4wxxhhjjBlDFmlpw1XAFPmK2/jrUpZOiTsl+KoN2o1hT/Oq3qO4SV+lOzaskOtENXQUD3ZpfxpRZc+Pi4rzU2xXMqTkjEoUJlXX16k2f7OEbbY0r+lJ3loFj1qZqIaZAneVeqoAXqXCJ8t9zAPVwFOpplLQ/Rhe66gSRXVwz6W/VOSQ+Xbf0qXzWtSqyNjbpGWz3MNn7y9pUc3ODICvd6RnPDgJwEPRa9Jr/72GE1m7mJksWPplUPVCe4+ibZMZzEpIxxyqodYFoKzQzPztg/dPinXQZGOyxrbHV1NrsiobGx/tWguvEnK2OSaF5a5WK7yu1gikdYWlWp5RG3oAwzuxaX1XqyFtV+paiNd71jHbMmwa/6mfH0ybalEU5hvbXJcXftVwML80zZDj1q+Baj1Ylpo/aiW1d0R6xoVlGHRnwW+ksloV7QxVI3Q9hndzUsVt59ZoHGP57lQN0p+OjlPMX10n31PMZ6LYds5oXqWuWNZrQ2HaVO3YtYC+q1EQrbg6MB1Cv7JRJaqWBtrA9F3q2Kq14mnvUxWkmpAxnnaLmzVyTi2T9N1darZbOu5Tk7quhsJy4vsnmziWyzXdmk+dzdGkosPyYlxYivpJ6jusB8t1KkO1XmWdbR36qWMxtYRR34xETe70nbTeYL3YlqHs0DTkZGxUeXdtz0LUap11R9PM62yz+S763JJNIof219qPfhXr2g2VSdXxWLX4RN+pTVD7Nh07WRcGLDQ64uzlX5evGrVy0bas/U+Xw0o1I5pFv69hGtTxI9/5Dbmuc68x5dAR4NIbG0PM/E5OLVn1ztQKsGTgdsxgOJtX5onetOjwQNBDp6/aher1rjrJ6+rTsL1Xm6LOIXUjQm0H7D60ubPYdedHPq8uztp5mX6Hju0sG50fqDU65LoamOk8V3cfHvXNaglD2DWrxZFamBO1alFfQNp0u6zjW59D2pcRtdjq8h/ZtUsZsaWNMcYYY4wxxhhjzBiySEubI6g7QnEx6+U1KKla0TWz6oab4tErm/+7pPd8JjUJ0/tq2NO6U3uYGoXZXPs4oVozitJSAr0/NRnqAbzd1ELXwem6wi6fKoq+Q6V+6odmnRy3e7/zWCWMqpHYLSGlfXwXJYYqxFdlGb9tu5zncxTgk0PNPYxLLWB4XvND10byuynBVesenme58Fv5bboJCND/Tj6jy7YZp767lRaPt08bWtqQdESw7jM1pEhdK7W6NG9Fz2qWomv6tdKpWZdqZPmcpuFsOe5aTLwGiCzUCRGxr1XxtbT/lXl9pYi16V+qpx2gpoY79Qy+Zkhb0krTu9bHR8bJXQy6FPsqQVeFnGoJtd2oVdBQB4Lhdt6luewqQrXw0/ak1nWE9+s65mUY1nZqP4nm3jatrcZG82JcoG2qug5h36QuMDisMf9ZlluaZ2i5o36Dhl7CDMpI1mVhHRo8PVTPqM1k/FvkfnUPt3o5htVmRJ1TqInVNkm7mqtNy/1ETbh0cX5rEqcmaWrVo2o1ybchUwEeM4M4z9G05PSoV0Da+DagX6icB+lA1MtkeQdRkwGacGnj0bqhFk264+Ukhjscdn5qtqtqSFbQMfdpUzCoqVXN7pC1DMv5yxm2zgap4lVfNbyHvkdULa0dMcudEy91IsbyUX8nhDs53TPDy9H3rcJr3ImKaaVrSlrt0IS5a7Ip31DEmLernx61MZy60dF7dc6t1VWN4YmOJfwEHZd0itNaU3S5nul8WE3I+RGcwKrpgbZxLcsuv0W3oF8XdWtFbYvszHWupr+7xow9qK6CaLzN9A/5ZmEdlMlUO/3TbJzIi73s3j8QVWcdmZNQ0azXYh212kGHLX2n7jYJOVZDVR1+R20OCwxbuI3yL9q1OkONQ/XZEW5iR6ZNUaujrn6jvabzV9L1O1fv62rCilqk60a47cac6lJQ4bNMo1pVde1kS2xpY4wxxhhjjDHGGDOGLNLS5hCqWJ4i+RTjcouhqQxphkEp8Gq5fhOGRefqW0OcI0xSlLh28DzDCV2cRyi2SjXKalUTjnBEsTq1Vavz3OTcYFK7PHOrRU7X+lxKytQQiag0sLX+0GXxaK6196oEUdcbKvptun6zy19HS5dSSK+rQqFLAqtaFpUuqyZHlVWtPw5VVmgadWcq1T6Pq8+MPitQrWvYpFOddkZa2qjjJRWbs51MY7gis9Kp+ktNxCiOVm0iNU+EmUxtomp9u0yw2gXKKo7u2gaJqOotC75XruxXsu1zh5zJDlXgkNuf1iRHtd/57NqunfJUQ0/yXWVm8BNoTUiroFldjE1apycZVywfTOIy2SFjQrdTE/XpBuZLHtPCic+toV8iafzUhNHqaDaPZ5tX0T9RkXzgM0X64VabFhhflmDYckY1X2wybKbqRmI3Bn3jtHGwGp2XZjrMvrVSBhyWWXfVBYvG12VooEPnPQ8DB2THN1otrD08GMdq7TvYB9AKRRMDOVbLhC5/EG173I5BdPco7fTZJzIjTpVj9Tej2w91bWXBtFH7vQ190zVmri6W5xxK+0JV/3d94y45P8rUrU0z2YB+J8G5Fad9dJzHZzn/U9Pjrh2rxoSCwc3FmCU9C12Wr1oacTxrJ3hd2+npZLBjHBpStd9bnmd5qhOGLXIfOwnW4VNHpFcnN+oIgufZYZyXIctX20cyZASWJw6KhWmr7VcDOnXRotbUqsXuckOl81/1O6LzOi2GdhcYLRqdn+/KRG5kIr80eP3ghTVceVKe0LmLOgFh/qrZe2bK9AwwybjUOaN22mpywOMxn9DOoHY3d2lPYNiVD+cE6u+unVJ1dXW9Odzs4LNd1l1ad/Q3UceUachahsNBW4/UqkstRHQVRtfuqevkuPW10r5TfTjp+WXo3hlU/Tvye7qMDLvc03WtuOB71SCWHMKwBRGnwHx2Rs6rr0U+35v3yjuYb8vlmKif2tYwmHnatRJH49b+ZD4DVVvaGGOMMcYYY4wxxowhi7S02QTgJwGck8dHanDOVA0vTb2gisZUFNc6G+H/XMyv25pQXMVnuT6UtOuKgWERunp4p9hLRXKtRkTMWCg5W53fsTG1X/vnBl/RtaaX2aFWHlSK6GYWRCWdEzj6+uA27JIQKl3WQPxmXcunfmla5aNKH1VxSYmz+ovRtZGqmKSikzBf1JWKFn27ppASV5VQMw2qsNL8aHegGk8mMKi3mqoBE03t6KjdVYBBUbsW5Ea5hwXEAmBl6xJb6/rpUWJ9YLjyjbq/azso0uWavmsbI21QulODatO73jeL4e/RxkXmc14j+Re0ZukQyU+oNo1pZJ/YarxFi0frlglNe4eTmJ6SMNM8IWXXuy7fGGKlMJHfOLECQ+rR0HfnMfNhxczw5XFtm0tRm49WS13XrE1O107PYNiakrBPVuUqNdx8N6sDDQY4tGrfroZy6paGzb7d2Uqbm/o+6l3PSLjb20p2zHyZJkLnErQoUT9ZYrI0zfq4BNgzN5j+dTdiJLszg9blXIRGKqfwg2UAm86097TeTDu35WJ3zOc44LeFz+/ZK9fUUkMtZHTrCe0DeF19X+g2cHrM/L5ixDtoeXG1PEMfKGrl1Nv6ZTyhT5uOKoS1aqVERjlG0EahphuqGtbdvk6W87pbqlqSst2o7xtV0U9juAF3OaFQdXTXtoXy/fQzx+cnxOxBX99q1Bml+n2bz8cE6dpgSVHL6i6/JK1BisY59I65wWe6HGxM6j8sK7XiJR1bX9ICdXbUvV3O6bTecC7WuWXaeLAENYm9vMvvUcssNVYmbfmqZQzL72S5WcdcnTpqs9GumPHq1FR9wLS+cdRwTtOvG/RtlPN8h1rh8luZNo7D+rz+tlrW3NdlzKo7UXUZF6r1k1ZNHdpIl2UTaeuAXuOz6k9Gy0LRaa9OO9SCifExX9vunXGomymiea5WVhtwdMZ1rmuMMcYYY4wxxhhzQrNIS5v9AC4C8C/1cM9/15AaCWqYVIWn21LMoFv7zGdVq687L0CO1TeO+nmgOItiQRVBtrvpqOOWDvG9+qTpWgMIOa9KfBoZqSRYaaV/qpDTd1JbpIpMjVuNJBiPKm6ILrFWTXF7rmu5tu5+o+uT9VtadyvAsIR3Pq3M9Ii08FmV1KvEtZWsjreEczeA96LfpHPrEmridJss3UWg1cioOFnF08xEVi612lGfDurzgfCdVBNo5fyKHB/CsJi/a5uILhf2XeoS7au6VHe6CJiMEuFrPhJVo3RVXE1Dl2WSutvX59pvmG/rqi4VZFe/q2qkrm2pVEXWqm+61CJD2yNVev5rMu7JvUB0qayOM8tQNSvsZ7XJqAGXWiG2xgq8l0Mki5lFthaDaHVRgxHt46YlnG8I3d+EamGjQyevnyZxnM5dQdJ6Y+PVg/GQLelr6ubcRVI3sGM1Yx70DGvn+vmgvgS0qqvim10mB4lTMtJrDg/Gsy7TtDY/6uaMeG32rbsy7FnsMNF3Rc96hX6pepZrOgB3tVeqTulXhvOk0zPMjT65ww+t2FpLpJbp9j30X8UxghmS31Hyu0MtBYkW4pgRGHRHw3rf645YSVnZ1EkBVfWrMWxC16WHqJbQAAAgAElEQVR21vGmy4xDnTLoJJENieWt5gGtul+3zlRTAH7f/8/eu8dplpX1vb9V1VVd1VV9v0zPvWaGgRlARrkICgQUPQiBqMS7YiBqNMmJejAejkYNGi+JHz0hQSMeouEiKAYjihIRjQflqqAgF4erPTPM0HPpnp7pe3VX7fyxn99+1/vb79Nv9dx6w/y+n099Vr37svZaa6/bXs+znofzd+ZbVcBVJUn7XNopEztn2ZB8CpUGdGXjrM4Gf+vwml2X2aHRKqpaAKQu/szrTdcP6s1RHtRwpMfKTgNSjXfoPEnHc6kztcLsonZ8qsbAOFTLeeC2bEhtBw7ASEMX42GmYVNrYGV2jropyVpyPFBbNHUagb4NFkKNCaaJXTXzVac9s5vEet/rmyRt2+W4mjpSjTS1scc01nZWOAfRrmpOrmUa2ZZVA0mrnH56axfI+FYiVBNQW5HbyWGZ62eCloeaCFPlQv7ms/dKqApsJ6rrGQfnItpdMk6mNRs+M4b9HWqMMcYYY4wxxhjzMOU+aNq8D/hoeKQ5EIc/HiGlPe+LkEtIlKRTUnEY/dV7eg4JSVvRTXhcntL7uMRFzwaKGkqhtEglItVe4bvPjJJZP0rNX3xGzhO12K1JpzOGD48eOQbvUw2e4xit4nHFj2nSLdUqUdBVYqaRr4SrqnymOvdgGnTrNfO+tUrblXIPNZIoLFK7O8y/atjoq84UNXT/oUqST2CUL5XY6Pb7zKzKcXQWnAbKCbRacCRylEhJexpqtccP3dyr2iaMQyWPKppiIapnmMyGzaT9+MCoD9iOvtoV0TRnm12JbjDOJFaZCG+SBFw3/2rfo+oVKoVVjyLTxIGZKEPLd5JmY6ZukKkJZjZ99JnK5uS4ahsB/fee2deZtCl6oI2zoM2W2rBRtAlos9yKUT/JUM2WPFrOa5+nxaiCdBXaQ84TvlJ2AyeqdKtZDB1XOG6oRqc2GXYtrArbQ6uDYy6rj9qJOy2/Z9DPpwq2OaZlXhx5/9Zj8jtCdq1b44SOc0wrNVOYt32HgYMy+B+PRO2PuPiOVVq8TcS8nLPsZGWIxN0rZgY3nxlPwxmxIVJr5PId7ouH3xHXUrOI+V6hBrXQJLaDhgJt2mT2DLapG0qWOStMLZ7le1TDU2oTjec/FiHtAemEjPaD1BaOemzkBI2Jp7bMoyI8WMVxk1yr2ux89uVyPFNPiTStHR5PYueMTbRn1FvdJLsjmWkWnRpoW828SGXKrDof5nPqYU41ukkXVzyEr3RnhKw/i1FvOg3HONFpux2T+DMVhVPj8a4BWKA9Ld6rE1udU6g6w0bF+heIObR2Jrsxa210HOhr3KjXqFpRcZLXMmA03qltImpAZDZVVKmOqLO5zCMRqvNqx0T7IqZJbaroWK7fmKxC2dif5aF+TmbbR+PW3R5i4qpD86rfvZkNPVVMW0B/vqQKqplCGc9zDiPOpXvlq1N27Xf0Xdeam2rLlWgc+s6nmZuypo0xxhhjjDHGGGPMADlPTZtVAJ8dSQlUes+VelVB0c34R9CJ3A7FctruWD6iMGBLLMPt4z26/EnpDveXh1RHhdSxFR47I403xvUXxbI1953VWhsH5diZ6lydBApDiK5qqlCaEjpuR1aJKNNO4YnusTxVpYHp5gqhSv94HYVCqmCROXZQaSTTyPjVaQepHS0wDXW6gf4Wd9XaUbMYmWcAVejIrI1PMj+idh7W5dps//IM8tXbYXACwAfRNenVm9uQDUrbKF8gC6De566FoKpM+oKIGtlQERvkOAv3FjnOeFR8sIb8JbAhTLFDlR7PbAxsVCI1N+Fa7QBU7KfloBI2LQ+NX8WLaqCq9gyTeb3K0OX+rNzUWFZmwEDLlcygnw8Vt2buCEjtgWpg0G5G5iBEs8JiZ3PcWh3n6+VQqCYRdLhV5Sh9BZlnwSW5jqgUq5YoqSaIvg7VViVqekH7dI7F9O7HsUKlV+yKjsjvmky5UBUO+Jvdnmr1HJLreR3HdXaxlOQekHg5Pdp370jblmWrXaU6d+qE75GovTEH45Ts8TFgL4p0Xp0M6dyGaau1uJjvfXEx86/7+hnJWrwc2uWhxtFQYdtUczOdEqeOZwx1DD2BvoYNG4faa9NKB/mtk03C+zjp5EugVvtjI2QFqtWUGRfn61TJY350IkrUY1ky/ujcUrvtbNiqh/PMNk1m0kmH0syZJLM+LS2qfTeL/vSDaDFN+61D4nwkilVmF21DaacVD6aX2uP9U9PfkdQntTc0VNQXKsm0YHQsrN+n1qWeqcY4wTrFZ6jdS0U1Ufg9o/Yz1+R8XXdViU3HRzZzpkHNQ+q0S1+/jpOTxm6gP92rf6vGiCp16XyCYzW/vVVrSG3XEFW+1vtqTRR932qLJsunauBpeWbxTiuD2gxuZgKUZUrvUdm3aDbVJgNvusYYY4wxxhhjjDEPT85P0+bMUeDWt49W9ym+kf233OPKw9fx/hAxfWJ9JDGj0OLLxEI6JWzvjyXEG8KTzKWxDHWQe79j2ekdklTdg/bMiP+v4je3EnP1i9Kz2erZumJOyRFXyph9rpBxJZV5UOEJ88pn3yjXXy6/CVcPT6C/Yqirxyqx5Pk6f3WoK9Yq+VCJnEo0awGSrtZq/jOPAJkQSq2uQ44rmRH+ScojKg1imetK7JEqHKiDmuAeAH84+hlmpzqxLm0+qbnzc2lc8BpWHooeuISulUzJ1Lp0Q6qKttWGQC1F0saVuQ6bJprTtGvlVQ8O0zR0Jj2DZG4oMpstJHPdpuIU3XRP6gqbqVVk7y4rP1XX0DxlHcy0Tdg1qjGkcZO6/hQMklm0kjtWW4aZNC7ba74ZfW8OKh3KPKaowoBKsNT7hdoQ43WZ1Pp49QyVdGmoymQaqsaj5km7DDXZoPbkFtCXdHPcOSq/idpHyMpV06ROz1T6WZsNg1yjY35mu4DwXVA6T/shXROZGU+LlqdqDbPca1MYnfZsHFRt3i7NEXlnTufM+LOHzDpypcBeRWCG/ibC2iif2ilTg0ZKZhuMZEYKRV258wrGA+ribQH99OukL8bzJia4JdMuTbQ4WA/qNldzevzyMXSYnabYqspBmSaOxpMpBWe/6zgyW1g8kL7KSNS0eWPn8Sj+KXJCnz8xPr0oOc+p23xWLwfCDNp61PPkFmydfLij1srITAKe0gNiJ0hNB2bKytrkVYtDFfXqbzj+v0vOcRzVPle1XbO6yTxkJgszzd9aM0ftzS1JqPnncXaLqmGiGjaqEK5eqTLtoy3oz0007mzeoe9ItYT03atWs+ZJbd4sYPS9mnkb4y4ZtZml5ZZhTRtjjDHGGGOMMcaYAVKaptn4xaXciZGVDGMeblzZNM3e6Zc99Lhtmoc5g2ybbpfGuG0aM1DcNo0ZJhPb5nkt2hhjjDHGGGOMMcaYhwZvjzLGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQZCKWUlVJKU0rZdKHTYowZUUr5aCnlmck5t1tjPo8opRwopXzVhU6HMcYYY8xG8aLNBSAmjSdLKcf4B+CS87jfH4rGPEBM+ogrpbyolPJOAGia5jFN0/z/D9Kzm1LKIx6MuI0ZAqWUp5VS3l1KuaeUcriU8q5SypMudLqMMcOnlPLqUspPX+h0GPNgUEp5ZSnlxzd4bTdfPJ/7HgpKKT9dSrmrlHKwlHJFfNvOJte+rJTyG+eIq5uTT7v24YY/+i8cz2+a5k/4o5SycuGSYowxxjywlFK2AfgDAP8cwG8DmAfwdACnL2S6jHm4Ukp5GoCfB/AYAGsA/g7ADzZN81cXNGHGfAFSSnkbgPc1TfMTcvxrAfwqgMuapjl7vvE2TfN9D1AS7zellMsB/BCAK5umuSMOL1/AJH3BYk2bgaLSf1lt/PMIj8Rq5pfFNf+0lPJ3pZS7SylvK6Vc+VCn25gvNDa4neLbSyk3h6Th31T3fmkp5T2llCOllM+VUn6plDIf59iOPxTt+JsfrDwYc4F4JAA0TfObTdOsNU1zsmmaP26a5m9LKdeUUv5XKeVQtJvXl1J2AECcO1xKeXz8viSueWb1+/fjmk+VUr6HD4yx8k2llDeWUo6WUv66lHKDpOuLSyl/G9o/byylLFT3f0/EeTiecUl1rimlfF8p5ZMxzv5yKaVU5z0Gm8FSLaK+AsAuAJcC+Ek8wIuoD5UWuLXNzecBrwbwwnqcCF4I4PX3ZcHmQjClrV0J4FC1YGMeJLxo8/nJP4hwR9M0y03TvKeU8nUAfhTACwDsBfAXAH7zQiXQmIcZTwPwKADPAvATpZTr4/gagP8LwB4AXxbn/wUANE3DdnxDtOM3PrRJNuZB5xMA1koprymlPKeUsrM6VwD8HNqtwdcDuBzAywCgaZpPA3gpgNeXUrYA+G8AXl1tU/xNAJ+Ne78BwM+WUp5Vxf21AP472g/TNwB4cyllrjr/TQC+BsBVAB4H4EUAUEr5ykjTNwG4GMBNAH5L8vQ8AE8CcENc9+y412OwGTrnWkR9USnlnaWUX4hFx78vpTyHN5ZSXhwLkkdLKZ8ppXxvde6ZpZTPllJeWko5iLa9opTyvFLKB0No8e5SyuOmJbCU8iWx0Hq0lPJGAPWCau85pdrKXF1XbyN5dSnlv5RS/mcIR95VStlfSnl55PPGUsqX3M9yNSbjzWjHoafzQIyDzwPw2iLb/84lNKip76vaxQ+VUu4IAeGLpyWslLK9lPLaUsqdpZSbSik/VkqZiXMvirbyH0sphxFj84Q4vgrA2wFcEu3r1UVMeJRSriqlvCPa9NvRzofrOF4Yzz9UKqFn8rynRF9ypJTyoZLYm/xCxYs2F443R6U7Ukp58wMQ3/cC+Lmmaf4uVm5/Fq000ZI+Y6ZTt8cjAP7Led7/kzEB/hCAD6H9oEPTNB9omua9TdOcbZrmAFp12Gc8oCk3ZqA0TXMv2gXNBsCrANwZE9GLmqb5VNM0b2+a5nTTNHcC+H9RtY2maV4F4JMA3od2AeXfAJ0q9tMAvLRpmlNN03wQwH9FK7kkH2ia5k1N05yJeBcAPKU6/5+bprmtaZrDAN4C4Ivj+LcD+PWmaf66aZrTAH4EwJeV8e3L/75pmiNN09wM4M+qez0Gm6FzrkVUAHgygI+j/aj6eQC/VmkI3IH2Q3MbgBcD+I8lNOGC/Wg/Tq8E8M/i3K+jbRe70Y59v19K2ZwlrrRaqG8G8LqI678D+Mdy2dhzNpjvbwLwY5Gv0wDeA+Cv4/eb0PYRxjzgNE1zEu3W4O+sDn8TgBtjvtixQaFBxn4A29Fqz30XgF+e0L6VV8Q9V6Mde78TbdsmTwbwGQD7APzMpAjCzMdzANwWwscXTbjsDQA+gLa9/TsA/4QnSimPBvAraMfvS9D2FZdNelYp5VIAfwjgp9H2Af8awO+UUvZOyecXDF60uXB8XdM0O+Lv6x6A+K4E8J+qj87DaCWZlz4AcRvzhU7dHncgtGGUUhkPL6VcUZ06WP1/ArGft5TyyFLKH5TWONu9aD/kxqQMxnwhE4sYL2qa5jIAj0U7MXt5KWVfKeW3Sim3Rtv4DfTbxqvinlfEIgri/sNN0xytrrsJ42PdLdXz1zHSyiET22tcc1N17zEAhyTu7F6PwWbQnGsRNS65qWmaVzVNswbgNWg/HC+Ke/+waZpPNy3vAPDHqLQHAKwD+LexCHsSwPcA+NWmad4XWj2vQbtgUi+eKk8BMAfg5U3TnGma5k0A1NaOPmcj/G4IUE4B+F0Ap5qmeW3k840ArGljHkxeA+AbSymL8fs745iyEaFBxhkAPxXt5q0AjqHV/p5IaY0EfzOAH2ma5mgIFX8R48KP25qmeUUIHTfa1vQ5V6DVTP3xaLN/jlZQQr4BwB80TfPnkecfR9vGJ/EdAN7aNM1bm6ZZb5rm7QDeD+C59yVtn4940Wa4HAewpfq9v/q/mXD9LQC+t/7wbJpmsWmadz+oqTTmYURIEvh38wZu+RUANwK4tmmabWi3T+jeZmMeFjRNcyPaPf6PRStRbAA8LtrGd6BqG6WUZQAvB/BrAF5WStkVp24DsKuUsrWK+goAt1a/L6/imUErubttA0m8De3iC+9dQiv5uzW9Y4THYDN4skXUOH2wuu5E/EsBxHNKKe+NbRtH0H4o1Yusd8aiCLkSwA+JBuvlOLen1EsA3No0TT3HvUmu0edshNur/09O+G2jqeZBo2madwK4E8DXllKuRruI8YYJl25EaJBxSOzj1AKFSexB6xigbl+p8ON+cAmAu5umOS7Pqc/XQpbjaPM8iSvRLn7VfcrT0C4uPyzwos1w+SCAbymlzJVSnoh2NZLciXYl8urq2CsB/Egp5TFAt1fxGx+y1BpjJrEVwL0AjpVSrkPrRafmdoy3Y2O+YCilXBf77C+L35cD+FYA70XbNo6hNah/KYAfltv/E9ptTt+NViX6lQDQNM0tAN4N4OdKKQultZPxXQBeX937hFLKC2JP/Q+ilfC/dwNJfgOAF5dSvji2cfwsWs8fBzZwr8dg83mFLKKmRFv4HQC/AOCi0EZ9K8YFECpMvAXAz8gi5pamac5l5+lzAC6ttmQB7YLsWLLl95iAs5SyH8YMj9ei1bB5IYA/bprm9gnX3B+hwflyF1rtnHr7rgo/JikInC+fA7Az8lI/pz5fC1m2oM3zJG4B8DrpU5aapvn3D0A6Py/wos1w+XEA1wC4G611/25VNiQgPwPgXbHa+JSmaX4XwH8A8Fuhav4RtPsMjTEXjn8N4NsAHEWrjq7Ghl8G4DXRjr/pIU6bMQ82R9Hui39fKeU42oWTj6B1D/qTAB4P4B60izL/gzeV1h3q1wCgW9OXAHh8KeXb4/e3AlhBO8n9XbTbJd5ePff30Kp+3412kvyCsG9zTpqm+VO0Y+/voJ1MXgPgWzaSUY/BZuhMWUQ9F/MANqMVGJ4trYHi/2PKPa8C8H2llCeXlqVSyj8UDTnlPQDOAvj+UsqmUsoLAHzplOd8CMBjYqF1AYnBVGMuMK8F8FVotw1O2hoF3D+hwXkRWwN/G8DPlFK2hu21l6DdpvxAPucmtFuYfrKUMl9KeRqA51eXvAnA80opTwubVj+FfG3iNwA8v5Ty7FLKbAhtnsn+7OGA3eVdAJqmWZlw7AAqqUXTNJ9BO9nN4vgJAD8hx16H1oCbMWaDJO3x1WglkBPPV9cdgGx3aprmmdX/fw7gOrntJ6rzr0RoEBjzhUbTNLeiNao4iY8CeIIc+8W47/fQLrwwnmMAHlH9/ixao6gZp5qm+Y4kTSvy+2XyO22TTdNoW3+R/PYYbIYMF1FfUkrZAeAIWhfgP4zW69lEmqY5Wkr5frQfeZvR2qT4/XM9qGma95dSvgfALwG4Fu02pHcC+PNz3LMaCzWvQmts9K2oFnOTez5RSvkpAH8Sz/gRtMaPjRkMTdMcKKW8G62Tioltp2maPy2lUGiwE61G6YaEBveRf4XWGPFnAJxC2+5+/UF4zrehXag6jHZh9rUAdgBA0zQfLaX8S7QLVktojYJ/dlIkTdPcEgKdn0frmXENwF+ir8H+BUsZ3zpqjDHGGPP5SSnlZQAekS3aGGOMMcZ8vuHtUcYYY4wxxhhjjDEDxJo2xhhjjDHGmAeVcAH8seT0ozfoldEYswFKKR/FuLFh8r1N07x+wvEsnlei9fCo/EbTNN834bh5EPCijTHGGGOMMcYYY8wA8fYoY4wxxhhjjDHGmAFyXt6jlkppdqA1zw4AeyWShQhPRbjIG+ngb766YTb+Z2T8fTrCo+P33Lzahvvj8Fl5Nn9vifBuScPBCC+T67lqxXgaAHfE/xfPxT/rEdJzPB8SacKdbXA8HIouXSSJYL6XI1yTh2+OkAXHxDD+w1U8LOQj43GfimsXWI68jnngM1m+zXia+ejdkab1yPNxjLOV8fOdsizuxciHTqmOAaOXwHJYipDveCfGE7FVfvMZdNjKPGklYHkxr3dFuKdKA69l2fPdMu54l927ZjmeBQ4cBO66Z9x7yFDYM1OalU0Y5YPppyJdvLdDkb/d0XjPxO97qst2zsu9pToJ4GC02f0smyjDu6L890R9Xo+6pq+N1WKH5OFzEbL5zEQ61iPemc2ja8+cHk+a+vLVqjUXaT+xNpaVrhkx6m0Rsjw0PsI0sortw6hKsYlticQdacafyXLg9UwDy4N91fYImUdWb+ZVdSTZrFjF63fKfDFt+i6YFjYTtns2PcalXeJmuU7fLbtANlXmZWf1m0MAqxP7X+aHadkTIcucLMZzjjfDa5t75kuzsgjgWPt7NQqOTawbkLRg2fcdr47zHF9SVISPRty7+EyJsitIVgISFWr1UBuyDrB+8TF87AwvYCnXfUsz4Vgdan/L61hZWSDaOPgs3seKdFqu43PI8eo6nmM58B7GpQ1qs4SaJl7P+6WfXDs8fvjWCK9kHqOxnD0CbGLaWNh8pvbBt0fIjifeGRvNndFBHRk/3NWFGyV69i2sEltZeeryZhmzH+e4GjD7izvGr9N3+oFDuKtpmr0YGHs2l2ZlCaOM6FyJ74Yd7+L4+VPxnhf2Y5Rn3httsnt/fJ+MS+szO9C4v4n3WTiOa3ycI7HzhPy+orqPaWLItK7Lb6atmvMAwKnoxBc4+Wa58H4dLPVDQAewah7cxIBRWFHr/q6+9sT4I9YjnzOal3jWPZHX7TLuswmzKPjKGU097mk3xySwDa3KeX2lfOUcr9ht8Blfcqk8nOXGts7GyXrHScgc+t8KjLye8wKjAXm3XBfP+sDNw2ybpZRmBuOfjMCoOvA3m8W+CPkuWAzbMCrvvXIP+0o2PZnOdkXMrpHVnK+N81Wdh7F+MI36LVo/j3MdNudPR/ioCJn/2yQt7P4vj5B5ZBpZdW6K8IsiZPfA/YcsN9bZvdWKwMGz43ExDZyyLMR4em88nG2L5cE4d8ZgcyYSl33mLfBANLRD0Uh3Rxs+Fr+Xt6FrwHfGs/dGoR+PMWiJY1Jk+LY4zuGzm6NHgTbRlxdmlu0kKhy/k9hvLDCzUWmaSHOZw+hFnxq/hp3NPfHytvNlxks+GRP/xSiHDxyd3DbPa9HmDNoXw7kP/XGy47smMnJz1PorWHv/QYSs7bswakF/HSEL+UCEfxJh1Mpf/1Qbfm0cZqVlGbMDvSIS85Yo9Kvj+PsjpO9RroNw/GFyVgH8t/j/X1wS//AFfmeEj5e0/kobfPrv2/Ca747jb5XInx4hFwY4c1qJ8JMR8mWyxbEsLqquZbkRpoWdMzPOgfaIXBeV7C/iGcziV0oP9d44wddzHWv9V0R4Q4TvxKgisFCZH/YsrLxPjPAdEX5DhB+J8KvkfvY4/JpleTJPzPMtEXJwY/xfgZHTZaafvSEbFnukP5A0PDrCzwBP/JcYLCtzwPsvxqgMvjFC9uJRl2/8xTa87tvbcPXlbciiOgXg+dfEDx29otzfEI3p264fP//Sv2vD/3BtG67F++Rr5ED0ZxF+pXwM/XT0pD/GDq6GzKcAACAASURBVDEmniej7S9eja5u3R1xs6qxahA2GfoEviLa2ocPj2UF78V4PM+N8I0RspN+T4Ts0uhf8J3Vc9gv8hVcFwfeGLMENnd2g+xe3hQhq9yPR/jPImR3weJiVdV1RjYTbl7+zQiPAvh/4n/2g8w/72V/yG7jMxGyef/XCPkO/yZC9qfXyn38/bYIPxghm+qLI5zFaKLCpvZrkkbWH3arvxohm/AzAPwohsnKFuD9zwAOhINP1o2n03n1/x0h+2m2NWaa/fw6RoMeCzde3pdH3BxefjbCWU7cnxzhM3giQo4vdPDJAtVZLvsBjg2siPXs64xcq4v6vIfXSZ/ShSwH3s/7+MXECnsgQo4pHKDYYD8U4W1VGthAGDcrPccR3ssGyobEtPFZvI+rMbIqffyV40n/pQhf8sj4h/OH3wBwVfzPd8oGthIhJzZ/HCE7CXYaMbb+9O+2Idsp2wqnLJyCMU1fHeGXRPg97ChZjqsYfTyy0sbKz93Rn7GtP4EOaaOf7jq6eMflD7uaNihWrgPe/0cYvX9mSBchWOdYP1ifagEZ42D97VZMJQ6WBMtI6y3TwDrHQYWdPuNhvSCcCB+IkIPHo9EX9PEZnCety3mOv+wPui+VCFn/+fWmC6ZMI+sPy4vtrs6rCkJ1Dse0Mb+aT8bJcmK/wn5TV0pY3ixfpp196+HqesbFZzJf7BdYHswP320881CEvyqnOVf5PX5ocNBlneC7ZlmwTjFPK9U59snsHw9EyHf5xRHqnJmLgt81zLa5BOCxGBk+YpHToAqLnsPkN0fIqktDLV+C0XzqjyLknI3fr5zjcHhgEXEI4VyFr+sXom2/Lt6vDk3syslfRciqyG/YJ2I0R2O3z0+M6M675vGfI/xHETJPb4mQi/K/HCGb/7+N8Pdi8eFA9N0/HMc5PrBL+AF+q50BXhNOt78sDr0swvhkwL448eGYbLPLkyqGr352Gza/3Yacgz4pJtM3xrz/Og5SMbn8i2gHTw8J34djJe6LvhpdH/2uePZTo9A/Ed8Fj/yHEdfH2+C98dCnRAU5GP3Kfn57viHCZ0XIl8nMs2DZJ3Dyzpf94QgvxehlsnJeXZ0DsBovc/7r5fzPRBj3l/dPbpveHmWMMcYYY4wxxhgzQM5L02YN7QIXV3q26gWx/LmDS48qbZikyqxq1BIXV9C/Mn5yoVzV97kAxlVvLl5xQYzCxnk53mncRFoXzowEkh0Ur2sa5TefCVGd6qlXZ2hZMOQy81wVFzPA5UxqR6jep4YsgFj25UJhJ7ihlCnSykVDqpN18TBvTOMu9FXceY4vSdE4VHKRlXemeq95pYSi24tQMSOhlqu+qzmM9GUHzFqsIM9q2USZdk0yzs/HgWujPlCAU9+jv/UwofIA69ZsPHvr+tjhXltlonr9CdXQ4+didapTb0zS0utWZsavZzlQiMZ8a/NhP0OhOrs23fIFjKpvt1UrHr51/GdPC1+1hCgBorSE8YmGePc8So6+XM7rljGgn38KFJgGCu6Yb6aRTem0nKcgVPPEakfhIftvPq8uC8ZBFuT3KfnN5lyr12ocg6EAmANWQmKzQvEdJVrMBAtqTo5T62MNo4LhuXjBPxY/KYidpQSc0mcWmI5HjIfSWN1GwcFW+3HGwwo5g/4L0Iqm20NYOZmGHfKb9/M+pqHbxyvxa+fBfnyhSi8r91J1DhiV/axct1d+6zjCvNTlgNGQTKVOapB1aeRz91dxM9RyIDfIcaZty/htlDhzysDiouaNFgWly729AHPVxVJvlkLtsMsXy1M1EHT+NzROotXu1X0S7LwOy3FqQPAdcNB4NEb1+UCErCucO3Jexbp2Qo7zGWxHRyVkmlQTZ1WOM16mbQGj93C4OobqOJ/BfLGTZh6oMcPJIJ9JzSrVPNJt7fyte/fW0d8GyrrEfpIDD8uXnZxq6ulgxwahEwTepxo4pO5/snfAMmY+WNZxb3P7eNS8XJV9uvKgOolqI+r+kVqtmH00pfnZFjXCZzAvuzBotgF4DkZ9DJPL7xW+ClZV1Rxm978E4Hvjf7WEwG9CVjEWKYcW9o18f11/F216d0TEomb3x2bB70HGo9+sCxjli2n71gh1JzPjZvNgOfC7dUekhfHxGU+SeJhHalheK8frrY+copDnVOkG0JXDLjnOatxVsYizxIGL2A+tJ8+OxHfurubHHtcWQtRjTo94j8692dieIt/ke3WNYq/8ZmbYB7KguN2QL4KNmZVoO0btVk1sRAbmr5fjDFnB2M9SJUmwpo0xxhhjjDHGGGPMADkvTZvdaG0YcJHqUt2XGytM29RqEpcNa4mfLsupRI5xxuoUV/24ysSFscVIw7YT4yd23zYe3XVMq+zL3c3lu3heOQI8hpFTe4ViaF0ZYxj2UgrF0HyoSlNVzMU8Mu9MI5dJmTbGs1bFxaVkrrAz7jvld6btE/HsV00Txh+rfjvV+A+vU4ngCkasyblMgrAk5y+S46qxpOWokmT+5rI1Jc7b0ZfcqiRCV1xVGruAYS9x7gTwDcAs08v8su7EyvQ1ulz+2DZYife5cgSjBk7pLsssJEov5HsSjap/wrSItPxSWXF+LiVTYjPq+7mDk3Ur+o2dfN7WUT7YVBavGrsUTdiVWmHSadcj0nCN7JW/Op79aLn+ebF/lkniea7sazXZxzQCeCwlk5GPR0QbFTukXZOiZh+L7c0RqqRDhYqq1cIFer4Wmp2axeh1U2DAV6Lb5XmeUiJ2VUwji49SKs0L72P8tLPCvKnphzMYVQOWD6VAfKdRRTvJy3dV9/LZ2pwHwza0dkg4JrIA2Q5ZsfhyKVVV2wun0Fc5irieG1o8z+U4RZUrVgS+VBY0+0fVHMm0M4mOAbU1atW0UdWrTNNGVd62y/VqwHiHhGq4d0bOn0Jf9KcWJzXNrNQ6xqkmARsoK3WIUmmjaX/0CV9zRq7ne3hidYyVe0WunZF71HBApIW2Cah1x2qj0dB0B6vhP2V58z3R3s52jMYBzgGi355XTSx2POwM+U44FxkqoQXXa3s6x7lXjmsbPVPFwXauGjAcH7TDZBmpGgDLXDUi+CK1L1iS8HAVsu5oPjPHEIR5EM2+rvNmXk/Ibz5HNdhUTfVMlU7eo2q8VE9Q7R01z6maSixvtefD86oqqlrfaxgfYOo4VM0j8rV6bDypnOZsGb9spA3ACzho0tYj64xq29Ua5BywmW7mVzTltW/qqWIMlHm01VZNc7IIqDikcx4WA4fXJYyKgMV5tfxmtVflChYRq3G3kyLGqqvjfdOeDLsDzo10uNkix+d3AVdH/V+JYwfkmYvxHq9dH4+DczseuCTeO23+sLw6+zrRXq6JyveC+FblsNOZSK36tKfF5Fd9BG1jYS+NP4taP3RmcwdvYEFHxq9ggcu3us55rmD7ipd6uWo6AlhhBvj9whOqMs6XFy9jdk2uu1x+68vq1H4CnQOwvS1h1N9mmrvUbN4v5znRnbQzpGLIn6HGGGOMMcYYY4wxD1vOS9PmLNrtrZTW3B2rezu5nMclRbXMLitt2IW+xIwhV8TEo8Ms94HFcvUil1R1FZxWoXmeK21c/dLlVkonueq1gpEBC+aDcVFqz2VQ9SrAZd9JGjL1szMJpmrHUPpYaxFlNg8OynFdAdQVR907vVVCwnerXpdowKR+5yqhVYkOn8WyZlpqiVWdht3ym5IflRKotFBdqe+t4lDpj5Yn86V7ordX9wyRTWjfEd8ry4JlyvrPesB8ywo0LkFf9YHlfpncw7jiGfPUzFGPMGybjLfWnAG6TcCFKhaU/LG/4HvcPYpzUW1bxHsq8d7m2TZ1zynTHGlaUXFIpG0xnnMd41HtryibpdoIThwrYvvjkXyG2mqK3zewH43rnhzSl22R72tYTon2wRPUjWy0s73xXm7HqDug5tD+6Mv2xz1745mqEcPiYzejTVsduKlpjP300Rnld2k8Z62yQcA4WF3o6E0FvMyemjMBpgonLhx7dwDf9xUA/nH7+6fYSJblQpZCjK5XharXU+ig9C6MjEvQoSldQfAailn5FqTwe88kmyTMVEqz6+tphHaSrPRM09kk1GdvkvMsn2NyPEvT2XOc4zOy8lmW6zRkPMzTgQhbH3xPfX749GDfwcagtoF2zmAkdqNa74r8ZqfLWh8t8lnjadr2U+2v5058JxvxrjZJVy0p05eybLUXCHcjdNlBwyT//BVTn35BWEA7Z6vtvwC5H11qxakRjFmMOlatKisR9gy6BawLfL1qjIhw7kTvYerJSY2FfX11ndpe4TVqL0Y1SVSbhfdR4q1a3CqNPiOhajDV2oOMix8XVO1k02TaNJ+qxsJBg/Fo2tXfsNqrqQcdPpPw/au6WpTTfMTNseipoTHz2Ri49JV1boS0XDTNavNiK/ra+jrf+6T81m8R1aoaGOtoNTsyZ4NPkt8r7LLpPjkKeQGjrO6OMrshzrHK6PSU8Jn7om5cLhr810U9uDo0SvRTaj7mb3vjPF/zIuezFwGPp6vpqMfP1u/beL9Pji51Pr5fdrNPivda4qFXRhfMHSicW3ZtPfJwndhherZ4mQX6c6ovYtvjN1I8e/ZpmMg+Fiz7Bb40fj9EgezfLtepR8hI4yLbw+UYVQy22/hWXuJL5Xer2p7ROfhKhKpFSLRP432cc/P666trWClZITQNbLu75Xr93vr/MBFr2hhjjDHGGGOMMcYMkPPStDmFdr825Sg7KQTiqhZXvS+pbgD6q+I7MNJ40NVlLlNyhUulAlyF042IRD1ccAWN16snKJr2rqXhNP+tGgNMK1fOmFZKP07L9WI/o7fvWG20qN0Z1Uyol43Vg8GKpJHlwGeJdL9XzkflPKG2j3pBUCnNGkbieK4UqhTlEvn9qOS8ehBRzSO1iaP7vlXYux2jVU21o8M0XiLnyc54GafWh61pcxzAe6rftE3A1XG2N90XKvZqsBsjEQQFp6yPKoFkWVHLi2Wo74PvT/sDHufKu0qBWLeWqvO8h4JobihmftjW1FMF86er32q+n1AcpppnbOMsm9oOhvZJqsWjGjGRhp28T6Sra/Es7hXulYdoOt0b702FinsBlHj/C9F+j981niQmVT1UqaRLHQyxeFShj/HdHYoRs8fG4+dzd6Df7WVCZjVxtV4dV72L4XAGrYYMGwnVNbWjYcmdS5NkOblGNUiOJcchxyHnVZNkmqbNpA4xm1JsdKqh+c40aqbFu3COayZro/SfqaHWTD0fsFHQForOWXh8x3rlkVCfwXeo4n6ez7SdNlo+ChNZ16lp5aNpvUfOn9f08qFnbhNw8S5g6x3tb74fHSN1rqNelpbQ10pRrV/V8Dgu51VLWb0/EvV+pGMMn3t97X8mTu6+Y/zZqp2tGqHsolTbVMf3bFzS32RLFYrntZ5iHuPmvFa7Im1bByJU7X/GRy0ZdTvENB2tzuuzmIaL5Nrb5Tppsjrsd8V3jRpYjETesDo53trOhtYTPkTn0pzHqHZ/5gJ0IOybA/7PizCatxP1nkc7IKId3mliHweexDlbfMPQ/ilbiCpXsAy3iRb+on47xPunhtVuncfNSjxqm3MLUGTeealWlnhP89IfLKl3umgni+JF7TrVcuN7Z/xRp3arFkh9jXp9Fps2nZvTzLMw6+0kd6Z1mjJbc/r8xXlM1qitfy/L70zbdocc532b5Xemdatzpk3odxxE50uSlqfweIyjL/53E2Oxpo0xxhhjjDHGGGPMADkvUchWtFtNu8VPrmbTVDetn1Miz9VASpZoFf0oRqty1LbgyjeXkbg6R+GN2snR7dRqB0VWILvVO5Uq6CrgHEZaCnoP08p8c4/pgQg/JNczzZQmZB4vuHJPbQCuYKrtlhMYrUoyTqaB0gyWo3ohoKaFrlzzuovkN+PjO1OjFcxbrQFVrW4D6K+8qqYF86L7bZl/amAwbXxnuh+Z5bqTa+ciAT3G5WsAiyKaWgqx2nK8jN1xbbkirouV1r0fG7bgcAtG7Q/o25PRuqyr4KzTJ6p71FOJ7oNWKRjjVG8UfIZKKFXao/erN4+t1TGGrH/sNyhVYX3lM1gefP3qgkkX3jPTHFoGtcoJ72H9Z3Vk2vRe5ovSv0jjNpYP8xh5Wo00r90znoVtM+NZmKc0hunZjK5M994znqSlWuoJYCnOz0XkmiVVPGIS6eVgPeqZCmdV0KNmPgBgMdJw9YnxuNVxDru02jHRYJvm4ePAb70bePy7299viuMrEdINhnpFUa1DYNSGKSFXWwhqNEGlyyoA4hjCl6tjQ6bapNqqa9X/2m5Y51flPJ/JNOh4znas3qZUy5Ln1WvKtdX12nbVPYiWn3qRUoG4aml+OEK+22dHSM3H/xEhy5dj9lcB2Eq/HRHq+E54zxPlPJ/5q23wR+E972uo/Rvl/JZIi06jnvSt8c/LI/xfEd4C4Lvjf+bztyP8gwh57zdgPO0sZ7qyGirNWWD1jr4CFQuH7Yh1UbVn6v480y7W8Ydx7pDr1SaJqjLyerZ9amGoRg7r7B0x6Z4DsDX+F83Mrj2rx1GVxot9yS7fOr6rVy32O2rLkfGcxrjKZR0yTdR6UvT7QG3S8H6dg5J5Oa/2d5YmnON3DOuD7iw4ImHk5dp45yyeTpHgc5H5uWp+CvTVUdnXsTzX0a83ROuyKgQwbfdg2GxC22bYbkQzpPs24LeD7sSo26O+W9X4UNUFtcWq44NqgzHU8VQ9k6nd0Dnk80zVNMu8LGeoSnTmKZF1S70rz6Kv4aJ9jbYhNeaYapxks7VMi1Rt0G2acM1G4+LkRTVkNqpRwwLLbPCdS8NXj2ehNuJxrGljjDHGGGOMMcYYM0DOS0C5hnaBthMwUEjEVU5qilAjhauk2+T31Rit2tE2BSUIaiWe0IYEVw5pi0W1LwhXPVXLg8tUasGZ54+i781IrFijRIaOxNI7pQFchFOJpe6v5YKkrn7qc0htfVq1EI5X5+pncCVdNSt0XyLRVWi1JURpAiV+F6v48Rj6+wxlFXM1RA5UBbg2CoDleW+U57YoINrI6e1PjMzuVNGOek2JyrS8jJG6jlT5IoZ1ioog4mVuOguUmzBYNmHcPhT/rz0OAH3PaCqRAkZaANomGYdquTBOtjk1UkLU45O2Ta2T/E1tr73oS/cIXy/bx4EIVUKj9nIyAyoqwVITJOq17Qz6dg0ovVDL/OwnmT/2D6qBJvvR50XSvyjlPS/S2kPx3F1ngBLNdValgyodYlzMS7zDzhNAxNNE2pj9pShndsslTLccCts5KoPpuqPtwIlI57ZIvyrkqWBMzRCtYsDSh11bgW95CoDvan//qLqHYeVQMa16WzqNvmiPaL+r+7wziReZ5olJw/ti3IuVM7M+pHHr1KQuh3PdP4kpe8l70jLI8ewZ8a6eEOPCi2gMLzrEf8VJC9NOe0asA49AzytUL1QRqEgE6cnppW3wNT17M+3v56flyTA6gG+pbenINT8Qz/wBpi3pyHdGnf62A2347T+IQXIa7Tih2pZqH4SvQOdIPD+DflVSKTXHWVZflZzr2EdECaNns0RVIJmX90W4C31vV4yD96rGmXYvHPtU4061eIlqe6stx1rTR23Z6PxT86lj5C45r9oQO+S8atLyedRiqT2PqmcqatrwuGri8DfLO56xo/JkNAY10dSLKlF7krXGBtOpWlNENfV0UN2OQXPoJPC6vxmNjiwCFhGdi+1j/VC7inVdjnK79SPjl5RpNgdZRuL9Zy3e2yw/HbStH5icp57xnIMYff9qneIckXNA3qu7OPgNzrxoW+X1b5P7qKHEeTPns2+snscdJ2p/lt+7fDa9R+2ISrf3xHhe/meE/BbRcmcaqcGp2lPqKe3dGJX1o+Qcy5HP1PrA/DNtfxUhnTjqnF21mfmb5ca+rvZiSy3IXXIPy03TwM9KTgv47hMGO9c1xhhjjDHGGGOMeThzXpo282gXgzohtNqTOFVdCIxW6pa/Iv7hktyj0EmMdoYU59IQyeLTEcayKEUGn4slR3WmQLiyzJVJrpyrBIOrqLV9HWBco0R9uT+BS2YviTA2rV+8EqGuoatEdIMeMPZlEtM6vvh/GyVizGhI9a6hby+61UlM25+NZT/aVGCoHgJWInxEhMvfGP+E5Bg3REgp4jnS3+3DjHwWKZdt08pJ48+YJCGe5mVjGqcAPPU873kIUZs2XL1W72lsk3zP12Kc4xi1JUqA1MsZ27tKrSjNYhtknVLtGLZJ1YJRSdOk/dm6L18lbzzOshAr/J1ERr3L8Tybi3rAUAken1tr/FEyxqbA+q52OVi+LJdb5Lxez1DVVTRvLNdY9d9N8dRR9KWemRTxsBxnWmT1n9uXr2Ad0T3zkbfdtecvAItal84A+1knI/371M6J1gtKN0KhYenMyDvV8FhFK0phxdPMbJLjOgbUfT8zKYXaawSq6Zhpr0wj00DZSB+a9dHT+m59ZubJKfMKsRE2qmmz0bjV05MaNmH5U0uGk43dGHUWmYZNvY+/jls9iGm5nk6OZ/XryITjn5Z7LpVrpmkm7cGg2Yx2fqNa2GqTTbUY1LbNEvpaLOxvWayqXZ3ZsFFbFWrDkWyR84Rp4lR7rkqTempS7VN9Jvt+tW3F85w7qLaKaqWqnY76+TqOZ5pFWT51DsHrVKNWUbtUqh1/CH0tdRVxqzbLDjkuXrPUuWqnLqLzKtXkUjuS6xjle7Y6hirNatNPtXc5NxgoWwE8HaMsL8X7WqOtPaZfbaUxf2QdXX1UxYaVaJtrUXb00tnEM4p66Ip5B6dKZ+JTax/TEnOhteia+TpZHZbin+a2UTouCjuoi1fFRdH+7w7bZJ1D0tD82EcND7E3uXr72E/so2fnveN55Px2lhooLAzWF9afQxhpDLEesr1TO4X1/ePyWz26UcOEc8gnj6etK6BPRviOCGkbjp+Yx6vraD+W9nRVU4bfHkwrvUSrp+vfj5Dlw7lomCDstIM6lfII+X3MvK9EeGWVD34bMJ88zvzyHR3AOOptT7CmjTHGGGOMMcYYY8wAOS/R21m0i43dYmZtawLo25Pgytr1XI7i0tJmjKQwlNpQ00bM458VDRuVfuhy5hH5vV2uVwmHaiLUK/NczaQBh0IxPMPMSnZme0CZJsmbJG2lBE1tIDCkBO54dU8dxnUsH5Vqq80bSn5YPst8T3wef59FLh1VjaONatBk+/AzzmWLYZo0ddozT6Fv6GRArKFtmFzV5oq8rnoT3QNfC+vVGwTv5StXLzUz8lslekxLbYSkfjZRWy+Mr9Ya0vwwDqYts92UebzQNByX61j/2S+oViHzNId+H3O0OgeM8sP83yaherhif6rlqzCN+nxKUY5jVG5axuoBgKzK+S+S83zHlDKxW6K0hVpHLCeViNV2u1i27FaPyHFKcHWPM8vrFIAPYpisnwZOfgJYfFcc4Ethv/KBCN/fBh+MgmK5cX93XV4qalHJNlFbC0VuPLs++brMyx+ZNJZmXaM6XdC06zhOdOhkPZxnw83GmnPZ9xHR9bF4uHrb0jlEZveKx6nVcBXTxnkO5zgsSG6UZ0V/H0bjNcMYT2+NtLGOz1MEyM70sRHqpv5snMvGYN5HseByFWbaODRiRpHoa9rgb6MgJ9XZIVLmgfnLgHlRv1yOspm5Y/x69QZT1389xrqj3grV3ot6YlGvp3q9aqmqRyayk3VxP7p3vY02liSfs3eMx8G+XO2eqDaH5nWHHNe0q12IuercYblWNWk2y2+SadSrprGOyeyP9st1Ok8C+hquai9H4+Z1u8aTolMH7NsX/7DNEdGiW4z3dCze0zr6Wss619C+m+80mw8OjHkAKzMYdUvxnmbVXio1J7TPqb/vQjVmn45bwaxoxxWtg3zPkYadastIPPfOyifXEutapJlayisL6NtWimfujLTuhKAafQHNhLJGde87jves0Omnq9qZmcXIEGLvJqJjiLpg1euYCiZOJo8/ln0fSkf0w8voj/P8HWPUi7JvRUnbSxJt22/LvEKJitrjJtgLfKR+f0ZaroccD67X69n+J9uCs6aNMcYYY4wxxhhjzAA5b02b21Et0maS8gMRcqX9khAlX/e6+I2+9xZd+b1Fjqu3GKKSYsa7V0JKermif7mcJ3diJFDiCulfRHjNK9rwogg3xZrXyVgWZXkw7VzZ1WfoCm4m6VyOTJ89MbqOi5XcWKlaD1quKrVWdPu9alkclHD/n7XhkyPsVmP3YJShA9WxOhGx4rga+ZlX0+80nEOJUEggzoaEYRPF91yJXJHE7pfftfsHvhxqBqkNCb5srtCKByrcipGUfKDMot9O1IaIml0gtRRR66NqrehebpVA6l5shiod0jarUgc9vwMjqQbbkFr450K4atwwDdo+1OsEN56rRENFFWx/LIst6Hvf0D3x2l9yH/FKFUedRshv8R7Vxav7+XmefVwN+2T2q+wXKfxgmlUqqqhUkeh+XCoGaB5UAg307RpQMUFt9kxKy31xaPRQMDMDLC5gpH1BUaFKiKIif/GftuHJKITFx8X5KzHqT1X6o7+D+cymGm87O347Wc7uyzQnT1X/q+oe06y2WTINx7Pjl/fylhnMIJMam2rdxPhBrdFlar5wbIjx51g0crXVp33oVXxHL4iQBrWYVs1rrS3LZ1J7JTxQXRqaWas3x3F2TDQIcJmE6skps12j6Dg4ydNYZvuHBfGENrj27W24SBuGTNvrkmdfaNYwbiRRPHTtkfrSEfnnPGYVfVs0OnappxTV7FBNb4aXJ8dVI0c1zU/GgcUDGL1j5kfy2YnzebPU1zqfQD+vmX24q+U4qyDnqrVtlsvlmiyfk+KYlBaitty0e2Co2r9b0dfKUZszqv2v3jWj2NT0XyfrX4157fwxOZO0xWUOmnV/y2urbwRgVP+2jp/umOZQ8AJzDMC71oH9Ydtlb4TbuLuDRUGbn563AAAAIABJREFUI2qTpdZc0Xmozq/UI6/WPdXK0rbNusO5lXpXU+9HquVco5rLRIdV1TzLzNtN0gqsj6vXpbG6vjp+7awYnOrmY4fH4+JxxqU2GnUep3N0te+VabrVZPYjddhTJaBEc6k3zei+c/W7UOdkd2FUUepj9cMZh9o51O/nyVjTxhhjjDHGGGOMMWaAnJemTYN2YYrC026FTCXAtNFwk1xHRYn62qNyDSW1BzFOtkpHaSxXHrkgRkm4rsyqNFdX4mYxWn3jfln1btOtxscyZ7Z3W/cls5z47D2xZrZJlj2XRTq2KTK1aXl0bD2WztXeiO4RJsflOpaTSrF1hVIl2MwLy2YhMjN/GzAfK4pNHCsRydl4GZuiIPlu9oSEgfv3L418N5G3EuXRSVNYTio9VMnfpPOZ95HNcu1pCcldSCXWQ2DbDPDVCyOtrDuT67SdqTYDMCpmaohpW+W9fC9az1mkauNG2+C98ltt4eie4SW0Wnp1mtj2mBbWy0k2ZyaFqiXE42prQL1akFoIravzLC+mic/q3A9IqKv92d7p7DqWn3qbWseonFh+Kt1gyHeoGjMqsdQ95CpdIdrnTXrHeg/P3SPHVSuo7sPfh2Gyug7cfAK4gkZ3qDGhXoKYWdoxoPYGXSdchtHIu5yEqhamIik2zI0O+9ke83P1gxv1wLRRe27TyLSBJsWr48Jp+S12ZZapkXPP+PFt6rlpv4SKenKa4A2yl+6Q4HVSeNo+ovaKdgK1bbk6zOB5jpnUNjoQ4cera9Tlnmr7xPFFdvCM63y9lT3UbAPwLIzKju2I74RSVH3fUWbzfEdAz7vX/KR3XV8X7IvrjskAoxokOvbquKdalp220zJG+WI+dR7FSDWf8buzJ5XYSZqX3108qu0V7I1BYJLEXDWPNJ8cO/lMnZNnEnbVRGCWdZo3U13Hazhm6TyI1X3SeFSlmZ6PdpwZfwTm63dUh6rxxJATiWPo1UX2VZndke7bi95nWRe0og2D5UXgqdeh/41J0176Pmkv5JoIa+1jrRt8r7dPuLY+z/fOuQ41x1jn+CKPyvW8n9/B9BrE+zkH24G+1o2aTtG5seZb1S4yjeMZOc/nLKoGSa31sSw3KVpv1baNamZqPNm8QjOp85v63iyOrP/VZ2TXaUhNWJ1bqf4c2ygwUv9STU2OKzTYxDRo+b0bk7CmjTHGGGOMMcYYY8wAOS9RyAzaNaBuvWtXciGPqxYHTZZ86QxGUhraOYllSfpXVw2SdTlOdD+tHtc9f7q6TyESV/SX0F+NpPSZK64UqHWeLMKTw6bY2309l3uzffxceWPmDslxhpNsC0Si9sk1F386fsd+/M+tj6edoWoY6Co0V4ezlVndoLvMTaWPQreCWJjPyD9tJ1CqvEdWYil8ZvkUEZN00kYmNrO5oJKd2rMWy5gPm7apVyWfSwDelVw7BAqAhZHW1sVq54eINIxaULXAhZIC1hUW1U4xmLMqEjMqBbAu0baTxsc2rNIExrNNztf7/XX7p3puUE2cTAKnnqx0z/eaXKfVRu1PzU3IB/sUdnVaLqp1Qs0mPlPtUqmFf7WJdadcX9vOUiEH00hFD75atcPDOO6U45mHBfWsQdS22CRvHeppSu0ZaJy1Jwwx6j8YZiHp1pcqWhw9qRWlMrvRr/wqltPxJtO2OF/tlin2ZzZ07UaPn2+aMy8S59K4ya6ZFqqGgnrPYPnvluMqzatVyDi2Ud2McbBhMg7OKdRGkDYKZZrHRsbHydkzIjyI/jxEx8xs/M2uHxpzaDtnpnslQuaLtvXuwjgss1p7RqWpavNAtVBEG2VZRe2idaw2cYjai+uKfE8VqsRb5t5pPlmPVcUz0Tzq2WTR64LFOq+ST51vqkaoCvHVkxVRzSRF7cfp2H0C/bLNbO6phgXPM23RlOeieEeS8j0Ssvy0PAm1NZfQl86rdpOOM52hzAh5f+aScgDUc9JMA4XvS20aLlXn9Vtmms1GPkvnZ2r3U9OZ2R7Mfi9sIA06b1MNMr1fr1c7VIx3Xg+o1sx29Ouf9vc6BqlGjGr2ZuPBNK1QndcsIB/Ppn0bajthgWVzAbJZrtO86fEanTdMG5PPPZk9r0WbTWjn3l2nQ3Uv3T6kE391031yHVgUFUCdsBNdZCCqI5RtUdJ6oi5GOS7VWxFm5Vo1rNo1BG1B2bad7KVNc409SXVa41ZffvJTB0GiKp/6YZS5RNYPqTG0MrKBsNFpZNMm2ln5KtM+CDYhV/HLPhq0wBYwaMW09TXg2OFKs5udstYXMbQ8K8Y276n+18FqKTFIqO63VcVZ3T3rlkiiLkR1cDxR3cvFVo2Dac5cTrNNc4KlLr1VK1LcOfYmCfy2mkd/QSIzxKbusgm/5XTypwYe2XXqtku9nhxB32B75tZZjfFl51mOfEeqbq6LYiRzRQr01Y1VdVjTVi/mZS6nh8Aa0FdxZzuMheB7P9GG27jqeKWEl6G/GJAtKpCNbpXJjNRm53Vb0aTtp0Q/GDVt+jv50Js6VcmeX//W8ZTPOi7ns1DToq569aOX5/VDvR7f70nOcbF9JcLHyHGuIp/vFqSN1pntmPye65DHddKuCxRDZRZtmmkcvDYQDfTLSCeC7PzPor/HUx0a6AeOLoglhqNLdIqr4uyCj+O8l/1wJ3ygEG/PhDToYovW52mLbzroZnlVRxST8ir5PCP51MUZzSej1uvZjeo4pGOswni2oN/s9QMZ8luNw4pDgq3aPXR1gG2a/bvOn9WQ6TGMMsp7a4PawPg2jToO/bAe6KLNOtp3pO+d9Z7vd7+c59yAW5Jm0F9U4XtSIZgawn20XEcodKOAWwxPd/MYpvVp8rsWKKpQkTAu3Yqn2/uzhajMpTuv206zFhHuje+ALTePrqVZjrNxzSb9INA6qONBZgWYdVUXgfmb7WBNfncJQ98kRrYok7kjZztgZVCpbLbFS79R9brNyMfkaQIswjw9fWIsA/4KNcYYY4wxxhhjjHn4ct7bo7aiWmiutxQB/RXLrRLeGOEHgc6i2EocU8l55iYtk4hnbm8zISKlt0xbrUKn0mSeY5wfYRrjgoW/jGdFmGmxcLWfK7hcsVWXc0QFHFvQN571GblWpe8kU79TarVCoL+NiueZ9jtjP9vlH+u/dy7iXxpqD5+Ld35xFP7fR4FcFZn5RBQcNbi4Ve5aPitCtfnENHF1me+rdiepmgLqSl61BSdpR2Ru04fAzAywvAwsZ6qKDGVluiyPX758ZOSKkrDOUBpGF/eUVqlGDH9TGqIaEkwK35Ma0FVj43W7yPoDxkVhabYtir/Zv2TbJ1WTROPR67ZOSLe6n9QtiqoZw7i1P9W6OM2tY22AmL9VCKL3qIq3tmVVU1fDkOoyXFWJdftZ/U6ZP5VEafmoUelaWjpMe4pt2g8C2ElLyezA+SJiT+E2alJ8KMLfi/BtEa6g79aZiPHadBtPpnGjGiPT1HjPpUqski4NN2ogd5qmTWbAd1Las0mAahSohgiNDx5og3tPjF+274r4h1uKeN9HI/yUxKNlsYy+cWmmOzQlmphTFDaklQh5HwdB1g3dakE0j3wepaSMr95+pVJGjh3M1zva4Fi4+u4M1nIAZ1xDZRPGtx0SNRDJMrtJftcTXl57ndyrWi2Q3yzbzBgwt09xghz3dc4a9sX5SEvnxILb6TahX8eI5pOh5vNcbWvS8WyrGDldXSftfJvkk1L+EgN2l8+4bFeoO2Raqaqpz/GJSdDxjkmdxWj+QnTrL+9V7XOdQ8+P3zZSCtXBWDWUtP6h+s0+Rrf2EbZr/SgjLOePYZCsoq2GnKexTHWrOOcO+v23ozqv33HdFqEItY5oHdI5ojrByLaM6zxmErqrQzWGdU6pZJo3Wdo1rdl34CzQ1b9Ow2baliQ9n2nZaj+kv4luSarjybRdNUM6J9ouv1UDJ9NAzbRkJpHNcTIt5HNpB/expo0xxhhjjDHGGGPMALlPhog7ASelp2rfYZJrM2Bc80ZdmFGbInMdq5oSuo9Q3bDpXlY1bkrU9staFafafeDq7hV01fdYebi6yEykJlz9u15X+6bZujkC7KGkNqRdu2/rTo2lkdR2H4DpNoLUFbhqovD3xXy5XxvhlcA22RN9qbysi2UF8Sr+DrHHI3kiXtLjpHpeIddvE2nrPi2vCSu0i3FsZ+YKLsLOjWXU9p13AXOUQA2RJbSuWDMpzdnquvq3riifAuZX5F7u94x7FmNj+KKmIXumtodMCqyS70ndU2aDIe7p3M3Pj192Mo7rfnR1v50J5VVaM8keT2YMTg0Tqh0ttQUEOQ85rxo3mibVBjqFvhQwW66fZCyvvl5tqWYajkS1gUhtC0hhX6aac9vkN/N0GOdv2uOh4gSAvwGwFBVt19+24TL7T1YGjiVPjVClVHXFzKRAmapmpimzgf5y4n2T4ss0ZJL+tWcvZZp2jxrvV7L+vLa3kxlom2S/DOhpitDV9zbVbKL9ELrljv7u3lA1VffFDMu20bU9SV7YoGA/dldMSv4mJOOXRcjpACdl1G7lPEDHbbVxRyUM1QrcOT9Ky9kT43FrP0WtW1bpvaH+O/sZDJtNGLf5ou1Ixyu12VNrlvAFZBJZtfOgGhCMW8dnthMxQl4g16mWCw1L15pEmk+1q0M0bZkNqEyLTvsVja/W3NJ88vee8UuzfG6Kik1nFwsxzqu2hGriqN0RHbtPTbiW8Djb1rr85jOlbdH1d9NpXlwWIedXmXHxSbawniDXsF9UH+a8J7PiP3C0y+ZwSacwXZ8Toc5vziCf2+kcR12Cq0kVPoN98mrUNSo76tCk2vu9/n8GaMSGE8k0u3WHSKeBqZqa0k7OJqrImzipYl1kPalts0zTMpnkLry+XtV/lEyzRMfnOpxmN4aoFlumaaNzpY3an5lmZHkjacxs2kzGmjbGGGOMMcYYY4wxA+S85JOzaBf4OkdNXOTj4hVXOTPPpLX9BC4XZS4MdeVb7ToQfQYl57qvVDVwiNpLqO/RuLslrsw+gW6MzTRtdO/qRr0lHUEngTsZ0i+u8qrNDpXGq0aRWlJXexGE5bhFz1NCWEsXMy2IzIsEz6vkJnN5RXj9NI8hk1ZwM22mTLpU70kfslGbeYy7L82sneu7UKnYcYxe+jQJvrpDmObFK1vVVuS5lEaUao25EfsS2sfMituiTAtFzxPVTNuIjSzGqd6fVNqnC+kqVcm0efR6lQRmbszPYNR+s/RrWnWvf2YjSDVsVFqVedyo86D36t5xte2j+VwD0GCY7ALwrQDKV8eB/RI+K8JrMA61N1hZHoW+NCzTECFZ/zvNVo32gZkWS31fJi3L0kQyezqZxGya29BJ9jayPp/lQrUxljX7NY7vYmej55L3yRGujB+nJug27aRqTQPGzWd9NsJbx3/viTQ9kROcgNJfSmBVg6CTxKrEMSvH2rNHpHNTHAvzKdi3PH7tNZG/zsvIl8d5iqjfkjzrQrOAtl1ltnv43qi9cKn8PpdEVLVYdC5INQzVjND7GYq2axevTgBJ7SJePaNMy+dm+Z3lU9tR9pvPn+SyaVo+tY2qto7U6xLn56Ndqcv0bBxT23W1xr0me1aOZy7Bt2EK9FqmdqVUa0LrUq3Wy0SwH1FtKr67c82Jh8ftDfALZ0Zu0p/3zja8hsp7HAofHyG7nGxoBHLbgGpbkZqELDpq9fD1LIk2l3pJVQ+lqmnd2elZ79ua0Z0Q+j2mOyKY6LkIM40d1dRhPDtiPNkRmpudhno9Lmfzeh1Lai2d+nj2LXIu23j1/ZPC7Jsv+6bIvjlY8Fk/zLxou4L8rsNp2jjZd9G0tLRY08YYY4wxxhhjjDFmgNwn71Ed9IKkmjUq3OFvteVQX6PeW9TmDRehJtlAqOPUrZsqxWU8urJer5Lynovkng7VqFFpivqh15U1Xn8gQl1ZT55zr2gPAKPy0FV+9SBDdJmO51WYqpoFalOInrOW/nL8+jpOXSWmpgQ1J1RTgHHrO+azFyXxq7IflOFyRNDZN6n2jnL1W5V5isTNPaC1VH+oHmoAtJvcN6G/+q1SM55XCRfZXv3Paynl0hV0lXrxvC73qzR9WjuRNJZa0hfXFtnDTonypsTLzHxcvxYvkU1pt1zO/oMCba0napW/80QwP6pv2dbdzFuU9kEqmNc2mkkNmVZ20pTC13FoWvhM1YjJ9vFr/6Dxqk2yzLtB/XzV2lEpmfZpkxTehip+OIXWa+L11KTQ+vneCOmSUDUialcl1L7JNF8y2zSZd4ZpNil0PLovhoOm7RG/R47Pyu/zTcMkSfK0e9RdGzVgaRdEy1vjVdtdN0bIwUZVkOs+er+co4aEerAKT02zf92G6gllUW0bZJpJWr/UyB81HSZJDKnVwbQxv5GHTfSi9SiMM1RNmxm05aBerqZpperYuobpbU/HvExjRjvBaXbg9Pck7VjV7IZcm2lCMw4d1zWvWqeyvPK6Oq86l8hsr2i+pnleieuLuLacjQ8LjltqboPj1Az62uVszpxKqQaoju86XY9iHE011dOefkhpuakGU31vptGofVRWF4YFi59mtD4e4UKY8NwR4VKEnWdOzudU+6lGbeWpFjarLYcmDgO0u7pXrlcNHb532vpiXaOGDe+vX5na/tOdItrcdT41TaNZvf/yepYT54zbIvGbD/cVQJRMEWZetXU2ah+GaF82aUzLvqm1X53UZialQfsVTYv+1rlCbZNsmn2cTNMmm/OMM9SprjHGGGOMMcYYY8zDmvMSnW1CuwbcCZK5IslVOq7acaFYpdJkBv39gNnyka6E64q4kh3XbXd8HlfNa6k1z3GlVeOmtH7+tv69Y2mdoBkD9FdHF+5oQy0nldgfR9+LDR+hlutVU0k1jlTLRbfR6YKi2smYld+1Cla2KrwgGTwq51WCruV0an38eFK8nT2TLg/rubC00yyg5pBcV9fhQWva0BMGRQ0qicokVIfk9yR0T7V6JMi8oKkmGo9Tm0etzCuTpJeMM6S7BYKuVov4hB6vFhMJHTVy9mgesz3ilZSx0AZEoqmw6dh4GrbJ+bOigUYyOzyZ5o5KRubQ11iE/Nb+V+NSKaOi/ZDu79Z2x7FiM3JPgXqv2u6p2/RQxQ/H0ZpAWwivUVdRo4biO9pHYz2ipgW9SFGSUxdSppKUaYKoNkXmYUTZqFbLubxHaVyZdk/2zGyv+jSPFnr/pGOZZquGavNG06TaAbSJ81k5rt5idlRxsI9lf/ypCN/WBreKLRt6TWFboY27UyfGr8s0jXl8kQ2W9ZFaMivoS/hJaNjQe8qpm9twG+sypY4XYdiso33H2perpkOmiVJrlmT1UDVas/ah9gx0/GFdvEt+Ez6fY2st5c40Y+5LPutnqZT6vuRVNUA2mk/2hxyY1I5kYjeDNjs4zuukrtZ2Va3Q3nxUzmu3oRoYqt3Ts2mptrKyOdwp5FL6TOOLv1mu2bseBpvQzmSplHJlhJw2LLFrUa0XarfU9vB0d4V+s2yVe3ie3TXjplaPfn/ob33P7GJVk2cJ/e9b3qvfkkyTfnPvlt9sFnr/ahKyTFhH2f3Mof+tnH1T6vR/R0S+cHj8OoabOoM6PCBh5oWu7iu0L9N2wLgvSs6rFlD2zUIye4Ka9iXk2q4b1ayhBuurMImhTnWNMcYYY4wxxhhjHtbcl03qo7Vpbjjkap9uyVTJKBeQammveo/KNGV0nyhXL1WSlN2vGjVEJc9rE+LS1VAu7nPBTCXeipaD2vrR+zKvMEerNKhEW1dWNV8qOde8ZHZoMg0nlX4fQf+d6LtRzSWi5TJNk0bLQPd96vuo36milt2VbD/n4FgE8Jjqd7bHXfeQT7o+s5TOBswXqVKy7eOX9zw+qPRsmjcpXs/GO4tcwq7SPj2uJOXQ2UGiXaTD4+e1H1rm/XvQl0hG+unBImvXRNtapkmjUplp981g1BbVe4DmRzXpNE7tf4kqJWg/lPU3k9Dy0T57To6fwXC9RxW0ZcVyuTsytfCJNtRymg2NnPk/jQP1nmnWWbazaZ6Z9KVkWivTJOOJF5Om8liR1UX1ApnZeyJZ369jyzRvZvXzs/qUSTEpddR5gHZX2h7VPhbzwOJXj5m1whMVbFQDmXYUdsn5D8vvzMGP2mvgnIOebfZGIreH95B5hjPoMroaBaRKDTTTxPysRZ0+FeGgNVNrMrsghBPaaV5BgZFWm7a5aR7cMumrasWp9kWmUTHJFs4Dlc9pEvHzyev9zaeO75n9rsjTRrVZ19HXmMnmmdqPaJLUy1RX/JzfsNypT3IuWx5AW75a1pkmo2pukWFr2gBtd6lKLiypnbyo1loBRu+itkuj3yNqPyb7llLtFfZ3H0sSrO9dpo5d11DbldFxiyGHeHYjqsXDtHNcUFuC6S6ECJlHVUTZUZ1Xu2lZWjVfrOc6R+w8G0YmZg6Px6Np7HmEjXCu0jpVtZPMWzKv03LSvB2V3yzf5Uw7SAtuB3JNXrWFlmngnMsroTVtjDHGGGOMMcYYYwbJffIe1S1S0389t0PTm9TVES7KUtvJytYIV7K4mpltz1fJGaOcj/WmVRHnHB//mWrLMBNqTwHIpcmZlk+RC9WLzKxep/vxeF8s1XcW70VLYsvqxqVXms9MAymTiBKVUmp5zmtagVTLQz0yMe7eHkeVomT2DJLrWP7bGG8tpZaNx6pZQWh3hM9o1u+jXtpDxRxaWwmUrKgkJdNqmeRFKpOo6SozGxtXjnVfuq4g01MKoaQp27s6ad+odhS6l19Xq9UmgD4Dk383VV9Vh6ots0xNiGvQ17QJ1m4ev0fbmrZR1VBTLTfVRtB4VaJU9xmqUaYaNJndHJJJp2YkJEwLq4h6tTuDkZYBJZUaB6UfKjWptRIyTboLzUm0kjlWT1ZLljM1KXR8OhXSpEeyLu1BX0NNNeIyyXgmWVdpNjXD7h1PC9H6WPfjmVSasL6okKn2zldfl3kzo+uVWRlL9HrGP4PR+EIPgtqWNQ61j8A4KXVjG1qX3zqMMb7L5XrWgRMYdaHazzAupoFOpEhtFqdOGyWzB8cv72w/qHYv4z0l182tj2x0cYxfE887fGdsv3z2UTk+WGgHLrPJpjZ91F5CLVHlSz0t16q2hI4/Gmo8mdaKep3SeOu+QD2c3J981mnMvESeT17vbz6zcV3mNZx7av/EULXr6ignaW7X5xmnjqGMk8XR87iY2evJtK4maRlnYwDjPi7ns7nYsChoi4tFS6UVdofUemEuus8W1STejr5NGb5Hqu9kXpJ4vWpaah+qHmlZD1Rzk1ot1HJcwmjs0G9NNfuoyhezcl61YnSelXkNznZ/zFfHdP6p46V6oMo8h5Lsu1rLX+Op86jvOSPbxZL9zpwudmg7YiXhgHsX+h+K2byNL2+z/D73h6Y1bYwxxhhjjDHGGGMGyHnpDsyiXUzr/BNwCyaXO4/qHSvjF9Jjy+LHgbOxzMmVrk1cOoskLau9jMTS8rystM8lqihFlyJ1NbvyDDEjUjyyzDRmlqMjDT0vMtMsVdOyvW56lVW95bNIpReUInLVV/fwKdNWKlU7KNMeGpPWiESg0xyKh6jEs2h5KpkETCUPy+PHi76XuppL2ZZMGi31rADAnUk6hwClhippqc/XYXYeyDWdtB5P0XjqlspVSrbRtCQaaQBGYl1dpSbZPnv1ABOsyiZg1ebIVuTH9o7rPvK4aBNdvVC76/B40rRNZcdJlibVmqn7L8aVafuwKU6ytzEJbivmYKBp4XN0z7VqG9SvXqVDav9GvXhAzg8RigxZPemcZ0+nZhhh1MeTog0ytlda2wnPsV1mng826pGJaRZtlsx7GTmF0bvRIUylmHynOleYTY73ND3Xx9OinsQmeZc8JRVE6yrr8EH5ze4r006j+Fel9GxLqvwnjp3G7r1FrlFPnEyDtnFVemA57pXfLMejEp6QkF31PNA1crZ1tUmncweVLKtNh8GxjnZcUA1J1VjLxo667aoNG702szelz2A86uVH41GPZhofX2Q9J1B7L5rGjeSzfvYDkdf7m09Js9qsUZtXqh3Bes86Xo81vCazFaf2L1TzRu2t9OyM0EgKtypo3rU+1nOZTDOJaD3K7A8NE1rUqp0ZAX0zorPsg7TPrTUude7B98BpmWpY6hjEvlTnMqpAoeOjzqWYNn4vL6A/XulUV20MqtYWxwcdd7XO6hjFMuhsm0k4yZanlrV+UmdpUS3YbPfLJK+nQLUTo55UZBr38rs7HNcvTvHy1+2wUK1B/aY5l4eoad6hsu9TfsuwwrxlYkqtaWOMMcYYY4wxxhgzQM5L06ZgfOESH4+QC0O68rw3vAhcEmEtdVNJ7UIs/W1ZHV0DAGshrsk8BakET/fwdXYj4sScipYkvlpqSLp9fuLkPpM89lYMD5/7+jmJd/bEeDz13sps36WuoE5bxeyeLefVHoaKB3rlyzQf7pd5J/1MbNloeWZ7G3Hv+E/1hNOzLh6h7kGuUUltZ6sjEndyvX/9kCX6mEW7+pt5fiKZVyk9D/T3YE7zLqP7PNVgw0H5TWnRIfmte+vr52j6L4tQpX8qrUokTquiTaBaKpnnJkrRHpmtpgP98oi0sJ/U4sk0Z1SarmnT/fmTvC5RQEApD6VA2lbVQ4z26SfkeFY+jFc9Cmjaa9T7hvZpaoOkfhdZ1bzQzKO1aUK7Jp2HIbG/Ra3DxWhri7WtJF6vdVxdIFBSo4ZKMk1PlfSIxkGJ+xdVUq+SpNpIXabFE8epQUuva6vS92sf25lMi/I5Gxdq3ed1qlmyjr7NgQW5hlydHOf8RqXzatuGaVE7NHyearlsQd/zpkp71ZafaiTV9nGA3Muberghe+U849uK0TjK/LOMVbOA1XKSI41BswrgJvRF5jo+ZYaH6vaknhF575r8zrR49Hf2zMyGS7w4tqf5z1ZpvEzuuT/5BM4/r+eyO6N9msY2RZxCAAAKlElEQVSZ2NNZlTk4kz5NC0a1ZTTLrOur6I+/2sZ0XsnzjJOK2art3v3mfIjvig2GeT/Xe9KMEdV+ukvOn5bzw4Tfmqpcq+aCbo6+d398i87HELgW2ZytnOAxstUzYz97n0BqDZGfY7hJEqlzGNEiXYuq3Zlj44No22Zr9dDZ6lgdEq3PnSemCLXvVU3xTCuI97Mqcgzcgr59OUXTTPQbXTdUqI0anddBzm+NE/PxIuZOjLSBG9Gs03lENq/Qb1WWb+YpstP64SCYzYUmTUS1L5tiu/OsfO8mSTfGGGOMMcYYY4wxA+K8NW3GlCC4Z5mrUGrxWh257K+uV+lTttqmK4XzclxXKlVCRVQappo6qM5n3l0gxxXdR8glMd3LqsvGyiRJOVGNoszeQOYNKtufq9LHTKqdaajU5aZpVYGBSkPVEw1RzZzMU4gKG7ajj9arTFNrTrSC6riHKs0H0BbSMnLpunoXUImLSnOAkdcJnqPURjVj+ILp0oTPYuFSkkTRcyaBExtPk6T3nWYCRQIUVTMN3CfOZ9J7hHiDyva6a1vXdtVrkyyj3dUxlhPFF5EGtVeS7bvPJNna1jPPcNoOFzCShqgmHUP1AMNXoZJI1bTRV8ffK0naeL7WtNS4NX9aXlnfPkRqTQ+g2i+/Ov77COtnDKqXRLg/tFTX0Neu0HJRTZJpkq2N1i/Wjb33To5/HX0RqPbZPE/NDvXaqFqWDDsbBXEB835YrtO01xolmzGOSsy1nHbJca3j6nlStVQoYVcPH6rFtgP99qE2n7Q/OirXqYerTjoZIcubME/HJWQ66n5C51osB3axh+S8jqVD9ejWQQ0ZHa/WqvNAqtXScWzCtdqRTtM64TM5btVxT7hfNUQ1vOJP459nYzQePRD5nHT9A5HXJJ/q9Wma4pFK2FW7TTVssjHmFPqaM9ncoef5T65TLbqOP5QL9usFQq2hNGm+Vv/WDlE1joetaTODtnvVoT1T/uimPHFidtI31sz4tdmnEEN24xeFhk2hhozatElspHGK020wieuoMIJ19DUi+Vr0GUTt/dEuDx+ifbK2D9qwUU0T5o3U3+g6tugYrfbX+FttOWk5qZ02RdcR1qrftLenY7uiuy/UiyWPqy0frWBdV8ldMGKvddJSSpNoBWvFm012/SRY08YYY4wxxhhjjDFmgJy3ps3YwtbbI7w2Qi5N0tYNVwG5osaVsznkWhR8gC6HqhlxlbbqMmmmeZLdV6+Sq2Fq3buX2ZUhXGnUve+6b06vV40TlZwCfe0VlTiqNfKeRy+5fqNoHnXvZb0BVaWufO9cBeYKrGpgHZLr1T6GvmNKYXW/JpUeas0dCoPUvoFahNd3cGd1/CQ+D8hsSrCwWchq46W+X5e4VdR8o9z7hAipdULUtgalPSFha0IWobYiSE+ytTrqL67XffisLJGvk9Ew+P6yPe6ZpK7WjpiUNnI9bY7swKg8Pt0G3Jt6m8SpdVE1TNTmDX9nbTbr+/j7BuTe5Bj3pyL8ZIQH5fw02wC6p/jxEaoWA6X0LJM70S+PzNOBpoXQCcwQuQ3AywB8SI5r/81xjxIf2sBhX3kKozJTE1GsP/TmuBKhaoyoXSHGwzbytgipvcF39pkI+U5ZD9mVnMZorFf7S+qFjApy7Lsp+WP+VQOHaVCpN5/DcsrydBzj8w5gVOa89mMRrkTId8A0stz/JEKWs76jqKeHQoD+1jj8wn8U/9AmAt/b12M03kSX0dUT5pfl9cQI3xPhY9vg5OvbsHMCx3fM98E8qQ1BtVn1KLm+9nh2QK79SITxLj4R75h6lktU8mT5DJbTGGUOyL2sqfbCITl/CrlNFo6zqq6R2bKJ69ULkmpxZPa/GO6/ow3nP4vxPAL3L5+Tft+PvN7ffOrYcCI5TibZrqnvq6/TuPTeTFUj0wxVEfmxaJTL7BAYZl67yJHqIaomqe9G526qQjtMZtAOV6qcoEWpzr9YtbLpGtBXUFazYfq6yZbbx3/rM1Tpg5fzE6lTNo3xZxajt6GfnNsiskOnx+9V5dDdkYgmTqiimeaV9xXVyOQYz0SvVYlTb1Hs6Nk9qObtfrk+0whXm3DT7MmwEHZXxzItHb4M3RFCVBso8+KlnsfUdh41fuaqj81st4rmI7MHmX2zS/TGGGOMMcYYY4wxZkCcl6bNLEaCMQC4I1Y191FSxRUiSpR0j9sN1c13yjVcbeLKl2rgYMpxRZdJeV+2Sj5p352utqkGiK6UMU3/u707do0iCMM4/F2MURBFRCxsRBBJImIlKmJhaZfKQkSwFwSbIKRMI1jYiH9CWjGFIKKdjVFIIdppoU0CQSOSGJWz2O+93XtzYwyIruT3NJPb29zdzs7M7s58O6v7A9VrqVEs5ZP3RHokiW/jkUw/R51vo5m+tN+mUUSP7ik9Yal0X6b3PPr9uRrF1ajk7lgfMaByoO3XCJ22R6P72+19jS76b/KeSr32CJ7m6LQo6EP7RJ89nqnf06kBDK2/N9ZHabXKcFSRLh4dE/baJ4HwEZpP0RvG7Q01q9L4058UUncqU5/TRl312tE20qb95qO/pUi2L1HvtzHvjlfX+vd63Yi6Pui7Fi310TAfbilFlPS6uzWsvD/q7c6h+OF3/R+mMtWMAojY/P32padElZ4+NRR1e+CRDB5xplS/Sb9Z3+WRE6X7dJXvvpv0+c0gLOWH9pG3WR5l4XOSrMaG9wH/Kys/Il4tRRxT229RLNNvq/RKLn6a6QVbfTHqLL10Mf/wkZlnVdK9U6V3c/E1RWmoDCi/j2eaURnPH1TpZC6ezVRZe+NRlao5P5fpfEQcnO/7qDid9eNDlhsN5N3O9a7m6wkF553MVG36wyqZzn08dT6XZzmazvensvq9ySZl9Eyul/93fy5iQm17HrsWstk6MJbLPRpPkTQ6tuX6t7LcTWaduPy6SlU1bmaqOEQdzvrar4hYzmPKnsfRq39P8jsUcDOT6Wzu9F2Z6WuZfyN5LpXZ0DvFmsnfuC+b3OuZns33VWVUJOYyXdBxrtkWn7Bluc7aUv9m3ctU5WFc+6KldbK2ElXpVSPnw66lcEyPSGnOaeNzxZXmjLOnF3rEh89d6O2szy3m7a8O3YdfRB0B+ye2s/Hb/8S2lo5tpba/NPdcaV600qQofsyV5veU5k4bslSac240X4tHGiiC76jC63Ryrad9lSbLGTSnje+7r4X3/485bbZF/0OJ/EaMkf7Vf3mjgV/yqK30ouSfKTotWbb1fEpOFSnVrtIpY/Nyrzm9TZOuszcKytj5rX+5lKaUk5F8YyibhM4OW/Fj1EWo94TnTFVHdH2nDPU7Ubx+eLSLF0GPuvVIFX3eatSZbsfWdfPsqMnz61iPSH1v6/l5q3a+X1sqvwbdReRPW/SCI/qOQdetAxBpAwAAAAAA0EKdbrf7+yt3Ooux/mn1wFZxqNvt+vM4WoG6iS2ulXWTeglQN4GWom4C7TSwbm6q0wYAAAAAAAB/B7dHAQAAAAAAtBCdNgAAAAAAAC1Epw0AAAAAAEAL0WkDAAAAAADQQnTaAAAAAAAAtBCdNgAAAAAAAC1Epw0AAAAAAEAL0WkDAAAAAADQQnTaAAAAAAAAtNBPpF7TzVraxK8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEUCAYAAACRe8tpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeZheRZX/vydLk6UTSEhCJCRpCEsgbCORXYEBVEQUFcVhFXUUlZ8LzoA6iKigDiroIIgICIKCKIsioIAaEAShUWTfEjqErGQjO5106vdHne9773u6O90dEnIh38/z9FP93qVu7VX3nHNPWUoJQgghhBBCCCGEEKJa9NrQCRBCCCGEEEIIIYQQ7ZHQRgghhBBCCCGEEKKCSGgjhBBCCCGEEEIIUUEktBFCCCGEEEIIIYSoIBLaCCGEEEIIIYQQQlQQCW2EEEIIIYQQQgghKoiENkIIIdYaM/uImSX/276D8weWzh+yFvFPMrNJ3bgudfJ3dU+fKdaMmY01swvN7DkzW2FmS8zsATP7spkN3oDpOtXMjtxQz18bLHO8mf3ZzOabWauZvWhm15jZAevxuVua2c1mtsD7ySl+/L1m9pjXazKzRjO7x8zu7GH8Z5vZqvWTesDMepnZWWZ24Pp6hhBCCFEV+mzoBAghhHhDsBjA8QC+Go6f4OcGvQZpuALAT8Kxl16D5240+EvybwHMBHA+gMcBbAJgbwCfBTAUwH9voOSdCuBOADdtoOf3CDPrA+A6AEcgt90fAlgAYAyADwGYZGaNKaWl6+HxZwHYH8BHAMwG8LyZNQD4BYC7AHwaQCuAZQA+ASD1MP6LAdy8jtLaEb0AfM3/n7QenyOEEEJscCS0EUIIsS64AcBxZnZmSikBgJn1B/ABANcjvxyub6anlO7v7sVmZgD6ppRa12Oa3jCY2TAAvwHwKIC3p5SWlU7/0czOA7DXBklcDzGzTVJKr2zgZJwB4EgA708pRUHT1WZ2GIC29fTsHQH8M6X0Wx4ws3EABgL4VUrp7tK1T/Q08pTSiwBefNWpFEIIIYQ+jxJCCLFOuArAWGTtPXkfgN7IQpt2mNkBZvYnM1tsZkvN7I9mtvP6SqB/dnKFmf2nmT2NbEnwDj/XaGbfNbMW/0Rlipl9yQU75Tj28M9FVnh8/2Nm55Q/BTGzbf3TkuPCvYf48f3D8aPM7O9mtszMFprZdWa2VSdpP9bMnvLyetDM9u0gnweZ2Z1mtsiv+5eZfcTP/cHMHuzgnu3MbLWZfWwNRfgJAJsDOCUIbAAAKaXFKaXaZzTdKdNSmRxpZj/3/C8ys6vMbGhI46lm9qSZLfdPiR40s/ewfACMAnCiFZ/GXernzvbfO5nZHWa2BMAvS+V6aXhOH7/+jNIxxrG9x7HMzKaa2Ql+/kQze9ryp2J/NrOt11COMLN+AL4A4HcdCGxYnrellFaU7jnRzB4xs1fM7CUzu9LMtugg7pP9uhV+3U/NbDM/t62ZJeR+elAoq+c8iiv92J1+T7vPo8xshJld7OX3iplN8/T0LZXXqnBPH+8vT/s90719bFK6hn3n4x7HTMufcP3WzLZkPABW+i1fK+XhDD+/t7f/+V5Pk83sgjXVhxBCCFFlZGkjhBBiXTAVwN3In0j91Y+dAOBGAEvixWZ2OPJnNrcAoHDjdAB/NbNdU0rT1iIN5i90NVJK0a/GoQD2QP604iXkz0L6ArgdwPYAvgngMQD7Avg6gCGeLpjZCAB/RrYgOAH5xfE0AFthLbHsS+T/AFyO/MnKpv7cSWa2e0qpXHYHIVtI/A+ywOlsAL83s6aU0iKP7wPIn9zcjSxkmQtgZ2SBGgBcBOC3ZvbmlNI/SnF/AvkztmvXkNxDAExLKT3cjXx1q0xLXADgjwCOBjAewDkA3uTPhJmdCOB//f57AfQHsBuyEAnInxj9EcCD/jwAmBOe8TsAlwH4FoDVXeWhE34D4KcAzgVwCoArzGw8gLcht4V+AH4A4GoA+60hnj0BDPY0dYmZfRrAhcjCptMBjEbOx55mtgeFaGb2PQCf8zT8F3LbPAfABMvCwmkA9gFwKfKnT5/1R8wAcAdy/Z+FXJYvd5KWoQDu8/SfjWx5NRLAewH0RSFQiVwD4DAA3wFwP4AJAL6B/DnY0eHaM5DHkZOQ28H3kQXDB6eUVnle7kGuTwrdppnZpgBu8/SdgDz2NCF/vieEEEK8Pkkp6U9/+tOf/vS3Vn/Inz0lANsC+CiyT45+yC9aq5CFJAf6NYeU7nsOwJ9CXIORhQw/KB2bBGBSN9KROvnbtnTNi8gvcSPCvSf5tfuG418D8AqAzf33//rvUaVrBgGYD2BV6di2Ht9xIb5D/Pj+pfwuBnBJuG4c8ovvKSHt8wBsWjq2t8f3If/dC/ml/H4AvTopp14AWgD8pHSsAVmA9aMuyvhZAH/tZrvobpmyTH4frjvRjx/gvy8G8EAXz3wRwBUdHD/b4/pMJ/dcGo718evP6CCOY0rHhiELf14CMKh0/FS/dtQa0nqsX3NwN8qyjz/jznD8QI/j06V20wbgK+G6A/y6d5eO3d9BfOM7abf3lK9FFhatArDrGtJ8dugTB8XyC/W8S+g7cWz4kh8fEerorHAd+8RO3Wmn+tOf/vSnP/29Hv70eZQQQoh1xa+RndIegfxSOgvAn+JFZrYd8gvmL/yTiT5uIbMMWUP+trV8/uUA3hL+osXO31JK0QLjnQAmA3ggpOd2ZIEG/bTsA+DelNJ03phSWoxsLbQ27AegEe3LYSqygCSWw70ppbL1w6MejvFwJ2TLiktTSh1akvjxSwAcY2Z0Dv0BZAFEdOL8auhumZLrwu9fIb987+O/HwSwh5n90MwONrMBa5GmG9finsht/CelNBdZyPg3bwfkKQ9Hr4PnAblehyFb79RIKU0CMB1ZKAMAb0cWysX2dC9y31rbfhV5O4D7U0qP9OCedwJYAeDGDtoDALw1XB/7VGzrnfE0gEUAfmr5U8K1toITQgghqoKENkIIIdYJ/uJ6E/InUicA+EUnwoMRHl6GbFFS/ns3ik9eesrMlFJz+IvOZmd2kh5at5T//ubnmZ43Ie+0E+noWHdgOUzq4Nk7on05zA+/mbd+IZ1dOYC9FFlwcqz/PhlZ8PBo57cAyAKwsV1cQ7pbpqSuDFP25bII2U8NkAVypyB/YnUHgHlmdr2ZdfUSX6ajuu8RKaUF4VArsnVZPAYU9dIRFCZ2pzzp26ej9M8qnWd7akH7ch+Ate9Xkc3RcyfDI5DLY1lI14xSnGW6ausd4vVzEHJ7uhj5k6lH7XW2FbwQQghRRj5thBBCrEt+jqwl7wXgPzq5Zp6HX0beojmyPndz6mjr4nnIn2t1lt7nPZwJoJ3j1w6O0XlsQzgeX0xZDsejsM4os7iDY2tiroej1nRRSmmOmV0P4JNmNgnZAuPEbsR/J7Lz2t1T135tulumpK4M3VHvYGRLEqSUEoAfA/ix+1R5B7Kfk2uwZt8xNTyOyAp0XU/rgweQhVJHIAuk1gQFGCM7ODcShQNhtqeDPe7I3A6OrQ1z0UUb64B5yAKbAzo5P6OT4z0mZV9N73dLnrcg+4D6jZntklJ6cl09RwghhHitkNBGCCHEuuQO5E9dFqaUHu/kmqeRrQEmpJS+81olbA38Afnl+eWU0rNruO4+AJ83s1H8RMo/MTo8XDcT2Yog7oQVr7sHwFIA41JKV+PV8ySyBcfHzezyToQU5CJkR68/QRYKxM+TOuISZH8tPzKzQ1NKy8snzWwggH1S3kGqu2VKPoQs8CNHAzDkMq8jpTQfwDVmtg/qhU2vIDso7glT0XU9rXNSSivM7HwAZ5rZe1Np621iZu8AcBfylttzAXwYwJWl8wcgC0/u8kO3IwslR6eUrsT643YAp5vZzimlx7p5zx8AfBHAwJTSXV1d3BUpOyNejTXUd8pOyO8zszOR63Q8ch8RQgghXldIaCOEEGKdkVJqQ+fWFbwmmdlnkHcxakAWGMxFtrbYF8ALKaXz1ntiC36O7FD5L777zqPI1hfbAngPsgPXV5AtO04GcLuZfR3ZIuh0ZMHLYEaWUmozs18D+ISZPYfsn+Y9CH47UkoLzex0AD8ws5HI/lL4SdBBAO5IKf2qu5lIKa02s88j+xa608x+glyuEwAMSSl9o3TtPWb2CLKVzfmptLX0GuKfa2ZHIe/69Q8z+xHyrlCbIO+G9Cnk3Y3uRPfLlOzm207/GsAOyM5u/8QXfDO7DPkzpPuQnfLuAOAYFD5RgCzcOMB3JpsN4KWU0tQusnUtgEs8jbcB2N3T/VpwNoBdka1Afgbg98h5HA3gKABHIjs4XmFmXwNwoZldiWxdtBVyGT0FF+SklJ7xfPzYzHZE3kHsFY/v7QB+nFL6K14930fu4382M+4eNRzA+wB8LHW8Hfyd3iduNLPzkC2NgLyz07sAfDGlNLmH6XgCwBFmdgeAhchWWXsiO0S/CVkw3Ajg88j96u89jF8IIYSoBBLaCCGEeM1JKd1qZm9D/nThUmSN+SzkXW26LahYR2lpNbNDkT/X+hTyi+QS5M9OboVvYeyfFR0M4IfIQom5yBYrA5B3tynz/5AtRb7p4bXIWzHXWVSklC40s6nI2zMfB6A38svn3QD+tRZ5ucEtNM4A8DNky4vnAJzfweW/QRYaXNKD+CeZ2W7I21ufiiw8WIn8Av1D5E+Yul2mJU5Bdoh8HXJ53YRiO2ogWyV9BNmyZhDy5zRXIm9PTU73vPwauT1dBuDjXWTpcmQh2Uc9nXcDeD+AZ7q471Xj1iJHIdf7R5Hz04gscLobwFtTSkv92ovMbCmytcqHkT+duwXAaWUhSUrpNDN7HMCnkcuvDdn66k/IjqHXRbrnu5XT2cj1O9TT/Gd0vt03kAU9n0XeWewM5E/TWpC3F39pLZLyGeQ2dwuyQPCrAK5HFlSdieyDahGyE+uDU0rr7BMsIYQQ4rXE1mw9LYQQQog14dYGX0opva4UIWZ2P4DlKaWDNmAaDkH+pO4g3w1JCCGEEEKUeF0tMIUQQgix9pjZJgDejOzIdy+8Bv5bhBBCCCHE2iOhjRBCCLHxMBp52+0FAL6ZUrp1A6dHCCGEEEKsAX0eJYQQQgghhBBCCFFBem3oBAghhBBCCCGEEEKI9khoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDYVxMzGmNkSM+u9gZ6/xMy22RDPFkIIIdYVZtZkZsnM+vjvSWb28Q2dLiHeCJjZWWZ29au4/2Iz++q6TJMQQrwR2eiFNr6AW2Bmm2zANLSY2SH8nVJ6IaXUmFJq2xDp8WdP8bRdYWZnb4h0CPF6Jr4sCiFeHWZ2jJk1u2JhppndZmb7b+h0CfFGZ331vZTSySmlb66D9B1oZi++2niEeKOwJgXFulifmtlHzOyetU+h6CkbtdDGzJoAvBVAAvCeDZqYNyh6YRWvBS74XO4LygVmdouZjd7Q6RJCrBvM7FQAPwDwLQBbABgD4CIA792Q6RLijc766nsbyppciKpQWrsuNrOFZvY3MzvZzDbq93PRMRt7ozgBwP0ArgBwIg+aWX8z+76ZTTWzl83sHjPr7+feY2aPe+eaZGY7lu5LZrZt6XfNSsXMhpnZ7/2++Wb2VzPrZWZXIU+AN/sL52kdmHMPNbOfmdkMfyG9qauMeTwz/Z6Pl9MWpa9RWsprzewTAI4FcJqn7WY//yUzm+yDzBNm9r4Q171mdr6ZzQdwVk8qRIhXwREppUYAbwIwG8AFGzg9nWKZjX38FaJbmNmmAL4B4DMppRtSSktTSitTSjenlP7b51LOS/PM7DozG9qNeHuZ2Rk+188xs5/7s4QQ6LrvdXD9r81slq+d7zazCaVzV5jZj83sVjNbCuCgsE4+0MxeNLMven+caWYnle7fxMy+Z2YvmNlsy59W9TezgQBuA7Clr1WXmNmW671whFg3HJFSGgRgLIDvADgdwGUbNkmiimzsLw0nAPiF/73DzLbw498DsAeAfQEMBXAagNVmtj2AawB8HsBwALciC1sauvGsLwJ40e/bAsBXAKSU0vEAXoC/cKaUzu3g3qsADAAwAcAIAOev6UFm9k4ApwI4BMC2AA7oRvrakVK6BLlszvW0HeGnJiNbKG0K4OsArjazN5Vu3QvAFE/rOWvzbCHWlpTSCgC/AbATAJjZ4Wb2TzNbZGbTzOwsXmtm/czsan/RW2hmD3IccAHkFBdOPm9mx67puWbW2xeUc81sCoDDw/lJZnaOmd0LYBmAbSx8Gmkl/wAl4e1Jnu4FljUwbzGzRzy9P1o3pSZEpdkHQD8AN3Zy/rMAjkSe67YEsADAhd2I9yP+dxCAbQA0AlCfEqKgq74XuQ3Adsjrv38gryHLHIO8LhwEoKNPK0Yiry1HAfgYgAvNbIif+18A2wPYHXltOwrAmSmlpQAOAzDD16qNKaUZ3UyvEJUgpfRySul3AI4GcKKZ7Wxmm7oy4SVXLpxBhZ8Ff1LW8SdP48zsARei/rYzZYY/5zIXlE43s7Ote5ZwZmYXePxPmdnBpRMnmdmTvoaeYmafLJ3r0JDBz53uaVhsZk+X49zY2WiFNpa/xR0L4LqU0kPIgohjvNF8FMDnUkrTU0ptKaW/pZReQe5It6SU7kgprUQW7vRHFu50xUpkC4CxrqX4a0opdSOdb0KejE5OKS3we+/q4rYPAfhZSunxlNIyZMHKOiOl9OuU0oyU0uqU0q8APAtgz9IlM1JKF6SUVqWUlq/LZwvRFWY2ALmv3u+HliILaDdDFqR8ysyO9HMnIi8QRwPYHMDJAJa75u7/ABzmGpB9ATzcxaP/E8C7AfwbgIkAjurgmuMBfAJ5wTq1m1naC3kRfDSyifr/IAtkJwD4kJmtlVBWiNcRmwOYm1Ja1cn5TwL4n5TSiz5XnwXgKOv689xjAZyXUpqSUloC4MsAPtyN+4TYWOiq79WRUro8pbS41A93C9Zrv00p3evrxxUdRLESwDd8rXsrgCUAdjAzQ55jv5BSmp9SWoz8udaHX0XehKgcKaUHkJX8b0W2GN8UWalwAPJa9qTO727HCcjvtFsCWIW8ru2IK/38tshr2LcD6I7DfirphwH4GoAbSoKhOchr4sGe5vPN7M1+rkNDBjPbAcApAN7ia+93AGjpZl7f8Gy0Qhvkl7XbU0pz/fcv/dgwZK3C5A7u2RKlF62U0moA05Cl/V3xXQDPAbjdJY5f6mY6RwOYn1Ja0M3rmc5ppd/TOrtwbTCzE8zsYZeQLgSwM3K5rZfnCdFNbvL2uAjAoch9DimlSSmlR32R+AiytRwFHSuRF6XbuoD2oZTSIj+3GsDOZtY/pTQzpfR4F8//EIAfpJSmpZTmA/h2B9dc4cLUVS747Q7fTCmtSCndjiyAuialNCelNB3AX5EnWCHeyMwDMGwNwpSxAG4szUlPAmhDXgyuibo53f/v0437hNhY6Krv1XBr0+9Y/kxxEYqXrZ6sD+cFAdEyZAu44cgW5w+V+vkf/LgQbzRmIH/pcTSAL7sgtAXA95GVf93lqpTSY26N9lVkRV+dBY1blx8G4PP++eMc5C86uiMQnYO87l3pSvyn4VbmKaVbUkqTU+YuALcjC6KAzg0Z2gBsAmAnM+ubUmpJKXX0Pr5RslEKbSz7p/kQgAMsf3s7C8AXAOyG3IhWABjXwa0zkBeHjMeQhSrT/dAy5EmFjOQ/3uG+mFLaBsARAE4tmXytyeJmGoChZrZZD7I4E8BWpd/RIevSztLZAXVpM7OxAH6KLAndPKW0GYDHAFhn9wjxGnGkt8dNkNvnXWY20sz2MrO/uHnpy8jWNFxEXgXgjwCutez/6VyfKJYiT5YnA5hp2bHx+C6eH4WlHVnSrI1Ac3bp/+Ud/G5ciziFeD1xH/K8fGQn56chW8VtVvrr54LNNVE3pyP7l1uF+j4mxMZMV32vzDHIzokPQbYOaPLj62J9OBd5vptQ6uObuh+7VxOvEFVkFLICoQHtFQvdMRQgcU3aF/VCVCDPgX2R17oUiP4E+RPHrpgevhqZirwWhpkdZmb3++dPCwG8q/TsDg0ZUkrPIbsgOQvAHDO71uSfqsZGKbRBnnzakH1e7O5/OyJrrU8AcDmA88xsS9cc7GN5S/DrABxuZgebWV9k865XAPzN430Y+ROr3pb9ytQ+WzCzd1t27mvIlgBt/gfkBeI2HSU0pTQT+Rvhi8xsiJn1NbO3dZG/6wCcZGY7+qciZ4bzDwN4v5kNsOyc+GNriCumbSDy5PiS5+skZEsbISqBW8zcgNy/9ke2ovsdgNEppU0BXAxfRLqE/+sppZ2QP4F6N/IYgJTSH1NKhyILcp9CFlauiZmoF5CO6Sh54XdPBKhCbJSklF5GnscuNLMjfe7q64vCc5H79DmuVICZDTez7uxscw2AL5jZ1mbWiPy5xa+6+ymIEG90utH3ygxCXhPPQ57XvrUO07EaeQ4+38xGAICZjTKzd/glswFsbnIkLl7nmNlbkAUzNyFbpETFApUR3Vk/xjXpSmQBaJlpyP12WEkgOjilNAFdM8rfa8vPmOHvzNcjuxHZwhWqt6JYe3dqyJBS+mVKiS5MErIvK4GNV2hzIrLPlxdSSrP4h+yA8FgAXwLwKIAHAcxHbjC9UkpPAzgO+RvDucgN7YiUUqvH+zk/ttDjKe/ytB2AO5G/z70PwEUppUl+7tsAznAJ5391kN7jkTvaU8imaJ9fU+ZSSrchf7f4F2RJ5n1+6hUPzwfQijzJXYn2juLKXIZsprbQzG5KKT2BbJ53n9+/C4B715QeIV5LLPNeAEOQP5MYhPyJ4Qoz2xNZG8hrDzKzXdxcdBFyP2szsy0s7xQ3ELnfLEEhZO2M6wB81sy2suw4sTufQD6M7EOjr5l15gdHiI2elNJ5yA72z0BWGkxDtqi7CcAPkQWzt5vZYmR/Vnt1I9rLka3t7gbwPLJFwf9b54kX4nVMF32vzM+RNe3TATyBwq/cuuJ05DXt/f751Z0AdvA0PoUshJ3i61Vp58XrCjMbbGbvBnAtgKtTSv9CXleeY2aDXClxKgA6H34YwNvMbIwLK7/cQbTHmdlOrsD/BoDfpJTq1rJuHHA7gO97GnqZ2Tjrnr/EEcjr3r5m9kFkA4hbkS2ENkEeL1aZ2WHIfnKY1w4NGcxsBzP7dxf6rEC2rutq7b3RYKlrX7jidY7lbckfA7CJNIjijYiZtSD7oWhDlsxPBfDtlNIvzOwoZEHjUAB3IX9nv1lK6Tgz+w9kM8ytkAUzv0KeFIcjT5y7e3wPA/i0Cy07S0MfZJPPE5Anoe8hC4L7ppRWmdkk5In40tI92yAvNCd42iYDGOppa0J+kezLfmtmLwI4jgJfyzsHPJVSOnvtSk4IIYQQQrzWlNauq5D9KD6BLJS5OKXU5grAC5Ad8q5AtjY72y3PYGYXIhsJzEU2MLgE9WvO+wAcDGA88hrzpJTS3Li+dKHPd5ANDwYhOxf+35TStWtI+0eQnYP/E9m4YDaAU9z/IszsM8hWepsAuBn5E6znUkpnmNkXkA0dhiPv9viTlNI3zWxXAJciC39WIn/J8omk3eAASGjzhsXM3gfgFuTPma4EsDql1J1vkoUQQgghhBBCCFEBNtbPo173mNlXzGxJB3+3+SWfRDZLm4xsffCpDZZYIYQQQgghhBBC9BhZ2gghRDcxs4uR/VpFrk4pnfxap0cIIYQQQoh1jda81UJCGyGEEEIIIYQQQogKos+jhBBCCCGEEEIIISpIn55cPKzBUlN5R/hopNPV746Od2Xos64MgXoSz6t9Ju+3Ls5XmddDGrtiHeehpQ2Yuzp1VqsblM3N0pjS79UetoXf67JJ9rS7d3Z9d8+X6am0uaeV1llarIvzPYmrq+t7Uh4d8VpK5GP5xjR2Vm5rQ0flshDA0lS9vjnULG2F9u2ndwhrJxj26uR4/L+za3pCd+bp7hxfmzR0dv26ajBrUyZdPXNd5fHVsK7j7CjPXT2jm2l4aAnmppSG9zRJ65thAy01bYb2/Yedslf4vaZ+1t36qNII1dWE0lUfjPevDr/jdR397u613e2TnY2NnV3fVXzdifPVjr+dPbs7Y9+rfOZDz1azbw41S6PXcH5drFdfTVwd3f96ft1bn3RWPlUol67W9RsCpuFpdNw3eyS0Gb0SuCWznfMAACAASURBVONlYMgH/MBeHjZ5+GYPx3G2G5mDJb5TV+OWfnxb5B3AAGCYhwtL5zpKWouHUz1sDPftFq7nztb9PPyXh+/w8MVOrusDYLNwrHfpXJmdQ1pWhDT1q7+8dl2zhwd46OWEJR7G58/ycKvSNUz/PA/3CM/ivXM9HB/SSJj/n4Q0Mk37hfiY9r09ZJmsKsV9i4csB8a1V7jnKQ+bQtqYBnKvh8w772f5NaEe5onl1q90z989bPFwKw/HhWcz7bxvCSZOPAFVZetGoHl35I36gLzpNACwy630cJmH0zzk9exWmyLvNwbkjfgA4B8e7uThFA/Z5bgJNptti4ccD/7o4XwPuXHfxBC/H3/huRyO2TGHS58skjz+8Pz/w97Edvdrpvs1ozicNOSg1eNsYFpZrVwR/M3Dd+fg0d/lcBcOQ0xrWVgNFE2O5boJgKf9/76eD+96o/zwIg9fZhQ+TE5eXR/VS/XR4NsevsvDKz1kj1zsIYt/Wjg/FsDm/v82HlKYx2cQjhLPesie2+ohi4NVy6YwNqSFeeZzmCcWI0fUWSh63mQPm0rngCJfTNOocP11yPtFVpFtNgGam1D0JW9nOMnDESyRJg/ZgJlL1uIqFOPffqVjQDFmPeQhx9E4j7zHQ7bAgz3kXEI4JjIejoGzwvHdPXy4dG+Th0tCyDhbwvHHwzMYN8uBeeMzYtpGht/l+YghWyfv5TO5BmEr3cJDrhU4p073kPmfEJ5J2CI5L/3JQ+aF5byDhzeU4uI17KlLPXwOHcN8Mm1sE0zj0+E4y4BpZlmwfHkf09GvdO2vQlxcc7Dncr6P66Mct9lxU1FBmvoCzRMBDPUDb/Fwfw85D8bBjwM1584pKOa294VrN/WQAyDj3MMnqAc88hv9+Mc9HOfjwp98wuZAzXhZvZ/x8D4P2fRYZUcD+Jn//zmPc7LHeY0f/6KHd3nIeX7M9p6GZ3J4sP9mH77b0865dGuu+328ecafEwdu5uU3AA7z/+8Jz54SQs7HbEns9nwk4+TQxi7NIZBdO06y/+4hy5VdcwDy5sUAMMHr6nnP79Z7+u8H/PcXcvjM+Tnc/vgcLrkqh41Up3EtzkR531v+TH2aOPxwuTxiRP31eBG43tPyAc7oPt499EIOOd+wDuf6M4ZxvmHfnFPJvrnNHruhuflOFGPmmR76Ag2XeXi5hxx7OKZ/zMNfoZgLOG6tKp0DsGprj+JQP366h8d4yMa2KoQc/zi/cr64PPxm2jh+lsdLFj87Lsd7ziW+4K2N32wc8f2Vgxa530Ou6OJ7TYuHnMMZD+NtQvv3La48KQDg/OBpSo/k0DgIslyuz8ECb7NDDqpP6oK/1Ef3Jg4C3k9e8EU6+/ib9izy8Yy3a7b3Ifv6P4/l4Elfde/ofbhWB/4eON3HqFF8UfJySHNyyD45wle8i/xlhd2oD+NlWucUzaVhcA6Xexpa/DjHy0YfvGaurn+W58W2RId9U59HCSGEEEIIIYQQQlSQHjkinmiWmnsBN7hgaGE4TyX+E+H4Ph5SGdGGQuFAgTjlxYyDgiwK0Ch76++C1OWv5JAaW+qlKMM2RtArnIhq6b4hbCglipFTeEvBIaX1LADGSaL6msI4xjs8/GamqbmhxJGFtEXpN/NFhRzjiBYV/M00U5tEmDem9b7wm9LAHcL11JrQSoLxNzagJpG9f1l92nbxcPAH/R8WPiW3lIoz45Qqe62+8N2O0zxi33A9tYSE8Y9HTcsx3VU3LX6K5UTtSU0dRDULpeXXY+LEl9Dc3FolA+caE7ew1PxhFG2VbZJt6q0esjMODhFQm9g4AEU5Bo1QrdG5mo8aIlbbkCP8H2qy2Xio1aUUn5J7qgujrQUl/E3h+k1QaCSoYaammhoIirmj5RTzwjwwj0zbY+FZzFS0WOP1hBrqVaX0XuThL8K9nwtpZtxRu85yYpoZD9vi/3lIS7+WcN7L5m7XBE5B0Q4+QG3pRz1k+fQJvzm4RWsNXkfTpVgu0WqDGhzmjeU1svQ79jk+i2lgvtg+mIYWDx/CxIm/Q3Pz3Mr1zYkTLTU390JRPl7urWfl8P1++PYcTPfxm6VEVcs0FFXIYZB6Q4TjK8NxToFUJo8O17En0dCAU4xPsbWUN4Tz5SmUcbGW+SymmTA/zN/q8Js1TxtMTo0cSbi24H2cCuI0x/sWls4xvRwiqZRnGllOTR5S8cU4o4UXz7PcOc0xjSwLjkyjw/HxyMYG5Wfw2f8WnsGewR4Ry5XWddt5yN7F6TparTHNsaexPAeW/mecNJhkPpg2tg+O5rF9Pgc8lFLiiqEyTBxgqXk8inUWF6EslEc99IwudSX478PlD6No1zSUYRvgupXTa5yW2QZpbEoDWerbNwm/SbRRZv2yDf7Vw91RGKtw5qTRCg1wjvbwax5+y0O2HT6DsF181UMuTxnPOHZWH1im+3Res4L1BrX0PmDgh/wYC4wmnOw0i8JxdgSuoVmwhJnl9M3GyA7mBd7mjbW3L/vafKrszfUggOSDmLk171NuzTue024wR53ljYDlwTHqZg85fvB2tgWOnaxDZvFdPiC1eUTlsfUG/5+zOIuDxcU4GReNqLhSbvJw16r2zc0sNe8PgMYvfJdgSqPVNvssJyd2hCkoBioWOOM61Sv7tBn19xzvjeUCfwgbPNsSB0tOmKyYw73CzvMKo1Ut07q3r49v8RYxGkXH595MHGQ5MBzi4Yjv5PDJL9XnhWPXBPbGc3LwsKdhd45A3vrm3pHDmhXZf/s/3kkn/ziH49jhgNqa8KK7c/hpxulr7EmeH1qtf4Uz6Xv9PjcjZH9xwzSM8co602drTtocE/b8jxz+l5sEMtovAxji1mefcouYJj93Oju65+dzPkC8zQ9/wMtp+Tdz6MZxNctnDszsQBzsj/d31zt+nUMuf9mWuIS/HMDJbIQ+4t5/Ww75kcfnWH4+0l5/ZA45yHv+bZuO+6YsbYQQQgghhBBCCCEqSM8sbSaOSM3NR6H41o+6Fep1+K1e0Jy/4NI7qmieQHvnBlQVUarJqCnFdCFfTS0YrS6YBKp3KIGMn+EHnx6tL9efHgTAhpV+AIVVQrSUYR4oyY1uZmpeJuvT2haeSSExb4sGNytLYb9wjtmnMDd60aHckUmMgkQmcaTnJS2rjz9qNilgpCKEUr+GUtxN/I47qHwfWlZcCwC7+HXPeHlQE8FyoPBy4Nalh5QeOu/J+jSyqUSPC/NQND2msT8Lxuv0UU8DmxermOW2C7JPkX9V0NkpAEwcaan5OBQNgKq28eFC5ptaBWqWyi4iYrvmudnhHhYSGyH7FqFkPar+eT0rg32f8dMaiKrMsoMUfodPlWT0pxPN/KhamhGuo6aCWkE26Hd65h73G1iebFzsaGykNEdYUYqL5XCoZ2CJq/+id2hqWVieUf3N8t/DK+0PQfMTzRWbPGT/a6RVTSNq2pKHfSClujX6Z4jlNC9cx3GWGk2qFdlGWK7MK9PCzkwt1dDS9az3aD7Aa6aG32QMB4S9MXHiP9DcvLhyfbOmMfTPttlGvv7PHEbvZhyn2HXYFaei0NpzSuO9rH4WD6sqdksqwtjcOK0xPnY3NgE2P9oz8r5oQDkW7Y1P2U2oJmKz4bTeFkIOJaxRPpvNi7BZsYt0NHwBRflNQXtrHOYvWiqx+bFbBQ8dtXLkUEBlaDRGpSsKDkXRHdYEX19Mn1vYirH8WA4cEl9GPSwvDmvBjVa7oZZpZ96YB3Z/Dq1sG2VXIBwC4jTA9sJ2ES2u54ffH6iqNn+speYvoxjDOaa5+6TkQ6WxY7FyOMbRxGhq6RjnJRZ07IS0DGFnZuHSFOJED9looskNFzX0WUNtPucvKshpwrVzKW76b2Fa/hzi+K2HtMolXBSV5zoAj7ofGvajA1lOXCTyuewYLL/yvM+Bj42KAyDnRnZGllc0NYuNk527rf5425L62xlyzOMUw35lZWt5f9ZN3rCP9EFpgc9bQ+gqjFp5mhxxEIoOrTlIcfBih+HAwoH97R421acD80vP4mBTniiA9gMr4xxbf9wuq2bfnGCWrkWxjHWbDdzpIT241OynaSDsE8hDXqasX6CYOwg911zgIavhEg/p6olFyebPsZmwLdGQgl5TV4SQbpvYXMrvTJwr+HvLcA/Ps7uwWhk3uzK7C73GcEiLSyh2M3ZRNh++LrSgmIv5DMbJoYZzDeuCzZvPZLPfKVzP8mJ9jA2/OURy7osfpixewz2sw3HeR9tm159n3W3P9uJj4RyPaATH2bBe5ccje7MAg6+y5T6+9N8aRSWwIHhP9BXKcRXhvDcCu0+WNkIIIYQQQgghhBCvG3q0exQWvgTc9GOg2S1nKJ6jyoUioKhxp2SZ2ohH0d7nCkWiU8I9wRVATQLP+1rCsyh5ZxoozWL8tIZx6VeDp6mB981Ce5Egf8edZChJj9/Nlr6LrcPFfL09Lf1c29rbpX4jXJTbFtRljH412mv/4u4s1PpRsjov/O7M6OEwLy9KKqnB47fTcZ8M7uVRlsZSgNjr5fp089NwKgeYhnf7dZQiR6sgNoH9n88hJd0Uht4e0sSqZtlQmvwYivyzGYycX/+sWz1kE2UV0ghgGQpFSBV5YTbw6e8XZfgJD2e7tvAtVK2yIqkmjyL2fVA0AoqlWRjxg3z2D0qIWQEs+M3CcYrco7kYtUVsGCOu8H8+6+FpHr4CbOHfovbZNYfL3GP9rv67zX+zATMvnVlzsE8zbylY2ESrI3ZAqqjLzrT4/6G8yVVujb7TwfI59fdwjIoft8dN4+jxfqV/O0xt6gjWdvRH4/qYK9xrQW8UAwXHaqoxWjxknXFAiOJ8pnF7dwIwz50AUIURTSBYXvPCecbPut8c7cuW17J8+KE+s8s6G0N/OW9H57vsbGA2Q/Zbw2/WvR1+jdrtozykZoeqRartWAaPor1Wmiovll/sdy0esn9yvmL7YTNlX6EmnnVGN0/s/9Fyjuquch2yblhnnBQ8beM42AfndXPcNdIIWrn6M5K3U3N13gJXPQ7hJMC8UfPlzxvv6RgPFBMJ8+trjFZfCzSUrb5K+aIPEw5fTR4yq3H3NlqY0no3alFZPTd7XncCcCGK/8tJpB8ZPisOxSzWaChILS83H5oU5nUWE4stUh72aOX0Fo/rZo+LhhRhs4va77iTXGXZDMARKNaUQR1rdCzEjLDPUvfJPrsIxZjF/mxlnxBlWDqckFiaNJ3hnMcBm2OcN8a57lPhGLYYdhj6SfMd5D7Kmu6DYrDnPBHt1/yevbxjHBkdQcYd4HID3uV57+S0ImSS2GFoHhH9jJRNoqOqnOMH42LjYnHGvsqxkA2c88rq+t+9vTg2b/LQT7PBN0Uzwn4oxjl/1pE0Z/C10hCO1RyXuY5hPsvvFOW8sPNx/RS/AmBa3tzJdTsAOBb19A7XsCPH+TZa1nITporRvzewSyPwsDddrs9pHcrxrmYx5U2U1U6/Y39HUewkWmW6x5HatMfm+SMPoyubuDyOG7DyFTa+j3CFMqsUchnJOWKLcA+bI/fMYpysRuaX5cMmyKbJns88x1dTWtqwp3Nom4b2ljbMb/Q396CH7FPPhpBzUlyWkPgxAOuBz6NbIw4RU1GUOefUFaVzALCFD69NIU5aLh22pD5NHHZ6+0vmFuE1gHnpR2N3D1kGrKdBz9fvjAoAW/pFNTe0vt6iYSO/W6rtVR194gZkaSOEEEIIIYQQQghRQXrm02akpeYTUIgoKWaK37BGK5qrPaT6qA3tPfU/EX5HZy0tHlJcRYUFRY7UIFOsSkUDRWkUf1J6HTWDvP4VFJqB8hYU5We5A+6amJSir/nhOuaFaaJ2kGnh/YR5Ln+8V07HpqVrKYbkM6M/jSjuGx7CuN0GPxaN32B/KBynBpie05nXFShE1KxvPoNKJX4kyrTzmWVP70BRTrPrr2/138zySFqPsC0xb9G/yfBS2ljvjIRlzPZDDQ/Fx00ePgtMbAaaF1XUp82bLTXfDaDRG+MSl8GzjKlFH+we2Wu7/rBC+SH2fihkwPd6SDl22Enoed89imLvYdSDNIVn0AKEuwB5h2p1HUds7yPcBA0f8JADzCrgIbc22eNsP/YnD6kjoA0YtYpe8Uvc5IjteoTrEZa7/J7teLDn4eFF9WnjGMB2Ei10eqGwTGBSWLQU/3MnAMYZHVFRHcC+RqvAwzykqRrjiVvusY1vPSaHl7+AGuxzHP+ooqCKJloW0XcCxzbmk2oR9g/C8SaOncwT5wyWM/vmDijKg83nqXAPmx/75j/C+SPeVl2fNhMsNV8HYAIrMe7Ixj7ByZPt2VVBM70gHwNwKAdr1763ehtt4M53s+rP1/DGu8Tjamyov+4BHys4prPOaMrI9sw+wPLnfA60n4dYv2wXbG9UFQb/ZLUxJDo243GqFKN1a/TNxLUHn/9K6RlUQ7IvsH9FzRbPsy0zrdFMhWNAXO8wzRxGa+adHu7hDX36ovbzM/00LfJxKVo3MS4+oyXcT3PUOJYwD1RX7shC8UTdO6M+jVugmEvu98Ln0Mp+2OQh51Q6xqmpLXNg51TTb8bEnSw1X4Vi3cG2G33XPIt6DudA5X155gvAm3zMbfUxt+HLOUzfzqGx4jiXcXHjD13kVpGD6TmiyUO3gilsQxxa2HD88G1nkpu9GMebpSjGg03rr63t2sldNv2ZL/i8HrcJG8E8cF73yWCOW12O8A4z2ceZOK/RGrbGbkDrVfnfBtenL/HFNfv7YHZCRsZOzEifCuc9D7W8Mu8cd7cNx9kBaS7zSw+XlOJcEu5xm4k53pnYfmL/j463LFrGMl5OcF6nk90iN5qIzCtdvqP7q+MaLL4r8P2I42TNmSMHgmw1ZTalkn1zW7N0Lorajq9p/M1pJxZVeYkVh+fg7qhWdNGPWDQA5jNZxBwWoj8xWsvQqoPDClsgmYFiKKXlULSB6+x1mCGrtS1cxzwwb9EdIO9nM2Fe20rXcJRjD+S0xx4XRyT2rPvCcTYu5p/TBMuLIxXjp5UQuxU3duKQ8EcUS5FTQvq5LJ0RzrOuoqssuo2iFVS0op0YjiP8jm1rSwD/DNduE0KOvtEHHuNi2j/SiS84WdoIIYQQQgghhBBCVJAeWdqMN0uXoVAo7xvO78JPXilCo+aXIjtXDD6+pL0BDZV8lH5GyR8lWZSwReE244vfhDM+Kg34/SKNOSih5f1l1xRltwvlZ1IXQukcpZhxs6gB4Txl3G9xUVmriw4bKKJkBGXtPVDvfyRuDRLFxPHbVoo348eSsUAp3mNBResexkuRJUW8LJxepWf+s3SsHHfQ5j/jCpuoyBxCJbRXziL3aUOlywJP2xAqrZiHuHVWufKZ3rizFxsaRd7RgoK0AhOnA82vVNPSprdZ6ofSDl4eftdDVsV+O/s/VDAx3/yU/vcolIBxJ6bor4QPYxuL4nxeFzXZUaseNbSnhePsSINRaOq5y0Z05c/fVG+wcfGZ8XN95p95jW77qXlmXmIeuSvDtihE6XE3Of7m+Mi0RGcQFP8zHlrqxG2DyrtplePZI1hQ1BJ/MJBco0kHU4T+TJhvDpBMa7SQoVqE/YdpiL7IWA9lnz/lkKqlAWhvxUR1SPxYnDqH2Df3fB8mTvwLmpsXVK5vTtzWUvP30H7XNpYX67a/T5ILfJIc4pr7Va65n4H2W/9FdQ/vmen3xMmNKixu7si6YV1Ei0W62WCdMZ5ofXUPijqMu+aE3dfm+ZjPYXh7j+uZ1fVJizsvsVlRS8X5ncVa2+jR57lZPoZtAmAIJxaqtDwfs7zvjqTvEs4XtErkGBDbJ/tQ3HGN8xH7MRMXd57j+S2Ax3+Q/53wNj/Gsm7ykJYx0cI17tDI8zQYYDujJR3naaaFFne8n1Z87Pf9UIwzzOePw71sB8w3fZuEXYLswopa2uxqqfn3KOqTzhMaPuj/sNVxMjkzB4u8IsuWxWwb53hIC2Vaq7Gf8x7WF8uOcx1h32ZbjFaHcZcljgHMC33r3IOiLfAZ7JP00UP1NNsO23McZ1ivVM+zvO73kJ2XsN38Lfyu7a7YC5i0uv7ZHItYXg1cbdPiiJZFnBRorULrlYNDYjjS0DqIBck58qH66xf5PLkYxRjWme/KJg/pQGVkuG4wKyVaB0X/a2xfjIBWl8xbXLT3Q83PHS204hZucWfPPj6STl9Wl2Y7oKJ9c5yl5nNR7BbKdvEuD92KsXVq/X0NHJNojVx2thkdvLAdc5znfOZzyFO+O210n1rzTRJCNuvoEpXNZbtwvNzE4saiDOOut+yaXF5xKmFLY3HEHSGje0BORRwaojvaFhTG1hyyGCeXtXxmXN4zf3GDPHaL+KoZrYTi9aw+lmtLKQ4OGySWDxs246KVEKuaPbPsOhAopmH2yOg7tm+4jvH1Q9HLeS7u9MW1Tdykj1M9X78623VRljZCCCGEEEIIIYQQFWTtfNpEvzIUM1FATPEUxVjU2PUrnY8fysWN6kkUx4XvpWuisyYPZ4XrqXym+ItpooY5ijCXohCR8RnRN03c/SVuEs800MKIokcXkdFyhJdHdzGUHlKyWPZSzmtZbCNd40Yv65RuRtc0TCKzwmLp7VLlObPrz0flP++Pbn7IcBRV1bBFuIhiZIoIwxZWyc9btAJhhCwAL/9Wl4CziqeGy5j2sogy6l0o9WQ5sPlF1x+8fjdkpdc/UzUtbSb2t9S8LYoyY5/8K3PIb+AP9zB+ResN6Kq7iz5BBRC/n44+M27x1sB+ETXOUTvC3RcQzvN6NtqDR+TwWv+2m+1nEAp1x/s9PMPDT3pIawKqNaJGkx2E5bOf5+0P/m04Gw2fSd83k70HUBQfVSTTUYjO6cuCboLi7j4sRmp4SK9wHfsJ+wXHV2rbOQ5RcbePh8wby/c/DwOWuAlNo+tebnFTD3Z4lg99IMVv4dlBYvlxPGVemNZoNchxelA4PhqFtpidjqacHHSo8adqpwX1af9wAyZOXInm5tWV65sT+1hqbgRmefcayTpimzgq3MDyp3qOWt4ZKDTjbPu/8TBavLGsOTB6XM/4x+bbUwvpg92DPhey6tik6emCTSMajvH68iYwNCAKU14NzidsuqxaVjXnvugejs3sXA/ZvbcK17MoOI5vhvbf7/Mc08puSy0kjSZoRMd8juF4yP7rmVnk415Nse7lPd3bMYfHBo4Z7ENtwE1+zZEcnpmxYEH7lLef8XwG08JJkOMc2wALkpY2HDOiJYOndbJvTzKO7a4vigJzaq5LdvQDTR6yktkw2Bi8P9slFdXmTxyQmpu3QzGAspWx8B73kKbQLBDu1ET2R9FaOCj9X7iGk4L3DPpSY72xz0bLx1fCb46RN3jItTg7KVXrZfNvthHWC8fyuFtf3EGpbH4OtPcztSOtYFg+0V8PTXBoirIwhIeXIqVpUnQE552s1X3dNIwJiWLd0dKGaeGKj89iwbKOWbeMh6ZrZT9+tDXwOk3uF8+Yb5r90krH59jBvmZY4HUcd7Tl4pN1FMuXfT9as7Juh41Brazn3lwfd/SJxXuH+JqK5bQqD1rWt6J9c5Cl5t1RlAlZHX5zMI+fVnDLoqEoBmBeGx29sAmxP7DJcMIbEI5zUop+RKO/TFpwEg4NvH5oKS3sU3GXU/ZJTpgvhvOsX7ahaHnOcuH9wTKptvyPW/0OLJ3jGMS4YxejpV78PGbvEGc0SeLEyvJnnji/cs6iLzW+T08vnaMVX6xj9hWWZ6xDLjxaPOSam+UTd1H1Z8+i67de4TofhyfPaL9JHC9l1NHyhlXH4mNVbStLGyGEEEIIIYQQQojXD326vqTgqdnA3t8tBGfv9ZDCwvd4SEEjBWtUtPO+l1FIlSj4otAyGtZEyw9qweh6gcJA6jl4H419KD9nvLPvrj/O65iHsk8bSsQo3I3uXaIlTPTwHb+D4zMo/IxuH3icmy/FMlhR+p9SvOGugWM5dOZG5LHwm+W+wiWRLFfqIyjgZrlSKkgBJxVDFAQ/jaJc9p9dn0beS0MLClSjIULfx+p/r/DPkKkU7D23Pj4q6FmuMc93lc6zDseGa6NSg78v95DC5Glob11UJVauyJrdUdFXxk9d43Kni4hH/zSHX/DzdO50X+k+KrvYwH/mVigUCbPSqYiKUm12NjYmqtFZsezsVHqxA7R42OQWNkeH41sfAZzpmqVRnoGPn5/DvY/3kKqIphwcSXsBQvE/e4TXam0HrH3rz69y/fs412Ct8MxQW8lO2wuFVQSPscFzQOAAyUbIOPhhcdw1jeW9o1fm1Cfq4x/sMvfBdI7lx/d0rVqDlyOmFg38AW8gtIpiJ+WAGhWPTMtO4TzzFPPIPLwYfjOPZbNBIHdMpo1tl+2B7YPnqWJgmtju0Ijig/VqsaoNmPdyoZN9yfsZLURmfyeHccORODe8COCo6/P/vX1iWnqjx4n6OKINXdykrO3O+mfQnQnnGzYvzo37eR0udY0bFWu0UOkFwJghtidmOH6UH3c58US1+VjRm2MLJ19ORB7vaX5dA33AcEJiITDTbM990f7jeC/UVl8LNND6aUX9dVy31MYxxk1No5cHFYC1+L1djpoRrud4yrLYBdidwxDzEd1XeFpHs3mzT8Qd95o8ZL9lpUdnCawP5mVQ/eGaJcdWKDSsL9UFGEEtZSjPBW6JU5sGuHioLH2QVaRuOTrTnfJM9ZBlxoUrrTnZcdhett8SeN4re+v/zOEjPs/uyr1P2Ah8YOzvvetAj+RAWqlQzUxfK9xBkasPt/LZ3TvG9AtyOIo7M4UdGjEbtcpOPmDs7WmsWZVwlcMV01c8Lxx9PM5xt/hv+oPxvEz2vLIRxe10Gjh5sAzY+KajeAW5yMOWHCzxeZY73XEcWO3+ukb5YvAZH0hYVyt9VbiQq8PAcL+fam8aVfWnKp6V2lj638vHaHHMh3Eh43kYXJuQMkPok8bn4Zq1VyLklgAAIABJREFUCy212Kn9/hEsFyaK5bUihLNQG+WHHeHHWCfuEHKw1+Vcf/ZMD+NYWFWWAfhH4YJnlM9Bj/uYNGFrvy46ROH4R+OuFWjvTIVdLFqYDQ3XcV5gNcWdRLmUbPGQzYHVxLE6OoEpb9zHdsh1EsftaDnEPPDZ8YsU3sc+GP2kMu1MC5sa2wHn4/1L8cStq7hepXUf740+4Zo8ZHlyjovzIYcFWhdzvGBX5ATMJTzXnm0ohA/0s8aux/UHrXgu8ZDLeo4jLCe+98RdJ+O2Xr7eGHmd/+Z6lua5TTkY99vSszh8er6aGJev/wc21F83kudZrvGl3ZGljRBCCCGEEEIIIUQF6ZGlzRgAF6NQiFIgRsULhU61XZJcQveoS5oo3NoGhaBqcNxhgVI8Svf4RVfwTXMKJYOu3f4gpZxx959+4TilfJRUUhJJ6esrpbSUN18vp61X/e+maN4TzTiiCQg18vRRQClpzfzFw9Xhd/kaSiX5Td9/eEipZdht4N9H1/+u5Td8b9vENLv09EiqESmZpSRyvIe0ohiI9uY5xNPyLpZD0KKOp0avFfWwzj2t81yFt7l/Uz/WfdsModSd5cU25VLsNL9QjlFoHn38sHnQ3QOLoSygZnKqSC94f2TbZBtmfVFbHH2MuC+DWrvaC4Uqne2d5Rl3qvi2h1QM0a8J2xStMNgmqUxkZbCdfNFDqu4H+zfjZ3I7EuezN5f6gmuW2A8ev6r+2ZTK0wKASsTV3mFqyisftWrf+vp5DnK8bmRrfdrZhh8uXUcVMxsR00IJehSRs9/HXSnKJmIAcJJXIsuzNlZ6g2e/o4S/dU5dVnDHE0U5RQ0jxyLGyX7NjhF3EGGauY0Pd5NieVBDxDwzPmpCGB/L4jkUYxHLgWMX2xstv6i5YlqY9gfnFxqkitGnL7D5FkC/kD4mnYqi4GKk9pk3m9+PUCj8Z11cfw2VSiwejnF3hLg5FESLGir5aOzR2yMcTU2Pz5UDvU0cyL5V3r0vmqxGbSOV+VwksO97u+lNyxzOM2wnXCh4JhoY76hw/YD66+p839F6hIO+10UD+yt36GGfZ4H48DPP+8zmHPfYBwjbNrW80Q9D9JnQuzhOlzOfdMug3lzHeBytblDArv8ON5ZocB84C7gpjsNu29/r8GGf1we4VRGXAf2D3zj+HMM+N7kUmdc/22xfH89jlTMOFk/VlfloWwws+ksxnvzEQ46RrCeuW1iPUYv9mxnFnPhHtzphvczw3X243mT7He8WH+wPox/JYaNbjNa2RyTsQDT38UlilO9ohfM89CX9gtJzOfdPYCdxk73JXlPj6FCJFU6HOS0eusXIcm9M0ZcaL2NjZsOo7RbqI0/cTuVpFGXLxsN1fc0aobU+TvbNWX4hB8XoL4aNkuMInxl9QLGxLuICGDwAtHidDH8kxOWWx9FqhcXLdRPrfIivHDkvN/jaJfnDjStLZpIWTVy8eJ0u8gFqIYp1yH4c3Pyhrb/OIfM5bGjHz1oVF9sVoy/y2ORt91F/R+Bwz0mO1p8DW/y4l/kC9xs6pC/Q6vUW7ZVGROuc6JuRIYuK9c+2FX12xu2iOK7w/YbPYzvZDEW7rVmShXsZJyd1ppH9o7OXkinh/KJwnn342XCcbXo+ijGNfYRpZNo4Z7Nfs7xiWuPnH2y7cWum6DOWYwLjZ7ktQ1EXPEcLG+abcgPWRbRY4rMZJ/PKeDnGx7Up1xec81k/zEMT2ptNR39DXHhxnIg7b0bfjgFZ2gghhBBCCCGEEEJUkJ7tHtXHUvOmKKRQlMBRmkXJEaVV1NrQh4Nrth6dUQjMKbSk4oxemZ9ZXf+I8sZTQCEcJf3jd4lxc3dKxqLWO1rF9EP77wcppYvOauIuWpT2Ra/whM+gdC9KMONWGpTYMdMLS8+ghoFQa+jSvKUe98CtwnmmNRYopZvxmZQOskyY9rjLAVCo8Zg2xsGyZxyU0NKQgs+MnszjDmFR2hmdObhUtM2l7L2pCe6Foj38pXSslOYW1xqxXQ3x8y+sLh79LgD/quruUX0tNW+OoswJv8uNO7qxHdChBetoOIp2+1i4h9ey/1Nbzs0UCOuJbSR6tB8dQlr2UEoe6533fxnApf4/P8fndjK0bmEcbBv89jX6UmF/YF6oXT3QO+/93oGiZVqU2E8tHWefYts6LqTpwXAPxxdavVACT8skPovx0HSiyUPWU4uHHHf4PNbPXqVnsVyoyOUYPSic57fN1Jqwn1ObQs0N80yta/CV0W43BKaVz2lAO41+O40M88N2yDGd4+bLwMQbgOaXqtc3Jw6x1HwwivGHefVvoyd7eY7jwBMdgflY94d7gHfSjwvnCVp5Raso9m2WMcdLjn3sExwfubEN2xnL1ZX1tZ04WA+sH/qcGo72u6mxre9UuqZ8b3Q5wbmQljVsR2xv+7nK8LzW+jRN4ANoNOyFs8BNV8rf/vfxDtLqD3N3WDWtXPymnm2aaQ+7KbXbKotjAvsKx0/WQ9w9cRcA/+3/v89Dmk3xXo6RrCP2AdYdx1gSnc9xN70438e8cCcyWsYdgvaWwj/3kGMD64CWgRy3ODb4+GS/qOgONeMsNZ+LIp/0bxDXhGwP7A+r64/f/zKwt5dnq4/tNT9JrHuWO9sjmy3HOK6ZuDMc4Zjvbe2XbsFDo8qmuGbiwpr9ZjsU2nRasnJ9yfwxP15vyddPRgOc6GeDeSJcD8f3APablvA8bsb0HGBxx8PoU41p6xvO8zfbNfsg++T88HtQ/XUPebx7MJ6o7e+NYs6PW7Z6WpevLC4FSrumss/GXSNbcjDvxfponw2Xs+tzuIib1y5GoZSnO5HR4Zr+0WdJ3EHMxwmbWs2+ubNZugHA9t4OnvF1yPaer+m+ruBQGj+OoCHwZmhv/NnZqyGH7XHehya7hQybUjRuiT5H2Vw4hbFJxl2ERnAX4dXt72U9Gsccv2AR3+f8cG+e90TULI4aO07kci+//uXdAcswM3zAShQFxfEiWrXweLSsYcbj2ESYWV7Przni2FXui0DRhx9EMZZxrcIxh+/3XFO3hLg4R3HuYloYN+dTzo/RgS3jYyXz+Yz/idK5uBMVGyLn+JdCyE7tjaCzXRdlaSOEEEIIIYQQQghRQXrk0wZbAPgMCuk1pVT83DY6CqEGnte7BGmXv6P97gcubl7qmoTtKUkcGq4LliGz6IyfEi+KoSgVZFqo2aOmKopBKeKch0KqNiNcS+keLUUI0xZ9LfA4tQYsJ0r1tgm/eT2hH4SyZoP/M90sJ8bloveBjCv6IYlie0oUZ4TzLHdqTClxjN8l8/kNqP+uDyjaB8uDUk6mJWo5+O0n44yqhriVGJlV/5M+GWrPWYiift9eSm/pWU3UfFGs7s8YU/r+tG+Fd8OYvwr45WxgrGsg9mMZRE1VtGahZLqhdJ7/U0vbEu5lm2Cc13hIFRHrKdZD3IosWr2xb7Lt8flsmytQ9H/uDhN3YGJfotSaKpi/h+t4nJrO73k4wBsAVTVMO/sRJfjMC9vHpii01PSNwLTwGfT5Qyk/YXkxLxwv2C8YzyvhepYj+yTjZ39rKF1HqT/Htmipx+NPhN/sW+wf5U1JgGL84HW0jorWlixH9l1aMXy2lI+2cA/HtLixCncto/+PhQBuRzUZhNxmqBqnVYKnfRw1zUd5GK2OvAzeeSOAUxvqL3rIVeNsgxyTh43J4Sr3m9HHL6BPiv7cxcQrs80n7g/68VXue4FzDP2lsQ2xHspqwmj9E314sN7ZvuJWiuyvbF9xhx4uLqJvrnlP1Me/7yP1v6egaHsj59ffy2/H2c7i3NgU0r6rl/8Lwc8G88q8jHHV4ZZeP9RE7s36Y4dtBJb6oEr/dm/yxC73QY99IlpIbn1oDlvvqE/jKB9MV/nAz/mOeWsMk+oCL3iWP8eeAwcArX6QdUq1/oBwLf1acY5lHbKd/ALVZDGy9RnnKVprsnrY9jhWcv1HSyIvnr3fjFp7baDlppdB8nFutYe9vfhn+fw1cmj99fiVh16fT3nboSEU3ch9y8OdfBzmFMnuVdsE5rGieQ9mPoKlOHdu42k2pW18LV5TiHPdGy2hGXIM4PjN/sVmHyzV/wVgd14b1+ts55zLOLfWdokK90VfFdGijPH6GLZHtLxlAZZ9YPD/iHfR/sECf6nXBa1Aaj6d/Jk0KGC07HJMKrNE1fpmISy/MsWdTKMx83BPwzQPo7HCiEZUmn698jtga9gUcpHnh8s5jmYz6i+rnd8S7d0ccQnH11UuZ9l823ydRcPyuKRkf2KZs3443PE5nKqCUT+G+9D8GApjFNYn41rmDxu+rP48287sZfW/a8O3u59iW4ruElfMrz/OvLFt9S75SOsbCpXL/bgZFo/H5e7mnVzHpSPzbsH6h/2I04ztyMT7+ecB+E6FA3mOY4yPF63+rtlAf6fe+Rb4O8cQjivR8RrfcZjoaAEY311I2fKP5+LXKdEPLcdDNihWQuzMAVnaCCGEEEIIIYQQQlSQnlnaLARwIwqpEzXhUatd9g5fPk7p1hQUmsewu8jAKNak+J+SLIpHXas1ktotSrOoDaS0Klpr3BaOx+/tFqO9JQyfEaXz1HyzPOKHpXFrIpYDxaZRqx09XdfEn6WwKVxLSwpKBrnNBLXR5Z2nylCCSIuB+FEoy515XR2OM4+Mf2npGp6jJNHrpM3Pr3BR7cDgt6DNj7NqjNoA5iX4Q2hzKXw08DJ+G9ni4TgU5VL7KNTD6F8oRsZ2+BI6L8sKsAo5iSyim93q5Qi2yWjFRdUd1TzlfLNd8l62e0Y+tHRtOY6V4TcrMqqUeB/7FSXPbIu874yQ1nIamDZqqKklfTCcpwSeqkeK+fks3k8fEMGXSC2ttDYIVoPt/MgAxZhGVQ3jepeH1Jpzkw4+k3HQsoSqCqpw6GOAVkCs023Cb8bDcenq0jGOuxwH9w/3sL/H8ZF1xPIg1KZSPRu/NWba2AYGhN97oahfliX7aNyVgONmdHTG8qwqq1GMP+7Lplbn00J4hIdsAyyL/YFiIHS1PdsF62DY9v6P6wz7BHXqfO/Yow72A66P3IaVP8Hv84a2nV/fxy1wnnILHM6xZf9mcVc11lncMZBtlPliO2Be2Aai5Wd0IMB2Gnew4ZqD7XtTtLeciVaHtNh6uXRPOW3sA4+21ueFGjWOY0zz390Ug+pepnmK37+bl+PwOYX1KcvlfTPqn8F8cFxjfxrtFjYcz1o83MUnWfZf+mlhXnv5+fGeOVqZ0AKMab1+WVG/zN/VHnKsjbtbMo1NHnLcqzJtKMYZzgX9mXFfHh/hA/pXaCrtDoae9zIcjfZz5pDcZ8wLp3ftIblvjaxtL0WnFb4jEdtm/9yXxyP34TPwHg9ZYS0essG7ir02SLIiV6HosLyG9470tOV7dgfHC5oLUafOztmn7r4ay71x9Wej40TluyTVGgjj7+fP2wztF1Vhsps7pT47jT6hz/S+xHEkrpXjuFFzesk00N6C5UcTUaa97JByYLiWA0b9Fq0D/fz2tTpwh5JLfPJspIXjBL++j4f5maNqu0Ux8ayvuJdgI4Bj/f+WcI51PdfTEusyONQzNtxqsWo1MG9JkTsuhWhMzBKiESCXedH9yiC0N+ZkF2VJ0MKG0GiXQzKvZxripmEIv+NGZpyeuSRivK2luGiFRdpK1wDtNztuq7+8nTuZmrWch1wyRf8+0QpmYek6GqUTxkGDO75mlQ26gWIaZVr5akk4FTFtm8+vj4/n+Tqx3ZP1aZyKoly2ebI+DRQxcBTZ9/n6uJi/qZ7I7V6uT3ttYzDvLuzpK4PFVxxlUfod6591t7lnYNHK+jT182FloE87iRF0gixthBBCCCGEEEIIISpIj3aPMrOXUAgohdjYGJtSigL2SqC+KTZyKtk31S+FUN8UoqKobwpRTTrsmz0S2gghhBBCCCGEEEKI1wZ9HiWEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUKI/9/emcfrWVX3/rczHBMCgZAQAhFyAGUeIomQVlR61etcrVNbrS3WWtp6O1jba22vXrRVe+1ta7WDLddWrUNxvmqxFrWKFqcTrogIDuABTIDMZuYkYd8/nvV9n+ddJ4ckCOQBft/P53z2eZ/3Gfa09t7vWutZ2xhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2PaGUMlpKqaWUGQc7L8aYllLKdaWUC6f4znJrzAOIUsp4KeWJBzsfxhhjjDH7i5U2B4FYNO4opWzlT9KxB3C9fygacy+xtx9xpZSLSilfkqRa6xm11s/fR8+upZRH3Bf3NqYPlFIuKKVcVUr5USllQynlP0spjz7Y+TLG9J9SyjtLKX9ysPNhzH1BKeXtpZTX7Oe5g/XigVx3f1BK+ZNSyrpSyu2llOPjt+30Kc69pJTynru512BNvq9zH2r4R//B45m11s/woZQyevCyYowxxty7lFLmSvqkpF+X9AFJI5IeK+nOg5kvYx6qlFIukPRmSWdI2iPpekm/U2v9+kHNmDEPQkopn5b01Vrra9PxZ0n6e0kPr7XuPtD71lp/7V7K4o9NKeU4Sa+UtKTWuiYOH3oQs/SgxZ42PSVb/5O28cpIN4U28yfinF8upVxfStlYSvl0KWXJ/Z1vYx5s7OfrFC8qpdwSloY/6lx7Xinly6WUTaWU20opf11KGYnvkONrQo5/9r4qgzEHiZMlqdb6/lrrnlrrjlrrv9dav1lKOamU8rlSyvqQm/eWUo6QpPhuQynl3Ph8bJxzYefzx+Oc75dSXsYDY678UCnlslLKllLK1aWUc1K+lpZSvhneP5eVUmZ1rn9Z3HNDPOPYzne1lPJrpZTvxTz7N6WU0vnec7DpLR0l6tskHSlpsaTX6V5Wot5fXuD2NjcPAN4p6cXdeSJ4saT33hOFzcFgH7K2RNL6jsLG3EdYafPA5HGRHlFrPbTW+uVSyrMl/aGk50g6StIXJb3/YGXQmIcYF0g6RdITJL22lHJaHN8j6RWSFkj6ifj+NySp1oocnxNyfNn9m2Vj7nO+K2lPKeVdpZSnllLmdb4rkt6k5tXg0yQdJ+kSSaq13ijpVZLeW0o5RNI/SXpn5zXF90v6YVz7PElvLKU8oXPvZ0n6oJofpu+T9LFSyszO9y+Q9BRJJ0g6W9JFklRK+S+RpxdIOkbSzZL+JZXpGZIeLemcOO/Jca3nYNN37k6JelEp5UullP8dSscflFKeyoWllJeEQnJLKeWmUsrFne8uLKX8sJTyqlLK7WrkVaWUZ5RSvhFGi6tKKWfvK4OllEeFonVLKeUySV2F6qTnlM6rzJ3zuq+RvLOU8rellE+FceQ/SymLSilviXLeUEp51I9Zr8ZMxcfUzEOP5UDMg8+Q9O6SXv+7O6NBl+51Hbl4ZSllTRgIX7KvjJVSDi+lvLuUsraUcnMp5X+UUqbFdxeFrPxlKWWDYm7eyz2eKOkKSceGfL2zpBAepZQTSilfCJm+Qs16uHuPF8fz15eO0XOK562IsWRTKeWaMkW8yQcrVtocPD4WnW5TKeVj98L9Lpb0plrr9aG5faMaa6Itfcbsm648bpL0twd4/etiAXyNpGvU/KBTrXVlrfUrtdbdtdZxNe6wj79Xc25MT6m1blaj0KySLpW0NhaiR9dav19rvaLWemetda2kv1BHNmqtl0r6nqSvqlGg/JE0cMW+QNKraq07a63fkPR/1FguYWWt9UO11l1x31mSVnS+f2utdXWtdYOkT0haGsdfJOkfa61X11rvlPRqST9Rhl9f/tNa66Za6y2S/qNzredg03fuTokqSedL+o6aH1VvlvSOjofAGjU/NOdKeomkvyzhCRcsUvPjdImkX43v/lGNXMxXM/d9vJTysKkyVxov1I9J+ue41wclPTedNvSc/Sz3CyT9jyjXnZK+LOnq+PwhNWOEMfc6tdYdal4N/sXO4RdIuiHWiwP202gwFYskHa7Ge+6lkv5mL/KdeVtcc6KaufcX1cg2nC/pJkkLJb1hbzeIMB9PlbQ6jI8X7eW090laqUbe/ljSL/FFKeV0SX+nZv4+Vs1Y8fC9PauUsljSv0r6EzVjwO9J+nAp5ah9lPNBg5U2B49n11qPiL9n3wv3WyLprzo/OjeosWQuvhfubcyDna48HqHwhsmUTvDwUsrxna9u7/y/XfE+bynl5FLKJ0sTnG2zmh9yQ1YGYx7MhBLjolrrwyWdqWZh9pZSysJSyr+UUlaFbLxHk2Xj0rjmbaFEUVy/oda6pXPezRqe627tPP8utV45sFd5jXNu7ly7VdL6dO+prvUcbHrN3SlR45Sba62X1lr3SHqXmh+OR8e1/1prvbE2fEHSv6vjPSDpLkn/M5SwOyS9TNLf11q/Gl4971KjMOkqTzMrJM2U9JZa665a64ck5Vg7+Tn7w0fDgLJT0kcl7ay1vjvKeZkke9qY+5J3SXp+KWV2fP7FOJbZH6PBVOyS9PqQm8slbVXj/b1XShMk+GclvbrWuiWMin+uYePH6lrr28LouL+ylp9zvBrP1NeEzF6pxlACz5P0yVrrlVHm16iR8b3xC5Iur7VeXmu9q9Z6haQxSU+7J3l7IGKlTX/ZJumQzudFnf/rXs6/VdLF3R+etdbZtdar7tNcGvMQIiwJ/N2yH5f8naQbJD2y1jpXzesT+d1mYx4S1FpvUPOO/5lqLIpV0tkhG7+gjmyUUg6V9BZJ75B0SSnlyPhqtaQjSymHdW59vKRVnc/Hde4zTY3lbvV+ZHG1GuUL185RY/lbNeUVLZ6DTe+ZSokaX9/eOW97/IsB4qmllK/Eaxub1PxQ6ipZ14ZSBJZIemXyYD1Od79T6rGSVtVau2vcm9M5+Tn7wx2d/3fs5bODppr7jFrrlyStlfSsUsqJapQY79vLqftjNJiK9Sk+TtegsDcWqNkYoCtfUxo/fgyOlbSx1rotPaf7fdfIsk1NmffGEjXKr+6YcoEa5fJDAitt+ss3JP1cKWVmKWW5Gm0krFWjiTyxc+ztkl5dSjlDGryr+Pz7LbfGmL1xmKTNkraWUk5Vs4u1GKG0AAAgAElEQVROlzs0LMfGPGgopZwa79k/PD4fJ+nnJX1FjWxsVRNQf7Gk30+X/5Wa15x+RY1L9NslqdZ6q6SrJL2plDKrNHEyXirpvZ1rl5VSnhPv1P+OGgv/V/Yjy++T9JJSytJ4jeONanb+GN+Paz0HmwcUSYk6JSELH5b0vyUdHd6ol2vYAJGNibdKekNSYh5Sa727OE+3SVrceSVLahSyQ9lOn4cMnKWURTKmf7xbjYfNiyX9e631jr2c8+MYDQ6UdWq8c7qv72bjx94cBA6U2yTNi7J0n9P9vmtkOURNmffGrZL+OY0pc2qtf3ov5PMBgZU2/eU1kk6StFFNdP+BVjYsIG+Q9J+hbVxRa/2opP8l6V/C1fxbat4zNMYcPH5P0gslbVHjjp6DDV8i6V0hxy+4n/NmzH3NFjXvxX+1lLJNjeLkW2q2B32dpHMl/UiNUuYjXFSa7VCfIoltTX9X0rmllBfF55+XNKpmkftRNa9LXNF57v9V4/q9Uc0i+TkR3+ZuqbV+Vs3c+2E1i8mTJP3c/hTUc7DpO/tQot4dI5IepsZguLs0AYr/6z6uuVTSr5VSzi8Nc0opT08ecpkvS9ot6bdKKTNKKc+RdN4+nnONpDNC0TpLUwRMNeYg825JT1Tz2uDeXo2SfjyjwQERrwZ+QNIbSimHRey131XzmvK9+Zyb1bzC9LpSykgp5QJJz+yc8iFJzyilXBAxrV6vqXUT75H0zFLKk0sp08NocyHj2UMBb5d3EKi1ju7l2Lg6Vota601qFrtT3eO1kl6bjv2zmgBuxpj9ZAp5fKcaC+Rev++cN670ulOt9cLO/1dKOjVd9trO929XeBAY82Cj1rpKTVDFvXGdpGXp2J/Hdf9XjeKF+2yV9IjO5x+qCYo6FTtrrb8wRZ5G0+dL0ucpZbLWmmX9ovTZc7DpMyhRf7eUcoSkTWq2AP99Nbue7ZVa65ZSym+p+ZH3MDUxKT5+dw+qtY6VUl4m6a8lPVLNa0hfknTl3VwzEYqaS9UEG71cHWXuFNd8t5TyekmfiWe8Wk3wY2N6Q611vJRylZpNKvYqO7XWz5ZSMBrMU+NRul9Gg3vIb6oJRnyTpJ1q5O4f74PnvFCNomqDGsXsuyUdIUm11utKKS9Xo7CaoyYo+A/3dpNa661h0Hmzmp0Z90j6miZ7sD9oKcOvjhpjjDHGPDAppVwi6RFTKW2MMcYYYx5o+PUoY4wxxhhjjDHGmB5iTxtjjDHGGGPMfUpsAfztKb4+fT93ZTTG7AellOs0HGwYLq61vncvx6e6z9vV7PCYeU+t9df2ctzcB1hpY4wxxhhjjDHGGNNDDigQ8YKZpY7O6hwYiZSXrMoBpl2y7qhOcfxgMi2lsLfySPufd64/kLJOVV/7+/meQl6navP7E8p0T559oNdUaXyDtG5bPRgl3ScLFkyro6NdcZ6qwfclWFX77tBTXZsF4669Xz7VbX8cppKhfd37x312loPuPe/rvBzI+fuS03ua5/197lT325/7TyXnnWvHV0vrNvZPNhfMLnX0MO3/ODlVffSuZA9C+rTWmIo+9oN91NvKNVpXaz3q/snM/rNgbqmj3Vztax12d+W8t8b6e2tdx1JgmqZerx5oOe/p/H0g1x3oPHRP6+ee5OlAr2X5c+cU59P38u+KH2fOPMDyrry5p7I5o9TRh3UOTPW7I39/X3JP5+79vf7eYH9/S96T+jvQ/PdxroI+9Jd9MNW8eUBKm9EqjU2Xdvyo+TybjfjYfZ0NNW+NFAXPienzUZKOjf+vjXR6pOOR/r9IZzbJF7c3KZu5T0zxaEr4vUiPjHR1pKek83ns/M7EdmMMticdPZwHPTnS0yO9OdJPR3pTpM9LmeDeSyPdFOkhkR4R6R3p+Np0n/lqCzgeKZsnci3PomK4N89cH2mUcU2UYWccPp7ro2LW7xp+zMgJ8c9PpvvfpLaeINpMDL7kKZeBvXW2RToa6e3p85ZID480+qEWRLohUuqNfnii2j64KOWFeqGD0B9pYzrMrdLyN6m33LW+6oT1uwbFeVakfEbcKALbF30oUrqPJF0QIz4yQkoVsqXLr0Q6Humbo1O9JD0bsadKvxXpT6UyfCnSJ0Y6GinNeGbn3I9GSr+la/AsrvkvkZ4b6Q2R0m3J+9xIL4j0q5HuSfcbSef9fqSnqB1LgHLQpeZHenT6/Ll0Pv6qbI2DSPJs8gR0XcqIeHw50lWSHhv/fzLlgWupN+oY0T0n0qsjXRwpbUubnhoyvurO4fux7Qf3Y4igbEep7XujMVh/PeSYPsuzzohNHW+JfQWoj0WHS8u3qpeMLpTGXiXpO3GAsYlGemSkWdg4b306LrWdnvSqSKn00Ujzxrp0ehoBoeFZdAqEgUmWimZeAvI0S5M7JZ+zYQchYaxPet1B3malNNcD4/fOdB555ofSzM455D8vGnjm9PSZe1KPzFvr0/ncP8/XPIfBBGFiDrpdbZuwsOEZtAVthJAwH/EMhIRnMAey8BlJ5+d6xWk+Lw13qi1X95jUthn3WB4p5adeI+/lDwYrpV4xbYt03hbpC/F5c6RUOcXMSyqq7JpIn6a227EkyUshulDurlQV26LRbblfXjKOR8pcTBdE3BhnfzbSb6sdHijnlpRCLiddkHIyZvMMRDgzP30/J33uDnmUk7mL7jseKUtDzqNNuBdic1j6Pq8ZaBfqnbIekVLq5GFqRYe2zOsg7vGj9DnXDz8PqEeE4Z3xEhhzK3l+d6QMVzyPdlyqtn4QW/J9czpOyj2oR9popfopm6PzpLFnqe08kBsDwTgqHacyj1Q799LJ1qY0/w6jk9CAVBZjKJ2K+/LMPMcxNrPIIu90rCPVNiTPppHPTcd5NsJzbTqPstDJTkmf+UHAbyoW4Qxm5JH7d5/BXEJ5uTeDE3MPnQsBoFOyWOZ65k/qlbxTr8x1/J6m845Hek5774nrm3SEa3npkjkphHMinj1CWWhbBhjqhWeRd9qQemQAp1+yjqMMs9QORtRDXndRr2d1rpHagSAG3jKFbDoQsTHGGGOMMcYYY0wPOaCYNstPLXXsH9RqFv8hUrRUaDuz+RvN0+pOGqaBVeuadDHeGKF1mggNGZ4dK3/QpMvivIkwSYyElnR9aLXmx+dr4zPWAhRw50+RxZHOcc59Wr53PHtHPBsF41s1/PmNkWLZIA8o8bAmoGDDWpCrkepCaXxE514o8bgHlpbRSFHALkKLHG22edfwdSj3+Lw01Hh7wmSBgpd6QllI/fHcz3SOoWhGoUie6DYYHPEwwCqEMvPxkY5HijU/GxFhZvoeuN85ahWmdMXsFYHCnvrgmbTNXWocra6p/XsFQ+rIJlpqKpFOhVb7tyP940jfEmk3LOB/j5S+Q2dDQ/476Twsx/8n3RPNOhpzwN0DDXx0rh3vaNLZz43jaMFxj3mkJnsHYCnAxIbQ4EKEwKOJRyhD4Ceik9Afpv90/POZJtm4fejjoK89m06I993PqFWBXxkpgky9UJ+0RXTGPZ+KZ/9Ek34kXGSec2h8H14k0+P+t0dZsQxjNCErc0L7f0WMocdJOpVyZXMh7U5bhTfLwNMxynDt6uEiIGsYXebG2HhdjI1nRFkmWefpj1y4Xdox1vw7OzzmPrdu+BTG1adG+oFIu4b+Z0u6toeyeU4p9XK11UyKyFDdGLiy8wais1Zt1TGWYeF9V6TZo42xGYPOcek4z/h+pKsiZQhZks6jCekDXc+vqTwLsgNRtr4fmc7PzkGIO8YqhiKGBOqRMnFfhqrVnWcgjpQjz2XZw+C4dDwbCJkbGXK4D0MPeSLvzHs890edPM1M55Jn2pL5ibyPR8ra4OOR5nrB4Ph+DcP9KQvekVw3TW1fpA0oP8+EFZHSdrQx1z9XWllrXa6e8ahS6hfUti/jKX11YTQKaybaaHb8szKOL1uitoGiE7BGzM7T2fuUPjMaKWsWpjemL+oeWaX98tSaDcbHqZ1Gcx5gXozd2+4cPq/kcuJl3XXLlbRt+/CzyRtloH6ZM/Aq+lbnHDoH8p095Rk38zTy6EiRNfocDguMq8gFecEpoBvtoZvn+Zrs3cM9GE/zMzek44zTv0uF/nqkMWC8L4SSeW1eDBCsSUYYiCgElXCi2gpKXoLX3jH8bPKyMO61Lb6fgzX/jn7K5rml1C+qHWvGI2XOo/1Zr7NWoP1iSaHj1MoUY9z3Upp/h1GldHPmaJaOOK2wLoHstcVPWu5D3pDNJZL+PT0DD/JXpLzgrcW1n0rnMQd9PVLmGuaFP0rnXRYp8wtdi/ttUTuP0ZcoP7/XWFKT57x2YR6g2yOTuI9Q3+OR/lL6jKc44wVt/Stqx+i8zOcZ/y3di/U78y3jzC9GSn3mN3EQPcqOPCHSeJ4zDh+utlyUM68/qC9+oh2bjlOvl0wxb9rTxhhjjDHGGGOMMaaHHJinzcJSx16gVpWENfXDkaKGQi2FWg+1VKgcJ3ZJI6FCrKHSKmjxUaWirgt11ESowkaIo4NaO5vmMCvg5oHaE1Xiz6S85pddJ9Sq+FDNfqHzXfeeqBZD5Xp75GkRVm3ygNoOswCmDtSomLtQH1NfoapbH6b0aZLmhfX9hq3Dp1IMNKfTUddl1SHqXsqPOpCyZAv5D9N11AH1H6rfie+3xSmRx20pjwXTbX4pHLcgyk8hUF+i7sxt3lVvSq23QJz39Sjzox/W5nPQdvmd2FDpr7xzOEsFNe92aflaaWyif9Z8SVq+pNSxV6s1JT0jnUCd4R33GxFR5mv/0aRf6pz3ZA2TY1ngWvb6sLXfFp3i5XH8TyNFpuhbi+NGa0LPvfBnhk9cGaanZS+O44+J9D8jXabWJvGCJtkadjDGmhzD6eQnxT/otel0o5ESoQd+NVLeLA+3j2+uHj7t7Fc36Z9FlKAna3KskPOifq6I+qHfn0zvwj7w2Uif3iQr/7JJlxExh8JEXgY2nghJdlu8HH/MM+N4CODGqM9r1JoyMUHRNjnIz7Np7N2R0qjvTScirNhdlkWKv0YMWl8L+wGyiin/wrPjn8VqbVHUx99HGq5YE+G6NPL2OE5Epiinnq7lyy/T2NgdvZPN5YeXOrZC2hEmNYbVecThim40MMNgdmFcpppnanIgDNK/jhQZp6tjBmLMzm4dTBpdC273vLXpfExGBN7oxhjDdEWectA5uhVl4N45bkp2wSEv1Me2dJyuwxywIaWHqBWf7MZC+YF754B33Jv6yaZCoMwMMfR1xlxi3XGfT6o1x54UKe3PvTEv/lOkUe41MdctjPnphu8PF2Fk+PRBN6KLDEK70Q+zmfiIzkW0UXL3mYg6HsEzMscAivPKP/TTmr98+dw6NrZcbW1QQGoRV4eVkXJejI1rvtakC1/WuSvj4I2RnjN8zaSAVMBCA18aOvbTIr08UgZwJmk64/x0Hm6wX1DbIRkQaNg70/HrIqUzRh42Rjnn/WYcJ4AY83PXp1lqx2XmK+A6FqfjnfxTTvyv8R99QsobHZR5mzycESn1j0sx9cQingGGHwrklfqjLE/Q5IGDdQjzFOWhrVks7x5Ofzt+vDDmMede/W/xzzciHY30XyOlTAgpzz9JbX1wDXll7sQfhLClL4qUwexCSVIppZeyeUYp9V/UlooQmtMJ/Md8kuOIMu7jcvJItWMo7ibZ7XU03ZN5jXuzXOP3HKKFxzjtyhyYf2vwHESe32RnqXUB4dm4RPIM5gGCA9Jt6f6sH6goloY84z2Rvi1ShhfWDAR9pGy4xezp5IU8cK+fj5Q6Z2lI+W5Nn/k9QFkRbYZXhoBXRkq943rC0MjQ93K17m+Ugw6CmPO6Cy6K5JGy0Ga8NYDLDhMmQyPz8Rcjza/m8Fu1G/8HVzxcuZg2KEcOWsk9EN0oS/lVe9oYY4wxxhhjjDHGPGC4Z542oXn87kubFAUaCrK/ixSFIwqliyMdPVyTg4uEdWtHGLRxmkAxhlITRSvPwmiG4g3FGIpWFGco91CajkeKgrJrHEJZx7umKOXyhkmkGNhgNppIFOhoR3MgmLw9AZ+zN0vX4wRFOdrb0PyxawtKveko55NVjFuRBZSBGB0x0qJQxCiAMpQdf2jbeRhNNqlty6jMiaj0ETSMfI9BBo1s1kzikYC2E8MX9YclNG/JkC2k3Ujs+R5YBekwaMnpOERG72wnsPxb0lhPt/xefnqpY+9T2y8G1vaQkN3RAf48jqNRR2Pf3X2E/ks7jEZK58HghuUCrf4l6Tj3RKByhHwMVmHJ/+6fNenJvGiKBrr78jHthSDTd9B0I9DXpO+xaFMGNOUMLAgEcXa+NHy8hrNHQa5eFykCcdqJGkjfxquGyjVw2qF/YlXheywItFk42gzaKEfdZ0DKBmIGKJ5D/Z+v1oFoNpKLB9Hm4WfQRlgWOD0bKscjfU6kDNQ42lyES2RYdTeGNxD1vCAad+u3J+02MzAWYwDOXpLECCKv50rLf0sa+27/ZHNpKfWzasdRhhmGruyMtip9v7bzPefQTRjSEGnEEIdOhrpHM7/koDZR7xvDoJ7DGzFM0yx56Oxu5JE3+WBezrvbMKVhZDuemzBR5zhaVABzSGSGHcSO724LKw36BLEbrlVb7Cwu5CnvoEZWstPe19NxrkNElkahVsWzKfsiykiFxg0nsHp2nkGx6QfzNUxe71A930if6T8YUjGSAnnm/BdGyvJiu9rykbe8ix155B70E+7NcHR0T2PaLCulflltP5hNAbuBfSSNR1/L8REZEl+oZgc7SQMhrOGcMpgvqLQYw9ekbaAXxrPWR8NSp6emHfXI6wrmwbSF09djIYe4zJsp7Qg57272JnV2UokDq6LBiS95beSRqYBlwTzKGnPrRMyVIzitpN1Q2YEUiDu5bXu7BKScK6OcyM7S7IEfFfD5Trw2qR1/FkUjfSKenZcQebepvLELy4YV09rYcbQ798APie6SfaaQzTn8gCDGHx4fMcBuuyTOYw3NeggPBwb00UiZRHaqFc4o+PqoN2Kf4AQx8H5n7CGzIY3lvf2UzeXHlTr2Ck3e0Y86oqEIzsJ6EBDOR2pyUBs6HR0779xHHfGjkU7EfcLJe1DZnI9MI3x5rQTcb3HnHtH/JyIIzQgeIAgr69Gul6bUrhHpnFcNn7c51q1zWZNTdtb9rI8ZzHFQ26bWQzTqZ3PkYS5OW5SDgDDZI5PJjLUnEyjxEnGapy//QqQMftw37wxF8BupXSsz2XwlUpQNOYgPb23gbEjwG+qT3zz0txgo6juHs4aMEzP29ijrHrXj5/o7h281N8bNT8TYxU8N3p75WDju0ZWXOKaNMcYYY4wxxhhjzAOHA/O0eXipY7+pVt2fty7COwF1FOreEWJUdH1UeO8TsCnxfih7YoQa6oNrmpRXVPM789lchlYbzSyaRcyUmBPRrna9Xb6YzkU7N+/k+Id3VzHJKB1HhYg6bzTSMB3XK5q0cD9UlOmdaexet0XckVmS5uHmFAUkZseOuOdsYnjgG0Od825rmPU3RwVijcdUx6vFmM3GI8VagrllxsL4J9SDN25v6xANK9A2qBbR9p4c6uDbwv3hmLDObw4z1dz4fk18T1vlLUhyGP/8TuqZkmagooYcmyMYmJtoGzrUDC1ffoPGxrb1zpovScvPLHXsI2otDFhp6Lu0AZr9P5zbpDeGpwUa+iMl0YXolpilqGe0/hfyQm30qUujD6IxRzNOVZ8U5sHdkZkZxDWJ99a/EWrzpZhEeCceeThf7Xv24c83L0yYX4v+TDPTB07A44N2REZjIJmI+4xgCg0zye7I/IzI83Vp+6QTwsTxZ3H9xZLmUnEUmGfyLnqOb4D5kAoN18VBjBsGO0zyyDRlQKZ5DgMWQSYQ7ss6eRpvkq0hpIyDyxBe7sGz4r36iU806UjyoBnElyEvvGsfL+5+Iuotb993YTcOBOYNXIny+Eqn5VkEVcLke2p/Y9ocWerYk9R6gtE/scoxJuZtY7B8YdY9Um0zM/7xme20mHbydlHcM1nWB24vzJVnpfPy1jTcj+d348ZkdxzmC5owx6ih+yACeT7nfOoLEaCbMq5hYaR7k6fuVk/Z/STFjBtYBvnMtbkMxHujvsgreckWc6x/fxPp4yJlqPkntfWQXa7IK9b1bGXk86+nz5SNOTZbqslz7kuc390S7NvpHK4ZTddQXsQUM2RYHMvXemrNP7bUsYvVtjPtNxop/R/ZzVsRMdf+ntqh/eSowM9Hh8ZNA+hjtBP9lj5KHfPsvF5lyDsv1l+rYl2MXJEn+uqn1Y4trMtYG2R3K9qbctLPWRv89/T92bGG+Ozm4bLQd5FNlvbINPI2orYuKSfl5h5nH9+k68JTMx6pT3TuIU3esumSSCkr3qynp5SphzxRB2dpslsb0ynXMk4whmUXPuSfnzK4QNKWTGOMWVxPXvHUOSEycuWG9nyeQX2QF+KAEB+E0EjcizY5rbmwlM39lM1S6tg0aSLqnqpZiDdX9OWvx/fZuYUqPl3t8DU3vN52xLKS5kR0845uTNF4bw3khHkyb5eWt8+N8fHrcSO62kK8Q4/oFCzm1jUxzy1Efrl3/ARE9mrIdHlUHGf+pS9l7xTkK8ow8Bzn+rxkndm5FhnK3j75DQkqn3pgzmG8GI8UeXpE+pzjrLIGQo66YyTlZWyjf9Mmc4avmYj6G6G8/B7KO1tT33cMf16Tdswb9MMYf3ZsaLNWUh/NMUGvjZ/MZ+GFGf3llnjG8fHMssGeNsYYY4wxxhhjjDEPGA7M0+aMUsc+oNbykDc3QQNNDBe0X2k3AW1Sq407vXOsey7WLTRnvLjPS9pY5rgnWj3uiwaO+/NSN54kPA8tYBc0jP81UjTkWDPI4+ywAmAZ/nxkBlUYGkNUrFgLuc/h6TOqXcqSo5mvVqvFHY8UKxH1RN1zD7SXWEm5Hq0l9UQciSen79FAUgYse2hmF4aqcc1Eew2qbd4J7ezAJKnVZqIVzi8U8332EuF4DgyRLcl5B7ET1dZTDupDvXAtbYbFpmPJXf5SaeyG/sXNkKTlJ5c69la1dfrCaJd1ISiU6zWRYjVDXrCqbVDr0ID3Fdeiheeda6w5j0neLueF+eeWsMDRrvQL2oC6z+/Gsvsa5hJkdVStRQmZRBuPJpx245n0EfpYtnRSbvra9nScIFp5Nx+0//SbU9Rq98njSLoG2SOPyDXjDeVMWv5Jng/ZqwHLB2MmeaYOlquta67JXhbIM23UibchaXJAD6zsmKl4Nm2GfYA2zTsUEQtouibHMcGymy032WuSejpFWn6FNLahf7K5fKTUsaM0qNfNYZVNYR40H8sYbUu8mRj7fqR2yjt5wfC5H4t5A8MXXZ4mPjVb9anPmKewPDJcI/aPHc7KpM0Nu5ZJmiq9Cj7JiMZQTnccxepI/0lz3o6YWmczh8QDNl/fpHOZl3gAc2nI0sYfdHbqwuJPHZNZ5DV7+RwxfP6eqKDpIb+3R2Eo62AnpmA86hVxH0Emuh5P5IG+nD1fkqfRmhTzI4fyQvxGI837sVEFdDce+0tR7ztCBrv9k/+ppryE4DNZnc+YQNyMd/TT0+ZRpdTPqROjJa8vaAv6Jl5xUclXxC6jTzpNbWwvLLmY8bkXMsd4iFcccwQgVNnzmcpn3qGfM1aybuO5zFeXS7cT7zALZw7GSAwxWirmj3+Lfv+U0+I4a3Cs92z4hFzRIVhTMrcio12rPl4lrLWpL8qZ52mezb2pB4g2+Up4BazI3j0EjCAPrD2oG7zFTlS7ARP1xA5uOXYcngg5UM6z4+Gf3zB8nLwTm43BEJnPsVGWpu+naXIQsaif70ZbncxvM5xWcV5mF6IYCMob+imbp5ZS36G2ys7gNxXyQZ3T5+hb1F0sPXVE5xomH+6Fl1KeQ6bwnNq8bvgwtx14XXAAyBuTIONMjAW3bG2HBRxqEXu6BOLArSg2ZCctxmS6NdcxlOU4bfxUmh597drOLoScQ/cbjzT/VELcmcrzT02GpBwyjPliYcj4v0Vhs8PSuenzN9TOW9yTYYHhgDi7lDs7nFGviBTOVNRHduBl+KUpmT/zT6PRmdKaGBcGaoJo923Rr1jGnxUP3RGZo3ueFGNR2WVPG2OMMcYYY4wxxpgHDAfmaXNaqWP/pFZ19tuowYnRELEp9PpIMT0R74ANyj+tVp2J+hFdGGpLTAyhy5oINfcIcSPQffFSbDJzDeJhhK7sY6HHQnte0POR502d8z8c/6M/W5DOOSMdH40UswFlQKc4no6jL/1IOo6tk+t4zspIz1Fbl5ib49kbQ39HjI8a5gHUlrOx9/FsVNKo7Kn/pw/nZXe8PExsj8FL9cTd4H67NewSIUn/Gin2PuqT8lEWdLSYbDD5YNtFr4nrAKpxXuBGT02fiJcGt0adHDqiVl/MucROos0iL3imLECfTNvs1vLlazU2NtE7a77U8bShirEKUjya4A2R/kGk2btBalXpqKvpIr8VKVavZc9v0jUfbFLU09kjLVsuyePJmDpi/NgcJ86lr+V+crTaDh397yt3Def55EPSvfgC02b0jUG/Jd5MtPNEjBN0pWNCr31b2tYDtwZ20uIxUlt+Yvugri/EgaI8oxomjR/XhR2FoQqzACp58vL8yOOqyCPDMmaYW9W2GSaYvGvawCQZbVHDVFXi+Na42aEpxgBmA8qYd7oiKj95wWxC9Z+l1sKFRRaxJo98j5vAeKRMIUdLy39DGvtODz1tiAOXTTUMlVjIs9UWWaK736W2HpgmGDap87yDBv0GLyeuTzvZDNoQ7zWGV67L5iXy2o15lWWcz8g65iHaFE8unp3jyCBD9FfWHDyTspJHxprxSLshqrLXGGY17sUwRP3MTGm2yuc4AUxTeFGwy1nIaY2dOwo74VC2XXu5N0Me/YBn5bhDHKcsTN95C6fsVcTYMNjaKpWhaxal3YH6wpTKs3HJok+nWDDlyn5a8zWTr8MAABdmSURBVJcvLnXs5ZrsgcbSCo8K6nI0UpacxCT5C7XLWPpd3r6UOZR4ifQ5hl36M2M83hhs60W7EOsCaEfme8YN2v29nTxkrxP6K/ccjTTLP9vB/lWkyDIyR7wN6pF+QQwMnk9e8aq5VW0MFuJfssTDWzT3X9qEe+MFQ5+j/phKXx4p8xB9l/syHjGnkp/lamUNmJfwJMvxQxjzuBcew8xrjIW0JfM39c18RhtS5hPT5+PUtg1LZdrkQ5FSn++IlLha1Fu0Xfmpnsrm0aWOvVCTd3TKXm/IFS6H9MmutzL1y886Pit9Zu7Zno7jfkHf4q0N2iPHisuxo4C+Rjtfq7ZvZPcV+jPlzrumUk7W7bNSmuNQXpnyTFn5Ccta9S2d44xR9D9kjfzj5U6eGPvy7qjIVF7WH5WOv3mK4+en4+/u5J9xl7ULef3L9Jk2+en0mZ+cqBUWR6EnYv07kly8alxYiNOLMKMDOUPtbwrW+VHgzd9sUtp2aYpLNnC7ap5Zyl32tDHGGGOMMcYYY4x5oDBj36d0uFPDe87/Umid0NSfGqr770UasS82dzY/khoFXEFDFpqwHbF3OwrwO9TsIISiECXnE9XsUMN7YjtC6zf74WH5RevHw7Y0edwRWZqNBv/MUHfdEWk3pg5WErTY32hU5+vDSL9azbPG42sMDGjAUPqhaCyhzazh/DMoe1TfttAatuFWNkdWviupGy/gloESczYOIIvjKiyc8ye4CZmN7+OfRZGitcQqMghQENrAsN6uH7zj2Fy3RW/qZl07o50oq9QaVDDePT7qiyzNCwvxxnD2mRdaZiJwU7Y9Ud/TD/kPHtZAJWAJnBVtnzTfe64nRxO6MfI5PVKKy63mHTox/MxDIzO7OmHBcdLoI9PU9F06y6BuIi1R0uXRcvR3FMVYkc6V9JToySfGTbB+cc0gkEJ42OAB8Rh2g+JAXLg76pBOE5tMaSy02VgFyOtR0UePjLS70wza/qdHUJRjo2/Q9hvjIVjabo1nHxUpDb4p5Ib6OjHlBU3+uqiDY+LCnXF/6uCvO95Ca+I7BqsUn0RHrBm+dkmUbwFm9lG+aJK1UVH5RWTKMNiZJF5I/nQzXgzqCyvDz50nXRgvt29ePZy3wXvYYQ24Pkx4WBG3xD8MTueGrK2IPvLDqJ/8jv1FMRA/I1wEsHxRF5Rlm9r6yrsSYoXi2Vd3rpGG3xXPXgF94Q61Vh9pMIZtjHnrk+8YPh3JYZrqGsYYV6ezgReWrVXpZDxvqNfRSPeklH6FXIal64Zoo1PT3LD5rUMfNRLjeL2zs2NCtvRtGU4nxddYks6nf8TQsSp2xlq8YPg81hRzySP9CescYvkBTY5bR71M9XI+8kWfJi4E1nqsvJc0yWAnDxYAUYb6qXT8hyk9Ra2cxQ4zNeYYDs8njggdg3Jif8NyTpviyUEZw7Pg2vCaxN9wEOcHq2l4Aw3GlO+r9f6B8ZQH6om5I2/ImOON9I1dauop7ySaAzQxduF5kbeZWd/5n3thwc3xTvD6yjvObEnn4YWBNx1rRuo+e+zRx7gPHinHqvXKgOx5k2N+0O7khT6yPp2fy4qcMR7xXLxbuI4+e4jaup1q3MhBKWA8nU9ect9DbnIsINYH5DnvFHuO2v5MPREXJnvi8QzqgbxQ7uxxtCV9n3d4o94Yy8jTHZ3zuRf9I/dJ2pLfMp9Mx8lDXzla0is0Od4l5RuNNHslMXB2d2FERqgrxq3V6TNyn+eiHLOJZ+ExkneXygHD6JM5hucmtWub8UiZG5gX81oS7/ej0vc5viH1xbjA/JA9cPLOaMjbJrV9CnmmvkYjpV54qYU4QoMFQqQE6mH8pMzZk4z6zrs7cj5y+B215V+VzsELjnvRBuORpnh+g/Pwrty0efi8LVFB07cP5/mof27S7g6aknTkTW1bDeaRWPdT53x/45rhzzzz23e/mLWnjTHGGGOMMcYYY0wPOXBPm5vUahSfESmWp/zufMSPmYsmDc3ZkWo1VnjAxPves0ebdCEarNCoLUXLhgkyFF+zUTvlnR/QToeWdTa7lRBmGi0pmkqsCJ1nDrTzoX2cH+8Pzg/Lw1lo+Xh2aFRreHjg3LAtNJFzsvY08jgntJ9noaHEm4DPaE1PVKv9511GIszn920pH/dAg4oFEgsQFju8itK7kvOjreejkeT9ZjSLoaHdfKc0l7AgYS18dLQx0bQXhkfWRET4nxcW41sa5xcdjwU5rCBENB9oUelHaCSpC/oS7RBlnY6Vcpd0stI1pPTluOd0+gHWE/rTrWot0n1kRI3lhvbmvXusDBSQdkdrDpT3dElrQtOb3/ueF+9gXhSfN4emmL53WHhpIf8nh6qdepsbne9Zoc3O29LQftkaNKeTIpvXh6k9W0lHI0XWkAf666EIAJ3oMZESywl4RxUT3IomOYEKfWOk8aL/jROt1Qeoh/PofSEgyzA9dGP1SK1Z4EVNciGFizwspqK5jjxGXp4XL7JTb4t/Pv65XYNKzlp95IDYXqed37mmmydMvell8qX/MHyjxZQt0gWPi1TD1w2ZzLD/Y3JMQrow4k+tYGsP8sIAIel/fki95GQ13h70z4XNgDJvopngXjwSMnJ9DPqM2/OY2Bqz3YhmaCDct3UDUKmttoV4uhH0JvrsxjgfOcTiOPCminRZk5dTmRS2xnUhp3PnMSHSds3EVrRAbV8c/q6NCTYjioe8EVMs+snWtHVEjEeLS/SfzfFS/h7ywoSeYlJtjEIxj804t33G7hjXZmTXTkyCDJ6HphR5Y/DELPdcSVKhrGtiTFr4/Dge8nvjN4fLBkvUjoHR3mVHk0eGY10WKWsA1i+sPV4RKXMj49wxw7sHnrWAMiKIuI2GjK1M3qqnqp37crylrheH1K61mEuB8n5Y/WSxpP+l1vOT5mdNhMcJ5VoRrhYrojG2hOvfCyWNxNzInMguUqyrGOKZI3gWwyteF9Qx7fDYdP55NDQTW8QNvDHGDzwr5kWjvepw6QfJ+5Q+wlCfPWQujFh1F0Y5fxQenMS9mBF5qLEww4LOMJ49TOhHeBnhiXC6Wks/3r2L4sBSFoNRgTUCY4zH4bxNGmMb6zeGwG+nNFvxWWszzXfjdX01nUMb0B+4J3lgPGXqZP7n3lzHEuKXmbOIWRnz27ToVzleEWEoF89Vu15hriTGZLTVeRF77nsh1y9mDRJj1ebILDEO+8Y6Nbtr5XhT9CV23mK+pI4XU07G7CWaPK5HHUzEj88R1oTBjlif8ruDMXeEgQ/BYR2CKxrrM2KRhmz+IOqaQX3wg/ikTp4Yj/mhxjOYL+lU1w3nNcduHZzPWonrEE4GGO7DdSFnTyA/Z3bylGOIxtjz2+Qhx65FOKmH7nZxUisArBlGm+S5eYJkLZndq7aqHUQYVFhPRMzS56pzrjRp27TBYJfrg2fG2mkw12+dIuW8qOfd323Hx0H5cJ+K/G+OjsW4QvXkXWOnwJ42xhhjjDHGGGOMMT3kwDxtZqlRTKEow8hKrAEsdmiKBuaiYLxJNn5m8v7mJ4YycgTNKZaKHHmeC9Bio+REQ5612dPT91isUKARGRwm1CoKgfLclT7nXSiCEoUbD+0/yv0tcXwRlk5UZnlXHaXPGFUOU6vd57tQfhJvZz6R/PP76NQX1jHyjNEWSwUxgcYjxQpDHrFC0bZhZZk7s83TCBaHuMfCpGAdwXIQmsbjUZrS1uzwRX+iLLQlecGiszN9T94p6+lq369MnjUDCyWW2fzednc3DnZb6CPT1HQ06j57fVwRnRcLHv3h6dE7z48OsOCnNNDKL0QQ6ICYnkKrjFWPPnFMWL8n6ISx09hchDE66YywEs0IgTgBq0BoyY8Mq9rAQyc65Y6rpdlhSVkY2v1Tk9cB7ZfLidzv2jx8fFbk9fxI8fKh78wY+GhxoEk+EYJI2Y/uXDM7OtUVoVH/Sli/xuP7gcNCCMBh8Ww07UvRzGNFGY2U42QeK0oMRHPD02Iuwzrttqy9+czIN/0dWWJ7iVuin+Q4M4/Ds4FCsOteMBGTAO8141AzG6Gk78QAvyrqZqbasRrZzGM9x4kFxI5LO69os7RR/WSVpD9UJ35ECChtvTb6AGMg1umboh12NV4adZdU6NOMn9QPlpqHh0cH773fHLLBGEdb5504BnEhmrxsjuvmkqdoj83XNMfJxuwYOia239LGbxu82x3pXVHeKOaqdTcNPXo6c2iOIxBtfuP2xsPmJIx5UdYd329kZvYgnkA8hzmBfNx0dSuXsCF542winlmUPzoxQynVtTYm33ZDqyamF1J2PEa789NuelyATDGsTtOgvNsiNtSmdOoKysE9GCqxLNPWyAT9anNUOPP0t+PzETHAUW/fCYFlHKPQUtu/kGUyh5GSMfUpTXL7uuFbl0HMrZ6yUc1uO6yp6MTUNX2ROrktdjBlfGIR+0VJx4aHTfYMYMzKMSToA9xjWkqZQpFdYpIcFePmEZHm+BDkjfH8w9snx4bIfYq80neu++BwXsYjxdB+atwIRwPmXKYjykiZs7cLY8PMzj3PjIsG5fzacLmQpRyHJ+8aRfnzZqm05ap0HuMFec7PkVpjOg4H5InfP6xTaCt2j6MvUEZ2dBr8voiAZls/NZxHvISOS59xvtBO6bYIGHpMeCRtjDUG9XFWeNjQpjvi+zzX9pVpasYdxrns9T0a6QgeWYzCeDeMR/ojtQJAA0bDjNBgEF4ms+P7M1h/Ze8K7p06/pqo44UMfJGnE3CR4vldT04al3Py1pCs+eg0lO+U9DkHngwvn4nonCPhPaePx/GQr8EOigg7LiofkSaGvVsHbbCQeov6mJgiZgtyMo8flXjFxHW3pN8kx4R3GGyMPsz4y3iz4FgNyl9joET+kbm56Zk/iHku70aGJ/juKCvr/+Px3Ik+MNg1KjognmpzwzOH3VbXSjomrtndOSZJx0S5qSccvGZEHhbT1ngoxc7NCXvaGGOMMcYYY4wxxvSQA/O0OUSNJwaWF7wXciRyPufdK97WJPPOkuah8eK9LrTVWAEAzRcacDTkmOqOTOeNR5ojdfM92my8g1BgojycpdYCwTFCJ2DN2tU5t5uiCYz6GR1Y+9J5lJ1n70nHyTt1g4LyEWoVsocNp8SeGWgaUfaSV6ysXE/bYP34YjqPsufdPfKOI9xnlloVINY9lJWjnXOk1oIwHumi9Jnr8eSgPXIUcfKQLfIXpO9P1+Sdp/icd7Ph2bTJIFq42leP+8idavpJjul0dhR4B0GgqMzxSMOcvoChYIU00ewQphEaNDTEO6KzzA6t/RNCm59N9/SpMy9t0hnxvn8NjXzB/JOtIuG9wTuhc7F0hAfO9Ks19O6oJM2IQWhHCAva65Gnxj/RoY/hhX6g0+BOEFaR42KQQqM+sOAg/HHdU+MFf8aV7Wr70uKoS5xTZvx6kxILYSCcxOMYbRKsiwMvltg6Z2BtAa5nIKYeo54mvQO8UtoYjUL/mBGWCAJRcS3GjuMxD1JPlJ9Bi+tigLg9hDN7yUyyhKTd7g7rZJMxhmLhOcT71k9CAH820hDaZeukN1GXPWOxpD9WW7YTol+tSUGl6BrhnJbnhLJLbf/CuYzxjjZFtDEyMQbQZFPtNMM4+StNMnjl/trh7+di6aXtwst15LBO3jA+MoelXWEWn5O+H095Y00Rc+lJeMIyF0TXnr00Xc+4nXfbeLgme3ClGHQcnx55nBdjPmFBJnmphig9E8v5aKTEEcNYSh64nvYgRsLRGsyFc8JjdU4M14vJI+seRJo8DOJbcOAPI31ppLjksHh4pYbJ8QN+OlIq/By1nZJJn8UAjfoXTfKiZjG1KMd8Y+48Rf1kp5o2oyrog9mLg2rIO7awPtuktl3o18jc6pTSF1l/5p1tOC/HZsHzhjzQh1jP0ETI17rfadI7NHmdifwia5Qzx9uhnHlHHsYH8np1+v7WKb7n+FGd73N8GDzHyAOeFjkWIeUcjxRZHo2U8RYPGsYynoNs53iIHP+q2nJyDetZ6iMcgidZ7ylv9vrjPtT3bZ8avh/nUyeIG32E+pyYkGK3XT0v1gyUN2/dyljPcEAfYM3dV/aoKXdehyOLOM88LMp/E2kc7+6YRpse9u3hex2Vvuc4YysxMan3DeH5MT08WmnnwY6kkbKLMu1JP9pz1fB1OzX5tzPl2hMCn3eyo48dl7aEQ6ZHvzb8DPK0NLznGLPy7x4E5ZFx3ha1dZ/PHYlKplx4r/HWS66PxZGZ7m9Fqe2zg/iKtwx/5vnUAXJx2GppTzQKc072NDyaClBbHqldG5HH+eFhw5J64Al5y/B5g3aI5yJXebepWZLWxLEcq/MH8fuHKZn+Ny3yMIjPSSfeO/a0McYYY4wxxhhjjOkhB+Zp87AinTBTOirUdXmPeIyzaOCIKo+2fBnW7/M1iDg9EhbbQ7EW/2OTrEs7XqBl4zOWjRybAY3a6nQcchyAm9P3i9Rq19CE8Uyse4drmEMxcb4g0osjjeo9mxfy8RwIVdsKIr5fN3z+IJPx/eMGL+Bp8nuR+Z3G8SaJ9/MHeade0H6imcweNCgosWQAmnmKSkCDgWXuaHVeFGySJ5EnLmYrhbj5SZiTokLPoB7iet4l5r5PoKybho9PCtYAXQ8Frsl1jBvV1nQeKRXzeGkOniU9ZM4x0oqL1Zqa/jbS5zTJ7HiXdSCMBHXCO4Nyzul4qVBHEeNmNu9ahoV10i4rv9wkS2lH+nu0Z6FTIUixrchEaKZHECz6C6b9uP/IIW2eZnBO5Hs25lzyTGAkPGxClb47LAk3h2CcRLT4aO9xshADyOo4/yTMCcvi+eFGczzBIGZp0o5UM5Bv6o3yvLVJNobmfR5lQqbooztTikCguqes3a3vuuevbM+bh1mV/D5m+JKBrLDLAHllUL880tSmjDuDrd9mpfOizY+n3402ydw/j8+flSbCvIHIYe2Ym3ckIsWrJkwZm1e3Vpm+sUfN2Mtcwnidra90fcbpbO3vDm1ZPPEywQSDtZqx/NGRYmUbWOsiJW/Z4k6T0XW4H3NHNz4a5WHuz3Mk1kvEjeHmJ9NnypBjc7FTJWXGAwGPA8rE7pJwg9rycS1zYo5VRzymvJkUeWJN8fQ44fNRobRh9tAlnccubpjSohLW3dW2d45NQn2eRiVHX7/xruF7T9oZBXmNXe0GY+kLI0WmosLrpcPPPyziRO1S6znEGoH13OwnDT+btjshKmrjXcPX9ZU9avoZFlGWJ3h10S8+FylNwThFcz5HrZWZa9kYKA/VtDfNQr+9Kx3nGYQCoz9Qp+QFbw/Wx/TVp0V6jdrlEedwLR575A1v60Gsp0izhwz3iV1AB2WlHzAeZYfPPL4f28kb03T2qGGMopxY/ZFVpimegQwSG4clB3LF+ECZcPpdn84/UW2dk1/kgbGMMY5xJMeqwImX+s0eBNnrh6U9/ZG+QJ+hTIdrssdW9hZDnt+fvsfTgCVYX9mgZue8wc6kkYbMbYzfbXSTwvBH3dPHj5x87aTfhKs750pt+9LH6PfcO//W5P60F32JNvr7SKlz2rfrzYIXJu1Ef52VriGPFByZzb97gb6Flxh9mb7GPEtfpz/t0uQ3P3g2S2Hqh/rKcUIZE5lvyUt+24E6YK7Pv1FHI2X9cqsmexnnmHgxxe5YN/yoeSFDe6IeEGkexa8hqptqziEeyRJNzTA/f1q7+e5CxmI2q4y8UB3zB/H4NMw+vODsaWOMMcYYY4wxxhjTQ0qtdf9PLmWtJvumGPNQYUmt9ah9n3b/Y9k0D3F6KZuWS2Msm8b0FMumMf1kr7J5QEobY4wxxhhjjDHGGHP/4NejjDHGGGOMMcYYY3qIlTbGGGOMMcYYY4wxPcRKG2OMMcYYY4wxxpgeYqWNMcYYY4wxxhhjTA+x0sYYY4wxxhhjjDGmh1hpY4wxxhhjjDHGGNNDrLQxxhhjjDHGGGOM6SFW2hhjjDHGGGOMMcb0ECttjDHGGGOMMcYYY3rI/weqHM56J9WL/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "eda.plot_signals(signals)\n", + "plt.show()\n", + "\n", + "eda.plot_fft(fft)\n", + "plt.show()\n", + "\n", + "eda.plot_fbank(fbank)\n", + "plt.show()\n", + "\n", + "eda.plot_mfccs(mfccs)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can see a lot of the dead space, such as the gaps in flute, has been removed. We can now apply this concept to all of our data and save it in our 'clean' folder." + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [], + "source": [ + "if len(os.listdir('data/clean')) == 0:\n", + " for f in tqdm(df.fname):\n", + " signal, rate = librosa.load('data/wavfiles/'+f, sr=16000) # Load in signal and rate\n", + " mask = envelope(signal, rate, 0.0005) # Create envelope\n", + " wavfile.write(filename='data/clean/'+f, rate=rate, data=signal[mask]) # Write in wav file with signal indexed by mask" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Audi_Classification_ML/.ipynb_checkpoints/model-checkpoint.ipynb b/Audi_Classification_ML/.ipynb_checkpoints/model-checkpoint.ipynb new file mode 100644 index 0000000..82d26ea --- /dev/null +++ b/Audi_Classification_ML/.ipynb_checkpoints/model-checkpoint.ipynb @@ -0,0 +1,917 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "from scipy.io import wavfile\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from keras.layers import Conv2D, MaxPool2D, Flatten, LSTM\n", + "from keras.layers import Dropout, Dense, TimeDistributed\n", + "from keras.models import Sequential\n", + "from keras.utils import to_categorical\n", + "from keras.callbacks import ModelCheckpoint\n", + "from sklearn.utils.class_weight import compute_class_weight\n", + "from tqdm import tqdm\n", + "from python_speech_features import mfcc\n", + "from cfg import config\n", + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('data/instruments.csv') # Read in our CSV file\n", + "df.set_index('fname', inplace=True) # Set the fname collumn as our index\n", + "\n", + "for f in df.index:\n", + " rate, signal = wavfile.read('data/clean/'+f) # Grab rate and signal from each file\n", + " df.at[f,'length'] = signal.shape[0] / rate # Set the length of each file based on signal and rate\n", + "\n", + "classes = list(np.unique(df.label)) # Grab classes\n", + "class_dist = df.groupby(['label'])['length'].mean() # create a distribution of the classes based on the mean number of each" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEJCAYAAAA3l/RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hc1fG/39ldadUlW5KL3OQKNggbXADbuGAgIbRACCWEUNIhtITiEAILpJNfwhcSCCQhOAQIHQwOBGLjbmMb996Nm2zLtrq0dX5/3Ct7LauttNpVOe/z7KPVveeeMyvtfnbunHNmRFUxGAwGQ2xwxNsAg8Fg6EwY0TUYDIYYYkTXYDAYYogRXYPBYIghRnQNBoMhhhjRNRgMhhhiRNcAgIh4RORf8bYjHBH5UERuilJf54nIprDfd4rIBdHo2+5vnYhMilZ/ho6LEd1OhIh8Q0SWiUi5iOy3RW18nGxREamwbTksIjNF5NrwNqp6sapOa2Jfgxpqo6rzVPWUltptj/eiiPyiVv+nqersaPRv6NgY0e0kiMiPgSeBXwHdgb7AM8AVcTRruKqmAacALwJ/EpFHoj2IiLii3afB0FyM6HYCRCQTeAy4XVXfVtUKVfWr6vuqel8917whIoUiUiIic0XktLBzXxGR9SJSJiJ7ReRe+3iOiHwgIsUickRE5olIo+8xVS1S1ZeAHwI/FZFsu7/ZIvId+/kgEZlj21MkIq/Zx+fa3ayyveZrRWSSiOwRkQdEpBD4R82xWkOPtl/HURH5h4gk2X3eLCLza/091Lbhe8ANwP32eO/b54+FK0TELSJPisg++/GkiLjtczW2/UREDtp3HLc09jcydByM6HYOzgWSgHciuOZDYDDQDVgOvBx27u/A91U1HTgdmGUf/wmwB8jF8qYfBCLZZ/4e4ALG1HHuceBjoAvQG3gaQFUn2OeHq2qaqr5m/94D6Ar0A75Xz3g3AF8CBgJDgIcaM1BVn8f6W/zOHu+yOpr9DDgHGAEMt19PeN89gEygF/Bt4M8i0qWxsQ0dAyO6nYNsoEhVA029QFVfUNUyVfUCHmC47TED+IFhIpKhqkdVdXnY8Z5AP9uTnqcRJPdQVT9QhCWWtfFjCWieqlar6vw62oQTAh5RVa+qVtXT5k+qultVjwC/BK5vqq2NcAPwmKoeVNVDwKPAjWHn/fZ5v6r+ByjHCrEYOgFGdDsHh4GcpsY2RcQpIr8RkW0iUgrstE/l2D+/BnwF2GXf8p9rH38C2Ap8LCLbRWRqJEaKSAKWl3ykjtP3AwIssVcK3NpId4dUtbqRNrvDnu8C8ppsbMPk2f3V1/fhWl+AlUBalMY2tHGM6HYOFgHVwFeb2P4bWBNsF2DdBufbxwVAVZeq6hVYoYd3gdft42Wq+hNVHQBcBvxYRKZEYOcVQABYUvuEqhaq6ndVNQ/4PvBMIysWmuJh9wl73hfYZz+vAFJqTohIjwj73oflldfVt6GTY0S3E6CqJcDDWLHDr4pIiogkiMjFIvK7Oi5JB7xYHnIK1ooHAEQkUURuEJFMOxxQCgTtc5fak00SdjzYmH0i0lVEbgD+DPxWVQ/X0ebrItLb/vUolvDV9H0AGNCEP0VtbheR3iLSFSv+XBMPXgWcJiIj7Mk1T63rGhvvVeAhEckVkRysv32bWgNtiB9GdDsJqvoH4MdYEzqHsG6tf4Tlqdbmn1i3xHuB9cDiWudvBHbaoYcfAN+0jw8G/ocVo1wEPNPI2tVVIlKOFZL4DnCPqj5cT9vRwGd2++nAXaq6wz7nAabZqyauaWC82ryCNTm33X78AkBVN2Ot9vgfsAWoHT/+O1ZMu1hE6vr7/QJYBqwG1mBNRP6ijnaGToiYJOYGg8EQO4ynazAYDDHEiK7BYDDEECO6BoPBEEOM6BoMBkMMMaJrMBgMMcSIrsFgMMQQI7oGg8EQQ4zoGgwGQwwxomswGAwxxIiuwWAwxBAjugaDwRBDjOgaDAZDDDGiazAYDDHEiK7BYDDEECO6BoPBEEOM6BoMBkMMMaJrMBgMMcSIrsFgMMQQI7oGg8EQQ4zoGgwGQwwxomswGAwxxIiuwWAwxBAjugaDwRBDjOgaDM1ERGaLyJdqHbtbRF4QkTcbuXaSiHxgP79cRKa2pq312HCniGwQkZcbskFEyus5/qKIXG0/ny0io1rT3o6CK94GGAztmFeB64D/hh27DrhPVec1tRNVnQ5Mj7JtAIiIU1WD9Zy+DbhYVXfYv7eKDYYTMZ6uwdB83gQuFRE3gIjkA3nAHhFZax9LEpF/iMgaEVkhIpNrdyIiN4vIn+znL4rIUyKyUES213iSdSEWT4jIWrv/a+3jk0TkUxF5BVhTz7V/AQYA00Xknlo29BeRRSKyVEQerzXen0RkvYjMALrV0/dF9vXLReQNEUlr9C/Zieg0oisiV4qIisipMRgrS0RuC/s9r7HbzSiOvdD+mS8i34jFmJ0VVT0MLAG+bB+6DngN0LBmt9ttC4DrgWkiktRI1z2B8cClwG8aaHcVMAIYDlwAPCEiPe1zY4Cfqeqwemz/AbAPmKyqf6x1+v+AZ1V1NFAYdvxK4BSgAPguMLZ2vyKSAzwEXKCqZwHLgB838Bo6HZ1GdLHe8POxPhitTRbWrRsAqrpPVev1WKKJqtZ8EPKBiERXRJxRN6jjUxNiwP75aq3z44GXAFR1I7ALGNJIn++qakhV1wPdG2g3HnhVVYOqegCYA4y2zy0JCxtEyjiOv46Xwo5PCBtvHzCrjmvPAYYBC0RkJXAT0K+ZdnRIOoXo2rc344BvEya6InK/fVu2SkR+Yx8bISKLRWS1iLwjIl3s48cmCkQkR0R22s9PE5ElIrLSvmYwlncy0D72hO111txuOkXk9/a4q0Xkjgbs/oqIbBSR+fYtZ83Ei0dE7g1rt9a+tQ2f9PgNcJ5twz22DfPsW77lIjLWbt/oraihQd4FpojIWUCyqi6vdV6a0ae3idc3dK6iGeOGoxEer0GAT1R1hP0YpqrfbqEtHYpOIbrAV4GPVHUzcEREzhKRi+3jZ6vqcOB3dtt/Ag+o6hlYIvRII33/APg/VR0BjAL2AFOBbfab7r5a7b8H9AfOtMd4ua5O7VvQ57AmOsYDuZG9ZKYC82wb/ggcBC60b/muBZ4Ka9vgraihflS1HJgNvMDJXi7AXOAGABEZAvQFNkVp+LnAtfYXeS6WJ7okCv0u4LhzckOt8a6zx+sJnBSfBhYD40RkEICIpNiv22DTWUT3euDf9vN/279fAPxDVSsBVPWIiGQCWao6x247DeuN3BCLgAdF5AGgn6pWNdL+AuAvqhqoGbeedqcC28NuEev6QEdCAvBXEVkDvIF1C1hDS25FDdb/ZjjH32PhPAM47b/7a8DNquqto11zeAdYDazCutW/X1ULG76kSdwF3C4iS4HMWuNtwXJGnsUKZ5yAqh4CbgZeFZHVWCLc6vMo7YkOv2RMRLKB84HTRUQBJ9Yt0ls0fqsUToDjX1LHJkJU9RUR+Qy4BPiviHwH2N6QSU0ct6Fbx3BbTrCnAe4BDmCJgwOoDjvX0lvRqJI/dYYbaxVAT/vRHes1JmC9Z12+4V1KQz1SMoCg/agEDtuPopqfhZNHlLa2var6DmH/L1XdCZxuP6/GEqHa18zG8pBR1ReBF+3nN9dqV+/Mv6oqcJ/9qLPvRuzOD3sebsMO4Nywpr8JG+9H9fQ1Kez5LI7Hlg216PCiC1wN/FNVv19zQETmAEeAW0XkFVWtFJGutrd7VETOs9dZ3sjxb/OdwEis27erw/oagOWRPmU/PwPL80ivx56PgR+IyGxVDdSMW0e7jcAAEcm3P8TXhp3biTWzjR1L7F/H9WW1bMgE9qhqSERuwvryiQv5U2ckYInSSGAwx8W1Rmi7NNaHup1zafwuhB6frvRhifB2rL/pprCf2wsnj6hvDavB0Cp0BtG9npOX3bwFDMVaDL5MRHzAf4AHsWZb/yIiKVgf1Fvsa34PvC4iN3LirO21wDdFxI+1vOYxW7wX2JNnHwJ/Dmv/N6zZ69X2NX8F/lTbaFWtspedfSQiRZwYq3sL+JY9O7wU2FzH614NBERkFZYH8wzwloh8HfiUGHm3YQI7CktkR2ItOXLHYnwgEUvM87Bm+8Px9fh05TZgBVYccwGwpnDyiFCMbGsSIlLAiasIALyqenYTrs0GZtZxaoq95M0QY8S6YzC0RUQkTVXLRUSwhHtLHWsq2xT5U2ckYcWtL8aaoGsVgfWOyZmrXdyNerrNoAQrTj8fS4Q/K5w8orE4vcHQZIzotmFE5B4szzsRyxv7bs3EX1sif+qMbljhjsuBC4GU1h6zFUW3NtVYdzbvA+8XTh6xNwZjGjowRnTbACLyDifHZR9Q1f/W1b4tkD91xjAskb0cOJsYr4SJoejWZinW9t83CiePMCs+DBFjRNfQZPKnzuiFtcHkRmBQPG2Jo+iGswwrRv9K4eQRZXG2xdBOMKJraJD8qTOcwFewNnVcTBxXPYTTRkS3hnLgFeC5wskjau9IMxhOwIiuoU7yp87ogiW0twN94mzOSbQx0Q1nGdZOwlcLJ49oU+ufDW0DI7qGE8ifOuNU4G6sEEKrT4g1lzYsujUUY2XrerJw8ojieBtjaDsY0TUAkD91xgDgcax1zc1J0hJT2oHo1lAKPA38oXDyiPq2fBs6EUZ0Ozn2cq+fA9/H2mbbLmhHoltDGdZa6/9XOHlEUbyNMcQPI7qdlPypM9KAe4GfAO0us387FN0ayoEngV8XTh7R5tZcG1ofI7qdjPypMxKxvNqHqKfcSnugHYtuDbuBnxROHvFGvA0xxJbOktrRAORPnXElsAErl267FdwOQh/g9R6frvxfj09XDo23MYbYYTzdTkD+1BnZWPHEaxtr217oAJ5uOH6syTaP2WTR8TGebgcnf+qMrwLr6ECC2wFJwCreuKnHpysvibcxhtbFeLodFHtzw9OcWG6lw9DBPN3avADcbbzejonxdDsg+VNnXIrl3XZIwe0E3JqrB96YOWtg7fy/hg6A8XQ7EPlTZ2Ri7YK6Kd62tDYd2tNVPfoU3/dmczgXeAz4xZTzt7WpxOqG5mM83Q5C/tQZQ7H2/Xd4we3o3MzfNmVzuAdWcqFHgVkzZw3sHWezDFHCiG4HIH/qjIuxqq7GNd2ioeX01Z3zL+Sjc2odngismjlr4MRojiUiPxORdSKyWkRWikij5X9aExHxiMi98bQhFhjRbefkT51xL/ABkBFvWwwtw6mB3Q/z0PB6TncFPp45a+A3ozGWiJyLVe3jLFU9A6vE0u4W9tkqNRdbq994YUS3nZI/dYY7f+qMF4EnMP/H9o9q6Mf85mgyVfVVkQarbNNLM2cNfCQKI/YEilTVaw2vRaq6T0R2isijIrJcRNaIyKkAIjJGRBaKyAr75yn28ZtF5A0ReR+r0jUicp+ILLU96EcbMsL2tjeJyP+AU8KOzxaRX9mVu+8SkRdFJLwKd7n9c5KIzBGR10Vks4j8RkRuEJEltv0Do/C3iirmw9oOyZ86oztWRV8Tv+0gnMmyeSNYcUYTm3tmzho4beasgS1JUPQx0McWqmdEJDx0UaSqZwHPYuXnAKts/QRVPRN4GPhVWPtzgZtU9XwRuQgYjFWUdAQwUkTqnPAUkZHAdcCZwFXA6FpNslR1oqr+v0Zey3DgLqwiqDcCQ1R1DFZVjzsauTbmtFnRFZGgHWdaZX/rjo3x+OWxHK+p5E+dcSZWna5z422LITq4tWrD3TwR6fv7W8B/Z84amNWcMVW1HBiJlaj+EPCaiNxsn37b/vk5kG8/zwTeEJG1wB+B08K6+0RVa9JWXmQ/VgDLgVOxRLguzgPeUdVKVS0Fptc6/1oTX85SVd1ve+3bsD1uYE2Y/W2GNiu6QJWqjlDV4cBPgV/H2yARiWupmvypM84H5tEGKzkYmolqlYefuV0Em+O1TgYWzZw1sHZR0yYOrUFVna2qjwA/Ar5mn/LaP4NATTz1ceBTVT0duAxICusqvEKGAL+2P7sjVHWQqv69ITMaOBfebwBbr0REsEItNXjDnofCfg+F2d9maMuiG04GcBRARNJEZGZYzOkK+3iqiMywPeO1InKtffw3IrLeji/9vr4BRKS/iCyyY1GPhx2fJCKfisgrwBoRybe/7WvO3ysiHvv5bBH5o4jMFZENIjJaRN4WkS0i8ouW/AHyp874EtaEWWpL+jG0LS7m/aV92TWgBV2cCiyeOWvgqEguEpFTRCTcAx0B7Grgkkygpvz8zQ20+y9wq4ik2eP0EpH6kivNBa4UkWQRSccS8/rYieWZA1xBO8r9XJs29y0QRrKIrMT6Ru0JnG8frwauVNVSEckBFovIdODLwD5VvQRARDJFpCtwJXCqqqqINHQr9n/As6r6TxG5vda5McDpqrpDRPIbsdunqhNE5C7gPaw3yhFgm4j8UVUPN/H1H8PeYfYm4I70WkPbpYseWfZNpkVjg0c34JOZswZeMOX8bZ838Zo04Gn7MxEAtmKFGi6tp/3vgGki8mNgVn2dqurHIjIUWGQ5pJQD3wQO1tF2uYi8BqzEEvx5Ddj7V+A9EVkCzOREL7hd0WZ3pIlIuarWfFueixUUPx3ri+KPwASs24dTgP5Y3vB/gdeBD1R1nr3U5HOsTQMz7OO+esY7DPRQVb+IZGAJeJqITAIeUdXJdrt8u5/T7d/vBdJU1SMis4GfqeoCETkf+KmqXmi3mwvcqaorI/k7rHr4zK9c7XvkNT8J7S7ReGvS3nekiYYOP833gl04Gs0Um0eAKVPO3xbRe8wQW9pFeEFVFwE5QC5WPoFcYKSqjgAOAEmquhnLq1wD/FpEHlbVAJaX+hbwVeCjxoaq53idsSWbpFptw+NJtWNNkd1ZeDIvGe7Y/s5c9z0bEvF7G7/A0F64lee3RllwwVrL+8nMWQNPj3K/hijSLkTXXivoBA5jxZYO2h7pZKCf3SYPqFTVfwG/B86y40qZqvofrAq3IxoYZgHW8hVoOFHMAaCbiGSLiJv6b8dahifzQqwvi8SecmT0XPfdq43wdgzyddu88/mktXZ/5QAzZ84a2GZ2J9qflZV1PLLjbVs8aA8xXbBmRG9S1aCIvAy8LyLLsGJBG+02BcATIhLCSgr9QyAdKw6UZPdxTwPj3QW8Ysdi36qvkS32jwGfATvCxo8enszRwLuExXB7yNHRc913L5vgfbLAR4KJ7bZTnBrY9RAPn9nKw3TD2r02bsr52/a38liNYs9jNOTwdCrabEy30+LJHAAsop5yOgc1a9l53idP95JYO6zRqWiXMV3V4E95dMPprInV7f8aYMKU87cVx2g8QxNoF+GFToMnMxv4kAbql3WT4lHz3Hetc+Orjp1hhmgwmsXzYii4YN39fTBz1sDkGI5paIROJ7r2Xu/asaWfxdsuPJkJWDuBhjTWtJuUjJzvvmtdEt6q1jfMEA2StXLdHfwhHknJx2Ft5zW0ETqd6KrqL8N2y9Q8fhlvu4C/YC2DaxK5lvBuMMLbDlCt8PDTVCeheM2h3DRz1sDvxmlsQy06nei2STyZ9wC3RnpZjpSeZYS37XM5by/vzZ78OJvx9MxZA0c23szQ2hjRjTeezLFYu32aRY6UnrXAfefGZLyVUbTKECWy9dCSa3nlvHjbgbUS5s2ZswZ2ibchnR0juvHEk5mDlUmpRbed2VJ25nz3nZuM8FpUvvUKRbdeTdEtX6PizZdPOl/x72kc/u61HP7utRTdejUHLhhJqLSEUPERjtx5C0W3Xk31/E+PtS9+6G6CRSftYm0U0dChx5jarGQ0rUQ+Vj5eibchnZm2vE63Q1MwrUC+2TXr0fuPFPeKxicgW8rOXOi+Y+U471ODK0mKalKcov88SdW2pThTMsn79jMAHP30BSq3LkGcLlxZPcj5yt04kk7eqbzn2VtxJCaDw4E4nPS86Unr+tn/oGr75yR260/OpT8BoHztLELVZWSMuqLZtgZ2bKVyxttkP/MSJCRQ/MDtuM8Zj6t3v2NtUq+7idTrrFTE3oVzqHjzZRwZmVS+/QpJF11G0vlfoviB20kaPxnvwjm4Bg/FmRP55rHv8syOLIrHNPvFtA6XAA8CbWEeo1NiPN34cee/MjNuu7BP3rIjDkfESXDqoouUj1jgvnNrCtVRTQaSVnAB3b5+YgGApPwR5H37z+Td+icSuvaiZPEb9V7f/fpfkXfL08cEN+StwLt3A3m3/gnVEL5DOwn5vVSs/R/pZ17SIlsDu3aQMKwASUpGnC4Sho/EG+a11qZ61kcknf9l6xenC3zV4PeBw4EGA1S+9Qqp134rYjsG6uZ5E/m0rQluDY/NnDXwgngb0VkxohsHCqYVnAH8FuCAyzV6ct9evtkpyVFJUtJFyocvdN+xNZWqqCVhT+pzOs7kE6vIJPc/C3FY6YXdeacQKCuKoEdBgwFUFQ34EIeT0iVvkz7ycsTZspsvV/+B+FcvJ1RSjFZX4ftsPsGDhXW21eoqvEsXkjRhCgBJUy7Gu3QRRx+4ndSbvk/Ve6+TdNElSFJky1xd6t/xMzxtedLKAbwyc9bAvHgb0hkxohtjCqYVJAGvErbFNyTS845uOQX35mbPDlmJcVpEllQMX+C+c3s0hbchyld/QvKAetK5inDw9YfZ/+JdlK208g053CmknDKW/S/eiSuzO+JOxbd/MymDaxfBjRxXvwGkXnczR+/7IUcfuB3XwCH1Crl30VwSThuBIyPTsistnS6/fprsv7xCwuCheBfNwz3hAkp//xjFnnvxrVvVuAGqgQd4vMqNN6XFL6Z1ycVapmiIMUZ0Y8/PgWEnHRVx/jctddLEvr1WFzqddbtmEZAlFWcsdN+xPZWqspb21RAlC18Dh5PUYZPqPN/jht/R8+b/o9vXH6Vs+QdU77byv2eefTV5tzxN1/O/Q8m8f5F13jcpW/VfDr37G4oX/rtFNiV/5Uqyn3+Vrv/3ApKeibN33zrbVc/6L0lTvlznuYp/Pk/qN79N9cyPcA0ZSsZ9Hsr//qdGxz6X+QuGse7k/2/b5LKZswZeG28jOhtGdGNIwbSCUzle6K9Oip3OERf1yXN9kJqyrKXjZUrlGQvdd+xsLeEtXzOTym1LyLnsXuyE1SfhSrcSSTlTs0gZci7efZtPOO87sM1q16UXFWtnkfvVqfgP7cJ/ZO9JfTWV0FGrXFfwwH6882Ydj9mGtykvw7f6c5LGTjrpXGDPLoKHD5E4fBR4q8HhABHwNZzkLUUr1tzGU/HYddYSnpo5a2DXeBvRmTCiG1ue4cTaTnWiIjk/zc0e+b3uuXP8Vsa0ZpMplQWL3HfsTKOytCX91KZq++eUfvYm3b72MI6EunPvhHzVhOxVbCFfNdU7VpCY2++ENsXz/kXm+BsgFAC1IyviQAPNz2JZ7LmXoluuovhnd5F+11Qc6RlUTn+DyunHJ/u88z8lcdQ5SPLJ8dryv/+ZtFtvAyDp/C9T/dF0jtz+LVKuaWBCTbX8MaZmOgjFtY5eM+gWCkmz14kbIsdkGYsRBdMKbgD+Fel1qaHQutf2Fmb0CwRaVIyyVJPXjvU+3beclIxIrz00/Xd4v1hDsKoUZ0oWmeNvoHTxG2jQj8OeYHPnnUL2l35EoOwwhz96iu5ffxR/cSGH3rZLw4VCpA6bSObY43ezlZsX4Tu4g6zx3wDg6Ky/U7VjOQnd8sm97L4GbWprWcau0tfmfY3X28ImiIioqkxftHr1hf19vtTrPB7PnHjb0xkwohsDCqYVZAKbgO7N6kC1ZOqRo+tvKC1vUdn1Mk1eN9b7VO8yUjNb0k9boC2Jbq4eWPwkt7V8FjCGhEKye/PmsQcOHTw2A7oGOMvj8QTiaVdnwIQXYsMvaa7gAohk/ia767nf6Nl9rldodkrHdKk6baH7zj3pVJQ02xbDCYiGDjzGA41mhmsrqBI4crjXnEULr8sJE1yw0kDWLshqaAWMp9vKFEwrGAksIUpfcO5QaMu/9h9wnOrzD2xuH+WatH6s96lepaS1W4+3rXi6t+mTy8YxL6Ly5/EiEEhYs2b1hUnl5dmD62lSAgzxeDyR73k2NBnj6bY+fySKf2evwzH463k9ej6blTG/uX2kSfWwhe4792ZQbjzeFjBEN8xtD4KrSvHuL06ft2jhtac3ILhg1R/8bazs6qwYT7cVKZhWMAX4X2v1P9DnX/CvfYVnpKmmN976ZCo0acNY71M9S0jLirZtrU28Pd0E9W17jpvy3PjadFWGiorMBWtWXzjE70/ObeIlCgzzeDzRr/1nAIyn29o80pqdb0tMGDehX+/Dy92JG5pzfapUD13ovmN/FmWmhlYkqPofxONvy4IbCjl2bVg/Yfnyzy8fF4HgglXAteGlI4YWYUS3lSiYVjAZaPUlRH6R/Jt6dh/4q+wuzVrukyreoQvddxZmUXY02rZ1VM5j9sK88vWnPuo5wC037+bWW3azfl3d85sbN1Zz0YXbmTvH2pG9e7ePH/5gD9/77p5j1wSDyn337ae6usU7wFHFV1TUZ87Chdd2Lyrqd1Yzu/mmx+Pp1WJjDHViRLf1aFUv9wREEl/NSJ94UZ+8JcUOR8TimSLeUxe67zzYhdIjrWFeRyJVy1Z9jz+f9+c/HWb06GT+8WIfnnu+N337JZzUNhhU/vbXI4waddwh/uD9Mr7zna48/Eh3Xn/DusGYPr2UCy9IIympZR9Hvz9x1Yrll+7ZsH7SRA25WlItOhG4u0XGGOrFiG4rUDCtYBIwMdbj7ne5xkzq26tqXnLS6t0lISZPq2Don8s57Zly/m/xyTu83tvo54xnyxnxl3Im/PXwKY/v/UF5F0qP+A/vYf+Ld7HvhR/h3WtFLjQU5MC/f0bI34mLEKuWPsbU7KqKoGPNmmou/ooVSk9IENLSTt6I9u67pZx3XipZWcfPuVzg9SlebwiXUygvD7J4USUXXnRyLuKmm8WRXTvPmL940TVnVFR0GdDsjk7k+x6Pp92ubmnLmCTmrYMnXgMHRfJu657bfZy3ZOETF+o5o/KcjjKvMvL5Ci4c6GJY7nEBmDLAxeWnuBARVh8Ics0b5X1X3H7n5s/iDB4AACAASURBVL7Lz0rJmnhzkiuzG8VzppF75VDKVvyH1NPOr3fLb2fgGl5Z04PCcVv3+8nMdPLE7w6xbbuPIYPd3HZ7NsnJx32YokMBFsyv4Inf92TTpkPHjl9+RSa//e1B/D7lnntyeOmfxXzjhqx6c1c0Rnl5l/lr11ww1O9PinbOh3Tgh8Bvotxvp8d4ulGmYFrBBOLg5Z6AiHNBv6yxPzmn78qDTufBdLcwNNfB3tITV6qkJcqxD3uFTxGBZPENudo5tyrVV1SqAS84nISqy6nauoTU08+Px6tpE3TX/Yuu4O1xAMEgbNni5bLLM3juud4kJQn//veJc5HPPHOY73y3K07niWLavbuLP/whj6f/1At3koPDhwP07ZPAb359kMcfP8Ce3b4m2RMKOXasWzdp5Yrll473+5Oyo/Qya3OXx+NxN97MEAnG040+d8bbgBqOOJ1nXdAn79Ad6w+sWbG/rODs3iffAr+zwc9PZ3o5WBFixjesFLA/HefqsvyNP1etDfYNZF58j6t4watknntNs72x9o5Dg/sf5aen1vyem+skN9fF0KGW1z9hQiqv1hLdzZu9/PIX1h6DkpIgS5ZU4nQK48Yfr6T0wgtHuOWWrrzzTinnT0mjRw8X/3ypmAcfrL80kCrVhw7lL968aexYVWdr11/rAdwEPN/K43QqjKcbRQqmFXQDLo+3HeEEvKHcO18vLxh4Wc7aFLectK/+yqEJbPxRGu9el8LPP7Xivn0zHXz2nZTkw98r2dnVWX0kWH6EhOzeFH3w/zj03m9blHax3aGqP+KP+9MpO1ZFt2tXF7m5LnbbXunyFVX063di8rh/vdyXl1+xHhMmpHLnnTknCO6qVVXkZLvo3TuBam8IhwMcDsHbwAoGny9p+fLPLyvctPG8SarORrPVRYl7PR6P0YkoYjzd6HIzcPI0dpzQgLL7T7vJOjeLogtzTj8vGFrz+r7CLn0Cgd61207o52Lb0SqKKkPkpFifsSTxD8qf+2C5TPjFkS8+f79r6rBJuDK7UbzglUazgHUUhrF27tksOilc9KM7svn1rw7i90PPni7uuz+X99+3smdedlnDidxUlZf/VczPH7Y82ksuyeDXvzpIMAh33Z1TR3sO7dxx5uY9e04fF43XFCGDgSuBt+IwdofE7EiLIgXTCjZjvUnjjqqy9697caY66XlDz2PHRbX4ocNHN15TVn7O1iMhBnax4rrL9we57NVK9tyTdiyMMGdngPc2Bfj1Renb+r4/oieDJ6a4MrtzdPY/6HbVQ/F6aUBsdqQlqHfL89zUJxF/XGYPVdHy8uz5a9dMKQgE3PHcNbjU4/G01SKb7Q4julHCXiZWf9nZGFOxuYIdv9qBu7f7mIh2v7o7/sNWTvQpY1PmDnl999hX1/hdCQ5IThCeuNDN+L7WzY+qctG/Knn96hS6JAvLCtk94e3MngGcrq4X3UZS7/hWpGl10VX1PcbUnQPZGpcMYsGgc8uG9ROrjh7tdUY8xq+DMzwez5p4G9ERaPfhBRHpATwJjAa8wE7gblXdXE/7clVNE5F84ANVPT1Kpnw3Sv1EhdQhqZz+Yv0vbQVM2PDNgZve23cgcZDff9KEjIjwyY3HY5CjetDn6A8rdkz0PplSSNfmp6lsJ0xi5qKBbI35KhRVqg4eGPDZli3njlN1tJlQFXAVVs5dQwtp1wFysVy4d4DZqjpQVYcBD9KS3LXNoGBaQVfga7EcMxpUOxynXNmrR+7zmU3LWOaWQP857rsre3DkQGvbFk/StWTFt/lLzKtAeL3Jy5Ytu6Jo8+Zxk9qY4EI7fH+3Vdq16AKTAb+qHislraorVXWeiNwnIktFZLWIPNpQJyKSJCL/EJE1IrJCRCZHaMcNhJVUb1eIpD3dNWv8Vb16zK8UqWisuVsC/ee6767syeEWVyxuk6iWPM4D3R1ozD4bqnJg29ZRi5Z8dvWo6qqMFpVlakUKPB7PoHgb0RFo76J7OvB57YMichHWhNYYYAQwUkQaiv/dDqCqBcD1wDQRiWTy5JoI2rZJtiQmjh/fr/fB1e7ETY21TZRA/znue6rzKNofC9tiyfX8c10uh/JiMZYqodKS3LmLFl6TtG/f0BaVYooRxtuNAu1ddOvjIvuxAlgOnErDqwrGAy8BqOpGYBfQpAmUgmkFucDYlhjbVvCL9L+hZ/f8J7pmzW2sbaIE8me77/H14lCHEd483bPwUqbH5H8ZDDo3rVl94YZVq748IRhMbC85Dq6KtwEdgfYuuuuAkXUcF+DXqjrCfgxS1b830E9LtlpdTvv/Ox5HxP3PzIwJF/fOW1zikAYrSyRKsN9s9499veXQvliZ11o4NLjPw4OntfY4qlTs3z94zsIF1w0sKenR6uNFmdEej6ethj/aDe1dLGYBbhE5tnJAREYDpcCtIpJmH+slIvXvrYS5WHFZRGQI0Berem9T+GpzDG/r7ElwnTOxb++yhUlJDc5YJ0iw36eJPw60a+FVDd3NEwdTqWhVj7O6OmXJsqVfLd665ZyJ4GiPK4cEa6OEoQW0a9FVa5HxlcCFIrJNRNZhZfh6xX4sEpE1wJtYWZPq4xnAabd9DbhZVU/OhViLgmkFSUCHzQITFOn9/R65Qx/K6TpHrTIudZIgwb6fJv440EcOtsv9wQWsmjeSpSNaq39V2b9ly9mLly752pjq6vT2nhzcxHVbiNkc0QIKphVcBPw33nbEgpxA8PM39u3vmxMM1Vv6xa/O3VN8v5cvtPtJ24yjTbQ2RySqd/Nf+Va+i0DUcxmoEiwp6b5g/brJZwWDCc1PmNu2CAE9TcXg5tOuPd02wJfjbUCsKHI5R07p00s/SUleXl+bBAn2mZl4L/2ksH14vKrVP+chaQ3BDQZdG1av+tLmNasvmtCBBBcszeiQIbVYYUS3ZXwp3gbEkpBItx93yxlxZ7ec2UEI1tUmQYK9Zybeq/2kcE+s7YuUC/joswFsj2quDFXK9u49Zc7CBdcOKS3tNjSafbchLo23Ae0ZI7rNxN6FFt8EBPFAxPFpasqkCX17rdvrctY5eeaSUO+ZifdKvuzfHWvzmkqGFi+/mb9FNXdDVVXa4qVLrirfvm3MRHCcnLy441DXiiFDEzGi23xGxduAeFLqdJ5xce+85LfTUpfUdd4loV7/S7zP0V/2fRFr2xpF9ejjPNBTWrZU8BihkOzZtOncJcuWXnmO15vas/Er2j15Ho+nodVAhgYwott8OrXoAqhIl0dys8fc0qPbHB+cVGfGJaFenyTe7xog+3bFw776+BYvbMyhqMXiqErg6JGecxYtvLbLwQODOlvqwzPjbUB7pT2uFWwrjG7tAfb8fQ9lK8twZbgY/Esr9FiypISD7x7Eu9/LwIcHktw/uc5ry1aXsf+V/RCCLhO6kHuptehg9192U72nmvQR6fS4ugcAB987SFKfJDLOajj5dn0sS06aOL5f7w3/3leYMsAf6Bd+ziWhvI8T79//Jd9vd23TXv3q6yNW9NZdC77Ef1qcDDwQSFi7Zs0FieVlOfGthxc/zqSTrNyJNsbTbT6t7ul2Gd+F/J/kn3DM3dtN3zv6kjIkpd7rNKTse2kf+T/OZ9CvBlHyWQnVe6up3m2VTx/8i8FUbq4kWBnEX+ynantVswW3hiqHY+gVvXp2fSEzfUHtcy4J9fw48YHEgbI3rh6vQwN7HuGhgpb0oUrJnt3D5i5aeO2w8rKcuOTabSMYT7eZGNFtBgXTCnoArb4WNfWUVJypJ87HJOUl4e7ZcEKzqu1VuLu7SeyWiMPlIPPsTMpWlIET1K9oSNGAggMOvn2QbldFKTwnkv7Hrl3GfT2vx/wqkcrwU04J9fw48X73YNmzMzqDRYhq6Mf89nAKlc3+dqmszFi45LOveXfsGDkBpLN/dozoNpPO/sZpLm06nus/6ieh6/F0rK4uLvxH/STlJZHQNYFtj2wjc3QmvgNWGDa5X90hiuay0Z04fnzf3vvXJiZuCT/uFO3xUeIDSUNk946oDtgEzuTzeWeyfHhzrg2F5IuNG8Yv+3zZFWN9vhQzgWQxyOPxNLTL01APRnSbR5sW3fo37ELPG3oy6PFB5FycY3m5V3bj4PSDfPHnLzgy+0jUTPA5ZOD1ed37/LFL5gkZy5yiPT5MnJpyinwRM+F1a9WGu/ldxNnDVPEfPtx7zqKF1+UeOtS/bf/PY48AzfoS6+wY0W0eLYoLtjYJXRPwH/Ef+z1wNEBClxMLEZQuLyW5fzIhbwjvXi99b+9L8cJiQt76S4BHjEjSC1mZEy7p3XNRaVjGMqdo9/8k/jTlVPlie/QGqwfVqkd4KNFFMKJKDH5/4uoVK76ya/26yRNDIVd0bwU6DibE0AyM6DaPuM/CN0Ry/2S8B7z4DvkIBUKUfFZC+pnH7wQ1oBz+5DA5F+cQ8oWOr1ZV61y0+SIh4dyJfXuXLklyr6s55hTtPiPxp2lDZde2qA8Yxpf5YGk/dg5santVjn6xq2D+4kXXFFSUZ5tKCQ1jRLcZGNFtHn1jMcjuZ3ez/Rfb8RZ62XjPRo7MOULp56VsvGcjVduq2PnHnez8/U7AiuPu/IP1XJxC3jfz2Pn7nWz56RYyRmeQ1Ot4IYzDMw+TNS4Lh9tBUp8kUNjy0BZSBqecNHEXLQIifb7do9sQT/bxjGVO0W4fJD6YMUx2torwZumRZTfyYpN3nVVUZC34bPHVwV27RowHicrGiQ6OEd1mYLKMRYidzrEq3na0Z7oFAkvf2Fs4oGsolA0QUjl0me8XJeu0f5M9y8ayjImGDj/F9wNdOdJokdJQyLFz48bxRw4X9TurqeMbAPB6PJ5IyloZMJ5uczCZ81vIQZdr9OS+vfyzUpJXAjhEc99PfCjzNNmxNVpj3MJftzQmuKp4Dx3qO3vhgut6GsFtFm6Px9NeSg21GYzoRk5MQgsdnZBIj7u65ZzxYztjmS28WQWyfUvjVzdMP90+fwofn9NQG7/fvXL555fu27hh4iRVZ/us5Nw2iGgJnYj8TETW2VW6V4rI2a1lWNiYL4rI1a09TlMxohs5RnSjhYjjk9SUSRP79lqz3+nc7xDNeS/x512Hy9bNze3SqYEvfs7P660CocrhnTuHL1i86JoRlZVd+jd3HMMxGg3f1CAi52KlhTxLVc8ALgDabCa61sKIbuSY8EKUKXE6R3ypT17ie2mpSx2i2e8kPpLdLOFVDd7HL0uSqT4pabgqWl7Wdd7iRV+X3V+c0eLcC4ZjROLp9gSKakphqWqRqu4TkYdFZKmIrBWR58XCZR+bBCAivxaRX9rPp4jIChFZIyIviIjbPr5TRH4rIkvsR/gcwQQRWSgi22u8XnucJ+xx14jItfbxSSIyW0TeFJGNIvKyiDWxKiIjRWSOiHwuIv8VkYgTJ5mEN5HT6tt/OyMqkv1QTteu76elznmm8ODYdxIfkat8j25aqYNOaWofo1gyv4DVJyWgCYUc2zasn1h+5Ejv86JrdWS89957bN68mdTUVG677TYAZs+ezfLly0lJsXJpTJkyhcGDT86rXl1dzfTp0zl48CAiwuWXX06fPn345JNP2Lp1Kz169ODKK62akatWraKqqopzzmkwwhItmuzpAh8DD4vIZuB/wGuqOgf4k6o+BiAiLwGXqur7InIz8KaI3IlVpeVsEUkCXgSmqOpmEfkn8EPgSXuMUlUdIyLfso/VJFzvCYwHTgWmY9VNvAoYgbXJIwdYKiI1m3nOBE4D9gELgHEi8hnwNHCFqh6yRfqXwK0R/A2M6DYDs/WxtRCRz5KTJp7Xr/f61/YWpr3Nw92+5nt00wod3KjwJmnl+jv5/QkerCrVhw72X7x587ljVZ1RL8kTKSNGjGDMmDG88847Jxw/55xzGDu24Q1zH330EYMGDeKaa64hGAzi9/uprq5mz549/PCHP+Ttt9/mwIEDdO3alVWrVnHDDTe05ksJJ7upDVW1XERGAucBk4HXRGQqUCYi9wMpQFdgHfC+qq6zRfh94FxV9YnIcGCHqtbcCU0Dbue46L4a9vOPYcO/q6ohYL2I1HxRjAdeVdUgcEBE5mBlDywFlqjqHgARWQnkA8XA6cAntuPrBPY39fXXYEQ3cswSmVam0uEYdlnvnqX3Hyle+1bJI0Ov9nk2Ltchp9Z7gWqlhweTnYSOvZ99vqTPV6+6KKeqKnNSLGxuCv369aO4uDji67xeL7t27eKKK64AwOl04nQ68Xq9BINBVBW/34/T6WThwoWMGTMGpzNmhSsiqv9mC9xsYLZdffv7wBnAKFXdLSIeTvyMFWCJXY1QNrZ+Wut5Hl7dW2r9rIvw9kEsrRRgnaqe24gNDWJiupFjZrpjgUjG77K7jP1Gr+5rX3I/ljFKNm2or+mlvPt5H3b3B1Dl0PbtZy38bPHXR1ZVZbbpnYM1LFmyhGeffZb33nuPqqqTl4AfPXqUlJQU3nvvPZ577jmmT5+Oz+fD7XYzdOhQnnvuObKysnC73ezbt49TT63/+6kVSG1qQxE5RUTCYycjgE328yIRSQOuDmt/FZYnPQF4SkSygI1Afli89kZgTlif14b9XNSISXOBa0XEKSK59jh1VkKx2QTk2hOCiEiCiJzWyBgnYTzdyDGebgxZ53afN7Ff3pa/7/ut7xfl929YqqeeUOyxqxYtuZ5/naeKlpXlzFu39vzhgYA74uQ28WLUqFFMmDABEWHWrFl8/PHHxzzaGkKhEPv37+fiiy+md+/efPjhh8yfP5/zzz+fcePGMW6cFVWZPn06kyZNYvny5Wzbto3u3bszYUJUy8DVRSSebhrwtC2eAWAr8D0sT3YNsBNYCiAiOcBvsGK3u0XkT8D/qepNInIL8IaIuOz2fwkbw23HXh3A9Y3Y8w5wLrAKyyu+X1ULRaTOby07vHE11hdAJpZ+PokVDmkyRnQjx3i6McbrcAz+Zq/cyhtL/rxICm/TJTp0GIBo6NDjPNA/GHRuWb9uUnVxcV6rK0y0SUs7rlkjR47klVdeOalNRkYGGRkZ9O5tzeEOGzaMBQtOzBW/f78VWszOzuajjz7illtu4c033+Tw4cNkZzc57Nocmiy6qvo5UNcX4kP2ozbHksSr6lNhz2dS/xbkP6vqo7XGvbnW72n2TwXusx/h52djhUBqfv9R2POVWB5xszHhhcgxohsPRFJeykqdUjLgH0dOcW5eB3CrPre5ujB73cIF1/UvLs5r05nf6qOsrOzY8w0bNtCt28krsNLS0sjMzKSoqAiAHTt2kJOTc0KbTz/9lMmTJxMKhajZ2i8i+P3+k/qLMhHFdA3G020OJrwQBxwhDaZUUxqqlvxuiS/svKiwanf65tSJW6rHtpslfG+99RY7d+6ksrKSP/zhD0yaNIldu3ZRWFgIQFZWFpdeaq1wKisrY/r06cdWIVx88cW8/fbbBINBunTpckIIYuPGjeTl5ZGebi2s6d27N88++yzdu3enR48erf2y2oyGqGp+vG1oCibhTYQUTCvYApiUfxHgCqovtZrStCoq0quozKjU6owKvJmVBDMqNZBehaZXImnV6kjx4krykej2k+QKkuQMkepQ0iVswuZo5qD1KwZklQ3pd1H5SveejAq8o5DolFM3RMzbHo/na/E2oj3RZr6l2hGd6sOd6NfKtCrK0qqpSK/UqowqqjMq8GVWaiCjklBGJZpehaRWqzPZZwlmYoAkV4AUp5IqSoZYIZkc+9EivAnph1YUfMdVXfbXUVt3f3jw2t7fDx11VOyYn7Bx7yEpHY2YO5EYUxpvA9obRnQjp7LxJm0AVU32UZ5aTXl6lSWYmZV4MyrxZVZoML2KYEYlpFWppHpxJXtJSPKTmBAg2RUk2REiTSBDrAXr9ZcejiEhcfg/G/PzfYHg1ipgSGWgtOfHe/+x40u9bs28wjd6QBW+ooUJmz7b4Th4GtJygTc0CSO6EWJEN3IqWnsAR0iDKV7KUqsswcyoUm9GJdUZlfgzKzSYUUkovQrSqqzb8WQfCW4/blswUxxKGpAu1u65DrODbsXwuxYFElInBEvXzas5VuIv6v9p4avrJ/e43p0siTlT/AUTAwSrV7h2zFvj/KJ3SNQktWldShpvYgjHiG7kNCi6dvyyLLWa8vRKO35ZiS/TFsz0KkivgtRqdaRUW4KZGCApIUCyHb9ME2tGOMt+GIAd/b48vyRr0AQADR48YdPDoerdwxYdmv75ubmXF4hIogtn0ujAoPNGBQbqZuf+pUtcWxO84q8385ihRRhPN0KM6EbIPW8H1/YoVneKF5fbR6I7QJIrSLIzRJpYEz5JWLtoWnVxZGfiaOag9TvyLx0FEAoe+QJCJ6XX3F2xcWSSM3XRmV2nnC0iDgBB5JRg3uhTgnkUSvGGeQkbjpZI5RjEvO+jiBHdCDFvvgg5d5OmYyXKMMQAb0L6oRUj7uyClV2KoHfdTurJabyl9PNzU10Zc0/JHHPS4vUemjX0675zKZWqvfNdG7bucxw9C+k4oZc4YsILEWI2R0ROUbwN6CzUTJwhzmM5S0P+zQ1mC1t55NMJuys2zq7vfIYm9/qK/6yJN3onhE4J5M0RjTxLlOEEjKcbIUZ0I+dwvA3oLNgTZ8NrflfVkIZKGs3msvDge5OKqvfMbaiNm4TM8wJDJ97inZw7xj9ogUud9SbUMTSIEd0IMaIbOUZ0Y0D4xFkNocDuDTRxcnHm/pfHl/mPNJZlCgcO1xnBfuNu9k4aeoGvYEWqupeimB1DTceEFyLEiG7kHIy3AR2d8ImzcILetYci6Mbx0Z6/j6wOVixv6gX5oW5nXu8dP/pK35jtOaH0eegJOVUNdWM83Qgxohs5La5Wa6if2hNn4YQCO7tE0leIUOKM3c8N8Ye86yO5LlvTB37VN+a8b3jHl+YHc2ej5u6mHkJAJF+EBozoNoetgC/eRnREQuII1J44q0HVV45WD4u0z4D602bsfr57UAM7Ir02BXfuBf4zJt3snZRyRqDfXIdKxH10cLZ5PJ6Ts64bGsSIboQM3bghgPF2W4WVw+9cED5xFk7It2UDkNCcfr2hyuwP9/wtMaShZq1UcOFMHhMYNOEW7+R+4/2nfuZW16rm9NMBWR1vA9ojRnSbR0S3q4bG2dHvy/OLswafVMm3hqBvXYtyXlQESnp9sm9apaoebW4fgjhODfY6+0bvxOGXeM9anxFKXoQSbIld7Rwjus3AiG7ziKg8h6Fh6ps4CycU2N/ivLnFvoMD5xS+tldVW5y0qKd2GXaNb+y5X/edu79nsMsclPKW9tkOMaLbDIzoNg/j6UaJhibOatBQ6X4IDozGeAeqd52++NAH61U1KiUVMjWl9yXWZovgkEDPzrbZwohuMzCi2zyM6EaBkDgCS8Y8tLeuibNwgt5126I57hcV60etOjp7iUYxg7+bhMwJgWETb/FOzhntH7jApY5NjV/VrikDzMRiMzCi2zw2Y1UzNbSAlcPvXOBPSGs0+1fQtynqieM3lSwZt6X08wZ3rTUHB46E4cH8cTd7J58yxVewIkUTl3XQzRZrPR5PR3xdrY4R3WYwdOMGP9bSMUMzaWzirAZVVQ0dGdJYu+aw4sjMiXsrtsxpjb4B+oe6nfkN73mjvuobvS274222MKGFZmJEt/msjbcB7ZWmTJzVoMHCzUBua9ky/+DbEw97989rvGXzydGMQVfamy36WZstjrTmeDHCiG4zMaLbfFr1g9pRacrEWThB75rC1rZp5r6Xxpb7ixe39jgpuHMv9J8x6SbvpKSCQN+5DpVdrT1mK2JEt5kY0W0+H8fbgPZGUyfOwgn6t6e1pk0Aijo/3PO3M6uDlStaeyyABJwpZwcGT7jFO7nPOP8pnyWqqz0KWHu0uU1gSrC3gA2nDt1FPQm1W4Of7d/PnIpyujqdTO8/AICnig4xq6wcEch2OvlVz550c524cWuv389de/cQBAKq3NClC9dldcEXCvGjvXspDPi5PqsL13exUhs8Urifa7O6MCwpuoV1l4+4e05T4rg1qAaqvcVPAbGp8OuSxLLL+96+J8GRODQW44Wzz3Fk3XzXxtJSqRqD4Iz1+BGy2uPx1Llz0NA4xtNtGTH1dq/MzOT53n1OOHZrl668278/7+T3Z2JaGs8UnZybJdfl4pW+/Xgnvz//7pfP3w4f5mDAz/zKCoYlJfFufn9eLykGYGN1NSGIuuA2deIsnJB/+3piJLgAAfWl/2fP8zlBDe6M1Zg15IW6nmZvttjXI5TV1jdbvBtvA9ozRnRbRkxFd1RKCpnOE/9lac7jTlFVSKlrbVWiCIkO6zq/KiH7uAvBq6ET1r49XVTEHTnRrV4eycRZOEHv2pinDawOVuR+tOdvLtXQgViPDZCpKX0u9Y2ceKN3QnCwtdmi1WPazeC9eBvQnjGi2zL+B8c0LG48eegQ52/bygelJfUK5n6/n6/u2MH527byna7ZdHMlMDY1laJAkOt27eTbXbsyq7yMYUlJJ4UnWoI9cZbV1ImzcEKBPU2O/UaT8kBx70/2vVSqqnFL0O0mIXOitdkie5R/wHynOjbHy5Za7PZ4PE3OUWw4GSO6LWDoxg1HgWXxtuPu3FxmDRzEpRmZvFxcdz6XngkJvNu/Px8NGMB7pSUUBQK4RHgiL4+38/vzpfQMXjp6lJu7duW3Bw9w9969zCova5FdYRNneZFeq6GKQxBolfW5TeGor3Dw3ANv7lLVuKYudOBIGBHsP/4W7+Qh5/tO/zxZE+P9fjNebgsxotty2swqhksyMvikrGGh7OZKYGCim8+rTsz58u/io1yRkcmqqioSRPh/eXk8d7hlububuuOsLoK+DVugzmhJzCis2n7GkqL/rFHVNrH7cECo+8gbvOeNusI7ekvXUNp8NC55nY3othAjui3nv/EcfKfv+Ofu0/IyBiS6T2pT6PdTHbKiICXBICuqKumfUv9fKwAAG1dJREFUeLyobkkwyOzycq7IyKAqFEIQBPCGmr+ypTkTZ+EEfRviHrYB2Fm+dsyao/MWRzNPQ0vJ1YzBV/nOHn+9d9zRvsGc2SjNTlcZIcVAq+3g6yy44m1AB2Ax1puxSQUTW8K9+/aypLKS4mCQydu28qPsHOZWlLPD58OBkJfg4pHuPQBYW13Fa8XFPN6jJ9t9Pn538CAioAq3dM1miPt4iPXZw0X8IDsHEWF8aiqvFh/lip07uDareS+puRNn4WiwKCpZxaLBhpJF41NdGXMGZoxo8EukpLqM+z/8HZuKdiDA778ylZG9Tj92ftEXK/j2Ww/SJ8sKVV88ZAJ3j7uZw5XFfPftn1HiLee+877Dl4ecB8Ctb/2UX130E3qk1x2nTyWp+0X+4d39BCo+d22fu965Jz8k2ppLGP/j8Xiikp2tM2PW6UaBDacOfRb4QbztaAt4E9IPLRj7S39z4rg1hAKHtvvKXhoQTbuiwYTuV8/umTJwUn3n75nxS8b0Hs71wy/FF/RT5a8mMyn92PlFX6zguSX/5sWrf3vCdS8se5Mkl5vLh07hxjfu5Z1vPsMnWxewtnAz94y/pcn2KRra4Ny7ZJlrW6pPAgWRv8JGudbj8bzeCv12Kkx4ITr8Pd4GtAVaMnEWTtC3dk+0bIomcw+8Oemot7DO7d9l3go+272K6864BIBEZ8IJgtsQLqeL6oAXX9CHiINAKMDfl73BD86+PiL7BHEMC/Y+51veiQVf9o1Ykx5KXoxGbXWND/gwSn11aoynGyU2nDp0BdCsSaOOQqQ7zuqjuvj5JWj5mGjYFG0ECV7S+/vLUhMyzw4/vu7AFh747xMMzs5nw8FtFPQYwqNT7iQlMflYm0VfrOB77/ycnum5dE/L4aHJt3FKbn9KveXcMf0xDlUe5cGJP2Bz0Q7S3al8veDiFttbLBW75iVs2HlASkYhpLagq488Hk/LDTIYTzeKdGpvt6UTZzWoBv1oecRVf2OFos7/7P3rcG+w6oTilIFQkLWFW/jWmV/lo1v+TkpCEn9e/PIJ157efQiLf/g6H9/6D24ZeRXfeedB/n97dx4fdX0mcPzzJIRDwqEcggSLIsdIFORqpQbQWq2U1traslutxWsbq627jbi2ay3VtUaKXbsaBPFs0ZrVYtWIojVyoygQBTITBDkSCCYQEhJI5nz2j99vYAJIrpn5zSTft695mfzmdzzhePjO93i+AD27pPP8D+ew5KcLyRwwnH9uX8O0EVO4+605/OzV37J+T+sL2vXW7l/5jm/8lOu9Wf7zggOWidLaRR+LWx2E0YhJutGzCGhwOggnRGPgLCwU2FUMxLzITVuENNj1zbIFQwIh/9HdIQb26MfAHv246Czr34tpI6ay+YvG6xl6dOlO986nAXDZ0IsJBINUHaludM6jq5/jFxffwGvF73HBgBHMnXYPD69Y2OaYu9K591T/qKkzvZeePtZabNGSHa1rgBfbHIQBmKQbNS6Puxr4u9NxxFtbVpydTNC7OV7Tn9rEH/L2erPsydNDGtwN0D+9DwN79mf7gd0ArN61nmF9hzS6pqLuAOHuvI17iwlpiNO79Tr6/o6qUr6o28/FZ4+hPtBAiliT97yB6E3HTSWl81hrscWwS32j1nfTzuubcdmzs2fPPhy1IDo4M2Usup4CrnM6iHiJGDiLWl92KLA7uoUfYqghWNf/7T3P7Lpq0M2VIin9Hrj8Tn5R8AD+oJ+ze5/FI9N+zV83WmsJfnLR1SwpWcZfN75GakoqXTt1Ie+7v0Pk2PqPOSue4u7JtwBwtetybln8G575+BVysm6KSfxDQwPGDfUOoEJqtq5M81QelLqJCMevAVcgLyYBdFBmIC2K3CNdgrV/2nlOxxIP0Ro4C9NQQ423Zl46JHxpw0b6dDmr5BsDrx8gIr2aPjtx1dGwb3Wax1OacuAihPDPsmT27NnfdjSwdsZ0L0SRy+NW4Bmn44iHaA2cRQr6S9wkWcIFOODdO2JVxeIdqprUffrpdB1wpX/M1J96p6SeH8hYLiqlwGNOx9XemKQbfU8DjhZJibVoDpxFCnqLnaglEBV7j2wb8/GBpZ+oatDpWNoqjU7pkwIjptzovbQah5e5t0cm6UaZy+OuABY4HUesRHvgLJIGv/hKtO8ZT5/XfvLV4uo1a5yOI1pSkLlmm/XoM0k3NubQDqePRWvF2UnvHTxYCqGkTroAm6tXZe2o3bTM6TiiYDdmmlhMmKQbAy6Puxx40uk4oq1o9C/XtLZUY1OCvi07Y3FfJ6zbv2TqvvqdyV6Na25GblZClLRsb0zSjZ2HaUetXXvgbHKs7h/ylURvu4oEsHxf/uRqX+Vqp+NopQo6+ArLWEqKpCsiA0TkJRHZLiLFIrJERIaLSIvXR4pIq/vcRGSmiDTro7XL494LzGvtsxJJrAbOwlQ1pKGakbG6v0PknT3PfvVI4NBHTgfSCvdm5GYdafo0ozUSPumKNXv8VWCZqg5V1fOB3wBntvA+qQCqOqkN4cwEWtKf+SDWEsqkFcuBs7BQoMxNHOoRx5uinZaULcz0BRs+dTqWFtiAaeXGVMInXeBSwK+q88MHVLUIKA1/LyJDRGSliGywX5Ps41NF5H0ReRHYZB+ri3hvmYi8IiIeEXnBTvCIyDgRWS4i60VkqYgMFJFrgfHACyJSJCLHykd9CZfHXYXVzZCUYjlwFino21QZy/s7KaiBbm+WLTg7EPK3pNaBk+7MyM1KiF072qtkWAacCTS1PrwC+KaqNojIMOBvWAkSYCKQqao7TnLdRcAoYC+wGvi6iHyINSH8alWtFJEZwIOqepOI3AHcpaot2RzwUeAOWtZCTgj2wNnkI946Xlw+l/KDOwHhuil3ce6AUUfP27q3iCeX3kefHtauFWPOuYSrxt1AbX01C9/5HfXeOqZPuJHR51wCwIK3f8uMrDvp3d1a8Rvy72x3rdxIvlBD7yVlCxumD/5ZWYqkZjgdzynkZ+RmrXI6iPYuGZJuc6QBj4vIGCAIRO4iu+5LEm74vTIAESkChmBtvZMJvGs3fFOB8tYG5vK4690jXb8BnmvtPZwQOXD2yprHOX/wBG65YjaBoB9fwHvC+UMHZHLbVX9odGz9tkK+OvwKxg29lHlL7mH0OZewaecaBvcddjThqvoOow0JW8oxWuqDtQOW7nl257cG3bxfRBKxvkQ9MMvpIDqCZOhe2AKMa+Kc/wC+AEZjtXA7R7x3qupIkdkjiPWPkABbVHWM/bpAVa9oedjHuDzu50mgXYObEjlwVu87zPbyTVw8choAnVLTOK1L8yovpqZ0wh/wEgj6ERGCoSDvb1rM5aN/dPSckO+zYhr/frVbh/wHhhSWv1ipqm3b2z425mTkZpU2fZrRVsmQdAuBLiJya/iAiEwAIifS9wLKVTUE/IS2rd8vAfqJyMX2s9JEJPxZuhZo3h4sJ7rVvj6hHT9wduBQOelde7Fo2RxyX/kZLyyfi9d/4irnHV8U89DLtzJvyT2UV+0EYPx5l+Eu+5i8JfcwbdxPWbnlNSYO/yad046NyQV9WzrUKPl+b5lrdcU/tqnqiR8XnFNKEo89JJuET7r21tfXAN+0p4xtAWZj9cOGzQN+KiIfYHUttLr2p6r6gGuBh0XkE6AICM94eA6Y39yBtEguj3s3cE9r44qHkw2cBTVI6f7PyDr/u9xz7QK6dOrKu0UvNbpucN9hPHDd3/j1DxcyJfManlx6HwDduqRz21V/4D9/8ASD+w1j8+4PuOjcyby4/BGeemc2n+/bQihQnsh9nDGx58jWizYceHej3UhIBHdn5Ga163ohicSUdowju/RjITDV4VBO6mSlGg8dqWLuq3dw/3XWitBt5Z/ybtFLJ/TfRrrvhR9z9/efID2iQPff18zjwiFfp6KmjJCGGH/eZTyx5G7fz6cMbVXXQv66TyguryC9S2dmfetYyKs+28HqbbtIEcE1sD/TR7tOuNZTXsFrRcWEVPnqOYO5zGVV4nzhg43sq6nFNbA/0y60pg2/u+UzBvbuQeagAa0J85QuPH3KClfvr8VswUkz/TMjN+ubDsfQoSR8S7c9sUs/3gIk3EfqLyvV2PO0Mzg9vR9fVFvdfSV7NjKgd+MSCYeOVB3dEWFnhQdF6d6159H3K2rKqDl8gGFnjcYXaEDs/+q9B1v9EXv8ORncOrnx3pXbKvazZc8X5FyRxaxvTWHKiBN3cQ+FlFc3bOGWrInMunIKG3fvZV9NLXurDwGQc+Vkduyvot7n51B9A7urqmOScAE+Pbh88q66YieXCx/EmntuxFF7mb2QNFwe93b3SNe9wJ+cjiWsqRVnP/z6L3juvT8QDPnp23Mg10+9m5XFbwCQdf532Pj5ClYWv06qpJLWqQs3fuPeRjsivLHuGb4z0dr9YPx5l/Hk0vtYtnkxk4efuwdo1Uq0of36UHW48b9da7bt5lLXeXRKtbr0e3TtcsJ1u6uq6ZN+Gn3Srb3Kxpx9Flv2fkHmoDPxB4OEVAmElBQRlm7eyrcyh59wj2j6oPKNKd1Seyzv321wVGsTN1N2Rm7WHgee26GZ7gUHuEe6UoCVHOsrdow3rUfl6kkP+mO9AOJ4qqre6kf3g/Zr7T2qDh/h6ZUfHe1e+NM7Kxl11pl49lWSlprC9NEuzj6j8RTgT0rLKdlXyY8mXAjA+p1l7Kqq5vtjM3lt4xa2V1Yx9iuDGNa/D6u37Tp6XozpVYNuWduzc594/nl4ISM36/o4Ps+wme4FB7g87hBwEw4XxInXirOT0eC+rW1JuCcTDIWo9/n55TcmMf1CF39du4HmNCrCbfKrLxrFr67IYuqIc3l781auzBzOP4s/4y9rNvDB9t3RDPWEEN7e88yE+kBdSxbdtMVO4PY4Pcs4jkm6DnF53CVYK9UcUzT6l6tjVaqxKUHv5n3Rvmfv07qRmTEAEeHsPr1JQTjsbbwZRa9uXak+cmygvrq+gZ7dGpeV2LxnH4PP6IUvEGRfTR03TBrL+l178AVitymEEkp7s+xJlz/k3RKzh1j8wIyM3KykrgmSzEzSdZDL434ah/agisUeZy0R9G9v3gqLFhh11plsq9gPQGVtHYFQiO5dGk+OGHxGL/bXHeZA3RECwRBFu/cy6qxjtZOCoRArP9vJ1BFD8QeDhLumFSUYiu0Mr6D6uxeULhgYDAW2x/Axd2fkZq1rzonhOiUR388Ukcftr7NF5IaTXDOkpdX/ROR7ItLuVyWGmaTrvF8B78XzgbEu1dgU1YAXPdKmv2SL1m7ksffWUFl7mAfeeI8PP9/NxHMGU1V3hD++vZxFazfyLxNHIyLU1Dfw1Aorz6SmpHDN2EwWrljHH99ezujBAxnQ69h6l9XbdjF+SAadO6UysFcPVGHu0hUM6XM63TrHvuSvL1R/xpI9C08LaWhv02e32D8ycrMejcaNVHW+qv4lGvcCvgd0mKRrBtISgHuk6wxgHTA01s/ypfXYv2rSgz4n+nHDgr6tG/yHC8Y69fxk0Cut3+dXDrqxt4icEaVblgBfy8jNqm7uBSJSp6rpEd/PBMar6h0iMhuoU9W5x10zBHgLWIU1ULwHq3hUvb2q9N+wln1vw1o9OgYowCqBWgP8QFVj2dJ3nGnpJgC7BOR3ifEy4ZCkBD6ceG+ZkwkXIOjdnPDLoZ1W4688d9m+l8pVta7ps5tUDlzZkoRr62avviyyC0Ld38zrhgF5qjoKq4DUD+zji1V1gqqOBtzAzaq6BngdmGXXOmnXCRdM0k0YLo+7GPgxELOOQycHziKFAntaVIC+o6po2D1qbeXrJfbS9NaqBaZl5GbtasW19RGFn8YA9zXzuh12zWuwyrIOsb/OtOtebwKuwyqr2uGYpJtAXB53AXBvLO7t9MBZmIYO7wf/CKfjSBalhz3jiqoKP25lnQY/8P2M3KyiJs9sJREZHNEazrYPn6x6H1i1S+5Q1QuA3wMx240kkZmkm2BcHvdDWEXYo8bpgbNIQZ9nK8emxhrNsPXQx5O2Hvp4ZQsvU+CmjNysf8YipqMPUS2NaA3Pb+L0HkC5iKRhtXTD2lK9L+mYpJuYbgTejMaNfGk99sd6j7OWCPrcsZvs2o4VVRVOKT1csqwFl/w6IzdrUaziaaXfAh8C7wKeiOMvAbNEZKOIxHww2Wlm9kKCco90dQZexhpga5WQpARWT3pocyL044Y1HPyfvaBJt3VRovjGwOtX9O06qKnKZI9l5Gb9Mi4BGS1mWroJyuVxh+v6/qO190iUgbOwUKByh0m4bfNe+aJLav1Va09xyivAv8crHqPlTNJNYC6P2w/8CFjc0msTZeAsUtC3OaYFDDqIlLfLnh7XEDy84STv5QM/Nrv5JjaTdBOcnXhnYHU1NEt1r6HuRBk4ixT0bWvRbhvGyYUIdX6zdMFwf8hXHHH4aayE63cqLqN5TNJNAi6PO4A1hze/qXN9aT32bxhzZ69EGTgLUw0F0NoTt3EwWiWg/vQ3SxecGdTADuBR4FbTwk0OZiAtibhHulKBv2Al4BMk4sBZWNC/41N/3atxKU7bkXTv1Ps/s19YNMfpOIzmMy3dJOLyuIPADcDjJ3s/0QbOIgW9m6ucjqGdCQK3moSbfEzSTTIujzvo8rh/AdwGBMLHE3HgLFIosKuv0zG0I4eAq3PyC55yOhCj5UzSTVIuj3s+cAVQlagDZ2EaaqhBfaY/NzpKgIk5+QVRWTxjxJ9JuknM5XG/D0wsuvD28kQbOIsU9Je4gVSn42gHCrASbonTgRitZ5JuknN53NtDqV2+AyTaks+jgt7itlTJMqw6Cv8NfDcnv+CQ08EYbWNmL7QjedmFt2FNH+rc1Lnx1HDw0V0Q+orTcSSpSuDmnPyCN5wOxIgO09JtR26ff9kTwCVYVfkTQih4sMwk3FZ7C7jAJNz2xbR026G87MJuwGwgB4f7Uv31q1YGG9ZlORlDEmoAZuXkF5x0aqCR3EzSbcfysgvHYi0PdWzurrfm6bUaqrnYqecnoY3A9Tn5BcVNnmkkJdO90I7dPv+yDcAE4B6s1lNcqWpIQzUj4/3cJFWH9clkgkm47Ztp6XYQedmFw4CFQNwWUIT8pcW+upc7zNbabbAYuDMnv6DM6UCM2DNJtwPJyy4U4FZgDtAr1s/zHX5rWcjnnhrr5ySxncAdZqFDx2KSbgeUl13YH2sDzJ8Rw+llDdXzitCGhKwF4bAqIBd4LCe/IO7dPoazTNLtwPKyC4cA92NtEhjV/n1V32Fv9eNpJNicYYcdAf4MPJyTX1DjdDCGM0zSNcjLLswE7gN+QJSSb9Bb/JH/yNsTonGvdsCPNYvk/pz8gnKngzGcZZKucVRedqEL+A3wr7Rxfq+v9uXloUBpwlY9i5NDwJPAn80gmRFmkq5xgrzswqHALKxi6T1ac4+Gg3/eBsHzohpY8ijD6kZ40tRKMI5nkq7xpfKyC7tjbYx5E9by4mbRUO0+b83CATELLHGtxGrZ5ufkF5i9yoyTMknXaJa87MLhWMn3BmDgqc4N1H+4KtCwutlJOsntwdpC6dmc/ILPnA7GSHwm6RotkpddmApcBdwMfBtIO/4cb83zazR0YFK8Y4ujWmAJ8DzwTk5+QdDheIwk0qGTrogEgU1YiSOA9ZfoUVVt1a6qIlKnquknOf4cUKCqr7TwfsuAu1T149bEE2v2fN+rgWnA5UC6qqq3+tH9oP2cjS7q9gGvA/8ACnPyC7wOx2MkqU5OB+CwelUdAyAi/YEXsVZq/c7RqJLE7fMvq8BaWrwwL7uwM5CloQOTQb8H9AXE0QDbJgB8DBRi7djwQU5+QcdtoRhR09Fbuo1apiJyLvARVsLoAjwBjMf6C/grVX1fRGYC41X1DvuaAmCuqi4TkTpgAXApcBD4F1WtjGzpisg44E9AOrAfmKmqJ527abd0i4CJQE/gJlVdJyITsYqVdwPqgRtVtURERgHPYi1ISMGad7sX+D8gA2sa2AOqmt/2X71Te2TG9L5Yvw4XY/0aXoT1MyeqI8A6YDWwCliVk19Q52xIRnvU0Vu6jajq5yKSAvQHrrePXSAiI4F3RGR4E7foDmxQ1RwRuQ+rxXxH+E0RSQMeA662k/EM4EGsAaovvaeqThKRycAzQCbgASarakBELgf+gJVgs4E/q+oLItIZK8lOA/aq6rftGGJecwEgJ79gP/Cy/eKRGdNTgJFYCXg84ALOAwYT35q/CnwOfIrVtbTJ/npbTn5Bq7qVDKMlTNI9Ufgj8SVYCRJV9YjILqCppBsCwq3IRVjVoyKNwEqa74oIWMmmqRVKf7NjWCEiPUWkN9bc2edFZBhWEgkPZq0F/ktEMoDFqvqZiGwC5orIw1it7ZVNPC8m7IRWbL/+Ej7+yIzpnYEhWAl4KDAI6GO/+kb8Px3rz2sqJyZpL9bgVi1WicRaoBprvmzpca+ynPyC+hj8iIbRLCbpRrC7F4JABV/eHxmg8VLZU+3Ce3zfjQBbVLUlRb2Pv4cCDwDvq+o1IjIEWAagqi+KyIdYswqWisgtqlpod2lMAx4SkXdU9f4WPD+mcvILfMBW+9Vsdsu5E6BmTqyRTEzStYlIP2A+8LiqqoiswCoEU2h3K5wNlGD1rf7c7oYYhNXfGpYCXAu8hLWaa9VxjykB+onIxaq61u5uGK6qW04R2gzgfRG5BKhR1Rq7i2CP/f7MiJ/hXOBzVf1f++sLRcQDVKnqIrvPeSbtgN1yNrsMG0mnoyfdbiJSxLEpY3/FGuQCmAfMtz+eB7AGvLwishrYgdUXuBnYEHG/w8AoEVkP1GAlzKNU1Sci1wL/ayfOTlgDYqdKugdFZA32QJp9bA5W98KvsEbXw2YA14uIH2uK0/1YO0f8UURCWIVXbmveL41hGLHQoWcvGEZzRMznDvseVj/0Xao6/RTX9QZ+rKrzYhuhkUzMHmmG0bR6VR0T8drZzOt6Az+PYVxGEjJJNwGISJ6IFB33utHpuIzmEZHZInJXxPeb7QHOXGCo/fv5R/u9WSLykYh8KiK/dyZiw0kdvU83Iajq7U7HYJxSuO8fYIeqXtPM6+4BMiNWPV4BDMMafBXgdRGZrKoroh6xkbBM0jWMph1dLt5GV9ivjfb36VhJ2CTdDsQkXcNou+bO3RbgIVVdEPuQjERl+nQNo+12AmMBRGQscI59vJbGO28sBW4SkXT73EF2oSWjAzEtXcNou78DN9j9vh9hr65T1QMislpENgNvqeosEXEBa+1l4HVYNT4qHIrbcICZp2sYhhFHpnvBMAwjjkzSNQzDiCOTdA3DMOLIJF3DMIw4MknXMAwjjkzSNQzDiCOTdA3DMOLo/wGyZJuQwxkZ0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot class distribution\n", + "fig, ax = plt.subplots()\n", + "ax.set_title('Class Distribution', y=1.08)\n", + "ax.pie(class_dist, labels=class_dist.index, autopct='%1.1f%%',\n", + " shadow=False, startangle=90)\n", + "ax.axis('equal')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "n_samples = 2 * int(df['length'].sum() / 0.1) # Set number of samples to be 20% of the length in time of all data\n", + "prob_dist = class_dist / class_dist.sum() # Convert to range of [0,1]\n", + "choices = np.random.choice(class_dist.index, p=prob_dist) # Choose a class" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "config = config(mode='conv')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def check_data():\n", + " # If there is data, load it in \n", + " if os.path.isfile(config.p_path):\n", + " print('Loading existing data for {} model'.format(config.mode))\n", + " with open(config.p_path, 'rb') as handle:\n", + " tmp = pickle.load(handle)\n", + " return tmp\n", + " else:\n", + " return None" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def build_rand_feat():\n", + " \"\"\"\n", + " This function creates a randomly generated and normalized 4-D feature vector\n", + " \"\"\"\n", + " tmp = check_data() # Load in old pickle data if it exists\n", + " if tmp:\n", + " print(config.mode)\n", + " print(config.p_path)\n", + " return tmp.data[0], tmp.data[1] # Returns our previously built randomized feature\n", + " X = []\n", + " y = []\n", + " _min, _max = float('inf'), -float('inf')\n", + " for _ in tqdm(range(n_samples)):\n", + " rand_class = np.random.choice(class_dist.index, p=prob_dist) # Pick a random class based on our prob_dist probabilities\n", + " file = np.random.choice(df[df.label==rand_class].index) # Choose a random file of class rand_class and get its index\n", + " rate, wav = wavfile.read('data/clean/'+file)\n", + " label = df.at[file,'label']\n", + " rand_index = np.random.randint(0, wav.shape[0] - config.step) # Go to random time point in audio file\n", + " sample = wav[rand_index:rand_index + config.step] # Grab a portion of our wav file at rand_index time point\n", + " X_sample = mfcc(sample, rate,\n", + " numcep=config.nfeat, nfilt=config.nfilt, nfft = config.nfft)\n", + " _min = min(np.amin(X_sample), _min) # Update min if our sample min is smaller\n", + " _max = max(np.amax(X_sample), _max) # Update max if our sample max is larger\n", + " X.append(X_sample) # Add our randomly selected sample to list X\n", + " y.append(classes.index(label)) # Add the index corrosponding to our sample's label to list y\n", + " config.min = _min # Save min\n", + " config.max = _max # Save max\n", + " X, y = np.array(X), np.array(y) \n", + " X = (X - _min) / (_max - _min) # Normalize our input matrix X based on min and range, possible to normalize based on mean and standard deviation as well\n", + " if config.mode == 'conv':\n", + " X = X.reshape(X.shape[0], X.shape[1], X.shape[2], 1)\n", + " elif config.mode=='time':\n", + " X = X.reshape(X.shape[0], X.shape[1], X.shape[2])\n", + " y = to_categorical(y, num_classes = 10)\n", + " config.data = (X, y) # Store the data\n", + " \n", + " with open(config.p_path, 'wb') as handle:\n", + " pickle.dump(config, handle, protocol=2)\n", + " \n", + " return X, y\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def get_conv_model():\n", + " model = Sequential()\n", + " # Note that we only use a tenth of a second of our data, so we don't want to pool too much\n", + " model.add(Conv2D(16, (3,3), activation='relu', strides=(1,1), # Strides only (1,1) due to small input space\n", + " padding='same', input_shape=input_shape))\n", + " model.add(Conv2D(32, (3,3), activation='relu', strides=(1,1), \n", + " padding='same'))\n", + " model.add(Conv2D(64, (3,3), activation='relu', strides=(1,1), \n", + " padding='same'))\n", + " model.add(Conv2D(128, (3,3), activation='relu', strides=(1,1), \n", + " padding='same'))\n", + " model.add(MaxPool2D((2,2), dim_ordering=\"th\"))\n", + " model.add(Dropout(0.5))\n", + " model.add(Flatten())\n", + " model.add(Dense(128, activation='relu'))\n", + " model.add(Dense(64, activation='relu'))\n", + " model.add(Dense(32, activation='relu'))\n", + " model.add(Dense(10, activation='softmax')) # Final layer activate with softmax due to our categorical cross-entropy method\n", + " model.summary()\n", + " model.compile(loss='categorical_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['acc'])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def get_recurrent_model():\n", + " # Shape of data for RNN is (n,time,feat)\n", + " model = Sequential()\n", + " model.add(LSTM(128, return_sequences=True, input_shape=input_shape))\n", + " model.add(LSTM(128, return_sequences=True))\n", + " model.add(Dropout(0.5))\n", + " model.add(TimeDistributed(Dense(64, activation='relu')))\n", + " model.add(TimeDistributed(Dense(32, activation='relu')))\n", + " model.add(TimeDistributed(Dense(16, activation='relu')))\n", + " model.add(TimeDistributed(Dense(8, activation='relu')))\n", + " model.add(Flatten())\n", + " model.add(Dense(10, activation='softmax'))\n", + " model.summary()\n", + " model.compile(loss='categorical_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['acc'])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading existing data for conv model\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\users\\tsb\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\ipykernel_launcher.py:12: UserWarning: Update your `MaxPooling2D` call to the Keras 2 API: `MaxPooling2D((2, 2), data_format=\"channels_first\")`\n", + " if sys.path[0] == '':\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_1 (Conv2D) (None, 9, 13, 16) 160 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 9, 13, 32) 4640 \n", + "_________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 9, 13, 64) 18496 \n", + "_________________________________________________________________\n", + "conv2d_4 (Conv2D) (None, 9, 13, 128) 73856 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 9, 6, 64) 0 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 9, 6, 64) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 3456) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 128) 442496 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 64) 8256 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 32) 2080 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 10) 330 \n", + "=================================================================\n", + "Total params: 550,314\n", + "Trainable params: 550,314\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 23769 samples, validate on 2641 samples\n", + "Epoch 1/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6816/23769 [=======>......................] - ETA: 7:34 - loss: 2.3062 - acc: 0.062 - ETA: 4:16 - loss: 2.3044 - acc: 0.156 - ETA: 3:08 - loss: 2.3021 - acc: 0.187 - ETA: 2:33 - loss: 2.3061 - acc: 0.148 - ETA: 2:13 - loss: 2.3005 - acc: 0.162 - ETA: 1:59 - loss: 2.2983 - acc: 0.156 - ETA: 1:49 - loss: 2.2950 - acc: 0.147 - ETA: 1:42 - loss: 2.2934 - acc: 0.144 - ETA: 1:36 - loss: 2.2928 - acc: 0.152 - ETA: 1:31 - loss: 2.2986 - acc: 0.143 - ETA: 1:27 - loss: 2.3020 - acc: 0.147 - ETA: 1:23 - loss: 2.3048 - acc: 0.143 - ETA: 1:21 - loss: 2.3042 - acc: 0.139 - ETA: 1:18 - loss: 2.3036 - acc: 0.136 - ETA: 1:16 - loss: 2.3026 - acc: 0.139 - ETA: 1:15 - loss: 2.3015 - acc: 0.138 - ETA: 1:13 - loss: 2.3014 - acc: 0.136 - ETA: 1:12 - loss: 2.3006 - acc: 0.135 - ETA: 1:10 - loss: 2.3003 - acc: 0.138 - ETA: 1:09 - loss: 2.3006 - acc: 0.137 - ETA: 1:08 - loss: 2.2998 - acc: 0.139 - ETA: 1:07 - loss: 2.2990 - acc: 0.142 - ETA: 1:06 - loss: 2.2987 - acc: 0.139 - ETA: 1:05 - loss: 2.2985 - acc: 0.140 - ETA: 1:04 - loss: 2.2980 - acc: 0.142 - ETA: 1:04 - loss: 2.2972 - acc: 0.145 - ETA: 1:03 - loss: 2.2969 - acc: 0.144 - ETA: 1:02 - loss: 2.2963 - acc: 0.147 - ETA: 1:02 - loss: 2.2953 - acc: 0.147 - ETA: 1:01 - loss: 2.2948 - acc: 0.146 - ETA: 1:01 - loss: 2.2936 - acc: 0.146 - ETA: 1:01 - loss: 2.2932 - acc: 0.146 - ETA: 1:00 - loss: 2.2919 - acc: 0.148 - ETA: 1:00 - loss: 2.2902 - acc: 0.151 - ETA: 1:00 - loss: 2.2875 - acc: 0.153 - ETA: 59s - loss: 2.2835 - acc: 0.157 - ETA: 59s - loss: 2.2839 - acc: 0.15 - ETA: 58s - loss: 2.2814 - acc: 0.15 - ETA: 58s - loss: 2.2803 - acc: 0.15 - ETA: 58s - loss: 2.2823 - acc: 0.15 - ETA: 57s - loss: 2.2818 - acc: 0.15 - ETA: 57s - loss: 2.2819 - acc: 0.15 - ETA: 57s - loss: 2.2808 - acc: 0.15 - ETA: 56s - loss: 2.2809 - acc: 0.15 - ETA: 56s - loss: 2.2806 - acc: 0.15 - ETA: 56s - loss: 2.2803 - acc: 0.16 - ETA: 55s - loss: 2.2801 - acc: 0.16 - ETA: 55s - loss: 2.2795 - acc: 0.16 - ETA: 55s - loss: 2.2791 - acc: 0.16 - ETA: 55s - loss: 2.2784 - acc: 0.16 - ETA: 55s - loss: 2.2774 - acc: 0.16 - ETA: 54s - loss: 2.2763 - acc: 0.16 - ETA: 54s - loss: 2.2748 - acc: 0.16 - ETA: 54s - loss: 2.2750 - acc: 0.16 - ETA: 54s - loss: 2.2752 - acc: 0.16 - ETA: 54s - loss: 2.2749 - acc: 0.16 - ETA: 53s - loss: 2.2747 - acc: 0.16 - ETA: 53s - loss: 2.2728 - acc: 0.16 - ETA: 53s - loss: 2.2730 - acc: 0.15 - ETA: 53s - loss: 2.2727 - acc: 0.15 - ETA: 53s - loss: 2.2730 - acc: 0.15 - ETA: 53s - loss: 2.2711 - acc: 0.15 - ETA: 52s - loss: 2.2703 - acc: 0.15 - ETA: 52s - loss: 2.2699 - acc: 0.15 - ETA: 52s - loss: 2.2674 - acc: 0.15 - ETA: 52s - loss: 2.2654 - acc: 0.15 - ETA: 52s - loss: 2.2629 - acc: 0.15 - ETA: 52s - loss: 2.2613 - acc: 0.15 - ETA: 51s - loss: 2.2586 - acc: 0.15 - ETA: 51s - loss: 2.2563 - acc: 0.16 - ETA: 51s - loss: 2.2547 - acc: 0.15 - ETA: 51s - loss: 2.2504 - acc: 0.16 - ETA: 51s - loss: 2.2464 - acc: 0.16 - ETA: 51s - loss: 2.2466 - acc: 0.16 - ETA: 51s - loss: 2.2421 - acc: 0.16 - ETA: 51s - loss: 2.2398 - acc: 0.16 - ETA: 51s - loss: 2.2370 - acc: 0.16 - ETA: 50s - loss: 2.2343 - acc: 0.16 - ETA: 50s - loss: 2.2335 - acc: 0.16 - ETA: 50s - loss: 2.2316 - acc: 0.16 - ETA: 50s - loss: 2.2278 - acc: 0.17 - ETA: 50s - loss: 2.2250 - acc: 0.17 - ETA: 50s - loss: 2.2192 - acc: 0.17 - ETA: 50s - loss: 2.2177 - acc: 0.17 - ETA: 50s - loss: 2.2114 - acc: 0.17 - ETA: 49s - loss: 2.2079 - acc: 0.17 - ETA: 49s - loss: 2.2037 - acc: 0.17 - ETA: 49s - loss: 2.1983 - acc: 0.18 - ETA: 49s - loss: 2.1918 - acc: 0.18 - ETA: 49s - loss: 2.1889 - acc: 0.18 - ETA: 49s - loss: 2.1885 - acc: 0.18 - ETA: 49s - loss: 2.1850 - acc: 0.18 - ETA: 49s - loss: 2.1814 - acc: 0.19 - ETA: 49s - loss: 2.1786 - acc: 0.19 - ETA: 49s - loss: 2.1750 - acc: 0.19 - ETA: 48s - loss: 2.1724 - acc: 0.19 - ETA: 48s - loss: 2.1695 - acc: 0.19 - ETA: 48s - loss: 2.1657 - acc: 0.19 - ETA: 48s - loss: 2.1623 - acc: 0.19 - ETA: 48s - loss: 2.1589 - acc: 0.20 - ETA: 48s - loss: 2.1550 - acc: 0.20 - ETA: 48s - loss: 2.1494 - acc: 0.20 - ETA: 48s - loss: 2.1446 - acc: 0.20 - ETA: 48s - loss: 2.1405 - acc: 0.21 - ETA: 47s - loss: 2.1392 - acc: 0.21 - ETA: 47s - loss: 2.1361 - acc: 0.21 - ETA: 47s - loss: 2.1311 - acc: 0.21 - ETA: 47s - loss: 2.1273 - acc: 0.21 - ETA: 47s - loss: 2.1238 - acc: 0.21 - ETA: 47s - loss: 2.1219 - acc: 0.21 - ETA: 47s - loss: 2.1169 - acc: 0.21 - ETA: 47s - loss: 2.1125 - acc: 0.22 - ETA: 47s - loss: 2.1106 - acc: 0.22 - ETA: 47s - loss: 2.1056 - acc: 0.22 - ETA: 46s - loss: 2.1019 - acc: 0.22 - ETA: 46s - loss: 2.0997 - acc: 0.22 - ETA: 46s - loss: 2.0980 - acc: 0.22 - ETA: 46s - loss: 2.0930 - acc: 0.22 - ETA: 46s - loss: 2.0861 - acc: 0.23 - ETA: 46s - loss: 2.0803 - acc: 0.23 - ETA: 46s - loss: 2.0783 - acc: 0.23 - ETA: 46s - loss: 2.0735 - acc: 0.23 - ETA: 46s - loss: 2.0683 - acc: 0.23 - ETA: 45s - loss: 2.0616 - acc: 0.24 - ETA: 45s - loss: 2.0591 - acc: 0.24 - ETA: 45s - loss: 2.0546 - acc: 0.24 - ETA: 45s - loss: 2.0515 - acc: 0.24 - ETA: 45s - loss: 2.0482 - acc: 0.24 - ETA: 45s - loss: 2.0459 - acc: 0.24 - ETA: 45s - loss: 2.0446 - acc: 0.25 - ETA: 45s - loss: 2.0407 - acc: 0.25 - ETA: 45s - loss: 2.0393 - acc: 0.25 - ETA: 44s - loss: 2.0355 - acc: 0.25 - ETA: 44s - loss: 2.0313 - acc: 0.25 - ETA: 44s - loss: 2.0282 - acc: 0.25 - ETA: 44s - loss: 2.0228 - acc: 0.25 - ETA: 44s - loss: 2.0200 - acc: 0.26 - ETA: 44s - loss: 2.0172 - acc: 0.26 - ETA: 44s - loss: 2.0128 - acc: 0.26 - ETA: 44s - loss: 2.0100 - acc: 0.26 - ETA: 44s - loss: 2.0053 - acc: 0.26 - ETA: 44s - loss: 2.0017 - acc: 0.26 - ETA: 43s - loss: 1.9979 - acc: 0.26 - ETA: 43s - loss: 1.9925 - acc: 0.27 - ETA: 43s - loss: 1.9905 - acc: 0.27 - ETA: 43s - loss: 1.9852 - acc: 0.27 - ETA: 43s - loss: 1.9811 - acc: 0.27 - ETA: 43s - loss: 1.9774 - acc: 0.27 - ETA: 43s - loss: 1.9721 - acc: 0.27 - ETA: 43s - loss: 1.9677 - acc: 0.27 - ETA: 43s - loss: 1.9667 - acc: 0.28 - ETA: 43s - loss: 1.9647 - acc: 0.28 - ETA: 43s - loss: 1.9601 - acc: 0.28 - ETA: 43s - loss: 1.9584 - acc: 0.28 - ETA: 43s - loss: 1.9554 - acc: 0.28 - ETA: 42s - loss: 1.9519 - acc: 0.28 - ETA: 42s - loss: 1.9474 - acc: 0.28 - ETA: 42s - loss: 1.9440 - acc: 0.28 - ETA: 42s - loss: 1.9392 - acc: 0.28 - ETA: 42s - loss: 1.9358 - acc: 0.29 - ETA: 42s - loss: 1.9329 - acc: 0.29 - ETA: 42s - loss: 1.9301 - acc: 0.29 - ETA: 42s - loss: 1.9284 - acc: 0.29 - ETA: 42s - loss: 1.9254 - acc: 0.29 - ETA: 42s - loss: 1.9231 - acc: 0.29 - ETA: 42s - loss: 1.9203 - acc: 0.29 - ETA: 42s - loss: 1.9163 - acc: 0.29 - ETA: 42s - loss: 1.9127 - acc: 0.30 - ETA: 42s - loss: 1.9077 - acc: 0.30 - ETA: 41s - loss: 1.9050 - acc: 0.30 - ETA: 41s - loss: 1.9023 - acc: 0.30 - ETA: 41s - loss: 1.8994 - acc: 0.30 - ETA: 41s - loss: 1.8975 - acc: 0.30 - ETA: 41s - loss: 1.8933 - acc: 0.30 - ETA: 41s - loss: 1.8879 - acc: 0.31 - ETA: 41s - loss: 1.8847 - acc: 0.31 - ETA: 41s - loss: 1.8835 - acc: 0.31 - ETA: 41s - loss: 1.8779 - acc: 0.31 - ETA: 41s - loss: 1.8759 - acc: 0.31 - ETA: 41s - loss: 1.8719 - acc: 0.31 - ETA: 41s - loss: 1.8686 - acc: 0.31 - ETA: 41s - loss: 1.8658 - acc: 0.31 - ETA: 41s - loss: 1.8623 - acc: 0.32 - ETA: 40s - loss: 1.8583 - acc: 0.32 - ETA: 40s - loss: 1.8547 - acc: 0.32 - ETA: 40s - loss: 1.8532 - acc: 0.32 - ETA: 40s - loss: 1.8486 - acc: 0.32 - ETA: 40s - loss: 1.8475 - acc: 0.32 - ETA: 40s - loss: 1.8452 - acc: 0.32 - ETA: 40s - loss: 1.8433 - acc: 0.32 - ETA: 40s - loss: 1.8409 - acc: 0.33 - ETA: 40s - loss: 1.8374 - acc: 0.33 - ETA: 40s - loss: 1.8356 - acc: 0.33 - ETA: 40s - loss: 1.8349 - acc: 0.33 - ETA: 40s - loss: 1.8330 - acc: 0.33 - ETA: 39s - loss: 1.8303 - acc: 0.33 - ETA: 39s - loss: 1.8274 - acc: 0.33 - ETA: 39s - loss: 1.8254 - acc: 0.33 - ETA: 39s - loss: 1.8225 - acc: 0.33 - ETA: 39s - loss: 1.8211 - acc: 0.33 - ETA: 39s - loss: 1.8181 - acc: 0.33 - ETA: 39s - loss: 1.8173 - acc: 0.34 - ETA: 39s - loss: 1.8143 - acc: 0.34 - ETA: 39s - loss: 1.8112 - acc: 0.34 - ETA: 39s - loss: 1.8079 - acc: 0.34 - ETA: 39s - loss: 1.8052 - acc: 0.34 - ETA: 39s - loss: 1.8038 - acc: 0.34 - ETA: 39s - loss: 1.8007 - acc: 0.34 - ETA: 39s - loss: 1.7978 - acc: 0.34 - ETA: 39s - loss: 1.7945 - acc: 0.35 - ETA: 39s - loss: 1.7925 - acc: 0.35 - ETA: 38s - loss: 1.7895 - acc: 0.35 - ETA: 38s - loss: 1.7870 - acc: 0.3531" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13696/23769 [================>.............] - ETA: 38s - loss: 1.7848 - acc: 0.35 - ETA: 38s - loss: 1.7831 - acc: 0.35 - ETA: 38s - loss: 1.7813 - acc: 0.35 - ETA: 38s - loss: 1.7782 - acc: 0.35 - ETA: 38s - loss: 1.7764 - acc: 0.35 - ETA: 38s - loss: 1.7732 - acc: 0.35 - ETA: 38s - loss: 1.7694 - acc: 0.36 - ETA: 38s - loss: 1.7674 - acc: 0.36 - ETA: 38s - loss: 1.7646 - acc: 0.36 - ETA: 38s - loss: 1.7635 - acc: 0.36 - ETA: 38s - loss: 1.7610 - acc: 0.36 - ETA: 38s - loss: 1.7575 - acc: 0.36 - ETA: 38s - loss: 1.7543 - acc: 0.36 - ETA: 38s - loss: 1.7517 - acc: 0.36 - ETA: 37s - loss: 1.7491 - acc: 0.36 - ETA: 37s - loss: 1.7455 - acc: 0.36 - ETA: 37s - loss: 1.7430 - acc: 0.36 - ETA: 37s - loss: 1.7430 - acc: 0.36 - ETA: 37s - loss: 1.7385 - acc: 0.37 - ETA: 37s - loss: 1.7355 - acc: 0.37 - ETA: 37s - loss: 1.7348 - acc: 0.37 - ETA: 37s - loss: 1.7334 - acc: 0.37 - ETA: 37s - loss: 1.7310 - acc: 0.37 - ETA: 37s - loss: 1.7290 - acc: 0.37 - ETA: 37s - loss: 1.7265 - acc: 0.37 - ETA: 37s - loss: 1.7242 - acc: 0.37 - ETA: 37s - loss: 1.7233 - acc: 0.37 - ETA: 37s - loss: 1.7209 - acc: 0.37 - ETA: 37s - loss: 1.7194 - acc: 0.37 - ETA: 37s - loss: 1.7158 - acc: 0.37 - ETA: 36s - loss: 1.7138 - acc: 0.37 - ETA: 36s - loss: 1.7118 - acc: 0.38 - ETA: 36s - loss: 1.7076 - acc: 0.38 - ETA: 36s - loss: 1.7050 - acc: 0.38 - ETA: 36s - loss: 1.7018 - acc: 0.38 - ETA: 36s - loss: 1.6997 - acc: 0.38 - ETA: 36s - loss: 1.6982 - acc: 0.38 - ETA: 36s - loss: 1.6963 - acc: 0.38 - ETA: 36s - loss: 1.6942 - acc: 0.38 - ETA: 36s - loss: 1.6912 - acc: 0.38 - ETA: 36s - loss: 1.6899 - acc: 0.38 - ETA: 36s - loss: 1.6886 - acc: 0.38 - ETA: 36s - loss: 1.6880 - acc: 0.39 - ETA: 36s - loss: 1.6872 - acc: 0.39 - ETA: 36s - loss: 1.6842 - acc: 0.39 - ETA: 36s - loss: 1.6814 - acc: 0.39 - ETA: 36s - loss: 1.6812 - acc: 0.39 - ETA: 36s - loss: 1.6805 - acc: 0.39 - ETA: 35s - loss: 1.6787 - acc: 0.39 - ETA: 35s - loss: 1.6770 - acc: 0.39 - ETA: 35s - loss: 1.6748 - acc: 0.39 - ETA: 35s - loss: 1.6741 - acc: 0.39 - ETA: 35s - loss: 1.6729 - acc: 0.39 - ETA: 35s - loss: 1.6708 - acc: 0.39 - ETA: 35s - loss: 1.6701 - acc: 0.39 - ETA: 35s - loss: 1.6684 - acc: 0.39 - ETA: 35s - loss: 1.6671 - acc: 0.39 - ETA: 35s - loss: 1.6657 - acc: 0.39 - ETA: 35s - loss: 1.6635 - acc: 0.40 - ETA: 35s - loss: 1.6620 - acc: 0.40 - ETA: 35s - loss: 1.6607 - acc: 0.40 - ETA: 35s - loss: 1.6585 - acc: 0.40 - ETA: 35s - loss: 1.6568 - acc: 0.40 - ETA: 35s - loss: 1.6545 - acc: 0.40 - ETA: 34s - loss: 1.6524 - acc: 0.40 - ETA: 34s - loss: 1.6498 - acc: 0.40 - ETA: 34s - loss: 1.6472 - acc: 0.40 - ETA: 34s - loss: 1.6449 - acc: 0.40 - ETA: 34s - loss: 1.6424 - acc: 0.40 - ETA: 34s - loss: 1.6415 - acc: 0.40 - ETA: 34s - loss: 1.6396 - acc: 0.40 - ETA: 34s - loss: 1.6376 - acc: 0.40 - ETA: 34s - loss: 1.6362 - acc: 0.41 - ETA: 34s - loss: 1.6357 - acc: 0.41 - ETA: 34s - loss: 1.6341 - acc: 0.41 - ETA: 34s - loss: 1.6316 - acc: 0.41 - ETA: 34s - loss: 1.6307 - acc: 0.41 - ETA: 34s - loss: 1.6284 - acc: 0.41 - ETA: 34s - loss: 1.6259 - acc: 0.41 - ETA: 33s - loss: 1.6248 - acc: 0.41 - ETA: 33s - loss: 1.6223 - acc: 0.41 - ETA: 33s - loss: 1.6209 - acc: 0.41 - ETA: 33s - loss: 1.6193 - acc: 0.41 - ETA: 33s - loss: 1.6186 - acc: 0.41 - ETA: 33s - loss: 1.6158 - acc: 0.41 - ETA: 33s - loss: 1.6141 - acc: 0.41 - ETA: 33s - loss: 1.6125 - acc: 0.41 - ETA: 33s - loss: 1.6098 - acc: 0.41 - ETA: 33s - loss: 1.6075 - acc: 0.42 - ETA: 33s - loss: 1.6050 - acc: 0.42 - ETA: 33s - loss: 1.6027 - acc: 0.42 - ETA: 33s - loss: 1.6013 - acc: 0.42 - ETA: 32s - loss: 1.6001 - acc: 0.42 - ETA: 32s - loss: 1.5992 - acc: 0.42 - ETA: 32s - loss: 1.5969 - acc: 0.42 - ETA: 32s - loss: 1.5952 - acc: 0.42 - ETA: 32s - loss: 1.5936 - acc: 0.42 - ETA: 32s - loss: 1.5915 - acc: 0.42 - ETA: 32s - loss: 1.5900 - acc: 0.42 - ETA: 32s - loss: 1.5873 - acc: 0.42 - ETA: 32s - loss: 1.5870 - acc: 0.42 - ETA: 32s - loss: 1.5858 - acc: 0.42 - ETA: 32s - loss: 1.5850 - acc: 0.42 - ETA: 32s - loss: 1.5838 - acc: 0.42 - ETA: 31s - loss: 1.5841 - acc: 0.42 - ETA: 31s - loss: 1.5833 - acc: 0.43 - ETA: 31s - loss: 1.5810 - acc: 0.43 - ETA: 31s - loss: 1.5789 - acc: 0.43 - ETA: 31s - loss: 1.5765 - acc: 0.43 - ETA: 31s - loss: 1.5768 - acc: 0.43 - ETA: 31s - loss: 1.5752 - acc: 0.43 - ETA: 31s - loss: 1.5742 - acc: 0.43 - ETA: 31s - loss: 1.5728 - acc: 0.43 - ETA: 31s - loss: 1.5710 - acc: 0.43 - ETA: 31s - loss: 1.5701 - acc: 0.43 - ETA: 31s - loss: 1.5683 - acc: 0.43 - ETA: 31s - loss: 1.5668 - acc: 0.43 - ETA: 31s - loss: 1.5654 - acc: 0.43 - ETA: 30s - loss: 1.5646 - acc: 0.43 - ETA: 30s - loss: 1.5629 - acc: 0.43 - ETA: 30s - loss: 1.5619 - acc: 0.43 - ETA: 30s - loss: 1.5605 - acc: 0.43 - ETA: 30s - loss: 1.5593 - acc: 0.43 - ETA: 30s - loss: 1.5581 - acc: 0.43 - ETA: 30s - loss: 1.5563 - acc: 0.44 - ETA: 30s - loss: 1.5555 - acc: 0.44 - ETA: 30s - loss: 1.5542 - acc: 0.44 - ETA: 30s - loss: 1.5524 - acc: 0.44 - ETA: 30s - loss: 1.5503 - acc: 0.44 - ETA: 30s - loss: 1.5491 - acc: 0.44 - ETA: 29s - loss: 1.5482 - acc: 0.44 - ETA: 29s - loss: 1.5483 - acc: 0.44 - ETA: 29s - loss: 1.5469 - acc: 0.44 - ETA: 29s - loss: 1.5461 - acc: 0.44 - ETA: 29s - loss: 1.5444 - acc: 0.44 - ETA: 29s - loss: 1.5430 - acc: 0.44 - ETA: 29s - loss: 1.5415 - acc: 0.44 - ETA: 29s - loss: 1.5409 - acc: 0.44 - ETA: 29s - loss: 1.5399 - acc: 0.44 - ETA: 29s - loss: 1.5387 - acc: 0.44 - ETA: 29s - loss: 1.5367 - acc: 0.44 - ETA: 29s - loss: 1.5361 - acc: 0.44 - ETA: 29s - loss: 1.5352 - acc: 0.44 - ETA: 29s - loss: 1.5330 - acc: 0.44 - ETA: 28s - loss: 1.5315 - acc: 0.45 - ETA: 28s - loss: 1.5297 - acc: 0.45 - ETA: 28s - loss: 1.5285 - acc: 0.45 - ETA: 28s - loss: 1.5267 - acc: 0.45 - ETA: 28s - loss: 1.5253 - acc: 0.45 - ETA: 28s - loss: 1.5241 - acc: 0.45 - ETA: 28s - loss: 1.5221 - acc: 0.45 - ETA: 28s - loss: 1.5208 - acc: 0.45 - ETA: 28s - loss: 1.5198 - acc: 0.45 - ETA: 28s - loss: 1.5180 - acc: 0.45 - ETA: 28s - loss: 1.5169 - acc: 0.45 - ETA: 28s - loss: 1.5156 - acc: 0.45 - ETA: 27s - loss: 1.5148 - acc: 0.45 - ETA: 27s - loss: 1.5129 - acc: 0.45 - ETA: 27s - loss: 1.5118 - acc: 0.45 - ETA: 27s - loss: 1.5112 - acc: 0.45 - ETA: 27s - loss: 1.5106 - acc: 0.45 - ETA: 27s - loss: 1.5095 - acc: 0.45 - ETA: 27s - loss: 1.5087 - acc: 0.45 - ETA: 27s - loss: 1.5073 - acc: 0.45 - ETA: 27s - loss: 1.5060 - acc: 0.45 - ETA: 27s - loss: 1.5047 - acc: 0.45 - ETA: 27s - loss: 1.5033 - acc: 0.45 - ETA: 27s - loss: 1.5020 - acc: 0.46 - ETA: 27s - loss: 1.5014 - acc: 0.46 - ETA: 26s - loss: 1.5008 - acc: 0.46 - ETA: 26s - loss: 1.4991 - acc: 0.46 - ETA: 26s - loss: 1.4983 - acc: 0.46 - ETA: 26s - loss: 1.4972 - acc: 0.46 - ETA: 26s - loss: 1.4957 - acc: 0.46 - ETA: 26s - loss: 1.4939 - acc: 0.46 - ETA: 26s - loss: 1.4927 - acc: 0.46 - ETA: 26s - loss: 1.4915 - acc: 0.46 - ETA: 26s - loss: 1.4900 - acc: 0.46 - ETA: 26s - loss: 1.4884 - acc: 0.46 - ETA: 26s - loss: 1.4864 - acc: 0.46 - ETA: 26s - loss: 1.4849 - acc: 0.46 - ETA: 26s - loss: 1.4836 - acc: 0.46 - ETA: 25s - loss: 1.4818 - acc: 0.46 - ETA: 25s - loss: 1.4795 - acc: 0.46 - ETA: 25s - loss: 1.4783 - acc: 0.46 - ETA: 25s - loss: 1.4765 - acc: 0.46 - ETA: 25s - loss: 1.4750 - acc: 0.46 - ETA: 25s - loss: 1.4735 - acc: 0.47 - ETA: 25s - loss: 1.4720 - acc: 0.47 - ETA: 25s - loss: 1.4702 - acc: 0.47 - ETA: 25s - loss: 1.4695 - acc: 0.47 - ETA: 25s - loss: 1.4678 - acc: 0.47 - ETA: 25s - loss: 1.4660 - acc: 0.47 - ETA: 25s - loss: 1.4646 - acc: 0.47 - ETA: 24s - loss: 1.4640 - acc: 0.47 - ETA: 24s - loss: 1.4634 - acc: 0.47 - ETA: 24s - loss: 1.4627 - acc: 0.47 - ETA: 24s - loss: 1.4618 - acc: 0.47 - ETA: 24s - loss: 1.4608 - acc: 0.47 - ETA: 24s - loss: 1.4592 - acc: 0.47 - ETA: 24s - loss: 1.4583 - acc: 0.47 - ETA: 24s - loss: 1.4583 - acc: 0.47 - ETA: 24s - loss: 1.4572 - acc: 0.47 - ETA: 24s - loss: 1.4559 - acc: 0.47 - ETA: 24s - loss: 1.4544 - acc: 0.47 - ETA: 24s - loss: 1.4540 - acc: 0.47 - ETA: 24s - loss: 1.4529 - acc: 0.47 - ETA: 23s - loss: 1.4511 - acc: 0.47 - ETA: 23s - loss: 1.4502 - acc: 0.48 - ETA: 23s - loss: 1.4489 - acc: 0.48 - ETA: 23s - loss: 1.4479 - acc: 0.48 - ETA: 23s - loss: 1.4472 - acc: 0.48 - ETA: 23s - loss: 1.4463 - acc: 0.48 - ETA: 23s - loss: 1.4452 - acc: 0.48 - ETA: 23s - loss: 1.4444 - acc: 0.4820" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20576/23769 [========================>.....] - ETA: 23s - loss: 1.4445 - acc: 0.48 - ETA: 23s - loss: 1.4435 - acc: 0.48 - ETA: 23s - loss: 1.4423 - acc: 0.48 - ETA: 23s - loss: 1.4414 - acc: 0.48 - ETA: 23s - loss: 1.4409 - acc: 0.48 - ETA: 22s - loss: 1.4401 - acc: 0.48 - ETA: 22s - loss: 1.4390 - acc: 0.48 - ETA: 22s - loss: 1.4371 - acc: 0.48 - ETA: 22s - loss: 1.4367 - acc: 0.48 - ETA: 22s - loss: 1.4348 - acc: 0.48 - ETA: 22s - loss: 1.4335 - acc: 0.48 - ETA: 22s - loss: 1.4331 - acc: 0.48 - ETA: 22s - loss: 1.4317 - acc: 0.48 - ETA: 22s - loss: 1.4309 - acc: 0.48 - ETA: 22s - loss: 1.4299 - acc: 0.48 - ETA: 22s - loss: 1.4288 - acc: 0.48 - ETA: 22s - loss: 1.4277 - acc: 0.48 - ETA: 22s - loss: 1.4258 - acc: 0.48 - ETA: 21s - loss: 1.4245 - acc: 0.48 - ETA: 21s - loss: 1.4241 - acc: 0.49 - ETA: 21s - loss: 1.4236 - acc: 0.48 - ETA: 21s - loss: 1.4222 - acc: 0.49 - ETA: 21s - loss: 1.4209 - acc: 0.49 - ETA: 21s - loss: 1.4202 - acc: 0.49 - ETA: 21s - loss: 1.4186 - acc: 0.49 - ETA: 21s - loss: 1.4182 - acc: 0.49 - ETA: 21s - loss: 1.4168 - acc: 0.49 - ETA: 21s - loss: 1.4155 - acc: 0.49 - ETA: 21s - loss: 1.4146 - acc: 0.49 - ETA: 21s - loss: 1.4137 - acc: 0.49 - ETA: 21s - loss: 1.4123 - acc: 0.49 - ETA: 20s - loss: 1.4111 - acc: 0.49 - ETA: 20s - loss: 1.4103 - acc: 0.49 - ETA: 20s - loss: 1.4084 - acc: 0.49 - ETA: 20s - loss: 1.4075 - acc: 0.49 - ETA: 20s - loss: 1.4065 - acc: 0.49 - ETA: 20s - loss: 1.4057 - acc: 0.49 - ETA: 20s - loss: 1.4043 - acc: 0.49 - ETA: 20s - loss: 1.4030 - acc: 0.49 - ETA: 20s - loss: 1.4019 - acc: 0.49 - ETA: 20s - loss: 1.4004 - acc: 0.49 - ETA: 20s - loss: 1.3989 - acc: 0.49 - ETA: 20s - loss: 1.3978 - acc: 0.49 - ETA: 20s - loss: 1.3975 - acc: 0.49 - ETA: 19s - loss: 1.3967 - acc: 0.49 - ETA: 19s - loss: 1.3962 - acc: 0.50 - ETA: 19s - loss: 1.3958 - acc: 0.50 - ETA: 19s - loss: 1.3954 - acc: 0.50 - ETA: 19s - loss: 1.3944 - acc: 0.50 - ETA: 19s - loss: 1.3935 - acc: 0.50 - ETA: 19s - loss: 1.3922 - acc: 0.50 - ETA: 19s - loss: 1.3916 - acc: 0.50 - ETA: 19s - loss: 1.3907 - acc: 0.50 - ETA: 19s - loss: 1.3895 - acc: 0.50 - ETA: 19s - loss: 1.3879 - acc: 0.50 - ETA: 19s - loss: 1.3868 - acc: 0.50 - ETA: 19s - loss: 1.3858 - acc: 0.50 - ETA: 18s - loss: 1.3854 - acc: 0.50 - ETA: 18s - loss: 1.3842 - acc: 0.50 - ETA: 18s - loss: 1.3832 - acc: 0.50 - ETA: 18s - loss: 1.3823 - acc: 0.50 - ETA: 18s - loss: 1.3812 - acc: 0.50 - ETA: 18s - loss: 1.3803 - acc: 0.50 - ETA: 18s - loss: 1.3797 - acc: 0.50 - ETA: 18s - loss: 1.3782 - acc: 0.50 - ETA: 18s - loss: 1.3772 - acc: 0.50 - ETA: 18s - loss: 1.3768 - acc: 0.50 - ETA: 18s - loss: 1.3757 - acc: 0.50 - ETA: 18s - loss: 1.3744 - acc: 0.50 - ETA: 18s - loss: 1.3735 - acc: 0.50 - ETA: 17s - loss: 1.3726 - acc: 0.50 - ETA: 17s - loss: 1.3710 - acc: 0.50 - ETA: 17s - loss: 1.3699 - acc: 0.50 - ETA: 17s - loss: 1.3688 - acc: 0.50 - ETA: 17s - loss: 1.3677 - acc: 0.50 - ETA: 17s - loss: 1.3669 - acc: 0.50 - ETA: 17s - loss: 1.3664 - acc: 0.51 - ETA: 17s - loss: 1.3652 - acc: 0.51 - ETA: 17s - loss: 1.3638 - acc: 0.51 - ETA: 17s - loss: 1.3627 - acc: 0.51 - ETA: 17s - loss: 1.3615 - acc: 0.51 - ETA: 17s - loss: 1.3604 - acc: 0.51 - ETA: 17s - loss: 1.3593 - acc: 0.51 - ETA: 17s - loss: 1.3592 - acc: 0.51 - ETA: 16s - loss: 1.3581 - acc: 0.51 - ETA: 16s - loss: 1.3569 - acc: 0.51 - ETA: 16s - loss: 1.3558 - acc: 0.51 - ETA: 16s - loss: 1.3550 - acc: 0.51 - ETA: 16s - loss: 1.3547 - acc: 0.51 - ETA: 16s - loss: 1.3540 - acc: 0.51 - ETA: 16s - loss: 1.3533 - acc: 0.51 - ETA: 16s - loss: 1.3523 - acc: 0.51 - ETA: 16s - loss: 1.3509 - acc: 0.51 - ETA: 16s - loss: 1.3499 - acc: 0.51 - ETA: 16s - loss: 1.3493 - acc: 0.51 - ETA: 16s - loss: 1.3488 - acc: 0.51 - ETA: 16s - loss: 1.3477 - acc: 0.51 - ETA: 15s - loss: 1.3466 - acc: 0.51 - ETA: 15s - loss: 1.3461 - acc: 0.51 - ETA: 15s - loss: 1.3453 - acc: 0.51 - ETA: 15s - loss: 1.3441 - acc: 0.51 - ETA: 15s - loss: 1.3427 - acc: 0.51 - ETA: 15s - loss: 1.3414 - acc: 0.51 - ETA: 15s - loss: 1.3407 - acc: 0.51 - ETA: 15s - loss: 1.3398 - acc: 0.52 - ETA: 15s - loss: 1.3386 - acc: 0.52 - ETA: 15s - loss: 1.3373 - acc: 0.52 - ETA: 15s - loss: 1.3361 - acc: 0.52 - ETA: 15s - loss: 1.3355 - acc: 0.52 - ETA: 15s - loss: 1.3343 - acc: 0.52 - ETA: 14s - loss: 1.3328 - acc: 0.52 - ETA: 14s - loss: 1.3321 - acc: 0.52 - ETA: 14s - loss: 1.3309 - acc: 0.52 - ETA: 14s - loss: 1.3302 - acc: 0.52 - ETA: 14s - loss: 1.3292 - acc: 0.52 - ETA: 14s - loss: 1.3282 - acc: 0.52 - ETA: 14s - loss: 1.3272 - acc: 0.52 - ETA: 14s - loss: 1.3262 - acc: 0.52 - ETA: 14s - loss: 1.3249 - acc: 0.52 - ETA: 14s - loss: 1.3233 - acc: 0.52 - ETA: 14s - loss: 1.3222 - acc: 0.52 - ETA: 14s - loss: 1.3214 - acc: 0.52 - ETA: 14s - loss: 1.3200 - acc: 0.52 - ETA: 14s - loss: 1.3191 - acc: 0.52 - ETA: 13s - loss: 1.3176 - acc: 0.52 - ETA: 13s - loss: 1.3165 - acc: 0.52 - ETA: 13s - loss: 1.3158 - acc: 0.52 - ETA: 13s - loss: 1.3149 - acc: 0.52 - ETA: 13s - loss: 1.3138 - acc: 0.53 - ETA: 13s - loss: 1.3136 - acc: 0.53 - ETA: 13s - loss: 1.3129 - acc: 0.53 - ETA: 13s - loss: 1.3119 - acc: 0.53 - ETA: 13s - loss: 1.3109 - acc: 0.53 - ETA: 13s - loss: 1.3100 - acc: 0.53 - ETA: 13s - loss: 1.3094 - acc: 0.53 - ETA: 13s - loss: 1.3087 - acc: 0.53 - ETA: 13s - loss: 1.3080 - acc: 0.53 - ETA: 12s - loss: 1.3073 - acc: 0.53 - ETA: 12s - loss: 1.3062 - acc: 0.53 - ETA: 12s - loss: 1.3054 - acc: 0.53 - ETA: 12s - loss: 1.3047 - acc: 0.53 - ETA: 12s - loss: 1.3035 - acc: 0.53 - ETA: 12s - loss: 1.3025 - acc: 0.53 - ETA: 12s - loss: 1.3014 - acc: 0.53 - ETA: 12s - loss: 1.3002 - acc: 0.53 - ETA: 12s - loss: 1.2995 - acc: 0.53 - ETA: 12s - loss: 1.2984 - acc: 0.53 - ETA: 12s - loss: 1.2978 - acc: 0.53 - ETA: 12s - loss: 1.2970 - acc: 0.53 - ETA: 12s - loss: 1.2960 - acc: 0.53 - ETA: 12s - loss: 1.2951 - acc: 0.53 - ETA: 11s - loss: 1.2944 - acc: 0.53 - ETA: 11s - loss: 1.2932 - acc: 0.53 - ETA: 11s - loss: 1.2925 - acc: 0.53 - ETA: 11s - loss: 1.2921 - acc: 0.53 - ETA: 11s - loss: 1.2908 - acc: 0.53 - ETA: 11s - loss: 1.2905 - acc: 0.53 - ETA: 11s - loss: 1.2898 - acc: 0.53 - ETA: 11s - loss: 1.2888 - acc: 0.53 - ETA: 11s - loss: 1.2876 - acc: 0.54 - ETA: 11s - loss: 1.2865 - acc: 0.54 - ETA: 11s - loss: 1.2852 - acc: 0.54 - ETA: 11s - loss: 1.2841 - acc: 0.54 - ETA: 11s - loss: 1.2831 - acc: 0.54 - ETA: 10s - loss: 1.2818 - acc: 0.54 - ETA: 10s - loss: 1.2810 - acc: 0.54 - ETA: 10s - loss: 1.2798 - acc: 0.54 - ETA: 10s - loss: 1.2788 - acc: 0.54 - ETA: 10s - loss: 1.2777 - acc: 0.54 - ETA: 10s - loss: 1.2768 - acc: 0.54 - ETA: 10s - loss: 1.2762 - acc: 0.54 - ETA: 10s - loss: 1.2751 - acc: 0.54 - ETA: 10s - loss: 1.2742 - acc: 0.54 - ETA: 10s - loss: 1.2730 - acc: 0.54 - ETA: 10s - loss: 1.2722 - acc: 0.54 - ETA: 10s - loss: 1.2712 - acc: 0.54 - ETA: 10s - loss: 1.2702 - acc: 0.54 - ETA: 10s - loss: 1.2696 - acc: 0.54 - ETA: 9s - loss: 1.2688 - acc: 0.5469 - ETA: 9s - loss: 1.2675 - acc: 0.547 - ETA: 9s - loss: 1.2672 - acc: 0.547 - ETA: 9s - loss: 1.2663 - acc: 0.547 - ETA: 9s - loss: 1.2659 - acc: 0.548 - ETA: 9s - loss: 1.2652 - acc: 0.548 - ETA: 9s - loss: 1.2644 - acc: 0.548 - ETA: 9s - loss: 1.2640 - acc: 0.548 - ETA: 9s - loss: 1.2628 - acc: 0.549 - ETA: 9s - loss: 1.2615 - acc: 0.549 - ETA: 9s - loss: 1.2615 - acc: 0.549 - ETA: 9s - loss: 1.2602 - acc: 0.550 - ETA: 9s - loss: 1.2601 - acc: 0.550 - ETA: 8s - loss: 1.2596 - acc: 0.550 - ETA: 8s - loss: 1.2587 - acc: 0.550 - ETA: 8s - loss: 1.2576 - acc: 0.551 - ETA: 8s - loss: 1.2568 - acc: 0.551 - ETA: 8s - loss: 1.2561 - acc: 0.551 - ETA: 8s - loss: 1.2551 - acc: 0.552 - ETA: 8s - loss: 1.2545 - acc: 0.552 - ETA: 8s - loss: 1.2540 - acc: 0.552 - ETA: 8s - loss: 1.2532 - acc: 0.552 - ETA: 8s - loss: 1.2526 - acc: 0.553 - ETA: 8s - loss: 1.2521 - acc: 0.553 - ETA: 8s - loss: 1.2520 - acc: 0.553 - ETA: 8s - loss: 1.2515 - acc: 0.553 - ETA: 8s - loss: 1.2504 - acc: 0.554 - ETA: 7s - loss: 1.2497 - acc: 0.554 - ETA: 7s - loss: 1.2487 - acc: 0.554 - ETA: 7s - loss: 1.2479 - acc: 0.555 - ETA: 7s - loss: 1.2467 - acc: 0.555 - ETA: 7s - loss: 1.2459 - acc: 0.555 - ETA: 7s - loss: 1.2452 - acc: 0.556 - ETA: 7s - loss: 1.2447 - acc: 0.556 - ETA: 7s - loss: 1.2438 - acc: 0.556 - ETA: 7s - loss: 1.2428 - acc: 0.556 - ETA: 7s - loss: 1.2419 - acc: 0.5571" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 7s - loss: 1.2413 - acc: 0.557 - ETA: 7s - loss: 1.2399 - acc: 0.557 - ETA: 7s - loss: 1.2400 - acc: 0.557 - ETA: 6s - loss: 1.2398 - acc: 0.558 - ETA: 6s - loss: 1.2391 - acc: 0.558 - ETA: 6s - loss: 1.2384 - acc: 0.558 - ETA: 6s - loss: 1.2378 - acc: 0.558 - ETA: 6s - loss: 1.2372 - acc: 0.558 - ETA: 6s - loss: 1.2365 - acc: 0.559 - ETA: 6s - loss: 1.2355 - acc: 0.559 - ETA: 6s - loss: 1.2346 - acc: 0.559 - ETA: 6s - loss: 1.2345 - acc: 0.559 - ETA: 6s - loss: 1.2335 - acc: 0.560 - ETA: 6s - loss: 1.2328 - acc: 0.560 - ETA: 6s - loss: 1.2321 - acc: 0.560 - ETA: 6s - loss: 1.2314 - acc: 0.560 - ETA: 6s - loss: 1.2311 - acc: 0.560 - ETA: 5s - loss: 1.2302 - acc: 0.561 - ETA: 5s - loss: 1.2301 - acc: 0.561 - ETA: 5s - loss: 1.2297 - acc: 0.561 - ETA: 5s - loss: 1.2291 - acc: 0.561 - ETA: 5s - loss: 1.2285 - acc: 0.561 - ETA: 5s - loss: 1.2276 - acc: 0.562 - ETA: 5s - loss: 1.2270 - acc: 0.562 - ETA: 5s - loss: 1.2261 - acc: 0.562 - ETA: 5s - loss: 1.2260 - acc: 0.562 - ETA: 5s - loss: 1.2255 - acc: 0.563 - ETA: 5s - loss: 1.2247 - acc: 0.563 - ETA: 5s - loss: 1.2233 - acc: 0.563 - ETA: 5s - loss: 1.2224 - acc: 0.564 - ETA: 5s - loss: 1.2213 - acc: 0.564 - ETA: 4s - loss: 1.2208 - acc: 0.564 - ETA: 4s - loss: 1.2198 - acc: 0.565 - ETA: 4s - loss: 1.2191 - acc: 0.565 - ETA: 4s - loss: 1.2186 - acc: 0.565 - ETA: 4s - loss: 1.2183 - acc: 0.565 - ETA: 4s - loss: 1.2178 - acc: 0.565 - ETA: 4s - loss: 1.2173 - acc: 0.565 - ETA: 4s - loss: 1.2165 - acc: 0.566 - ETA: 4s - loss: 1.2158 - acc: 0.566 - ETA: 4s - loss: 1.2151 - acc: 0.566 - ETA: 4s - loss: 1.2147 - acc: 0.567 - ETA: 4s - loss: 1.2135 - acc: 0.567 - ETA: 4s - loss: 1.2129 - acc: 0.567 - ETA: 3s - loss: 1.2123 - acc: 0.567 - ETA: 3s - loss: 1.2112 - acc: 0.568 - ETA: 3s - loss: 1.2107 - acc: 0.568 - ETA: 3s - loss: 1.2099 - acc: 0.568 - ETA: 3s - loss: 1.2098 - acc: 0.568 - ETA: 3s - loss: 1.2095 - acc: 0.568 - ETA: 3s - loss: 1.2087 - acc: 0.569 - ETA: 3s - loss: 1.2080 - acc: 0.569 - ETA: 3s - loss: 1.2077 - acc: 0.569 - ETA: 3s - loss: 1.2071 - acc: 0.569 - ETA: 3s - loss: 1.2064 - acc: 0.570 - ETA: 3s - loss: 1.2058 - acc: 0.570 - ETA: 3s - loss: 1.2053 - acc: 0.570 - ETA: 3s - loss: 1.2050 - acc: 0.570 - ETA: 2s - loss: 1.2044 - acc: 0.570 - ETA: 2s - loss: 1.2036 - acc: 0.571 - ETA: 2s - loss: 1.2028 - acc: 0.571 - ETA: 2s - loss: 1.2025 - acc: 0.571 - ETA: 2s - loss: 1.2019 - acc: 0.571 - ETA: 2s - loss: 1.2019 - acc: 0.571 - ETA: 2s - loss: 1.2010 - acc: 0.571 - ETA: 2s - loss: 1.2004 - acc: 0.571 - ETA: 2s - loss: 1.1997 - acc: 0.572 - ETA: 2s - loss: 1.1989 - acc: 0.572 - ETA: 2s - loss: 1.1984 - acc: 0.572 - ETA: 2s - loss: 1.1976 - acc: 0.572 - ETA: 2s - loss: 1.1969 - acc: 0.573 - ETA: 2s - loss: 1.1962 - acc: 0.573 - ETA: 1s - loss: 1.1959 - acc: 0.573 - ETA: 1s - loss: 1.1949 - acc: 0.574 - ETA: 1s - loss: 1.1941 - acc: 0.574 - ETA: 1s - loss: 1.1934 - acc: 0.574 - ETA: 1s - loss: 1.1929 - acc: 0.575 - ETA: 1s - loss: 1.1917 - acc: 0.575 - ETA: 1s - loss: 1.1911 - acc: 0.575 - ETA: 1s - loss: 1.1906 - acc: 0.575 - ETA: 1s - loss: 1.1908 - acc: 0.575 - ETA: 1s - loss: 1.1899 - acc: 0.576 - ETA: 1s - loss: 1.1894 - acc: 0.576 - ETA: 1s - loss: 1.1890 - acc: 0.576 - ETA: 1s - loss: 1.1881 - acc: 0.576 - ETA: 1s - loss: 1.1876 - acc: 0.577 - ETA: 0s - loss: 1.1867 - acc: 0.577 - ETA: 0s - loss: 1.1861 - acc: 0.577 - ETA: 0s - loss: 1.1853 - acc: 0.578 - ETA: 0s - loss: 1.1850 - acc: 0.578 - ETA: 0s - loss: 1.1839 - acc: 0.578 - ETA: 0s - loss: 1.1838 - acc: 0.578 - ETA: 0s - loss: 1.1830 - acc: 0.579 - ETA: 0s - loss: 1.1821 - acc: 0.579 - ETA: 0s - loss: 1.1817 - acc: 0.579 - ETA: 0s - loss: 1.1809 - acc: 0.579 - ETA: 0s - loss: 1.1801 - acc: 0.580 - ETA: 0s - loss: 1.1794 - acc: 0.580 - ETA: 0s - loss: 1.1787 - acc: 0.580 - 55s 2ms/step - loss: 1.1787 - acc: 0.5806 - val_loss: 0.7286 - val_acc: 0.7562\n", + "\n", + "Epoch 00001: val_acc improved from -inf to 0.75615, saving model to models\\conv.model\n", + "Epoch 2/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 54s - loss: 0.7151 - acc: 0.68 - ETA: 56s - loss: 0.7124 - acc: 0.68 - ETA: 55s - loss: 0.7980 - acc: 0.69 - ETA: 55s - loss: 0.7452 - acc: 0.71 - ETA: 54s - loss: 0.6816 - acc: 0.74 - ETA: 53s - loss: 0.6548 - acc: 0.75 - ETA: 53s - loss: 0.6893 - acc: 0.75 - ETA: 53s - loss: 0.6709 - acc: 0.75 - ETA: 53s - loss: 0.6544 - acc: 0.77 - ETA: 52s - loss: 0.6907 - acc: 0.75 - ETA: 52s - loss: 0.7004 - acc: 0.75 - ETA: 52s - loss: 0.7199 - acc: 0.75 - ETA: 52s - loss: 0.7466 - acc: 0.74 - ETA: 52s - loss: 0.7458 - acc: 0.74 - ETA: 52s - loss: 0.7409 - acc: 0.74 - ETA: 52s - loss: 0.7365 - acc: 0.74 - ETA: 52s - loss: 0.7262 - acc: 0.74 - ETA: 52s - loss: 0.7268 - acc: 0.74 - ETA: 52s - loss: 0.7236 - acc: 0.74 - ETA: 52s - loss: 0.7231 - acc: 0.74 - ETA: 52s - loss: 0.7129 - acc: 0.75 - ETA: 52s - loss: 0.7067 - acc: 0.75 - ETA: 51s - loss: 0.6976 - acc: 0.75 - ETA: 52s - loss: 0.7149 - acc: 0.75 - ETA: 52s - loss: 0.7024 - acc: 0.75 - ETA: 52s - loss: 0.6957 - acc: 0.76 - ETA: 52s - loss: 0.7008 - acc: 0.76 - ETA: 51s - loss: 0.6987 - acc: 0.76 - ETA: 51s - loss: 0.6995 - acc: 0.76 - ETA: 51s - loss: 0.7008 - acc: 0.75 - ETA: 51s - loss: 0.7001 - acc: 0.75 - ETA: 51s - loss: 0.6914 - acc: 0.75 - ETA: 50s - loss: 0.6856 - acc: 0.76 - ETA: 50s - loss: 0.6833 - acc: 0.76 - ETA: 50s - loss: 0.6808 - acc: 0.76 - ETA: 50s - loss: 0.6774 - acc: 0.76 - ETA: 50s - loss: 0.6762 - acc: 0.76 - ETA: 50s - loss: 0.6860 - acc: 0.76 - ETA: 50s - loss: 0.6838 - acc: 0.76 - ETA: 50s - loss: 0.6877 - acc: 0.76 - ETA: 49s - loss: 0.6893 - acc: 0.76 - ETA: 49s - loss: 0.6896 - acc: 0.76 - ETA: 49s - loss: 0.6898 - acc: 0.76 - ETA: 49s - loss: 0.6921 - acc: 0.75 - ETA: 49s - loss: 0.6899 - acc: 0.76 - ETA: 49s - loss: 0.6901 - acc: 0.76 - ETA: 49s - loss: 0.6900 - acc: 0.76 - ETA: 48s - loss: 0.6869 - acc: 0.76 - ETA: 48s - loss: 0.6885 - acc: 0.76 - ETA: 48s - loss: 0.6860 - acc: 0.76 - ETA: 48s - loss: 0.6875 - acc: 0.76 - ETA: 48s - loss: 0.6873 - acc: 0.76 - ETA: 48s - loss: 0.6851 - acc: 0.76 - ETA: 48s - loss: 0.6779 - acc: 0.76 - ETA: 48s - loss: 0.6717 - acc: 0.76 - ETA: 48s - loss: 0.6745 - acc: 0.76 - ETA: 48s - loss: 0.6735 - acc: 0.76 - ETA: 47s - loss: 0.6715 - acc: 0.76 - ETA: 47s - loss: 0.6708 - acc: 0.76 - ETA: 47s - loss: 0.6724 - acc: 0.76 - ETA: 47s - loss: 0.6737 - acc: 0.76 - ETA: 47s - loss: 0.6810 - acc: 0.76 - ETA: 47s - loss: 0.6771 - acc: 0.76 - ETA: 47s - loss: 0.6764 - acc: 0.76 - ETA: 47s - loss: 0.6745 - acc: 0.76 - ETA: 47s - loss: 0.6773 - acc: 0.76 - ETA: 47s - loss: 0.6801 - acc: 0.76 - ETA: 47s - loss: 0.6773 - acc: 0.76 - ETA: 47s - loss: 0.6755 - acc: 0.76 - ETA: 46s - loss: 0.6799 - acc: 0.76 - ETA: 46s - loss: 0.6778 - acc: 0.76 - ETA: 46s - loss: 0.6750 - acc: 0.76 - ETA: 46s - loss: 0.6749 - acc: 0.76 - ETA: 46s - loss: 0.6738 - acc: 0.76 - ETA: 46s - loss: 0.6717 - acc: 0.76 - ETA: 46s - loss: 0.6711 - acc: 0.76 - ETA: 47s - loss: 0.6688 - acc: 0.76 - ETA: 47s - loss: 0.6661 - acc: 0.76 - ETA: 47s - loss: 0.6645 - acc: 0.76 - ETA: 47s - loss: 0.6624 - acc: 0.76 - ETA: 47s - loss: 0.6653 - acc: 0.76 - ETA: 47s - loss: 0.6634 - acc: 0.76 - ETA: 47s - loss: 0.6622 - acc: 0.76 - ETA: 47s - loss: 0.6625 - acc: 0.77 - ETA: 47s - loss: 0.6607 - acc: 0.77 - ETA: 47s - loss: 0.6577 - acc: 0.77 - ETA: 46s - loss: 0.6573 - acc: 0.77 - ETA: 46s - loss: 0.6574 - acc: 0.77 - ETA: 46s - loss: 0.6576 - acc: 0.77 - ETA: 46s - loss: 0.6601 - acc: 0.77 - ETA: 46s - loss: 0.6607 - acc: 0.77 - ETA: 46s - loss: 0.6618 - acc: 0.77 - ETA: 46s - loss: 0.6620 - acc: 0.77 - ETA: 46s - loss: 0.6685 - acc: 0.76 - ETA: 46s - loss: 0.6720 - acc: 0.76 - ETA: 46s - loss: 0.6721 - acc: 0.76 - ETA: 46s - loss: 0.6706 - acc: 0.76 - ETA: 46s - loss: 0.6689 - acc: 0.76 - ETA: 46s - loss: 0.6702 - acc: 0.76 - ETA: 46s - loss: 0.6677 - acc: 0.77 - ETA: 45s - loss: 0.6679 - acc: 0.77 - ETA: 45s - loss: 0.6672 - acc: 0.77 - ETA: 45s - loss: 0.6683 - acc: 0.77 - ETA: 45s - loss: 0.6718 - acc: 0.76 - ETA: 45s - loss: 0.6759 - acc: 0.76 - ETA: 45s - loss: 0.6741 - acc: 0.76 - ETA: 45s - loss: 0.6727 - acc: 0.76 - ETA: 45s - loss: 0.6713 - acc: 0.77 - ETA: 45s - loss: 0.6715 - acc: 0.76 - ETA: 45s - loss: 0.6714 - acc: 0.76 - ETA: 45s - loss: 0.6716 - acc: 0.76 - ETA: 45s - loss: 0.6738 - acc: 0.76 - ETA: 45s - loss: 0.6710 - acc: 0.76 - ETA: 45s - loss: 0.6705 - acc: 0.76 - ETA: 45s - loss: 0.6706 - acc: 0.77 - ETA: 44s - loss: 0.6694 - acc: 0.77 - ETA: 44s - loss: 0.6708 - acc: 0.77 - ETA: 44s - loss: 0.6711 - acc: 0.76 - ETA: 44s - loss: 0.6714 - acc: 0.76 - ETA: 44s - loss: 0.6727 - acc: 0.76 - ETA: 44s - loss: 0.6713 - acc: 0.77 - ETA: 44s - loss: 0.6709 - acc: 0.77 - ETA: 44s - loss: 0.6712 - acc: 0.77 - ETA: 44s - loss: 0.6699 - acc: 0.76 - ETA: 44s - loss: 0.6698 - acc: 0.76 - ETA: 44s - loss: 0.6675 - acc: 0.77 - ETA: 44s - loss: 0.6664 - acc: 0.76 - ETA: 44s - loss: 0.6662 - acc: 0.77 - ETA: 44s - loss: 0.6662 - acc: 0.77 - ETA: 44s - loss: 0.6673 - acc: 0.76 - ETA: 44s - loss: 0.6674 - acc: 0.76 - ETA: 44s - loss: 0.6662 - acc: 0.76 - ETA: 44s - loss: 0.6677 - acc: 0.76 - ETA: 44s - loss: 0.6676 - acc: 0.76 - ETA: 44s - loss: 0.6659 - acc: 0.76 - ETA: 43s - loss: 0.6647 - acc: 0.76 - ETA: 43s - loss: 0.6645 - acc: 0.76 - ETA: 43s - loss: 0.6639 - acc: 0.76 - ETA: 43s - loss: 0.6635 - acc: 0.76 - ETA: 43s - loss: 0.6645 - acc: 0.76 - ETA: 43s - loss: 0.6655 - acc: 0.76 - ETA: 43s - loss: 0.6642 - acc: 0.76 - ETA: 43s - loss: 0.6632 - acc: 0.76 - ETA: 43s - loss: 0.6626 - acc: 0.76 - ETA: 43s - loss: 0.6622 - acc: 0.76 - ETA: 42s - loss: 0.6604 - acc: 0.77 - ETA: 42s - loss: 0.6585 - acc: 0.77 - ETA: 42s - loss: 0.6573 - acc: 0.77 - ETA: 42s - loss: 0.6571 - acc: 0.77 - ETA: 42s - loss: 0.6585 - acc: 0.77 - ETA: 42s - loss: 0.6583 - acc: 0.77 - ETA: 42s - loss: 0.6601 - acc: 0.77 - ETA: 42s - loss: 0.6589 - acc: 0.77 - ETA: 42s - loss: 0.6574 - acc: 0.77 - ETA: 42s - loss: 0.6574 - acc: 0.77 - ETA: 42s - loss: 0.6567 - acc: 0.77 - ETA: 42s - loss: 0.6573 - acc: 0.77 - ETA: 42s - loss: 0.6571 - acc: 0.77 - ETA: 42s - loss: 0.6554 - acc: 0.77 - ETA: 41s - loss: 0.6555 - acc: 0.77 - ETA: 41s - loss: 0.6548 - acc: 0.77 - ETA: 41s - loss: 0.6551 - acc: 0.77 - ETA: 41s - loss: 0.6531 - acc: 0.77 - ETA: 41s - loss: 0.6542 - acc: 0.77 - ETA: 41s - loss: 0.6532 - acc: 0.77 - ETA: 41s - loss: 0.6532 - acc: 0.77 - ETA: 41s - loss: 0.6532 - acc: 0.77 - ETA: 41s - loss: 0.6531 - acc: 0.77 - ETA: 41s - loss: 0.6536 - acc: 0.77 - ETA: 41s - loss: 0.6525 - acc: 0.77 - ETA: 41s - loss: 0.6556 - acc: 0.76 - ETA: 40s - loss: 0.6549 - acc: 0.76 - ETA: 40s - loss: 0.6543 - acc: 0.76 - ETA: 40s - loss: 0.6535 - acc: 0.76 - ETA: 40s - loss: 0.6562 - acc: 0.76 - ETA: 40s - loss: 0.6557 - acc: 0.76 - ETA: 40s - loss: 0.6536 - acc: 0.77 - ETA: 40s - loss: 0.6543 - acc: 0.77 - ETA: 40s - loss: 0.6531 - acc: 0.77 - ETA: 40s - loss: 0.6533 - acc: 0.77 - ETA: 40s - loss: 0.6531 - acc: 0.77 - ETA: 40s - loss: 0.6520 - acc: 0.77 - ETA: 40s - loss: 0.6515 - acc: 0.77 - ETA: 40s - loss: 0.6502 - acc: 0.77 - ETA: 40s - loss: 0.6492 - acc: 0.77 - ETA: 39s - loss: 0.6499 - acc: 0.77 - ETA: 39s - loss: 0.6512 - acc: 0.77 - ETA: 39s - loss: 0.6507 - acc: 0.77 - ETA: 39s - loss: 0.6507 - acc: 0.77 - ETA: 39s - loss: 0.6522 - acc: 0.77 - ETA: 39s - loss: 0.6528 - acc: 0.77 - ETA: 39s - loss: 0.6532 - acc: 0.77 - ETA: 39s - loss: 0.6533 - acc: 0.77 - ETA: 39s - loss: 0.6523 - acc: 0.77 - ETA: 39s - loss: 0.6528 - acc: 0.77 - ETA: 39s - loss: 0.6531 - acc: 0.77 - ETA: 39s - loss: 0.6533 - acc: 0.77 - ETA: 39s - loss: 0.6550 - acc: 0.76 - ETA: 39s - loss: 0.6564 - acc: 0.76 - ETA: 38s - loss: 0.6558 - acc: 0.76 - ETA: 38s - loss: 0.6553 - acc: 0.77 - ETA: 38s - loss: 0.6547 - acc: 0.77 - ETA: 38s - loss: 0.6541 - acc: 0.77 - ETA: 38s - loss: 0.6543 - acc: 0.77 - ETA: 38s - loss: 0.6539 - acc: 0.77 - ETA: 38s - loss: 0.6539 - acc: 0.77 - ETA: 38s - loss: 0.6527 - acc: 0.77 - ETA: 38s - loss: 0.6523 - acc: 0.77 - ETA: 38s - loss: 0.6548 - acc: 0.77 - ETA: 38s - loss: 0.6548 - acc: 0.77 - ETA: 38s - loss: 0.6562 - acc: 0.77 - ETA: 38s - loss: 0.6546 - acc: 0.77 - ETA: 38s - loss: 0.6551 - acc: 0.77 - ETA: 37s - loss: 0.6557 - acc: 0.77 - ETA: 37s - loss: 0.6566 - acc: 0.7708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.6571 - acc: 0.77 - ETA: 37s - loss: 0.6579 - acc: 0.77 - ETA: 37s - loss: 0.6581 - acc: 0.77 - ETA: 37s - loss: 0.6596 - acc: 0.77 - ETA: 37s - loss: 0.6584 - acc: 0.77 - ETA: 37s - loss: 0.6592 - acc: 0.76 - ETA: 37s - loss: 0.6589 - acc: 0.77 - ETA: 37s - loss: 0.6623 - acc: 0.76 - ETA: 37s - loss: 0.6615 - acc: 0.77 - ETA: 37s - loss: 0.6603 - acc: 0.77 - ETA: 37s - loss: 0.6609 - acc: 0.77 - ETA: 37s - loss: 0.6606 - acc: 0.77 - ETA: 37s - loss: 0.6621 - acc: 0.77 - ETA: 37s - loss: 0.6632 - acc: 0.76 - ETA: 36s - loss: 0.6636 - acc: 0.76 - ETA: 36s - loss: 0.6634 - acc: 0.76 - ETA: 36s - loss: 0.6634 - acc: 0.76 - ETA: 36s - loss: 0.6636 - acc: 0.76 - ETA: 36s - loss: 0.6646 - acc: 0.76 - ETA: 36s - loss: 0.6641 - acc: 0.76 - ETA: 36s - loss: 0.6631 - acc: 0.77 - ETA: 36s - loss: 0.6624 - acc: 0.77 - ETA: 36s - loss: 0.6628 - acc: 0.77 - ETA: 36s - loss: 0.6630 - acc: 0.77 - ETA: 36s - loss: 0.6625 - acc: 0.77 - ETA: 36s - loss: 0.6605 - acc: 0.77 - ETA: 36s - loss: 0.6601 - acc: 0.77 - ETA: 36s - loss: 0.6588 - acc: 0.77 - ETA: 35s - loss: 0.6591 - acc: 0.77 - ETA: 35s - loss: 0.6594 - acc: 0.77 - ETA: 35s - loss: 0.6586 - acc: 0.77 - ETA: 35s - loss: 0.6574 - acc: 0.77 - ETA: 35s - loss: 0.6573 - acc: 0.77 - ETA: 35s - loss: 0.6566 - acc: 0.77 - ETA: 35s - loss: 0.6563 - acc: 0.77 - ETA: 35s - loss: 0.6557 - acc: 0.77 - ETA: 35s - loss: 0.6562 - acc: 0.77 - ETA: 35s - loss: 0.6562 - acc: 0.77 - ETA: 35s - loss: 0.6554 - acc: 0.77 - ETA: 35s - loss: 0.6549 - acc: 0.77 - ETA: 35s - loss: 0.6546 - acc: 0.77 - ETA: 35s - loss: 0.6538 - acc: 0.77 - ETA: 34s - loss: 0.6538 - acc: 0.77 - ETA: 34s - loss: 0.6529 - acc: 0.77 - ETA: 34s - loss: 0.6528 - acc: 0.77 - ETA: 34s - loss: 0.6539 - acc: 0.77 - ETA: 34s - loss: 0.6533 - acc: 0.77 - ETA: 34s - loss: 0.6539 - acc: 0.77 - ETA: 34s - loss: 0.6547 - acc: 0.77 - ETA: 34s - loss: 0.6543 - acc: 0.77 - ETA: 34s - loss: 0.6540 - acc: 0.77 - ETA: 34s - loss: 0.6537 - acc: 0.77 - ETA: 34s - loss: 0.6541 - acc: 0.77 - ETA: 34s - loss: 0.6540 - acc: 0.77 - ETA: 34s - loss: 0.6538 - acc: 0.77 - ETA: 34s - loss: 0.6528 - acc: 0.77 - ETA: 33s - loss: 0.6522 - acc: 0.77 - ETA: 33s - loss: 0.6523 - acc: 0.77 - ETA: 33s - loss: 0.6516 - acc: 0.77 - ETA: 33s - loss: 0.6510 - acc: 0.77 - ETA: 33s - loss: 0.6504 - acc: 0.77 - ETA: 33s - loss: 0.6503 - acc: 0.77 - ETA: 33s - loss: 0.6518 - acc: 0.77 - ETA: 33s - loss: 0.6515 - acc: 0.77 - ETA: 33s - loss: 0.6513 - acc: 0.77 - ETA: 33s - loss: 0.6509 - acc: 0.77 - ETA: 33s - loss: 0.6515 - acc: 0.77 - ETA: 33s - loss: 0.6520 - acc: 0.77 - ETA: 33s - loss: 0.6524 - acc: 0.77 - ETA: 32s - loss: 0.6524 - acc: 0.77 - ETA: 32s - loss: 0.6517 - acc: 0.77 - ETA: 32s - loss: 0.6521 - acc: 0.77 - ETA: 32s - loss: 0.6516 - acc: 0.77 - ETA: 32s - loss: 0.6518 - acc: 0.77 - ETA: 32s - loss: 0.6508 - acc: 0.77 - ETA: 32s - loss: 0.6506 - acc: 0.77 - ETA: 32s - loss: 0.6507 - acc: 0.77 - ETA: 32s - loss: 0.6503 - acc: 0.77 - ETA: 32s - loss: 0.6496 - acc: 0.77 - ETA: 32s - loss: 0.6499 - acc: 0.77 - ETA: 32s - loss: 0.6495 - acc: 0.77 - ETA: 32s - loss: 0.6493 - acc: 0.77 - ETA: 32s - loss: 0.6488 - acc: 0.77 - ETA: 31s - loss: 0.6481 - acc: 0.77 - ETA: 31s - loss: 0.6475 - acc: 0.77 - ETA: 31s - loss: 0.6469 - acc: 0.77 - ETA: 31s - loss: 0.6462 - acc: 0.77 - ETA: 31s - loss: 0.6463 - acc: 0.77 - ETA: 31s - loss: 0.6458 - acc: 0.77 - ETA: 31s - loss: 0.6450 - acc: 0.77 - ETA: 31s - loss: 0.6441 - acc: 0.77 - ETA: 31s - loss: 0.6438 - acc: 0.77 - ETA: 31s - loss: 0.6447 - acc: 0.77 - ETA: 31s - loss: 0.6449 - acc: 0.77 - ETA: 31s - loss: 0.6450 - acc: 0.77 - ETA: 31s - loss: 0.6459 - acc: 0.77 - ETA: 31s - loss: 0.6449 - acc: 0.77 - ETA: 30s - loss: 0.6450 - acc: 0.77 - ETA: 30s - loss: 0.6442 - acc: 0.77 - ETA: 30s - loss: 0.6441 - acc: 0.77 - ETA: 30s - loss: 0.6438 - acc: 0.77 - ETA: 30s - loss: 0.6434 - acc: 0.77 - ETA: 30s - loss: 0.6439 - acc: 0.77 - ETA: 30s - loss: 0.6435 - acc: 0.77 - ETA: 30s - loss: 0.6437 - acc: 0.77 - ETA: 30s - loss: 0.6431 - acc: 0.77 - ETA: 30s - loss: 0.6425 - acc: 0.77 - ETA: 30s - loss: 0.6413 - acc: 0.77 - ETA: 30s - loss: 0.6412 - acc: 0.77 - ETA: 30s - loss: 0.6415 - acc: 0.77 - ETA: 30s - loss: 0.6410 - acc: 0.77 - ETA: 30s - loss: 0.6408 - acc: 0.77 - ETA: 29s - loss: 0.6406 - acc: 0.77 - ETA: 29s - loss: 0.6409 - acc: 0.77 - ETA: 29s - loss: 0.6402 - acc: 0.77 - ETA: 29s - loss: 0.6409 - acc: 0.77 - ETA: 29s - loss: 0.6406 - acc: 0.77 - ETA: 29s - loss: 0.6404 - acc: 0.77 - ETA: 29s - loss: 0.6402 - acc: 0.77 - ETA: 29s - loss: 0.6394 - acc: 0.77 - ETA: 29s - loss: 0.6386 - acc: 0.77 - ETA: 29s - loss: 0.6384 - acc: 0.77 - ETA: 29s - loss: 0.6376 - acc: 0.77 - ETA: 29s - loss: 0.6374 - acc: 0.77 - ETA: 29s - loss: 0.6373 - acc: 0.77 - ETA: 29s - loss: 0.6374 - acc: 0.77 - ETA: 28s - loss: 0.6373 - acc: 0.77 - ETA: 28s - loss: 0.6372 - acc: 0.77 - ETA: 28s - loss: 0.6368 - acc: 0.77 - ETA: 28s - loss: 0.6370 - acc: 0.77 - ETA: 28s - loss: 0.6364 - acc: 0.77 - ETA: 28s - loss: 0.6360 - acc: 0.77 - ETA: 28s - loss: 0.6354 - acc: 0.77 - ETA: 28s - loss: 0.6351 - acc: 0.77 - ETA: 28s - loss: 0.6349 - acc: 0.77 - ETA: 28s - loss: 0.6343 - acc: 0.77 - ETA: 28s - loss: 0.6346 - acc: 0.77 - ETA: 28s - loss: 0.6341 - acc: 0.77 - ETA: 28s - loss: 0.6335 - acc: 0.78 - ETA: 27s - loss: 0.6336 - acc: 0.78 - ETA: 27s - loss: 0.6330 - acc: 0.78 - ETA: 27s - loss: 0.6327 - acc: 0.78 - ETA: 27s - loss: 0.6330 - acc: 0.78 - ETA: 27s - loss: 0.6328 - acc: 0.78 - ETA: 27s - loss: 0.6320 - acc: 0.78 - ETA: 27s - loss: 0.6315 - acc: 0.78 - ETA: 27s - loss: 0.6314 - acc: 0.78 - ETA: 27s - loss: 0.6313 - acc: 0.78 - ETA: 27s - loss: 0.6305 - acc: 0.78 - ETA: 27s - loss: 0.6296 - acc: 0.78 - ETA: 27s - loss: 0.6287 - acc: 0.78 - ETA: 27s - loss: 0.6283 - acc: 0.78 - ETA: 27s - loss: 0.6276 - acc: 0.78 - ETA: 26s - loss: 0.6270 - acc: 0.78 - ETA: 26s - loss: 0.6270 - acc: 0.78 - ETA: 26s - loss: 0.6267 - acc: 0.78 - ETA: 26s - loss: 0.6266 - acc: 0.78 - ETA: 26s - loss: 0.6260 - acc: 0.78 - ETA: 26s - loss: 0.6251 - acc: 0.78 - ETA: 26s - loss: 0.6245 - acc: 0.78 - ETA: 26s - loss: 0.6238 - acc: 0.78 - ETA: 26s - loss: 0.6240 - acc: 0.78 - ETA: 26s - loss: 0.6244 - acc: 0.78 - ETA: 26s - loss: 0.6244 - acc: 0.78 - ETA: 26s - loss: 0.6238 - acc: 0.78 - ETA: 25s - loss: 0.6251 - acc: 0.78 - ETA: 25s - loss: 0.6254 - acc: 0.78 - ETA: 25s - loss: 0.6254 - acc: 0.78 - ETA: 25s - loss: 0.6253 - acc: 0.78 - ETA: 25s - loss: 0.6241 - acc: 0.78 - ETA: 25s - loss: 0.6236 - acc: 0.78 - ETA: 25s - loss: 0.6237 - acc: 0.78 - ETA: 25s - loss: 0.6230 - acc: 0.78 - ETA: 25s - loss: 0.6230 - acc: 0.78 - ETA: 25s - loss: 0.6224 - acc: 0.78 - ETA: 25s - loss: 0.6221 - acc: 0.78 - ETA: 25s - loss: 0.6222 - acc: 0.78 - ETA: 25s - loss: 0.6218 - acc: 0.78 - ETA: 24s - loss: 0.6217 - acc: 0.78 - ETA: 24s - loss: 0.6223 - acc: 0.78 - ETA: 24s - loss: 0.6216 - acc: 0.78 - ETA: 24s - loss: 0.6211 - acc: 0.78 - ETA: 24s - loss: 0.6208 - acc: 0.78 - ETA: 24s - loss: 0.6211 - acc: 0.78 - ETA: 24s - loss: 0.6214 - acc: 0.78 - ETA: 24s - loss: 0.6205 - acc: 0.78 - ETA: 24s - loss: 0.6212 - acc: 0.78 - ETA: 24s - loss: 0.6212 - acc: 0.78 - ETA: 24s - loss: 0.6210 - acc: 0.78 - ETA: 24s - loss: 0.6208 - acc: 0.78 - ETA: 24s - loss: 0.6205 - acc: 0.78 - ETA: 24s - loss: 0.6204 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6191 - acc: 0.78 - ETA: 23s - loss: 0.6190 - acc: 0.78 - ETA: 23s - loss: 0.6187 - acc: 0.78 - ETA: 23s - loss: 0.6186 - acc: 0.78 - ETA: 23s - loss: 0.6190 - acc: 0.78 - ETA: 23s - loss: 0.6186 - acc: 0.78 - ETA: 23s - loss: 0.6189 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6201 - acc: 0.78 - ETA: 23s - loss: 0.6197 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6199 - acc: 0.78 - ETA: 22s - loss: 0.6192 - acc: 0.78 - ETA: 22s - loss: 0.6190 - acc: 0.78 - ETA: 22s - loss: 0.6198 - acc: 0.78 - ETA: 22s - loss: 0.6191 - acc: 0.78 - ETA: 22s - loss: 0.6194 - acc: 0.78 - ETA: 22s - loss: 0.6194 - acc: 0.78 - ETA: 22s - loss: 0.6196 - acc: 0.78 - ETA: 22s - loss: 0.6190 - acc: 0.78 - ETA: 22s - loss: 0.6182 - acc: 0.7855" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.6180 - acc: 0.78 - ETA: 22s - loss: 0.6180 - acc: 0.78 - ETA: 22s - loss: 0.6181 - acc: 0.78 - ETA: 22s - loss: 0.6182 - acc: 0.78 - ETA: 21s - loss: 0.6184 - acc: 0.78 - ETA: 21s - loss: 0.6186 - acc: 0.78 - ETA: 21s - loss: 0.6187 - acc: 0.78 - ETA: 21s - loss: 0.6188 - acc: 0.78 - ETA: 21s - loss: 0.6191 - acc: 0.78 - ETA: 21s - loss: 0.6189 - acc: 0.78 - ETA: 21s - loss: 0.6187 - acc: 0.78 - ETA: 21s - loss: 0.6192 - acc: 0.78 - ETA: 21s - loss: 0.6192 - acc: 0.78 - ETA: 21s - loss: 0.6187 - acc: 0.78 - ETA: 21s - loss: 0.6183 - acc: 0.78 - ETA: 21s - loss: 0.6180 - acc: 0.78 - ETA: 21s - loss: 0.6172 - acc: 0.78 - ETA: 20s - loss: 0.6170 - acc: 0.78 - ETA: 20s - loss: 0.6172 - acc: 0.78 - ETA: 20s - loss: 0.6171 - acc: 0.78 - ETA: 20s - loss: 0.6166 - acc: 0.78 - ETA: 20s - loss: 0.6163 - acc: 0.78 - ETA: 20s - loss: 0.6162 - acc: 0.78 - ETA: 20s - loss: 0.6158 - acc: 0.78 - ETA: 20s - loss: 0.6158 - acc: 0.78 - ETA: 20s - loss: 0.6156 - acc: 0.78 - ETA: 20s - loss: 0.6151 - acc: 0.78 - ETA: 20s - loss: 0.6154 - acc: 0.78 - ETA: 20s - loss: 0.6153 - acc: 0.78 - ETA: 20s - loss: 0.6150 - acc: 0.78 - ETA: 20s - loss: 0.6151 - acc: 0.78 - ETA: 19s - loss: 0.6148 - acc: 0.78 - ETA: 19s - loss: 0.6144 - acc: 0.78 - ETA: 19s - loss: 0.6141 - acc: 0.78 - ETA: 19s - loss: 0.6137 - acc: 0.78 - ETA: 19s - loss: 0.6136 - acc: 0.78 - ETA: 19s - loss: 0.6133 - acc: 0.78 - ETA: 19s - loss: 0.6135 - acc: 0.78 - ETA: 19s - loss: 0.6134 - acc: 0.78 - ETA: 19s - loss: 0.6132 - acc: 0.78 - ETA: 19s - loss: 0.6129 - acc: 0.78 - ETA: 19s - loss: 0.6124 - acc: 0.78 - ETA: 19s - loss: 0.6130 - acc: 0.78 - ETA: 19s - loss: 0.6127 - acc: 0.78 - ETA: 19s - loss: 0.6127 - acc: 0.78 - ETA: 18s - loss: 0.6122 - acc: 0.78 - ETA: 18s - loss: 0.6129 - acc: 0.78 - ETA: 18s - loss: 0.6125 - acc: 0.78 - ETA: 18s - loss: 0.6124 - acc: 0.78 - ETA: 18s - loss: 0.6123 - acc: 0.78 - ETA: 18s - loss: 0.6131 - acc: 0.78 - ETA: 18s - loss: 0.6128 - acc: 0.78 - ETA: 18s - loss: 0.6128 - acc: 0.78 - ETA: 18s - loss: 0.6127 - acc: 0.78 - ETA: 18s - loss: 0.6121 - acc: 0.78 - ETA: 18s - loss: 0.6116 - acc: 0.78 - ETA: 18s - loss: 0.6110 - acc: 0.78 - ETA: 18s - loss: 0.6106 - acc: 0.78 - ETA: 17s - loss: 0.6107 - acc: 0.78 - ETA: 17s - loss: 0.6104 - acc: 0.78 - ETA: 17s - loss: 0.6099 - acc: 0.78 - ETA: 17s - loss: 0.6097 - acc: 0.78 - ETA: 17s - loss: 0.6103 - acc: 0.78 - ETA: 17s - loss: 0.6107 - acc: 0.78 - ETA: 17s - loss: 0.6112 - acc: 0.78 - ETA: 17s - loss: 0.6110 - acc: 0.78 - ETA: 17s - loss: 0.6116 - acc: 0.78 - ETA: 17s - loss: 0.6127 - acc: 0.78 - ETA: 17s - loss: 0.6123 - acc: 0.78 - ETA: 17s - loss: 0.6125 - acc: 0.78 - ETA: 17s - loss: 0.6123 - acc: 0.78 - ETA: 17s - loss: 0.6123 - acc: 0.78 - ETA: 16s - loss: 0.6119 - acc: 0.78 - ETA: 16s - loss: 0.6117 - acc: 0.78 - ETA: 16s - loss: 0.6111 - acc: 0.78 - ETA: 16s - loss: 0.6113 - acc: 0.78 - ETA: 16s - loss: 0.6112 - acc: 0.78 - ETA: 16s - loss: 0.6111 - acc: 0.78 - ETA: 16s - loss: 0.6108 - acc: 0.78 - ETA: 16s - loss: 0.6109 - acc: 0.78 - ETA: 16s - loss: 0.6108 - acc: 0.78 - ETA: 16s - loss: 0.6107 - acc: 0.78 - ETA: 16s - loss: 0.6105 - acc: 0.78 - ETA: 16s - loss: 0.6106 - acc: 0.78 - ETA: 16s - loss: 0.6106 - acc: 0.78 - ETA: 16s - loss: 0.6104 - acc: 0.78 - ETA: 15s - loss: 0.6108 - acc: 0.78 - ETA: 15s - loss: 0.6105 - acc: 0.78 - ETA: 15s - loss: 0.6103 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6105 - acc: 0.78 - ETA: 15s - loss: 0.6106 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6100 - acc: 0.78 - ETA: 15s - loss: 0.6097 - acc: 0.78 - ETA: 15s - loss: 0.6091 - acc: 0.78 - ETA: 15s - loss: 0.6087 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 14s - loss: 0.6094 - acc: 0.78 - ETA: 14s - loss: 0.6086 - acc: 0.78 - ETA: 14s - loss: 0.6082 - acc: 0.78 - ETA: 14s - loss: 0.6081 - acc: 0.78 - ETA: 14s - loss: 0.6076 - acc: 0.78 - ETA: 14s - loss: 0.6072 - acc: 0.78 - ETA: 14s - loss: 0.6072 - acc: 0.78 - ETA: 14s - loss: 0.6071 - acc: 0.78 - ETA: 14s - loss: 0.6067 - acc: 0.78 - ETA: 14s - loss: 0.6068 - acc: 0.78 - ETA: 14s - loss: 0.6063 - acc: 0.78 - ETA: 14s - loss: 0.6063 - acc: 0.78 - ETA: 14s - loss: 0.6063 - acc: 0.78 - ETA: 14s - loss: 0.6057 - acc: 0.78 - ETA: 13s - loss: 0.6059 - acc: 0.78 - ETA: 13s - loss: 0.6053 - acc: 0.78 - ETA: 13s - loss: 0.6050 - acc: 0.79 - ETA: 13s - loss: 0.6053 - acc: 0.78 - ETA: 13s - loss: 0.6056 - acc: 0.78 - ETA: 13s - loss: 0.6055 - acc: 0.78 - ETA: 13s - loss: 0.6051 - acc: 0.79 - ETA: 13s - loss: 0.6047 - acc: 0.79 - ETA: 13s - loss: 0.6050 - acc: 0.79 - ETA: 13s - loss: 0.6045 - acc: 0.79 - ETA: 13s - loss: 0.6040 - acc: 0.79 - ETA: 13s - loss: 0.6039 - acc: 0.79 - ETA: 13s - loss: 0.6036 - acc: 0.79 - ETA: 13s - loss: 0.6037 - acc: 0.79 - ETA: 13s - loss: 0.6030 - acc: 0.79 - ETA: 12s - loss: 0.6027 - acc: 0.79 - ETA: 12s - loss: 0.6029 - acc: 0.79 - ETA: 12s - loss: 0.6024 - acc: 0.79 - ETA: 12s - loss: 0.6018 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6005 - acc: 0.79 - ETA: 12s - loss: 0.6003 - acc: 0.79 - ETA: 12s - loss: 0.5999 - acc: 0.79 - ETA: 12s - loss: 0.5994 - acc: 0.79 - ETA: 12s - loss: 0.5989 - acc: 0.79 - ETA: 12s - loss: 0.5994 - acc: 0.79 - ETA: 11s - loss: 0.5993 - acc: 0.79 - ETA: 11s - loss: 0.5989 - acc: 0.79 - ETA: 11s - loss: 0.5986 - acc: 0.79 - ETA: 11s - loss: 0.5981 - acc: 0.79 - ETA: 11s - loss: 0.5977 - acc: 0.79 - ETA: 11s - loss: 0.5973 - acc: 0.79 - ETA: 11s - loss: 0.5967 - acc: 0.79 - ETA: 11s - loss: 0.5963 - acc: 0.79 - ETA: 11s - loss: 0.5958 - acc: 0.79 - ETA: 11s - loss: 0.5958 - acc: 0.79 - ETA: 11s - loss: 0.5960 - acc: 0.79 - ETA: 11s - loss: 0.5955 - acc: 0.79 - ETA: 11s - loss: 0.5951 - acc: 0.79 - ETA: 11s - loss: 0.5951 - acc: 0.79 - ETA: 10s - loss: 0.5949 - acc: 0.79 - ETA: 10s - loss: 0.5947 - acc: 0.79 - ETA: 10s - loss: 0.5947 - acc: 0.79 - ETA: 10s - loss: 0.5943 - acc: 0.79 - ETA: 10s - loss: 0.5939 - acc: 0.79 - ETA: 10s - loss: 0.5938 - acc: 0.79 - ETA: 10s - loss: 0.5935 - acc: 0.79 - ETA: 10s - loss: 0.5937 - acc: 0.79 - ETA: 10s - loss: 0.5932 - acc: 0.79 - ETA: 10s - loss: 0.5929 - acc: 0.79 - ETA: 10s - loss: 0.5928 - acc: 0.79 - ETA: 10s - loss: 0.5928 - acc: 0.79 - ETA: 10s - loss: 0.5926 - acc: 0.79 - ETA: 9s - loss: 0.5921 - acc: 0.7948 - ETA: 9s - loss: 0.5918 - acc: 0.794 - ETA: 9s - loss: 0.5913 - acc: 0.795 - ETA: 9s - loss: 0.5909 - acc: 0.795 - ETA: 9s - loss: 0.5907 - acc: 0.795 - ETA: 9s - loss: 0.5904 - acc: 0.795 - ETA: 9s - loss: 0.5902 - acc: 0.795 - ETA: 9s - loss: 0.5900 - acc: 0.795 - ETA: 9s - loss: 0.5898 - acc: 0.795 - ETA: 9s - loss: 0.5896 - acc: 0.795 - ETA: 9s - loss: 0.5896 - acc: 0.795 - ETA: 9s - loss: 0.5892 - acc: 0.795 - ETA: 9s - loss: 0.5892 - acc: 0.795 - ETA: 9s - loss: 0.5896 - acc: 0.795 - ETA: 9s - loss: 0.5894 - acc: 0.795 - ETA: 8s - loss: 0.5893 - acc: 0.795 - ETA: 8s - loss: 0.5891 - acc: 0.795 - ETA: 8s - loss: 0.5890 - acc: 0.795 - ETA: 8s - loss: 0.5890 - acc: 0.795 - ETA: 8s - loss: 0.5888 - acc: 0.795 - ETA: 8s - loss: 0.5882 - acc: 0.796 - ETA: 8s - loss: 0.5879 - acc: 0.796 - ETA: 8s - loss: 0.5876 - acc: 0.796 - ETA: 8s - loss: 0.5875 - acc: 0.796 - ETA: 8s - loss: 0.5874 - acc: 0.796 - ETA: 8s - loss: 0.5873 - acc: 0.796 - ETA: 8s - loss: 0.5870 - acc: 0.796 - ETA: 8s - loss: 0.5870 - acc: 0.796 - ETA: 8s - loss: 0.5870 - acc: 0.796 - ETA: 7s - loss: 0.5870 - acc: 0.796 - ETA: 7s - loss: 0.5870 - acc: 0.796 - ETA: 7s - loss: 0.5867 - acc: 0.796 - ETA: 7s - loss: 0.5865 - acc: 0.796 - ETA: 7s - loss: 0.5864 - acc: 0.796 - ETA: 7s - loss: 0.5860 - acc: 0.796 - ETA: 7s - loss: 0.5858 - acc: 0.796 - ETA: 7s - loss: 0.5857 - acc: 0.796 - ETA: 7s - loss: 0.5864 - acc: 0.796 - ETA: 7s - loss: 0.5863 - acc: 0.796 - ETA: 7s - loss: 0.5858 - acc: 0.796 - ETA: 7s - loss: 0.5857 - acc: 0.796 - ETA: 7s - loss: 0.5857 - acc: 0.796 - ETA: 7s - loss: 0.5855 - acc: 0.797 - ETA: 7s - loss: 0.5852 - acc: 0.797 - ETA: 6s - loss: 0.5855 - acc: 0.7971" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.5853 - acc: 0.797 - ETA: 6s - loss: 0.5848 - acc: 0.797 - ETA: 6s - loss: 0.5848 - acc: 0.797 - ETA: 6s - loss: 0.5844 - acc: 0.797 - ETA: 6s - loss: 0.5845 - acc: 0.797 - ETA: 6s - loss: 0.5841 - acc: 0.797 - ETA: 6s - loss: 0.5841 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5837 - acc: 0.797 - ETA: 6s - loss: 0.5833 - acc: 0.798 - ETA: 5s - loss: 0.5835 - acc: 0.797 - ETA: 5s - loss: 0.5833 - acc: 0.797 - ETA: 5s - loss: 0.5828 - acc: 0.798 - ETA: 5s - loss: 0.5829 - acc: 0.798 - ETA: 5s - loss: 0.5831 - acc: 0.797 - ETA: 5s - loss: 0.5831 - acc: 0.797 - ETA: 5s - loss: 0.5829 - acc: 0.797 - ETA: 5s - loss: 0.5827 - acc: 0.798 - ETA: 5s - loss: 0.5825 - acc: 0.798 - ETA: 5s - loss: 0.5819 - acc: 0.798 - ETA: 5s - loss: 0.5814 - acc: 0.798 - ETA: 5s - loss: 0.5813 - acc: 0.798 - ETA: 5s - loss: 0.5810 - acc: 0.798 - ETA: 5s - loss: 0.5806 - acc: 0.798 - ETA: 4s - loss: 0.5806 - acc: 0.798 - ETA: 4s - loss: 0.5804 - acc: 0.798 - ETA: 4s - loss: 0.5805 - acc: 0.798 - ETA: 4s - loss: 0.5802 - acc: 0.798 - ETA: 4s - loss: 0.5797 - acc: 0.798 - ETA: 4s - loss: 0.5798 - acc: 0.798 - ETA: 4s - loss: 0.5800 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5796 - acc: 0.798 - ETA: 4s - loss: 0.5797 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5801 - acc: 0.798 - ETA: 3s - loss: 0.5799 - acc: 0.798 - ETA: 3s - loss: 0.5795 - acc: 0.798 - ETA: 3s - loss: 0.5797 - acc: 0.798 - ETA: 3s - loss: 0.5798 - acc: 0.798 - ETA: 3s - loss: 0.5801 - acc: 0.798 - ETA: 3s - loss: 0.5800 - acc: 0.798 - ETA: 3s - loss: 0.5800 - acc: 0.798 - ETA: 3s - loss: 0.5798 - acc: 0.798 - ETA: 3s - loss: 0.5797 - acc: 0.798 - ETA: 3s - loss: 0.5797 - acc: 0.798 - ETA: 3s - loss: 0.5795 - acc: 0.799 - ETA: 3s - loss: 0.5796 - acc: 0.798 - ETA: 3s - loss: 0.5795 - acc: 0.798 - ETA: 3s - loss: 0.5793 - acc: 0.799 - ETA: 2s - loss: 0.5791 - acc: 0.799 - ETA: 2s - loss: 0.5788 - acc: 0.799 - ETA: 2s - loss: 0.5789 - acc: 0.798 - ETA: 2s - loss: 0.5787 - acc: 0.799 - ETA: 2s - loss: 0.5785 - acc: 0.799 - ETA: 2s - loss: 0.5782 - acc: 0.799 - ETA: 2s - loss: 0.5778 - acc: 0.799 - ETA: 2s - loss: 0.5775 - acc: 0.799 - ETA: 2s - loss: 0.5771 - acc: 0.799 - ETA: 2s - loss: 0.5767 - acc: 0.799 - ETA: 2s - loss: 0.5763 - acc: 0.800 - ETA: 2s - loss: 0.5763 - acc: 0.800 - ETA: 2s - loss: 0.5761 - acc: 0.800 - ETA: 2s - loss: 0.5758 - acc: 0.800 - ETA: 1s - loss: 0.5755 - acc: 0.800 - ETA: 1s - loss: 0.5756 - acc: 0.800 - ETA: 1s - loss: 0.5754 - acc: 0.800 - ETA: 1s - loss: 0.5753 - acc: 0.800 - ETA: 1s - loss: 0.5752 - acc: 0.800 - ETA: 1s - loss: 0.5752 - acc: 0.800 - ETA: 1s - loss: 0.5750 - acc: 0.800 - ETA: 1s - loss: 0.5748 - acc: 0.800 - ETA: 1s - loss: 0.5744 - acc: 0.801 - ETA: 1s - loss: 0.5748 - acc: 0.800 - ETA: 1s - loss: 0.5744 - acc: 0.801 - ETA: 1s - loss: 0.5745 - acc: 0.801 - ETA: 1s - loss: 0.5746 - acc: 0.801 - ETA: 1s - loss: 0.5745 - acc: 0.801 - ETA: 0s - loss: 0.5742 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5738 - acc: 0.801 - ETA: 0s - loss: 0.5739 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5743 - acc: 0.801 - ETA: 0s - loss: 0.5738 - acc: 0.801 - ETA: 0s - loss: 0.5736 - acc: 0.801 - ETA: 0s - loss: 0.5740 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5739 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5742 - acc: 0.801 - 54s 2ms/step - loss: 0.5744 - acc: 0.8012 - val_loss: 0.4836 - val_acc: 0.8364\n", + "\n", + "Epoch 00002: val_acc improved from 0.75615 to 0.83643, saving model to models\\conv.model\n", + "Epoch 3/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 55s - loss: 0.7714 - acc: 0.68 - ETA: 55s - loss: 0.6365 - acc: 0.73 - ETA: 53s - loss: 0.5790 - acc: 0.79 - ETA: 52s - loss: 0.5772 - acc: 0.78 - ETA: 52s - loss: 0.5913 - acc: 0.78 - ETA: 51s - loss: 0.5974 - acc: 0.78 - ETA: 51s - loss: 0.5758 - acc: 0.78 - ETA: 51s - loss: 0.5670 - acc: 0.78 - ETA: 50s - loss: 0.5647 - acc: 0.79 - ETA: 50s - loss: 0.5483 - acc: 0.80 - ETA: 50s - loss: 0.5320 - acc: 0.81 - ETA: 50s - loss: 0.5351 - acc: 0.81 - ETA: 49s - loss: 0.5470 - acc: 0.81 - ETA: 49s - loss: 0.5389 - acc: 0.81 - ETA: 49s - loss: 0.5505 - acc: 0.81 - ETA: 49s - loss: 0.5456 - acc: 0.81 - ETA: 49s - loss: 0.5291 - acc: 0.81 - ETA: 49s - loss: 0.5160 - acc: 0.82 - ETA: 49s - loss: 0.5177 - acc: 0.82 - ETA: 49s - loss: 0.5222 - acc: 0.82 - ETA: 49s - loss: 0.5094 - acc: 0.82 - ETA: 49s - loss: 0.5005 - acc: 0.82 - ETA: 49s - loss: 0.5080 - acc: 0.82 - ETA: 49s - loss: 0.5011 - acc: 0.82 - ETA: 49s - loss: 0.4952 - acc: 0.83 - ETA: 49s - loss: 0.4939 - acc: 0.82 - ETA: 49s - loss: 0.4906 - acc: 0.83 - ETA: 48s - loss: 0.4892 - acc: 0.83 - ETA: 49s - loss: 0.4798 - acc: 0.83 - ETA: 49s - loss: 0.4732 - acc: 0.83 - ETA: 48s - loss: 0.4632 - acc: 0.84 - ETA: 48s - loss: 0.4657 - acc: 0.83 - ETA: 48s - loss: 0.4637 - acc: 0.83 - ETA: 48s - loss: 0.4582 - acc: 0.84 - ETA: 48s - loss: 0.4548 - acc: 0.84 - ETA: 48s - loss: 0.4509 - acc: 0.84 - ETA: 48s - loss: 0.4662 - acc: 0.83 - ETA: 47s - loss: 0.4614 - acc: 0.84 - ETA: 47s - loss: 0.4598 - acc: 0.84 - ETA: 47s - loss: 0.4564 - acc: 0.84 - ETA: 47s - loss: 0.4554 - acc: 0.84 - ETA: 47s - loss: 0.4564 - acc: 0.84 - ETA: 47s - loss: 0.4583 - acc: 0.84 - ETA: 47s - loss: 0.4603 - acc: 0.84 - ETA: 47s - loss: 0.4561 - acc: 0.84 - ETA: 47s - loss: 0.4571 - acc: 0.84 - ETA: 47s - loss: 0.4561 - acc: 0.84 - ETA: 47s - loss: 0.4587 - acc: 0.84 - ETA: 46s - loss: 0.4628 - acc: 0.84 - ETA: 46s - loss: 0.4662 - acc: 0.83 - ETA: 46s - loss: 0.4656 - acc: 0.84 - ETA: 46s - loss: 0.4662 - acc: 0.83 - ETA: 46s - loss: 0.4667 - acc: 0.83 - ETA: 46s - loss: 0.4647 - acc: 0.84 - ETA: 46s - loss: 0.4657 - acc: 0.83 - ETA: 46s - loss: 0.4677 - acc: 0.83 - ETA: 46s - loss: 0.4707 - acc: 0.83 - ETA: 46s - loss: 0.4711 - acc: 0.83 - ETA: 46s - loss: 0.4720 - acc: 0.83 - ETA: 46s - loss: 0.4709 - acc: 0.83 - ETA: 46s - loss: 0.4665 - acc: 0.83 - ETA: 46s - loss: 0.4649 - acc: 0.83 - ETA: 46s - loss: 0.4641 - acc: 0.84 - ETA: 46s - loss: 0.4628 - acc: 0.84 - ETA: 46s - loss: 0.4581 - acc: 0.84 - ETA: 45s - loss: 0.4563 - acc: 0.84 - ETA: 45s - loss: 0.4530 - acc: 0.84 - ETA: 45s - loss: 0.4534 - acc: 0.84 - ETA: 45s - loss: 0.4574 - acc: 0.84 - ETA: 45s - loss: 0.4555 - acc: 0.84 - ETA: 45s - loss: 0.4567 - acc: 0.84 - ETA: 45s - loss: 0.4558 - acc: 0.84 - ETA: 45s - loss: 0.4533 - acc: 0.84 - ETA: 45s - loss: 0.4541 - acc: 0.84 - ETA: 45s - loss: 0.4514 - acc: 0.84 - ETA: 45s - loss: 0.4517 - acc: 0.84 - ETA: 45s - loss: 0.4492 - acc: 0.84 - ETA: 45s - loss: 0.4501 - acc: 0.84 - ETA: 45s - loss: 0.4486 - acc: 0.84 - ETA: 45s - loss: 0.4486 - acc: 0.84 - ETA: 45s - loss: 0.4490 - acc: 0.84 - ETA: 45s - loss: 0.4469 - acc: 0.84 - ETA: 45s - loss: 0.4439 - acc: 0.84 - ETA: 45s - loss: 0.4420 - acc: 0.84 - ETA: 45s - loss: 0.4421 - acc: 0.84 - ETA: 44s - loss: 0.4410 - acc: 0.84 - ETA: 45s - loss: 0.4402 - acc: 0.84 - ETA: 44s - loss: 0.4414 - acc: 0.84 - ETA: 44s - loss: 0.4429 - acc: 0.84 - ETA: 44s - loss: 0.4442 - acc: 0.84 - ETA: 44s - loss: 0.4427 - acc: 0.84 - ETA: 44s - loss: 0.4416 - acc: 0.84 - ETA: 44s - loss: 0.4419 - acc: 0.84 - ETA: 44s - loss: 0.4431 - acc: 0.84 - ETA: 44s - loss: 0.4454 - acc: 0.84 - ETA: 44s - loss: 0.4492 - acc: 0.84 - ETA: 44s - loss: 0.4499 - acc: 0.84 - ETA: 44s - loss: 0.4504 - acc: 0.84 - ETA: 44s - loss: 0.4528 - acc: 0.84 - ETA: 44s - loss: 0.4527 - acc: 0.84 - ETA: 44s - loss: 0.4513 - acc: 0.84 - ETA: 44s - loss: 0.4511 - acc: 0.84 - ETA: 44s - loss: 0.4494 - acc: 0.84 - ETA: 44s - loss: 0.4496 - acc: 0.84 - ETA: 44s - loss: 0.4530 - acc: 0.84 - ETA: 44s - loss: 0.4522 - acc: 0.84 - ETA: 44s - loss: 0.4515 - acc: 0.84 - ETA: 43s - loss: 0.4504 - acc: 0.84 - ETA: 43s - loss: 0.4495 - acc: 0.84 - ETA: 43s - loss: 0.4500 - acc: 0.84 - ETA: 43s - loss: 0.4494 - acc: 0.84 - ETA: 43s - loss: 0.4502 - acc: 0.84 - ETA: 43s - loss: 0.4512 - acc: 0.84 - ETA: 43s - loss: 0.4505 - acc: 0.84 - ETA: 43s - loss: 0.4520 - acc: 0.84 - ETA: 43s - loss: 0.4498 - acc: 0.84 - ETA: 43s - loss: 0.4504 - acc: 0.84 - ETA: 43s - loss: 0.4496 - acc: 0.84 - ETA: 43s - loss: 0.4520 - acc: 0.84 - ETA: 43s - loss: 0.4526 - acc: 0.84 - ETA: 43s - loss: 0.4515 - acc: 0.84 - ETA: 43s - loss: 0.4524 - acc: 0.84 - ETA: 43s - loss: 0.4517 - acc: 0.84 - ETA: 43s - loss: 0.4498 - acc: 0.84 - ETA: 43s - loss: 0.4519 - acc: 0.84 - ETA: 42s - loss: 0.4525 - acc: 0.84 - ETA: 42s - loss: 0.4536 - acc: 0.84 - ETA: 42s - loss: 0.4532 - acc: 0.84 - ETA: 42s - loss: 0.4522 - acc: 0.84 - ETA: 42s - loss: 0.4527 - acc: 0.84 - ETA: 42s - loss: 0.4516 - acc: 0.84 - ETA: 42s - loss: 0.4503 - acc: 0.84 - ETA: 42s - loss: 0.4489 - acc: 0.84 - ETA: 42s - loss: 0.4490 - acc: 0.84 - ETA: 42s - loss: 0.4490 - acc: 0.84 - ETA: 42s - loss: 0.4488 - acc: 0.84 - ETA: 42s - loss: 0.4488 - acc: 0.84 - ETA: 42s - loss: 0.4477 - acc: 0.84 - ETA: 41s - loss: 0.4466 - acc: 0.84 - ETA: 41s - loss: 0.4458 - acc: 0.84 - ETA: 41s - loss: 0.4461 - acc: 0.84 - ETA: 41s - loss: 0.4459 - acc: 0.84 - ETA: 41s - loss: 0.4447 - acc: 0.84 - ETA: 41s - loss: 0.4461 - acc: 0.84 - ETA: 41s - loss: 0.4468 - acc: 0.84 - ETA: 41s - loss: 0.4470 - acc: 0.84 - ETA: 41s - loss: 0.4478 - acc: 0.84 - ETA: 41s - loss: 0.4481 - acc: 0.84 - ETA: 41s - loss: 0.4486 - acc: 0.84 - ETA: 41s - loss: 0.4495 - acc: 0.84 - ETA: 41s - loss: 0.4492 - acc: 0.84 - ETA: 40s - loss: 0.4491 - acc: 0.84 - ETA: 40s - loss: 0.4482 - acc: 0.84 - ETA: 40s - loss: 0.4499 - acc: 0.84 - ETA: 40s - loss: 0.4501 - acc: 0.84 - ETA: 40s - loss: 0.4501 - acc: 0.84 - ETA: 40s - loss: 0.4504 - acc: 0.84 - ETA: 40s - loss: 0.4491 - acc: 0.84 - ETA: 40s - loss: 0.4482 - acc: 0.84 - ETA: 40s - loss: 0.4493 - acc: 0.84 - ETA: 40s - loss: 0.4502 - acc: 0.84 - ETA: 40s - loss: 0.4510 - acc: 0.84 - ETA: 40s - loss: 0.4530 - acc: 0.84 - ETA: 40s - loss: 0.4532 - acc: 0.84 - ETA: 39s - loss: 0.4545 - acc: 0.84 - ETA: 39s - loss: 0.4536 - acc: 0.84 - ETA: 39s - loss: 0.4536 - acc: 0.84 - ETA: 39s - loss: 0.4532 - acc: 0.84 - ETA: 39s - loss: 0.4520 - acc: 0.84 - ETA: 39s - loss: 0.4517 - acc: 0.84 - ETA: 39s - loss: 0.4517 - acc: 0.84 - ETA: 39s - loss: 0.4518 - acc: 0.84 - ETA: 39s - loss: 0.4520 - acc: 0.84 - ETA: 39s - loss: 0.4519 - acc: 0.84 - ETA: 39s - loss: 0.4521 - acc: 0.84 - ETA: 39s - loss: 0.4503 - acc: 0.84 - ETA: 39s - loss: 0.4499 - acc: 0.84 - ETA: 39s - loss: 0.4503 - acc: 0.84 - ETA: 38s - loss: 0.4503 - acc: 0.84 - ETA: 38s - loss: 0.4492 - acc: 0.84 - ETA: 38s - loss: 0.4488 - acc: 0.84 - ETA: 38s - loss: 0.4492 - acc: 0.84 - ETA: 38s - loss: 0.4488 - acc: 0.84 - ETA: 38s - loss: 0.4501 - acc: 0.84 - ETA: 38s - loss: 0.4501 - acc: 0.84 - ETA: 38s - loss: 0.4508 - acc: 0.84 - ETA: 38s - loss: 0.4494 - acc: 0.84 - ETA: 38s - loss: 0.4486 - acc: 0.84 - ETA: 38s - loss: 0.4472 - acc: 0.84 - ETA: 38s - loss: 0.4482 - acc: 0.84 - ETA: 38s - loss: 0.4477 - acc: 0.84 - ETA: 38s - loss: 0.4466 - acc: 0.84 - ETA: 38s - loss: 0.4469 - acc: 0.84 - ETA: 38s - loss: 0.4463 - acc: 0.84 - ETA: 37s - loss: 0.4458 - acc: 0.84 - ETA: 37s - loss: 0.4457 - acc: 0.84 - ETA: 37s - loss: 0.4463 - acc: 0.84 - ETA: 37s - loss: 0.4464 - acc: 0.84 - ETA: 37s - loss: 0.4458 - acc: 0.84 - ETA: 37s - loss: 0.4477 - acc: 0.84 - ETA: 37s - loss: 0.4492 - acc: 0.84 - ETA: 37s - loss: 0.4487 - acc: 0.84 - ETA: 37s - loss: 0.4489 - acc: 0.84 - ETA: 37s - loss: 0.4487 - acc: 0.84 - ETA: 37s - loss: 0.4483 - acc: 0.84 - ETA: 37s - loss: 0.4487 - acc: 0.84 - ETA: 37s - loss: 0.4485 - acc: 0.84 - ETA: 36s - loss: 0.4483 - acc: 0.84 - ETA: 36s - loss: 0.4480 - acc: 0.84 - ETA: 36s - loss: 0.4483 - acc: 0.84 - ETA: 36s - loss: 0.4475 - acc: 0.84 - ETA: 36s - loss: 0.4474 - acc: 0.84 - ETA: 36s - loss: 0.4482 - acc: 0.84 - ETA: 36s - loss: 0.4475 - acc: 0.84 - ETA: 36s - loss: 0.4482 - acc: 0.8426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.4487 - acc: 0.84 - ETA: 36s - loss: 0.4487 - acc: 0.84 - ETA: 36s - loss: 0.4487 - acc: 0.84 - ETA: 36s - loss: 0.4485 - acc: 0.84 - ETA: 36s - loss: 0.4483 - acc: 0.84 - ETA: 36s - loss: 0.4475 - acc: 0.84 - ETA: 36s - loss: 0.4468 - acc: 0.84 - ETA: 35s - loss: 0.4480 - acc: 0.84 - ETA: 35s - loss: 0.4491 - acc: 0.84 - ETA: 35s - loss: 0.4517 - acc: 0.84 - ETA: 35s - loss: 0.4517 - acc: 0.84 - ETA: 35s - loss: 0.4506 - acc: 0.84 - ETA: 35s - loss: 0.4506 - acc: 0.84 - ETA: 35s - loss: 0.4493 - acc: 0.84 - ETA: 35s - loss: 0.4484 - acc: 0.84 - ETA: 35s - loss: 0.4477 - acc: 0.84 - ETA: 35s - loss: 0.4482 - acc: 0.84 - ETA: 35s - loss: 0.4470 - acc: 0.84 - ETA: 35s - loss: 0.4462 - acc: 0.84 - ETA: 35s - loss: 0.4463 - acc: 0.84 - ETA: 35s - loss: 0.4464 - acc: 0.84 - ETA: 34s - loss: 0.4459 - acc: 0.84 - ETA: 34s - loss: 0.4464 - acc: 0.84 - ETA: 34s - loss: 0.4459 - acc: 0.84 - ETA: 34s - loss: 0.4463 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4463 - acc: 0.84 - ETA: 34s - loss: 0.4469 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4462 - acc: 0.84 - ETA: 34s - loss: 0.4455 - acc: 0.84 - ETA: 34s - loss: 0.4445 - acc: 0.84 - ETA: 34s - loss: 0.4448 - acc: 0.84 - ETA: 34s - loss: 0.4451 - acc: 0.84 - ETA: 33s - loss: 0.4452 - acc: 0.84 - ETA: 33s - loss: 0.4456 - acc: 0.84 - ETA: 33s - loss: 0.4453 - acc: 0.84 - ETA: 33s - loss: 0.4451 - acc: 0.84 - ETA: 33s - loss: 0.4453 - acc: 0.84 - ETA: 33s - loss: 0.4452 - acc: 0.84 - ETA: 33s - loss: 0.4457 - acc: 0.84 - ETA: 33s - loss: 0.4470 - acc: 0.84 - ETA: 33s - loss: 0.4468 - acc: 0.84 - ETA: 33s - loss: 0.4467 - acc: 0.84 - ETA: 33s - loss: 0.4457 - acc: 0.84 - ETA: 33s - loss: 0.4449 - acc: 0.84 - ETA: 33s - loss: 0.4451 - acc: 0.84 - ETA: 33s - loss: 0.4455 - acc: 0.84 - ETA: 32s - loss: 0.4455 - acc: 0.84 - ETA: 32s - loss: 0.4445 - acc: 0.84 - ETA: 32s - loss: 0.4444 - acc: 0.84 - ETA: 32s - loss: 0.4437 - acc: 0.84 - ETA: 32s - loss: 0.4436 - acc: 0.84 - ETA: 32s - loss: 0.4432 - acc: 0.84 - ETA: 32s - loss: 0.4434 - acc: 0.84 - ETA: 32s - loss: 0.4435 - acc: 0.84 - ETA: 32s - loss: 0.4446 - acc: 0.84 - ETA: 32s - loss: 0.4445 - acc: 0.84 - ETA: 32s - loss: 0.4447 - acc: 0.84 - ETA: 32s - loss: 0.4449 - acc: 0.84 - ETA: 32s - loss: 0.4448 - acc: 0.84 - ETA: 32s - loss: 0.4441 - acc: 0.84 - ETA: 32s - loss: 0.4447 - acc: 0.84 - ETA: 31s - loss: 0.4444 - acc: 0.84 - ETA: 31s - loss: 0.4438 - acc: 0.84 - ETA: 31s - loss: 0.4434 - acc: 0.84 - ETA: 31s - loss: 0.4437 - acc: 0.84 - ETA: 31s - loss: 0.4436 - acc: 0.84 - ETA: 31s - loss: 0.4436 - acc: 0.84 - ETA: 31s - loss: 0.4432 - acc: 0.84 - ETA: 31s - loss: 0.4427 - acc: 0.84 - ETA: 31s - loss: 0.4421 - acc: 0.84 - ETA: 31s - loss: 0.4430 - acc: 0.84 - ETA: 31s - loss: 0.4427 - acc: 0.84 - ETA: 31s - loss: 0.4425 - acc: 0.84 - ETA: 31s - loss: 0.4423 - acc: 0.84 - ETA: 31s - loss: 0.4421 - acc: 0.84 - ETA: 31s - loss: 0.4417 - acc: 0.84 - ETA: 30s - loss: 0.4410 - acc: 0.84 - ETA: 30s - loss: 0.4410 - acc: 0.84 - ETA: 30s - loss: 0.4407 - acc: 0.84 - ETA: 30s - loss: 0.4405 - acc: 0.84 - ETA: 30s - loss: 0.4398 - acc: 0.84 - ETA: 30s - loss: 0.4401 - acc: 0.84 - ETA: 30s - loss: 0.4396 - acc: 0.84 - ETA: 30s - loss: 0.4394 - acc: 0.84 - ETA: 30s - loss: 0.4385 - acc: 0.84 - ETA: 30s - loss: 0.4385 - acc: 0.84 - ETA: 30s - loss: 0.4397 - acc: 0.84 - ETA: 30s - loss: 0.4394 - acc: 0.84 - ETA: 30s - loss: 0.4394 - acc: 0.84 - ETA: 30s - loss: 0.4392 - acc: 0.84 - ETA: 30s - loss: 0.4387 - acc: 0.84 - ETA: 29s - loss: 0.4388 - acc: 0.84 - ETA: 29s - loss: 0.4398 - acc: 0.84 - ETA: 29s - loss: 0.4396 - acc: 0.84 - ETA: 29s - loss: 0.4390 - acc: 0.84 - ETA: 29s - loss: 0.4399 - acc: 0.84 - ETA: 29s - loss: 0.4403 - acc: 0.84 - ETA: 29s - loss: 0.4402 - acc: 0.84 - ETA: 29s - loss: 0.4399 - acc: 0.84 - ETA: 29s - loss: 0.4395 - acc: 0.84 - ETA: 29s - loss: 0.4388 - acc: 0.84 - ETA: 29s - loss: 0.4392 - acc: 0.84 - ETA: 29s - loss: 0.4388 - acc: 0.84 - ETA: 29s - loss: 0.4389 - acc: 0.84 - ETA: 29s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4381 - acc: 0.84 - ETA: 28s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4389 - acc: 0.84 - ETA: 28s - loss: 0.4384 - acc: 0.84 - ETA: 28s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4381 - acc: 0.84 - ETA: 28s - loss: 0.4387 - acc: 0.84 - ETA: 28s - loss: 0.4386 - acc: 0.84 - ETA: 28s - loss: 0.4393 - acc: 0.84 - ETA: 28s - loss: 0.4395 - acc: 0.84 - ETA: 28s - loss: 0.4398 - acc: 0.84 - ETA: 28s - loss: 0.4405 - acc: 0.84 - ETA: 28s - loss: 0.4401 - acc: 0.84 - ETA: 28s - loss: 0.4396 - acc: 0.84 - ETA: 27s - loss: 0.4401 - acc: 0.84 - ETA: 27s - loss: 0.4400 - acc: 0.84 - ETA: 27s - loss: 0.4401 - acc: 0.84 - ETA: 27s - loss: 0.4395 - acc: 0.84 - ETA: 27s - loss: 0.4391 - acc: 0.84 - ETA: 27s - loss: 0.4388 - acc: 0.84 - ETA: 27s - loss: 0.4387 - acc: 0.84 - ETA: 27s - loss: 0.4385 - acc: 0.84 - ETA: 27s - loss: 0.4382 - acc: 0.84 - ETA: 27s - loss: 0.4375 - acc: 0.84 - ETA: 27s - loss: 0.4374 - acc: 0.84 - ETA: 27s - loss: 0.4376 - acc: 0.84 - ETA: 27s - loss: 0.4383 - acc: 0.84 - ETA: 27s - loss: 0.4386 - acc: 0.84 - ETA: 26s - loss: 0.4384 - acc: 0.84 - ETA: 26s - loss: 0.4381 - acc: 0.84 - ETA: 26s - loss: 0.4385 - acc: 0.84 - ETA: 26s - loss: 0.4384 - acc: 0.84 - ETA: 26s - loss: 0.4392 - acc: 0.84 - ETA: 26s - loss: 0.4391 - acc: 0.84 - ETA: 26s - loss: 0.4390 - acc: 0.84 - ETA: 26s - loss: 0.4387 - acc: 0.84 - ETA: 26s - loss: 0.4386 - acc: 0.84 - ETA: 26s - loss: 0.4384 - acc: 0.84 - ETA: 26s - loss: 0.4385 - acc: 0.84 - ETA: 26s - loss: 0.4391 - acc: 0.84 - ETA: 26s - loss: 0.4397 - acc: 0.84 - ETA: 26s - loss: 0.4399 - acc: 0.84 - ETA: 25s - loss: 0.4394 - acc: 0.84 - ETA: 25s - loss: 0.4393 - acc: 0.84 - ETA: 25s - loss: 0.4388 - acc: 0.84 - ETA: 25s - loss: 0.4385 - acc: 0.84 - ETA: 25s - loss: 0.4383 - acc: 0.84 - ETA: 25s - loss: 0.4378 - acc: 0.84 - ETA: 25s - loss: 0.4369 - acc: 0.84 - ETA: 25s - loss: 0.4366 - acc: 0.84 - ETA: 25s - loss: 0.4360 - acc: 0.84 - ETA: 25s - loss: 0.4353 - acc: 0.84 - ETA: 25s - loss: 0.4359 - acc: 0.84 - ETA: 25s - loss: 0.4360 - acc: 0.84 - ETA: 25s - loss: 0.4360 - acc: 0.84 - ETA: 25s - loss: 0.4362 - acc: 0.84 - ETA: 25s - loss: 0.4361 - acc: 0.84 - ETA: 25s - loss: 0.4358 - acc: 0.84 - ETA: 24s - loss: 0.4353 - acc: 0.84 - ETA: 24s - loss: 0.4354 - acc: 0.84 - ETA: 24s - loss: 0.4349 - acc: 0.84 - ETA: 24s - loss: 0.4346 - acc: 0.84 - ETA: 24s - loss: 0.4345 - acc: 0.84 - ETA: 24s - loss: 0.4348 - acc: 0.84 - ETA: 24s - loss: 0.4340 - acc: 0.84 - ETA: 24s - loss: 0.4338 - acc: 0.84 - ETA: 24s - loss: 0.4338 - acc: 0.84 - ETA: 24s - loss: 0.4336 - acc: 0.84 - ETA: 24s - loss: 0.4341 - acc: 0.84 - ETA: 24s - loss: 0.4335 - acc: 0.84 - ETA: 24s - loss: 0.4335 - acc: 0.84 - ETA: 24s - loss: 0.4338 - acc: 0.84 - ETA: 24s - loss: 0.4345 - acc: 0.84 - ETA: 23s - loss: 0.4343 - acc: 0.84 - ETA: 23s - loss: 0.4343 - acc: 0.84 - ETA: 23s - loss: 0.4337 - acc: 0.84 - ETA: 23s - loss: 0.4335 - acc: 0.84 - ETA: 23s - loss: 0.4330 - acc: 0.84 - ETA: 23s - loss: 0.4327 - acc: 0.84 - ETA: 23s - loss: 0.4321 - acc: 0.84 - ETA: 23s - loss: 0.4321 - acc: 0.84 - ETA: 23s - loss: 0.4325 - acc: 0.84 - ETA: 23s - loss: 0.4322 - acc: 0.84 - ETA: 23s - loss: 0.4316 - acc: 0.84 - ETA: 23s - loss: 0.4317 - acc: 0.84 - ETA: 23s - loss: 0.4319 - acc: 0.84 - ETA: 23s - loss: 0.4321 - acc: 0.84 - ETA: 23s - loss: 0.4324 - acc: 0.84 - ETA: 22s - loss: 0.4328 - acc: 0.84 - ETA: 22s - loss: 0.4332 - acc: 0.84 - ETA: 22s - loss: 0.4343 - acc: 0.84 - ETA: 22s - loss: 0.4341 - acc: 0.84 - ETA: 22s - loss: 0.4345 - acc: 0.84 - ETA: 22s - loss: 0.4343 - acc: 0.84 - ETA: 22s - loss: 0.4337 - acc: 0.84 - ETA: 22s - loss: 0.4343 - acc: 0.84 - ETA: 22s - loss: 0.4348 - acc: 0.84 - ETA: 22s - loss: 0.4361 - acc: 0.84 - ETA: 22s - loss: 0.4370 - acc: 0.84 - ETA: 22s - loss: 0.4368 - acc: 0.84 - ETA: 22s - loss: 0.4366 - acc: 0.84 - ETA: 22s - loss: 0.4370 - acc: 0.84 - ETA: 22s - loss: 0.4367 - acc: 0.84 - ETA: 21s - loss: 0.4368 - acc: 0.84 - ETA: 21s - loss: 0.4372 - acc: 0.8480" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 21s - loss: 0.4368 - acc: 0.84 - ETA: 21s - loss: 0.4366 - acc: 0.84 - ETA: 21s - loss: 0.4367 - acc: 0.84 - ETA: 21s - loss: 0.4369 - acc: 0.84 - ETA: 21s - loss: 0.4369 - acc: 0.84 - ETA: 21s - loss: 0.4367 - acc: 0.84 - ETA: 21s - loss: 0.4369 - acc: 0.84 - ETA: 21s - loss: 0.4375 - acc: 0.84 - ETA: 21s - loss: 0.4375 - acc: 0.84 - ETA: 21s - loss: 0.4368 - acc: 0.84 - ETA: 21s - loss: 0.4371 - acc: 0.84 - ETA: 21s - loss: 0.4366 - acc: 0.84 - ETA: 21s - loss: 0.4361 - acc: 0.84 - ETA: 20s - loss: 0.4361 - acc: 0.84 - ETA: 20s - loss: 0.4360 - acc: 0.84 - ETA: 20s - loss: 0.4358 - acc: 0.84 - ETA: 20s - loss: 0.4358 - acc: 0.84 - ETA: 20s - loss: 0.4360 - acc: 0.84 - ETA: 20s - loss: 0.4364 - acc: 0.84 - ETA: 20s - loss: 0.4368 - acc: 0.84 - ETA: 20s - loss: 0.4368 - acc: 0.84 - ETA: 20s - loss: 0.4369 - acc: 0.84 - ETA: 20s - loss: 0.4368 - acc: 0.84 - ETA: 20s - loss: 0.4373 - acc: 0.84 - ETA: 20s - loss: 0.4375 - acc: 0.84 - ETA: 20s - loss: 0.4381 - acc: 0.84 - ETA: 20s - loss: 0.4375 - acc: 0.84 - ETA: 20s - loss: 0.4376 - acc: 0.84 - ETA: 19s - loss: 0.4373 - acc: 0.84 - ETA: 19s - loss: 0.4375 - acc: 0.84 - ETA: 19s - loss: 0.4378 - acc: 0.84 - ETA: 19s - loss: 0.4373 - acc: 0.84 - ETA: 19s - loss: 0.4372 - acc: 0.84 - ETA: 19s - loss: 0.4369 - acc: 0.84 - ETA: 19s - loss: 0.4363 - acc: 0.84 - ETA: 19s - loss: 0.4363 - acc: 0.84 - ETA: 19s - loss: 0.4361 - acc: 0.84 - ETA: 19s - loss: 0.4357 - acc: 0.84 - ETA: 19s - loss: 0.4355 - acc: 0.84 - ETA: 19s - loss: 0.4352 - acc: 0.84 - ETA: 19s - loss: 0.4350 - acc: 0.84 - ETA: 19s - loss: 0.4356 - acc: 0.84 - ETA: 18s - loss: 0.4363 - acc: 0.84 - ETA: 18s - loss: 0.4363 - acc: 0.84 - ETA: 18s - loss: 0.4362 - acc: 0.84 - ETA: 18s - loss: 0.4361 - acc: 0.84 - ETA: 18s - loss: 0.4359 - acc: 0.84 - ETA: 18s - loss: 0.4361 - acc: 0.84 - ETA: 18s - loss: 0.4357 - acc: 0.84 - ETA: 18s - loss: 0.4354 - acc: 0.84 - ETA: 18s - loss: 0.4356 - acc: 0.84 - ETA: 18s - loss: 0.4358 - acc: 0.84 - ETA: 18s - loss: 0.4358 - acc: 0.84 - ETA: 18s - loss: 0.4355 - acc: 0.84 - ETA: 18s - loss: 0.4352 - acc: 0.84 - ETA: 18s - loss: 0.4351 - acc: 0.84 - ETA: 18s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4350 - acc: 0.84 - ETA: 17s - loss: 0.4350 - acc: 0.84 - ETA: 17s - loss: 0.4347 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4350 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4347 - acc: 0.84 - ETA: 17s - loss: 0.4343 - acc: 0.84 - ETA: 17s - loss: 0.4343 - acc: 0.84 - ETA: 17s - loss: 0.4344 - acc: 0.84 - ETA: 17s - loss: 0.4346 - acc: 0.84 - ETA: 17s - loss: 0.4343 - acc: 0.84 - ETA: 16s - loss: 0.4344 - acc: 0.84 - ETA: 16s - loss: 0.4341 - acc: 0.84 - ETA: 16s - loss: 0.4344 - acc: 0.84 - ETA: 16s - loss: 0.4341 - acc: 0.84 - ETA: 16s - loss: 0.4344 - acc: 0.84 - ETA: 16s - loss: 0.4345 - acc: 0.84 - ETA: 16s - loss: 0.4343 - acc: 0.84 - ETA: 16s - loss: 0.4343 - acc: 0.84 - ETA: 16s - loss: 0.4342 - acc: 0.84 - ETA: 16s - loss: 0.4340 - acc: 0.84 - ETA: 16s - loss: 0.4338 - acc: 0.84 - ETA: 16s - loss: 0.4335 - acc: 0.84 - ETA: 16s - loss: 0.4332 - acc: 0.84 - ETA: 16s - loss: 0.4334 - acc: 0.84 - ETA: 16s - loss: 0.4331 - acc: 0.84 - ETA: 15s - loss: 0.4328 - acc: 0.84 - ETA: 15s - loss: 0.4323 - acc: 0.84 - ETA: 15s - loss: 0.4320 - acc: 0.84 - ETA: 15s - loss: 0.4316 - acc: 0.84 - ETA: 15s - loss: 0.4314 - acc: 0.84 - ETA: 15s - loss: 0.4314 - acc: 0.84 - ETA: 15s - loss: 0.4312 - acc: 0.84 - ETA: 15s - loss: 0.4312 - acc: 0.84 - ETA: 15s - loss: 0.4309 - acc: 0.84 - ETA: 15s - loss: 0.4305 - acc: 0.85 - ETA: 15s - loss: 0.4302 - acc: 0.85 - ETA: 15s - loss: 0.4304 - acc: 0.85 - ETA: 15s - loss: 0.4299 - acc: 0.85 - ETA: 15s - loss: 0.4299 - acc: 0.85 - ETA: 14s - loss: 0.4305 - acc: 0.85 - ETA: 14s - loss: 0.4301 - acc: 0.85 - ETA: 14s - loss: 0.4301 - acc: 0.85 - ETA: 14s - loss: 0.4301 - acc: 0.85 - ETA: 14s - loss: 0.4298 - acc: 0.85 - ETA: 14s - loss: 0.4295 - acc: 0.85 - ETA: 14s - loss: 0.4296 - acc: 0.85 - ETA: 14s - loss: 0.4295 - acc: 0.85 - ETA: 14s - loss: 0.4298 - acc: 0.85 - ETA: 14s - loss: 0.4295 - acc: 0.85 - ETA: 14s - loss: 0.4293 - acc: 0.85 - ETA: 14s - loss: 0.4294 - acc: 0.85 - ETA: 14s - loss: 0.4294 - acc: 0.85 - ETA: 14s - loss: 0.4297 - acc: 0.85 - ETA: 13s - loss: 0.4294 - acc: 0.85 - ETA: 13s - loss: 0.4295 - acc: 0.85 - ETA: 13s - loss: 0.4293 - acc: 0.85 - ETA: 13s - loss: 0.4292 - acc: 0.85 - ETA: 13s - loss: 0.4287 - acc: 0.85 - ETA: 13s - loss: 0.4284 - acc: 0.85 - ETA: 13s - loss: 0.4285 - acc: 0.85 - ETA: 13s - loss: 0.4287 - acc: 0.85 - ETA: 13s - loss: 0.4293 - acc: 0.85 - ETA: 13s - loss: 0.4291 - acc: 0.85 - ETA: 13s - loss: 0.4290 - acc: 0.85 - ETA: 13s - loss: 0.4295 - acc: 0.85 - ETA: 13s - loss: 0.4294 - acc: 0.85 - ETA: 13s - loss: 0.4291 - acc: 0.85 - ETA: 12s - loss: 0.4289 - acc: 0.85 - ETA: 12s - loss: 0.4287 - acc: 0.85 - ETA: 12s - loss: 0.4285 - acc: 0.85 - ETA: 12s - loss: 0.4285 - acc: 0.85 - ETA: 12s - loss: 0.4283 - acc: 0.85 - ETA: 12s - loss: 0.4279 - acc: 0.85 - ETA: 12s - loss: 0.4277 - acc: 0.85 - ETA: 12s - loss: 0.4278 - acc: 0.85 - ETA: 12s - loss: 0.4276 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 12s - loss: 0.4280 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 12s - loss: 0.4276 - acc: 0.85 - ETA: 12s - loss: 0.4273 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 11s - loss: 0.4274 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4274 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4274 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4272 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4272 - acc: 0.85 - ETA: 10s - loss: 0.4269 - acc: 0.85 - ETA: 10s - loss: 0.4266 - acc: 0.85 - ETA: 10s - loss: 0.4265 - acc: 0.85 - ETA: 10s - loss: 0.4266 - acc: 0.85 - ETA: 10s - loss: 0.4261 - acc: 0.85 - ETA: 10s - loss: 0.4256 - acc: 0.85 - ETA: 10s - loss: 0.4257 - acc: 0.85 - ETA: 10s - loss: 0.4254 - acc: 0.85 - ETA: 10s - loss: 0.4257 - acc: 0.85 - ETA: 10s - loss: 0.4253 - acc: 0.85 - ETA: 10s - loss: 0.4252 - acc: 0.85 - ETA: 10s - loss: 0.4252 - acc: 0.85 - ETA: 10s - loss: 0.4249 - acc: 0.85 - ETA: 10s - loss: 0.4252 - acc: 0.85 - ETA: 9s - loss: 0.4252 - acc: 0.8527 - ETA: 9s - loss: 0.4251 - acc: 0.852 - ETA: 9s - loss: 0.4250 - acc: 0.852 - ETA: 9s - loss: 0.4250 - acc: 0.852 - ETA: 9s - loss: 0.4247 - acc: 0.852 - ETA: 9s - loss: 0.4247 - acc: 0.853 - ETA: 9s - loss: 0.4251 - acc: 0.853 - ETA: 9s - loss: 0.4251 - acc: 0.852 - ETA: 9s - loss: 0.4249 - acc: 0.853 - ETA: 9s - loss: 0.4245 - acc: 0.853 - ETA: 9s - loss: 0.4243 - acc: 0.853 - ETA: 9s - loss: 0.4240 - acc: 0.853 - ETA: 9s - loss: 0.4237 - acc: 0.853 - ETA: 9s - loss: 0.4239 - acc: 0.853 - ETA: 8s - loss: 0.4238 - acc: 0.853 - ETA: 8s - loss: 0.4235 - acc: 0.853 - ETA: 8s - loss: 0.4235 - acc: 0.853 - ETA: 8s - loss: 0.4237 - acc: 0.853 - ETA: 8s - loss: 0.4236 - acc: 0.853 - ETA: 8s - loss: 0.4234 - acc: 0.853 - ETA: 8s - loss: 0.4232 - acc: 0.853 - ETA: 8s - loss: 0.4232 - acc: 0.853 - ETA: 8s - loss: 0.4232 - acc: 0.853 - ETA: 8s - loss: 0.4231 - acc: 0.853 - ETA: 8s - loss: 0.4234 - acc: 0.853 - ETA: 8s - loss: 0.4236 - acc: 0.853 - ETA: 8s - loss: 0.4233 - acc: 0.853 - ETA: 8s - loss: 0.4235 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4240 - acc: 0.853 - ETA: 7s - loss: 0.4240 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4233 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4237 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4232 - acc: 0.853 - ETA: 7s - loss: 0.4232 - acc: 0.853 - ETA: 6s - loss: 0.4233 - acc: 0.853 - ETA: 6s - loss: 0.4232 - acc: 0.8539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.4230 - acc: 0.854 - ETA: 6s - loss: 0.4228 - acc: 0.854 - ETA: 6s - loss: 0.4226 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 6s - loss: 0.4223 - acc: 0.854 - ETA: 6s - loss: 0.4222 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 6s - loss: 0.4222 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 6s - loss: 0.4225 - acc: 0.854 - ETA: 6s - loss: 0.4222 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 5s - loss: 0.4221 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4214 - acc: 0.854 - ETA: 5s - loss: 0.4213 - acc: 0.854 - ETA: 5s - loss: 0.4214 - acc: 0.854 - ETA: 5s - loss: 0.4213 - acc: 0.854 - ETA: 5s - loss: 0.4211 - acc: 0.854 - ETA: 5s - loss: 0.4208 - acc: 0.854 - ETA: 5s - loss: 0.4209 - acc: 0.854 - ETA: 5s - loss: 0.4209 - acc: 0.854 - ETA: 5s - loss: 0.4211 - acc: 0.854 - ETA: 4s - loss: 0.4212 - acc: 0.854 - ETA: 4s - loss: 0.4211 - acc: 0.854 - ETA: 4s - loss: 0.4212 - acc: 0.854 - ETA: 4s - loss: 0.4210 - acc: 0.854 - ETA: 4s - loss: 0.4207 - acc: 0.854 - ETA: 4s - loss: 0.4202 - acc: 0.855 - ETA: 4s - loss: 0.4198 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4193 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4196 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4191 - acc: 0.855 - ETA: 3s - loss: 0.4192 - acc: 0.855 - ETA: 3s - loss: 0.4191 - acc: 0.855 - ETA: 3s - loss: 0.4187 - acc: 0.855 - ETA: 3s - loss: 0.4186 - acc: 0.855 - ETA: 3s - loss: 0.4187 - acc: 0.855 - ETA: 3s - loss: 0.4187 - acc: 0.855 - ETA: 3s - loss: 0.4189 - acc: 0.855 - ETA: 3s - loss: 0.4188 - acc: 0.855 - ETA: 3s - loss: 0.4189 - acc: 0.855 - ETA: 3s - loss: 0.4188 - acc: 0.855 - ETA: 3s - loss: 0.4186 - acc: 0.855 - ETA: 3s - loss: 0.4184 - acc: 0.855 - ETA: 3s - loss: 0.4185 - acc: 0.855 - ETA: 3s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4178 - acc: 0.855 - ETA: 2s - loss: 0.4174 - acc: 0.855 - ETA: 2s - loss: 0.4176 - acc: 0.855 - ETA: 2s - loss: 0.4176 - acc: 0.855 - ETA: 2s - loss: 0.4174 - acc: 0.855 - ETA: 2s - loss: 0.4174 - acc: 0.855 - ETA: 2s - loss: 0.4171 - acc: 0.855 - ETA: 2s - loss: 0.4169 - acc: 0.855 - ETA: 2s - loss: 0.4165 - acc: 0.856 - ETA: 2s - loss: 0.4163 - acc: 0.856 - ETA: 2s - loss: 0.4162 - acc: 0.856 - ETA: 1s - loss: 0.4160 - acc: 0.856 - ETA: 1s - loss: 0.4161 - acc: 0.856 - ETA: 1s - loss: 0.4158 - acc: 0.856 - ETA: 1s - loss: 0.4157 - acc: 0.856 - ETA: 1s - loss: 0.4156 - acc: 0.856 - ETA: 1s - loss: 0.4155 - acc: 0.856 - ETA: 1s - loss: 0.4156 - acc: 0.856 - ETA: 1s - loss: 0.4157 - acc: 0.856 - ETA: 1s - loss: 0.4154 - acc: 0.856 - ETA: 1s - loss: 0.4151 - acc: 0.856 - ETA: 1s - loss: 0.4150 - acc: 0.856 - ETA: 1s - loss: 0.4149 - acc: 0.856 - ETA: 1s - loss: 0.4145 - acc: 0.856 - ETA: 1s - loss: 0.4145 - acc: 0.856 - ETA: 0s - loss: 0.4142 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4143 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4144 - acc: 0.856 - ETA: 0s - loss: 0.4143 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4138 - acc: 0.856 - ETA: 0s - loss: 0.4135 - acc: 0.856 - ETA: 0s - loss: 0.4133 - acc: 0.857 - ETA: 0s - loss: 0.4130 - acc: 0.857 - ETA: 0s - loss: 0.4130 - acc: 0.857 - ETA: 0s - loss: 0.4127 - acc: 0.857 - 54s 2ms/step - loss: 0.4130 - acc: 0.8570 - val_loss: 0.2938 - val_acc: 0.8966\n", + "\n", + "Epoch 00003: val_acc improved from 0.83643 to 0.89663, saving model to models\\conv.model\n", + "Epoch 4/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 49s - loss: 0.4030 - acc: 0.90 - ETA: 49s - loss: 0.3162 - acc: 0.90 - ETA: 51s - loss: 0.3480 - acc: 0.88 - ETA: 52s - loss: 0.3180 - acc: 0.89 - ETA: 53s - loss: 0.3293 - acc: 0.88 - ETA: 53s - loss: 0.3486 - acc: 0.87 - ETA: 53s - loss: 0.3431 - acc: 0.87 - ETA: 53s - loss: 0.3232 - acc: 0.87 - ETA: 53s - loss: 0.3094 - acc: 0.88 - ETA: 53s - loss: 0.3080 - acc: 0.88 - ETA: 53s - loss: 0.3339 - acc: 0.87 - ETA: 53s - loss: 0.3441 - acc: 0.87 - ETA: 52s - loss: 0.3283 - acc: 0.87 - ETA: 52s - loss: 0.3265 - acc: 0.88 - ETA: 52s - loss: 0.3271 - acc: 0.87 - ETA: 52s - loss: 0.3180 - acc: 0.88 - ETA: 52s - loss: 0.3069 - acc: 0.88 - ETA: 52s - loss: 0.3057 - acc: 0.88 - ETA: 52s - loss: 0.3157 - acc: 0.88 - ETA: 52s - loss: 0.3065 - acc: 0.88 - ETA: 51s - loss: 0.3015 - acc: 0.88 - ETA: 51s - loss: 0.2985 - acc: 0.89 - ETA: 51s - loss: 0.3127 - acc: 0.88 - ETA: 51s - loss: 0.3054 - acc: 0.89 - ETA: 51s - loss: 0.3056 - acc: 0.89 - ETA: 51s - loss: 0.3206 - acc: 0.88 - ETA: 51s - loss: 0.3184 - acc: 0.88 - ETA: 51s - loss: 0.3295 - acc: 0.88 - ETA: 51s - loss: 0.3303 - acc: 0.87 - ETA: 51s - loss: 0.3265 - acc: 0.88 - ETA: 51s - loss: 0.3273 - acc: 0.87 - ETA: 50s - loss: 0.3296 - acc: 0.87 - ETA: 50s - loss: 0.3302 - acc: 0.87 - ETA: 50s - loss: 0.3328 - acc: 0.87 - ETA: 50s - loss: 0.3318 - acc: 0.87 - ETA: 50s - loss: 0.3299 - acc: 0.87 - ETA: 50s - loss: 0.3301 - acc: 0.87 - ETA: 50s - loss: 0.3294 - acc: 0.87 - ETA: 50s - loss: 0.3303 - acc: 0.87 - ETA: 49s - loss: 0.3308 - acc: 0.87 - ETA: 49s - loss: 0.3314 - acc: 0.87 - ETA: 49s - loss: 0.3347 - acc: 0.87 - ETA: 49s - loss: 0.3359 - acc: 0.87 - ETA: 49s - loss: 0.3376 - acc: 0.87 - ETA: 49s - loss: 0.3423 - acc: 0.87 - ETA: 49s - loss: 0.3408 - acc: 0.87 - ETA: 49s - loss: 0.3407 - acc: 0.87 - ETA: 49s - loss: 0.3375 - acc: 0.87 - ETA: 49s - loss: 0.3376 - acc: 0.87 - ETA: 49s - loss: 0.3352 - acc: 0.87 - ETA: 48s - loss: 0.3382 - acc: 0.87 - ETA: 48s - loss: 0.3344 - acc: 0.87 - ETA: 48s - loss: 0.3404 - acc: 0.87 - ETA: 48s - loss: 0.3417 - acc: 0.87 - ETA: 48s - loss: 0.3419 - acc: 0.87 - ETA: 48s - loss: 0.3417 - acc: 0.88 - ETA: 48s - loss: 0.3394 - acc: 0.88 - ETA: 48s - loss: 0.3375 - acc: 0.88 - ETA: 48s - loss: 0.3419 - acc: 0.88 - ETA: 48s - loss: 0.3393 - acc: 0.88 - ETA: 47s - loss: 0.3396 - acc: 0.88 - ETA: 47s - loss: 0.3395 - acc: 0.88 - ETA: 47s - loss: 0.3385 - acc: 0.88 - ETA: 47s - loss: 0.3403 - acc: 0.88 - ETA: 47s - loss: 0.3412 - acc: 0.88 - ETA: 47s - loss: 0.3422 - acc: 0.88 - ETA: 47s - loss: 0.3419 - acc: 0.88 - ETA: 47s - loss: 0.3434 - acc: 0.88 - ETA: 47s - loss: 0.3416 - acc: 0.88 - ETA: 47s - loss: 0.3401 - acc: 0.88 - ETA: 47s - loss: 0.3388 - acc: 0.88 - ETA: 47s - loss: 0.3378 - acc: 0.88 - ETA: 46s - loss: 0.3402 - acc: 0.88 - ETA: 46s - loss: 0.3395 - acc: 0.88 - ETA: 46s - loss: 0.3401 - acc: 0.87 - ETA: 46s - loss: 0.3417 - acc: 0.87 - ETA: 46s - loss: 0.3384 - acc: 0.88 - ETA: 46s - loss: 0.3371 - acc: 0.88 - ETA: 46s - loss: 0.3374 - acc: 0.88 - ETA: 46s - loss: 0.3353 - acc: 0.88 - ETA: 46s - loss: 0.3390 - acc: 0.88 - ETA: 45s - loss: 0.3360 - acc: 0.88 - ETA: 45s - loss: 0.3357 - acc: 0.88 - ETA: 45s - loss: 0.3338 - acc: 0.88 - ETA: 45s - loss: 0.3345 - acc: 0.88 - ETA: 45s - loss: 0.3334 - acc: 0.88 - ETA: 45s - loss: 0.3382 - acc: 0.88 - ETA: 45s - loss: 0.3410 - acc: 0.88 - ETA: 45s - loss: 0.3399 - acc: 0.88 - ETA: 45s - loss: 0.3402 - acc: 0.88 - ETA: 45s - loss: 0.3399 - acc: 0.88 - ETA: 45s - loss: 0.3392 - acc: 0.88 - ETA: 44s - loss: 0.3394 - acc: 0.88 - ETA: 44s - loss: 0.3411 - acc: 0.88 - ETA: 44s - loss: 0.3407 - acc: 0.88 - ETA: 44s - loss: 0.3402 - acc: 0.88 - ETA: 44s - loss: 0.3429 - acc: 0.88 - ETA: 44s - loss: 0.3424 - acc: 0.88 - ETA: 44s - loss: 0.3422 - acc: 0.88 - ETA: 44s - loss: 0.3408 - acc: 0.88 - ETA: 44s - loss: 0.3381 - acc: 0.88 - ETA: 44s - loss: 0.3364 - acc: 0.88 - ETA: 44s - loss: 0.3362 - acc: 0.88 - ETA: 44s - loss: 0.3359 - acc: 0.88 - ETA: 44s - loss: 0.3346 - acc: 0.88 - ETA: 44s - loss: 0.3368 - acc: 0.88 - ETA: 44s - loss: 0.3377 - acc: 0.88 - ETA: 43s - loss: 0.3394 - acc: 0.88 - ETA: 43s - loss: 0.3400 - acc: 0.88 - ETA: 43s - loss: 0.3404 - acc: 0.88 - ETA: 43s - loss: 0.3415 - acc: 0.88 - ETA: 43s - loss: 0.3398 - acc: 0.88 - ETA: 43s - loss: 0.3399 - acc: 0.88 - ETA: 43s - loss: 0.3404 - acc: 0.88 - ETA: 43s - loss: 0.3404 - acc: 0.88 - ETA: 43s - loss: 0.3401 - acc: 0.88 - ETA: 43s - loss: 0.3424 - acc: 0.88 - ETA: 43s - loss: 0.3457 - acc: 0.87 - ETA: 43s - loss: 0.3456 - acc: 0.87 - ETA: 43s - loss: 0.3448 - acc: 0.87 - ETA: 43s - loss: 0.3440 - acc: 0.87 - ETA: 42s - loss: 0.3446 - acc: 0.87 - ETA: 42s - loss: 0.3448 - acc: 0.87 - ETA: 42s - loss: 0.3447 - acc: 0.87 - ETA: 42s - loss: 0.3456 - acc: 0.87 - ETA: 42s - loss: 0.3463 - acc: 0.87 - ETA: 42s - loss: 0.3476 - acc: 0.87 - ETA: 42s - loss: 0.3467 - acc: 0.87 - ETA: 42s - loss: 0.3465 - acc: 0.87 - ETA: 42s - loss: 0.3450 - acc: 0.87 - ETA: 42s - loss: 0.3442 - acc: 0.87 - ETA: 42s - loss: 0.3432 - acc: 0.88 - ETA: 42s - loss: 0.3422 - acc: 0.88 - ETA: 42s - loss: 0.3429 - acc: 0.88 - ETA: 42s - loss: 0.3430 - acc: 0.88 - ETA: 42s - loss: 0.3411 - acc: 0.88 - ETA: 42s - loss: 0.3397 - acc: 0.88 - ETA: 42s - loss: 0.3403 - acc: 0.88 - ETA: 42s - loss: 0.3404 - acc: 0.88 - ETA: 42s - loss: 0.3408 - acc: 0.88 - ETA: 42s - loss: 0.3412 - acc: 0.88 - ETA: 41s - loss: 0.3423 - acc: 0.88 - ETA: 41s - loss: 0.3418 - acc: 0.88 - ETA: 41s - loss: 0.3414 - acc: 0.88 - ETA: 41s - loss: 0.3419 - acc: 0.88 - ETA: 41s - loss: 0.3419 - acc: 0.88 - ETA: 41s - loss: 0.3417 - acc: 0.88 - ETA: 41s - loss: 0.3435 - acc: 0.88 - ETA: 41s - loss: 0.3434 - acc: 0.87 - ETA: 41s - loss: 0.3427 - acc: 0.87 - ETA: 41s - loss: 0.3435 - acc: 0.87 - ETA: 41s - loss: 0.3420 - acc: 0.87 - ETA: 41s - loss: 0.3421 - acc: 0.87 - ETA: 41s - loss: 0.3416 - acc: 0.87 - ETA: 41s - loss: 0.3403 - acc: 0.88 - ETA: 41s - loss: 0.3397 - acc: 0.88 - ETA: 40s - loss: 0.3394 - acc: 0.88 - ETA: 40s - loss: 0.3386 - acc: 0.88 - ETA: 40s - loss: 0.3387 - acc: 0.88 - ETA: 40s - loss: 0.3391 - acc: 0.88 - ETA: 40s - loss: 0.3402 - acc: 0.88 - ETA: 40s - loss: 0.3399 - acc: 0.88 - ETA: 40s - loss: 0.3388 - acc: 0.88 - ETA: 40s - loss: 0.3391 - acc: 0.88 - ETA: 40s - loss: 0.3390 - acc: 0.88 - ETA: 40s - loss: 0.3389 - acc: 0.88 - ETA: 40s - loss: 0.3380 - acc: 0.88 - ETA: 40s - loss: 0.3374 - acc: 0.88 - ETA: 40s - loss: 0.3367 - acc: 0.88 - ETA: 40s - loss: 0.3358 - acc: 0.88 - ETA: 40s - loss: 0.3357 - acc: 0.88 - ETA: 40s - loss: 0.3358 - acc: 0.88 - ETA: 40s - loss: 0.3354 - acc: 0.88 - ETA: 40s - loss: 0.3352 - acc: 0.88 - ETA: 39s - loss: 0.3347 - acc: 0.88 - ETA: 40s - loss: 0.3353 - acc: 0.88 - ETA: 40s - loss: 0.3343 - acc: 0.88 - ETA: 40s - loss: 0.3347 - acc: 0.88 - ETA: 40s - loss: 0.3352 - acc: 0.88 - ETA: 39s - loss: 0.3369 - acc: 0.88 - ETA: 39s - loss: 0.3363 - acc: 0.88 - ETA: 39s - loss: 0.3360 - acc: 0.88 - ETA: 39s - loss: 0.3370 - acc: 0.88 - ETA: 39s - loss: 0.3373 - acc: 0.88 - ETA: 39s - loss: 0.3370 - acc: 0.88 - ETA: 39s - loss: 0.3362 - acc: 0.88 - ETA: 39s - loss: 0.3358 - acc: 0.88 - ETA: 39s - loss: 0.3351 - acc: 0.88 - ETA: 39s - loss: 0.3349 - acc: 0.88 - ETA: 39s - loss: 0.3338 - acc: 0.88 - ETA: 39s - loss: 0.3330 - acc: 0.88 - ETA: 39s - loss: 0.3325 - acc: 0.88 - ETA: 39s - loss: 0.3319 - acc: 0.88 - ETA: 39s - loss: 0.3334 - acc: 0.88 - ETA: 39s - loss: 0.3338 - acc: 0.88 - ETA: 39s - loss: 0.3335 - acc: 0.88 - ETA: 39s - loss: 0.3348 - acc: 0.88 - ETA: 39s - loss: 0.3358 - acc: 0.88 - ETA: 38s - loss: 0.3345 - acc: 0.88 - ETA: 38s - loss: 0.3351 - acc: 0.88 - ETA: 38s - loss: 0.3359 - acc: 0.88 - ETA: 38s - loss: 0.3357 - acc: 0.88 - ETA: 38s - loss: 0.3391 - acc: 0.87 - ETA: 38s - loss: 0.3388 - acc: 0.87 - ETA: 38s - loss: 0.3381 - acc: 0.87 - ETA: 38s - loss: 0.3380 - acc: 0.87 - ETA: 38s - loss: 0.3384 - acc: 0.87 - ETA: 38s - loss: 0.3383 - acc: 0.87 - ETA: 38s - loss: 0.3385 - acc: 0.87 - ETA: 38s - loss: 0.3390 - acc: 0.87 - ETA: 38s - loss: 0.3396 - acc: 0.87 - ETA: 38s - loss: 0.3385 - acc: 0.87 - ETA: 38s - loss: 0.3381 - acc: 0.87 - ETA: 38s - loss: 0.3378 - acc: 0.87 - ETA: 37s - loss: 0.3371 - acc: 0.8795" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.3366 - acc: 0.87 - ETA: 37s - loss: 0.3357 - acc: 0.88 - ETA: 37s - loss: 0.3364 - acc: 0.87 - ETA: 37s - loss: 0.3367 - acc: 0.87 - ETA: 37s - loss: 0.3362 - acc: 0.88 - ETA: 37s - loss: 0.3362 - acc: 0.87 - ETA: 37s - loss: 0.3365 - acc: 0.88 - ETA: 37s - loss: 0.3368 - acc: 0.88 - ETA: 37s - loss: 0.3362 - acc: 0.88 - ETA: 37s - loss: 0.3354 - acc: 0.88 - ETA: 37s - loss: 0.3353 - acc: 0.88 - ETA: 37s - loss: 0.3361 - acc: 0.88 - ETA: 37s - loss: 0.3367 - acc: 0.88 - ETA: 37s - loss: 0.3362 - acc: 0.88 - ETA: 37s - loss: 0.3355 - acc: 0.88 - ETA: 36s - loss: 0.3352 - acc: 0.88 - ETA: 36s - loss: 0.3356 - acc: 0.88 - ETA: 36s - loss: 0.3350 - acc: 0.88 - ETA: 36s - loss: 0.3353 - acc: 0.88 - ETA: 36s - loss: 0.3351 - acc: 0.88 - ETA: 36s - loss: 0.3352 - acc: 0.88 - ETA: 36s - loss: 0.3351 - acc: 0.88 - ETA: 36s - loss: 0.3355 - acc: 0.88 - ETA: 36s - loss: 0.3353 - acc: 0.88 - ETA: 36s - loss: 0.3357 - acc: 0.88 - ETA: 36s - loss: 0.3351 - acc: 0.88 - ETA: 36s - loss: 0.3342 - acc: 0.88 - ETA: 36s - loss: 0.3347 - acc: 0.88 - ETA: 36s - loss: 0.3338 - acc: 0.88 - ETA: 36s - loss: 0.3331 - acc: 0.88 - ETA: 35s - loss: 0.3338 - acc: 0.88 - ETA: 35s - loss: 0.3335 - acc: 0.88 - ETA: 35s - loss: 0.3337 - acc: 0.88 - ETA: 35s - loss: 0.3335 - acc: 0.88 - ETA: 35s - loss: 0.3337 - acc: 0.88 - ETA: 35s - loss: 0.3332 - acc: 0.88 - ETA: 35s - loss: 0.3333 - acc: 0.88 - ETA: 35s - loss: 0.3332 - acc: 0.88 - ETA: 35s - loss: 0.3340 - acc: 0.88 - ETA: 35s - loss: 0.3331 - acc: 0.88 - ETA: 35s - loss: 0.3330 - acc: 0.88 - ETA: 35s - loss: 0.3322 - acc: 0.88 - ETA: 35s - loss: 0.3326 - acc: 0.88 - ETA: 35s - loss: 0.3331 - acc: 0.88 - ETA: 35s - loss: 0.3328 - acc: 0.88 - ETA: 34s - loss: 0.3334 - acc: 0.88 - ETA: 34s - loss: 0.3329 - acc: 0.88 - ETA: 34s - loss: 0.3333 - acc: 0.88 - ETA: 34s - loss: 0.3331 - acc: 0.88 - ETA: 34s - loss: 0.3331 - acc: 0.88 - ETA: 34s - loss: 0.3339 - acc: 0.88 - ETA: 34s - loss: 0.3338 - acc: 0.88 - ETA: 34s - loss: 0.3336 - acc: 0.88 - ETA: 34s - loss: 0.3333 - acc: 0.88 - ETA: 34s - loss: 0.3338 - acc: 0.88 - ETA: 34s - loss: 0.3346 - acc: 0.88 - ETA: 34s - loss: 0.3344 - acc: 0.88 - ETA: 34s - loss: 0.3354 - acc: 0.88 - ETA: 34s - loss: 0.3350 - acc: 0.88 - ETA: 33s - loss: 0.3349 - acc: 0.88 - ETA: 33s - loss: 0.3343 - acc: 0.88 - ETA: 33s - loss: 0.3341 - acc: 0.88 - ETA: 33s - loss: 0.3352 - acc: 0.88 - ETA: 33s - loss: 0.3359 - acc: 0.88 - ETA: 33s - loss: 0.3359 - acc: 0.88 - ETA: 33s - loss: 0.3355 - acc: 0.88 - ETA: 33s - loss: 0.3360 - acc: 0.88 - ETA: 33s - loss: 0.3366 - acc: 0.88 - ETA: 33s - loss: 0.3361 - acc: 0.88 - ETA: 33s - loss: 0.3356 - acc: 0.88 - ETA: 33s - loss: 0.3350 - acc: 0.88 - ETA: 33s - loss: 0.3345 - acc: 0.88 - ETA: 33s - loss: 0.3339 - acc: 0.88 - ETA: 33s - loss: 0.3333 - acc: 0.88 - ETA: 32s - loss: 0.3327 - acc: 0.88 - ETA: 32s - loss: 0.3326 - acc: 0.88 - ETA: 32s - loss: 0.3320 - acc: 0.88 - ETA: 32s - loss: 0.3316 - acc: 0.88 - ETA: 32s - loss: 0.3314 - acc: 0.88 - ETA: 32s - loss: 0.3312 - acc: 0.88 - ETA: 32s - loss: 0.3318 - acc: 0.88 - ETA: 32s - loss: 0.3321 - acc: 0.88 - ETA: 32s - loss: 0.3319 - acc: 0.88 - ETA: 32s - loss: 0.3315 - acc: 0.88 - ETA: 32s - loss: 0.3319 - acc: 0.88 - ETA: 32s - loss: 0.3323 - acc: 0.88 - ETA: 32s - loss: 0.3314 - acc: 0.88 - ETA: 32s - loss: 0.3311 - acc: 0.88 - ETA: 32s - loss: 0.3310 - acc: 0.88 - ETA: 31s - loss: 0.3307 - acc: 0.88 - ETA: 31s - loss: 0.3306 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3299 - acc: 0.88 - ETA: 31s - loss: 0.3298 - acc: 0.88 - ETA: 31s - loss: 0.3298 - acc: 0.88 - ETA: 31s - loss: 0.3296 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3300 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3301 - acc: 0.88 - ETA: 31s - loss: 0.3298 - acc: 0.88 - ETA: 31s - loss: 0.3295 - acc: 0.88 - ETA: 30s - loss: 0.3292 - acc: 0.88 - ETA: 30s - loss: 0.3288 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3287 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3283 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3288 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3285 - acc: 0.88 - ETA: 30s - loss: 0.3289 - acc: 0.88 - ETA: 30s - loss: 0.3287 - acc: 0.88 - ETA: 30s - loss: 0.3299 - acc: 0.88 - ETA: 30s - loss: 0.3299 - acc: 0.88 - ETA: 29s - loss: 0.3300 - acc: 0.88 - ETA: 29s - loss: 0.3300 - acc: 0.88 - ETA: 29s - loss: 0.3299 - acc: 0.88 - ETA: 29s - loss: 0.3303 - acc: 0.88 - ETA: 29s - loss: 0.3304 - acc: 0.88 - ETA: 29s - loss: 0.3303 - acc: 0.88 - ETA: 29s - loss: 0.3298 - acc: 0.88 - ETA: 29s - loss: 0.3308 - acc: 0.88 - ETA: 29s - loss: 0.3304 - acc: 0.88 - ETA: 29s - loss: 0.3305 - acc: 0.88 - ETA: 29s - loss: 0.3304 - acc: 0.88 - ETA: 29s - loss: 0.3302 - acc: 0.88 - ETA: 29s - loss: 0.3303 - acc: 0.88 - ETA: 29s - loss: 0.3297 - acc: 0.88 - ETA: 28s - loss: 0.3295 - acc: 0.88 - ETA: 28s - loss: 0.3289 - acc: 0.88 - ETA: 28s - loss: 0.3291 - acc: 0.88 - ETA: 28s - loss: 0.3290 - acc: 0.88 - ETA: 28s - loss: 0.3289 - acc: 0.88 - ETA: 28s - loss: 0.3294 - acc: 0.88 - ETA: 28s - loss: 0.3290 - acc: 0.88 - ETA: 28s - loss: 0.3285 - acc: 0.88 - ETA: 28s - loss: 0.3285 - acc: 0.88 - ETA: 28s - loss: 0.3284 - acc: 0.88 - ETA: 28s - loss: 0.3281 - acc: 0.88 - ETA: 28s - loss: 0.3284 - acc: 0.88 - ETA: 28s - loss: 0.3283 - acc: 0.88 - ETA: 28s - loss: 0.3291 - acc: 0.88 - ETA: 28s - loss: 0.3290 - acc: 0.88 - ETA: 27s - loss: 0.3287 - acc: 0.88 - ETA: 27s - loss: 0.3282 - acc: 0.88 - ETA: 27s - loss: 0.3284 - acc: 0.88 - ETA: 27s - loss: 0.3285 - acc: 0.88 - ETA: 27s - loss: 0.3279 - acc: 0.88 - ETA: 27s - loss: 0.3279 - acc: 0.88 - ETA: 27s - loss: 0.3274 - acc: 0.88 - ETA: 27s - loss: 0.3270 - acc: 0.88 - ETA: 27s - loss: 0.3273 - acc: 0.88 - ETA: 27s - loss: 0.3277 - acc: 0.88 - ETA: 27s - loss: 0.3278 - acc: 0.88 - ETA: 27s - loss: 0.3274 - acc: 0.88 - ETA: 27s - loss: 0.3281 - acc: 0.88 - ETA: 27s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3286 - acc: 0.88 - ETA: 26s - loss: 0.3284 - acc: 0.88 - ETA: 26s - loss: 0.3284 - acc: 0.88 - ETA: 26s - loss: 0.3287 - acc: 0.88 - ETA: 26s - loss: 0.3285 - acc: 0.88 - ETA: 26s - loss: 0.3278 - acc: 0.88 - ETA: 26s - loss: 0.3286 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3279 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3286 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 25s - loss: 0.3281 - acc: 0.88 - ETA: 25s - loss: 0.3289 - acc: 0.88 - ETA: 25s - loss: 0.3285 - acc: 0.88 - ETA: 25s - loss: 0.3291 - acc: 0.88 - ETA: 25s - loss: 0.3294 - acc: 0.88 - ETA: 25s - loss: 0.3297 - acc: 0.88 - ETA: 25s - loss: 0.3298 - acc: 0.88 - ETA: 25s - loss: 0.3297 - acc: 0.88 - ETA: 25s - loss: 0.3297 - acc: 0.88 - ETA: 25s - loss: 0.3300 - acc: 0.88 - ETA: 25s - loss: 0.3294 - acc: 0.88 - ETA: 25s - loss: 0.3289 - acc: 0.88 - ETA: 25s - loss: 0.3294 - acc: 0.88 - ETA: 25s - loss: 0.3292 - acc: 0.88 - ETA: 25s - loss: 0.3293 - acc: 0.88 - ETA: 24s - loss: 0.3291 - acc: 0.88 - ETA: 24s - loss: 0.3290 - acc: 0.88 - ETA: 24s - loss: 0.3288 - acc: 0.88 - ETA: 24s - loss: 0.3290 - acc: 0.88 - ETA: 24s - loss: 0.3286 - acc: 0.88 - ETA: 24s - loss: 0.3287 - acc: 0.88 - ETA: 24s - loss: 0.3286 - acc: 0.88 - ETA: 24s - loss: 0.3287 - acc: 0.88 - ETA: 24s - loss: 0.3286 - acc: 0.88 - ETA: 24s - loss: 0.3285 - acc: 0.88 - ETA: 24s - loss: 0.3280 - acc: 0.88 - ETA: 24s - loss: 0.3283 - acc: 0.88 - ETA: 24s - loss: 0.3279 - acc: 0.88 - ETA: 24s - loss: 0.3274 - acc: 0.88 - ETA: 23s - loss: 0.3278 - acc: 0.88 - ETA: 23s - loss: 0.3281 - acc: 0.88 - ETA: 23s - loss: 0.3282 - acc: 0.88 - ETA: 23s - loss: 0.3280 - acc: 0.88 - ETA: 23s - loss: 0.3279 - acc: 0.88 - ETA: 23s - loss: 0.3276 - acc: 0.88 - ETA: 23s - loss: 0.3272 - acc: 0.88 - ETA: 23s - loss: 0.3274 - acc: 0.88 - ETA: 23s - loss: 0.3272 - acc: 0.88 - ETA: 23s - loss: 0.3270 - acc: 0.88 - ETA: 23s - loss: 0.3272 - acc: 0.8849" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 23s - loss: 0.3269 - acc: 0.88 - ETA: 23s - loss: 0.3270 - acc: 0.88 - ETA: 23s - loss: 0.3268 - acc: 0.88 - ETA: 22s - loss: 0.3268 - acc: 0.88 - ETA: 22s - loss: 0.3262 - acc: 0.88 - ETA: 22s - loss: 0.3261 - acc: 0.88 - ETA: 22s - loss: 0.3261 - acc: 0.88 - ETA: 22s - loss: 0.3257 - acc: 0.88 - ETA: 22s - loss: 0.3251 - acc: 0.88 - ETA: 22s - loss: 0.3252 - acc: 0.88 - ETA: 22s - loss: 0.3250 - acc: 0.88 - ETA: 22s - loss: 0.3247 - acc: 0.88 - ETA: 22s - loss: 0.3245 - acc: 0.88 - ETA: 22s - loss: 0.3246 - acc: 0.88 - ETA: 22s - loss: 0.3242 - acc: 0.88 - ETA: 22s - loss: 0.3244 - acc: 0.88 - ETA: 22s - loss: 0.3247 - acc: 0.88 - ETA: 21s - loss: 0.3246 - acc: 0.88 - ETA: 21s - loss: 0.3245 - acc: 0.88 - ETA: 21s - loss: 0.3246 - acc: 0.88 - ETA: 21s - loss: 0.3244 - acc: 0.88 - ETA: 21s - loss: 0.3243 - acc: 0.88 - ETA: 21s - loss: 0.3239 - acc: 0.88 - ETA: 21s - loss: 0.3236 - acc: 0.88 - ETA: 21s - loss: 0.3231 - acc: 0.88 - ETA: 21s - loss: 0.3229 - acc: 0.88 - ETA: 21s - loss: 0.3228 - acc: 0.88 - ETA: 21s - loss: 0.3227 - acc: 0.88 - ETA: 21s - loss: 0.3229 - acc: 0.88 - ETA: 21s - loss: 0.3232 - acc: 0.88 - ETA: 21s - loss: 0.3232 - acc: 0.88 - ETA: 20s - loss: 0.3230 - acc: 0.88 - ETA: 20s - loss: 0.3226 - acc: 0.88 - ETA: 20s - loss: 0.3221 - acc: 0.88 - ETA: 20s - loss: 0.3217 - acc: 0.88 - ETA: 20s - loss: 0.3216 - acc: 0.88 - ETA: 20s - loss: 0.3217 - acc: 0.88 - ETA: 20s - loss: 0.3218 - acc: 0.88 - ETA: 20s - loss: 0.3217 - acc: 0.88 - ETA: 20s - loss: 0.3220 - acc: 0.88 - ETA: 20s - loss: 0.3220 - acc: 0.88 - ETA: 20s - loss: 0.3216 - acc: 0.88 - ETA: 20s - loss: 0.3212 - acc: 0.88 - ETA: 20s - loss: 0.3211 - acc: 0.88 - ETA: 20s - loss: 0.3213 - acc: 0.88 - ETA: 19s - loss: 0.3211 - acc: 0.88 - ETA: 19s - loss: 0.3211 - acc: 0.88 - ETA: 19s - loss: 0.3211 - acc: 0.88 - ETA: 19s - loss: 0.3209 - acc: 0.88 - ETA: 19s - loss: 0.3210 - acc: 0.88 - ETA: 19s - loss: 0.3210 - acc: 0.88 - ETA: 19s - loss: 0.3208 - acc: 0.88 - ETA: 19s - loss: 0.3206 - acc: 0.88 - ETA: 19s - loss: 0.3203 - acc: 0.88 - ETA: 19s - loss: 0.3198 - acc: 0.88 - ETA: 19s - loss: 0.3195 - acc: 0.88 - ETA: 19s - loss: 0.3192 - acc: 0.88 - ETA: 19s - loss: 0.3190 - acc: 0.88 - ETA: 18s - loss: 0.3189 - acc: 0.88 - ETA: 18s - loss: 0.3183 - acc: 0.88 - ETA: 18s - loss: 0.3178 - acc: 0.88 - ETA: 18s - loss: 0.3178 - acc: 0.88 - ETA: 18s - loss: 0.3175 - acc: 0.88 - ETA: 18s - loss: 0.3172 - acc: 0.88 - ETA: 18s - loss: 0.3171 - acc: 0.88 - ETA: 18s - loss: 0.3169 - acc: 0.88 - ETA: 18s - loss: 0.3165 - acc: 0.88 - ETA: 18s - loss: 0.3168 - acc: 0.88 - ETA: 18s - loss: 0.3167 - acc: 0.88 - ETA: 18s - loss: 0.3169 - acc: 0.88 - ETA: 18s - loss: 0.3167 - acc: 0.88 - ETA: 17s - loss: 0.3167 - acc: 0.88 - ETA: 17s - loss: 0.3163 - acc: 0.88 - ETA: 17s - loss: 0.3171 - acc: 0.88 - ETA: 17s - loss: 0.3168 - acc: 0.88 - ETA: 17s - loss: 0.3171 - acc: 0.88 - ETA: 17s - loss: 0.3169 - acc: 0.88 - ETA: 17s - loss: 0.3173 - acc: 0.88 - ETA: 17s - loss: 0.3175 - acc: 0.88 - ETA: 17s - loss: 0.3174 - acc: 0.88 - ETA: 17s - loss: 0.3172 - acc: 0.88 - ETA: 17s - loss: 0.3171 - acc: 0.88 - ETA: 17s - loss: 0.3170 - acc: 0.88 - ETA: 17s - loss: 0.3168 - acc: 0.88 - ETA: 17s - loss: 0.3169 - acc: 0.88 - ETA: 16s - loss: 0.3170 - acc: 0.88 - ETA: 16s - loss: 0.3171 - acc: 0.88 - ETA: 16s - loss: 0.3171 - acc: 0.88 - ETA: 16s - loss: 0.3166 - acc: 0.88 - ETA: 16s - loss: 0.3162 - acc: 0.88 - ETA: 16s - loss: 0.3159 - acc: 0.88 - ETA: 16s - loss: 0.3162 - acc: 0.88 - ETA: 16s - loss: 0.3162 - acc: 0.88 - ETA: 16s - loss: 0.3157 - acc: 0.88 - ETA: 16s - loss: 0.3156 - acc: 0.88 - ETA: 16s - loss: 0.3153 - acc: 0.88 - ETA: 16s - loss: 0.3156 - acc: 0.88 - ETA: 16s - loss: 0.3157 - acc: 0.88 - ETA: 15s - loss: 0.3156 - acc: 0.88 - ETA: 15s - loss: 0.3162 - acc: 0.88 - ETA: 15s - loss: 0.3166 - acc: 0.88 - ETA: 15s - loss: 0.3165 - acc: 0.88 - ETA: 15s - loss: 0.3168 - acc: 0.88 - ETA: 15s - loss: 0.3167 - acc: 0.88 - ETA: 15s - loss: 0.3166 - acc: 0.88 - ETA: 15s - loss: 0.3163 - acc: 0.88 - ETA: 15s - loss: 0.3170 - acc: 0.88 - ETA: 15s - loss: 0.3168 - acc: 0.88 - ETA: 15s - loss: 0.3169 - acc: 0.88 - ETA: 15s - loss: 0.3172 - acc: 0.88 - ETA: 15s - loss: 0.3172 - acc: 0.88 - ETA: 14s - loss: 0.3169 - acc: 0.88 - ETA: 14s - loss: 0.3167 - acc: 0.88 - ETA: 14s - loss: 0.3167 - acc: 0.88 - ETA: 14s - loss: 0.3167 - acc: 0.88 - ETA: 14s - loss: 0.3163 - acc: 0.88 - ETA: 14s - loss: 0.3161 - acc: 0.88 - ETA: 14s - loss: 0.3157 - acc: 0.88 - ETA: 14s - loss: 0.3157 - acc: 0.88 - ETA: 14s - loss: 0.3157 - acc: 0.88 - ETA: 14s - loss: 0.3156 - acc: 0.88 - ETA: 14s - loss: 0.3158 - acc: 0.88 - ETA: 14s - loss: 0.3156 - acc: 0.88 - ETA: 14s - loss: 0.3153 - acc: 0.88 - ETA: 14s - loss: 0.3152 - acc: 0.88 - ETA: 13s - loss: 0.3149 - acc: 0.88 - ETA: 13s - loss: 0.3146 - acc: 0.89 - ETA: 13s - loss: 0.3147 - acc: 0.89 - ETA: 13s - loss: 0.3144 - acc: 0.89 - ETA: 13s - loss: 0.3148 - acc: 0.89 - ETA: 13s - loss: 0.3153 - acc: 0.88 - ETA: 13s - loss: 0.3152 - acc: 0.88 - ETA: 13s - loss: 0.3149 - acc: 0.89 - ETA: 13s - loss: 0.3147 - acc: 0.89 - ETA: 13s - loss: 0.3150 - acc: 0.89 - ETA: 13s - loss: 0.3151 - acc: 0.89 - ETA: 13s - loss: 0.3150 - acc: 0.89 - ETA: 13s - loss: 0.3151 - acc: 0.89 - ETA: 12s - loss: 0.3149 - acc: 0.89 - ETA: 12s - loss: 0.3146 - acc: 0.89 - ETA: 12s - loss: 0.3144 - acc: 0.89 - ETA: 12s - loss: 0.3146 - acc: 0.89 - ETA: 12s - loss: 0.3143 - acc: 0.89 - ETA: 12s - loss: 0.3144 - acc: 0.89 - ETA: 12s - loss: 0.3141 - acc: 0.89 - ETA: 12s - loss: 0.3148 - acc: 0.89 - ETA: 12s - loss: 0.3148 - acc: 0.89 - ETA: 12s - loss: 0.3154 - acc: 0.89 - ETA: 12s - loss: 0.3153 - acc: 0.89 - ETA: 12s - loss: 0.3150 - acc: 0.89 - ETA: 12s - loss: 0.3153 - acc: 0.89 - ETA: 11s - loss: 0.3151 - acc: 0.89 - ETA: 11s - loss: 0.3154 - acc: 0.89 - ETA: 11s - loss: 0.3154 - acc: 0.89 - ETA: 11s - loss: 0.3158 - acc: 0.89 - ETA: 11s - loss: 0.3155 - acc: 0.89 - ETA: 11s - loss: 0.3152 - acc: 0.89 - ETA: 11s - loss: 0.3161 - acc: 0.88 - ETA: 11s - loss: 0.3167 - acc: 0.88 - ETA: 11s - loss: 0.3165 - acc: 0.88 - ETA: 11s - loss: 0.3163 - acc: 0.89 - ETA: 11s - loss: 0.3161 - acc: 0.89 - ETA: 11s - loss: 0.3162 - acc: 0.89 - ETA: 11s - loss: 0.3163 - acc: 0.89 - ETA: 10s - loss: 0.3163 - acc: 0.89 - ETA: 10s - loss: 0.3163 - acc: 0.89 - ETA: 10s - loss: 0.3162 - acc: 0.89 - ETA: 10s - loss: 0.3163 - acc: 0.88 - ETA: 10s - loss: 0.3163 - acc: 0.88 - ETA: 10s - loss: 0.3160 - acc: 0.89 - ETA: 10s - loss: 0.3158 - acc: 0.89 - ETA: 10s - loss: 0.3157 - acc: 0.89 - ETA: 10s - loss: 0.3160 - acc: 0.88 - ETA: 10s - loss: 0.3156 - acc: 0.89 - ETA: 10s - loss: 0.3158 - acc: 0.89 - ETA: 10s - loss: 0.3158 - acc: 0.89 - ETA: 10s - loss: 0.3160 - acc: 0.89 - ETA: 10s - loss: 0.3157 - acc: 0.89 - ETA: 9s - loss: 0.3158 - acc: 0.8901 - ETA: 9s - loss: 0.3159 - acc: 0.890 - ETA: 9s - loss: 0.3163 - acc: 0.890 - ETA: 9s - loss: 0.3163 - acc: 0.889 - ETA: 9s - loss: 0.3161 - acc: 0.889 - ETA: 9s - loss: 0.3157 - acc: 0.890 - ETA: 9s - loss: 0.3157 - acc: 0.890 - ETA: 9s - loss: 0.3155 - acc: 0.890 - ETA: 9s - loss: 0.3153 - acc: 0.890 - ETA: 9s - loss: 0.3155 - acc: 0.890 - ETA: 9s - loss: 0.3156 - acc: 0.890 - ETA: 9s - loss: 0.3155 - acc: 0.890 - ETA: 9s - loss: 0.3152 - acc: 0.890 - ETA: 8s - loss: 0.3150 - acc: 0.890 - ETA: 8s - loss: 0.3149 - acc: 0.890 - ETA: 8s - loss: 0.3146 - acc: 0.890 - ETA: 8s - loss: 0.3148 - acc: 0.890 - ETA: 8s - loss: 0.3147 - acc: 0.890 - ETA: 8s - loss: 0.3147 - acc: 0.890 - ETA: 8s - loss: 0.3145 - acc: 0.890 - ETA: 8s - loss: 0.3148 - acc: 0.890 - ETA: 8s - loss: 0.3146 - acc: 0.890 - ETA: 8s - loss: 0.3144 - acc: 0.890 - ETA: 8s - loss: 0.3143 - acc: 0.890 - ETA: 8s - loss: 0.3144 - acc: 0.890 - ETA: 8s - loss: 0.3144 - acc: 0.890 - ETA: 8s - loss: 0.3143 - acc: 0.890 - ETA: 7s - loss: 0.3141 - acc: 0.890 - ETA: 7s - loss: 0.3146 - acc: 0.890 - ETA: 7s - loss: 0.3146 - acc: 0.890 - ETA: 7s - loss: 0.3143 - acc: 0.890 - ETA: 7s - loss: 0.3142 - acc: 0.890 - ETA: 7s - loss: 0.3140 - acc: 0.890 - ETA: 7s - loss: 0.3137 - acc: 0.891 - ETA: 7s - loss: 0.3134 - acc: 0.891 - ETA: 7s - loss: 0.3134 - acc: 0.891 - ETA: 7s - loss: 0.3133 - acc: 0.8911" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 7s - loss: 0.3130 - acc: 0.891 - ETA: 7s - loss: 0.3129 - acc: 0.891 - ETA: 7s - loss: 0.3132 - acc: 0.891 - ETA: 6s - loss: 0.3129 - acc: 0.891 - ETA: 6s - loss: 0.3131 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3131 - acc: 0.891 - ETA: 6s - loss: 0.3129 - acc: 0.891 - ETA: 6s - loss: 0.3131 - acc: 0.891 - ETA: 6s - loss: 0.3129 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3128 - acc: 0.891 - ETA: 6s - loss: 0.3127 - acc: 0.891 - ETA: 6s - loss: 0.3125 - acc: 0.891 - ETA: 5s - loss: 0.3125 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3121 - acc: 0.891 - ETA: 5s - loss: 0.3118 - acc: 0.891 - ETA: 5s - loss: 0.3118 - acc: 0.891 - ETA: 5s - loss: 0.3118 - acc: 0.891 - ETA: 5s - loss: 0.3122 - acc: 0.891 - ETA: 5s - loss: 0.3125 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3122 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3125 - acc: 0.891 - ETA: 4s - loss: 0.3123 - acc: 0.891 - ETA: 4s - loss: 0.3122 - acc: 0.891 - ETA: 4s - loss: 0.3122 - acc: 0.891 - ETA: 4s - loss: 0.3119 - acc: 0.891 - ETA: 4s - loss: 0.3119 - acc: 0.891 - ETA: 4s - loss: 0.3123 - acc: 0.891 - ETA: 4s - loss: 0.3127 - acc: 0.891 - ETA: 4s - loss: 0.3127 - acc: 0.891 - ETA: 4s - loss: 0.3126 - acc: 0.891 - ETA: 4s - loss: 0.3126 - acc: 0.891 - ETA: 4s - loss: 0.3125 - acc: 0.891 - ETA: 4s - loss: 0.3123 - acc: 0.891 - ETA: 4s - loss: 0.3121 - acc: 0.891 - ETA: 3s - loss: 0.3122 - acc: 0.891 - ETA: 3s - loss: 0.3126 - acc: 0.891 - ETA: 3s - loss: 0.3128 - acc: 0.891 - ETA: 3s - loss: 0.3127 - acc: 0.891 - ETA: 3s - loss: 0.3127 - acc: 0.891 - ETA: 3s - loss: 0.3130 - acc: 0.891 - ETA: 3s - loss: 0.3129 - acc: 0.891 - ETA: 3s - loss: 0.3126 - acc: 0.891 - ETA: 3s - loss: 0.3124 - acc: 0.891 - ETA: 3s - loss: 0.3124 - acc: 0.891 - ETA: 3s - loss: 0.3125 - acc: 0.891 - ETA: 3s - loss: 0.3124 - acc: 0.891 - ETA: 3s - loss: 0.3122 - acc: 0.891 - ETA: 3s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3121 - acc: 0.891 - ETA: 2s - loss: 0.3119 - acc: 0.891 - ETA: 2s - loss: 0.3120 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3120 - acc: 0.891 - ETA: 2s - loss: 0.3118 - acc: 0.891 - ETA: 1s - loss: 0.3117 - acc: 0.891 - ETA: 1s - loss: 0.3115 - acc: 0.891 - ETA: 1s - loss: 0.3112 - acc: 0.891 - ETA: 1s - loss: 0.3111 - acc: 0.891 - ETA: 1s - loss: 0.3113 - acc: 0.891 - ETA: 1s - loss: 0.3111 - acc: 0.891 - ETA: 1s - loss: 0.3109 - acc: 0.891 - ETA: 1s - loss: 0.3109 - acc: 0.891 - ETA: 1s - loss: 0.3113 - acc: 0.891 - ETA: 1s - loss: 0.3113 - acc: 0.891 - ETA: 1s - loss: 0.3112 - acc: 0.891 - ETA: 1s - loss: 0.3110 - acc: 0.891 - ETA: 1s - loss: 0.3108 - acc: 0.891 - ETA: 1s - loss: 0.3106 - acc: 0.892 - ETA: 0s - loss: 0.3107 - acc: 0.891 - ETA: 0s - loss: 0.3104 - acc: 0.892 - ETA: 0s - loss: 0.3104 - acc: 0.891 - ETA: 0s - loss: 0.3103 - acc: 0.891 - ETA: 0s - loss: 0.3101 - acc: 0.892 - ETA: 0s - loss: 0.3099 - acc: 0.892 - ETA: 0s - loss: 0.3097 - acc: 0.892 - ETA: 0s - loss: 0.3095 - acc: 0.892 - ETA: 0s - loss: 0.3093 - acc: 0.892 - ETA: 0s - loss: 0.3092 - acc: 0.892 - ETA: 0s - loss: 0.3090 - acc: 0.892 - ETA: 0s - loss: 0.3087 - acc: 0.892 - ETA: 0s - loss: 0.3087 - acc: 0.892 - 56s 2ms/step - loss: 0.3084 - acc: 0.8925 - val_loss: 0.2319 - val_acc: 0.9239\n", + "\n", + "Epoch 00004: val_acc improved from 0.89663 to 0.92389, saving model to models\\conv.model\n", + "Epoch 5/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 44s - loss: 0.0644 - acc: 0.96 - ETA: 50s - loss: 0.0973 - acc: 0.96 - ETA: 49s - loss: 0.1196 - acc: 0.95 - ETA: 48s - loss: 0.1406 - acc: 0.95 - ETA: 46s - loss: 0.1619 - acc: 0.95 - ETA: 47s - loss: 0.1692 - acc: 0.94 - ETA: 47s - loss: 0.1967 - acc: 0.93 - ETA: 46s - loss: 0.1934 - acc: 0.93 - ETA: 46s - loss: 0.2052 - acc: 0.92 - ETA: 46s - loss: 0.1951 - acc: 0.92 - ETA: 45s - loss: 0.2112 - acc: 0.91 - ETA: 46s - loss: 0.2002 - acc: 0.92 - ETA: 46s - loss: 0.2036 - acc: 0.92 - ETA: 46s - loss: 0.2061 - acc: 0.92 - ETA: 48s - loss: 0.2051 - acc: 0.92 - ETA: 48s - loss: 0.2078 - acc: 0.92 - ETA: 48s - loss: 0.2049 - acc: 0.92 - ETA: 48s - loss: 0.2001 - acc: 0.92 - ETA: 48s - loss: 0.2084 - acc: 0.92 - ETA: 48s - loss: 0.2106 - acc: 0.92 - ETA: 48s - loss: 0.2204 - acc: 0.91 - ETA: 49s - loss: 0.2136 - acc: 0.91 - ETA: 48s - loss: 0.2243 - acc: 0.91 - ETA: 48s - loss: 0.2257 - acc: 0.91 - ETA: 48s - loss: 0.2373 - acc: 0.91 - ETA: 48s - loss: 0.2429 - acc: 0.91 - ETA: 48s - loss: 0.2361 - acc: 0.91 - ETA: 48s - loss: 0.2330 - acc: 0.91 - ETA: 48s - loss: 0.2381 - acc: 0.91 - ETA: 48s - loss: 0.2426 - acc: 0.91 - ETA: 48s - loss: 0.2485 - acc: 0.90 - ETA: 48s - loss: 0.2473 - acc: 0.90 - ETA: 48s - loss: 0.2460 - acc: 0.90 - ETA: 48s - loss: 0.2448 - acc: 0.90 - ETA: 48s - loss: 0.2469 - acc: 0.90 - ETA: 48s - loss: 0.2480 - acc: 0.90 - ETA: 48s - loss: 0.2451 - acc: 0.90 - ETA: 48s - loss: 0.2416 - acc: 0.90 - ETA: 48s - loss: 0.2478 - acc: 0.90 - ETA: 47s - loss: 0.2441 - acc: 0.90 - ETA: 47s - loss: 0.2479 - acc: 0.90 - ETA: 47s - loss: 0.2508 - acc: 0.90 - ETA: 47s - loss: 0.2514 - acc: 0.90 - ETA: 47s - loss: 0.2538 - acc: 0.89 - ETA: 47s - loss: 0.2526 - acc: 0.90 - ETA: 47s - loss: 0.2526 - acc: 0.90 - ETA: 47s - loss: 0.2586 - acc: 0.90 - ETA: 47s - loss: 0.2580 - acc: 0.89 - ETA: 47s - loss: 0.2601 - acc: 0.89 - ETA: 47s - loss: 0.2606 - acc: 0.89 - ETA: 47s - loss: 0.2579 - acc: 0.90 - ETA: 47s - loss: 0.2570 - acc: 0.90 - ETA: 47s - loss: 0.2570 - acc: 0.90 - ETA: 47s - loss: 0.2549 - acc: 0.90 - ETA: 46s - loss: 0.2539 - acc: 0.90 - ETA: 46s - loss: 0.2513 - acc: 0.90 - ETA: 46s - loss: 0.2513 - acc: 0.90 - ETA: 46s - loss: 0.2504 - acc: 0.90 - ETA: 46s - loss: 0.2513 - acc: 0.90 - ETA: 46s - loss: 0.2544 - acc: 0.90 - ETA: 46s - loss: 0.2527 - acc: 0.90 - ETA: 46s - loss: 0.2591 - acc: 0.90 - ETA: 46s - loss: 0.2623 - acc: 0.90 - ETA: 46s - loss: 0.2652 - acc: 0.89 - ETA: 46s - loss: 0.2636 - acc: 0.90 - ETA: 46s - loss: 0.2703 - acc: 0.89 - ETA: 46s - loss: 0.2708 - acc: 0.89 - ETA: 46s - loss: 0.2698 - acc: 0.89 - ETA: 46s - loss: 0.2670 - acc: 0.89 - ETA: 45s - loss: 0.2661 - acc: 0.89 - ETA: 45s - loss: 0.2689 - acc: 0.89 - ETA: 45s - loss: 0.2739 - acc: 0.89 - ETA: 45s - loss: 0.2722 - acc: 0.89 - ETA: 45s - loss: 0.2724 - acc: 0.89 - ETA: 45s - loss: 0.2735 - acc: 0.89 - ETA: 45s - loss: 0.2746 - acc: 0.89 - ETA: 45s - loss: 0.2725 - acc: 0.89 - ETA: 45s - loss: 0.2709 - acc: 0.89 - ETA: 45s - loss: 0.2718 - acc: 0.89 - ETA: 45s - loss: 0.2711 - acc: 0.89 - ETA: 45s - loss: 0.2695 - acc: 0.89 - ETA: 45s - loss: 0.2701 - acc: 0.89 - ETA: 45s - loss: 0.2677 - acc: 0.89 - ETA: 45s - loss: 0.2678 - acc: 0.89 - ETA: 44s - loss: 0.2659 - acc: 0.89 - ETA: 44s - loss: 0.2644 - acc: 0.89 - ETA: 44s - loss: 0.2627 - acc: 0.89 - ETA: 44s - loss: 0.2654 - acc: 0.89 - ETA: 44s - loss: 0.2655 - acc: 0.89 - ETA: 44s - loss: 0.2645 - acc: 0.89 - ETA: 44s - loss: 0.2639 - acc: 0.89 - ETA: 44s - loss: 0.2651 - acc: 0.89 - ETA: 44s - loss: 0.2651 - acc: 0.89 - ETA: 44s - loss: 0.2646 - acc: 0.89 - ETA: 44s - loss: 0.2642 - acc: 0.89 - ETA: 44s - loss: 0.2660 - acc: 0.89 - ETA: 44s - loss: 0.2639 - acc: 0.89 - ETA: 44s - loss: 0.2644 - acc: 0.89 - ETA: 44s - loss: 0.2655 - acc: 0.89 - ETA: 44s - loss: 0.2646 - acc: 0.89 - ETA: 44s - loss: 0.2633 - acc: 0.90 - ETA: 44s - loss: 0.2625 - acc: 0.90 - ETA: 43s - loss: 0.2638 - acc: 0.90 - ETA: 43s - loss: 0.2627 - acc: 0.89 - ETA: 43s - loss: 0.2639 - acc: 0.89 - ETA: 43s - loss: 0.2627 - acc: 0.90 - ETA: 43s - loss: 0.2629 - acc: 0.89 - ETA: 43s - loss: 0.2629 - acc: 0.89 - ETA: 43s - loss: 0.2624 - acc: 0.89 - ETA: 43s - loss: 0.2609 - acc: 0.90 - ETA: 43s - loss: 0.2599 - acc: 0.90 - ETA: 43s - loss: 0.2594 - acc: 0.90 - ETA: 43s - loss: 0.2612 - acc: 0.90 - ETA: 43s - loss: 0.2601 - acc: 0.90 - ETA: 43s - loss: 0.2591 - acc: 0.90 - ETA: 43s - loss: 0.2577 - acc: 0.90 - ETA: 43s - loss: 0.2568 - acc: 0.90 - ETA: 43s - loss: 0.2566 - acc: 0.90 - ETA: 43s - loss: 0.2588 - acc: 0.90 - ETA: 43s - loss: 0.2574 - acc: 0.90 - ETA: 43s - loss: 0.2566 - acc: 0.90 - ETA: 43s - loss: 0.2562 - acc: 0.90 - ETA: 43s - loss: 0.2586 - acc: 0.90 - ETA: 43s - loss: 0.2574 - acc: 0.90 - ETA: 43s - loss: 0.2574 - acc: 0.90 - ETA: 43s - loss: 0.2580 - acc: 0.90 - ETA: 43s - loss: 0.2576 - acc: 0.90 - ETA: 42s - loss: 0.2586 - acc: 0.90 - ETA: 42s - loss: 0.2592 - acc: 0.90 - ETA: 42s - loss: 0.2595 - acc: 0.90 - ETA: 42s - loss: 0.2605 - acc: 0.90 - ETA: 42s - loss: 0.2593 - acc: 0.90 - ETA: 42s - loss: 0.2604 - acc: 0.90 - ETA: 42s - loss: 0.2611 - acc: 0.90 - ETA: 42s - loss: 0.2612 - acc: 0.90 - ETA: 42s - loss: 0.2610 - acc: 0.90 - ETA: 42s - loss: 0.2605 - acc: 0.90 - ETA: 42s - loss: 0.2613 - acc: 0.90 - ETA: 42s - loss: 0.2626 - acc: 0.90 - ETA: 42s - loss: 0.2631 - acc: 0.90 - ETA: 42s - loss: 0.2638 - acc: 0.90 - ETA: 42s - loss: 0.2644 - acc: 0.90 - ETA: 42s - loss: 0.2630 - acc: 0.90 - ETA: 42s - loss: 0.2618 - acc: 0.90 - ETA: 42s - loss: 0.2629 - acc: 0.90 - ETA: 42s - loss: 0.2637 - acc: 0.90 - ETA: 42s - loss: 0.2638 - acc: 0.90 - ETA: 42s - loss: 0.2640 - acc: 0.90 - ETA: 42s - loss: 0.2640 - acc: 0.90 - ETA: 42s - loss: 0.2653 - acc: 0.90 - ETA: 41s - loss: 0.2651 - acc: 0.90 - ETA: 41s - loss: 0.2643 - acc: 0.90 - ETA: 41s - loss: 0.2663 - acc: 0.90 - ETA: 41s - loss: 0.2662 - acc: 0.90 - ETA: 41s - loss: 0.2655 - acc: 0.90 - ETA: 41s - loss: 0.2647 - acc: 0.90 - ETA: 41s - loss: 0.2642 - acc: 0.90 - ETA: 41s - loss: 0.2644 - acc: 0.90 - ETA: 41s - loss: 0.2653 - acc: 0.90 - ETA: 41s - loss: 0.2643 - acc: 0.90 - ETA: 41s - loss: 0.2643 - acc: 0.90 - ETA: 41s - loss: 0.2638 - acc: 0.90 - ETA: 41s - loss: 0.2645 - acc: 0.90 - ETA: 41s - loss: 0.2647 - acc: 0.90 - ETA: 41s - loss: 0.2665 - acc: 0.90 - ETA: 41s - loss: 0.2664 - acc: 0.90 - ETA: 41s - loss: 0.2666 - acc: 0.90 - ETA: 40s - loss: 0.2669 - acc: 0.90 - ETA: 40s - loss: 0.2659 - acc: 0.90 - ETA: 40s - loss: 0.2668 - acc: 0.90 - ETA: 40s - loss: 0.2679 - acc: 0.90 - ETA: 40s - loss: 0.2673 - acc: 0.90 - ETA: 40s - loss: 0.2685 - acc: 0.90 - ETA: 40s - loss: 0.2691 - acc: 0.90 - ETA: 40s - loss: 0.2694 - acc: 0.90 - ETA: 40s - loss: 0.2693 - acc: 0.90 - ETA: 40s - loss: 0.2703 - acc: 0.90 - ETA: 40s - loss: 0.2703 - acc: 0.90 - ETA: 40s - loss: 0.2712 - acc: 0.90 - ETA: 40s - loss: 0.2710 - acc: 0.90 - ETA: 40s - loss: 0.2712 - acc: 0.90 - ETA: 39s - loss: 0.2704 - acc: 0.90 - ETA: 39s - loss: 0.2701 - acc: 0.90 - ETA: 39s - loss: 0.2698 - acc: 0.90 - ETA: 39s - loss: 0.2694 - acc: 0.90 - ETA: 39s - loss: 0.2694 - acc: 0.90 - ETA: 39s - loss: 0.2698 - acc: 0.90 - ETA: 39s - loss: 0.2690 - acc: 0.90 - ETA: 39s - loss: 0.2683 - acc: 0.90 - ETA: 39s - loss: 0.2672 - acc: 0.90 - ETA: 39s - loss: 0.2671 - acc: 0.90 - ETA: 39s - loss: 0.2659 - acc: 0.90 - ETA: 39s - loss: 0.2650 - acc: 0.90 - ETA: 39s - loss: 0.2647 - acc: 0.90 - ETA: 39s - loss: 0.2651 - acc: 0.90 - ETA: 39s - loss: 0.2645 - acc: 0.90 - ETA: 38s - loss: 0.2658 - acc: 0.90 - ETA: 38s - loss: 0.2669 - acc: 0.90 - ETA: 38s - loss: 0.2670 - acc: 0.90 - ETA: 38s - loss: 0.2675 - acc: 0.90 - ETA: 38s - loss: 0.2668 - acc: 0.90 - ETA: 38s - loss: 0.2668 - acc: 0.90 - ETA: 38s - loss: 0.2676 - acc: 0.90 - ETA: 38s - loss: 0.2670 - acc: 0.90 - ETA: 38s - loss: 0.2663 - acc: 0.90 - ETA: 38s - loss: 0.2669 - acc: 0.90 - ETA: 38s - loss: 0.2684 - acc: 0.90 - ETA: 38s - loss: 0.2689 - acc: 0.90 - ETA: 38s - loss: 0.2686 - acc: 0.90 - ETA: 37s - loss: 0.2688 - acc: 0.90 - ETA: 37s - loss: 0.2686 - acc: 0.90 - ETA: 37s - loss: 0.2693 - acc: 0.90 - ETA: 37s - loss: 0.2703 - acc: 0.90 - ETA: 37s - loss: 0.2703 - acc: 0.90 - ETA: 37s - loss: 0.2700 - acc: 0.9019" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.2693 - acc: 0.90 - ETA: 37s - loss: 0.2699 - acc: 0.90 - ETA: 37s - loss: 0.2700 - acc: 0.90 - ETA: 37s - loss: 0.2713 - acc: 0.90 - ETA: 37s - loss: 0.2709 - acc: 0.90 - ETA: 37s - loss: 0.2703 - acc: 0.90 - ETA: 37s - loss: 0.2711 - acc: 0.90 - ETA: 37s - loss: 0.2717 - acc: 0.90 - ETA: 36s - loss: 0.2723 - acc: 0.90 - ETA: 36s - loss: 0.2719 - acc: 0.90 - ETA: 36s - loss: 0.2718 - acc: 0.90 - ETA: 36s - loss: 0.2716 - acc: 0.90 - ETA: 36s - loss: 0.2715 - acc: 0.90 - ETA: 36s - loss: 0.2712 - acc: 0.90 - ETA: 36s - loss: 0.2715 - acc: 0.90 - ETA: 36s - loss: 0.2715 - acc: 0.90 - ETA: 36s - loss: 0.2706 - acc: 0.90 - ETA: 36s - loss: 0.2707 - acc: 0.90 - ETA: 36s - loss: 0.2703 - acc: 0.90 - ETA: 36s - loss: 0.2705 - acc: 0.90 - ETA: 36s - loss: 0.2697 - acc: 0.90 - ETA: 36s - loss: 0.2711 - acc: 0.90 - ETA: 36s - loss: 0.2716 - acc: 0.90 - ETA: 35s - loss: 0.2728 - acc: 0.90 - ETA: 35s - loss: 0.2725 - acc: 0.90 - ETA: 35s - loss: 0.2740 - acc: 0.90 - ETA: 35s - loss: 0.2732 - acc: 0.90 - ETA: 35s - loss: 0.2735 - acc: 0.90 - ETA: 35s - loss: 0.2736 - acc: 0.90 - ETA: 35s - loss: 0.2738 - acc: 0.90 - ETA: 35s - loss: 0.2739 - acc: 0.90 - ETA: 35s - loss: 0.2754 - acc: 0.90 - ETA: 35s - loss: 0.2745 - acc: 0.90 - ETA: 35s - loss: 0.2737 - acc: 0.90 - ETA: 35s - loss: 0.2746 - acc: 0.90 - ETA: 35s - loss: 0.2739 - acc: 0.90 - ETA: 35s - loss: 0.2737 - acc: 0.90 - ETA: 35s - loss: 0.2746 - acc: 0.90 - ETA: 34s - loss: 0.2755 - acc: 0.90 - ETA: 34s - loss: 0.2751 - acc: 0.90 - ETA: 34s - loss: 0.2752 - acc: 0.90 - ETA: 34s - loss: 0.2748 - acc: 0.90 - ETA: 34s - loss: 0.2746 - acc: 0.90 - ETA: 34s - loss: 0.2749 - acc: 0.90 - ETA: 34s - loss: 0.2761 - acc: 0.90 - ETA: 34s - loss: 0.2764 - acc: 0.90 - ETA: 34s - loss: 0.2761 - acc: 0.90 - ETA: 34s - loss: 0.2757 - acc: 0.90 - ETA: 34s - loss: 0.2757 - acc: 0.90 - ETA: 34s - loss: 0.2758 - acc: 0.90 - ETA: 34s - loss: 0.2759 - acc: 0.90 - ETA: 33s - loss: 0.2763 - acc: 0.90 - ETA: 33s - loss: 0.2758 - acc: 0.90 - ETA: 33s - loss: 0.2758 - acc: 0.90 - ETA: 33s - loss: 0.2751 - acc: 0.90 - ETA: 33s - loss: 0.2752 - acc: 0.90 - ETA: 33s - loss: 0.2757 - acc: 0.90 - ETA: 33s - loss: 0.2752 - acc: 0.90 - ETA: 33s - loss: 0.2751 - acc: 0.90 - ETA: 33s - loss: 0.2754 - acc: 0.90 - ETA: 33s - loss: 0.2752 - acc: 0.90 - ETA: 33s - loss: 0.2751 - acc: 0.90 - ETA: 33s - loss: 0.2753 - acc: 0.90 - ETA: 33s - loss: 0.2759 - acc: 0.90 - ETA: 33s - loss: 0.2755 - acc: 0.90 - ETA: 32s - loss: 0.2755 - acc: 0.90 - ETA: 32s - loss: 0.2750 - acc: 0.90 - ETA: 32s - loss: 0.2754 - acc: 0.90 - ETA: 32s - loss: 0.2756 - acc: 0.90 - ETA: 32s - loss: 0.2761 - acc: 0.90 - ETA: 32s - loss: 0.2755 - acc: 0.90 - ETA: 32s - loss: 0.2752 - acc: 0.90 - ETA: 32s - loss: 0.2747 - acc: 0.90 - ETA: 32s - loss: 0.2743 - acc: 0.90 - ETA: 32s - loss: 0.2744 - acc: 0.90 - ETA: 32s - loss: 0.2740 - acc: 0.90 - ETA: 32s - loss: 0.2734 - acc: 0.90 - ETA: 32s - loss: 0.2731 - acc: 0.90 - ETA: 32s - loss: 0.2727 - acc: 0.90 - ETA: 31s - loss: 0.2727 - acc: 0.90 - ETA: 31s - loss: 0.2726 - acc: 0.90 - ETA: 31s - loss: 0.2740 - acc: 0.90 - ETA: 31s - loss: 0.2741 - acc: 0.90 - ETA: 31s - loss: 0.2738 - acc: 0.90 - ETA: 31s - loss: 0.2736 - acc: 0.90 - ETA: 31s - loss: 0.2740 - acc: 0.90 - ETA: 31s - loss: 0.2734 - acc: 0.90 - ETA: 31s - loss: 0.2735 - acc: 0.90 - ETA: 31s - loss: 0.2742 - acc: 0.90 - ETA: 31s - loss: 0.2747 - acc: 0.90 - ETA: 31s - loss: 0.2743 - acc: 0.90 - ETA: 31s - loss: 0.2738 - acc: 0.90 - ETA: 31s - loss: 0.2749 - acc: 0.90 - ETA: 30s - loss: 0.2749 - acc: 0.90 - ETA: 30s - loss: 0.2749 - acc: 0.90 - ETA: 30s - loss: 0.2746 - acc: 0.90 - ETA: 30s - loss: 0.2742 - acc: 0.90 - ETA: 30s - loss: 0.2748 - acc: 0.90 - ETA: 30s - loss: 0.2745 - acc: 0.90 - ETA: 30s - loss: 0.2747 - acc: 0.90 - ETA: 30s - loss: 0.2747 - acc: 0.90 - ETA: 30s - loss: 0.2744 - acc: 0.90 - ETA: 30s - loss: 0.2739 - acc: 0.90 - ETA: 30s - loss: 0.2734 - acc: 0.90 - ETA: 30s - loss: 0.2730 - acc: 0.90 - ETA: 30s - loss: 0.2729 - acc: 0.90 - ETA: 30s - loss: 0.2736 - acc: 0.90 - ETA: 29s - loss: 0.2743 - acc: 0.90 - ETA: 29s - loss: 0.2748 - acc: 0.90 - ETA: 29s - loss: 0.2747 - acc: 0.90 - ETA: 29s - loss: 0.2744 - acc: 0.90 - ETA: 29s - loss: 0.2744 - acc: 0.90 - ETA: 29s - loss: 0.2747 - acc: 0.90 - ETA: 29s - loss: 0.2744 - acc: 0.90 - ETA: 29s - loss: 0.2740 - acc: 0.90 - ETA: 29s - loss: 0.2735 - acc: 0.90 - ETA: 29s - loss: 0.2730 - acc: 0.90 - ETA: 29s - loss: 0.2730 - acc: 0.90 - ETA: 29s - loss: 0.2731 - acc: 0.90 - ETA: 29s - loss: 0.2734 - acc: 0.90 - ETA: 29s - loss: 0.2736 - acc: 0.90 - ETA: 28s - loss: 0.2732 - acc: 0.90 - ETA: 28s - loss: 0.2731 - acc: 0.90 - ETA: 28s - loss: 0.2733 - acc: 0.90 - ETA: 28s - loss: 0.2728 - acc: 0.90 - ETA: 28s - loss: 0.2724 - acc: 0.90 - ETA: 28s - loss: 0.2722 - acc: 0.90 - ETA: 28s - loss: 0.2725 - acc: 0.90 - ETA: 28s - loss: 0.2727 - acc: 0.90 - ETA: 28s - loss: 0.2727 - acc: 0.90 - ETA: 28s - loss: 0.2727 - acc: 0.90 - ETA: 28s - loss: 0.2729 - acc: 0.90 - ETA: 28s - loss: 0.2728 - acc: 0.90 - ETA: 28s - loss: 0.2729 - acc: 0.90 - ETA: 28s - loss: 0.2728 - acc: 0.90 - ETA: 27s - loss: 0.2728 - acc: 0.90 - ETA: 27s - loss: 0.2727 - acc: 0.90 - ETA: 27s - loss: 0.2725 - acc: 0.90 - ETA: 27s - loss: 0.2729 - acc: 0.90 - ETA: 27s - loss: 0.2731 - acc: 0.90 - ETA: 27s - loss: 0.2741 - acc: 0.90 - ETA: 27s - loss: 0.2744 - acc: 0.90 - ETA: 27s - loss: 0.2741 - acc: 0.90 - ETA: 27s - loss: 0.2742 - acc: 0.90 - ETA: 27s - loss: 0.2745 - acc: 0.90 - ETA: 27s - loss: 0.2740 - acc: 0.90 - ETA: 27s - loss: 0.2741 - acc: 0.90 - ETA: 27s - loss: 0.2735 - acc: 0.90 - ETA: 26s - loss: 0.2730 - acc: 0.90 - ETA: 26s - loss: 0.2740 - acc: 0.90 - ETA: 26s - loss: 0.2740 - acc: 0.90 - ETA: 26s - loss: 0.2739 - acc: 0.90 - ETA: 26s - loss: 0.2740 - acc: 0.90 - ETA: 26s - loss: 0.2735 - acc: 0.90 - ETA: 26s - loss: 0.2732 - acc: 0.90 - ETA: 26s - loss: 0.2735 - acc: 0.90 - ETA: 26s - loss: 0.2736 - acc: 0.90 - ETA: 26s - loss: 0.2731 - acc: 0.90 - ETA: 26s - loss: 0.2727 - acc: 0.90 - ETA: 26s - loss: 0.2724 - acc: 0.90 - ETA: 26s - loss: 0.2721 - acc: 0.90 - ETA: 26s - loss: 0.2722 - acc: 0.90 - ETA: 25s - loss: 0.2730 - acc: 0.90 - ETA: 25s - loss: 0.2734 - acc: 0.90 - ETA: 25s - loss: 0.2739 - acc: 0.90 - ETA: 25s - loss: 0.2737 - acc: 0.90 - ETA: 25s - loss: 0.2736 - acc: 0.90 - ETA: 25s - loss: 0.2736 - acc: 0.90 - ETA: 25s - loss: 0.2731 - acc: 0.90 - ETA: 25s - loss: 0.2725 - acc: 0.90 - ETA: 25s - loss: 0.2729 - acc: 0.90 - ETA: 25s - loss: 0.2727 - acc: 0.90 - ETA: 25s - loss: 0.2726 - acc: 0.90 - ETA: 25s - loss: 0.2723 - acc: 0.90 - ETA: 25s - loss: 0.2720 - acc: 0.90 - ETA: 25s - loss: 0.2719 - acc: 0.90 - ETA: 24s - loss: 0.2720 - acc: 0.90 - ETA: 24s - loss: 0.2718 - acc: 0.90 - ETA: 24s - loss: 0.2715 - acc: 0.90 - ETA: 24s - loss: 0.2718 - acc: 0.90 - ETA: 24s - loss: 0.2719 - acc: 0.90 - ETA: 24s - loss: 0.2716 - acc: 0.90 - ETA: 24s - loss: 0.2714 - acc: 0.90 - ETA: 24s - loss: 0.2721 - acc: 0.90 - ETA: 24s - loss: 0.2719 - acc: 0.90 - ETA: 24s - loss: 0.2720 - acc: 0.90 - ETA: 24s - loss: 0.2718 - acc: 0.90 - ETA: 24s - loss: 0.2715 - acc: 0.90 - ETA: 24s - loss: 0.2709 - acc: 0.90 - ETA: 24s - loss: 0.2707 - acc: 0.90 - ETA: 23s - loss: 0.2708 - acc: 0.90 - ETA: 23s - loss: 0.2711 - acc: 0.90 - ETA: 23s - loss: 0.2706 - acc: 0.90 - ETA: 23s - loss: 0.2707 - acc: 0.90 - ETA: 23s - loss: 0.2709 - acc: 0.90 - ETA: 23s - loss: 0.2709 - acc: 0.90 - ETA: 23s - loss: 0.2710 - acc: 0.90 - ETA: 23s - loss: 0.2710 - acc: 0.90 - ETA: 23s - loss: 0.2712 - acc: 0.90 - ETA: 23s - loss: 0.2716 - acc: 0.90 - ETA: 23s - loss: 0.2717 - acc: 0.90 - ETA: 23s - loss: 0.2721 - acc: 0.90 - ETA: 23s - loss: 0.2721 - acc: 0.90 - ETA: 23s - loss: 0.2722 - acc: 0.90 - ETA: 22s - loss: 0.2727 - acc: 0.90 - ETA: 22s - loss: 0.2722 - acc: 0.90 - ETA: 22s - loss: 0.2721 - acc: 0.90 - ETA: 22s - loss: 0.2719 - acc: 0.90 - ETA: 22s - loss: 0.2720 - acc: 0.90 - ETA: 22s - loss: 0.2718 - acc: 0.90 - ETA: 22s - loss: 0.2716 - acc: 0.90 - ETA: 22s - loss: 0.2716 - acc: 0.90 - ETA: 22s - loss: 0.2721 - acc: 0.90 - ETA: 22s - loss: 0.2717 - acc: 0.90 - ETA: 22s - loss: 0.2717 - acc: 0.9026" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.2715 - acc: 0.90 - ETA: 22s - loss: 0.2714 - acc: 0.90 - ETA: 22s - loss: 0.2711 - acc: 0.90 - ETA: 21s - loss: 0.2715 - acc: 0.90 - ETA: 21s - loss: 0.2713 - acc: 0.90 - ETA: 21s - loss: 0.2710 - acc: 0.90 - ETA: 21s - loss: 0.2709 - acc: 0.90 - ETA: 21s - loss: 0.2707 - acc: 0.90 - ETA: 21s - loss: 0.2704 - acc: 0.90 - ETA: 21s - loss: 0.2708 - acc: 0.90 - ETA: 21s - loss: 0.2704 - acc: 0.90 - ETA: 21s - loss: 0.2708 - acc: 0.90 - ETA: 21s - loss: 0.2713 - acc: 0.90 - ETA: 21s - loss: 0.2715 - acc: 0.90 - ETA: 21s - loss: 0.2713 - acc: 0.90 - ETA: 21s - loss: 0.2712 - acc: 0.90 - ETA: 21s - loss: 0.2708 - acc: 0.90 - ETA: 20s - loss: 0.2709 - acc: 0.90 - ETA: 20s - loss: 0.2709 - acc: 0.90 - ETA: 20s - loss: 0.2706 - acc: 0.90 - ETA: 20s - loss: 0.2705 - acc: 0.90 - ETA: 20s - loss: 0.2705 - acc: 0.90 - ETA: 20s - loss: 0.2709 - acc: 0.90 - ETA: 20s - loss: 0.2707 - acc: 0.90 - ETA: 20s - loss: 0.2715 - acc: 0.90 - ETA: 20s - loss: 0.2711 - acc: 0.90 - ETA: 20s - loss: 0.2710 - acc: 0.90 - ETA: 20s - loss: 0.2708 - acc: 0.90 - ETA: 20s - loss: 0.2708 - acc: 0.90 - ETA: 20s - loss: 0.2705 - acc: 0.90 - ETA: 20s - loss: 0.2704 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2706 - acc: 0.90 - ETA: 19s - loss: 0.2705 - acc: 0.90 - ETA: 19s - loss: 0.2708 - acc: 0.90 - ETA: 19s - loss: 0.2711 - acc: 0.90 - ETA: 19s - loss: 0.2709 - acc: 0.90 - ETA: 19s - loss: 0.2711 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2709 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2704 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2706 - acc: 0.90 - ETA: 19s - loss: 0.2702 - acc: 0.90 - ETA: 18s - loss: 0.2700 - acc: 0.90 - ETA: 18s - loss: 0.2701 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2700 - acc: 0.90 - ETA: 18s - loss: 0.2698 - acc: 0.90 - ETA: 18s - loss: 0.2699 - acc: 0.90 - ETA: 18s - loss: 0.2702 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2702 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2699 - acc: 0.90 - ETA: 18s - loss: 0.2698 - acc: 0.90 - ETA: 18s - loss: 0.2701 - acc: 0.90 - ETA: 17s - loss: 0.2702 - acc: 0.90 - ETA: 17s - loss: 0.2702 - acc: 0.90 - ETA: 17s - loss: 0.2701 - acc: 0.90 - ETA: 17s - loss: 0.2703 - acc: 0.90 - ETA: 17s - loss: 0.2703 - acc: 0.90 - ETA: 17s - loss: 0.2703 - acc: 0.90 - ETA: 17s - loss: 0.2702 - acc: 0.90 - ETA: 17s - loss: 0.2700 - acc: 0.90 - ETA: 17s - loss: 0.2698 - acc: 0.90 - ETA: 17s - loss: 0.2696 - acc: 0.90 - ETA: 17s - loss: 0.2693 - acc: 0.90 - ETA: 17s - loss: 0.2692 - acc: 0.90 - ETA: 17s - loss: 0.2695 - acc: 0.90 - ETA: 17s - loss: 0.2696 - acc: 0.90 - ETA: 17s - loss: 0.2697 - acc: 0.90 - ETA: 16s - loss: 0.2695 - acc: 0.90 - ETA: 16s - loss: 0.2695 - acc: 0.90 - ETA: 16s - loss: 0.2692 - acc: 0.90 - ETA: 16s - loss: 0.2690 - acc: 0.90 - ETA: 16s - loss: 0.2692 - acc: 0.90 - ETA: 16s - loss: 0.2691 - acc: 0.90 - ETA: 16s - loss: 0.2689 - acc: 0.90 - ETA: 16s - loss: 0.2684 - acc: 0.90 - ETA: 16s - loss: 0.2686 - acc: 0.90 - ETA: 16s - loss: 0.2688 - acc: 0.90 - ETA: 16s - loss: 0.2688 - acc: 0.90 - ETA: 16s - loss: 0.2684 - acc: 0.90 - ETA: 16s - loss: 0.2688 - acc: 0.90 - ETA: 16s - loss: 0.2687 - acc: 0.90 - ETA: 15s - loss: 0.2689 - acc: 0.90 - ETA: 15s - loss: 0.2689 - acc: 0.90 - ETA: 15s - loss: 0.2686 - acc: 0.90 - ETA: 15s - loss: 0.2684 - acc: 0.90 - ETA: 15s - loss: 0.2685 - acc: 0.90 - ETA: 15s - loss: 0.2685 - acc: 0.90 - ETA: 15s - loss: 0.2682 - acc: 0.90 - ETA: 15s - loss: 0.2679 - acc: 0.90 - ETA: 15s - loss: 0.2677 - acc: 0.90 - ETA: 15s - loss: 0.2677 - acc: 0.90 - ETA: 15s - loss: 0.2678 - acc: 0.90 - ETA: 15s - loss: 0.2680 - acc: 0.90 - ETA: 15s - loss: 0.2682 - acc: 0.90 - ETA: 15s - loss: 0.2682 - acc: 0.90 - ETA: 14s - loss: 0.2683 - acc: 0.90 - ETA: 14s - loss: 0.2681 - acc: 0.90 - ETA: 14s - loss: 0.2681 - acc: 0.90 - ETA: 14s - loss: 0.2682 - acc: 0.90 - ETA: 14s - loss: 0.2683 - acc: 0.90 - ETA: 14s - loss: 0.2685 - acc: 0.90 - ETA: 14s - loss: 0.2683 - acc: 0.90 - ETA: 14s - loss: 0.2680 - acc: 0.90 - ETA: 14s - loss: 0.2678 - acc: 0.90 - ETA: 14s - loss: 0.2676 - acc: 0.90 - ETA: 14s - loss: 0.2675 - acc: 0.90 - ETA: 14s - loss: 0.2676 - acc: 0.90 - ETA: 14s - loss: 0.2675 - acc: 0.90 - ETA: 14s - loss: 0.2677 - acc: 0.90 - ETA: 13s - loss: 0.2676 - acc: 0.90 - ETA: 13s - loss: 0.2673 - acc: 0.90 - ETA: 13s - loss: 0.2671 - acc: 0.90 - ETA: 13s - loss: 0.2675 - acc: 0.90 - ETA: 13s - loss: 0.2676 - acc: 0.90 - ETA: 13s - loss: 0.2676 - acc: 0.90 - ETA: 13s - loss: 0.2679 - acc: 0.90 - ETA: 13s - loss: 0.2683 - acc: 0.90 - ETA: 13s - loss: 0.2683 - acc: 0.90 - ETA: 13s - loss: 0.2684 - acc: 0.90 - ETA: 13s - loss: 0.2685 - acc: 0.90 - ETA: 13s - loss: 0.2688 - acc: 0.90 - ETA: 13s - loss: 0.2685 - acc: 0.90 - ETA: 13s - loss: 0.2687 - acc: 0.90 - ETA: 12s - loss: 0.2686 - acc: 0.90 - ETA: 12s - loss: 0.2683 - acc: 0.90 - ETA: 12s - loss: 0.2682 - acc: 0.90 - ETA: 12s - loss: 0.2683 - acc: 0.90 - ETA: 12s - loss: 0.2684 - acc: 0.90 - ETA: 12s - loss: 0.2684 - acc: 0.90 - ETA: 12s - loss: 0.2683 - acc: 0.90 - ETA: 12s - loss: 0.2682 - acc: 0.90 - ETA: 12s - loss: 0.2681 - acc: 0.90 - ETA: 12s - loss: 0.2678 - acc: 0.90 - ETA: 12s - loss: 0.2679 - acc: 0.90 - ETA: 12s - loss: 0.2678 - acc: 0.90 - ETA: 12s - loss: 0.2676 - acc: 0.90 - ETA: 12s - loss: 0.2680 - acc: 0.90 - ETA: 12s - loss: 0.2680 - acc: 0.90 - ETA: 11s - loss: 0.2685 - acc: 0.90 - ETA: 11s - loss: 0.2685 - acc: 0.90 - ETA: 11s - loss: 0.2683 - acc: 0.90 - ETA: 11s - loss: 0.2683 - acc: 0.90 - ETA: 11s - loss: 0.2688 - acc: 0.90 - ETA: 11s - loss: 0.2690 - acc: 0.90 - ETA: 11s - loss: 0.2687 - acc: 0.90 - ETA: 11s - loss: 0.2687 - acc: 0.90 - ETA: 11s - loss: 0.2688 - acc: 0.90 - ETA: 11s - loss: 0.2686 - acc: 0.90 - ETA: 11s - loss: 0.2686 - acc: 0.90 - ETA: 11s - loss: 0.2689 - acc: 0.90 - ETA: 11s - loss: 0.2690 - acc: 0.90 - ETA: 11s - loss: 0.2692 - acc: 0.90 - ETA: 10s - loss: 0.2693 - acc: 0.90 - ETA: 10s - loss: 0.2695 - acc: 0.90 - ETA: 10s - loss: 0.2696 - acc: 0.90 - ETA: 10s - loss: 0.2698 - acc: 0.90 - ETA: 10s - loss: 0.2699 - acc: 0.90 - ETA: 10s - loss: 0.2700 - acc: 0.90 - ETA: 10s - loss: 0.2699 - acc: 0.90 - ETA: 10s - loss: 0.2695 - acc: 0.90 - ETA: 10s - loss: 0.2694 - acc: 0.90 - ETA: 10s - loss: 0.2693 - acc: 0.90 - ETA: 10s - loss: 0.2692 - acc: 0.90 - ETA: 10s - loss: 0.2697 - acc: 0.90 - ETA: 10s - loss: 0.2698 - acc: 0.90 - ETA: 9s - loss: 0.2698 - acc: 0.9042 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2702 - acc: 0.904 - ETA: 9s - loss: 0.2701 - acc: 0.904 - ETA: 9s - loss: 0.2700 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2700 - acc: 0.904 - ETA: 9s - loss: 0.2702 - acc: 0.904 - ETA: 9s - loss: 0.2703 - acc: 0.904 - ETA: 9s - loss: 0.2701 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2697 - acc: 0.904 - ETA: 8s - loss: 0.2698 - acc: 0.904 - ETA: 8s - loss: 0.2701 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2703 - acc: 0.904 - ETA: 8s - loss: 0.2701 - acc: 0.904 - ETA: 8s - loss: 0.2703 - acc: 0.904 - ETA: 8s - loss: 0.2701 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.903 - ETA: 8s - loss: 0.2705 - acc: 0.903 - ETA: 8s - loss: 0.2706 - acc: 0.903 - ETA: 8s - loss: 0.2708 - acc: 0.903 - ETA: 7s - loss: 0.2705 - acc: 0.904 - ETA: 7s - loss: 0.2704 - acc: 0.904 - ETA: 7s - loss: 0.2706 - acc: 0.904 - ETA: 7s - loss: 0.2703 - acc: 0.904 - ETA: 7s - loss: 0.2706 - acc: 0.904 - ETA: 7s - loss: 0.2703 - acc: 0.904 - ETA: 7s - loss: 0.2701 - acc: 0.904 - ETA: 7s - loss: 0.2700 - acc: 0.904 - ETA: 7s - loss: 0.2697 - acc: 0.904 - ETA: 7s - loss: 0.2699 - acc: 0.904 - ETA: 7s - loss: 0.2697 - acc: 0.904 - ETA: 7s - loss: 0.2697 - acc: 0.904 - ETA: 7s - loss: 0.2698 - acc: 0.904 - ETA: 7s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2695 - acc: 0.9046" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.2700 - acc: 0.904 - ETA: 6s - loss: 0.2700 - acc: 0.904 - ETA: 6s - loss: 0.2698 - acc: 0.904 - ETA: 6s - loss: 0.2697 - acc: 0.904 - ETA: 6s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2699 - acc: 0.904 - ETA: 6s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2695 - acc: 0.904 - ETA: 6s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2702 - acc: 0.904 - ETA: 6s - loss: 0.2705 - acc: 0.904 - ETA: 6s - loss: 0.2704 - acc: 0.904 - ETA: 6s - loss: 0.2703 - acc: 0.904 - ETA: 5s - loss: 0.2703 - acc: 0.904 - ETA: 5s - loss: 0.2702 - acc: 0.904 - ETA: 5s - loss: 0.2704 - acc: 0.904 - ETA: 5s - loss: 0.2703 - acc: 0.904 - ETA: 5s - loss: 0.2701 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2699 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2696 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2699 - acc: 0.904 - ETA: 5s - loss: 0.2697 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2697 - acc: 0.904 - ETA: 4s - loss: 0.2697 - acc: 0.904 - ETA: 4s - loss: 0.2699 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2699 - acc: 0.904 - ETA: 4s - loss: 0.2700 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2705 - acc: 0.904 - ETA: 4s - loss: 0.2707 - acc: 0.904 - ETA: 4s - loss: 0.2707 - acc: 0.904 - ETA: 4s - loss: 0.2706 - acc: 0.904 - ETA: 4s - loss: 0.2707 - acc: 0.904 - ETA: 4s - loss: 0.2706 - acc: 0.904 - ETA: 3s - loss: 0.2710 - acc: 0.904 - ETA: 3s - loss: 0.2711 - acc: 0.904 - ETA: 3s - loss: 0.2708 - acc: 0.904 - ETA: 3s - loss: 0.2709 - acc: 0.904 - ETA: 3s - loss: 0.2709 - acc: 0.904 - ETA: 3s - loss: 0.2714 - acc: 0.904 - ETA: 3s - loss: 0.2711 - acc: 0.904 - ETA: 3s - loss: 0.2713 - acc: 0.904 - ETA: 3s - loss: 0.2711 - acc: 0.904 - ETA: 3s - loss: 0.2714 - acc: 0.904 - ETA: 3s - loss: 0.2717 - acc: 0.904 - ETA: 3s - loss: 0.2717 - acc: 0.903 - ETA: 3s - loss: 0.2717 - acc: 0.903 - ETA: 3s - loss: 0.2720 - acc: 0.903 - ETA: 2s - loss: 0.2719 - acc: 0.903 - ETA: 2s - loss: 0.2719 - acc: 0.903 - ETA: 2s - loss: 0.2717 - acc: 0.903 - ETA: 2s - loss: 0.2721 - acc: 0.903 - ETA: 2s - loss: 0.2718 - acc: 0.903 - ETA: 2s - loss: 0.2715 - acc: 0.904 - ETA: 2s - loss: 0.2713 - acc: 0.904 - ETA: 2s - loss: 0.2710 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2713 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2711 - acc: 0.904 - ETA: 1s - loss: 0.2711 - acc: 0.904 - ETA: 1s - loss: 0.2709 - acc: 0.904 - ETA: 1s - loss: 0.2712 - acc: 0.904 - ETA: 1s - loss: 0.2710 - acc: 0.904 - ETA: 1s - loss: 0.2709 - acc: 0.904 - ETA: 1s - loss: 0.2708 - acc: 0.904 - ETA: 1s - loss: 0.2706 - acc: 0.904 - ETA: 1s - loss: 0.2708 - acc: 0.904 - ETA: 1s - loss: 0.2709 - acc: 0.904 - ETA: 1s - loss: 0.2711 - acc: 0.904 - ETA: 1s - loss: 0.2708 - acc: 0.904 - ETA: 1s - loss: 0.2707 - acc: 0.904 - ETA: 1s - loss: 0.2703 - acc: 0.904 - ETA: 1s - loss: 0.2702 - acc: 0.904 - ETA: 0s - loss: 0.2703 - acc: 0.904 - ETA: 0s - loss: 0.2703 - acc: 0.904 - ETA: 0s - loss: 0.2701 - acc: 0.904 - ETA: 0s - loss: 0.2702 - acc: 0.904 - ETA: 0s - loss: 0.2702 - acc: 0.904 - ETA: 0s - loss: 0.2700 - acc: 0.904 - ETA: 0s - loss: 0.2701 - acc: 0.904 - ETA: 0s - loss: 0.2700 - acc: 0.904 - ETA: 0s - loss: 0.2697 - acc: 0.904 - ETA: 0s - loss: 0.2694 - acc: 0.904 - ETA: 0s - loss: 0.2693 - acc: 0.904 - ETA: 0s - loss: 0.2692 - acc: 0.904 - ETA: 0s - loss: 0.2690 - acc: 0.904 - ETA: 0s - loss: 0.2690 - acc: 0.904 - 55s 2ms/step - loss: 0.2690 - acc: 0.9050 - val_loss: 0.2048 - val_acc: 0.9262\n", + "\n", + "Epoch 00005: val_acc improved from 0.92389 to 0.92616, saving model to models\\conv.model\n", + "Epoch 6/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 53s - loss: 0.1972 - acc: 0.93 - ETA: 53s - loss: 0.1666 - acc: 0.93 - ETA: 52s - loss: 0.1769 - acc: 0.91 - ETA: 51s - loss: 0.1983 - acc: 0.90 - ETA: 52s - loss: 0.2210 - acc: 0.90 - ETA: 52s - loss: 0.2472 - acc: 0.88 - ETA: 52s - loss: 0.2195 - acc: 0.89 - ETA: 51s - loss: 0.2162 - acc: 0.89 - ETA: 51s - loss: 0.2157 - acc: 0.90 - ETA: 51s - loss: 0.2126 - acc: 0.90 - ETA: 51s - loss: 0.2043 - acc: 0.91 - ETA: 51s - loss: 0.2049 - acc: 0.91 - ETA: 52s - loss: 0.2002 - acc: 0.92 - ETA: 53s - loss: 0.2193 - acc: 0.91 - ETA: 52s - loss: 0.2292 - acc: 0.91 - ETA: 52s - loss: 0.2262 - acc: 0.91 - ETA: 52s - loss: 0.2154 - acc: 0.91 - ETA: 52s - loss: 0.2078 - acc: 0.92 - ETA: 51s - loss: 0.2100 - acc: 0.92 - ETA: 51s - loss: 0.2125 - acc: 0.92 - ETA: 51s - loss: 0.2107 - acc: 0.92 - ETA: 51s - loss: 0.2080 - acc: 0.92 - ETA: 51s - loss: 0.2068 - acc: 0.92 - ETA: 51s - loss: 0.2078 - acc: 0.92 - ETA: 51s - loss: 0.2027 - acc: 0.92 - ETA: 51s - loss: 0.2030 - acc: 0.92 - ETA: 51s - loss: 0.2202 - acc: 0.91 - ETA: 51s - loss: 0.2287 - acc: 0.91 - ETA: 51s - loss: 0.2250 - acc: 0.91 - ETA: 51s - loss: 0.2276 - acc: 0.91 - ETA: 51s - loss: 0.2250 - acc: 0.91 - ETA: 50s - loss: 0.2234 - acc: 0.91 - ETA: 50s - loss: 0.2218 - acc: 0.91 - ETA: 50s - loss: 0.2195 - acc: 0.91 - ETA: 50s - loss: 0.2221 - acc: 0.91 - ETA: 50s - loss: 0.2194 - acc: 0.91 - ETA: 50s - loss: 0.2173 - acc: 0.91 - ETA: 50s - loss: 0.2181 - acc: 0.91 - ETA: 49s - loss: 0.2174 - acc: 0.91 - ETA: 49s - loss: 0.2155 - acc: 0.92 - ETA: 49s - loss: 0.2142 - acc: 0.92 - ETA: 49s - loss: 0.2128 - acc: 0.92 - ETA: 49s - loss: 0.2114 - acc: 0.92 - ETA: 49s - loss: 0.2098 - acc: 0.92 - ETA: 49s - loss: 0.2086 - acc: 0.92 - ETA: 48s - loss: 0.2074 - acc: 0.92 - ETA: 48s - loss: 0.2056 - acc: 0.92 - ETA: 48s - loss: 0.2032 - acc: 0.92 - ETA: 48s - loss: 0.2012 - acc: 0.92 - ETA: 48s - loss: 0.2013 - acc: 0.92 - ETA: 48s - loss: 0.2000 - acc: 0.92 - ETA: 48s - loss: 0.1981 - acc: 0.92 - ETA: 48s - loss: 0.2047 - acc: 0.92 - ETA: 47s - loss: 0.2035 - acc: 0.92 - ETA: 47s - loss: 0.2016 - acc: 0.92 - ETA: 47s - loss: 0.2019 - acc: 0.92 - ETA: 47s - loss: 0.2011 - acc: 0.92 - ETA: 47s - loss: 0.2026 - acc: 0.92 - ETA: 47s - loss: 0.2013 - acc: 0.92 - ETA: 47s - loss: 0.2020 - acc: 0.92 - ETA: 47s - loss: 0.2052 - acc: 0.92 - ETA: 47s - loss: 0.2051 - acc: 0.92 - ETA: 47s - loss: 0.2058 - acc: 0.92 - ETA: 47s - loss: 0.2063 - acc: 0.92 - ETA: 47s - loss: 0.2044 - acc: 0.92 - ETA: 47s - loss: 0.2030 - acc: 0.92 - ETA: 47s - loss: 0.2013 - acc: 0.92 - ETA: 46s - loss: 0.2005 - acc: 0.92 - ETA: 46s - loss: 0.2015 - acc: 0.92 - ETA: 46s - loss: 0.1994 - acc: 0.92 - ETA: 46s - loss: 0.1992 - acc: 0.92 - ETA: 46s - loss: 0.1976 - acc: 0.92 - ETA: 46s - loss: 0.1996 - acc: 0.92 - ETA: 46s - loss: 0.2022 - acc: 0.92 - ETA: 46s - loss: 0.2032 - acc: 0.92 - ETA: 46s - loss: 0.2040 - acc: 0.92 - ETA: 46s - loss: 0.2031 - acc: 0.92 - ETA: 46s - loss: 0.2039 - acc: 0.92 - ETA: 46s - loss: 0.2043 - acc: 0.92 - ETA: 46s - loss: 0.2038 - acc: 0.92 - ETA: 46s - loss: 0.2017 - acc: 0.92 - ETA: 46s - loss: 0.2010 - acc: 0.92 - ETA: 46s - loss: 0.2017 - acc: 0.92 - ETA: 46s - loss: 0.2038 - acc: 0.92 - ETA: 46s - loss: 0.2015 - acc: 0.92 - ETA: 46s - loss: 0.2011 - acc: 0.92 - ETA: 46s - loss: 0.2009 - acc: 0.92 - ETA: 45s - loss: 0.2051 - acc: 0.92 - ETA: 45s - loss: 0.2047 - acc: 0.92 - ETA: 45s - loss: 0.2047 - acc: 0.92 - ETA: 45s - loss: 0.2052 - acc: 0.92 - ETA: 45s - loss: 0.2047 - acc: 0.92 - ETA: 45s - loss: 0.2037 - acc: 0.92 - ETA: 45s - loss: 0.2025 - acc: 0.92 - ETA: 45s - loss: 0.2031 - acc: 0.92 - ETA: 45s - loss: 0.2016 - acc: 0.92 - ETA: 45s - loss: 0.2006 - acc: 0.92 - ETA: 45s - loss: 0.2013 - acc: 0.92 - ETA: 45s - loss: 0.2006 - acc: 0.92 - ETA: 44s - loss: 0.2000 - acc: 0.92 - ETA: 44s - loss: 0.2000 - acc: 0.92 - ETA: 44s - loss: 0.2011 - acc: 0.92 - ETA: 44s - loss: 0.2013 - acc: 0.92 - ETA: 44s - loss: 0.2004 - acc: 0.92 - ETA: 44s - loss: 0.2021 - acc: 0.92 - ETA: 44s - loss: 0.2030 - acc: 0.92 - ETA: 44s - loss: 0.2024 - acc: 0.92 - ETA: 44s - loss: 0.2020 - acc: 0.92 - ETA: 44s - loss: 0.2019 - acc: 0.92 - ETA: 44s - loss: 0.2011 - acc: 0.92 - ETA: 44s - loss: 0.2004 - acc: 0.92 - ETA: 44s - loss: 0.2007 - acc: 0.92 - ETA: 44s - loss: 0.2016 - acc: 0.92 - ETA: 44s - loss: 0.2028 - acc: 0.92 - ETA: 44s - loss: 0.2048 - acc: 0.92 - ETA: 44s - loss: 0.2042 - acc: 0.92 - ETA: 43s - loss: 0.2032 - acc: 0.92 - ETA: 43s - loss: 0.2018 - acc: 0.92 - ETA: 43s - loss: 0.2025 - acc: 0.92 - ETA: 43s - loss: 0.2015 - acc: 0.92 - ETA: 43s - loss: 0.2003 - acc: 0.92 - ETA: 43s - loss: 0.2021 - acc: 0.92 - ETA: 43s - loss: 0.2009 - acc: 0.92 - ETA: 43s - loss: 0.2018 - acc: 0.92 - ETA: 43s - loss: 0.2010 - acc: 0.92 - ETA: 43s - loss: 0.2009 - acc: 0.92 - ETA: 43s - loss: 0.2012 - acc: 0.92 - ETA: 43s - loss: 0.2007 - acc: 0.92 - ETA: 43s - loss: 0.2005 - acc: 0.92 - ETA: 43s - loss: 0.1995 - acc: 0.92 - ETA: 43s - loss: 0.1985 - acc: 0.92 - ETA: 43s - loss: 0.1987 - acc: 0.92 - ETA: 42s - loss: 0.1984 - acc: 0.92 - ETA: 42s - loss: 0.1996 - acc: 0.92 - ETA: 42s - loss: 0.1990 - acc: 0.92 - ETA: 42s - loss: 0.1981 - acc: 0.92 - ETA: 42s - loss: 0.1981 - acc: 0.92 - ETA: 42s - loss: 0.1979 - acc: 0.92 - ETA: 42s - loss: 0.1967 - acc: 0.92 - ETA: 42s - loss: 0.1968 - acc: 0.92 - ETA: 42s - loss: 0.1976 - acc: 0.92 - ETA: 42s - loss: 0.2022 - acc: 0.92 - ETA: 42s - loss: 0.2038 - acc: 0.92 - ETA: 42s - loss: 0.2035 - acc: 0.92 - ETA: 42s - loss: 0.2036 - acc: 0.92 - ETA: 42s - loss: 0.2036 - acc: 0.92 - ETA: 42s - loss: 0.2031 - acc: 0.92 - ETA: 41s - loss: 0.2038 - acc: 0.92 - ETA: 41s - loss: 0.2032 - acc: 0.92 - ETA: 41s - loss: 0.2069 - acc: 0.92 - ETA: 41s - loss: 0.2069 - acc: 0.92 - ETA: 41s - loss: 0.2078 - acc: 0.92 - ETA: 41s - loss: 0.2071 - acc: 0.92 - ETA: 41s - loss: 0.2080 - acc: 0.92 - ETA: 41s - loss: 0.2090 - acc: 0.92 - ETA: 41s - loss: 0.2099 - acc: 0.92 - ETA: 41s - loss: 0.2109 - acc: 0.92 - ETA: 41s - loss: 0.2142 - acc: 0.92 - ETA: 41s - loss: 0.2135 - acc: 0.92 - ETA: 41s - loss: 0.2135 - acc: 0.92 - ETA: 41s - loss: 0.2145 - acc: 0.92 - ETA: 41s - loss: 0.2148 - acc: 0.92 - ETA: 41s - loss: 0.2149 - acc: 0.92 - ETA: 40s - loss: 0.2153 - acc: 0.92 - ETA: 40s - loss: 0.2154 - acc: 0.92 - ETA: 40s - loss: 0.2157 - acc: 0.92 - ETA: 40s - loss: 0.2165 - acc: 0.92 - ETA: 40s - loss: 0.2170 - acc: 0.92 - ETA: 40s - loss: 0.2172 - acc: 0.92 - ETA: 40s - loss: 0.2178 - acc: 0.92 - ETA: 40s - loss: 0.2186 - acc: 0.92 - ETA: 40s - loss: 0.2183 - acc: 0.92 - ETA: 40s - loss: 0.2205 - acc: 0.92 - ETA: 40s - loss: 0.2215 - acc: 0.92 - ETA: 40s - loss: 0.2210 - acc: 0.92 - ETA: 39s - loss: 0.2205 - acc: 0.92 - ETA: 39s - loss: 0.2204 - acc: 0.92 - ETA: 39s - loss: 0.2206 - acc: 0.92 - ETA: 39s - loss: 0.2212 - acc: 0.92 - ETA: 39s - loss: 0.2206 - acc: 0.92 - ETA: 39s - loss: 0.2202 - acc: 0.92 - ETA: 39s - loss: 0.2197 - acc: 0.92 - ETA: 39s - loss: 0.2197 - acc: 0.92 - ETA: 39s - loss: 0.2192 - acc: 0.92 - ETA: 39s - loss: 0.2195 - acc: 0.92 - ETA: 39s - loss: 0.2200 - acc: 0.92 - ETA: 39s - loss: 0.2208 - acc: 0.92 - ETA: 39s - loss: 0.2206 - acc: 0.92 - ETA: 39s - loss: 0.2209 - acc: 0.92 - ETA: 39s - loss: 0.2203 - acc: 0.92 - ETA: 39s - loss: 0.2202 - acc: 0.92 - ETA: 39s - loss: 0.2200 - acc: 0.92 - ETA: 39s - loss: 0.2210 - acc: 0.92 - ETA: 39s - loss: 0.2203 - acc: 0.92 - ETA: 39s - loss: 0.2196 - acc: 0.92 - ETA: 38s - loss: 0.2193 - acc: 0.92 - ETA: 38s - loss: 0.2195 - acc: 0.92 - ETA: 38s - loss: 0.2191 - acc: 0.92 - ETA: 38s - loss: 0.2200 - acc: 0.92 - ETA: 38s - loss: 0.2206 - acc: 0.92 - ETA: 38s - loss: 0.2202 - acc: 0.92 - ETA: 38s - loss: 0.2199 - acc: 0.92 - ETA: 38s - loss: 0.2195 - acc: 0.92 - ETA: 38s - loss: 0.2193 - acc: 0.92 - ETA: 38s - loss: 0.2188 - acc: 0.92 - ETA: 38s - loss: 0.2204 - acc: 0.92 - ETA: 38s - loss: 0.2215 - acc: 0.92 - ETA: 38s - loss: 0.2212 - acc: 0.92 - ETA: 38s - loss: 0.2205 - acc: 0.92 - ETA: 38s - loss: 0.2199 - acc: 0.92 - ETA: 38s - loss: 0.2205 - acc: 0.92 - ETA: 37s - loss: 0.2207 - acc: 0.92 - ETA: 37s - loss: 0.2206 - acc: 0.92 - ETA: 37s - loss: 0.2203 - acc: 0.92 - ETA: 37s - loss: 0.2202 - acc: 0.9219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.2201 - acc: 0.92 - ETA: 37s - loss: 0.2205 - acc: 0.92 - ETA: 37s - loss: 0.2209 - acc: 0.92 - ETA: 37s - loss: 0.2215 - acc: 0.92 - ETA: 37s - loss: 0.2226 - acc: 0.92 - ETA: 37s - loss: 0.2226 - acc: 0.92 - ETA: 37s - loss: 0.2218 - acc: 0.92 - ETA: 37s - loss: 0.2224 - acc: 0.92 - ETA: 37s - loss: 0.2242 - acc: 0.92 - ETA: 37s - loss: 0.2256 - acc: 0.92 - ETA: 37s - loss: 0.2261 - acc: 0.92 - ETA: 37s - loss: 0.2260 - acc: 0.92 - ETA: 37s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2257 - acc: 0.92 - ETA: 36s - loss: 0.2252 - acc: 0.92 - ETA: 36s - loss: 0.2248 - acc: 0.92 - ETA: 36s - loss: 0.2263 - acc: 0.92 - ETA: 36s - loss: 0.2272 - acc: 0.91 - ETA: 36s - loss: 0.2268 - acc: 0.91 - ETA: 36s - loss: 0.2274 - acc: 0.91 - ETA: 36s - loss: 0.2275 - acc: 0.91 - ETA: 36s - loss: 0.2276 - acc: 0.91 - ETA: 36s - loss: 0.2271 - acc: 0.91 - ETA: 35s - loss: 0.2264 - acc: 0.92 - ETA: 35s - loss: 0.2262 - acc: 0.92 - ETA: 35s - loss: 0.2261 - acc: 0.92 - ETA: 35s - loss: 0.2265 - acc: 0.91 - ETA: 35s - loss: 0.2272 - acc: 0.91 - ETA: 35s - loss: 0.2271 - acc: 0.91 - ETA: 35s - loss: 0.2280 - acc: 0.91 - ETA: 35s - loss: 0.2275 - acc: 0.91 - ETA: 35s - loss: 0.2278 - acc: 0.91 - ETA: 35s - loss: 0.2285 - acc: 0.91 - ETA: 35s - loss: 0.2283 - acc: 0.91 - ETA: 35s - loss: 0.2288 - acc: 0.91 - ETA: 35s - loss: 0.2283 - acc: 0.91 - ETA: 35s - loss: 0.2277 - acc: 0.91 - ETA: 34s - loss: 0.2276 - acc: 0.91 - ETA: 34s - loss: 0.2275 - acc: 0.91 - ETA: 34s - loss: 0.2279 - acc: 0.91 - ETA: 34s - loss: 0.2280 - acc: 0.91 - ETA: 34s - loss: 0.2276 - acc: 0.91 - ETA: 34s - loss: 0.2278 - acc: 0.91 - ETA: 34s - loss: 0.2277 - acc: 0.91 - ETA: 34s - loss: 0.2283 - acc: 0.91 - ETA: 34s - loss: 0.2280 - acc: 0.91 - ETA: 34s - loss: 0.2277 - acc: 0.91 - ETA: 34s - loss: 0.2272 - acc: 0.91 - ETA: 34s - loss: 0.2266 - acc: 0.91 - ETA: 34s - loss: 0.2262 - acc: 0.91 - ETA: 33s - loss: 0.2263 - acc: 0.91 - ETA: 33s - loss: 0.2276 - acc: 0.91 - ETA: 33s - loss: 0.2275 - acc: 0.91 - ETA: 33s - loss: 0.2278 - acc: 0.91 - ETA: 33s - loss: 0.2280 - acc: 0.91 - ETA: 33s - loss: 0.2279 - acc: 0.91 - ETA: 33s - loss: 0.2273 - acc: 0.91 - ETA: 33s - loss: 0.2279 - acc: 0.91 - ETA: 33s - loss: 0.2277 - acc: 0.91 - ETA: 33s - loss: 0.2274 - acc: 0.91 - ETA: 33s - loss: 0.2273 - acc: 0.91 - ETA: 33s - loss: 0.2279 - acc: 0.91 - ETA: 33s - loss: 0.2274 - acc: 0.91 - ETA: 32s - loss: 0.2276 - acc: 0.91 - ETA: 32s - loss: 0.2276 - acc: 0.91 - ETA: 32s - loss: 0.2272 - acc: 0.91 - ETA: 32s - loss: 0.2268 - acc: 0.91 - ETA: 32s - loss: 0.2272 - acc: 0.91 - ETA: 32s - loss: 0.2268 - acc: 0.91 - ETA: 32s - loss: 0.2265 - acc: 0.91 - ETA: 32s - loss: 0.2270 - acc: 0.91 - ETA: 32s - loss: 0.2266 - acc: 0.91 - ETA: 32s - loss: 0.2270 - acc: 0.91 - ETA: 32s - loss: 0.2263 - acc: 0.92 - ETA: 32s - loss: 0.2262 - acc: 0.92 - ETA: 32s - loss: 0.2258 - acc: 0.92 - ETA: 31s - loss: 0.2260 - acc: 0.92 - ETA: 31s - loss: 0.2259 - acc: 0.92 - ETA: 31s - loss: 0.2255 - acc: 0.92 - ETA: 31s - loss: 0.2254 - acc: 0.92 - ETA: 31s - loss: 0.2255 - acc: 0.92 - ETA: 31s - loss: 0.2254 - acc: 0.92 - ETA: 31s - loss: 0.2254 - acc: 0.92 - ETA: 31s - loss: 0.2251 - acc: 0.92 - ETA: 31s - loss: 0.2253 - acc: 0.91 - ETA: 31s - loss: 0.2249 - acc: 0.92 - ETA: 31s - loss: 0.2249 - acc: 0.92 - ETA: 31s - loss: 0.2247 - acc: 0.92 - ETA: 31s - loss: 0.2245 - acc: 0.92 - ETA: 31s - loss: 0.2245 - acc: 0.92 - ETA: 31s - loss: 0.2242 - acc: 0.92 - ETA: 30s - loss: 0.2240 - acc: 0.92 - ETA: 30s - loss: 0.2244 - acc: 0.92 - ETA: 30s - loss: 0.2247 - acc: 0.92 - ETA: 30s - loss: 0.2247 - acc: 0.92 - ETA: 30s - loss: 0.2246 - acc: 0.92 - ETA: 30s - loss: 0.2243 - acc: 0.92 - ETA: 30s - loss: 0.2243 - acc: 0.92 - ETA: 30s - loss: 0.2240 - acc: 0.92 - ETA: 30s - loss: 0.2242 - acc: 0.92 - ETA: 30s - loss: 0.2237 - acc: 0.92 - ETA: 30s - loss: 0.2243 - acc: 0.92 - ETA: 30s - loss: 0.2239 - acc: 0.92 - ETA: 30s - loss: 0.2238 - acc: 0.92 - ETA: 30s - loss: 0.2237 - acc: 0.92 - ETA: 30s - loss: 0.2231 - acc: 0.92 - ETA: 30s - loss: 0.2229 - acc: 0.92 - ETA: 29s - loss: 0.2230 - acc: 0.92 - ETA: 29s - loss: 0.2230 - acc: 0.92 - ETA: 29s - loss: 0.2230 - acc: 0.92 - ETA: 29s - loss: 0.2226 - acc: 0.92 - ETA: 29s - loss: 0.2224 - acc: 0.92 - ETA: 29s - loss: 0.2222 - acc: 0.92 - ETA: 29s - loss: 0.2222 - acc: 0.92 - ETA: 29s - loss: 0.2224 - acc: 0.92 - ETA: 29s - loss: 0.2221 - acc: 0.92 - ETA: 29s - loss: 0.2225 - acc: 0.92 - ETA: 29s - loss: 0.2241 - acc: 0.92 - ETA: 29s - loss: 0.2238 - acc: 0.92 - ETA: 29s - loss: 0.2235 - acc: 0.92 - ETA: 29s - loss: 0.2248 - acc: 0.92 - ETA: 29s - loss: 0.2250 - acc: 0.92 - ETA: 29s - loss: 0.2250 - acc: 0.92 - ETA: 29s - loss: 0.2245 - acc: 0.92 - ETA: 29s - loss: 0.2245 - acc: 0.92 - ETA: 28s - loss: 0.2244 - acc: 0.92 - ETA: 28s - loss: 0.2243 - acc: 0.92 - ETA: 28s - loss: 0.2243 - acc: 0.92 - ETA: 28s - loss: 0.2248 - acc: 0.92 - ETA: 28s - loss: 0.2247 - acc: 0.92 - ETA: 28s - loss: 0.2244 - acc: 0.92 - ETA: 28s - loss: 0.2245 - acc: 0.92 - ETA: 28s - loss: 0.2256 - acc: 0.92 - ETA: 28s - loss: 0.2258 - acc: 0.92 - ETA: 28s - loss: 0.2256 - acc: 0.92 - ETA: 28s - loss: 0.2252 - acc: 0.92 - ETA: 28s - loss: 0.2249 - acc: 0.92 - ETA: 28s - loss: 0.2249 - acc: 0.92 - ETA: 27s - loss: 0.2247 - acc: 0.92 - ETA: 27s - loss: 0.2242 - acc: 0.92 - ETA: 27s - loss: 0.2237 - acc: 0.92 - ETA: 27s - loss: 0.2241 - acc: 0.92 - ETA: 27s - loss: 0.2240 - acc: 0.92 - ETA: 27s - loss: 0.2241 - acc: 0.92 - ETA: 27s - loss: 0.2247 - acc: 0.92 - ETA: 27s - loss: 0.2246 - acc: 0.92 - ETA: 27s - loss: 0.2244 - acc: 0.92 - ETA: 27s - loss: 0.2260 - acc: 0.92 - ETA: 27s - loss: 0.2266 - acc: 0.92 - ETA: 27s - loss: 0.2262 - acc: 0.92 - ETA: 27s - loss: 0.2259 - acc: 0.92 - ETA: 27s - loss: 0.2260 - acc: 0.92 - ETA: 26s - loss: 0.2258 - acc: 0.92 - ETA: 26s - loss: 0.2261 - acc: 0.92 - ETA: 26s - loss: 0.2267 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2261 - acc: 0.92 - ETA: 26s - loss: 0.2264 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2268 - acc: 0.92 - ETA: 26s - loss: 0.2266 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2269 - acc: 0.92 - ETA: 26s - loss: 0.2267 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 25s - loss: 0.2265 - acc: 0.92 - ETA: 25s - loss: 0.2264 - acc: 0.92 - ETA: 25s - loss: 0.2267 - acc: 0.92 - ETA: 25s - loss: 0.2268 - acc: 0.92 - ETA: 25s - loss: 0.2270 - acc: 0.92 - ETA: 25s - loss: 0.2269 - acc: 0.92 - ETA: 25s - loss: 0.2267 - acc: 0.92 - ETA: 25s - loss: 0.2272 - acc: 0.92 - ETA: 25s - loss: 0.2277 - acc: 0.91 - ETA: 25s - loss: 0.2275 - acc: 0.91 - ETA: 25s - loss: 0.2277 - acc: 0.91 - ETA: 25s - loss: 0.2283 - acc: 0.91 - ETA: 25s - loss: 0.2283 - acc: 0.91 - ETA: 24s - loss: 0.2284 - acc: 0.91 - ETA: 24s - loss: 0.2286 - acc: 0.91 - ETA: 24s - loss: 0.2287 - acc: 0.91 - ETA: 24s - loss: 0.2285 - acc: 0.91 - ETA: 24s - loss: 0.2283 - acc: 0.91 - ETA: 24s - loss: 0.2281 - acc: 0.91 - ETA: 24s - loss: 0.2279 - acc: 0.92 - ETA: 24s - loss: 0.2284 - acc: 0.91 - ETA: 24s - loss: 0.2283 - acc: 0.91 - ETA: 24s - loss: 0.2282 - acc: 0.91 - ETA: 24s - loss: 0.2279 - acc: 0.92 - ETA: 24s - loss: 0.2276 - acc: 0.92 - ETA: 24s - loss: 0.2276 - acc: 0.92 - ETA: 24s - loss: 0.2273 - acc: 0.92 - ETA: 23s - loss: 0.2269 - acc: 0.92 - ETA: 23s - loss: 0.2271 - acc: 0.92 - ETA: 23s - loss: 0.2272 - acc: 0.92 - ETA: 23s - loss: 0.2274 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2278 - acc: 0.92 - ETA: 23s - loss: 0.2273 - acc: 0.92 - ETA: 23s - loss: 0.2271 - acc: 0.92 - ETA: 23s - loss: 0.2270 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2283 - acc: 0.91 - ETA: 22s - loss: 0.2282 - acc: 0.91 - ETA: 22s - loss: 0.2280 - acc: 0.91 - ETA: 22s - loss: 0.2277 - acc: 0.92 - ETA: 22s - loss: 0.2279 - acc: 0.91 - ETA: 22s - loss: 0.2277 - acc: 0.92 - ETA: 22s - loss: 0.2279 - acc: 0.9200" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.2276 - acc: 0.92 - ETA: 22s - loss: 0.2281 - acc: 0.92 - ETA: 22s - loss: 0.2280 - acc: 0.92 - ETA: 22s - loss: 0.2286 - acc: 0.91 - ETA: 22s - loss: 0.2286 - acc: 0.92 - ETA: 22s - loss: 0.2282 - acc: 0.92 - ETA: 22s - loss: 0.2288 - acc: 0.91 - ETA: 22s - loss: 0.2287 - acc: 0.91 - ETA: 21s - loss: 0.2286 - acc: 0.91 - ETA: 21s - loss: 0.2285 - acc: 0.92 - ETA: 21s - loss: 0.2289 - acc: 0.92 - ETA: 21s - loss: 0.2289 - acc: 0.91 - ETA: 21s - loss: 0.2287 - acc: 0.92 - ETA: 21s - loss: 0.2288 - acc: 0.91 - ETA: 21s - loss: 0.2290 - acc: 0.91 - ETA: 21s - loss: 0.2291 - acc: 0.91 - ETA: 21s - loss: 0.2293 - acc: 0.91 - ETA: 21s - loss: 0.2294 - acc: 0.91 - ETA: 21s - loss: 0.2292 - acc: 0.91 - ETA: 21s - loss: 0.2289 - acc: 0.92 - ETA: 21s - loss: 0.2288 - acc: 0.92 - ETA: 21s - loss: 0.2290 - acc: 0.92 - ETA: 21s - loss: 0.2289 - acc: 0.92 - ETA: 20s - loss: 0.2287 - acc: 0.92 - ETA: 20s - loss: 0.2287 - acc: 0.92 - ETA: 20s - loss: 0.2284 - acc: 0.92 - ETA: 20s - loss: 0.2283 - acc: 0.92 - ETA: 20s - loss: 0.2283 - acc: 0.92 - ETA: 20s - loss: 0.2282 - acc: 0.92 - ETA: 20s - loss: 0.2286 - acc: 0.92 - ETA: 20s - loss: 0.2286 - acc: 0.91 - ETA: 20s - loss: 0.2286 - acc: 0.91 - ETA: 20s - loss: 0.2285 - acc: 0.91 - ETA: 20s - loss: 0.2284 - acc: 0.91 - ETA: 20s - loss: 0.2282 - acc: 0.91 - ETA: 20s - loss: 0.2280 - acc: 0.91 - ETA: 20s - loss: 0.2277 - acc: 0.92 - ETA: 19s - loss: 0.2275 - acc: 0.92 - ETA: 19s - loss: 0.2272 - acc: 0.92 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2271 - acc: 0.92 - ETA: 19s - loss: 0.2268 - acc: 0.92 - ETA: 19s - loss: 0.2271 - acc: 0.92 - ETA: 19s - loss: 0.2268 - acc: 0.92 - ETA: 19s - loss: 0.2269 - acc: 0.92 - ETA: 19s - loss: 0.2269 - acc: 0.92 - ETA: 18s - loss: 0.2273 - acc: 0.92 - ETA: 18s - loss: 0.2269 - acc: 0.92 - ETA: 18s - loss: 0.2266 - acc: 0.92 - ETA: 18s - loss: 0.2264 - acc: 0.92 - ETA: 18s - loss: 0.2265 - acc: 0.92 - ETA: 18s - loss: 0.2262 - acc: 0.92 - ETA: 18s - loss: 0.2262 - acc: 0.92 - ETA: 18s - loss: 0.2260 - acc: 0.92 - ETA: 18s - loss: 0.2259 - acc: 0.92 - ETA: 18s - loss: 0.2258 - acc: 0.92 - ETA: 18s - loss: 0.2260 - acc: 0.92 - ETA: 18s - loss: 0.2258 - acc: 0.92 - ETA: 18s - loss: 0.2261 - acc: 0.92 - ETA: 18s - loss: 0.2264 - acc: 0.92 - ETA: 18s - loss: 0.2265 - acc: 0.92 - ETA: 17s - loss: 0.2267 - acc: 0.92 - ETA: 17s - loss: 0.2267 - acc: 0.92 - ETA: 17s - loss: 0.2266 - acc: 0.92 - ETA: 17s - loss: 0.2269 - acc: 0.92 - ETA: 17s - loss: 0.2269 - acc: 0.91 - ETA: 17s - loss: 0.2266 - acc: 0.92 - ETA: 17s - loss: 0.2268 - acc: 0.92 - ETA: 17s - loss: 0.2267 - acc: 0.92 - ETA: 17s - loss: 0.2269 - acc: 0.92 - ETA: 17s - loss: 0.2266 - acc: 0.92 - ETA: 17s - loss: 0.2265 - acc: 0.92 - ETA: 17s - loss: 0.2263 - acc: 0.92 - ETA: 17s - loss: 0.2259 - acc: 0.92 - ETA: 17s - loss: 0.2257 - acc: 0.92 - ETA: 16s - loss: 0.2261 - acc: 0.92 - ETA: 16s - loss: 0.2261 - acc: 0.92 - ETA: 16s - loss: 0.2260 - acc: 0.92 - ETA: 16s - loss: 0.2259 - acc: 0.92 - ETA: 16s - loss: 0.2258 - acc: 0.92 - ETA: 16s - loss: 0.2259 - acc: 0.92 - ETA: 16s - loss: 0.2256 - acc: 0.92 - ETA: 16s - loss: 0.2259 - acc: 0.92 - ETA: 16s - loss: 0.2261 - acc: 0.92 - ETA: 16s - loss: 0.2260 - acc: 0.92 - ETA: 16s - loss: 0.2257 - acc: 0.92 - ETA: 16s - loss: 0.2255 - acc: 0.92 - ETA: 16s - loss: 0.2255 - acc: 0.92 - ETA: 16s - loss: 0.2255 - acc: 0.92 - ETA: 15s - loss: 0.2254 - acc: 0.92 - ETA: 15s - loss: 0.2253 - acc: 0.92 - ETA: 15s - loss: 0.2251 - acc: 0.92 - ETA: 15s - loss: 0.2258 - acc: 0.92 - ETA: 15s - loss: 0.2257 - acc: 0.92 - ETA: 15s - loss: 0.2254 - acc: 0.92 - ETA: 15s - loss: 0.2253 - acc: 0.92 - ETA: 15s - loss: 0.2254 - acc: 0.92 - ETA: 15s - loss: 0.2251 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 14s - loss: 0.2248 - acc: 0.92 - ETA: 14s - loss: 0.2253 - acc: 0.92 - ETA: 14s - loss: 0.2254 - acc: 0.92 - ETA: 14s - loss: 0.2254 - acc: 0.92 - ETA: 14s - loss: 0.2251 - acc: 0.92 - ETA: 14s - loss: 0.2248 - acc: 0.92 - ETA: 14s - loss: 0.2246 - acc: 0.92 - ETA: 14s - loss: 0.2245 - acc: 0.92 - ETA: 14s - loss: 0.2248 - acc: 0.92 - ETA: 14s - loss: 0.2250 - acc: 0.92 - ETA: 14s - loss: 0.2246 - acc: 0.92 - ETA: 14s - loss: 0.2243 - acc: 0.92 - ETA: 14s - loss: 0.2245 - acc: 0.92 - ETA: 14s - loss: 0.2242 - acc: 0.92 - ETA: 13s - loss: 0.2240 - acc: 0.92 - ETA: 13s - loss: 0.2239 - acc: 0.92 - ETA: 13s - loss: 0.2236 - acc: 0.92 - ETA: 13s - loss: 0.2236 - acc: 0.92 - ETA: 13s - loss: 0.2234 - acc: 0.92 - ETA: 13s - loss: 0.2235 - acc: 0.92 - ETA: 13s - loss: 0.2241 - acc: 0.92 - ETA: 13s - loss: 0.2243 - acc: 0.92 - ETA: 13s - loss: 0.2243 - acc: 0.92 - ETA: 13s - loss: 0.2242 - acc: 0.92 - ETA: 13s - loss: 0.2240 - acc: 0.92 - ETA: 13s - loss: 0.2240 - acc: 0.92 - ETA: 13s - loss: 0.2242 - acc: 0.92 - ETA: 12s - loss: 0.2241 - acc: 0.92 - ETA: 12s - loss: 0.2240 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2241 - acc: 0.92 - ETA: 12s - loss: 0.2246 - acc: 0.92 - ETA: 12s - loss: 0.2247 - acc: 0.92 - ETA: 12s - loss: 0.2246 - acc: 0.92 - ETA: 12s - loss: 0.2246 - acc: 0.92 - ETA: 12s - loss: 0.2244 - acc: 0.92 - ETA: 12s - loss: 0.2245 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2245 - acc: 0.92 - ETA: 11s - loss: 0.2244 - acc: 0.92 - ETA: 11s - loss: 0.2241 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2243 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2245 - acc: 0.92 - ETA: 11s - loss: 0.2243 - acc: 0.92 - ETA: 11s - loss: 0.2241 - acc: 0.92 - ETA: 11s - loss: 0.2242 - acc: 0.92 - ETA: 11s - loss: 0.2241 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2239 - acc: 0.92 - ETA: 10s - loss: 0.2239 - acc: 0.92 - ETA: 10s - loss: 0.2239 - acc: 0.92 - ETA: 10s - loss: 0.2237 - acc: 0.92 - ETA: 10s - loss: 0.2237 - acc: 0.92 - ETA: 10s - loss: 0.2235 - acc: 0.92 - ETA: 10s - loss: 0.2232 - acc: 0.92 - ETA: 10s - loss: 0.2232 - acc: 0.92 - ETA: 10s - loss: 0.2234 - acc: 0.92 - ETA: 10s - loss: 0.2235 - acc: 0.92 - ETA: 10s - loss: 0.2233 - acc: 0.92 - ETA: 10s - loss: 0.2231 - acc: 0.92 - ETA: 10s - loss: 0.2237 - acc: 0.92 - ETA: 10s - loss: 0.2241 - acc: 0.92 - ETA: 10s - loss: 0.2239 - acc: 0.92 - ETA: 9s - loss: 0.2240 - acc: 0.9208 - ETA: 9s - loss: 0.2239 - acc: 0.920 - ETA: 9s - loss: 0.2239 - acc: 0.920 - ETA: 9s - loss: 0.2240 - acc: 0.920 - ETA: 9s - loss: 0.2239 - acc: 0.920 - ETA: 9s - loss: 0.2238 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2240 - acc: 0.920 - ETA: 9s - loss: 0.2244 - acc: 0.920 - ETA: 9s - loss: 0.2246 - acc: 0.920 - ETA: 9s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2244 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2247 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2244 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2247 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2248 - acc: 0.920 - ETA: 7s - loss: 0.2248 - acc: 0.920 - ETA: 7s - loss: 0.2247 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2245 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2244 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2244 - acc: 0.920 - ETA: 7s - loss: 0.2243 - acc: 0.920 - ETA: 7s - loss: 0.2245 - acc: 0.920 - ETA: 7s - loss: 0.2245 - acc: 0.920 - ETA: 7s - loss: 0.2247 - acc: 0.9204" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.2246 - acc: 0.920 - ETA: 6s - loss: 0.2244 - acc: 0.920 - ETA: 6s - loss: 0.2243 - acc: 0.920 - ETA: 6s - loss: 0.2242 - acc: 0.920 - ETA: 6s - loss: 0.2241 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 6s - loss: 0.2237 - acc: 0.920 - ETA: 6s - loss: 0.2238 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 6s - loss: 0.2240 - acc: 0.920 - ETA: 6s - loss: 0.2237 - acc: 0.920 - ETA: 6s - loss: 0.2238 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 5s - loss: 0.2240 - acc: 0.920 - ETA: 5s - loss: 0.2239 - acc: 0.920 - ETA: 5s - loss: 0.2238 - acc: 0.920 - ETA: 5s - loss: 0.2239 - acc: 0.920 - ETA: 5s - loss: 0.2237 - acc: 0.920 - ETA: 5s - loss: 0.2236 - acc: 0.920 - ETA: 5s - loss: 0.2234 - acc: 0.920 - ETA: 5s - loss: 0.2232 - acc: 0.921 - ETA: 5s - loss: 0.2230 - acc: 0.921 - ETA: 5s - loss: 0.2228 - acc: 0.921 - ETA: 5s - loss: 0.2227 - acc: 0.921 - ETA: 5s - loss: 0.2226 - acc: 0.921 - ETA: 5s - loss: 0.2230 - acc: 0.921 - ETA: 5s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2224 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2224 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2229 - acc: 0.921 - ETA: 4s - loss: 0.2228 - acc: 0.921 - ETA: 4s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2225 - acc: 0.921 - ETA: 4s - loss: 0.2222 - acc: 0.921 - ETA: 3s - loss: 0.2222 - acc: 0.921 - ETA: 3s - loss: 0.2226 - acc: 0.921 - ETA: 3s - loss: 0.2225 - acc: 0.921 - ETA: 3s - loss: 0.2223 - acc: 0.921 - ETA: 3s - loss: 0.2221 - acc: 0.921 - ETA: 3s - loss: 0.2223 - acc: 0.921 - ETA: 3s - loss: 0.2224 - acc: 0.921 - ETA: 3s - loss: 0.2223 - acc: 0.921 - ETA: 3s - loss: 0.2226 - acc: 0.921 - ETA: 3s - loss: 0.2229 - acc: 0.921 - ETA: 3s - loss: 0.2230 - acc: 0.921 - ETA: 3s - loss: 0.2228 - acc: 0.921 - ETA: 3s - loss: 0.2231 - acc: 0.921 - ETA: 3s - loss: 0.2231 - acc: 0.921 - ETA: 2s - loss: 0.2230 - acc: 0.921 - ETA: 2s - loss: 0.2229 - acc: 0.921 - ETA: 2s - loss: 0.2227 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2228 - acc: 0.921 - ETA: 2s - loss: 0.2227 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2224 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2224 - acc: 0.921 - ETA: 2s - loss: 0.2224 - acc: 0.921 - ETA: 2s - loss: 0.2223 - acc: 0.921 - ETA: 2s - loss: 0.2222 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2219 - acc: 0.921 - ETA: 1s - loss: 0.2218 - acc: 0.921 - ETA: 1s - loss: 0.2217 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2222 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 0s - loss: 0.2218 - acc: 0.921 - ETA: 0s - loss: 0.2219 - acc: 0.921 - ETA: 0s - loss: 0.2225 - acc: 0.921 - ETA: 0s - loss: 0.2224 - acc: 0.921 - ETA: 0s - loss: 0.2226 - acc: 0.921 - ETA: 0s - loss: 0.2225 - acc: 0.921 - ETA: 0s - loss: 0.2224 - acc: 0.921 - ETA: 0s - loss: 0.2224 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - ETA: 0s - loss: 0.2221 - acc: 0.921 - ETA: 0s - loss: 0.2222 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - 55s 2ms/step - loss: 0.2222 - acc: 0.9217 - val_loss: 0.2044 - val_acc: 0.9288\n", + "\n", + "Epoch 00006: val_acc improved from 0.92616 to 0.92881, saving model to models\\conv.model\n", + "Epoch 7/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 39s - loss: 0.3483 - acc: 0.93 - ETA: 43s - loss: 0.3026 - acc: 0.90 - ETA: 46s - loss: 0.2582 - acc: 0.90 - ETA: 47s - loss: 0.2163 - acc: 0.92 - ETA: 48s - loss: 0.2109 - acc: 0.91 - ETA: 47s - loss: 0.1914 - acc: 0.92 - ETA: 48s - loss: 0.1951 - acc: 0.91 - ETA: 48s - loss: 0.2262 - acc: 0.91 - ETA: 48s - loss: 0.2158 - acc: 0.92 - ETA: 48s - loss: 0.2196 - acc: 0.92 - ETA: 48s - loss: 0.2105 - acc: 0.92 - ETA: 48s - loss: 0.2009 - acc: 0.92 - ETA: 48s - loss: 0.1966 - acc: 0.93 - ETA: 48s - loss: 0.1998 - acc: 0.92 - ETA: 48s - loss: 0.1909 - acc: 0.93 - ETA: 48s - loss: 0.1854 - acc: 0.93 - ETA: 48s - loss: 0.1918 - acc: 0.93 - ETA: 48s - loss: 0.1894 - acc: 0.93 - ETA: 48s - loss: 0.1911 - acc: 0.93 - ETA: 48s - loss: 0.1951 - acc: 0.92 - ETA: 48s - loss: 0.2030 - acc: 0.92 - ETA: 48s - loss: 0.2038 - acc: 0.92 - ETA: 48s - loss: 0.2028 - acc: 0.92 - ETA: 48s - loss: 0.2058 - acc: 0.92 - ETA: 48s - loss: 0.2038 - acc: 0.92 - ETA: 48s - loss: 0.1988 - acc: 0.92 - ETA: 47s - loss: 0.2037 - acc: 0.92 - ETA: 47s - loss: 0.2005 - acc: 0.92 - ETA: 47s - loss: 0.1966 - acc: 0.93 - ETA: 47s - loss: 0.1930 - acc: 0.93 - ETA: 47s - loss: 0.1916 - acc: 0.93 - ETA: 47s - loss: 0.1887 - acc: 0.93 - ETA: 47s - loss: 0.1923 - acc: 0.93 - ETA: 47s - loss: 0.1917 - acc: 0.93 - ETA: 47s - loss: 0.1945 - acc: 0.93 - ETA: 47s - loss: 0.1929 - acc: 0.93 - ETA: 47s - loss: 0.1994 - acc: 0.92 - ETA: 47s - loss: 0.1947 - acc: 0.92 - ETA: 47s - loss: 0.1942 - acc: 0.92 - ETA: 47s - loss: 0.1959 - acc: 0.92 - ETA: 47s - loss: 0.1935 - acc: 0.92 - ETA: 47s - loss: 0.1909 - acc: 0.93 - ETA: 47s - loss: 0.1870 - acc: 0.93 - ETA: 47s - loss: 0.1860 - acc: 0.93 - ETA: 47s - loss: 0.1865 - acc: 0.93 - ETA: 47s - loss: 0.1865 - acc: 0.93 - ETA: 46s - loss: 0.1832 - acc: 0.93 - ETA: 46s - loss: 0.1807 - acc: 0.93 - ETA: 46s - loss: 0.1782 - acc: 0.93 - ETA: 46s - loss: 0.1791 - acc: 0.93 - ETA: 46s - loss: 0.1809 - acc: 0.93 - ETA: 46s - loss: 0.1813 - acc: 0.93 - ETA: 46s - loss: 0.1830 - acc: 0.93 - ETA: 46s - loss: 0.1806 - acc: 0.93 - ETA: 46s - loss: 0.1782 - acc: 0.93 - ETA: 46s - loss: 0.1795 - acc: 0.93 - ETA: 46s - loss: 0.1847 - acc: 0.93 - ETA: 46s - loss: 0.1860 - acc: 0.93 - ETA: 46s - loss: 0.1855 - acc: 0.93 - ETA: 46s - loss: 0.1867 - acc: 0.93 - ETA: 46s - loss: 0.1860 - acc: 0.93 - ETA: 45s - loss: 0.1843 - acc: 0.93 - ETA: 45s - loss: 0.1819 - acc: 0.93 - ETA: 45s - loss: 0.1847 - acc: 0.93 - ETA: 45s - loss: 0.1844 - acc: 0.93 - ETA: 45s - loss: 0.1832 - acc: 0.93 - ETA: 45s - loss: 0.1840 - acc: 0.93 - ETA: 45s - loss: 0.1844 - acc: 0.93 - ETA: 45s - loss: 0.1851 - acc: 0.93 - ETA: 45s - loss: 0.1859 - acc: 0.93 - ETA: 45s - loss: 0.1842 - acc: 0.93 - ETA: 45s - loss: 0.1856 - acc: 0.93 - ETA: 45s - loss: 0.1837 - acc: 0.93 - ETA: 45s - loss: 0.1836 - acc: 0.93 - ETA: 45s - loss: 0.1845 - acc: 0.93 - ETA: 45s - loss: 0.1827 - acc: 0.93 - ETA: 45s - loss: 0.1814 - acc: 0.93 - ETA: 45s - loss: 0.1809 - acc: 0.93 - ETA: 45s - loss: 0.1820 - acc: 0.93 - ETA: 45s - loss: 0.1804 - acc: 0.93 - ETA: 45s - loss: 0.1796 - acc: 0.93 - ETA: 45s - loss: 0.1792 - acc: 0.93 - ETA: 45s - loss: 0.1779 - acc: 0.93 - ETA: 45s - loss: 0.1783 - acc: 0.93 - ETA: 45s - loss: 0.1772 - acc: 0.93 - ETA: 45s - loss: 0.1759 - acc: 0.93 - ETA: 44s - loss: 0.1761 - acc: 0.93 - ETA: 44s - loss: 0.1754 - acc: 0.93 - ETA: 44s - loss: 0.1765 - acc: 0.93 - ETA: 44s - loss: 0.1769 - acc: 0.93 - ETA: 44s - loss: 0.1784 - acc: 0.93 - ETA: 44s - loss: 0.1781 - acc: 0.93 - ETA: 44s - loss: 0.1780 - acc: 0.93 - ETA: 44s - loss: 0.1765 - acc: 0.93 - ETA: 44s - loss: 0.1788 - acc: 0.93 - ETA: 44s - loss: 0.1790 - acc: 0.93 - ETA: 44s - loss: 0.1783 - acc: 0.93 - ETA: 44s - loss: 0.1773 - acc: 0.93 - ETA: 44s - loss: 0.1770 - acc: 0.93 - ETA: 44s - loss: 0.1780 - acc: 0.93 - ETA: 44s - loss: 0.1802 - acc: 0.93 - ETA: 43s - loss: 0.1796 - acc: 0.93 - ETA: 43s - loss: 0.1788 - acc: 0.93 - ETA: 43s - loss: 0.1781 - acc: 0.93 - ETA: 43s - loss: 0.1772 - acc: 0.93 - ETA: 43s - loss: 0.1788 - acc: 0.93 - ETA: 43s - loss: 0.1785 - acc: 0.93 - ETA: 43s - loss: 0.1793 - acc: 0.93 - ETA: 43s - loss: 0.1819 - acc: 0.93 - ETA: 43s - loss: 0.1815 - acc: 0.93 - ETA: 43s - loss: 0.1842 - acc: 0.93 - ETA: 43s - loss: 0.1835 - acc: 0.93 - ETA: 43s - loss: 0.1848 - acc: 0.93 - ETA: 43s - loss: 0.1844 - acc: 0.93 - ETA: 43s - loss: 0.1836 - acc: 0.93 - ETA: 43s - loss: 0.1867 - acc: 0.93 - ETA: 42s - loss: 0.1863 - acc: 0.93 - ETA: 42s - loss: 0.1880 - acc: 0.93 - ETA: 42s - loss: 0.1887 - acc: 0.93 - ETA: 42s - loss: 0.1893 - acc: 0.93 - ETA: 42s - loss: 0.1882 - acc: 0.93 - ETA: 42s - loss: 0.1879 - acc: 0.93 - ETA: 42s - loss: 0.1895 - acc: 0.93 - ETA: 42s - loss: 0.1921 - acc: 0.93 - ETA: 42s - loss: 0.1932 - acc: 0.92 - ETA: 42s - loss: 0.1923 - acc: 0.92 - ETA: 42s - loss: 0.1933 - acc: 0.92 - ETA: 42s - loss: 0.1935 - acc: 0.92 - ETA: 42s - loss: 0.1958 - acc: 0.92 - ETA: 42s - loss: 0.1963 - acc: 0.92 - ETA: 42s - loss: 0.1973 - acc: 0.92 - ETA: 42s - loss: 0.1971 - acc: 0.92 - ETA: 42s - loss: 0.1983 - acc: 0.92 - ETA: 41s - loss: 0.1984 - acc: 0.92 - ETA: 41s - loss: 0.1988 - acc: 0.92 - ETA: 41s - loss: 0.1988 - acc: 0.92 - ETA: 41s - loss: 0.1986 - acc: 0.92 - ETA: 41s - loss: 0.1987 - acc: 0.92 - ETA: 41s - loss: 0.1984 - acc: 0.92 - ETA: 41s - loss: 0.1997 - acc: 0.92 - ETA: 41s - loss: 0.1995 - acc: 0.92 - ETA: 41s - loss: 0.1995 - acc: 0.92 - ETA: 41s - loss: 0.2005 - acc: 0.92 - ETA: 41s - loss: 0.2004 - acc: 0.92 - ETA: 41s - loss: 0.2012 - acc: 0.92 - ETA: 41s - loss: 0.2012 - acc: 0.92 - ETA: 41s - loss: 0.2000 - acc: 0.92 - ETA: 41s - loss: 0.1989 - acc: 0.92 - ETA: 41s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1986 - acc: 0.92 - ETA: 40s - loss: 0.1980 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1972 - acc: 0.92 - ETA: 40s - loss: 0.1976 - acc: 0.92 - ETA: 40s - loss: 0.1976 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1990 - acc: 0.92 - ETA: 40s - loss: 0.1989 - acc: 0.92 - ETA: 40s - loss: 0.1989 - acc: 0.92 - ETA: 40s - loss: 0.1985 - acc: 0.92 - ETA: 40s - loss: 0.1980 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1975 - acc: 0.92 - ETA: 39s - loss: 0.1980 - acc: 0.92 - ETA: 39s - loss: 0.1974 - acc: 0.92 - ETA: 39s - loss: 0.1985 - acc: 0.92 - ETA: 39s - loss: 0.1981 - acc: 0.92 - ETA: 39s - loss: 0.1980 - acc: 0.92 - ETA: 39s - loss: 0.1975 - acc: 0.92 - ETA: 39s - loss: 0.1968 - acc: 0.93 - ETA: 39s - loss: 0.1965 - acc: 0.93 - ETA: 39s - loss: 0.1959 - acc: 0.93 - ETA: 39s - loss: 0.1953 - acc: 0.93 - ETA: 39s - loss: 0.1965 - acc: 0.93 - ETA: 39s - loss: 0.1964 - acc: 0.93 - ETA: 39s - loss: 0.1960 - acc: 0.93 - ETA: 39s - loss: 0.1960 - acc: 0.93 - ETA: 38s - loss: 0.1953 - acc: 0.93 - ETA: 38s - loss: 0.1956 - acc: 0.93 - ETA: 38s - loss: 0.1952 - acc: 0.93 - ETA: 38s - loss: 0.1955 - acc: 0.93 - ETA: 38s - loss: 0.1950 - acc: 0.93 - ETA: 38s - loss: 0.1951 - acc: 0.93 - ETA: 38s - loss: 0.1953 - acc: 0.93 - ETA: 38s - loss: 0.1958 - acc: 0.93 - ETA: 38s - loss: 0.1956 - acc: 0.93 - ETA: 38s - loss: 0.1956 - acc: 0.93 - ETA: 38s - loss: 0.1952 - acc: 0.93 - ETA: 38s - loss: 0.1946 - acc: 0.93 - ETA: 38s - loss: 0.1943 - acc: 0.93 - ETA: 38s - loss: 0.1938 - acc: 0.93 - ETA: 38s - loss: 0.1950 - acc: 0.93 - ETA: 38s - loss: 0.1950 - acc: 0.93 - ETA: 37s - loss: 0.1953 - acc: 0.93 - ETA: 37s - loss: 0.1947 - acc: 0.93 - ETA: 37s - loss: 0.1942 - acc: 0.93 - ETA: 37s - loss: 0.1944 - acc: 0.93 - ETA: 37s - loss: 0.1951 - acc: 0.93 - ETA: 37s - loss: 0.1949 - acc: 0.93 - ETA: 37s - loss: 0.1942 - acc: 0.93 - ETA: 37s - loss: 0.1946 - acc: 0.93 - ETA: 37s - loss: 0.1939 - acc: 0.93 - ETA: 37s - loss: 0.1937 - acc: 0.93 - ETA: 37s - loss: 0.1936 - acc: 0.93 - ETA: 37s - loss: 0.1937 - acc: 0.93 - ETA: 37s - loss: 0.1944 - acc: 0.93 - ETA: 37s - loss: 0.1948 - acc: 0.93 - ETA: 36s - loss: 0.1942 - acc: 0.93 - ETA: 36s - loss: 0.1940 - acc: 0.93 - ETA: 36s - loss: 0.1941 - acc: 0.93 - ETA: 36s - loss: 0.1945 - acc: 0.93 - ETA: 36s - loss: 0.1949 - acc: 0.93 - ETA: 36s - loss: 0.1952 - acc: 0.93 - ETA: 36s - loss: 0.1950 - acc: 0.9312" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.1944 - acc: 0.93 - ETA: 36s - loss: 0.1943 - acc: 0.93 - ETA: 36s - loss: 0.1944 - acc: 0.93 - ETA: 36s - loss: 0.1956 - acc: 0.93 - ETA: 36s - loss: 0.1962 - acc: 0.93 - ETA: 36s - loss: 0.1956 - acc: 0.93 - ETA: 36s - loss: 0.1959 - acc: 0.93 - ETA: 36s - loss: 0.1970 - acc: 0.93 - ETA: 36s - loss: 0.1963 - acc: 0.93 - ETA: 35s - loss: 0.1956 - acc: 0.93 - ETA: 35s - loss: 0.1959 - acc: 0.93 - ETA: 35s - loss: 0.1960 - acc: 0.93 - ETA: 35s - loss: 0.1959 - acc: 0.93 - ETA: 35s - loss: 0.1960 - acc: 0.93 - ETA: 35s - loss: 0.1964 - acc: 0.93 - ETA: 35s - loss: 0.1973 - acc: 0.93 - ETA: 35s - loss: 0.1974 - acc: 0.93 - ETA: 35s - loss: 0.1984 - acc: 0.92 - ETA: 35s - loss: 0.1979 - acc: 0.93 - ETA: 35s - loss: 0.1976 - acc: 0.93 - ETA: 35s - loss: 0.1973 - acc: 0.93 - ETA: 35s - loss: 0.1970 - acc: 0.93 - ETA: 35s - loss: 0.1972 - acc: 0.93 - ETA: 35s - loss: 0.1974 - acc: 0.93 - ETA: 34s - loss: 0.1987 - acc: 0.93 - ETA: 34s - loss: 0.1996 - acc: 0.92 - ETA: 34s - loss: 0.1992 - acc: 0.93 - ETA: 34s - loss: 0.1992 - acc: 0.92 - ETA: 34s - loss: 0.1994 - acc: 0.93 - ETA: 34s - loss: 0.1994 - acc: 0.93 - ETA: 34s - loss: 0.2006 - acc: 0.92 - ETA: 34s - loss: 0.2001 - acc: 0.92 - ETA: 34s - loss: 0.1998 - acc: 0.92 - ETA: 34s - loss: 0.1998 - acc: 0.92 - ETA: 34s - loss: 0.2003 - acc: 0.92 - ETA: 34s - loss: 0.2004 - acc: 0.92 - ETA: 34s - loss: 0.2010 - acc: 0.92 - ETA: 34s - loss: 0.2015 - acc: 0.92 - ETA: 34s - loss: 0.2018 - acc: 0.92 - ETA: 33s - loss: 0.2017 - acc: 0.92 - ETA: 33s - loss: 0.2025 - acc: 0.92 - ETA: 33s - loss: 0.2019 - acc: 0.92 - ETA: 33s - loss: 0.2020 - acc: 0.92 - ETA: 33s - loss: 0.2017 - acc: 0.92 - ETA: 33s - loss: 0.2017 - acc: 0.92 - ETA: 33s - loss: 0.2023 - acc: 0.92 - ETA: 33s - loss: 0.2026 - acc: 0.92 - ETA: 33s - loss: 0.2028 - acc: 0.92 - ETA: 33s - loss: 0.2025 - acc: 0.92 - ETA: 33s - loss: 0.2032 - acc: 0.92 - ETA: 33s - loss: 0.2035 - acc: 0.92 - ETA: 33s - loss: 0.2031 - acc: 0.92 - ETA: 33s - loss: 0.2025 - acc: 0.92 - ETA: 33s - loss: 0.2022 - acc: 0.92 - ETA: 33s - loss: 0.2023 - acc: 0.93 - ETA: 33s - loss: 0.2023 - acc: 0.92 - ETA: 32s - loss: 0.2018 - acc: 0.92 - ETA: 32s - loss: 0.2017 - acc: 0.92 - ETA: 32s - loss: 0.2018 - acc: 0.92 - ETA: 32s - loss: 0.2015 - acc: 0.93 - ETA: 32s - loss: 0.2012 - acc: 0.93 - ETA: 32s - loss: 0.2009 - acc: 0.93 - ETA: 32s - loss: 0.2014 - acc: 0.93 - ETA: 32s - loss: 0.2016 - acc: 0.93 - ETA: 32s - loss: 0.2021 - acc: 0.92 - ETA: 32s - loss: 0.2025 - acc: 0.92 - ETA: 32s - loss: 0.2025 - acc: 0.92 - ETA: 32s - loss: 0.2031 - acc: 0.92 - ETA: 32s - loss: 0.2038 - acc: 0.92 - ETA: 32s - loss: 0.2034 - acc: 0.92 - ETA: 32s - loss: 0.2037 - acc: 0.92 - ETA: 32s - loss: 0.2040 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2042 - acc: 0.92 - ETA: 31s - loss: 0.2040 - acc: 0.92 - ETA: 31s - loss: 0.2036 - acc: 0.92 - ETA: 31s - loss: 0.2043 - acc: 0.92 - ETA: 31s - loss: 0.2045 - acc: 0.92 - ETA: 31s - loss: 0.2043 - acc: 0.92 - ETA: 31s - loss: 0.2042 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2042 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2045 - acc: 0.92 - ETA: 31s - loss: 0.2051 - acc: 0.92 - ETA: 31s - loss: 0.2056 - acc: 0.92 - ETA: 31s - loss: 0.2058 - acc: 0.92 - ETA: 30s - loss: 0.2057 - acc: 0.92 - ETA: 30s - loss: 0.2064 - acc: 0.92 - ETA: 30s - loss: 0.2059 - acc: 0.92 - ETA: 30s - loss: 0.2060 - acc: 0.92 - ETA: 30s - loss: 0.2062 - acc: 0.92 - ETA: 30s - loss: 0.2059 - acc: 0.92 - ETA: 30s - loss: 0.2058 - acc: 0.92 - ETA: 30s - loss: 0.2057 - acc: 0.92 - ETA: 30s - loss: 0.2053 - acc: 0.92 - ETA: 30s - loss: 0.2053 - acc: 0.92 - ETA: 30s - loss: 0.2048 - acc: 0.92 - ETA: 30s - loss: 0.2066 - acc: 0.92 - ETA: 30s - loss: 0.2061 - acc: 0.92 - ETA: 30s - loss: 0.2059 - acc: 0.92 - ETA: 30s - loss: 0.2056 - acc: 0.92 - ETA: 30s - loss: 0.2055 - acc: 0.92 - ETA: 30s - loss: 0.2060 - acc: 0.92 - ETA: 29s - loss: 0.2059 - acc: 0.92 - ETA: 29s - loss: 0.2066 - acc: 0.92 - ETA: 29s - loss: 0.2074 - acc: 0.92 - ETA: 29s - loss: 0.2073 - acc: 0.92 - ETA: 29s - loss: 0.2079 - acc: 0.92 - ETA: 29s - loss: 0.2077 - acc: 0.92 - ETA: 29s - loss: 0.2079 - acc: 0.92 - ETA: 29s - loss: 0.2081 - acc: 0.92 - ETA: 29s - loss: 0.2082 - acc: 0.92 - ETA: 29s - loss: 0.2088 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2093 - acc: 0.92 - ETA: 29s - loss: 0.2088 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2092 - acc: 0.92 - ETA: 28s - loss: 0.2096 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2101 - acc: 0.92 - ETA: 28s - loss: 0.2101 - acc: 0.92 - ETA: 28s - loss: 0.2100 - acc: 0.92 - ETA: 28s - loss: 0.2100 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2097 - acc: 0.92 - ETA: 28s - loss: 0.2100 - acc: 0.92 - ETA: 28s - loss: 0.2097 - acc: 0.92 - ETA: 28s - loss: 0.2097 - acc: 0.92 - ETA: 27s - loss: 0.2093 - acc: 0.92 - ETA: 27s - loss: 0.2093 - acc: 0.92 - ETA: 27s - loss: 0.2090 - acc: 0.92 - ETA: 27s - loss: 0.2089 - acc: 0.92 - ETA: 27s - loss: 0.2090 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2087 - acc: 0.92 - ETA: 27s - loss: 0.2084 - acc: 0.92 - ETA: 27s - loss: 0.2080 - acc: 0.92 - ETA: 27s - loss: 0.2078 - acc: 0.92 - ETA: 27s - loss: 0.2077 - acc: 0.92 - ETA: 26s - loss: 0.2076 - acc: 0.92 - ETA: 26s - loss: 0.2073 - acc: 0.92 - ETA: 26s - loss: 0.2075 - acc: 0.92 - ETA: 26s - loss: 0.2078 - acc: 0.92 - ETA: 26s - loss: 0.2077 - acc: 0.92 - ETA: 26s - loss: 0.2074 - acc: 0.92 - ETA: 26s - loss: 0.2074 - acc: 0.92 - ETA: 26s - loss: 0.2080 - acc: 0.92 - ETA: 26s - loss: 0.2083 - acc: 0.92 - ETA: 26s - loss: 0.2083 - acc: 0.92 - ETA: 26s - loss: 0.2090 - acc: 0.92 - ETA: 26s - loss: 0.2090 - acc: 0.92 - ETA: 26s - loss: 0.2089 - acc: 0.92 - ETA: 26s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2081 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2087 - acc: 0.92 - ETA: 25s - loss: 0.2086 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2087 - acc: 0.92 - ETA: 25s - loss: 0.2087 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2084 - acc: 0.92 - ETA: 25s - loss: 0.2082 - acc: 0.92 - ETA: 25s - loss: 0.2083 - acc: 0.92 - ETA: 25s - loss: 0.2081 - acc: 0.92 - ETA: 24s - loss: 0.2078 - acc: 0.92 - ETA: 24s - loss: 0.2077 - acc: 0.92 - ETA: 24s - loss: 0.2076 - acc: 0.92 - ETA: 24s - loss: 0.2080 - acc: 0.92 - ETA: 24s - loss: 0.2086 - acc: 0.92 - ETA: 24s - loss: 0.2084 - acc: 0.92 - ETA: 24s - loss: 0.2083 - acc: 0.92 - ETA: 24s - loss: 0.2080 - acc: 0.92 - ETA: 24s - loss: 0.2080 - acc: 0.92 - ETA: 24s - loss: 0.2078 - acc: 0.92 - ETA: 24s - loss: 0.2074 - acc: 0.92 - ETA: 24s - loss: 0.2072 - acc: 0.92 - ETA: 24s - loss: 0.2073 - acc: 0.92 - ETA: 23s - loss: 0.2069 - acc: 0.92 - ETA: 23s - loss: 0.2069 - acc: 0.92 - ETA: 23s - loss: 0.2066 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2064 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2070 - acc: 0.92 - ETA: 23s - loss: 0.2069 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2062 - acc: 0.92 - ETA: 23s - loss: 0.2060 - acc: 0.92 - ETA: 23s - loss: 0.2060 - acc: 0.92 - ETA: 22s - loss: 0.2057 - acc: 0.92 - ETA: 22s - loss: 0.2055 - acc: 0.92 - ETA: 22s - loss: 0.2054 - acc: 0.92 - ETA: 22s - loss: 0.2052 - acc: 0.92 - ETA: 22s - loss: 0.2058 - acc: 0.92 - ETA: 22s - loss: 0.2063 - acc: 0.92 - ETA: 22s - loss: 0.2062 - acc: 0.92 - ETA: 22s - loss: 0.2060 - acc: 0.92 - ETA: 22s - loss: 0.2056 - acc: 0.92 - ETA: 22s - loss: 0.2058 - acc: 0.92 - ETA: 22s - loss: 0.2055 - acc: 0.9265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.2052 - acc: 0.92 - ETA: 22s - loss: 0.2051 - acc: 0.92 - ETA: 22s - loss: 0.2048 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2042 - acc: 0.92 - ETA: 21s - loss: 0.2040 - acc: 0.92 - ETA: 21s - loss: 0.2037 - acc: 0.92 - ETA: 21s - loss: 0.2046 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2041 - acc: 0.92 - ETA: 21s - loss: 0.2040 - acc: 0.92 - ETA: 21s - loss: 0.2045 - acc: 0.92 - ETA: 21s - loss: 0.2049 - acc: 0.92 - ETA: 21s - loss: 0.2049 - acc: 0.92 - ETA: 21s - loss: 0.2052 - acc: 0.92 - ETA: 20s - loss: 0.2055 - acc: 0.92 - ETA: 20s - loss: 0.2053 - acc: 0.92 - ETA: 20s - loss: 0.2050 - acc: 0.92 - ETA: 20s - loss: 0.2049 - acc: 0.92 - ETA: 20s - loss: 0.2046 - acc: 0.92 - ETA: 20s - loss: 0.2052 - acc: 0.92 - ETA: 20s - loss: 0.2053 - acc: 0.92 - ETA: 20s - loss: 0.2052 - acc: 0.92 - ETA: 20s - loss: 0.2053 - acc: 0.92 - ETA: 20s - loss: 0.2054 - acc: 0.92 - ETA: 20s - loss: 0.2051 - acc: 0.92 - ETA: 20s - loss: 0.2051 - acc: 0.92 - ETA: 20s - loss: 0.2051 - acc: 0.92 - ETA: 20s - loss: 0.2049 - acc: 0.92 - ETA: 20s - loss: 0.2048 - acc: 0.92 - ETA: 20s - loss: 0.2049 - acc: 0.92 - ETA: 19s - loss: 0.2046 - acc: 0.92 - ETA: 19s - loss: 0.2047 - acc: 0.92 - ETA: 19s - loss: 0.2047 - acc: 0.92 - ETA: 19s - loss: 0.2045 - acc: 0.92 - ETA: 19s - loss: 0.2041 - acc: 0.92 - ETA: 19s - loss: 0.2040 - acc: 0.92 - ETA: 19s - loss: 0.2041 - acc: 0.92 - ETA: 19s - loss: 0.2041 - acc: 0.92 - ETA: 19s - loss: 0.2040 - acc: 0.92 - ETA: 19s - loss: 0.2042 - acc: 0.92 - ETA: 19s - loss: 0.2042 - acc: 0.92 - ETA: 19s - loss: 0.2039 - acc: 0.92 - ETA: 19s - loss: 0.2037 - acc: 0.92 - ETA: 18s - loss: 0.2034 - acc: 0.92 - ETA: 18s - loss: 0.2037 - acc: 0.92 - ETA: 18s - loss: 0.2040 - acc: 0.92 - ETA: 18s - loss: 0.2040 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2040 - acc: 0.92 - ETA: 18s - loss: 0.2044 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2045 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2045 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2041 - acc: 0.92 - ETA: 18s - loss: 0.2041 - acc: 0.92 - ETA: 17s - loss: 0.2039 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2040 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2038 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2035 - acc: 0.92 - ETA: 17s - loss: 0.2036 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2039 - acc: 0.92 - ETA: 17s - loss: 0.2040 - acc: 0.92 - ETA: 17s - loss: 0.2040 - acc: 0.92 - ETA: 16s - loss: 0.2038 - acc: 0.92 - ETA: 16s - loss: 0.2038 - acc: 0.92 - ETA: 16s - loss: 0.2036 - acc: 0.92 - ETA: 16s - loss: 0.2037 - acc: 0.92 - ETA: 16s - loss: 0.2035 - acc: 0.92 - ETA: 16s - loss: 0.2032 - acc: 0.92 - ETA: 16s - loss: 0.2039 - acc: 0.92 - ETA: 16s - loss: 0.2038 - acc: 0.92 - ETA: 16s - loss: 0.2036 - acc: 0.92 - ETA: 16s - loss: 0.2034 - acc: 0.92 - ETA: 16s - loss: 0.2032 - acc: 0.92 - ETA: 16s - loss: 0.2033 - acc: 0.92 - ETA: 16s - loss: 0.2031 - acc: 0.92 - ETA: 16s - loss: 0.2029 - acc: 0.92 - ETA: 15s - loss: 0.2029 - acc: 0.92 - ETA: 15s - loss: 0.2026 - acc: 0.92 - ETA: 15s - loss: 0.2023 - acc: 0.92 - ETA: 15s - loss: 0.2021 - acc: 0.92 - ETA: 15s - loss: 0.2021 - acc: 0.92 - ETA: 15s - loss: 0.2018 - acc: 0.92 - ETA: 15s - loss: 0.2018 - acc: 0.92 - ETA: 15s - loss: 0.2019 - acc: 0.92 - ETA: 15s - loss: 0.2017 - acc: 0.92 - ETA: 15s - loss: 0.2016 - acc: 0.92 - ETA: 15s - loss: 0.2013 - acc: 0.92 - ETA: 15s - loss: 0.2014 - acc: 0.92 - ETA: 15s - loss: 0.2012 - acc: 0.92 - ETA: 15s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2017 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2014 - acc: 0.92 - ETA: 14s - loss: 0.2017 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2014 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2017 - acc: 0.92 - ETA: 14s - loss: 0.2019 - acc: 0.92 - ETA: 13s - loss: 0.2017 - acc: 0.92 - ETA: 13s - loss: 0.2014 - acc: 0.92 - ETA: 13s - loss: 0.2013 - acc: 0.92 - ETA: 13s - loss: 0.2010 - acc: 0.92 - ETA: 13s - loss: 0.2009 - acc: 0.92 - ETA: 13s - loss: 0.2008 - acc: 0.92 - ETA: 13s - loss: 0.2013 - acc: 0.92 - ETA: 13s - loss: 0.2011 - acc: 0.92 - ETA: 13s - loss: 0.2011 - acc: 0.92 - ETA: 13s - loss: 0.2011 - acc: 0.92 - ETA: 13s - loss: 0.2013 - acc: 0.92 - ETA: 13s - loss: 0.2015 - acc: 0.92 - ETA: 13s - loss: 0.2016 - acc: 0.92 - ETA: 12s - loss: 0.2015 - acc: 0.92 - ETA: 12s - loss: 0.2013 - acc: 0.92 - ETA: 12s - loss: 0.2013 - acc: 0.92 - ETA: 12s - loss: 0.2010 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2010 - acc: 0.92 - ETA: 12s - loss: 0.2011 - acc: 0.92 - ETA: 12s - loss: 0.2009 - acc: 0.92 - ETA: 12s - loss: 0.2009 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2014 - acc: 0.92 - ETA: 12s - loss: 0.2013 - acc: 0.92 - ETA: 11s - loss: 0.2011 - acc: 0.92 - ETA: 11s - loss: 0.2012 - acc: 0.92 - ETA: 11s - loss: 0.2012 - acc: 0.92 - ETA: 11s - loss: 0.2012 - acc: 0.92 - ETA: 11s - loss: 0.2010 - acc: 0.92 - ETA: 11s - loss: 0.2008 - acc: 0.92 - ETA: 11s - loss: 0.2013 - acc: 0.92 - ETA: 11s - loss: 0.2013 - acc: 0.92 - ETA: 11s - loss: 0.2010 - acc: 0.92 - ETA: 11s - loss: 0.2008 - acc: 0.92 - ETA: 11s - loss: 0.2009 - acc: 0.92 - ETA: 11s - loss: 0.2009 - acc: 0.92 - ETA: 11s - loss: 0.2008 - acc: 0.92 - ETA: 11s - loss: 0.2005 - acc: 0.92 - ETA: 11s - loss: 0.2003 - acc: 0.92 - ETA: 10s - loss: 0.2001 - acc: 0.92 - ETA: 10s - loss: 0.1999 - acc: 0.92 - ETA: 10s - loss: 0.1998 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1995 - acc: 0.92 - ETA: 10s - loss: 0.1993 - acc: 0.92 - ETA: 10s - loss: 0.1993 - acc: 0.92 - ETA: 10s - loss: 0.1995 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1996 - acc: 0.92 - ETA: 10s - loss: 0.1993 - acc: 0.92 - ETA: 10s - loss: 0.1992 - acc: 0.92 - ETA: 9s - loss: 0.1996 - acc: 0.9285 - ETA: 9s - loss: 0.2000 - acc: 0.928 - ETA: 9s - loss: 0.1999 - acc: 0.928 - ETA: 9s - loss: 0.1997 - acc: 0.928 - ETA: 9s - loss: 0.1996 - acc: 0.928 - ETA: 9s - loss: 0.2002 - acc: 0.928 - ETA: 9s - loss: 0.2002 - acc: 0.928 - ETA: 9s - loss: 0.2001 - acc: 0.928 - ETA: 9s - loss: 0.1999 - acc: 0.928 - ETA: 9s - loss: 0.2000 - acc: 0.928 - ETA: 9s - loss: 0.1998 - acc: 0.928 - ETA: 9s - loss: 0.1997 - acc: 0.928 - ETA: 9s - loss: 0.1996 - acc: 0.928 - ETA: 9s - loss: 0.2000 - acc: 0.928 - ETA: 8s - loss: 0.2002 - acc: 0.928 - ETA: 8s - loss: 0.2002 - acc: 0.928 - ETA: 8s - loss: 0.2000 - acc: 0.928 - ETA: 8s - loss: 0.1998 - acc: 0.928 - ETA: 8s - loss: 0.1998 - acc: 0.928 - ETA: 8s - loss: 0.1999 - acc: 0.928 - ETA: 8s - loss: 0.1996 - acc: 0.928 - ETA: 8s - loss: 0.1998 - acc: 0.928 - ETA: 8s - loss: 0.1997 - acc: 0.928 - ETA: 8s - loss: 0.1997 - acc: 0.928 - ETA: 8s - loss: 0.1997 - acc: 0.928 - ETA: 8s - loss: 0.1995 - acc: 0.928 - ETA: 8s - loss: 0.1993 - acc: 0.928 - ETA: 8s - loss: 0.1993 - acc: 0.928 - ETA: 7s - loss: 0.1996 - acc: 0.928 - ETA: 7s - loss: 0.1994 - acc: 0.928 - ETA: 7s - loss: 0.1995 - acc: 0.928 - ETA: 7s - loss: 0.1994 - acc: 0.928 - ETA: 7s - loss: 0.1992 - acc: 0.928 - ETA: 7s - loss: 0.1990 - acc: 0.928 - ETA: 7s - loss: 0.1988 - acc: 0.928 - ETA: 7s - loss: 0.1991 - acc: 0.928 - ETA: 7s - loss: 0.1989 - acc: 0.928 - ETA: 7s - loss: 0.1988 - acc: 0.928 - ETA: 7s - loss: 0.1992 - acc: 0.928 - ETA: 7s - loss: 0.1993 - acc: 0.928 - ETA: 7s - loss: 0.1996 - acc: 0.928 - ETA: 7s - loss: 0.1993 - acc: 0.928 - ETA: 6s - loss: 0.1994 - acc: 0.9286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1994 - acc: 0.928 - ETA: 6s - loss: 0.1996 - acc: 0.928 - ETA: 6s - loss: 0.1995 - acc: 0.928 - ETA: 6s - loss: 0.1996 - acc: 0.928 - ETA: 6s - loss: 0.1995 - acc: 0.928 - ETA: 6s - loss: 0.1993 - acc: 0.928 - ETA: 6s - loss: 0.1991 - acc: 0.928 - ETA: 6s - loss: 0.1993 - acc: 0.928 - ETA: 6s - loss: 0.1995 - acc: 0.928 - ETA: 6s - loss: 0.1992 - acc: 0.928 - ETA: 6s - loss: 0.1992 - acc: 0.928 - ETA: 6s - loss: 0.1991 - acc: 0.928 - ETA: 6s - loss: 0.1988 - acc: 0.928 - ETA: 5s - loss: 0.1989 - acc: 0.928 - ETA: 5s - loss: 0.1990 - acc: 0.928 - ETA: 5s - loss: 0.1991 - acc: 0.928 - ETA: 5s - loss: 0.1988 - acc: 0.928 - ETA: 5s - loss: 0.1987 - acc: 0.928 - ETA: 5s - loss: 0.1986 - acc: 0.928 - ETA: 5s - loss: 0.1984 - acc: 0.928 - ETA: 5s - loss: 0.1982 - acc: 0.929 - ETA: 5s - loss: 0.1983 - acc: 0.929 - ETA: 5s - loss: 0.1981 - acc: 0.929 - ETA: 5s - loss: 0.1979 - acc: 0.929 - ETA: 5s - loss: 0.1977 - acc: 0.929 - ETA: 5s - loss: 0.1980 - acc: 0.929 - ETA: 5s - loss: 0.1978 - acc: 0.929 - ETA: 4s - loss: 0.1977 - acc: 0.929 - ETA: 4s - loss: 0.1977 - acc: 0.929 - ETA: 4s - loss: 0.1975 - acc: 0.929 - ETA: 4s - loss: 0.1973 - acc: 0.929 - ETA: 4s - loss: 0.1973 - acc: 0.929 - ETA: 4s - loss: 0.1973 - acc: 0.929 - ETA: 4s - loss: 0.1972 - acc: 0.929 - ETA: 4s - loss: 0.1971 - acc: 0.929 - ETA: 4s - loss: 0.1969 - acc: 0.929 - ETA: 4s - loss: 0.1968 - acc: 0.929 - ETA: 4s - loss: 0.1967 - acc: 0.929 - ETA: 4s - loss: 0.1966 - acc: 0.929 - ETA: 4s - loss: 0.1966 - acc: 0.929 - ETA: 4s - loss: 0.1967 - acc: 0.929 - ETA: 3s - loss: 0.1966 - acc: 0.929 - ETA: 3s - loss: 0.1964 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1964 - acc: 0.929 - ETA: 3s - loss: 0.1964 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1961 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1960 - acc: 0.930 - ETA: 3s - loss: 0.1961 - acc: 0.930 - ETA: 3s - loss: 0.1964 - acc: 0.930 - ETA: 3s - loss: 0.1965 - acc: 0.930 - ETA: 2s - loss: 0.1966 - acc: 0.929 - ETA: 2s - loss: 0.1966 - acc: 0.929 - ETA: 2s - loss: 0.1967 - acc: 0.929 - ETA: 2s - loss: 0.1967 - acc: 0.929 - ETA: 2s - loss: 0.1965 - acc: 0.929 - ETA: 2s - loss: 0.1963 - acc: 0.929 - ETA: 2s - loss: 0.1963 - acc: 0.929 - ETA: 2s - loss: 0.1963 - acc: 0.930 - ETA: 2s - loss: 0.1968 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 2s - loss: 0.1969 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 1s - loss: 0.1971 - acc: 0.929 - ETA: 1s - loss: 0.1974 - acc: 0.929 - ETA: 1s - loss: 0.1976 - acc: 0.929 - ETA: 1s - loss: 0.1978 - acc: 0.929 - ETA: 1s - loss: 0.1977 - acc: 0.929 - ETA: 1s - loss: 0.1979 - acc: 0.929 - ETA: 1s - loss: 0.1979 - acc: 0.929 - ETA: 1s - loss: 0.1979 - acc: 0.929 - ETA: 1s - loss: 0.1982 - acc: 0.929 - ETA: 1s - loss: 0.1982 - acc: 0.929 - ETA: 1s - loss: 0.1983 - acc: 0.929 - ETA: 1s - loss: 0.1981 - acc: 0.929 - ETA: 1s - loss: 0.1985 - acc: 0.929 - ETA: 1s - loss: 0.1985 - acc: 0.929 - ETA: 0s - loss: 0.1989 - acc: 0.929 - ETA: 0s - loss: 0.1991 - acc: 0.929 - ETA: 0s - loss: 0.1994 - acc: 0.929 - ETA: 0s - loss: 0.1994 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1995 - acc: 0.929 - ETA: 0s - loss: 0.1994 - acc: 0.929 - ETA: 0s - loss: 0.1996 - acc: 0.929 - ETA: 0s - loss: 0.1997 - acc: 0.929 - ETA: 0s - loss: 0.1997 - acc: 0.929 - ETA: 0s - loss: 0.1996 - acc: 0.929 - 54s 2ms/step - loss: 0.1995 - acc: 0.9293 - val_loss: 0.1844 - val_acc: 0.9349\n", + "\n", + "Epoch 00007: val_acc improved from 0.92881 to 0.93487, saving model to models\\conv.model\n", + "Epoch 8/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 55s - loss: 0.3950 - acc: 0.87 - ETA: 56s - loss: 0.2479 - acc: 0.92 - ETA: 56s - loss: 0.2380 - acc: 0.92 - ETA: 54s - loss: 0.2058 - acc: 0.93 - ETA: 53s - loss: 0.2219 - acc: 0.92 - ETA: 53s - loss: 0.2931 - acc: 0.90 - ETA: 52s - loss: 0.2876 - acc: 0.91 - ETA: 52s - loss: 0.2761 - acc: 0.90 - ETA: 52s - loss: 0.2639 - acc: 0.90 - ETA: 51s - loss: 0.2577 - acc: 0.90 - ETA: 51s - loss: 0.2613 - acc: 0.90 - ETA: 50s - loss: 0.2530 - acc: 0.91 - ETA: 50s - loss: 0.2408 - acc: 0.91 - ETA: 50s - loss: 0.2410 - acc: 0.91 - ETA: 50s - loss: 0.2524 - acc: 0.90 - ETA: 50s - loss: 0.2436 - acc: 0.90 - ETA: 49s - loss: 0.2350 - acc: 0.90 - ETA: 50s - loss: 0.2334 - acc: 0.90 - ETA: 50s - loss: 0.2408 - acc: 0.90 - ETA: 49s - loss: 0.2369 - acc: 0.90 - ETA: 49s - loss: 0.2421 - acc: 0.90 - ETA: 49s - loss: 0.2437 - acc: 0.90 - ETA: 49s - loss: 0.2370 - acc: 0.90 - ETA: 49s - loss: 0.2306 - acc: 0.90 - ETA: 49s - loss: 0.2328 - acc: 0.90 - ETA: 49s - loss: 0.2292 - acc: 0.91 - ETA: 49s - loss: 0.2272 - acc: 0.91 - ETA: 49s - loss: 0.2232 - acc: 0.91 - ETA: 49s - loss: 0.2190 - acc: 0.91 - ETA: 49s - loss: 0.2196 - acc: 0.91 - ETA: 49s - loss: 0.2176 - acc: 0.91 - ETA: 49s - loss: 0.2181 - acc: 0.91 - ETA: 49s - loss: 0.2135 - acc: 0.91 - ETA: 49s - loss: 0.2117 - acc: 0.92 - ETA: 48s - loss: 0.2109 - acc: 0.91 - ETA: 48s - loss: 0.2082 - acc: 0.92 - ETA: 48s - loss: 0.2096 - acc: 0.91 - ETA: 48s - loss: 0.2100 - acc: 0.92 - ETA: 48s - loss: 0.2124 - acc: 0.91 - ETA: 48s - loss: 0.2128 - acc: 0.91 - ETA: 48s - loss: 0.2136 - acc: 0.91 - ETA: 48s - loss: 0.2099 - acc: 0.91 - ETA: 48s - loss: 0.2067 - acc: 0.91 - ETA: 48s - loss: 0.2069 - acc: 0.91 - ETA: 48s - loss: 0.2072 - acc: 0.91 - ETA: 48s - loss: 0.2054 - acc: 0.91 - ETA: 48s - loss: 0.2031 - acc: 0.92 - ETA: 47s - loss: 0.2007 - acc: 0.92 - ETA: 47s - loss: 0.1998 - acc: 0.92 - ETA: 47s - loss: 0.1992 - acc: 0.92 - ETA: 47s - loss: 0.2029 - acc: 0.92 - ETA: 47s - loss: 0.2029 - acc: 0.92 - ETA: 47s - loss: 0.2023 - acc: 0.92 - ETA: 47s - loss: 0.1994 - acc: 0.92 - ETA: 47s - loss: 0.1971 - acc: 0.92 - ETA: 47s - loss: 0.1948 - acc: 0.92 - ETA: 47s - loss: 0.1953 - acc: 0.92 - ETA: 47s - loss: 0.1931 - acc: 0.92 - ETA: 47s - loss: 0.1925 - acc: 0.92 - ETA: 47s - loss: 0.1927 - acc: 0.92 - ETA: 47s - loss: 0.1897 - acc: 0.92 - ETA: 47s - loss: 0.1892 - acc: 0.92 - ETA: 46s - loss: 0.1893 - acc: 0.92 - ETA: 47s - loss: 0.1947 - acc: 0.92 - ETA: 46s - loss: 0.1941 - acc: 0.92 - ETA: 46s - loss: 0.1946 - acc: 0.92 - ETA: 46s - loss: 0.1941 - acc: 0.92 - ETA: 46s - loss: 0.1925 - acc: 0.92 - ETA: 46s - loss: 0.1913 - acc: 0.92 - ETA: 46s - loss: 0.1899 - acc: 0.92 - ETA: 46s - loss: 0.1883 - acc: 0.92 - ETA: 46s - loss: 0.1870 - acc: 0.92 - ETA: 46s - loss: 0.1863 - acc: 0.92 - ETA: 46s - loss: 0.1905 - acc: 0.92 - ETA: 46s - loss: 0.1911 - acc: 0.92 - ETA: 45s - loss: 0.1909 - acc: 0.92 - ETA: 45s - loss: 0.1896 - acc: 0.92 - ETA: 45s - loss: 0.1892 - acc: 0.92 - ETA: 45s - loss: 0.1884 - acc: 0.92 - ETA: 45s - loss: 0.1879 - acc: 0.92 - ETA: 45s - loss: 0.1875 - acc: 0.92 - ETA: 45s - loss: 0.1873 - acc: 0.92 - ETA: 45s - loss: 0.1884 - acc: 0.92 - ETA: 45s - loss: 0.1881 - acc: 0.92 - ETA: 45s - loss: 0.1871 - acc: 0.92 - ETA: 45s - loss: 0.1876 - acc: 0.92 - ETA: 45s - loss: 0.1887 - acc: 0.92 - ETA: 45s - loss: 0.1875 - acc: 0.92 - ETA: 45s - loss: 0.1868 - acc: 0.92 - ETA: 45s - loss: 0.1864 - acc: 0.92 - ETA: 45s - loss: 0.1860 - acc: 0.92 - ETA: 45s - loss: 0.1869 - acc: 0.92 - ETA: 45s - loss: 0.1867 - acc: 0.92 - ETA: 44s - loss: 0.1865 - acc: 0.92 - ETA: 44s - loss: 0.1877 - acc: 0.92 - ETA: 44s - loss: 0.1868 - acc: 0.92 - ETA: 44s - loss: 0.1864 - acc: 0.92 - ETA: 44s - loss: 0.1865 - acc: 0.92 - ETA: 44s - loss: 0.1887 - acc: 0.92 - ETA: 44s - loss: 0.1887 - acc: 0.92 - ETA: 44s - loss: 0.1882 - acc: 0.92 - ETA: 44s - loss: 0.1874 - acc: 0.92 - ETA: 44s - loss: 0.1867 - acc: 0.92 - ETA: 44s - loss: 0.1854 - acc: 0.92 - ETA: 44s - loss: 0.1865 - acc: 0.92 - ETA: 44s - loss: 0.1858 - acc: 0.92 - ETA: 44s - loss: 0.1890 - acc: 0.92 - ETA: 44s - loss: 0.1875 - acc: 0.92 - ETA: 43s - loss: 0.1877 - acc: 0.92 - ETA: 43s - loss: 0.1869 - acc: 0.92 - ETA: 43s - loss: 0.1877 - acc: 0.92 - ETA: 43s - loss: 0.1872 - acc: 0.92 - ETA: 43s - loss: 0.1924 - acc: 0.92 - ETA: 43s - loss: 0.1925 - acc: 0.92 - ETA: 43s - loss: 0.1933 - acc: 0.92 - ETA: 43s - loss: 0.1920 - acc: 0.92 - ETA: 43s - loss: 0.1923 - acc: 0.92 - ETA: 43s - loss: 0.1920 - acc: 0.92 - ETA: 43s - loss: 0.1921 - acc: 0.92 - ETA: 43s - loss: 0.1921 - acc: 0.92 - ETA: 42s - loss: 0.1933 - acc: 0.92 - ETA: 42s - loss: 0.1936 - acc: 0.92 - ETA: 42s - loss: 0.1928 - acc: 0.92 - ETA: 42s - loss: 0.1939 - acc: 0.92 - ETA: 42s - loss: 0.1928 - acc: 0.92 - ETA: 42s - loss: 0.1929 - acc: 0.92 - ETA: 42s - loss: 0.1930 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1915 - acc: 0.92 - ETA: 42s - loss: 0.1910 - acc: 0.92 - ETA: 42s - loss: 0.1908 - acc: 0.92 - ETA: 42s - loss: 0.1919 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1920 - acc: 0.92 - ETA: 41s - loss: 0.1912 - acc: 0.92 - ETA: 41s - loss: 0.1912 - acc: 0.92 - ETA: 41s - loss: 0.1909 - acc: 0.92 - ETA: 41s - loss: 0.1910 - acc: 0.92 - ETA: 41s - loss: 0.1912 - acc: 0.92 - ETA: 41s - loss: 0.1901 - acc: 0.92 - ETA: 41s - loss: 0.1895 - acc: 0.92 - ETA: 41s - loss: 0.1894 - acc: 0.92 - ETA: 41s - loss: 0.1888 - acc: 0.92 - ETA: 41s - loss: 0.1897 - acc: 0.92 - ETA: 41s - loss: 0.1906 - acc: 0.92 - ETA: 41s - loss: 0.1907 - acc: 0.92 - ETA: 41s - loss: 0.1901 - acc: 0.92 - ETA: 41s - loss: 0.1900 - acc: 0.92 - ETA: 40s - loss: 0.1891 - acc: 0.92 - ETA: 40s - loss: 0.1892 - acc: 0.92 - ETA: 40s - loss: 0.1887 - acc: 0.92 - ETA: 40s - loss: 0.1893 - acc: 0.92 - ETA: 40s - loss: 0.1889 - acc: 0.92 - ETA: 40s - loss: 0.1886 - acc: 0.92 - ETA: 40s - loss: 0.1886 - acc: 0.92 - ETA: 40s - loss: 0.1875 - acc: 0.92 - ETA: 40s - loss: 0.1886 - acc: 0.92 - ETA: 40s - loss: 0.1905 - acc: 0.92 - ETA: 40s - loss: 0.1897 - acc: 0.92 - ETA: 40s - loss: 0.1903 - acc: 0.92 - ETA: 40s - loss: 0.1903 - acc: 0.92 - ETA: 40s - loss: 0.1905 - acc: 0.92 - ETA: 39s - loss: 0.1902 - acc: 0.92 - ETA: 39s - loss: 0.1903 - acc: 0.92 - ETA: 39s - loss: 0.1897 - acc: 0.92 - ETA: 39s - loss: 0.1913 - acc: 0.92 - ETA: 39s - loss: 0.1908 - acc: 0.92 - ETA: 39s - loss: 0.1905 - acc: 0.92 - ETA: 39s - loss: 0.1907 - acc: 0.92 - ETA: 39s - loss: 0.1910 - acc: 0.92 - ETA: 39s - loss: 0.1902 - acc: 0.92 - ETA: 39s - loss: 0.1897 - acc: 0.92 - ETA: 39s - loss: 0.1890 - acc: 0.92 - ETA: 39s - loss: 0.1902 - acc: 0.92 - ETA: 39s - loss: 0.1896 - acc: 0.92 - ETA: 39s - loss: 0.1893 - acc: 0.92 - ETA: 39s - loss: 0.1887 - acc: 0.92 - ETA: 38s - loss: 0.1886 - acc: 0.92 - ETA: 38s - loss: 0.1879 - acc: 0.92 - ETA: 38s - loss: 0.1879 - acc: 0.92 - ETA: 38s - loss: 0.1881 - acc: 0.92 - ETA: 38s - loss: 0.1878 - acc: 0.92 - ETA: 38s - loss: 0.1879 - acc: 0.92 - ETA: 38s - loss: 0.1874 - acc: 0.92 - ETA: 38s - loss: 0.1872 - acc: 0.92 - ETA: 38s - loss: 0.1866 - acc: 0.92 - ETA: 38s - loss: 0.1860 - acc: 0.92 - ETA: 38s - loss: 0.1865 - acc: 0.92 - ETA: 38s - loss: 0.1859 - acc: 0.92 - ETA: 38s - loss: 0.1858 - acc: 0.92 - ETA: 38s - loss: 0.1857 - acc: 0.92 - ETA: 37s - loss: 0.1853 - acc: 0.92 - ETA: 37s - loss: 0.1851 - acc: 0.92 - ETA: 37s - loss: 0.1861 - acc: 0.92 - ETA: 37s - loss: 0.1854 - acc: 0.92 - ETA: 37s - loss: 0.1852 - acc: 0.92 - ETA: 37s - loss: 0.1845 - acc: 0.92 - ETA: 37s - loss: 0.1843 - acc: 0.92 - ETA: 37s - loss: 0.1847 - acc: 0.92 - ETA: 37s - loss: 0.1847 - acc: 0.92 - ETA: 37s - loss: 0.1862 - acc: 0.92 - ETA: 37s - loss: 0.1859 - acc: 0.92 - ETA: 37s - loss: 0.1853 - acc: 0.92 - ETA: 37s - loss: 0.1851 - acc: 0.92 - ETA: 37s - loss: 0.1856 - acc: 0.92 - ETA: 37s - loss: 0.1858 - acc: 0.92 - ETA: 36s - loss: 0.1852 - acc: 0.92 - ETA: 36s - loss: 0.1861 - acc: 0.92 - ETA: 36s - loss: 0.1861 - acc: 0.92 - ETA: 36s - loss: 0.1860 - acc: 0.92 - ETA: 36s - loss: 0.1854 - acc: 0.92 - ETA: 36s - loss: 0.1851 - acc: 0.92 - ETA: 36s - loss: 0.1855 - acc: 0.9297" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.1856 - acc: 0.92 - ETA: 36s - loss: 0.1849 - acc: 0.92 - ETA: 36s - loss: 0.1847 - acc: 0.92 - ETA: 36s - loss: 0.1846 - acc: 0.92 - ETA: 36s - loss: 0.1846 - acc: 0.93 - ETA: 36s - loss: 0.1843 - acc: 0.93 - ETA: 36s - loss: 0.1846 - acc: 0.92 - ETA: 36s - loss: 0.1842 - acc: 0.93 - ETA: 35s - loss: 0.1846 - acc: 0.93 - ETA: 35s - loss: 0.1840 - acc: 0.93 - ETA: 35s - loss: 0.1856 - acc: 0.92 - ETA: 35s - loss: 0.1857 - acc: 0.92 - ETA: 35s - loss: 0.1857 - acc: 0.92 - ETA: 35s - loss: 0.1858 - acc: 0.92 - ETA: 35s - loss: 0.1851 - acc: 0.92 - ETA: 35s - loss: 0.1849 - acc: 0.92 - ETA: 35s - loss: 0.1848 - acc: 0.93 - ETA: 35s - loss: 0.1843 - acc: 0.93 - ETA: 35s - loss: 0.1844 - acc: 0.93 - ETA: 35s - loss: 0.1847 - acc: 0.92 - ETA: 35s - loss: 0.1850 - acc: 0.92 - ETA: 35s - loss: 0.1851 - acc: 0.92 - ETA: 34s - loss: 0.1853 - acc: 0.92 - ETA: 34s - loss: 0.1848 - acc: 0.92 - ETA: 34s - loss: 0.1846 - acc: 0.92 - ETA: 34s - loss: 0.1856 - acc: 0.92 - ETA: 34s - loss: 0.1855 - acc: 0.92 - ETA: 34s - loss: 0.1854 - acc: 0.92 - ETA: 34s - loss: 0.1854 - acc: 0.92 - ETA: 34s - loss: 0.1857 - acc: 0.92 - ETA: 34s - loss: 0.1859 - acc: 0.92 - ETA: 34s - loss: 0.1855 - acc: 0.92 - ETA: 34s - loss: 0.1857 - acc: 0.92 - ETA: 34s - loss: 0.1853 - acc: 0.93 - ETA: 34s - loss: 0.1850 - acc: 0.93 - ETA: 34s - loss: 0.1852 - acc: 0.93 - ETA: 34s - loss: 0.1855 - acc: 0.92 - ETA: 34s - loss: 0.1854 - acc: 0.93 - ETA: 33s - loss: 0.1856 - acc: 0.93 - ETA: 33s - loss: 0.1850 - acc: 0.93 - ETA: 33s - loss: 0.1845 - acc: 0.93 - ETA: 33s - loss: 0.1839 - acc: 0.93 - ETA: 33s - loss: 0.1842 - acc: 0.93 - ETA: 33s - loss: 0.1842 - acc: 0.93 - ETA: 33s - loss: 0.1839 - acc: 0.93 - ETA: 33s - loss: 0.1835 - acc: 0.93 - ETA: 33s - loss: 0.1837 - acc: 0.93 - ETA: 33s - loss: 0.1837 - acc: 0.93 - ETA: 33s - loss: 0.1836 - acc: 0.93 - ETA: 33s - loss: 0.1831 - acc: 0.93 - ETA: 33s - loss: 0.1833 - acc: 0.93 - ETA: 33s - loss: 0.1833 - acc: 0.93 - ETA: 33s - loss: 0.1830 - acc: 0.93 - ETA: 32s - loss: 0.1833 - acc: 0.93 - ETA: 32s - loss: 0.1832 - acc: 0.93 - ETA: 32s - loss: 0.1832 - acc: 0.93 - ETA: 32s - loss: 0.1827 - acc: 0.93 - ETA: 32s - loss: 0.1827 - acc: 0.93 - ETA: 32s - loss: 0.1835 - acc: 0.93 - ETA: 32s - loss: 0.1837 - acc: 0.93 - ETA: 32s - loss: 0.1839 - acc: 0.93 - ETA: 32s - loss: 0.1844 - acc: 0.93 - ETA: 32s - loss: 0.1847 - acc: 0.93 - ETA: 32s - loss: 0.1854 - acc: 0.93 - ETA: 32s - loss: 0.1851 - acc: 0.93 - ETA: 32s - loss: 0.1850 - acc: 0.93 - ETA: 32s - loss: 0.1850 - acc: 0.93 - ETA: 31s - loss: 0.1846 - acc: 0.93 - ETA: 31s - loss: 0.1842 - acc: 0.93 - ETA: 31s - loss: 0.1843 - acc: 0.93 - ETA: 31s - loss: 0.1845 - acc: 0.93 - ETA: 31s - loss: 0.1859 - acc: 0.93 - ETA: 31s - loss: 0.1867 - acc: 0.93 - ETA: 31s - loss: 0.1863 - acc: 0.93 - ETA: 31s - loss: 0.1867 - acc: 0.93 - ETA: 31s - loss: 0.1871 - acc: 0.93 - ETA: 31s - loss: 0.1873 - acc: 0.93 - ETA: 31s - loss: 0.1869 - acc: 0.93 - ETA: 31s - loss: 0.1865 - acc: 0.93 - ETA: 31s - loss: 0.1865 - acc: 0.93 - ETA: 31s - loss: 0.1867 - acc: 0.93 - ETA: 31s - loss: 0.1863 - acc: 0.93 - ETA: 30s - loss: 0.1864 - acc: 0.93 - ETA: 30s - loss: 0.1864 - acc: 0.93 - ETA: 30s - loss: 0.1866 - acc: 0.93 - ETA: 30s - loss: 0.1871 - acc: 0.93 - ETA: 30s - loss: 0.1869 - acc: 0.93 - ETA: 30s - loss: 0.1867 - acc: 0.93 - ETA: 30s - loss: 0.1864 - acc: 0.93 - ETA: 30s - loss: 0.1861 - acc: 0.93 - ETA: 30s - loss: 0.1861 - acc: 0.93 - ETA: 30s - loss: 0.1856 - acc: 0.93 - ETA: 30s - loss: 0.1853 - acc: 0.93 - ETA: 30s - loss: 0.1853 - acc: 0.93 - ETA: 30s - loss: 0.1851 - acc: 0.93 - ETA: 30s - loss: 0.1855 - acc: 0.93 - ETA: 29s - loss: 0.1851 - acc: 0.93 - ETA: 29s - loss: 0.1852 - acc: 0.93 - ETA: 29s - loss: 0.1851 - acc: 0.93 - ETA: 29s - loss: 0.1852 - acc: 0.93 - ETA: 29s - loss: 0.1851 - acc: 0.93 - ETA: 29s - loss: 0.1847 - acc: 0.93 - ETA: 29s - loss: 0.1843 - acc: 0.93 - ETA: 29s - loss: 0.1845 - acc: 0.93 - ETA: 29s - loss: 0.1844 - acc: 0.93 - ETA: 29s - loss: 0.1841 - acc: 0.93 - ETA: 29s - loss: 0.1837 - acc: 0.93 - ETA: 29s - loss: 0.1834 - acc: 0.93 - ETA: 29s - loss: 0.1841 - acc: 0.93 - ETA: 29s - loss: 0.1842 - acc: 0.93 - ETA: 29s - loss: 0.1838 - acc: 0.93 - ETA: 28s - loss: 0.1835 - acc: 0.93 - ETA: 28s - loss: 0.1835 - acc: 0.93 - ETA: 28s - loss: 0.1832 - acc: 0.93 - ETA: 28s - loss: 0.1830 - acc: 0.93 - ETA: 28s - loss: 0.1825 - acc: 0.93 - ETA: 28s - loss: 0.1824 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1820 - acc: 0.93 - ETA: 28s - loss: 0.1818 - acc: 0.93 - ETA: 28s - loss: 0.1818 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1816 - acc: 0.93 - ETA: 27s - loss: 0.1815 - acc: 0.93 - ETA: 27s - loss: 0.1811 - acc: 0.93 - ETA: 27s - loss: 0.1814 - acc: 0.93 - ETA: 27s - loss: 0.1812 - acc: 0.93 - ETA: 27s - loss: 0.1815 - acc: 0.93 - ETA: 27s - loss: 0.1819 - acc: 0.93 - ETA: 27s - loss: 0.1820 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1816 - acc: 0.93 - ETA: 27s - loss: 0.1820 - acc: 0.93 - ETA: 27s - loss: 0.1818 - acc: 0.93 - ETA: 27s - loss: 0.1819 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1818 - acc: 0.93 - ETA: 26s - loss: 0.1819 - acc: 0.93 - ETA: 26s - loss: 0.1819 - acc: 0.93 - ETA: 26s - loss: 0.1827 - acc: 0.93 - ETA: 26s - loss: 0.1827 - acc: 0.93 - ETA: 26s - loss: 0.1825 - acc: 0.93 - ETA: 26s - loss: 0.1822 - acc: 0.93 - ETA: 26s - loss: 0.1819 - acc: 0.93 - ETA: 26s - loss: 0.1824 - acc: 0.93 - ETA: 26s - loss: 0.1823 - acc: 0.93 - ETA: 26s - loss: 0.1827 - acc: 0.93 - ETA: 26s - loss: 0.1832 - acc: 0.93 - ETA: 26s - loss: 0.1833 - acc: 0.93 - ETA: 26s - loss: 0.1833 - acc: 0.93 - ETA: 26s - loss: 0.1834 - acc: 0.93 - ETA: 26s - loss: 0.1832 - acc: 0.93 - ETA: 25s - loss: 0.1834 - acc: 0.93 - ETA: 25s - loss: 0.1835 - acc: 0.93 - ETA: 25s - loss: 0.1834 - acc: 0.93 - ETA: 25s - loss: 0.1836 - acc: 0.93 - ETA: 25s - loss: 0.1841 - acc: 0.93 - ETA: 25s - loss: 0.1837 - acc: 0.93 - ETA: 25s - loss: 0.1837 - acc: 0.93 - ETA: 25s - loss: 0.1836 - acc: 0.93 - ETA: 25s - loss: 0.1834 - acc: 0.93 - ETA: 25s - loss: 0.1835 - acc: 0.93 - ETA: 25s - loss: 0.1832 - acc: 0.93 - ETA: 25s - loss: 0.1828 - acc: 0.93 - ETA: 25s - loss: 0.1828 - acc: 0.93 - ETA: 25s - loss: 0.1826 - acc: 0.93 - ETA: 25s - loss: 0.1822 - acc: 0.93 - ETA: 24s - loss: 0.1819 - acc: 0.93 - ETA: 24s - loss: 0.1821 - acc: 0.93 - ETA: 24s - loss: 0.1819 - acc: 0.93 - ETA: 24s - loss: 0.1822 - acc: 0.93 - ETA: 24s - loss: 0.1823 - acc: 0.93 - ETA: 24s - loss: 0.1823 - acc: 0.93 - ETA: 24s - loss: 0.1820 - acc: 0.93 - ETA: 24s - loss: 0.1820 - acc: 0.93 - ETA: 24s - loss: 0.1818 - acc: 0.93 - ETA: 24s - loss: 0.1817 - acc: 0.93 - ETA: 24s - loss: 0.1817 - acc: 0.93 - ETA: 24s - loss: 0.1816 - acc: 0.93 - ETA: 24s - loss: 0.1812 - acc: 0.93 - ETA: 24s - loss: 0.1813 - acc: 0.93 - ETA: 24s - loss: 0.1811 - acc: 0.93 - ETA: 23s - loss: 0.1810 - acc: 0.93 - ETA: 23s - loss: 0.1811 - acc: 0.93 - ETA: 23s - loss: 0.1810 - acc: 0.93 - ETA: 23s - loss: 0.1810 - acc: 0.93 - ETA: 23s - loss: 0.1807 - acc: 0.93 - ETA: 23s - loss: 0.1806 - acc: 0.93 - ETA: 23s - loss: 0.1802 - acc: 0.93 - ETA: 23s - loss: 0.1803 - acc: 0.93 - ETA: 23s - loss: 0.1802 - acc: 0.93 - ETA: 23s - loss: 0.1802 - acc: 0.93 - ETA: 23s - loss: 0.1807 - acc: 0.93 - ETA: 23s - loss: 0.1805 - acc: 0.93 - ETA: 23s - loss: 0.1807 - acc: 0.93 - ETA: 23s - loss: 0.1806 - acc: 0.93 - ETA: 22s - loss: 0.1803 - acc: 0.93 - ETA: 22s - loss: 0.1801 - acc: 0.93 - ETA: 22s - loss: 0.1801 - acc: 0.93 - ETA: 22s - loss: 0.1798 - acc: 0.93 - ETA: 22s - loss: 0.1800 - acc: 0.93 - ETA: 22s - loss: 0.1798 - acc: 0.93 - ETA: 22s - loss: 0.1801 - acc: 0.93 - ETA: 22s - loss: 0.1798 - acc: 0.93 - ETA: 22s - loss: 0.1794 - acc: 0.93 - ETA: 22s - loss: 0.1797 - acc: 0.93 - ETA: 22s - loss: 0.1797 - acc: 0.93 - ETA: 22s - loss: 0.1794 - acc: 0.93 - ETA: 22s - loss: 0.1799 - acc: 0.93 - ETA: 22s - loss: 0.1795 - acc: 0.9344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.1794 - acc: 0.93 - ETA: 21s - loss: 0.1792 - acc: 0.93 - ETA: 21s - loss: 0.1792 - acc: 0.93 - ETA: 21s - loss: 0.1790 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1794 - acc: 0.93 - ETA: 21s - loss: 0.1791 - acc: 0.93 - ETA: 21s - loss: 0.1792 - acc: 0.93 - ETA: 21s - loss: 0.1790 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1785 - acc: 0.93 - ETA: 21s - loss: 0.1784 - acc: 0.93 - ETA: 21s - loss: 0.1785 - acc: 0.93 - ETA: 20s - loss: 0.1782 - acc: 0.93 - ETA: 20s - loss: 0.1783 - acc: 0.93 - ETA: 20s - loss: 0.1786 - acc: 0.93 - ETA: 20s - loss: 0.1787 - acc: 0.93 - ETA: 20s - loss: 0.1788 - acc: 0.93 - ETA: 20s - loss: 0.1785 - acc: 0.93 - ETA: 20s - loss: 0.1782 - acc: 0.93 - ETA: 20s - loss: 0.1782 - acc: 0.93 - ETA: 20s - loss: 0.1781 - acc: 0.93 - ETA: 20s - loss: 0.1779 - acc: 0.93 - ETA: 20s - loss: 0.1778 - acc: 0.93 - ETA: 20s - loss: 0.1776 - acc: 0.93 - ETA: 20s - loss: 0.1781 - acc: 0.93 - ETA: 20s - loss: 0.1781 - acc: 0.93 - ETA: 19s - loss: 0.1779 - acc: 0.93 - ETA: 19s - loss: 0.1775 - acc: 0.93 - ETA: 19s - loss: 0.1774 - acc: 0.93 - ETA: 19s - loss: 0.1776 - acc: 0.93 - ETA: 19s - loss: 0.1776 - acc: 0.93 - ETA: 19s - loss: 0.1779 - acc: 0.93 - ETA: 19s - loss: 0.1778 - acc: 0.93 - ETA: 19s - loss: 0.1776 - acc: 0.93 - ETA: 19s - loss: 0.1777 - acc: 0.93 - ETA: 19s - loss: 0.1775 - acc: 0.93 - ETA: 19s - loss: 0.1773 - acc: 0.93 - ETA: 19s - loss: 0.1775 - acc: 0.93 - ETA: 19s - loss: 0.1773 - acc: 0.93 - ETA: 19s - loss: 0.1777 - acc: 0.93 - ETA: 19s - loss: 0.1782 - acc: 0.93 - ETA: 18s - loss: 0.1781 - acc: 0.93 - ETA: 18s - loss: 0.1779 - acc: 0.93 - ETA: 18s - loss: 0.1776 - acc: 0.93 - ETA: 18s - loss: 0.1775 - acc: 0.93 - ETA: 18s - loss: 0.1774 - acc: 0.93 - ETA: 18s - loss: 0.1776 - acc: 0.93 - ETA: 18s - loss: 0.1774 - acc: 0.93 - ETA: 18s - loss: 0.1772 - acc: 0.93 - ETA: 18s - loss: 0.1771 - acc: 0.93 - ETA: 18s - loss: 0.1769 - acc: 0.93 - ETA: 18s - loss: 0.1767 - acc: 0.93 - ETA: 18s - loss: 0.1769 - acc: 0.93 - ETA: 18s - loss: 0.1769 - acc: 0.93 - ETA: 18s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1770 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1764 - acc: 0.93 - ETA: 17s - loss: 0.1765 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1768 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1768 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1766 - acc: 0.93 - ETA: 17s - loss: 0.1764 - acc: 0.93 - ETA: 17s - loss: 0.1765 - acc: 0.93 - ETA: 17s - loss: 0.1766 - acc: 0.93 - ETA: 17s - loss: 0.1770 - acc: 0.93 - ETA: 17s - loss: 0.1774 - acc: 0.93 - ETA: 16s - loss: 0.1772 - acc: 0.93 - ETA: 16s - loss: 0.1775 - acc: 0.93 - ETA: 16s - loss: 0.1777 - acc: 0.93 - ETA: 16s - loss: 0.1778 - acc: 0.93 - ETA: 16s - loss: 0.1778 - acc: 0.93 - ETA: 16s - loss: 0.1777 - acc: 0.93 - ETA: 16s - loss: 0.1778 - acc: 0.93 - ETA: 16s - loss: 0.1776 - acc: 0.93 - ETA: 16s - loss: 0.1783 - acc: 0.93 - ETA: 16s - loss: 0.1780 - acc: 0.93 - ETA: 16s - loss: 0.1781 - acc: 0.93 - ETA: 16s - loss: 0.1782 - acc: 0.93 - ETA: 16s - loss: 0.1780 - acc: 0.93 - ETA: 16s - loss: 0.1777 - acc: 0.93 - ETA: 15s - loss: 0.1780 - acc: 0.93 - ETA: 15s - loss: 0.1778 - acc: 0.93 - ETA: 15s - loss: 0.1780 - acc: 0.93 - ETA: 15s - loss: 0.1784 - acc: 0.93 - ETA: 15s - loss: 0.1783 - acc: 0.93 - ETA: 15s - loss: 0.1781 - acc: 0.93 - ETA: 15s - loss: 0.1785 - acc: 0.93 - ETA: 15s - loss: 0.1789 - acc: 0.93 - ETA: 15s - loss: 0.1788 - acc: 0.93 - ETA: 15s - loss: 0.1786 - acc: 0.93 - ETA: 15s - loss: 0.1785 - acc: 0.93 - ETA: 15s - loss: 0.1784 - acc: 0.93 - ETA: 15s - loss: 0.1786 - acc: 0.93 - ETA: 15s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1786 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1789 - acc: 0.93 - ETA: 14s - loss: 0.1787 - acc: 0.93 - ETA: 14s - loss: 0.1786 - acc: 0.93 - ETA: 14s - loss: 0.1784 - acc: 0.93 - ETA: 14s - loss: 0.1783 - acc: 0.93 - ETA: 14s - loss: 0.1789 - acc: 0.93 - ETA: 14s - loss: 0.1790 - acc: 0.93 - ETA: 14s - loss: 0.1789 - acc: 0.93 - ETA: 14s - loss: 0.1786 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 13s - loss: 0.1789 - acc: 0.93 - ETA: 13s - loss: 0.1788 - acc: 0.93 - ETA: 13s - loss: 0.1787 - acc: 0.93 - ETA: 13s - loss: 0.1784 - acc: 0.93 - ETA: 13s - loss: 0.1781 - acc: 0.93 - ETA: 13s - loss: 0.1783 - acc: 0.93 - ETA: 13s - loss: 0.1781 - acc: 0.93 - ETA: 13s - loss: 0.1783 - acc: 0.93 - ETA: 13s - loss: 0.1782 - acc: 0.93 - ETA: 13s - loss: 0.1783 - acc: 0.93 - ETA: 13s - loss: 0.1784 - acc: 0.93 - ETA: 13s - loss: 0.1785 - acc: 0.93 - ETA: 13s - loss: 0.1784 - acc: 0.93 - ETA: 13s - loss: 0.1788 - acc: 0.93 - ETA: 12s - loss: 0.1786 - acc: 0.93 - ETA: 12s - loss: 0.1785 - acc: 0.93 - ETA: 12s - loss: 0.1783 - acc: 0.93 - ETA: 12s - loss: 0.1781 - acc: 0.93 - ETA: 12s - loss: 0.1779 - acc: 0.93 - ETA: 12s - loss: 0.1784 - acc: 0.93 - ETA: 12s - loss: 0.1791 - acc: 0.93 - ETA: 12s - loss: 0.1792 - acc: 0.93 - ETA: 12s - loss: 0.1792 - acc: 0.93 - ETA: 12s - loss: 0.1790 - acc: 0.93 - ETA: 12s - loss: 0.1787 - acc: 0.93 - ETA: 12s - loss: 0.1785 - acc: 0.93 - ETA: 12s - loss: 0.1785 - acc: 0.93 - ETA: 12s - loss: 0.1788 - acc: 0.93 - ETA: 11s - loss: 0.1791 - acc: 0.93 - ETA: 11s - loss: 0.1789 - acc: 0.93 - ETA: 11s - loss: 0.1788 - acc: 0.93 - ETA: 11s - loss: 0.1789 - acc: 0.93 - ETA: 11s - loss: 0.1788 - acc: 0.93 - ETA: 11s - loss: 0.1790 - acc: 0.93 - ETA: 11s - loss: 0.1792 - acc: 0.93 - ETA: 11s - loss: 0.1792 - acc: 0.93 - ETA: 11s - loss: 0.1793 - acc: 0.93 - ETA: 11s - loss: 0.1797 - acc: 0.93 - ETA: 11s - loss: 0.1797 - acc: 0.93 - ETA: 11s - loss: 0.1796 - acc: 0.93 - ETA: 11s - loss: 0.1794 - acc: 0.93 - ETA: 11s - loss: 0.1795 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1796 - acc: 0.93 - ETA: 10s - loss: 0.1798 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1796 - acc: 0.93 - ETA: 10s - loss: 0.1795 - acc: 0.93 - ETA: 10s - loss: 0.1794 - acc: 0.93 - ETA: 10s - loss: 0.1794 - acc: 0.93 - ETA: 10s - loss: 0.1793 - acc: 0.93 - ETA: 10s - loss: 0.1796 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1795 - acc: 0.93 - ETA: 9s - loss: 0.1793 - acc: 0.9350 - ETA: 9s - loss: 0.1791 - acc: 0.935 - ETA: 9s - loss: 0.1790 - acc: 0.935 - ETA: 9s - loss: 0.1788 - acc: 0.935 - ETA: 9s - loss: 0.1790 - acc: 0.935 - ETA: 9s - loss: 0.1789 - acc: 0.935 - ETA: 9s - loss: 0.1789 - acc: 0.934 - ETA: 9s - loss: 0.1791 - acc: 0.934 - ETA: 9s - loss: 0.1793 - acc: 0.934 - ETA: 9s - loss: 0.1793 - acc: 0.934 - ETA: 9s - loss: 0.1793 - acc: 0.934 - ETA: 9s - loss: 0.1792 - acc: 0.934 - ETA: 9s - loss: 0.1790 - acc: 0.934 - ETA: 9s - loss: 0.1789 - acc: 0.934 - ETA: 8s - loss: 0.1790 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1792 - acc: 0.934 - ETA: 8s - loss: 0.1791 - acc: 0.934 - ETA: 8s - loss: 0.1791 - acc: 0.934 - ETA: 8s - loss: 0.1792 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 7s - loss: 0.1791 - acc: 0.934 - ETA: 7s - loss: 0.1790 - acc: 0.934 - ETA: 7s - loss: 0.1788 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1793 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1794 - acc: 0.935 - ETA: 7s - loss: 0.1795 - acc: 0.935 - ETA: 7s - loss: 0.1794 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.9352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1799 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1794 - acc: 0.935 - ETA: 6s - loss: 0.1795 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1795 - acc: 0.935 - ETA: 6s - loss: 0.1796 - acc: 0.935 - ETA: 6s - loss: 0.1796 - acc: 0.935 - ETA: 6s - loss: 0.1798 - acc: 0.935 - ETA: 5s - loss: 0.1799 - acc: 0.934 - ETA: 5s - loss: 0.1799 - acc: 0.934 - ETA: 5s - loss: 0.1798 - acc: 0.934 - ETA: 5s - loss: 0.1797 - acc: 0.935 - ETA: 5s - loss: 0.1798 - acc: 0.935 - ETA: 5s - loss: 0.1795 - acc: 0.935 - ETA: 5s - loss: 0.1794 - acc: 0.935 - ETA: 5s - loss: 0.1795 - acc: 0.935 - ETA: 5s - loss: 0.1795 - acc: 0.935 - ETA: 5s - loss: 0.1793 - acc: 0.935 - ETA: 5s - loss: 0.1793 - acc: 0.935 - ETA: 5s - loss: 0.1793 - acc: 0.935 - ETA: 5s - loss: 0.1792 - acc: 0.935 - ETA: 5s - loss: 0.1794 - acc: 0.935 - ETA: 4s - loss: 0.1797 - acc: 0.935 - ETA: 4s - loss: 0.1795 - acc: 0.935 - ETA: 4s - loss: 0.1795 - acc: 0.935 - ETA: 4s - loss: 0.1793 - acc: 0.935 - ETA: 4s - loss: 0.1791 - acc: 0.935 - ETA: 4s - loss: 0.1790 - acc: 0.935 - ETA: 4s - loss: 0.1789 - acc: 0.935 - ETA: 4s - loss: 0.1791 - acc: 0.935 - ETA: 4s - loss: 0.1792 - acc: 0.935 - ETA: 4s - loss: 0.1793 - acc: 0.935 - ETA: 4s - loss: 0.1794 - acc: 0.935 - ETA: 4s - loss: 0.1793 - acc: 0.935 - ETA: 4s - loss: 0.1791 - acc: 0.935 - ETA: 4s - loss: 0.1795 - acc: 0.935 - ETA: 3s - loss: 0.1795 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1794 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1794 - acc: 0.935 - ETA: 3s - loss: 0.1799 - acc: 0.935 - ETA: 3s - loss: 0.1798 - acc: 0.935 - ETA: 3s - loss: 0.1797 - acc: 0.935 - ETA: 3s - loss: 0.1796 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1791 - acc: 0.935 - ETA: 3s - loss: 0.1789 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 2s - loss: 0.1794 - acc: 0.935 - ETA: 2s - loss: 0.1794 - acc: 0.935 - ETA: 2s - loss: 0.1791 - acc: 0.935 - ETA: 2s - loss: 0.1796 - acc: 0.935 - ETA: 2s - loss: 0.1797 - acc: 0.935 - ETA: 2s - loss: 0.1795 - acc: 0.935 - ETA: 2s - loss: 0.1795 - acc: 0.935 - ETA: 2s - loss: 0.1795 - acc: 0.935 - ETA: 2s - loss: 0.1796 - acc: 0.935 - ETA: 2s - loss: 0.1794 - acc: 0.935 - ETA: 2s - loss: 0.1792 - acc: 0.935 - ETA: 2s - loss: 0.1791 - acc: 0.935 - ETA: 2s - loss: 0.1790 - acc: 0.935 - ETA: 2s - loss: 0.1791 - acc: 0.935 - ETA: 1s - loss: 0.1790 - acc: 0.935 - ETA: 1s - loss: 0.1788 - acc: 0.935 - ETA: 1s - loss: 0.1789 - acc: 0.935 - ETA: 1s - loss: 0.1792 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1797 - acc: 0.935 - ETA: 1s - loss: 0.1795 - acc: 0.935 - ETA: 1s - loss: 0.1794 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1797 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1799 - acc: 0.935 - ETA: 0s - loss: 0.1796 - acc: 0.935 - ETA: 0s - loss: 0.1796 - acc: 0.935 - ETA: 0s - loss: 0.1795 - acc: 0.935 - ETA: 0s - loss: 0.1793 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1792 - acc: 0.935 - ETA: 0s - loss: 0.1793 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1793 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1798 - acc: 0.935 - ETA: 0s - loss: 0.1798 - acc: 0.935 - 54s 2ms/step - loss: 0.1797 - acc: 0.9357 - val_loss: 0.1647 - val_acc: 0.9432\n", + "\n", + "Epoch 00008: val_acc improved from 0.93487 to 0.94320, saving model to models\\conv.model\n", + "Epoch 9/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 1:00 - loss: 0.0242 - acc: 1.000 - ETA: 1:00 - loss: 0.0351 - acc: 1.000 - ETA: 1:01 - loss: 0.0862 - acc: 0.979 - ETA: 1:00 - loss: 0.0825 - acc: 0.976 - ETA: 58s - loss: 0.1175 - acc: 0.962 - ETA: 58s - loss: 0.1339 - acc: 0.95 - ETA: 57s - loss: 0.1590 - acc: 0.94 - ETA: 57s - loss: 0.1773 - acc: 0.93 - ETA: 56s - loss: 0.2020 - acc: 0.93 - ETA: 55s - loss: 0.2024 - acc: 0.93 - ETA: 55s - loss: 0.1880 - acc: 0.93 - ETA: 54s - loss: 0.1874 - acc: 0.93 - ETA: 54s - loss: 0.1978 - acc: 0.93 - ETA: 53s - loss: 0.2021 - acc: 0.93 - ETA: 53s - loss: 0.2156 - acc: 0.92 - ETA: 53s - loss: 0.2113 - acc: 0.92 - ETA: 53s - loss: 0.2003 - acc: 0.93 - ETA: 53s - loss: 0.1954 - acc: 0.93 - ETA: 52s - loss: 0.2007 - acc: 0.92 - ETA: 52s - loss: 0.1961 - acc: 0.92 - ETA: 52s - loss: 0.1992 - acc: 0.92 - ETA: 52s - loss: 0.1934 - acc: 0.92 - ETA: 51s - loss: 0.1949 - acc: 0.92 - ETA: 51s - loss: 0.2049 - acc: 0.92 - ETA: 51s - loss: 0.2019 - acc: 0.92 - ETA: 51s - loss: 0.1983 - acc: 0.92 - ETA: 51s - loss: 0.1948 - acc: 0.92 - ETA: 51s - loss: 0.1965 - acc: 0.92 - ETA: 51s - loss: 0.1977 - acc: 0.92 - ETA: 50s - loss: 0.2050 - acc: 0.92 - ETA: 50s - loss: 0.2033 - acc: 0.92 - ETA: 50s - loss: 0.2078 - acc: 0.92 - ETA: 50s - loss: 0.2097 - acc: 0.92 - ETA: 50s - loss: 0.2045 - acc: 0.92 - ETA: 49s - loss: 0.2055 - acc: 0.92 - ETA: 49s - loss: 0.2051 - acc: 0.92 - ETA: 49s - loss: 0.2045 - acc: 0.92 - ETA: 49s - loss: 0.2002 - acc: 0.92 - ETA: 49s - loss: 0.1969 - acc: 0.93 - ETA: 49s - loss: 0.1941 - acc: 0.93 - ETA: 49s - loss: 0.1916 - acc: 0.93 - ETA: 49s - loss: 0.1935 - acc: 0.93 - ETA: 49s - loss: 0.1932 - acc: 0.93 - ETA: 49s - loss: 0.1904 - acc: 0.93 - ETA: 49s - loss: 0.1892 - acc: 0.93 - ETA: 48s - loss: 0.1876 - acc: 0.93 - ETA: 48s - loss: 0.1879 - acc: 0.93 - ETA: 48s - loss: 0.1886 - acc: 0.93 - ETA: 48s - loss: 0.1890 - acc: 0.93 - ETA: 48s - loss: 0.1873 - acc: 0.93 - ETA: 48s - loss: 0.1861 - acc: 0.93 - ETA: 48s - loss: 0.1840 - acc: 0.93 - ETA: 48s - loss: 0.1845 - acc: 0.93 - ETA: 48s - loss: 0.1821 - acc: 0.93 - ETA: 48s - loss: 0.1837 - acc: 0.93 - ETA: 48s - loss: 0.1828 - acc: 0.93 - ETA: 47s - loss: 0.1807 - acc: 0.93 - ETA: 47s - loss: 0.1791 - acc: 0.93 - ETA: 47s - loss: 0.1769 - acc: 0.93 - ETA: 47s - loss: 0.1773 - acc: 0.93 - ETA: 47s - loss: 0.1777 - acc: 0.93 - ETA: 47s - loss: 0.1771 - acc: 0.93 - ETA: 47s - loss: 0.1753 - acc: 0.93 - ETA: 47s - loss: 0.1755 - acc: 0.93 - ETA: 47s - loss: 0.1760 - acc: 0.93 - ETA: 47s - loss: 0.1771 - acc: 0.93 - ETA: 46s - loss: 0.1791 - acc: 0.93 - ETA: 46s - loss: 0.1773 - acc: 0.93 - ETA: 46s - loss: 0.1762 - acc: 0.93 - ETA: 46s - loss: 0.1766 - acc: 0.93 - ETA: 46s - loss: 0.1785 - acc: 0.93 - ETA: 46s - loss: 0.1789 - acc: 0.93 - ETA: 46s - loss: 0.1774 - acc: 0.93 - ETA: 46s - loss: 0.1755 - acc: 0.93 - ETA: 46s - loss: 0.1771 - acc: 0.93 - ETA: 46s - loss: 0.1764 - acc: 0.93 - ETA: 46s - loss: 0.1767 - acc: 0.93 - ETA: 46s - loss: 0.1779 - acc: 0.93 - ETA: 46s - loss: 0.1774 - acc: 0.93 - ETA: 45s - loss: 0.1773 - acc: 0.93 - ETA: 45s - loss: 0.1779 - acc: 0.93 - ETA: 45s - loss: 0.1769 - acc: 0.93 - ETA: 45s - loss: 0.1755 - acc: 0.93 - ETA: 45s - loss: 0.1745 - acc: 0.93 - ETA: 45s - loss: 0.1732 - acc: 0.93 - ETA: 45s - loss: 0.1724 - acc: 0.93 - ETA: 45s - loss: 0.1757 - acc: 0.93 - ETA: 45s - loss: 0.1747 - acc: 0.93 - ETA: 45s - loss: 0.1738 - acc: 0.93 - ETA: 45s - loss: 0.1748 - acc: 0.93 - ETA: 45s - loss: 0.1772 - acc: 0.93 - ETA: 45s - loss: 0.1775 - acc: 0.93 - ETA: 44s - loss: 0.1758 - acc: 0.93 - ETA: 44s - loss: 0.1744 - acc: 0.93 - ETA: 44s - loss: 0.1742 - acc: 0.93 - ETA: 44s - loss: 0.1770 - acc: 0.93 - ETA: 44s - loss: 0.1783 - acc: 0.93 - ETA: 44s - loss: 0.1780 - acc: 0.93 - ETA: 44s - loss: 0.1769 - acc: 0.93 - ETA: 44s - loss: 0.1765 - acc: 0.93 - ETA: 44s - loss: 0.1767 - acc: 0.93 - ETA: 44s - loss: 0.1767 - acc: 0.93 - ETA: 44s - loss: 0.1756 - acc: 0.93 - ETA: 44s - loss: 0.1764 - acc: 0.93 - ETA: 44s - loss: 0.1766 - acc: 0.93 - ETA: 44s - loss: 0.1758 - acc: 0.93 - ETA: 44s - loss: 0.1761 - acc: 0.93 - ETA: 43s - loss: 0.1754 - acc: 0.93 - ETA: 43s - loss: 0.1744 - acc: 0.93 - ETA: 43s - loss: 0.1744 - acc: 0.93 - ETA: 43s - loss: 0.1764 - acc: 0.93 - ETA: 43s - loss: 0.1761 - acc: 0.93 - ETA: 43s - loss: 0.1757 - acc: 0.93 - ETA: 43s - loss: 0.1775 - acc: 0.93 - ETA: 43s - loss: 0.1770 - acc: 0.93 - ETA: 43s - loss: 0.1776 - acc: 0.93 - ETA: 43s - loss: 0.1782 - acc: 0.93 - ETA: 43s - loss: 0.1789 - acc: 0.93 - ETA: 43s - loss: 0.1784 - acc: 0.93 - ETA: 42s - loss: 0.1795 - acc: 0.93 - ETA: 42s - loss: 0.1798 - acc: 0.93 - ETA: 42s - loss: 0.1797 - acc: 0.93 - ETA: 42s - loss: 0.1798 - acc: 0.93 - ETA: 42s - loss: 0.1796 - acc: 0.93 - ETA: 42s - loss: 0.1794 - acc: 0.93 - ETA: 42s - loss: 0.1791 - acc: 0.93 - ETA: 42s - loss: 0.1787 - acc: 0.93 - ETA: 42s - loss: 0.1797 - acc: 0.93 - ETA: 42s - loss: 0.1788 - acc: 0.93 - ETA: 42s - loss: 0.1781 - acc: 0.93 - ETA: 42s - loss: 0.1772 - acc: 0.93 - ETA: 42s - loss: 0.1776 - acc: 0.93 - ETA: 42s - loss: 0.1789 - acc: 0.93 - ETA: 42s - loss: 0.1782 - acc: 0.93 - ETA: 41s - loss: 0.1780 - acc: 0.93 - ETA: 41s - loss: 0.1788 - acc: 0.93 - ETA: 41s - loss: 0.1794 - acc: 0.93 - ETA: 41s - loss: 0.1785 - acc: 0.93 - ETA: 41s - loss: 0.1780 - acc: 0.93 - ETA: 41s - loss: 0.1772 - acc: 0.93 - ETA: 41s - loss: 0.1769 - acc: 0.93 - ETA: 41s - loss: 0.1764 - acc: 0.93 - ETA: 41s - loss: 0.1755 - acc: 0.93 - ETA: 41s - loss: 0.1760 - acc: 0.93 - ETA: 41s - loss: 0.1764 - acc: 0.93 - ETA: 41s - loss: 0.1757 - acc: 0.93 - ETA: 41s - loss: 0.1752 - acc: 0.93 - ETA: 41s - loss: 0.1753 - acc: 0.93 - ETA: 41s - loss: 0.1747 - acc: 0.93 - ETA: 40s - loss: 0.1744 - acc: 0.93 - ETA: 40s - loss: 0.1749 - acc: 0.93 - ETA: 40s - loss: 0.1752 - acc: 0.93 - ETA: 40s - loss: 0.1750 - acc: 0.93 - ETA: 40s - loss: 0.1746 - acc: 0.93 - ETA: 40s - loss: 0.1742 - acc: 0.93 - ETA: 40s - loss: 0.1735 - acc: 0.93 - ETA: 40s - loss: 0.1732 - acc: 0.93 - ETA: 40s - loss: 0.1730 - acc: 0.93 - ETA: 40s - loss: 0.1738 - acc: 0.93 - ETA: 40s - loss: 0.1742 - acc: 0.93 - ETA: 40s - loss: 0.1742 - acc: 0.93 - ETA: 40s - loss: 0.1739 - acc: 0.93 - ETA: 40s - loss: 0.1744 - acc: 0.93 - ETA: 39s - loss: 0.1740 - acc: 0.93 - ETA: 39s - loss: 0.1735 - acc: 0.93 - ETA: 39s - loss: 0.1731 - acc: 0.93 - ETA: 39s - loss: 0.1722 - acc: 0.93 - ETA: 39s - loss: 0.1726 - acc: 0.93 - ETA: 39s - loss: 0.1725 - acc: 0.93 - ETA: 39s - loss: 0.1719 - acc: 0.93 - ETA: 39s - loss: 0.1710 - acc: 0.93 - ETA: 39s - loss: 0.1711 - acc: 0.93 - ETA: 39s - loss: 0.1703 - acc: 0.93 - ETA: 39s - loss: 0.1695 - acc: 0.94 - ETA: 39s - loss: 0.1693 - acc: 0.94 - ETA: 39s - loss: 0.1697 - acc: 0.94 - ETA: 39s - loss: 0.1700 - acc: 0.94 - ETA: 39s - loss: 0.1695 - acc: 0.94 - ETA: 39s - loss: 0.1698 - acc: 0.94 - ETA: 39s - loss: 0.1699 - acc: 0.94 - ETA: 39s - loss: 0.1695 - acc: 0.94 - ETA: 39s - loss: 0.1690 - acc: 0.94 - ETA: 38s - loss: 0.1699 - acc: 0.94 - ETA: 38s - loss: 0.1703 - acc: 0.94 - ETA: 38s - loss: 0.1706 - acc: 0.94 - ETA: 38s - loss: 0.1705 - acc: 0.94 - ETA: 38s - loss: 0.1699 - acc: 0.94 - ETA: 38s - loss: 0.1699 - acc: 0.94 - ETA: 38s - loss: 0.1694 - acc: 0.94 - ETA: 38s - loss: 0.1689 - acc: 0.94 - ETA: 38s - loss: 0.1686 - acc: 0.94 - ETA: 38s - loss: 0.1683 - acc: 0.94 - ETA: 38s - loss: 0.1687 - acc: 0.94 - ETA: 38s - loss: 0.1683 - acc: 0.94 - ETA: 38s - loss: 0.1676 - acc: 0.94 - ETA: 38s - loss: 0.1674 - acc: 0.94 - ETA: 38s - loss: 0.1677 - acc: 0.94 - ETA: 38s - loss: 0.1679 - acc: 0.94 - ETA: 37s - loss: 0.1677 - acc: 0.94 - ETA: 37s - loss: 0.1681 - acc: 0.94 - ETA: 37s - loss: 0.1693 - acc: 0.94 - ETA: 37s - loss: 0.1696 - acc: 0.94 - ETA: 37s - loss: 0.1701 - acc: 0.94 - ETA: 37s - loss: 0.1695 - acc: 0.94 - ETA: 37s - loss: 0.1692 - acc: 0.94 - ETA: 37s - loss: 0.1691 - acc: 0.94 - ETA: 37s - loss: 0.1690 - acc: 0.94 - ETA: 37s - loss: 0.1690 - acc: 0.94 - ETA: 37s - loss: 0.1689 - acc: 0.94 - ETA: 37s - loss: 0.1686 - acc: 0.94 - ETA: 37s - loss: 0.1683 - acc: 0.94 - ETA: 37s - loss: 0.1682 - acc: 0.94 - ETA: 37s - loss: 0.1679 - acc: 0.94 - ETA: 36s - loss: 0.1678 - acc: 0.94 - ETA: 36s - loss: 0.1672 - acc: 0.9420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.1670 - acc: 0.94 - ETA: 36s - loss: 0.1676 - acc: 0.94 - ETA: 36s - loss: 0.1672 - acc: 0.94 - ETA: 36s - loss: 0.1671 - acc: 0.94 - ETA: 36s - loss: 0.1670 - acc: 0.94 - ETA: 36s - loss: 0.1667 - acc: 0.94 - ETA: 36s - loss: 0.1669 - acc: 0.94 - ETA: 36s - loss: 0.1682 - acc: 0.94 - ETA: 36s - loss: 0.1676 - acc: 0.94 - ETA: 36s - loss: 0.1673 - acc: 0.94 - ETA: 36s - loss: 0.1666 - acc: 0.94 - ETA: 36s - loss: 0.1668 - acc: 0.94 - ETA: 36s - loss: 0.1670 - acc: 0.94 - ETA: 35s - loss: 0.1669 - acc: 0.94 - ETA: 35s - loss: 0.1667 - acc: 0.94 - ETA: 35s - loss: 0.1668 - acc: 0.94 - ETA: 35s - loss: 0.1666 - acc: 0.94 - ETA: 35s - loss: 0.1663 - acc: 0.94 - ETA: 35s - loss: 0.1661 - acc: 0.94 - ETA: 35s - loss: 0.1656 - acc: 0.94 - ETA: 35s - loss: 0.1655 - acc: 0.94 - ETA: 35s - loss: 0.1654 - acc: 0.94 - ETA: 35s - loss: 0.1657 - acc: 0.94 - ETA: 35s - loss: 0.1653 - acc: 0.94 - ETA: 35s - loss: 0.1648 - acc: 0.94 - ETA: 35s - loss: 0.1646 - acc: 0.94 - ETA: 35s - loss: 0.1641 - acc: 0.94 - ETA: 35s - loss: 0.1635 - acc: 0.94 - ETA: 35s - loss: 0.1632 - acc: 0.94 - ETA: 34s - loss: 0.1632 - acc: 0.94 - ETA: 34s - loss: 0.1633 - acc: 0.94 - ETA: 34s - loss: 0.1629 - acc: 0.94 - ETA: 34s - loss: 0.1630 - acc: 0.94 - ETA: 34s - loss: 0.1626 - acc: 0.94 - ETA: 34s - loss: 0.1623 - acc: 0.94 - ETA: 34s - loss: 0.1628 - acc: 0.94 - ETA: 34s - loss: 0.1626 - acc: 0.94 - ETA: 34s - loss: 0.1621 - acc: 0.94 - ETA: 34s - loss: 0.1617 - acc: 0.94 - ETA: 34s - loss: 0.1623 - acc: 0.94 - ETA: 34s - loss: 0.1638 - acc: 0.94 - ETA: 34s - loss: 0.1635 - acc: 0.94 - ETA: 34s - loss: 0.1632 - acc: 0.94 - ETA: 34s - loss: 0.1629 - acc: 0.94 - ETA: 34s - loss: 0.1633 - acc: 0.94 - ETA: 33s - loss: 0.1627 - acc: 0.94 - ETA: 33s - loss: 0.1625 - acc: 0.94 - ETA: 33s - loss: 0.1625 - acc: 0.94 - ETA: 33s - loss: 0.1622 - acc: 0.94 - ETA: 33s - loss: 0.1621 - acc: 0.94 - ETA: 33s - loss: 0.1618 - acc: 0.94 - ETA: 33s - loss: 0.1620 - acc: 0.94 - ETA: 33s - loss: 0.1619 - acc: 0.94 - ETA: 33s - loss: 0.1615 - acc: 0.94 - ETA: 33s - loss: 0.1616 - acc: 0.94 - ETA: 33s - loss: 0.1622 - acc: 0.94 - ETA: 33s - loss: 0.1631 - acc: 0.94 - ETA: 33s - loss: 0.1632 - acc: 0.94 - ETA: 33s - loss: 0.1629 - acc: 0.94 - ETA: 33s - loss: 0.1626 - acc: 0.94 - ETA: 33s - loss: 0.1621 - acc: 0.94 - ETA: 33s - loss: 0.1619 - acc: 0.94 - ETA: 32s - loss: 0.1626 - acc: 0.94 - ETA: 32s - loss: 0.1622 - acc: 0.94 - ETA: 32s - loss: 0.1618 - acc: 0.94 - ETA: 32s - loss: 0.1620 - acc: 0.94 - ETA: 32s - loss: 0.1626 - acc: 0.94 - ETA: 32s - loss: 0.1626 - acc: 0.94 - ETA: 32s - loss: 0.1623 - acc: 0.94 - ETA: 32s - loss: 0.1624 - acc: 0.94 - ETA: 32s - loss: 0.1623 - acc: 0.94 - ETA: 32s - loss: 0.1622 - acc: 0.94 - ETA: 32s - loss: 0.1618 - acc: 0.94 - ETA: 32s - loss: 0.1615 - acc: 0.94 - ETA: 32s - loss: 0.1615 - acc: 0.94 - ETA: 31s - loss: 0.1616 - acc: 0.94 - ETA: 31s - loss: 0.1613 - acc: 0.94 - ETA: 31s - loss: 0.1622 - acc: 0.94 - ETA: 31s - loss: 0.1634 - acc: 0.94 - ETA: 31s - loss: 0.1639 - acc: 0.94 - ETA: 31s - loss: 0.1634 - acc: 0.94 - ETA: 31s - loss: 0.1634 - acc: 0.94 - ETA: 31s - loss: 0.1631 - acc: 0.94 - ETA: 31s - loss: 0.1627 - acc: 0.94 - ETA: 31s - loss: 0.1627 - acc: 0.94 - ETA: 31s - loss: 0.1623 - acc: 0.94 - ETA: 31s - loss: 0.1629 - acc: 0.94 - ETA: 31s - loss: 0.1627 - acc: 0.94 - ETA: 31s - loss: 0.1626 - acc: 0.94 - ETA: 30s - loss: 0.1629 - acc: 0.94 - ETA: 30s - loss: 0.1628 - acc: 0.94 - ETA: 30s - loss: 0.1642 - acc: 0.94 - ETA: 30s - loss: 0.1639 - acc: 0.94 - ETA: 30s - loss: 0.1638 - acc: 0.94 - ETA: 30s - loss: 0.1635 - acc: 0.94 - ETA: 30s - loss: 0.1632 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1631 - acc: 0.94 - ETA: 30s - loss: 0.1636 - acc: 0.94 - ETA: 30s - loss: 0.1639 - acc: 0.94 - ETA: 30s - loss: 0.1643 - acc: 0.94 - ETA: 29s - loss: 0.1644 - acc: 0.94 - ETA: 29s - loss: 0.1639 - acc: 0.94 - ETA: 29s - loss: 0.1639 - acc: 0.94 - ETA: 29s - loss: 0.1639 - acc: 0.94 - ETA: 29s - loss: 0.1650 - acc: 0.94 - ETA: 29s - loss: 0.1646 - acc: 0.94 - ETA: 29s - loss: 0.1642 - acc: 0.94 - ETA: 29s - loss: 0.1638 - acc: 0.94 - ETA: 29s - loss: 0.1637 - acc: 0.94 - ETA: 29s - loss: 0.1643 - acc: 0.94 - ETA: 29s - loss: 0.1642 - acc: 0.94 - ETA: 29s - loss: 0.1642 - acc: 0.94 - ETA: 29s - loss: 0.1646 - acc: 0.94 - ETA: 28s - loss: 0.1646 - acc: 0.94 - ETA: 28s - loss: 0.1648 - acc: 0.94 - ETA: 28s - loss: 0.1645 - acc: 0.94 - ETA: 28s - loss: 0.1644 - acc: 0.94 - ETA: 28s - loss: 0.1649 - acc: 0.94 - ETA: 28s - loss: 0.1648 - acc: 0.94 - ETA: 28s - loss: 0.1654 - acc: 0.94 - ETA: 28s - loss: 0.1654 - acc: 0.94 - ETA: 28s - loss: 0.1657 - acc: 0.94 - ETA: 28s - loss: 0.1657 - acc: 0.94 - ETA: 28s - loss: 0.1656 - acc: 0.94 - ETA: 28s - loss: 0.1656 - acc: 0.94 - ETA: 28s - loss: 0.1655 - acc: 0.94 - ETA: 28s - loss: 0.1655 - acc: 0.94 - ETA: 27s - loss: 0.1655 - acc: 0.94 - ETA: 27s - loss: 0.1656 - acc: 0.94 - ETA: 27s - loss: 0.1654 - acc: 0.94 - ETA: 27s - loss: 0.1657 - acc: 0.94 - ETA: 27s - loss: 0.1654 - acc: 0.94 - ETA: 27s - loss: 0.1659 - acc: 0.94 - ETA: 27s - loss: 0.1663 - acc: 0.94 - ETA: 27s - loss: 0.1663 - acc: 0.94 - ETA: 27s - loss: 0.1668 - acc: 0.94 - ETA: 27s - loss: 0.1668 - acc: 0.94 - ETA: 27s - loss: 0.1671 - acc: 0.94 - ETA: 27s - loss: 0.1674 - acc: 0.94 - ETA: 27s - loss: 0.1679 - acc: 0.94 - ETA: 27s - loss: 0.1679 - acc: 0.94 - ETA: 27s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1672 - acc: 0.94 - ETA: 26s - loss: 0.1674 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1680 - acc: 0.94 - ETA: 26s - loss: 0.1682 - acc: 0.94 - ETA: 26s - loss: 0.1683 - acc: 0.94 - ETA: 26s - loss: 0.1681 - acc: 0.94 - ETA: 26s - loss: 0.1679 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1672 - acc: 0.94 - ETA: 26s - loss: 0.1669 - acc: 0.94 - ETA: 26s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1665 - acc: 0.94 - ETA: 25s - loss: 0.1665 - acc: 0.94 - ETA: 25s - loss: 0.1675 - acc: 0.94 - ETA: 25s - loss: 0.1672 - acc: 0.94 - ETA: 25s - loss: 0.1669 - acc: 0.94 - ETA: 25s - loss: 0.1666 - acc: 0.94 - ETA: 25s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1666 - acc: 0.94 - ETA: 25s - loss: 0.1669 - acc: 0.94 - ETA: 25s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1666 - acc: 0.94 - ETA: 25s - loss: 0.1664 - acc: 0.94 - ETA: 25s - loss: 0.1664 - acc: 0.94 - ETA: 24s - loss: 0.1666 - acc: 0.94 - ETA: 24s - loss: 0.1662 - acc: 0.94 - ETA: 24s - loss: 0.1660 - acc: 0.94 - ETA: 24s - loss: 0.1658 - acc: 0.94 - ETA: 24s - loss: 0.1658 - acc: 0.94 - ETA: 24s - loss: 0.1664 - acc: 0.94 - ETA: 24s - loss: 0.1661 - acc: 0.94 - ETA: 24s - loss: 0.1657 - acc: 0.94 - ETA: 24s - loss: 0.1657 - acc: 0.94 - ETA: 24s - loss: 0.1667 - acc: 0.94 - ETA: 24s - loss: 0.1667 - acc: 0.94 - ETA: 24s - loss: 0.1665 - acc: 0.94 - ETA: 24s - loss: 0.1665 - acc: 0.94 - ETA: 24s - loss: 0.1663 - acc: 0.94 - ETA: 23s - loss: 0.1663 - acc: 0.94 - ETA: 23s - loss: 0.1664 - acc: 0.94 - ETA: 23s - loss: 0.1662 - acc: 0.94 - ETA: 23s - loss: 0.1659 - acc: 0.94 - ETA: 23s - loss: 0.1656 - acc: 0.94 - ETA: 23s - loss: 0.1656 - acc: 0.94 - ETA: 23s - loss: 0.1654 - acc: 0.94 - ETA: 23s - loss: 0.1654 - acc: 0.94 - ETA: 23s - loss: 0.1651 - acc: 0.94 - ETA: 23s - loss: 0.1649 - acc: 0.94 - ETA: 23s - loss: 0.1647 - acc: 0.94 - ETA: 23s - loss: 0.1649 - acc: 0.94 - ETA: 23s - loss: 0.1646 - acc: 0.94 - ETA: 23s - loss: 0.1644 - acc: 0.94 - ETA: 22s - loss: 0.1645 - acc: 0.94 - ETA: 22s - loss: 0.1644 - acc: 0.94 - ETA: 22s - loss: 0.1641 - acc: 0.94 - ETA: 22s - loss: 0.1645 - acc: 0.94 - ETA: 22s - loss: 0.1645 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1641 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1640 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1641 - acc: 0.94 - ETA: 22s - loss: 0.1640 - acc: 0.94 - ETA: 22s - loss: 0.1637 - acc: 0.9432" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 21s - loss: 0.1643 - acc: 0.94 - ETA: 21s - loss: 0.1646 - acc: 0.94 - ETA: 21s - loss: 0.1644 - acc: 0.94 - ETA: 21s - loss: 0.1641 - acc: 0.94 - ETA: 21s - loss: 0.1640 - acc: 0.94 - ETA: 21s - loss: 0.1639 - acc: 0.94 - ETA: 21s - loss: 0.1637 - acc: 0.94 - ETA: 21s - loss: 0.1634 - acc: 0.94 - ETA: 21s - loss: 0.1634 - acc: 0.94 - ETA: 21s - loss: 0.1638 - acc: 0.94 - ETA: 21s - loss: 0.1640 - acc: 0.94 - ETA: 21s - loss: 0.1641 - acc: 0.94 - ETA: 21s - loss: 0.1641 - acc: 0.94 - ETA: 21s - loss: 0.1638 - acc: 0.94 - ETA: 21s - loss: 0.1639 - acc: 0.94 - ETA: 20s - loss: 0.1637 - acc: 0.94 - ETA: 20s - loss: 0.1637 - acc: 0.94 - ETA: 20s - loss: 0.1637 - acc: 0.94 - ETA: 20s - loss: 0.1635 - acc: 0.94 - ETA: 20s - loss: 0.1634 - acc: 0.94 - ETA: 20s - loss: 0.1633 - acc: 0.94 - ETA: 20s - loss: 0.1633 - acc: 0.94 - ETA: 20s - loss: 0.1633 - acc: 0.94 - ETA: 20s - loss: 0.1630 - acc: 0.94 - ETA: 20s - loss: 0.1629 - acc: 0.94 - ETA: 20s - loss: 0.1631 - acc: 0.94 - ETA: 20s - loss: 0.1630 - acc: 0.94 - ETA: 20s - loss: 0.1629 - acc: 0.94 - ETA: 20s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1637 - acc: 0.94 - ETA: 19s - loss: 0.1635 - acc: 0.94 - ETA: 19s - loss: 0.1638 - acc: 0.94 - ETA: 19s - loss: 0.1639 - acc: 0.94 - ETA: 19s - loss: 0.1636 - acc: 0.94 - ETA: 19s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1636 - acc: 0.94 - ETA: 19s - loss: 0.1633 - acc: 0.94 - ETA: 19s - loss: 0.1633 - acc: 0.94 - ETA: 19s - loss: 0.1633 - acc: 0.94 - ETA: 19s - loss: 0.1631 - acc: 0.94 - ETA: 19s - loss: 0.1631 - acc: 0.94 - ETA: 19s - loss: 0.1630 - acc: 0.94 - ETA: 18s - loss: 0.1631 - acc: 0.94 - ETA: 18s - loss: 0.1630 - acc: 0.94 - ETA: 18s - loss: 0.1632 - acc: 0.94 - ETA: 18s - loss: 0.1630 - acc: 0.94 - ETA: 18s - loss: 0.1629 - acc: 0.94 - ETA: 18s - loss: 0.1627 - acc: 0.94 - ETA: 18s - loss: 0.1627 - acc: 0.94 - ETA: 18s - loss: 0.1626 - acc: 0.94 - ETA: 18s - loss: 0.1625 - acc: 0.94 - ETA: 18s - loss: 0.1623 - acc: 0.94 - ETA: 18s - loss: 0.1620 - acc: 0.94 - ETA: 18s - loss: 0.1622 - acc: 0.94 - ETA: 18s - loss: 0.1620 - acc: 0.94 - ETA: 18s - loss: 0.1620 - acc: 0.94 - ETA: 17s - loss: 0.1620 - acc: 0.94 - ETA: 17s - loss: 0.1618 - acc: 0.94 - ETA: 17s - loss: 0.1615 - acc: 0.94 - ETA: 17s - loss: 0.1614 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1610 - acc: 0.94 - ETA: 17s - loss: 0.1609 - acc: 0.94 - ETA: 17s - loss: 0.1609 - acc: 0.94 - ETA: 17s - loss: 0.1610 - acc: 0.94 - ETA: 17s - loss: 0.1611 - acc: 0.94 - ETA: 17s - loss: 0.1610 - acc: 0.94 - ETA: 16s - loss: 0.1609 - acc: 0.94 - ETA: 16s - loss: 0.1608 - acc: 0.94 - ETA: 16s - loss: 0.1606 - acc: 0.94 - ETA: 16s - loss: 0.1605 - acc: 0.94 - ETA: 16s - loss: 0.1606 - acc: 0.94 - ETA: 16s - loss: 0.1607 - acc: 0.94 - ETA: 16s - loss: 0.1611 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1611 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1610 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1610 - acc: 0.94 - ETA: 15s - loss: 0.1608 - acc: 0.94 - ETA: 15s - loss: 0.1609 - acc: 0.94 - ETA: 15s - loss: 0.1609 - acc: 0.94 - ETA: 15s - loss: 0.1609 - acc: 0.94 - ETA: 15s - loss: 0.1614 - acc: 0.94 - ETA: 15s - loss: 0.1617 - acc: 0.94 - ETA: 15s - loss: 0.1621 - acc: 0.94 - ETA: 15s - loss: 0.1625 - acc: 0.94 - ETA: 15s - loss: 0.1626 - acc: 0.94 - ETA: 15s - loss: 0.1623 - acc: 0.94 - ETA: 15s - loss: 0.1626 - acc: 0.94 - ETA: 15s - loss: 0.1626 - acc: 0.94 - ETA: 15s - loss: 0.1631 - acc: 0.94 - ETA: 15s - loss: 0.1631 - acc: 0.94 - ETA: 15s - loss: 0.1631 - acc: 0.94 - ETA: 14s - loss: 0.1630 - acc: 0.94 - ETA: 14s - loss: 0.1631 - acc: 0.94 - ETA: 14s - loss: 0.1634 - acc: 0.94 - ETA: 14s - loss: 0.1634 - acc: 0.94 - ETA: 14s - loss: 0.1632 - acc: 0.94 - ETA: 14s - loss: 0.1630 - acc: 0.94 - ETA: 14s - loss: 0.1630 - acc: 0.94 - ETA: 14s - loss: 0.1628 - acc: 0.94 - ETA: 14s - loss: 0.1628 - acc: 0.94 - ETA: 14s - loss: 0.1628 - acc: 0.94 - ETA: 14s - loss: 0.1627 - acc: 0.94 - ETA: 14s - loss: 0.1629 - acc: 0.94 - ETA: 14s - loss: 0.1629 - acc: 0.94 - ETA: 14s - loss: 0.1627 - acc: 0.94 - ETA: 13s - loss: 0.1628 - acc: 0.94 - ETA: 13s - loss: 0.1633 - acc: 0.94 - ETA: 13s - loss: 0.1631 - acc: 0.94 - ETA: 13s - loss: 0.1632 - acc: 0.94 - ETA: 13s - loss: 0.1637 - acc: 0.94 - ETA: 13s - loss: 0.1638 - acc: 0.94 - ETA: 13s - loss: 0.1636 - acc: 0.94 - ETA: 13s - loss: 0.1637 - acc: 0.94 - ETA: 13s - loss: 0.1638 - acc: 0.94 - ETA: 13s - loss: 0.1643 - acc: 0.94 - ETA: 13s - loss: 0.1645 - acc: 0.94 - ETA: 13s - loss: 0.1643 - acc: 0.94 - ETA: 13s - loss: 0.1645 - acc: 0.94 - ETA: 13s - loss: 0.1646 - acc: 0.94 - ETA: 12s - loss: 0.1648 - acc: 0.94 - ETA: 12s - loss: 0.1648 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1651 - acc: 0.94 - ETA: 12s - loss: 0.1650 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1655 - acc: 0.94 - ETA: 12s - loss: 0.1657 - acc: 0.94 - ETA: 12s - loss: 0.1658 - acc: 0.94 - ETA: 12s - loss: 0.1659 - acc: 0.94 - ETA: 12s - loss: 0.1660 - acc: 0.94 - ETA: 12s - loss: 0.1659 - acc: 0.94 - ETA: 11s - loss: 0.1659 - acc: 0.94 - ETA: 11s - loss: 0.1657 - acc: 0.94 - ETA: 11s - loss: 0.1660 - acc: 0.94 - ETA: 11s - loss: 0.1663 - acc: 0.94 - ETA: 11s - loss: 0.1661 - acc: 0.94 - ETA: 11s - loss: 0.1663 - acc: 0.94 - ETA: 11s - loss: 0.1665 - acc: 0.94 - ETA: 11s - loss: 0.1666 - acc: 0.94 - ETA: 11s - loss: 0.1665 - acc: 0.94 - ETA: 11s - loss: 0.1664 - acc: 0.94 - ETA: 11s - loss: 0.1662 - acc: 0.94 - ETA: 11s - loss: 0.1660 - acc: 0.94 - ETA: 11s - loss: 0.1661 - acc: 0.94 - ETA: 11s - loss: 0.1660 - acc: 0.94 - ETA: 10s - loss: 0.1659 - acc: 0.94 - ETA: 10s - loss: 0.1659 - acc: 0.94 - ETA: 10s - loss: 0.1658 - acc: 0.94 - ETA: 10s - loss: 0.1657 - acc: 0.94 - ETA: 10s - loss: 0.1655 - acc: 0.94 - ETA: 10s - loss: 0.1654 - acc: 0.94 - ETA: 10s - loss: 0.1656 - acc: 0.94 - ETA: 10s - loss: 0.1657 - acc: 0.94 - ETA: 10s - loss: 0.1657 - acc: 0.94 - ETA: 10s - loss: 0.1655 - acc: 0.94 - ETA: 10s - loss: 0.1653 - acc: 0.94 - ETA: 10s - loss: 0.1653 - acc: 0.94 - ETA: 10s - loss: 0.1652 - acc: 0.94 - ETA: 10s - loss: 0.1653 - acc: 0.94 - ETA: 9s - loss: 0.1654 - acc: 0.9428 - ETA: 9s - loss: 0.1653 - acc: 0.942 - ETA: 9s - loss: 0.1652 - acc: 0.942 - ETA: 9s - loss: 0.1651 - acc: 0.942 - ETA: 9s - loss: 0.1649 - acc: 0.943 - ETA: 9s - loss: 0.1647 - acc: 0.942 - ETA: 9s - loss: 0.1649 - acc: 0.942 - ETA: 9s - loss: 0.1648 - acc: 0.942 - ETA: 9s - loss: 0.1647 - acc: 0.942 - ETA: 9s - loss: 0.1647 - acc: 0.943 - ETA: 9s - loss: 0.1647 - acc: 0.942 - ETA: 9s - loss: 0.1649 - acc: 0.942 - ETA: 9s - loss: 0.1652 - acc: 0.942 - ETA: 9s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1656 - acc: 0.942 - ETA: 8s - loss: 0.1653 - acc: 0.942 - ETA: 8s - loss: 0.1653 - acc: 0.942 - ETA: 8s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1649 - acc: 0.942 - ETA: 8s - loss: 0.1649 - acc: 0.942 - ETA: 8s - loss: 0.1650 - acc: 0.942 - ETA: 8s - loss: 0.1649 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 8s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 7s - loss: 0.1648 - acc: 0.942 - ETA: 7s - loss: 0.1646 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1647 - acc: 0.942 - ETA: 7s - loss: 0.1647 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1648 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1650 - acc: 0.942 - ETA: 7s - loss: 0.1651 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1649 - acc: 0.9424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1648 - acc: 0.942 - ETA: 6s - loss: 0.1647 - acc: 0.942 - ETA: 6s - loss: 0.1646 - acc: 0.942 - ETA: 6s - loss: 0.1646 - acc: 0.942 - ETA: 6s - loss: 0.1645 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1640 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1640 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1643 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1640 - acc: 0.942 - ETA: 4s - loss: 0.1639 - acc: 0.942 - ETA: 4s - loss: 0.1640 - acc: 0.942 - ETA: 4s - loss: 0.1644 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1639 - acc: 0.942 - ETA: 3s - loss: 0.1637 - acc: 0.942 - ETA: 3s - loss: 0.1637 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1634 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1633 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1633 - acc: 0.942 - ETA: 3s - loss: 0.1638 - acc: 0.942 - ETA: 2s - loss: 0.1637 - acc: 0.942 - ETA: 2s - loss: 0.1637 - acc: 0.942 - ETA: 2s - loss: 0.1637 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1634 - acc: 0.942 - ETA: 2s - loss: 0.1633 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1636 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1634 - acc: 0.942 - ETA: 2s - loss: 0.1633 - acc: 0.942 - ETA: 2s - loss: 0.1632 - acc: 0.942 - ETA: 2s - loss: 0.1632 - acc: 0.942 - ETA: 1s - loss: 0.1632 - acc: 0.942 - ETA: 1s - loss: 0.1632 - acc: 0.942 - ETA: 1s - loss: 0.1631 - acc: 0.942 - ETA: 1s - loss: 0.1629 - acc: 0.942 - ETA: 1s - loss: 0.1630 - acc: 0.942 - ETA: 1s - loss: 0.1628 - acc: 0.942 - ETA: 1s - loss: 0.1626 - acc: 0.942 - ETA: 1s - loss: 0.1624 - acc: 0.942 - ETA: 1s - loss: 0.1623 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1616 - acc: 0.942 - ETA: 0s - loss: 0.1616 - acc: 0.942 - ETA: 0s - loss: 0.1617 - acc: 0.942 - ETA: 0s - loss: 0.1617 - acc: 0.942 - ETA: 0s - loss: 0.1619 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1621 - acc: 0.942 - 54s 2ms/step - loss: 0.1619 - acc: 0.9427 - val_loss: 0.1445 - val_acc: 0.9523\n", + "\n", + "Epoch 00009: val_acc improved from 0.94320 to 0.95229, saving model to models\\conv.model\n", + "Epoch 10/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 45s - loss: 0.1031 - acc: 0.96 - ETA: 47s - loss: 0.1601 - acc: 0.93 - ETA: 47s - loss: 0.1483 - acc: 0.94 - ETA: 51s - loss: 0.1533 - acc: 0.94 - ETA: 52s - loss: 0.1496 - acc: 0.95 - ETA: 52s - loss: 0.1425 - acc: 0.94 - ETA: 52s - loss: 0.1234 - acc: 0.95 - ETA: 52s - loss: 0.1372 - acc: 0.94 - ETA: 51s - loss: 0.1336 - acc: 0.95 - ETA: 51s - loss: 0.1293 - acc: 0.95 - ETA: 50s - loss: 0.1418 - acc: 0.94 - ETA: 50s - loss: 0.1337 - acc: 0.95 - ETA: 50s - loss: 0.1499 - acc: 0.94 - ETA: 50s - loss: 0.1541 - acc: 0.93 - ETA: 50s - loss: 0.1539 - acc: 0.94 - ETA: 50s - loss: 0.1466 - acc: 0.94 - ETA: 50s - loss: 0.1560 - acc: 0.94 - ETA: 50s - loss: 0.1503 - acc: 0.94 - ETA: 50s - loss: 0.1485 - acc: 0.95 - ETA: 50s - loss: 0.1471 - acc: 0.95 - ETA: 49s - loss: 0.1469 - acc: 0.95 - ETA: 49s - loss: 0.1426 - acc: 0.95 - ETA: 49s - loss: 0.1379 - acc: 0.95 - ETA: 49s - loss: 0.1467 - acc: 0.95 - ETA: 49s - loss: 0.1457 - acc: 0.95 - ETA: 49s - loss: 0.1471 - acc: 0.95 - ETA: 49s - loss: 0.1436 - acc: 0.95 - ETA: 49s - loss: 0.1642 - acc: 0.95 - ETA: 49s - loss: 0.1635 - acc: 0.95 - ETA: 49s - loss: 0.1662 - acc: 0.94 - ETA: 48s - loss: 0.1621 - acc: 0.95 - ETA: 48s - loss: 0.1601 - acc: 0.95 - ETA: 48s - loss: 0.1567 - acc: 0.95 - ETA: 48s - loss: 0.1575 - acc: 0.95 - ETA: 48s - loss: 0.1621 - acc: 0.95 - ETA: 48s - loss: 0.1627 - acc: 0.94 - ETA: 48s - loss: 0.1619 - acc: 0.94 - ETA: 48s - loss: 0.1631 - acc: 0.94 - ETA: 48s - loss: 0.1676 - acc: 0.94 - ETA: 48s - loss: 0.1655 - acc: 0.94 - ETA: 48s - loss: 0.1627 - acc: 0.94 - ETA: 48s - loss: 0.1622 - acc: 0.94 - ETA: 48s - loss: 0.1613 - acc: 0.94 - ETA: 47s - loss: 0.1597 - acc: 0.94 - ETA: 48s - loss: 0.1679 - acc: 0.94 - ETA: 48s - loss: 0.1664 - acc: 0.94 - ETA: 47s - loss: 0.1684 - acc: 0.94 - ETA: 47s - loss: 0.1673 - acc: 0.94 - ETA: 47s - loss: 0.1651 - acc: 0.94 - ETA: 47s - loss: 0.1667 - acc: 0.94 - ETA: 47s - loss: 0.1647 - acc: 0.94 - ETA: 47s - loss: 0.1640 - acc: 0.94 - ETA: 47s - loss: 0.1612 - acc: 0.94 - ETA: 47s - loss: 0.1605 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1596 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1616 - acc: 0.94 - ETA: 47s - loss: 0.1620 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1608 - acc: 0.94 - ETA: 47s - loss: 0.1646 - acc: 0.94 - ETA: 47s - loss: 0.1640 - acc: 0.94 - ETA: 47s - loss: 0.1639 - acc: 0.94 - ETA: 46s - loss: 0.1650 - acc: 0.94 - ETA: 46s - loss: 0.1638 - acc: 0.94 - ETA: 46s - loss: 0.1658 - acc: 0.94 - ETA: 46s - loss: 0.1651 - acc: 0.94 - ETA: 46s - loss: 0.1642 - acc: 0.94 - ETA: 46s - loss: 0.1625 - acc: 0.94 - ETA: 46s - loss: 0.1619 - acc: 0.94 - ETA: 46s - loss: 0.1652 - acc: 0.94 - ETA: 46s - loss: 0.1658 - acc: 0.94 - ETA: 47s - loss: 0.1644 - acc: 0.94 - ETA: 47s - loss: 0.1642 - acc: 0.94 - ETA: 47s - loss: 0.1621 - acc: 0.94 - ETA: 47s - loss: 0.1646 - acc: 0.94 - ETA: 47s - loss: 0.1631 - acc: 0.94 - ETA: 47s - loss: 0.1628 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 46s - loss: 0.1614 - acc: 0.94 - ETA: 46s - loss: 0.1609 - acc: 0.94 - ETA: 46s - loss: 0.1609 - acc: 0.94 - ETA: 46s - loss: 0.1615 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1593 - acc: 0.94 - ETA: 46s - loss: 0.1598 - acc: 0.94 - ETA: 47s - loss: 0.1596 - acc: 0.94 - ETA: 47s - loss: 0.1597 - acc: 0.94 - ETA: 47s - loss: 0.1591 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 46s - loss: 0.1619 - acc: 0.94 - ETA: 46s - loss: 0.1617 - acc: 0.94 - ETA: 46s - loss: 0.1611 - acc: 0.94 - ETA: 46s - loss: 0.1616 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 46s - loss: 0.1603 - acc: 0.94 - ETA: 47s - loss: 0.1609 - acc: 0.94 - ETA: 47s - loss: 0.1602 - acc: 0.94 - ETA: 46s - loss: 0.1594 - acc: 0.94 - ETA: 46s - loss: 0.1596 - acc: 0.94 - ETA: 46s - loss: 0.1611 - acc: 0.94 - ETA: 46s - loss: 0.1603 - acc: 0.94 - ETA: 47s - loss: 0.1594 - acc: 0.94 - ETA: 47s - loss: 0.1598 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 47s - loss: 0.1618 - acc: 0.94 - ETA: 47s - loss: 0.1611 - acc: 0.94 - ETA: 47s - loss: 0.1622 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1622 - acc: 0.94 - ETA: 47s - loss: 0.1613 - acc: 0.94 - ETA: 47s - loss: 0.1634 - acc: 0.94 - ETA: 47s - loss: 0.1624 - acc: 0.94 - ETA: 47s - loss: 0.1628 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1613 - acc: 0.94 - ETA: 47s - loss: 0.1601 - acc: 0.94 - ETA: 47s - loss: 0.1605 - acc: 0.94 - ETA: 47s - loss: 0.1616 - acc: 0.94 - ETA: 47s - loss: 0.1610 - acc: 0.94 - ETA: 47s - loss: 0.1607 - acc: 0.94 - ETA: 47s - loss: 0.1603 - acc: 0.94 - ETA: 47s - loss: 0.1617 - acc: 0.94 - ETA: 47s - loss: 0.1620 - acc: 0.94 - ETA: 47s - loss: 0.1619 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 47s - loss: 0.1609 - acc: 0.94 - ETA: 47s - loss: 0.1605 - acc: 0.94 - ETA: 47s - loss: 0.1601 - acc: 0.94 - ETA: 47s - loss: 0.1594 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1601 - acc: 0.94 - ETA: 47s - loss: 0.1602 - acc: 0.94 - ETA: 47s - loss: 0.1608 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1597 - acc: 0.94 - ETA: 47s - loss: 0.1594 - acc: 0.94 - ETA: 47s - loss: 0.1606 - acc: 0.94 - ETA: 46s - loss: 0.1615 - acc: 0.94 - ETA: 46s - loss: 0.1617 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1606 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1615 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1606 - acc: 0.94 - ETA: 46s - loss: 0.1603 - acc: 0.94 - ETA: 45s - loss: 0.1598 - acc: 0.94 - ETA: 45s - loss: 0.1592 - acc: 0.94 - ETA: 45s - loss: 0.1594 - acc: 0.94 - ETA: 45s - loss: 0.1599 - acc: 0.94 - ETA: 45s - loss: 0.1596 - acc: 0.94 - ETA: 45s - loss: 0.1590 - acc: 0.94 - ETA: 45s - loss: 0.1592 - acc: 0.94 - ETA: 45s - loss: 0.1597 - acc: 0.94 - ETA: 45s - loss: 0.1600 - acc: 0.94 - ETA: 45s - loss: 0.1596 - acc: 0.94 - ETA: 44s - loss: 0.1592 - acc: 0.94 - ETA: 44s - loss: 0.1596 - acc: 0.94 - ETA: 44s - loss: 0.1613 - acc: 0.94 - ETA: 44s - loss: 0.1618 - acc: 0.94 - ETA: 44s - loss: 0.1613 - acc: 0.94 - ETA: 44s - loss: 0.1605 - acc: 0.94 - ETA: 44s - loss: 0.1607 - acc: 0.94 - ETA: 44s - loss: 0.1607 - acc: 0.94 - ETA: 44s - loss: 0.1601 - acc: 0.94 - ETA: 44s - loss: 0.1602 - acc: 0.94 - ETA: 44s - loss: 0.1606 - acc: 0.94 - ETA: 43s - loss: 0.1601 - acc: 0.94 - ETA: 43s - loss: 0.1596 - acc: 0.94 - ETA: 43s - loss: 0.1590 - acc: 0.94 - ETA: 43s - loss: 0.1588 - acc: 0.94 - ETA: 43s - loss: 0.1598 - acc: 0.94 - ETA: 43s - loss: 0.1594 - acc: 0.94 - ETA: 43s - loss: 0.1592 - acc: 0.94 - ETA: 43s - loss: 0.1606 - acc: 0.94 - ETA: 43s - loss: 0.1617 - acc: 0.94 - ETA: 43s - loss: 0.1614 - acc: 0.94 - ETA: 42s - loss: 0.1608 - acc: 0.94 - ETA: 42s - loss: 0.1603 - acc: 0.94 - ETA: 42s - loss: 0.1603 - acc: 0.94 - ETA: 42s - loss: 0.1602 - acc: 0.94 - ETA: 42s - loss: 0.1595 - acc: 0.94 - ETA: 42s - loss: 0.1590 - acc: 0.94 - ETA: 42s - loss: 0.1587 - acc: 0.94 - ETA: 42s - loss: 0.1584 - acc: 0.94 - ETA: 42s - loss: 0.1591 - acc: 0.94 - ETA: 42s - loss: 0.1593 - acc: 0.94 - ETA: 41s - loss: 0.1604 - acc: 0.94 - ETA: 41s - loss: 0.1607 - acc: 0.94 - ETA: 41s - loss: 0.1619 - acc: 0.94 - ETA: 41s - loss: 0.1616 - acc: 0.94 - ETA: 41s - loss: 0.1624 - acc: 0.94 - ETA: 41s - loss: 0.1620 - acc: 0.94 - ETA: 41s - loss: 0.1628 - acc: 0.94 - ETA: 41s - loss: 0.1628 - acc: 0.94 - ETA: 41s - loss: 0.1622 - acc: 0.94 - ETA: 41s - loss: 0.1622 - acc: 0.94 - ETA: 41s - loss: 0.1632 - acc: 0.94 - ETA: 40s - loss: 0.1631 - acc: 0.94 - ETA: 40s - loss: 0.1639 - acc: 0.94 - ETA: 40s - loss: 0.1641 - acc: 0.94 - ETA: 40s - loss: 0.1642 - acc: 0.94 - ETA: 40s - loss: 0.1637 - acc: 0.94 - ETA: 40s - loss: 0.1638 - acc: 0.94 - ETA: 40s - loss: 0.1634 - acc: 0.94 - ETA: 40s - loss: 0.1645 - acc: 0.94 - ETA: 40s - loss: 0.1642 - acc: 0.94 - ETA: 40s - loss: 0.1642 - acc: 0.94 - ETA: 39s - loss: 0.1647 - acc: 0.94 - ETA: 39s - loss: 0.1648 - acc: 0.94 - ETA: 39s - loss: 0.1645 - acc: 0.94 - ETA: 39s - loss: 0.1643 - acc: 0.9439" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 39s - loss: 0.1650 - acc: 0.94 - ETA: 39s - loss: 0.1653 - acc: 0.94 - ETA: 39s - loss: 0.1654 - acc: 0.94 - ETA: 39s - loss: 0.1656 - acc: 0.94 - ETA: 39s - loss: 0.1652 - acc: 0.94 - ETA: 39s - loss: 0.1653 - acc: 0.94 - ETA: 39s - loss: 0.1654 - acc: 0.94 - ETA: 39s - loss: 0.1655 - acc: 0.94 - ETA: 38s - loss: 0.1653 - acc: 0.94 - ETA: 38s - loss: 0.1649 - acc: 0.94 - ETA: 38s - loss: 0.1651 - acc: 0.94 - ETA: 38s - loss: 0.1651 - acc: 0.94 - ETA: 38s - loss: 0.1653 - acc: 0.94 - ETA: 38s - loss: 0.1647 - acc: 0.94 - ETA: 38s - loss: 0.1643 - acc: 0.94 - ETA: 38s - loss: 0.1645 - acc: 0.94 - ETA: 38s - loss: 0.1641 - acc: 0.94 - ETA: 38s - loss: 0.1638 - acc: 0.94 - ETA: 38s - loss: 0.1633 - acc: 0.94 - ETA: 38s - loss: 0.1633 - acc: 0.94 - ETA: 37s - loss: 0.1633 - acc: 0.94 - ETA: 37s - loss: 0.1637 - acc: 0.94 - ETA: 37s - loss: 0.1639 - acc: 0.94 - ETA: 37s - loss: 0.1651 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1654 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1649 - acc: 0.94 - ETA: 37s - loss: 0.1648 - acc: 0.94 - ETA: 37s - loss: 0.1646 - acc: 0.94 - ETA: 36s - loss: 0.1647 - acc: 0.94 - ETA: 36s - loss: 0.1647 - acc: 0.94 - ETA: 36s - loss: 0.1652 - acc: 0.94 - ETA: 36s - loss: 0.1662 - acc: 0.94 - ETA: 36s - loss: 0.1658 - acc: 0.94 - ETA: 36s - loss: 0.1661 - acc: 0.94 - ETA: 36s - loss: 0.1660 - acc: 0.94 - ETA: 36s - loss: 0.1657 - acc: 0.94 - ETA: 36s - loss: 0.1658 - acc: 0.94 - ETA: 36s - loss: 0.1656 - acc: 0.94 - ETA: 36s - loss: 0.1656 - acc: 0.94 - ETA: 36s - loss: 0.1659 - acc: 0.94 - ETA: 35s - loss: 0.1669 - acc: 0.94 - ETA: 35s - loss: 0.1669 - acc: 0.94 - ETA: 35s - loss: 0.1666 - acc: 0.94 - ETA: 35s - loss: 0.1663 - acc: 0.94 - ETA: 35s - loss: 0.1657 - acc: 0.94 - ETA: 35s - loss: 0.1657 - acc: 0.94 - ETA: 35s - loss: 0.1654 - acc: 0.94 - ETA: 35s - loss: 0.1653 - acc: 0.94 - ETA: 35s - loss: 0.1649 - acc: 0.94 - ETA: 35s - loss: 0.1652 - acc: 0.94 - ETA: 35s - loss: 0.1646 - acc: 0.94 - ETA: 35s - loss: 0.1647 - acc: 0.94 - ETA: 34s - loss: 0.1646 - acc: 0.94 - ETA: 34s - loss: 0.1645 - acc: 0.94 - ETA: 34s - loss: 0.1641 - acc: 0.94 - ETA: 34s - loss: 0.1637 - acc: 0.94 - ETA: 34s - loss: 0.1637 - acc: 0.94 - ETA: 34s - loss: 0.1640 - acc: 0.94 - ETA: 34s - loss: 0.1639 - acc: 0.94 - ETA: 34s - loss: 0.1638 - acc: 0.94 - ETA: 34s - loss: 0.1647 - acc: 0.94 - ETA: 34s - loss: 0.1653 - acc: 0.94 - ETA: 34s - loss: 0.1649 - acc: 0.94 - ETA: 34s - loss: 0.1650 - acc: 0.94 - ETA: 33s - loss: 0.1653 - acc: 0.94 - ETA: 33s - loss: 0.1647 - acc: 0.94 - ETA: 33s - loss: 0.1652 - acc: 0.94 - ETA: 33s - loss: 0.1660 - acc: 0.94 - ETA: 33s - loss: 0.1656 - acc: 0.94 - ETA: 33s - loss: 0.1656 - acc: 0.94 - ETA: 33s - loss: 0.1654 - acc: 0.94 - ETA: 33s - loss: 0.1654 - acc: 0.94 - ETA: 33s - loss: 0.1658 - acc: 0.94 - ETA: 33s - loss: 0.1655 - acc: 0.94 - ETA: 33s - loss: 0.1659 - acc: 0.94 - ETA: 33s - loss: 0.1658 - acc: 0.94 - ETA: 33s - loss: 0.1659 - acc: 0.94 - ETA: 32s - loss: 0.1659 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1657 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1667 - acc: 0.94 - ETA: 32s - loss: 0.1665 - acc: 0.94 - ETA: 32s - loss: 0.1664 - acc: 0.94 - ETA: 32s - loss: 0.1663 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1657 - acc: 0.94 - ETA: 32s - loss: 0.1654 - acc: 0.94 - ETA: 31s - loss: 0.1650 - acc: 0.94 - ETA: 31s - loss: 0.1653 - acc: 0.94 - ETA: 31s - loss: 0.1652 - acc: 0.94 - ETA: 31s - loss: 0.1650 - acc: 0.94 - ETA: 31s - loss: 0.1646 - acc: 0.94 - ETA: 31s - loss: 0.1646 - acc: 0.94 - ETA: 31s - loss: 0.1644 - acc: 0.94 - ETA: 31s - loss: 0.1642 - acc: 0.94 - ETA: 31s - loss: 0.1643 - acc: 0.94 - ETA: 31s - loss: 0.1642 - acc: 0.94 - ETA: 31s - loss: 0.1640 - acc: 0.94 - ETA: 31s - loss: 0.1641 - acc: 0.94 - ETA: 31s - loss: 0.1642 - acc: 0.94 - ETA: 30s - loss: 0.1641 - acc: 0.94 - ETA: 30s - loss: 0.1641 - acc: 0.94 - ETA: 30s - loss: 0.1640 - acc: 0.94 - ETA: 30s - loss: 0.1636 - acc: 0.94 - ETA: 30s - loss: 0.1643 - acc: 0.94 - ETA: 30s - loss: 0.1641 - acc: 0.94 - ETA: 30s - loss: 0.1638 - acc: 0.94 - ETA: 30s - loss: 0.1635 - acc: 0.94 - ETA: 30s - loss: 0.1635 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1631 - acc: 0.94 - ETA: 29s - loss: 0.1628 - acc: 0.94 - ETA: 29s - loss: 0.1624 - acc: 0.94 - ETA: 29s - loss: 0.1621 - acc: 0.94 - ETA: 29s - loss: 0.1622 - acc: 0.94 - ETA: 29s - loss: 0.1619 - acc: 0.94 - ETA: 29s - loss: 0.1615 - acc: 0.94 - ETA: 29s - loss: 0.1614 - acc: 0.94 - ETA: 29s - loss: 0.1611 - acc: 0.94 - ETA: 29s - loss: 0.1606 - acc: 0.94 - ETA: 29s - loss: 0.1609 - acc: 0.94 - ETA: 29s - loss: 0.1610 - acc: 0.94 - ETA: 29s - loss: 0.1607 - acc: 0.94 - ETA: 29s - loss: 0.1607 - acc: 0.94 - ETA: 28s - loss: 0.1614 - acc: 0.94 - ETA: 28s - loss: 0.1612 - acc: 0.94 - ETA: 28s - loss: 0.1609 - acc: 0.94 - ETA: 28s - loss: 0.1609 - acc: 0.94 - ETA: 28s - loss: 0.1606 - acc: 0.94 - ETA: 28s - loss: 0.1603 - acc: 0.94 - ETA: 28s - loss: 0.1601 - acc: 0.94 - ETA: 28s - loss: 0.1602 - acc: 0.94 - ETA: 28s - loss: 0.1598 - acc: 0.94 - ETA: 28s - loss: 0.1597 - acc: 0.94 - ETA: 28s - loss: 0.1598 - acc: 0.94 - ETA: 28s - loss: 0.1595 - acc: 0.94 - ETA: 28s - loss: 0.1595 - acc: 0.94 - ETA: 27s - loss: 0.1591 - acc: 0.94 - ETA: 27s - loss: 0.1590 - acc: 0.94 - ETA: 27s - loss: 0.1586 - acc: 0.94 - ETA: 27s - loss: 0.1585 - acc: 0.94 - ETA: 27s - loss: 0.1587 - acc: 0.94 - ETA: 27s - loss: 0.1586 - acc: 0.94 - ETA: 27s - loss: 0.1584 - acc: 0.94 - ETA: 27s - loss: 0.1583 - acc: 0.94 - ETA: 27s - loss: 0.1581 - acc: 0.94 - ETA: 27s - loss: 0.1578 - acc: 0.94 - ETA: 27s - loss: 0.1579 - acc: 0.94 - ETA: 27s - loss: 0.1577 - acc: 0.94 - ETA: 27s - loss: 0.1575 - acc: 0.94 - ETA: 26s - loss: 0.1574 - acc: 0.94 - ETA: 26s - loss: 0.1572 - acc: 0.94 - ETA: 26s - loss: 0.1572 - acc: 0.94 - ETA: 26s - loss: 0.1570 - acc: 0.94 - ETA: 26s - loss: 0.1573 - acc: 0.94 - ETA: 26s - loss: 0.1571 - acc: 0.94 - ETA: 26s - loss: 0.1574 - acc: 0.94 - ETA: 26s - loss: 0.1585 - acc: 0.94 - ETA: 26s - loss: 0.1582 - acc: 0.94 - ETA: 26s - loss: 0.1579 - acc: 0.94 - ETA: 26s - loss: 0.1576 - acc: 0.94 - ETA: 26s - loss: 0.1576 - acc: 0.94 - ETA: 26s - loss: 0.1574 - acc: 0.94 - ETA: 25s - loss: 0.1573 - acc: 0.94 - ETA: 25s - loss: 0.1570 - acc: 0.94 - ETA: 25s - loss: 0.1575 - acc: 0.94 - ETA: 25s - loss: 0.1573 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1575 - acc: 0.94 - ETA: 25s - loss: 0.1575 - acc: 0.94 - ETA: 25s - loss: 0.1574 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1570 - acc: 0.94 - ETA: 25s - loss: 0.1570 - acc: 0.94 - ETA: 25s - loss: 0.1567 - acc: 0.94 - ETA: 24s - loss: 0.1566 - acc: 0.94 - ETA: 24s - loss: 0.1564 - acc: 0.94 - ETA: 24s - loss: 0.1563 - acc: 0.94 - ETA: 24s - loss: 0.1563 - acc: 0.94 - ETA: 24s - loss: 0.1560 - acc: 0.94 - ETA: 24s - loss: 0.1559 - acc: 0.94 - ETA: 24s - loss: 0.1555 - acc: 0.94 - ETA: 24s - loss: 0.1552 - acc: 0.94 - ETA: 24s - loss: 0.1552 - acc: 0.94 - ETA: 24s - loss: 0.1548 - acc: 0.94 - ETA: 24s - loss: 0.1545 - acc: 0.94 - ETA: 24s - loss: 0.1542 - acc: 0.94 - ETA: 24s - loss: 0.1540 - acc: 0.94 - ETA: 23s - loss: 0.1540 - acc: 0.94 - ETA: 23s - loss: 0.1538 - acc: 0.94 - ETA: 23s - loss: 0.1536 - acc: 0.94 - ETA: 23s - loss: 0.1534 - acc: 0.94 - ETA: 23s - loss: 0.1541 - acc: 0.94 - ETA: 23s - loss: 0.1539 - acc: 0.94 - ETA: 23s - loss: 0.1539 - acc: 0.94 - ETA: 23s - loss: 0.1540 - acc: 0.94 - ETA: 23s - loss: 0.1538 - acc: 0.94 - ETA: 23s - loss: 0.1536 - acc: 0.94 - ETA: 23s - loss: 0.1539 - acc: 0.94 - ETA: 23s - loss: 0.1538 - acc: 0.94 - ETA: 23s - loss: 0.1536 - acc: 0.94 - ETA: 22s - loss: 0.1534 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1538 - acc: 0.94 - ETA: 22s - loss: 0.1536 - acc: 0.9466" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1535 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1529 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 21s - loss: 0.1531 - acc: 0.94 - ETA: 21s - loss: 0.1536 - acc: 0.94 - ETA: 21s - loss: 0.1533 - acc: 0.94 - ETA: 21s - loss: 0.1531 - acc: 0.94 - ETA: 21s - loss: 0.1535 - acc: 0.94 - ETA: 21s - loss: 0.1535 - acc: 0.94 - ETA: 21s - loss: 0.1537 - acc: 0.94 - ETA: 21s - loss: 0.1536 - acc: 0.94 - ETA: 21s - loss: 0.1533 - acc: 0.94 - ETA: 21s - loss: 0.1531 - acc: 0.94 - ETA: 21s - loss: 0.1532 - acc: 0.94 - ETA: 21s - loss: 0.1530 - acc: 0.94 - ETA: 21s - loss: 0.1529 - acc: 0.94 - ETA: 21s - loss: 0.1528 - acc: 0.94 - ETA: 20s - loss: 0.1528 - acc: 0.94 - ETA: 20s - loss: 0.1529 - acc: 0.94 - ETA: 20s - loss: 0.1527 - acc: 0.94 - ETA: 20s - loss: 0.1525 - acc: 0.94 - ETA: 20s - loss: 0.1523 - acc: 0.94 - ETA: 20s - loss: 0.1521 - acc: 0.94 - ETA: 20s - loss: 0.1523 - acc: 0.94 - ETA: 20s - loss: 0.1525 - acc: 0.94 - ETA: 20s - loss: 0.1530 - acc: 0.94 - ETA: 20s - loss: 0.1529 - acc: 0.94 - ETA: 20s - loss: 0.1530 - acc: 0.94 - ETA: 20s - loss: 0.1532 - acc: 0.94 - ETA: 20s - loss: 0.1534 - acc: 0.94 - ETA: 19s - loss: 0.1535 - acc: 0.94 - ETA: 19s - loss: 0.1539 - acc: 0.94 - ETA: 19s - loss: 0.1537 - acc: 0.94 - ETA: 19s - loss: 0.1543 - acc: 0.94 - ETA: 19s - loss: 0.1541 - acc: 0.94 - ETA: 19s - loss: 0.1547 - acc: 0.94 - ETA: 19s - loss: 0.1549 - acc: 0.94 - ETA: 19s - loss: 0.1548 - acc: 0.94 - ETA: 19s - loss: 0.1546 - acc: 0.94 - ETA: 19s - loss: 0.1547 - acc: 0.94 - ETA: 19s - loss: 0.1550 - acc: 0.94 - ETA: 19s - loss: 0.1549 - acc: 0.94 - ETA: 19s - loss: 0.1551 - acc: 0.94 - ETA: 19s - loss: 0.1549 - acc: 0.94 - ETA: 18s - loss: 0.1548 - acc: 0.94 - ETA: 18s - loss: 0.1546 - acc: 0.94 - ETA: 18s - loss: 0.1546 - acc: 0.94 - ETA: 18s - loss: 0.1544 - acc: 0.94 - ETA: 18s - loss: 0.1545 - acc: 0.94 - ETA: 18s - loss: 0.1543 - acc: 0.94 - ETA: 18s - loss: 0.1547 - acc: 0.94 - ETA: 18s - loss: 0.1545 - acc: 0.94 - ETA: 18s - loss: 0.1542 - acc: 0.94 - ETA: 18s - loss: 0.1543 - acc: 0.94 - ETA: 18s - loss: 0.1543 - acc: 0.94 - ETA: 18s - loss: 0.1545 - acc: 0.94 - ETA: 18s - loss: 0.1542 - acc: 0.94 - ETA: 17s - loss: 0.1545 - acc: 0.94 - ETA: 17s - loss: 0.1547 - acc: 0.94 - ETA: 17s - loss: 0.1548 - acc: 0.94 - ETA: 17s - loss: 0.1547 - acc: 0.94 - ETA: 17s - loss: 0.1545 - acc: 0.94 - ETA: 17s - loss: 0.1546 - acc: 0.94 - ETA: 17s - loss: 0.1549 - acc: 0.94 - ETA: 17s - loss: 0.1546 - acc: 0.94 - ETA: 17s - loss: 0.1549 - acc: 0.94 - ETA: 17s - loss: 0.1550 - acc: 0.94 - ETA: 17s - loss: 0.1548 - acc: 0.94 - ETA: 17s - loss: 0.1556 - acc: 0.94 - ETA: 17s - loss: 0.1555 - acc: 0.94 - ETA: 17s - loss: 0.1555 - acc: 0.94 - ETA: 16s - loss: 0.1562 - acc: 0.94 - ETA: 16s - loss: 0.1561 - acc: 0.94 - ETA: 16s - loss: 0.1562 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 16s - loss: 0.1571 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1567 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 16s - loss: 0.1566 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 15s - loss: 0.1568 - acc: 0.94 - ETA: 15s - loss: 0.1567 - acc: 0.94 - ETA: 15s - loss: 0.1570 - acc: 0.94 - ETA: 15s - loss: 0.1569 - acc: 0.94 - ETA: 15s - loss: 0.1568 - acc: 0.94 - ETA: 15s - loss: 0.1569 - acc: 0.94 - ETA: 15s - loss: 0.1567 - acc: 0.94 - ETA: 15s - loss: 0.1566 - acc: 0.94 - ETA: 15s - loss: 0.1567 - acc: 0.94 - ETA: 15s - loss: 0.1566 - acc: 0.94 - ETA: 15s - loss: 0.1565 - acc: 0.94 - ETA: 15s - loss: 0.1565 - acc: 0.94 - ETA: 15s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1565 - acc: 0.94 - ETA: 14s - loss: 0.1567 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1565 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1567 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1565 - acc: 0.94 - ETA: 13s - loss: 0.1563 - acc: 0.94 - ETA: 13s - loss: 0.1561 - acc: 0.94 - ETA: 13s - loss: 0.1559 - acc: 0.94 - ETA: 13s - loss: 0.1559 - acc: 0.94 - ETA: 13s - loss: 0.1558 - acc: 0.94 - ETA: 13s - loss: 0.1557 - acc: 0.94 - ETA: 13s - loss: 0.1558 - acc: 0.94 - ETA: 13s - loss: 0.1559 - acc: 0.94 - ETA: 13s - loss: 0.1557 - acc: 0.94 - ETA: 13s - loss: 0.1556 - acc: 0.94 - ETA: 13s - loss: 0.1556 - acc: 0.94 - ETA: 13s - loss: 0.1553 - acc: 0.94 - ETA: 13s - loss: 0.1554 - acc: 0.94 - ETA: 13s - loss: 0.1555 - acc: 0.94 - ETA: 12s - loss: 0.1556 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1557 - acc: 0.94 - ETA: 12s - loss: 0.1555 - acc: 0.94 - ETA: 12s - loss: 0.1556 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1555 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1551 - acc: 0.94 - ETA: 12s - loss: 0.1551 - acc: 0.94 - ETA: 12s - loss: 0.1549 - acc: 0.94 - ETA: 12s - loss: 0.1548 - acc: 0.94 - ETA: 11s - loss: 0.1546 - acc: 0.94 - ETA: 11s - loss: 0.1544 - acc: 0.94 - ETA: 11s - loss: 0.1542 - acc: 0.94 - ETA: 11s - loss: 0.1541 - acc: 0.94 - ETA: 11s - loss: 0.1543 - acc: 0.94 - ETA: 11s - loss: 0.1544 - acc: 0.94 - ETA: 11s - loss: 0.1543 - acc: 0.94 - ETA: 11s - loss: 0.1542 - acc: 0.94 - ETA: 11s - loss: 0.1543 - acc: 0.94 - ETA: 11s - loss: 0.1542 - acc: 0.94 - ETA: 11s - loss: 0.1541 - acc: 0.94 - ETA: 11s - loss: 0.1540 - acc: 0.94 - ETA: 11s - loss: 0.1539 - acc: 0.94 - ETA: 11s - loss: 0.1541 - acc: 0.94 - ETA: 10s - loss: 0.1542 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1542 - acc: 0.94 - ETA: 10s - loss: 0.1541 - acc: 0.94 - ETA: 10s - loss: 0.1540 - acc: 0.94 - ETA: 10s - loss: 0.1542 - acc: 0.94 - ETA: 10s - loss: 0.1545 - acc: 0.94 - ETA: 10s - loss: 0.1545 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1540 - acc: 0.94 - ETA: 9s - loss: 0.1541 - acc: 0.9468 - ETA: 9s - loss: 0.1540 - acc: 0.946 - ETA: 9s - loss: 0.1540 - acc: 0.946 - ETA: 9s - loss: 0.1539 - acc: 0.946 - ETA: 9s - loss: 0.1539 - acc: 0.946 - ETA: 9s - loss: 0.1539 - acc: 0.946 - ETA: 9s - loss: 0.1537 - acc: 0.946 - ETA: 9s - loss: 0.1537 - acc: 0.946 - ETA: 9s - loss: 0.1536 - acc: 0.946 - ETA: 9s - loss: 0.1535 - acc: 0.946 - ETA: 9s - loss: 0.1535 - acc: 0.947 - ETA: 9s - loss: 0.1533 - acc: 0.947 - ETA: 9s - loss: 0.1533 - acc: 0.947 - ETA: 9s - loss: 0.1531 - acc: 0.947 - ETA: 8s - loss: 0.1530 - acc: 0.947 - ETA: 8s - loss: 0.1532 - acc: 0.947 - ETA: 8s - loss: 0.1533 - acc: 0.947 - ETA: 8s - loss: 0.1532 - acc: 0.947 - ETA: 8s - loss: 0.1531 - acc: 0.947 - ETA: 8s - loss: 0.1529 - acc: 0.947 - ETA: 8s - loss: 0.1528 - acc: 0.947 - ETA: 8s - loss: 0.1529 - acc: 0.947 - ETA: 8s - loss: 0.1528 - acc: 0.947 - ETA: 8s - loss: 0.1526 - acc: 0.947 - ETA: 8s - loss: 0.1524 - acc: 0.947 - ETA: 8s - loss: 0.1522 - acc: 0.947 - ETA: 8s - loss: 0.1521 - acc: 0.947 - ETA: 7s - loss: 0.1523 - acc: 0.947 - ETA: 7s - loss: 0.1523 - acc: 0.947 - ETA: 7s - loss: 0.1523 - acc: 0.947 - ETA: 7s - loss: 0.1528 - acc: 0.947 - ETA: 7s - loss: 0.1527 - acc: 0.947 - ETA: 7s - loss: 0.1527 - acc: 0.947 - ETA: 7s - loss: 0.1526 - acc: 0.947 - ETA: 7s - loss: 0.1526 - acc: 0.947 - ETA: 7s - loss: 0.1525 - acc: 0.947 - ETA: 7s - loss: 0.1527 - acc: 0.946 - ETA: 7s - loss: 0.1526 - acc: 0.946 - ETA: 7s - loss: 0.1525 - acc: 0.946 - ETA: 7s - loss: 0.1524 - acc: 0.946 - ETA: 7s - loss: 0.1525 - acc: 0.9469" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1527 - acc: 0.946 - ETA: 6s - loss: 0.1525 - acc: 0.946 - ETA: 6s - loss: 0.1523 - acc: 0.946 - ETA: 6s - loss: 0.1522 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1522 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1522 - acc: 0.946 - ETA: 6s - loss: 0.1527 - acc: 0.946 - ETA: 6s - loss: 0.1528 - acc: 0.946 - ETA: 6s - loss: 0.1528 - acc: 0.946 - ETA: 6s - loss: 0.1530 - acc: 0.946 - ETA: 5s - loss: 0.1529 - acc: 0.946 - ETA: 5s - loss: 0.1527 - acc: 0.946 - ETA: 5s - loss: 0.1526 - acc: 0.946 - ETA: 5s - loss: 0.1524 - acc: 0.946 - ETA: 5s - loss: 0.1522 - acc: 0.947 - ETA: 5s - loss: 0.1524 - acc: 0.947 - ETA: 5s - loss: 0.1522 - acc: 0.947 - ETA: 5s - loss: 0.1523 - acc: 0.947 - ETA: 5s - loss: 0.1521 - acc: 0.947 - ETA: 5s - loss: 0.1521 - acc: 0.947 - ETA: 5s - loss: 0.1519 - acc: 0.947 - ETA: 5s - loss: 0.1520 - acc: 0.947 - ETA: 5s - loss: 0.1524 - acc: 0.946 - ETA: 5s - loss: 0.1529 - acc: 0.946 - ETA: 4s - loss: 0.1527 - acc: 0.946 - ETA: 4s - loss: 0.1525 - acc: 0.946 - ETA: 4s - loss: 0.1524 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1524 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1521 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1526 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1523 - acc: 0.947 - ETA: 3s - loss: 0.1522 - acc: 0.947 - ETA: 3s - loss: 0.1521 - acc: 0.947 - ETA: 3s - loss: 0.1522 - acc: 0.947 - ETA: 3s - loss: 0.1526 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1523 - acc: 0.947 - ETA: 3s - loss: 0.1522 - acc: 0.947 - ETA: 3s - loss: 0.1524 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1524 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1525 - acc: 0.947 - ETA: 2s - loss: 0.1524 - acc: 0.947 - ETA: 2s - loss: 0.1524 - acc: 0.947 - ETA: 2s - loss: 0.1524 - acc: 0.947 - ETA: 2s - loss: 0.1525 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1528 - acc: 0.947 - ETA: 2s - loss: 0.1528 - acc: 0.947 - ETA: 2s - loss: 0.1528 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 1s - loss: 0.1525 - acc: 0.947 - ETA: 1s - loss: 0.1526 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1525 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1522 - acc: 0.947 - ETA: 1s - loss: 0.1521 - acc: 0.947 - ETA: 0s - loss: 0.1521 - acc: 0.947 - ETA: 0s - loss: 0.1520 - acc: 0.947 - ETA: 0s - loss: 0.1518 - acc: 0.947 - ETA: 0s - loss: 0.1520 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1518 - acc: 0.947 - ETA: 0s - loss: 0.1516 - acc: 0.947 - ETA: 0s - loss: 0.1515 - acc: 0.947 - ETA: 0s - loss: 0.1515 - acc: 0.947 - ETA: 0s - loss: 0.1516 - acc: 0.947 - ETA: 0s - loss: 0.1516 - acc: 0.947 - 55s 2ms/step - loss: 0.1515 - acc: 0.9474 - val_loss: 0.1315 - val_acc: 0.9493\n", + "\n", + "Epoch 00010: val_acc did not improve from 0.95229\n" + ] + } + ], + "source": [ + "if config.mode == 'conv':\n", + " X, y = build_rand_feat()\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2], 1) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_conv_model()\n", + "elif config.mode == 'time':\n", + " X, y = build_rand_feat()\n", + " \"\"\"\n", + " TODO\n", + " \n", + " our rand_feat is saved as a pickle file and needs to be reshaped if\n", + " it was originally made for conv model (similar if running conv and \n", + " need to work with time)\n", + " \"\"\"\n", + " X = X.reshape(X.shape[0], X.shape[1], X.shape[2])\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2]) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_recurrent_model()\n", + " \n", + "# Setup weights so that our gradient updates based on our class distribution \n", + "# (less bass drumbs => stronger gradient from these samples)\n", + "# This will give a little extra accuracy as well as reducing bias\n", + "class_weight = compute_class_weight('balanced', np.unique(y_flat), y_flat)\n", + "\n", + "checkpoint = ModelCheckpoint(config.model_path, monitor='val_acc', verbose=1, mode='max',\n", + " save_best_only=True, save_weights_only=False, period=1)\n", + "\n", + "# Fit our model\n", + "model.fit(X, y, epochs=10, \n", + " shuffle=True,\n", + " class_weight=class_weight,\n", + " validation_split=0.1,\n", + " callbacks=[checkpoint])\n", + "\n", + "model.save(config.model_path)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "config.mode = 'time'\n", + "config.model_path = os.path.join('models', config.mode + '.model')\n", + "config.p_path = os.path.join('pickles', config.mode + '.p')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████████████████████████████████████| 26410/26410 [02:01<00:00, 217.66it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(26410, 9, 13)\n", + "Model: \"sequential_7\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_11 (LSTM) (None, 9, 128) 72704 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 9, 128) 131584 \n", + "_________________________________________________________________\n", + "dropout_7 (Dropout) (None, 9, 128) 0 \n", + "_________________________________________________________________\n", + "time_distributed_21 (TimeDis (None, 9, 64) 8256 \n", + "_________________________________________________________________\n", + "time_distributed_22 (TimeDis (None, 9, 32) 2080 \n", + "_________________________________________________________________\n", + "time_distributed_23 (TimeDis (None, 9, 16) 528 \n", + "_________________________________________________________________\n", + "time_distributed_24 (TimeDis (None, 9, 8) 136 \n", + "_________________________________________________________________\n", + "flatten_7 (Flatten) (None, 72) 0 \n", + "_________________________________________________________________\n", + "dense_34 (Dense) (None, 10) 730 \n", + "=================================================================\n", + "Total params: 216,018\n", + "Trainable params: 216,018\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 23769 samples, validate on 2641 samples\n", + "Epoch 1/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13696/23769 [================>.............] - ETA: 16:21 - loss: 2.3042 - acc: 0.0000e+ - ETA: 5:40 - loss: 2.3030 - acc: 0.0729 - ETA: 3:33 - loss: 2.3032 - acc: 0.100 - ETA: 2:38 - loss: 2.3016 - acc: 0.120 - ETA: 2:08 - loss: 2.2996 - acc: 0.128 - ETA: 1:48 - loss: 2.2990 - acc: 0.133 - ETA: 1:34 - loss: 2.2984 - acc: 0.134 - ETA: 1:25 - loss: 2.2974 - acc: 0.141 - ETA: 1:17 - loss: 2.2970 - acc: 0.134 - ETA: 1:11 - loss: 2.2941 - acc: 0.139 - ETA: 1:06 - loss: 2.2926 - acc: 0.141 - ETA: 1:02 - loss: 2.2926 - acc: 0.137 - ETA: 59s - loss: 2.2918 - acc: 0.136 - ETA: 56s - loss: 2.2893 - acc: 0.13 - ETA: 53s - loss: 2.2844 - acc: 0.13 - ETA: 51s - loss: 2.2807 - acc: 0.13 - ETA: 50s - loss: 2.2802 - acc: 0.13 - ETA: 48s - loss: 2.2774 - acc: 0.12 - ETA: 46s - loss: 2.2768 - acc: 0.12 - ETA: 45s - loss: 2.2773 - acc: 0.12 - ETA: 44s - loss: 2.2734 - acc: 0.12 - ETA: 43s - loss: 2.2701 - acc: 0.12 - ETA: 42s - loss: 2.2667 - acc: 0.12 - ETA: 41s - loss: 2.2674 - acc: 0.12 - ETA: 40s - loss: 2.2637 - acc: 0.12 - ETA: 39s - loss: 2.2608 - acc: 0.13 - ETA: 38s - loss: 2.2582 - acc: 0.13 - ETA: 38s - loss: 2.2556 - acc: 0.13 - ETA: 37s - loss: 2.2548 - acc: 0.13 - ETA: 36s - loss: 2.2524 - acc: 0.13 - ETA: 36s - loss: 2.2502 - acc: 0.13 - ETA: 35s - loss: 2.2488 - acc: 0.13 - ETA: 34s - loss: 2.2464 - acc: 0.13 - ETA: 34s - loss: 2.2433 - acc: 0.13 - ETA: 33s - loss: 2.2396 - acc: 0.13 - ETA: 33s - loss: 2.2359 - acc: 0.13 - ETA: 32s - loss: 2.2354 - acc: 0.13 - ETA: 32s - loss: 2.2323 - acc: 0.14 - ETA: 32s - loss: 2.2302 - acc: 0.14 - ETA: 31s - loss: 2.2284 - acc: 0.14 - ETA: 31s - loss: 2.2242 - acc: 0.14 - ETA: 31s - loss: 2.2207 - acc: 0.14 - ETA: 30s - loss: 2.2155 - acc: 0.14 - ETA: 30s - loss: 2.2130 - acc: 0.14 - ETA: 30s - loss: 2.2081 - acc: 0.14 - ETA: 29s - loss: 2.2041 - acc: 0.15 - ETA: 29s - loss: 2.1999 - acc: 0.15 - ETA: 29s - loss: 2.1989 - acc: 0.15 - ETA: 29s - loss: 2.1916 - acc: 0.15 - ETA: 28s - loss: 2.1879 - acc: 0.16 - ETA: 28s - loss: 2.1872 - acc: 0.15 - ETA: 28s - loss: 2.1845 - acc: 0.16 - ETA: 28s - loss: 2.1827 - acc: 0.16 - ETA: 27s - loss: 2.1793 - acc: 0.16 - ETA: 27s - loss: 2.1757 - acc: 0.16 - ETA: 27s - loss: 2.1733 - acc: 0.16 - ETA: 27s - loss: 2.1726 - acc: 0.16 - ETA: 26s - loss: 2.1710 - acc: 0.16 - ETA: 26s - loss: 2.1679 - acc: 0.16 - ETA: 26s - loss: 2.1669 - acc: 0.16 - ETA: 26s - loss: 2.1639 - acc: 0.16 - ETA: 26s - loss: 2.1612 - acc: 0.16 - ETA: 25s - loss: 2.1583 - acc: 0.16 - ETA: 25s - loss: 2.1569 - acc: 0.16 - ETA: 25s - loss: 2.1560 - acc: 0.16 - ETA: 25s - loss: 2.1516 - acc: 0.17 - ETA: 25s - loss: 2.1507 - acc: 0.17 - ETA: 24s - loss: 2.1484 - acc: 0.17 - ETA: 24s - loss: 2.1435 - acc: 0.17 - ETA: 24s - loss: 2.1415 - acc: 0.17 - ETA: 24s - loss: 2.1418 - acc: 0.17 - ETA: 24s - loss: 2.1384 - acc: 0.17 - ETA: 24s - loss: 2.1365 - acc: 0.17 - ETA: 23s - loss: 2.1339 - acc: 0.17 - ETA: 23s - loss: 2.1312 - acc: 0.17 - ETA: 23s - loss: 2.1284 - acc: 0.18 - ETA: 23s - loss: 2.1254 - acc: 0.18 - ETA: 23s - loss: 2.1228 - acc: 0.18 - ETA: 23s - loss: 2.1187 - acc: 0.18 - ETA: 22s - loss: 2.1153 - acc: 0.18 - ETA: 22s - loss: 2.1160 - acc: 0.18 - ETA: 22s - loss: 2.1123 - acc: 0.18 - ETA: 22s - loss: 2.1082 - acc: 0.19 - ETA: 22s - loss: 2.1059 - acc: 0.19 - ETA: 22s - loss: 2.1019 - acc: 0.19 - ETA: 22s - loss: 2.0994 - acc: 0.19 - ETA: 21s - loss: 2.0970 - acc: 0.19 - ETA: 21s - loss: 2.0967 - acc: 0.19 - ETA: 21s - loss: 2.0950 - acc: 0.19 - ETA: 21s - loss: 2.0935 - acc: 0.19 - ETA: 21s - loss: 2.0890 - acc: 0.20 - ETA: 21s - loss: 2.0864 - acc: 0.20 - ETA: 21s - loss: 2.0826 - acc: 0.20 - ETA: 21s - loss: 2.0781 - acc: 0.20 - ETA: 20s - loss: 2.0754 - acc: 0.20 - ETA: 20s - loss: 2.0734 - acc: 0.20 - ETA: 20s - loss: 2.0700 - acc: 0.20 - ETA: 20s - loss: 2.0689 - acc: 0.21 - ETA: 20s - loss: 2.0664 - acc: 0.21 - ETA: 20s - loss: 2.0637 - acc: 0.21 - ETA: 20s - loss: 2.0600 - acc: 0.21 - ETA: 20s - loss: 2.0586 - acc: 0.21 - ETA: 19s - loss: 2.0522 - acc: 0.21 - ETA: 19s - loss: 2.0501 - acc: 0.21 - ETA: 19s - loss: 2.0479 - acc: 0.22 - ETA: 19s - loss: 2.0461 - acc: 0.22 - ETA: 19s - loss: 2.0415 - acc: 0.22 - ETA: 19s - loss: 2.0383 - acc: 0.22 - ETA: 19s - loss: 2.0361 - acc: 0.22 - ETA: 19s - loss: 2.0353 - acc: 0.22 - ETA: 19s - loss: 2.0315 - acc: 0.22 - ETA: 19s - loss: 2.0280 - acc: 0.22 - ETA: 18s - loss: 2.0261 - acc: 0.22 - ETA: 18s - loss: 2.0254 - acc: 0.22 - ETA: 18s - loss: 2.0228 - acc: 0.23 - ETA: 18s - loss: 2.0204 - acc: 0.23 - ETA: 18s - loss: 2.0173 - acc: 0.23 - ETA: 18s - loss: 2.0138 - acc: 0.23 - ETA: 18s - loss: 2.0115 - acc: 0.23 - ETA: 18s - loss: 2.0079 - acc: 0.23 - ETA: 18s - loss: 2.0066 - acc: 0.23 - ETA: 18s - loss: 2.0035 - acc: 0.23 - ETA: 17s - loss: 2.0008 - acc: 0.24 - ETA: 17s - loss: 1.9989 - acc: 0.24 - ETA: 17s - loss: 1.9980 - acc: 0.24 - ETA: 17s - loss: 1.9953 - acc: 0.24 - ETA: 17s - loss: 1.9928 - acc: 0.24 - ETA: 17s - loss: 1.9917 - acc: 0.24 - ETA: 17s - loss: 1.9914 - acc: 0.24 - ETA: 17s - loss: 1.9914 - acc: 0.24 - ETA: 17s - loss: 1.9895 - acc: 0.24 - ETA: 17s - loss: 1.9869 - acc: 0.24 - ETA: 17s - loss: 1.9846 - acc: 0.24 - ETA: 16s - loss: 1.9823 - acc: 0.25 - ETA: 16s - loss: 1.9808 - acc: 0.25 - ETA: 16s - loss: 1.9787 - acc: 0.25 - ETA: 16s - loss: 1.9765 - acc: 0.25 - ETA: 16s - loss: 1.9744 - acc: 0.25 - ETA: 16s - loss: 1.9728 - acc: 0.25 - ETA: 16s - loss: 1.9699 - acc: 0.25 - ETA: 16s - loss: 1.9686 - acc: 0.25 - ETA: 16s - loss: 1.9666 - acc: 0.25 - ETA: 16s - loss: 1.9638 - acc: 0.25 - ETA: 16s - loss: 1.9617 - acc: 0.26 - ETA: 15s - loss: 1.9595 - acc: 0.26 - ETA: 15s - loss: 1.9571 - acc: 0.26 - ETA: 15s - loss: 1.9548 - acc: 0.26 - ETA: 15s - loss: 1.9535 - acc: 0.26 - ETA: 15s - loss: 1.9509 - acc: 0.26 - ETA: 15s - loss: 1.9478 - acc: 0.26 - ETA: 15s - loss: 1.9450 - acc: 0.26 - ETA: 15s - loss: 1.9427 - acc: 0.26 - ETA: 15s - loss: 1.9405 - acc: 0.26 - ETA: 15s - loss: 1.9390 - acc: 0.27 - ETA: 15s - loss: 1.9371 - acc: 0.27 - ETA: 15s - loss: 1.9358 - acc: 0.27 - ETA: 14s - loss: 1.9337 - acc: 0.27 - ETA: 14s - loss: 1.9319 - acc: 0.27 - ETA: 14s - loss: 1.9287 - acc: 0.27 - ETA: 14s - loss: 1.9268 - acc: 0.27 - ETA: 14s - loss: 1.9249 - acc: 0.27 - ETA: 14s - loss: 1.9228 - acc: 0.27 - ETA: 14s - loss: 1.9210 - acc: 0.27 - ETA: 14s - loss: 1.9193 - acc: 0.27 - ETA: 14s - loss: 1.9168 - acc: 0.28 - ETA: 14s - loss: 1.9151 - acc: 0.28 - ETA: 14s - loss: 1.9145 - acc: 0.28 - ETA: 14s - loss: 1.9121 - acc: 0.28 - ETA: 13s - loss: 1.9106 - acc: 0.28 - ETA: 13s - loss: 1.9078 - acc: 0.28 - ETA: 13s - loss: 1.9060 - acc: 0.28 - ETA: 13s - loss: 1.9033 - acc: 0.28 - ETA: 13s - loss: 1.9007 - acc: 0.28 - ETA: 13s - loss: 1.8986 - acc: 0.28 - ETA: 13s - loss: 1.8974 - acc: 0.28 - ETA: 13s - loss: 1.8952 - acc: 0.28 - ETA: 13s - loss: 1.8932 - acc: 0.28 - ETA: 13s - loss: 1.8911 - acc: 0.29 - ETA: 13s - loss: 1.8890 - acc: 0.29 - ETA: 13s - loss: 1.8887 - acc: 0.29 - ETA: 12s - loss: 1.8884 - acc: 0.29 - ETA: 12s - loss: 1.8872 - acc: 0.29 - ETA: 12s - loss: 1.8855 - acc: 0.29 - ETA: 12s - loss: 1.8834 - acc: 0.29 - ETA: 12s - loss: 1.8814 - acc: 0.29 - ETA: 12s - loss: 1.8797 - acc: 0.29 - ETA: 12s - loss: 1.8784 - acc: 0.29 - ETA: 12s - loss: 1.8756 - acc: 0.29 - ETA: 12s - loss: 1.8744 - acc: 0.29 - ETA: 12s - loss: 1.8713 - acc: 0.29 - ETA: 12s - loss: 1.8705 - acc: 0.29 - ETA: 12s - loss: 1.8683 - acc: 0.29 - ETA: 12s - loss: 1.8671 - acc: 0.29 - ETA: 12s - loss: 1.8651 - acc: 0.29 - ETA: 12s - loss: 1.8635 - acc: 0.30 - ETA: 11s - loss: 1.8619 - acc: 0.30 - ETA: 11s - loss: 1.8609 - acc: 0.30 - ETA: 11s - loss: 1.8598 - acc: 0.30 - ETA: 11s - loss: 1.8584 - acc: 0.30 - ETA: 11s - loss: 1.8553 - acc: 0.30 - ETA: 11s - loss: 1.8535 - acc: 0.30 - ETA: 11s - loss: 1.8511 - acc: 0.30 - ETA: 11s - loss: 1.8499 - acc: 0.30 - ETA: 11s - loss: 1.8483 - acc: 0.30 - ETA: 11s - loss: 1.8483 - acc: 0.30 - ETA: 11s - loss: 1.8469 - acc: 0.30 - ETA: 11s - loss: 1.8447 - acc: 0.30 - ETA: 11s - loss: 1.8442 - acc: 0.30 - ETA: 11s - loss: 1.8429 - acc: 0.30 - ETA: 10s - loss: 1.8420 - acc: 0.30 - ETA: 10s - loss: 1.8401 - acc: 0.30 - ETA: 10s - loss: 1.8390 - acc: 0.30 - ETA: 10s - loss: 1.8391 - acc: 0.30 - ETA: 10s - loss: 1.8367 - acc: 0.3105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 10s - loss: 1.8355 - acc: 0.31 - ETA: 10s - loss: 1.8343 - acc: 0.31 - ETA: 10s - loss: 1.8329 - acc: 0.31 - ETA: 10s - loss: 1.8315 - acc: 0.31 - ETA: 10s - loss: 1.8298 - acc: 0.31 - ETA: 10s - loss: 1.8283 - acc: 0.31 - ETA: 10s - loss: 1.8274 - acc: 0.31 - ETA: 10s - loss: 1.8260 - acc: 0.31 - ETA: 10s - loss: 1.8246 - acc: 0.31 - ETA: 9s - loss: 1.8229 - acc: 0.3163 - ETA: 9s - loss: 1.8220 - acc: 0.316 - ETA: 9s - loss: 1.8214 - acc: 0.316 - ETA: 9s - loss: 1.8209 - acc: 0.317 - ETA: 9s - loss: 1.8184 - acc: 0.317 - ETA: 9s - loss: 1.8174 - acc: 0.318 - ETA: 9s - loss: 1.8156 - acc: 0.318 - ETA: 9s - loss: 1.8140 - acc: 0.319 - ETA: 9s - loss: 1.8131 - acc: 0.319 - ETA: 9s - loss: 1.8119 - acc: 0.319 - ETA: 9s - loss: 1.8108 - acc: 0.320 - ETA: 9s - loss: 1.8090 - acc: 0.320 - ETA: 9s - loss: 1.8069 - acc: 0.321 - ETA: 9s - loss: 1.8055 - acc: 0.321 - ETA: 8s - loss: 1.8040 - acc: 0.322 - ETA: 8s - loss: 1.8033 - acc: 0.322 - ETA: 8s - loss: 1.8016 - acc: 0.323 - ETA: 8s - loss: 1.8004 - acc: 0.323 - ETA: 8s - loss: 1.7992 - acc: 0.323 - ETA: 8s - loss: 1.7983 - acc: 0.324 - ETA: 8s - loss: 1.7965 - acc: 0.324 - ETA: 8s - loss: 1.7947 - acc: 0.325 - ETA: 8s - loss: 1.7936 - acc: 0.325 - ETA: 8s - loss: 1.7915 - acc: 0.326 - ETA: 8s - loss: 1.7899 - acc: 0.327 - ETA: 8s - loss: 1.7887 - acc: 0.327 - ETA: 8s - loss: 1.7871 - acc: 0.328 - ETA: 8s - loss: 1.7862 - acc: 0.328 - ETA: 8s - loss: 1.7855 - acc: 0.329 - ETA: 7s - loss: 1.7847 - acc: 0.329 - ETA: 7s - loss: 1.7826 - acc: 0.330 - ETA: 7s - loss: 1.7812 - acc: 0.331 - ETA: 7s - loss: 1.7800 - acc: 0.331 - ETA: 7s - loss: 1.7786 - acc: 0.332 - ETA: 7s - loss: 1.7777 - acc: 0.332 - ETA: 7s - loss: 1.7762 - acc: 0.333 - ETA: 7s - loss: 1.7746 - acc: 0.333 - ETA: 7s - loss: 1.7730 - acc: 0.334 - ETA: 7s - loss: 1.7712 - acc: 0.335 - ETA: 7s - loss: 1.7701 - acc: 0.335 - ETA: 7s - loss: 1.7682 - acc: 0.336 - ETA: 7s - loss: 1.7661 - acc: 0.337 - ETA: 7s - loss: 1.7648 - acc: 0.338 - ETA: 6s - loss: 1.7631 - acc: 0.339 - ETA: 6s - loss: 1.7612 - acc: 0.339 - ETA: 6s - loss: 1.7604 - acc: 0.339 - ETA: 6s - loss: 1.7595 - acc: 0.340 - ETA: 6s - loss: 1.7586 - acc: 0.341 - ETA: 6s - loss: 1.7573 - acc: 0.341 - ETA: 6s - loss: 1.7561 - acc: 0.341 - ETA: 6s - loss: 1.7547 - acc: 0.342 - ETA: 6s - loss: 1.7533 - acc: 0.343 - ETA: 6s - loss: 1.7518 - acc: 0.343 - ETA: 6s - loss: 1.7499 - acc: 0.344 - ETA: 6s - loss: 1.7484 - acc: 0.345 - ETA: 6s - loss: 1.7471 - acc: 0.345 - ETA: 6s - loss: 1.7462 - acc: 0.345 - ETA: 6s - loss: 1.7445 - acc: 0.346 - ETA: 5s - loss: 1.7427 - acc: 0.347 - ETA: 5s - loss: 1.7416 - acc: 0.347 - ETA: 5s - loss: 1.7400 - acc: 0.348 - ETA: 5s - loss: 1.7385 - acc: 0.348 - ETA: 5s - loss: 1.7374 - acc: 0.349 - ETA: 5s - loss: 1.7358 - acc: 0.349 - ETA: 5s - loss: 1.7343 - acc: 0.350 - ETA: 5s - loss: 1.7328 - acc: 0.351 - ETA: 5s - loss: 1.7318 - acc: 0.351 - ETA: 5s - loss: 1.7310 - acc: 0.351 - ETA: 5s - loss: 1.7300 - acc: 0.352 - ETA: 5s - loss: 1.7299 - acc: 0.352 - ETA: 5s - loss: 1.7294 - acc: 0.353 - ETA: 5s - loss: 1.7280 - acc: 0.353 - ETA: 5s - loss: 1.7271 - acc: 0.353 - ETA: 4s - loss: 1.7255 - acc: 0.354 - ETA: 4s - loss: 1.7239 - acc: 0.355 - ETA: 4s - loss: 1.7221 - acc: 0.355 - ETA: 4s - loss: 1.7207 - acc: 0.356 - ETA: 4s - loss: 1.7197 - acc: 0.356 - ETA: 4s - loss: 1.7184 - acc: 0.357 - ETA: 4s - loss: 1.7185 - acc: 0.357 - ETA: 4s - loss: 1.7175 - acc: 0.357 - ETA: 4s - loss: 1.7166 - acc: 0.358 - ETA: 4s - loss: 1.7154 - acc: 0.358 - ETA: 4s - loss: 1.7142 - acc: 0.359 - ETA: 4s - loss: 1.7127 - acc: 0.359 - ETA: 4s - loss: 1.7118 - acc: 0.360 - ETA: 4s - loss: 1.7105 - acc: 0.360 - ETA: 4s - loss: 1.7096 - acc: 0.360 - ETA: 3s - loss: 1.7078 - acc: 0.361 - ETA: 3s - loss: 1.7065 - acc: 0.361 - ETA: 3s - loss: 1.7055 - acc: 0.362 - ETA: 3s - loss: 1.7050 - acc: 0.362 - ETA: 3s - loss: 1.7037 - acc: 0.362 - ETA: 3s - loss: 1.7026 - acc: 0.363 - ETA: 3s - loss: 1.7014 - acc: 0.363 - ETA: 3s - loss: 1.6995 - acc: 0.364 - ETA: 3s - loss: 1.6989 - acc: 0.364 - ETA: 3s - loss: 1.6974 - acc: 0.365 - ETA: 3s - loss: 1.6963 - acc: 0.365 - ETA: 3s - loss: 1.6953 - acc: 0.366 - ETA: 3s - loss: 1.6940 - acc: 0.366 - ETA: 3s - loss: 1.6928 - acc: 0.367 - ETA: 2s - loss: 1.6917 - acc: 0.367 - ETA: 2s - loss: 1.6914 - acc: 0.367 - ETA: 2s - loss: 1.6906 - acc: 0.368 - ETA: 2s - loss: 1.6892 - acc: 0.368 - ETA: 2s - loss: 1.6884 - acc: 0.368 - ETA: 2s - loss: 1.6867 - acc: 0.369 - ETA: 2s - loss: 1.6856 - acc: 0.370 - ETA: 2s - loss: 1.6845 - acc: 0.370 - ETA: 2s - loss: 1.6838 - acc: 0.370 - ETA: 2s - loss: 1.6831 - acc: 0.371 - ETA: 2s - loss: 1.6815 - acc: 0.372 - ETA: 2s - loss: 1.6798 - acc: 0.372 - ETA: 2s - loss: 1.6785 - acc: 0.373 - ETA: 2s - loss: 1.6775 - acc: 0.373 - ETA: 2s - loss: 1.6759 - acc: 0.374 - ETA: 1s - loss: 1.6754 - acc: 0.374 - ETA: 1s - loss: 1.6739 - acc: 0.375 - ETA: 1s - loss: 1.6727 - acc: 0.375 - ETA: 1s - loss: 1.6722 - acc: 0.376 - ETA: 1s - loss: 1.6717 - acc: 0.376 - ETA: 1s - loss: 1.6715 - acc: 0.376 - ETA: 1s - loss: 1.6707 - acc: 0.376 - ETA: 1s - loss: 1.6698 - acc: 0.377 - ETA: 1s - loss: 1.6695 - acc: 0.377 - ETA: 1s - loss: 1.6693 - acc: 0.377 - ETA: 1s - loss: 1.6686 - acc: 0.377 - ETA: 1s - loss: 1.6676 - acc: 0.377 - ETA: 1s - loss: 1.6668 - acc: 0.377 - ETA: 1s - loss: 1.6660 - acc: 0.378 - ETA: 1s - loss: 1.6652 - acc: 0.378 - ETA: 0s - loss: 1.6638 - acc: 0.378 - ETA: 0s - loss: 1.6624 - acc: 0.379 - ETA: 0s - loss: 1.6615 - acc: 0.379 - ETA: 0s - loss: 1.6607 - acc: 0.380 - ETA: 0s - loss: 1.6601 - acc: 0.380 - ETA: 0s - loss: 1.6599 - acc: 0.380 - ETA: 0s - loss: 1.6587 - acc: 0.381 - ETA: 0s - loss: 1.6574 - acc: 0.381 - ETA: 0s - loss: 1.6566 - acc: 0.381 - ETA: 0s - loss: 1.6554 - acc: 0.382 - ETA: 0s - loss: 1.6544 - acc: 0.383 - ETA: 0s - loss: 1.6526 - acc: 0.383 - ETA: 0s - loss: 1.6518 - acc: 0.384 - ETA: 0s - loss: 1.6499 - acc: 0.384 - ETA: 0s - loss: 1.6491 - acc: 0.385 - 25s 1ms/step - loss: 1.6489 - acc: 0.3852 - val_loss: 1.3373 - val_acc: 0.5112\n", + "\n", + "Epoch 00001: val_acc improved from -inf to 0.51117, saving model to models\\time.model\n", + "Epoch 2/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13888/23769 [================>.............] - ETA: 26s - loss: 1.3585 - acc: 0.56 - ETA: 25s - loss: 1.4329 - acc: 0.52 - ETA: 23s - loss: 1.4195 - acc: 0.50 - ETA: 23s - loss: 1.4322 - acc: 0.51 - ETA: 23s - loss: 1.4289 - acc: 0.51 - ETA: 23s - loss: 1.4460 - acc: 0.50 - ETA: 23s - loss: 1.4347 - acc: 0.50 - ETA: 23s - loss: 1.4273 - acc: 0.49 - ETA: 22s - loss: 1.3919 - acc: 0.50 - ETA: 22s - loss: 1.3785 - acc: 0.50 - ETA: 22s - loss: 1.3842 - acc: 0.49 - ETA: 22s - loss: 1.3787 - acc: 0.50 - ETA: 22s - loss: 1.3620 - acc: 0.50 - ETA: 22s - loss: 1.3609 - acc: 0.50 - ETA: 22s - loss: 1.3731 - acc: 0.50 - ETA: 22s - loss: 1.3503 - acc: 0.50 - ETA: 22s - loss: 1.3360 - acc: 0.50 - ETA: 22s - loss: 1.3362 - acc: 0.50 - ETA: 21s - loss: 1.3382 - acc: 0.50 - ETA: 21s - loss: 1.3280 - acc: 0.51 - ETA: 21s - loss: 1.3233 - acc: 0.51 - ETA: 21s - loss: 1.3161 - acc: 0.51 - ETA: 21s - loss: 1.3161 - acc: 0.52 - ETA: 21s - loss: 1.3250 - acc: 0.51 - ETA: 21s - loss: 1.3219 - acc: 0.51 - ETA: 21s - loss: 1.3145 - acc: 0.52 - ETA: 21s - loss: 1.3014 - acc: 0.53 - ETA: 21s - loss: 1.2978 - acc: 0.53 - ETA: 21s - loss: 1.2967 - acc: 0.53 - ETA: 21s - loss: 1.2918 - acc: 0.54 - ETA: 20s - loss: 1.2867 - acc: 0.54 - ETA: 20s - loss: 1.2804 - acc: 0.54 - ETA: 20s - loss: 1.2852 - acc: 0.54 - ETA: 20s - loss: 1.2794 - acc: 0.54 - ETA: 20s - loss: 1.2834 - acc: 0.54 - ETA: 20s - loss: 1.2879 - acc: 0.54 - ETA: 20s - loss: 1.2897 - acc: 0.54 - ETA: 20s - loss: 1.2916 - acc: 0.54 - ETA: 20s - loss: 1.2919 - acc: 0.54 - ETA: 20s - loss: 1.2886 - acc: 0.54 - ETA: 20s - loss: 1.2927 - acc: 0.54 - ETA: 20s - loss: 1.2922 - acc: 0.53 - ETA: 20s - loss: 1.2887 - acc: 0.54 - ETA: 20s - loss: 1.2858 - acc: 0.54 - ETA: 19s - loss: 1.2835 - acc: 0.54 - ETA: 19s - loss: 1.2785 - acc: 0.54 - ETA: 19s - loss: 1.2773 - acc: 0.54 - ETA: 19s - loss: 1.2727 - acc: 0.54 - ETA: 19s - loss: 1.2756 - acc: 0.54 - ETA: 19s - loss: 1.2684 - acc: 0.54 - ETA: 19s - loss: 1.2726 - acc: 0.54 - ETA: 19s - loss: 1.2741 - acc: 0.54 - ETA: 19s - loss: 1.2739 - acc: 0.54 - ETA: 19s - loss: 1.2768 - acc: 0.54 - ETA: 19s - loss: 1.2752 - acc: 0.54 - ETA: 19s - loss: 1.2732 - acc: 0.54 - ETA: 19s - loss: 1.2692 - acc: 0.55 - ETA: 19s - loss: 1.2643 - acc: 0.55 - ETA: 19s - loss: 1.2649 - acc: 0.55 - ETA: 19s - loss: 1.2628 - acc: 0.55 - ETA: 19s - loss: 1.2609 - acc: 0.55 - ETA: 19s - loss: 1.2618 - acc: 0.55 - ETA: 19s - loss: 1.2580 - acc: 0.55 - ETA: 19s - loss: 1.2554 - acc: 0.55 - ETA: 18s - loss: 1.2527 - acc: 0.55 - ETA: 18s - loss: 1.2479 - acc: 0.56 - ETA: 18s - loss: 1.2508 - acc: 0.55 - ETA: 18s - loss: 1.2510 - acc: 0.55 - ETA: 18s - loss: 1.2487 - acc: 0.55 - ETA: 18s - loss: 1.2486 - acc: 0.55 - ETA: 18s - loss: 1.2453 - acc: 0.55 - ETA: 18s - loss: 1.2456 - acc: 0.56 - ETA: 18s - loss: 1.2440 - acc: 0.56 - ETA: 18s - loss: 1.2438 - acc: 0.55 - ETA: 18s - loss: 1.2370 - acc: 0.56 - ETA: 18s - loss: 1.2359 - acc: 0.56 - ETA: 18s - loss: 1.2354 - acc: 0.56 - ETA: 18s - loss: 1.2355 - acc: 0.56 - ETA: 18s - loss: 1.2332 - acc: 0.56 - ETA: 18s - loss: 1.2332 - acc: 0.56 - ETA: 18s - loss: 1.2309 - acc: 0.56 - ETA: 17s - loss: 1.2270 - acc: 0.56 - ETA: 17s - loss: 1.2254 - acc: 0.56 - ETA: 17s - loss: 1.2252 - acc: 0.56 - ETA: 17s - loss: 1.2252 - acc: 0.56 - ETA: 17s - loss: 1.2251 - acc: 0.56 - ETA: 17s - loss: 1.2218 - acc: 0.56 - ETA: 17s - loss: 1.2219 - acc: 0.56 - ETA: 17s - loss: 1.2202 - acc: 0.56 - ETA: 17s - loss: 1.2186 - acc: 0.56 - ETA: 17s - loss: 1.2201 - acc: 0.56 - ETA: 17s - loss: 1.2176 - acc: 0.56 - ETA: 17s - loss: 1.2173 - acc: 0.57 - ETA: 17s - loss: 1.2163 - acc: 0.57 - ETA: 17s - loss: 1.2151 - acc: 0.57 - ETA: 17s - loss: 1.2118 - acc: 0.57 - ETA: 16s - loss: 1.2120 - acc: 0.57 - ETA: 16s - loss: 1.2124 - acc: 0.57 - ETA: 16s - loss: 1.2113 - acc: 0.57 - ETA: 16s - loss: 1.2104 - acc: 0.57 - ETA: 16s - loss: 1.2102 - acc: 0.57 - ETA: 16s - loss: 1.2105 - acc: 0.57 - ETA: 16s - loss: 1.2086 - acc: 0.57 - ETA: 16s - loss: 1.2057 - acc: 0.57 - ETA: 16s - loss: 1.2067 - acc: 0.57 - ETA: 16s - loss: 1.2109 - acc: 0.57 - ETA: 16s - loss: 1.2102 - acc: 0.57 - ETA: 16s - loss: 1.2103 - acc: 0.57 - ETA: 16s - loss: 1.2098 - acc: 0.57 - ETA: 16s - loss: 1.2093 - acc: 0.57 - ETA: 16s - loss: 1.2079 - acc: 0.57 - ETA: 15s - loss: 1.2076 - acc: 0.57 - ETA: 15s - loss: 1.2070 - acc: 0.57 - ETA: 15s - loss: 1.2056 - acc: 0.57 - ETA: 15s - loss: 1.2063 - acc: 0.57 - ETA: 15s - loss: 1.2058 - acc: 0.57 - ETA: 15s - loss: 1.2045 - acc: 0.57 - ETA: 15s - loss: 1.2035 - acc: 0.57 - ETA: 15s - loss: 1.2026 - acc: 0.57 - ETA: 15s - loss: 1.2011 - acc: 0.57 - ETA: 15s - loss: 1.1977 - acc: 0.57 - ETA: 15s - loss: 1.1960 - acc: 0.57 - ETA: 15s - loss: 1.1950 - acc: 0.57 - ETA: 15s - loss: 1.1941 - acc: 0.57 - ETA: 15s - loss: 1.1936 - acc: 0.57 - ETA: 15s - loss: 1.1916 - acc: 0.58 - ETA: 15s - loss: 1.1895 - acc: 0.58 - ETA: 15s - loss: 1.1886 - acc: 0.58 - ETA: 14s - loss: 1.1866 - acc: 0.58 - ETA: 14s - loss: 1.1855 - acc: 0.58 - ETA: 14s - loss: 1.1860 - acc: 0.58 - ETA: 14s - loss: 1.1845 - acc: 0.58 - ETA: 14s - loss: 1.1841 - acc: 0.58 - ETA: 14s - loss: 1.1838 - acc: 0.58 - ETA: 14s - loss: 1.1839 - acc: 0.58 - ETA: 14s - loss: 1.1814 - acc: 0.58 - ETA: 14s - loss: 1.1806 - acc: 0.58 - ETA: 14s - loss: 1.1810 - acc: 0.58 - ETA: 14s - loss: 1.1791 - acc: 0.58 - ETA: 14s - loss: 1.1780 - acc: 0.58 - ETA: 14s - loss: 1.1789 - acc: 0.58 - ETA: 14s - loss: 1.1803 - acc: 0.58 - ETA: 14s - loss: 1.1799 - acc: 0.58 - ETA: 13s - loss: 1.1787 - acc: 0.58 - ETA: 13s - loss: 1.1787 - acc: 0.58 - ETA: 13s - loss: 1.1777 - acc: 0.58 - ETA: 13s - loss: 1.1761 - acc: 0.58 - ETA: 13s - loss: 1.1752 - acc: 0.58 - ETA: 13s - loss: 1.1746 - acc: 0.58 - ETA: 13s - loss: 1.1728 - acc: 0.58 - ETA: 13s - loss: 1.1732 - acc: 0.58 - ETA: 13s - loss: 1.1720 - acc: 0.58 - ETA: 13s - loss: 1.1716 - acc: 0.58 - ETA: 13s - loss: 1.1707 - acc: 0.58 - ETA: 13s - loss: 1.1709 - acc: 0.58 - ETA: 13s - loss: 1.1700 - acc: 0.58 - ETA: 13s - loss: 1.1701 - acc: 0.58 - ETA: 13s - loss: 1.1710 - acc: 0.58 - ETA: 12s - loss: 1.1709 - acc: 0.58 - ETA: 12s - loss: 1.1694 - acc: 0.58 - ETA: 12s - loss: 1.1692 - acc: 0.58 - ETA: 12s - loss: 1.1700 - acc: 0.58 - ETA: 12s - loss: 1.1682 - acc: 0.58 - ETA: 12s - loss: 1.1675 - acc: 0.58 - ETA: 12s - loss: 1.1660 - acc: 0.58 - ETA: 12s - loss: 1.1647 - acc: 0.58 - ETA: 12s - loss: 1.1634 - acc: 0.58 - ETA: 12s - loss: 1.1638 - acc: 0.58 - ETA: 12s - loss: 1.1626 - acc: 0.59 - ETA: 12s - loss: 1.1613 - acc: 0.59 - ETA: 12s - loss: 1.1604 - acc: 0.59 - ETA: 12s - loss: 1.1581 - acc: 0.59 - ETA: 12s - loss: 1.1571 - acc: 0.59 - ETA: 12s - loss: 1.1565 - acc: 0.59 - ETA: 11s - loss: 1.1558 - acc: 0.59 - ETA: 11s - loss: 1.1551 - acc: 0.59 - ETA: 11s - loss: 1.1534 - acc: 0.59 - ETA: 11s - loss: 1.1534 - acc: 0.59 - ETA: 11s - loss: 1.1528 - acc: 0.59 - ETA: 11s - loss: 1.1523 - acc: 0.59 - ETA: 11s - loss: 1.1530 - acc: 0.59 - ETA: 11s - loss: 1.1527 - acc: 0.59 - ETA: 11s - loss: 1.1525 - acc: 0.59 - ETA: 11s - loss: 1.1521 - acc: 0.59 - ETA: 11s - loss: 1.1525 - acc: 0.59 - ETA: 11s - loss: 1.1522 - acc: 0.59 - ETA: 11s - loss: 1.1519 - acc: 0.59 - ETA: 11s - loss: 1.1516 - acc: 0.59 - ETA: 11s - loss: 1.1508 - acc: 0.59 - ETA: 11s - loss: 1.1506 - acc: 0.59 - ETA: 11s - loss: 1.1505 - acc: 0.59 - ETA: 10s - loss: 1.1495 - acc: 0.59 - ETA: 10s - loss: 1.1485 - acc: 0.59 - ETA: 10s - loss: 1.1478 - acc: 0.59 - ETA: 10s - loss: 1.1478 - acc: 0.59 - ETA: 10s - loss: 1.1479 - acc: 0.59 - ETA: 10s - loss: 1.1483 - acc: 0.59 - ETA: 10s - loss: 1.1474 - acc: 0.59 - ETA: 10s - loss: 1.1476 - acc: 0.59 - ETA: 10s - loss: 1.1466 - acc: 0.59 - ETA: 10s - loss: 1.1463 - acc: 0.59 - ETA: 10s - loss: 1.1462 - acc: 0.59 - ETA: 10s - loss: 1.1454 - acc: 0.59 - ETA: 10s - loss: 1.1452 - acc: 0.59 - ETA: 10s - loss: 1.1450 - acc: 0.59 - ETA: 10s - loss: 1.1438 - acc: 0.59 - ETA: 10s - loss: 1.1425 - acc: 0.59 - ETA: 9s - loss: 1.1422 - acc: 0.5970 - ETA: 9s - loss: 1.1420 - acc: 0.597 - ETA: 9s - loss: 1.1411 - acc: 0.597 - ETA: 9s - loss: 1.1399 - acc: 0.597 - ETA: 9s - loss: 1.1391 - acc: 0.598 - ETA: 9s - loss: 1.1386 - acc: 0.598 - ETA: 9s - loss: 1.1388 - acc: 0.598 - ETA: 9s - loss: 1.1382 - acc: 0.5989" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 1.1365 - acc: 0.599 - ETA: 9s - loss: 1.1359 - acc: 0.599 - ETA: 9s - loss: 1.1354 - acc: 0.599 - ETA: 9s - loss: 1.1351 - acc: 0.599 - ETA: 9s - loss: 1.1335 - acc: 0.599 - ETA: 9s - loss: 1.1320 - acc: 0.600 - ETA: 9s - loss: 1.1315 - acc: 0.600 - ETA: 9s - loss: 1.1311 - acc: 0.600 - ETA: 8s - loss: 1.1306 - acc: 0.600 - ETA: 8s - loss: 1.1294 - acc: 0.601 - ETA: 8s - loss: 1.1287 - acc: 0.601 - ETA: 8s - loss: 1.1279 - acc: 0.601 - ETA: 8s - loss: 1.1274 - acc: 0.601 - ETA: 8s - loss: 1.1262 - acc: 0.601 - ETA: 8s - loss: 1.1259 - acc: 0.602 - ETA: 8s - loss: 1.1250 - acc: 0.602 - ETA: 8s - loss: 1.1251 - acc: 0.602 - ETA: 8s - loss: 1.1247 - acc: 0.602 - ETA: 8s - loss: 1.1252 - acc: 0.602 - ETA: 8s - loss: 1.1250 - acc: 0.602 - ETA: 8s - loss: 1.1250 - acc: 0.602 - ETA: 8s - loss: 1.1239 - acc: 0.603 - ETA: 8s - loss: 1.1237 - acc: 0.603 - ETA: 8s - loss: 1.1234 - acc: 0.603 - ETA: 8s - loss: 1.1240 - acc: 0.603 - ETA: 7s - loss: 1.1239 - acc: 0.603 - ETA: 7s - loss: 1.1224 - acc: 0.603 - ETA: 7s - loss: 1.1211 - acc: 0.604 - ETA: 7s - loss: 1.1206 - acc: 0.604 - ETA: 7s - loss: 1.1199 - acc: 0.604 - ETA: 7s - loss: 1.1200 - acc: 0.605 - ETA: 7s - loss: 1.1199 - acc: 0.605 - ETA: 7s - loss: 1.1192 - acc: 0.605 - ETA: 7s - loss: 1.1186 - acc: 0.605 - ETA: 7s - loss: 1.1180 - acc: 0.605 - ETA: 7s - loss: 1.1170 - acc: 0.606 - ETA: 7s - loss: 1.1161 - acc: 0.606 - ETA: 7s - loss: 1.1154 - acc: 0.606 - ETA: 7s - loss: 1.1143 - acc: 0.606 - ETA: 7s - loss: 1.1151 - acc: 0.607 - ETA: 7s - loss: 1.1135 - acc: 0.607 - ETA: 6s - loss: 1.1133 - acc: 0.607 - ETA: 6s - loss: 1.1135 - acc: 0.608 - ETA: 6s - loss: 1.1129 - acc: 0.608 - ETA: 6s - loss: 1.1124 - acc: 0.608 - ETA: 6s - loss: 1.1121 - acc: 0.608 - ETA: 6s - loss: 1.1125 - acc: 0.608 - ETA: 6s - loss: 1.1121 - acc: 0.608 - ETA: 6s - loss: 1.1125 - acc: 0.608 - ETA: 6s - loss: 1.1119 - acc: 0.608 - ETA: 6s - loss: 1.1111 - acc: 0.608 - ETA: 6s - loss: 1.1101 - acc: 0.609 - ETA: 6s - loss: 1.1112 - acc: 0.609 - ETA: 6s - loss: 1.1103 - acc: 0.609 - ETA: 6s - loss: 1.1100 - acc: 0.609 - ETA: 6s - loss: 1.1092 - acc: 0.609 - ETA: 6s - loss: 1.1083 - acc: 0.610 - ETA: 5s - loss: 1.1078 - acc: 0.610 - ETA: 5s - loss: 1.1077 - acc: 0.610 - ETA: 5s - loss: 1.1065 - acc: 0.611 - ETA: 5s - loss: 1.1064 - acc: 0.611 - ETA: 5s - loss: 1.1062 - acc: 0.611 - ETA: 5s - loss: 1.1062 - acc: 0.611 - ETA: 5s - loss: 1.1059 - acc: 0.611 - ETA: 5s - loss: 1.1053 - acc: 0.611 - ETA: 5s - loss: 1.1048 - acc: 0.611 - ETA: 5s - loss: 1.1041 - acc: 0.611 - ETA: 5s - loss: 1.1035 - acc: 0.612 - ETA: 5s - loss: 1.1030 - acc: 0.612 - ETA: 5s - loss: 1.1019 - acc: 0.612 - ETA: 5s - loss: 1.1021 - acc: 0.612 - ETA: 5s - loss: 1.1015 - acc: 0.613 - ETA: 5s - loss: 1.1013 - acc: 0.613 - ETA: 5s - loss: 1.1001 - acc: 0.613 - ETA: 4s - loss: 1.1002 - acc: 0.613 - ETA: 4s - loss: 1.0996 - acc: 0.614 - ETA: 4s - loss: 1.0992 - acc: 0.614 - ETA: 4s - loss: 1.0982 - acc: 0.614 - ETA: 4s - loss: 1.0972 - acc: 0.615 - ETA: 4s - loss: 1.0967 - acc: 0.615 - ETA: 4s - loss: 1.0957 - acc: 0.615 - ETA: 4s - loss: 1.0957 - acc: 0.615 - ETA: 4s - loss: 1.0952 - acc: 0.616 - ETA: 4s - loss: 1.0958 - acc: 0.615 - ETA: 4s - loss: 1.0955 - acc: 0.615 - ETA: 4s - loss: 1.0953 - acc: 0.616 - ETA: 4s - loss: 1.0952 - acc: 0.616 - ETA: 4s - loss: 1.0948 - acc: 0.616 - ETA: 4s - loss: 1.0940 - acc: 0.616 - ETA: 4s - loss: 1.0933 - acc: 0.616 - ETA: 3s - loss: 1.0928 - acc: 0.616 - ETA: 3s - loss: 1.0921 - acc: 0.617 - ETA: 3s - loss: 1.0910 - acc: 0.617 - ETA: 3s - loss: 1.0902 - acc: 0.618 - ETA: 3s - loss: 1.0894 - acc: 0.618 - ETA: 3s - loss: 1.0888 - acc: 0.618 - ETA: 3s - loss: 1.0883 - acc: 0.618 - ETA: 3s - loss: 1.0885 - acc: 0.618 - ETA: 3s - loss: 1.0877 - acc: 0.619 - ETA: 3s - loss: 1.0863 - acc: 0.619 - ETA: 3s - loss: 1.0860 - acc: 0.619 - ETA: 3s - loss: 1.0863 - acc: 0.619 - ETA: 3s - loss: 1.0856 - acc: 0.619 - ETA: 3s - loss: 1.0850 - acc: 0.620 - ETA: 3s - loss: 1.0850 - acc: 0.620 - ETA: 3s - loss: 1.0849 - acc: 0.620 - ETA: 2s - loss: 1.0849 - acc: 0.619 - ETA: 2s - loss: 1.0852 - acc: 0.619 - ETA: 2s - loss: 1.0847 - acc: 0.619 - ETA: 2s - loss: 1.0843 - acc: 0.620 - ETA: 2s - loss: 1.0841 - acc: 0.620 - ETA: 2s - loss: 1.0830 - acc: 0.621 - ETA: 2s - loss: 1.0816 - acc: 0.621 - ETA: 2s - loss: 1.0810 - acc: 0.621 - ETA: 2s - loss: 1.0804 - acc: 0.621 - ETA: 2s - loss: 1.0802 - acc: 0.622 - ETA: 2s - loss: 1.0799 - acc: 0.622 - ETA: 2s - loss: 1.0796 - acc: 0.622 - ETA: 2s - loss: 1.0785 - acc: 0.622 - ETA: 2s - loss: 1.0791 - acc: 0.622 - ETA: 2s - loss: 1.0785 - acc: 0.622 - ETA: 1s - loss: 1.0776 - acc: 0.623 - ETA: 1s - loss: 1.0766 - acc: 0.623 - ETA: 1s - loss: 1.0764 - acc: 0.623 - ETA: 1s - loss: 1.0757 - acc: 0.623 - ETA: 1s - loss: 1.0756 - acc: 0.623 - ETA: 1s - loss: 1.0747 - acc: 0.624 - ETA: 1s - loss: 1.0745 - acc: 0.624 - ETA: 1s - loss: 1.0744 - acc: 0.624 - ETA: 1s - loss: 1.0744 - acc: 0.623 - ETA: 1s - loss: 1.0747 - acc: 0.623 - ETA: 1s - loss: 1.0739 - acc: 0.624 - ETA: 1s - loss: 1.0737 - acc: 0.624 - ETA: 1s - loss: 1.0732 - acc: 0.624 - ETA: 1s - loss: 1.0724 - acc: 0.625 - ETA: 1s - loss: 1.0720 - acc: 0.625 - ETA: 1s - loss: 1.0718 - acc: 0.625 - ETA: 0s - loss: 1.0716 - acc: 0.625 - ETA: 0s - loss: 1.0710 - acc: 0.625 - ETA: 0s - loss: 1.0706 - acc: 0.625 - ETA: 0s - loss: 1.0696 - acc: 0.626 - ETA: 0s - loss: 1.0690 - acc: 0.626 - ETA: 0s - loss: 1.0682 - acc: 0.626 - ETA: 0s - loss: 1.0679 - acc: 0.626 - ETA: 0s - loss: 1.0678 - acc: 0.626 - ETA: 0s - loss: 1.0677 - acc: 0.626 - ETA: 0s - loss: 1.0677 - acc: 0.627 - ETA: 0s - loss: 1.0674 - acc: 0.627 - ETA: 0s - loss: 1.0675 - acc: 0.627 - ETA: 0s - loss: 1.0669 - acc: 0.627 - ETA: 0s - loss: 1.0669 - acc: 0.627 - ETA: 0s - loss: 1.0669 - acc: 0.627 - ETA: 0s - loss: 1.0667 - acc: 0.627 - 24s 1ms/step - loss: 1.0660 - acc: 0.6275 - val_loss: 0.9075 - val_acc: 0.6865\n", + "\n", + "Epoch 00002: val_acc improved from 0.51117 to 0.68648, saving model to models\\time.model\n", + "Epoch 3/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 28s - loss: 0.8473 - acc: 0.65 - ETA: 27s - loss: 0.9525 - acc: 0.62 - ETA: 24s - loss: 1.0035 - acc: 0.61 - ETA: 24s - loss: 1.0098 - acc: 0.62 - ETA: 24s - loss: 1.0103 - acc: 0.62 - ETA: 23s - loss: 0.9616 - acc: 0.65 - ETA: 23s - loss: 0.9501 - acc: 0.65 - ETA: 22s - loss: 0.9368 - acc: 0.66 - ETA: 22s - loss: 0.9427 - acc: 0.66 - ETA: 22s - loss: 0.9610 - acc: 0.65 - ETA: 22s - loss: 0.9530 - acc: 0.66 - ETA: 22s - loss: 0.9366 - acc: 0.67 - ETA: 22s - loss: 0.9291 - acc: 0.67 - ETA: 22s - loss: 0.9161 - acc: 0.68 - ETA: 22s - loss: 0.9086 - acc: 0.68 - ETA: 22s - loss: 0.9223 - acc: 0.68 - ETA: 21s - loss: 0.9187 - acc: 0.68 - ETA: 21s - loss: 0.9246 - acc: 0.67 - ETA: 21s - loss: 0.9195 - acc: 0.67 - ETA: 21s - loss: 0.9197 - acc: 0.67 - ETA: 21s - loss: 0.9145 - acc: 0.68 - ETA: 21s - loss: 0.9148 - acc: 0.68 - ETA: 21s - loss: 0.9133 - acc: 0.68 - ETA: 21s - loss: 0.9096 - acc: 0.67 - ETA: 21s - loss: 0.9117 - acc: 0.67 - ETA: 21s - loss: 0.9114 - acc: 0.68 - ETA: 21s - loss: 0.9201 - acc: 0.67 - ETA: 20s - loss: 0.9304 - acc: 0.67 - ETA: 20s - loss: 0.9306 - acc: 0.67 - ETA: 20s - loss: 0.9249 - acc: 0.68 - ETA: 20s - loss: 0.9234 - acc: 0.68 - ETA: 20s - loss: 0.9148 - acc: 0.68 - ETA: 20s - loss: 0.9157 - acc: 0.68 - ETA: 20s - loss: 0.9153 - acc: 0.68 - ETA: 20s - loss: 0.9252 - acc: 0.68 - ETA: 19s - loss: 0.9208 - acc: 0.68 - ETA: 19s - loss: 0.9241 - acc: 0.68 - ETA: 19s - loss: 0.9266 - acc: 0.68 - ETA: 19s - loss: 0.9258 - acc: 0.68 - ETA: 19s - loss: 0.9288 - acc: 0.68 - ETA: 19s - loss: 0.9310 - acc: 0.68 - ETA: 19s - loss: 0.9239 - acc: 0.69 - ETA: 19s - loss: 0.9257 - acc: 0.68 - ETA: 19s - loss: 0.9193 - acc: 0.69 - ETA: 19s - loss: 0.9198 - acc: 0.68 - ETA: 19s - loss: 0.9130 - acc: 0.69 - ETA: 19s - loss: 0.9131 - acc: 0.68 - ETA: 19s - loss: 0.9109 - acc: 0.69 - ETA: 19s - loss: 0.9113 - acc: 0.68 - ETA: 19s - loss: 0.9073 - acc: 0.69 - ETA: 19s - loss: 0.9036 - acc: 0.69 - ETA: 19s - loss: 0.9016 - acc: 0.69 - ETA: 18s - loss: 0.9007 - acc: 0.69 - ETA: 18s - loss: 0.9035 - acc: 0.69 - ETA: 18s - loss: 0.9032 - acc: 0.69 - ETA: 18s - loss: 0.9017 - acc: 0.69 - ETA: 18s - loss: 0.9030 - acc: 0.68 - ETA: 18s - loss: 0.9020 - acc: 0.68 - ETA: 18s - loss: 0.9030 - acc: 0.68 - ETA: 18s - loss: 0.9046 - acc: 0.68 - ETA: 18s - loss: 0.9037 - acc: 0.68 - ETA: 18s - loss: 0.9072 - acc: 0.68 - ETA: 18s - loss: 0.9114 - acc: 0.68 - ETA: 18s - loss: 0.9102 - acc: 0.68 - ETA: 18s - loss: 0.9098 - acc: 0.68 - ETA: 18s - loss: 0.9088 - acc: 0.68 - ETA: 18s - loss: 0.9091 - acc: 0.68 - ETA: 18s - loss: 0.9065 - acc: 0.68 - ETA: 18s - loss: 0.9034 - acc: 0.68 - ETA: 17s - loss: 0.9011 - acc: 0.68 - ETA: 17s - loss: 0.9004 - acc: 0.68 - ETA: 17s - loss: 0.8996 - acc: 0.68 - ETA: 17s - loss: 0.9029 - acc: 0.68 - ETA: 17s - loss: 0.9006 - acc: 0.68 - ETA: 17s - loss: 0.8985 - acc: 0.68 - ETA: 17s - loss: 0.8964 - acc: 0.68 - ETA: 17s - loss: 0.8972 - acc: 0.68 - ETA: 17s - loss: 0.8999 - acc: 0.68 - ETA: 17s - loss: 0.9018 - acc: 0.68 - ETA: 17s - loss: 0.9016 - acc: 0.68 - ETA: 17s - loss: 0.9006 - acc: 0.68 - ETA: 17s - loss: 0.9007 - acc: 0.68 - ETA: 17s - loss: 0.9009 - acc: 0.68 - ETA: 17s - loss: 0.9008 - acc: 0.68 - ETA: 17s - loss: 0.9013 - acc: 0.68 - ETA: 17s - loss: 0.8993 - acc: 0.68 - ETA: 17s - loss: 0.8985 - acc: 0.69 - ETA: 17s - loss: 0.8960 - acc: 0.69 - ETA: 16s - loss: 0.8952 - acc: 0.69 - ETA: 16s - loss: 0.8973 - acc: 0.69 - ETA: 16s - loss: 0.8957 - acc: 0.69 - ETA: 16s - loss: 0.8935 - acc: 0.69 - ETA: 16s - loss: 0.8924 - acc: 0.69 - ETA: 16s - loss: 0.8926 - acc: 0.69 - ETA: 16s - loss: 0.8949 - acc: 0.69 - ETA: 16s - loss: 0.8939 - acc: 0.69 - ETA: 16s - loss: 0.8949 - acc: 0.69 - ETA: 16s - loss: 0.8943 - acc: 0.69 - ETA: 16s - loss: 0.8926 - acc: 0.69 - ETA: 16s - loss: 0.8941 - acc: 0.69 - ETA: 16s - loss: 0.8917 - acc: 0.69 - ETA: 16s - loss: 0.8905 - acc: 0.69 - ETA: 16s - loss: 0.8899 - acc: 0.69 - ETA: 16s - loss: 0.8877 - acc: 0.69 - ETA: 16s - loss: 0.8879 - acc: 0.69 - ETA: 16s - loss: 0.8857 - acc: 0.69 - ETA: 15s - loss: 0.8870 - acc: 0.69 - ETA: 15s - loss: 0.8875 - acc: 0.69 - ETA: 15s - loss: 0.8876 - acc: 0.69 - ETA: 15s - loss: 0.8872 - acc: 0.69 - ETA: 15s - loss: 0.8897 - acc: 0.69 - ETA: 15s - loss: 0.8864 - acc: 0.69 - ETA: 15s - loss: 0.8872 - acc: 0.69 - ETA: 15s - loss: 0.8893 - acc: 0.69 - ETA: 15s - loss: 0.8908 - acc: 0.69 - ETA: 15s - loss: 0.8900 - acc: 0.69 - ETA: 15s - loss: 0.8909 - acc: 0.69 - ETA: 15s - loss: 0.8894 - acc: 0.69 - ETA: 15s - loss: 0.8902 - acc: 0.69 - ETA: 15s - loss: 0.8908 - acc: 0.69 - ETA: 15s - loss: 0.8914 - acc: 0.69 - ETA: 15s - loss: 0.8901 - acc: 0.69 - ETA: 15s - loss: 0.8907 - acc: 0.69 - ETA: 14s - loss: 0.8900 - acc: 0.69 - ETA: 14s - loss: 0.8919 - acc: 0.69 - ETA: 14s - loss: 0.8938 - acc: 0.69 - ETA: 14s - loss: 0.8921 - acc: 0.69 - ETA: 14s - loss: 0.8901 - acc: 0.69 - ETA: 14s - loss: 0.8883 - acc: 0.69 - ETA: 14s - loss: 0.8876 - acc: 0.69 - ETA: 14s - loss: 0.8873 - acc: 0.69 - ETA: 14s - loss: 0.8879 - acc: 0.69 - ETA: 14s - loss: 0.8891 - acc: 0.69 - ETA: 14s - loss: 0.8908 - acc: 0.69 - ETA: 14s - loss: 0.8912 - acc: 0.69 - ETA: 14s - loss: 0.8908 - acc: 0.69 - ETA: 14s - loss: 0.8915 - acc: 0.69 - ETA: 14s - loss: 0.8899 - acc: 0.69 - ETA: 14s - loss: 0.8897 - acc: 0.69 - ETA: 13s - loss: 0.8894 - acc: 0.69 - ETA: 13s - loss: 0.8893 - acc: 0.69 - ETA: 13s - loss: 0.8868 - acc: 0.69 - ETA: 13s - loss: 0.8868 - acc: 0.69 - ETA: 13s - loss: 0.8874 - acc: 0.69 - ETA: 13s - loss: 0.8866 - acc: 0.69 - ETA: 13s - loss: 0.8879 - acc: 0.69 - ETA: 13s - loss: 0.8890 - acc: 0.69 - ETA: 13s - loss: 0.8885 - acc: 0.69 - ETA: 13s - loss: 0.8875 - acc: 0.69 - ETA: 13s - loss: 0.8867 - acc: 0.69 - ETA: 13s - loss: 0.8840 - acc: 0.69 - ETA: 13s - loss: 0.8843 - acc: 0.69 - ETA: 13s - loss: 0.8834 - acc: 0.69 - ETA: 13s - loss: 0.8834 - acc: 0.69 - ETA: 13s - loss: 0.8832 - acc: 0.69 - ETA: 13s - loss: 0.8826 - acc: 0.69 - ETA: 12s - loss: 0.8810 - acc: 0.69 - ETA: 12s - loss: 0.8811 - acc: 0.69 - ETA: 12s - loss: 0.8812 - acc: 0.69 - ETA: 12s - loss: 0.8827 - acc: 0.69 - ETA: 12s - loss: 0.8818 - acc: 0.69 - ETA: 12s - loss: 0.8821 - acc: 0.69 - ETA: 12s - loss: 0.8817 - acc: 0.69 - ETA: 12s - loss: 0.8820 - acc: 0.69 - ETA: 12s - loss: 0.8822 - acc: 0.69 - ETA: 12s - loss: 0.8815 - acc: 0.69 - ETA: 12s - loss: 0.8811 - acc: 0.69 - ETA: 12s - loss: 0.8792 - acc: 0.69 - ETA: 12s - loss: 0.8790 - acc: 0.69 - ETA: 12s - loss: 0.8786 - acc: 0.69 - ETA: 12s - loss: 0.8808 - acc: 0.69 - ETA: 12s - loss: 0.8809 - acc: 0.69 - ETA: 11s - loss: 0.8802 - acc: 0.69 - ETA: 11s - loss: 0.8795 - acc: 0.69 - ETA: 11s - loss: 0.8795 - acc: 0.69 - ETA: 11s - loss: 0.8783 - acc: 0.69 - ETA: 11s - loss: 0.8772 - acc: 0.69 - ETA: 11s - loss: 0.8784 - acc: 0.69 - ETA: 11s - loss: 0.8775 - acc: 0.69 - ETA: 11s - loss: 0.8779 - acc: 0.69 - ETA: 11s - loss: 0.8783 - acc: 0.69 - ETA: 11s - loss: 0.8769 - acc: 0.69 - ETA: 11s - loss: 0.8764 - acc: 0.70 - ETA: 11s - loss: 0.8764 - acc: 0.70 - ETA: 11s - loss: 0.8753 - acc: 0.70 - ETA: 11s - loss: 0.8746 - acc: 0.70 - ETA: 11s - loss: 0.8741 - acc: 0.70 - ETA: 11s - loss: 0.8733 - acc: 0.70 - ETA: 11s - loss: 0.8717 - acc: 0.70 - ETA: 10s - loss: 0.8723 - acc: 0.70 - ETA: 10s - loss: 0.8729 - acc: 0.70 - ETA: 10s - loss: 0.8727 - acc: 0.70 - ETA: 10s - loss: 0.8729 - acc: 0.70 - ETA: 10s - loss: 0.8725 - acc: 0.70 - ETA: 10s - loss: 0.8723 - acc: 0.70 - ETA: 10s - loss: 0.8723 - acc: 0.70 - ETA: 10s - loss: 0.8713 - acc: 0.70 - ETA: 10s - loss: 0.8713 - acc: 0.70 - ETA: 10s - loss: 0.8698 - acc: 0.70 - ETA: 10s - loss: 0.8696 - acc: 0.70 - ETA: 10s - loss: 0.8690 - acc: 0.70 - ETA: 10s - loss: 0.8680 - acc: 0.70 - ETA: 10s - loss: 0.8676 - acc: 0.70 - ETA: 10s - loss: 0.8665 - acc: 0.70 - ETA: 10s - loss: 0.8663 - acc: 0.70 - ETA: 10s - loss: 0.8661 - acc: 0.70 - ETA: 9s - loss: 0.8666 - acc: 0.7034 - ETA: 9s - loss: 0.8659 - acc: 0.703 - ETA: 9s - loss: 0.8655 - acc: 0.703 - ETA: 9s - loss: 0.8653 - acc: 0.703 - ETA: 9s - loss: 0.8653 - acc: 0.703 - ETA: 9s - loss: 0.8648 - acc: 0.703 - ETA: 9s - loss: 0.8647 - acc: 0.704 - ETA: 9s - loss: 0.8650 - acc: 0.703 - ETA: 9s - loss: 0.8646 - acc: 0.7039" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.8646 - acc: 0.704 - ETA: 9s - loss: 0.8647 - acc: 0.704 - ETA: 9s - loss: 0.8650 - acc: 0.704 - ETA: 9s - loss: 0.8659 - acc: 0.703 - ETA: 9s - loss: 0.8652 - acc: 0.703 - ETA: 9s - loss: 0.8652 - acc: 0.703 - ETA: 9s - loss: 0.8643 - acc: 0.703 - ETA: 9s - loss: 0.8640 - acc: 0.704 - ETA: 8s - loss: 0.8637 - acc: 0.703 - ETA: 8s - loss: 0.8638 - acc: 0.704 - ETA: 8s - loss: 0.8643 - acc: 0.703 - ETA: 8s - loss: 0.8644 - acc: 0.703 - ETA: 8s - loss: 0.8646 - acc: 0.703 - ETA: 8s - loss: 0.8653 - acc: 0.703 - ETA: 8s - loss: 0.8659 - acc: 0.703 - ETA: 8s - loss: 0.8657 - acc: 0.703 - ETA: 8s - loss: 0.8674 - acc: 0.703 - ETA: 8s - loss: 0.8678 - acc: 0.702 - ETA: 8s - loss: 0.8685 - acc: 0.702 - ETA: 8s - loss: 0.8695 - acc: 0.702 - ETA: 8s - loss: 0.8697 - acc: 0.702 - ETA: 8s - loss: 0.8690 - acc: 0.702 - ETA: 8s - loss: 0.8695 - acc: 0.702 - ETA: 8s - loss: 0.8691 - acc: 0.702 - ETA: 8s - loss: 0.8694 - acc: 0.702 - ETA: 7s - loss: 0.8693 - acc: 0.702 - ETA: 7s - loss: 0.8691 - acc: 0.702 - ETA: 7s - loss: 0.8693 - acc: 0.702 - ETA: 7s - loss: 0.8690 - acc: 0.702 - ETA: 7s - loss: 0.8692 - acc: 0.702 - ETA: 7s - loss: 0.8702 - acc: 0.702 - ETA: 7s - loss: 0.8699 - acc: 0.701 - ETA: 7s - loss: 0.8699 - acc: 0.702 - ETA: 7s - loss: 0.8702 - acc: 0.701 - ETA: 7s - loss: 0.8698 - acc: 0.702 - ETA: 7s - loss: 0.8709 - acc: 0.701 - ETA: 7s - loss: 0.8709 - acc: 0.701 - ETA: 7s - loss: 0.8711 - acc: 0.701 - ETA: 7s - loss: 0.8707 - acc: 0.701 - ETA: 7s - loss: 0.8702 - acc: 0.702 - ETA: 7s - loss: 0.8703 - acc: 0.702 - ETA: 6s - loss: 0.8694 - acc: 0.702 - ETA: 6s - loss: 0.8691 - acc: 0.702 - ETA: 6s - loss: 0.8690 - acc: 0.702 - ETA: 6s - loss: 0.8692 - acc: 0.702 - ETA: 6s - loss: 0.8702 - acc: 0.702 - ETA: 6s - loss: 0.8712 - acc: 0.702 - ETA: 6s - loss: 0.8710 - acc: 0.702 - ETA: 6s - loss: 0.8704 - acc: 0.702 - ETA: 6s - loss: 0.8700 - acc: 0.702 - ETA: 6s - loss: 0.8701 - acc: 0.702 - ETA: 6s - loss: 0.8701 - acc: 0.702 - ETA: 6s - loss: 0.8699 - acc: 0.702 - ETA: 6s - loss: 0.8699 - acc: 0.702 - ETA: 6s - loss: 0.8695 - acc: 0.702 - ETA: 6s - loss: 0.8694 - acc: 0.702 - ETA: 6s - loss: 0.8691 - acc: 0.702 - ETA: 5s - loss: 0.8685 - acc: 0.702 - ETA: 5s - loss: 0.8682 - acc: 0.702 - ETA: 5s - loss: 0.8676 - acc: 0.703 - ETA: 5s - loss: 0.8677 - acc: 0.703 - ETA: 5s - loss: 0.8674 - acc: 0.703 - ETA: 5s - loss: 0.8666 - acc: 0.703 - ETA: 5s - loss: 0.8668 - acc: 0.703 - ETA: 5s - loss: 0.8657 - acc: 0.703 - ETA: 5s - loss: 0.8652 - acc: 0.703 - ETA: 5s - loss: 0.8648 - acc: 0.703 - ETA: 5s - loss: 0.8646 - acc: 0.704 - ETA: 5s - loss: 0.8646 - acc: 0.704 - ETA: 5s - loss: 0.8633 - acc: 0.704 - ETA: 5s - loss: 0.8631 - acc: 0.704 - ETA: 5s - loss: 0.8628 - acc: 0.704 - ETA: 5s - loss: 0.8622 - acc: 0.704 - ETA: 5s - loss: 0.8618 - acc: 0.704 - ETA: 4s - loss: 0.8614 - acc: 0.704 - ETA: 4s - loss: 0.8603 - acc: 0.705 - ETA: 4s - loss: 0.8596 - acc: 0.705 - ETA: 4s - loss: 0.8593 - acc: 0.705 - ETA: 4s - loss: 0.8593 - acc: 0.705 - ETA: 4s - loss: 0.8590 - acc: 0.705 - ETA: 4s - loss: 0.8592 - acc: 0.705 - ETA: 4s - loss: 0.8598 - acc: 0.705 - ETA: 4s - loss: 0.8594 - acc: 0.705 - ETA: 4s - loss: 0.8588 - acc: 0.705 - ETA: 4s - loss: 0.8592 - acc: 0.705 - ETA: 4s - loss: 0.8597 - acc: 0.705 - ETA: 4s - loss: 0.8591 - acc: 0.705 - ETA: 4s - loss: 0.8588 - acc: 0.705 - ETA: 4s - loss: 0.8586 - acc: 0.705 - ETA: 4s - loss: 0.8582 - acc: 0.705 - ETA: 4s - loss: 0.8582 - acc: 0.705 - ETA: 3s - loss: 0.8581 - acc: 0.706 - ETA: 3s - loss: 0.8579 - acc: 0.705 - ETA: 3s - loss: 0.8584 - acc: 0.705 - ETA: 3s - loss: 0.8584 - acc: 0.705 - ETA: 3s - loss: 0.8579 - acc: 0.706 - ETA: 3s - loss: 0.8578 - acc: 0.706 - ETA: 3s - loss: 0.8574 - acc: 0.706 - ETA: 3s - loss: 0.8574 - acc: 0.706 - ETA: 3s - loss: 0.8575 - acc: 0.706 - ETA: 3s - loss: 0.8570 - acc: 0.706 - ETA: 3s - loss: 0.8569 - acc: 0.706 - ETA: 3s - loss: 0.8558 - acc: 0.706 - ETA: 3s - loss: 0.8558 - acc: 0.706 - ETA: 3s - loss: 0.8556 - acc: 0.706 - ETA: 3s - loss: 0.8553 - acc: 0.706 - ETA: 3s - loss: 0.8548 - acc: 0.707 - ETA: 2s - loss: 0.8545 - acc: 0.706 - ETA: 2s - loss: 0.8549 - acc: 0.706 - ETA: 2s - loss: 0.8550 - acc: 0.706 - ETA: 2s - loss: 0.8547 - acc: 0.706 - ETA: 2s - loss: 0.8551 - acc: 0.706 - ETA: 2s - loss: 0.8544 - acc: 0.706 - ETA: 2s - loss: 0.8546 - acc: 0.706 - ETA: 2s - loss: 0.8543 - acc: 0.706 - ETA: 2s - loss: 0.8534 - acc: 0.707 - ETA: 2s - loss: 0.8526 - acc: 0.707 - ETA: 2s - loss: 0.8527 - acc: 0.707 - ETA: 2s - loss: 0.8525 - acc: 0.707 - ETA: 2s - loss: 0.8527 - acc: 0.707 - ETA: 2s - loss: 0.8529 - acc: 0.707 - ETA: 2s - loss: 0.8528 - acc: 0.707 - ETA: 2s - loss: 0.8527 - acc: 0.707 - ETA: 1s - loss: 0.8523 - acc: 0.707 - ETA: 1s - loss: 0.8522 - acc: 0.707 - ETA: 1s - loss: 0.8522 - acc: 0.707 - ETA: 1s - loss: 0.8523 - acc: 0.707 - ETA: 1s - loss: 0.8522 - acc: 0.707 - ETA: 1s - loss: 0.8524 - acc: 0.706 - ETA: 1s - loss: 0.8522 - acc: 0.706 - ETA: 1s - loss: 0.8520 - acc: 0.706 - ETA: 1s - loss: 0.8521 - acc: 0.706 - ETA: 1s - loss: 0.8517 - acc: 0.707 - ETA: 1s - loss: 0.8514 - acc: 0.707 - ETA: 1s - loss: 0.8510 - acc: 0.707 - ETA: 1s - loss: 0.8508 - acc: 0.707 - ETA: 1s - loss: 0.8507 - acc: 0.706 - ETA: 1s - loss: 0.8504 - acc: 0.707 - ETA: 1s - loss: 0.8507 - acc: 0.707 - ETA: 1s - loss: 0.8504 - acc: 0.707 - ETA: 0s - loss: 0.8500 - acc: 0.707 - ETA: 0s - loss: 0.8499 - acc: 0.707 - ETA: 0s - loss: 0.8493 - acc: 0.707 - ETA: 0s - loss: 0.8495 - acc: 0.707 - ETA: 0s - loss: 0.8503 - acc: 0.707 - ETA: 0s - loss: 0.8503 - acc: 0.707 - ETA: 0s - loss: 0.8501 - acc: 0.707 - ETA: 0s - loss: 0.8499 - acc: 0.707 - ETA: 0s - loss: 0.8499 - acc: 0.707 - ETA: 0s - loss: 0.8500 - acc: 0.707 - ETA: 0s - loss: 0.8501 - acc: 0.707 - ETA: 0s - loss: 0.8504 - acc: 0.706 - ETA: 0s - loss: 0.8503 - acc: 0.706 - ETA: 0s - loss: 0.8503 - acc: 0.706 - ETA: 0s - loss: 0.8504 - acc: 0.706 - ETA: 0s - loss: 0.8502 - acc: 0.706 - 24s 992us/step - loss: 0.8502 - acc: 0.7069 - val_loss: 0.7456 - val_acc: 0.7429\n", + "\n", + "Epoch 00003: val_acc improved from 0.68648 to 0.74290, saving model to models\\time.model\n", + "Epoch 4/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14016/23769 [================>.............] - ETA: 26s - loss: 0.4521 - acc: 0.78 - ETA: 24s - loss: 0.7109 - acc: 0.70 - ETA: 23s - loss: 0.7446 - acc: 0.70 - ETA: 23s - loss: 0.7848 - acc: 0.71 - ETA: 23s - loss: 0.7006 - acc: 0.75 - ETA: 22s - loss: 0.6822 - acc: 0.75 - ETA: 22s - loss: 0.7115 - acc: 0.75 - ETA: 22s - loss: 0.7077 - acc: 0.76 - ETA: 22s - loss: 0.7133 - acc: 0.76 - ETA: 21s - loss: 0.7111 - acc: 0.75 - ETA: 21s - loss: 0.7155 - acc: 0.75 - ETA: 21s - loss: 0.7398 - acc: 0.74 - ETA: 21s - loss: 0.7355 - acc: 0.74 - ETA: 21s - loss: 0.7398 - acc: 0.74 - ETA: 21s - loss: 0.7388 - acc: 0.74 - ETA: 21s - loss: 0.7588 - acc: 0.74 - ETA: 21s - loss: 0.7654 - acc: 0.73 - ETA: 21s - loss: 0.7676 - acc: 0.73 - ETA: 20s - loss: 0.7614 - acc: 0.74 - ETA: 20s - loss: 0.7677 - acc: 0.73 - ETA: 20s - loss: 0.7633 - acc: 0.73 - ETA: 20s - loss: 0.7536 - acc: 0.73 - ETA: 20s - loss: 0.7522 - acc: 0.74 - ETA: 20s - loss: 0.7601 - acc: 0.74 - ETA: 20s - loss: 0.7631 - acc: 0.73 - ETA: 20s - loss: 0.7673 - acc: 0.73 - ETA: 20s - loss: 0.7747 - acc: 0.73 - ETA: 20s - loss: 0.7807 - acc: 0.73 - ETA: 20s - loss: 0.7792 - acc: 0.73 - ETA: 20s - loss: 0.7741 - acc: 0.73 - ETA: 19s - loss: 0.7750 - acc: 0.73 - ETA: 19s - loss: 0.7693 - acc: 0.73 - ETA: 19s - loss: 0.7784 - acc: 0.73 - ETA: 19s - loss: 0.7777 - acc: 0.73 - ETA: 19s - loss: 0.7722 - acc: 0.73 - ETA: 19s - loss: 0.7765 - acc: 0.73 - ETA: 19s - loss: 0.7778 - acc: 0.73 - ETA: 19s - loss: 0.7812 - acc: 0.73 - ETA: 19s - loss: 0.7815 - acc: 0.73 - ETA: 19s - loss: 0.7793 - acc: 0.73 - ETA: 19s - loss: 0.7798 - acc: 0.73 - ETA: 19s - loss: 0.7780 - acc: 0.73 - ETA: 19s - loss: 0.7742 - acc: 0.73 - ETA: 19s - loss: 0.7747 - acc: 0.73 - ETA: 19s - loss: 0.7794 - acc: 0.73 - ETA: 19s - loss: 0.7828 - acc: 0.73 - ETA: 18s - loss: 0.7813 - acc: 0.73 - ETA: 18s - loss: 0.7782 - acc: 0.73 - ETA: 18s - loss: 0.7802 - acc: 0.73 - ETA: 18s - loss: 0.7799 - acc: 0.73 - ETA: 18s - loss: 0.7856 - acc: 0.73 - ETA: 18s - loss: 0.7901 - acc: 0.73 - ETA: 18s - loss: 0.7904 - acc: 0.73 - ETA: 18s - loss: 0.7930 - acc: 0.72 - ETA: 18s - loss: 0.7891 - acc: 0.73 - ETA: 18s - loss: 0.7850 - acc: 0.73 - ETA: 18s - loss: 0.7831 - acc: 0.73 - ETA: 18s - loss: 0.7792 - acc: 0.73 - ETA: 18s - loss: 0.7781 - acc: 0.73 - ETA: 18s - loss: 0.7790 - acc: 0.73 - ETA: 18s - loss: 0.7788 - acc: 0.73 - ETA: 18s - loss: 0.7775 - acc: 0.73 - ETA: 18s - loss: 0.7748 - acc: 0.73 - ETA: 18s - loss: 0.7730 - acc: 0.73 - ETA: 18s - loss: 0.7703 - acc: 0.73 - ETA: 17s - loss: 0.7715 - acc: 0.73 - ETA: 17s - loss: 0.7687 - acc: 0.73 - ETA: 17s - loss: 0.7680 - acc: 0.73 - ETA: 17s - loss: 0.7637 - acc: 0.74 - ETA: 17s - loss: 0.7619 - acc: 0.74 - ETA: 17s - loss: 0.7586 - acc: 0.74 - ETA: 17s - loss: 0.7562 - acc: 0.74 - ETA: 17s - loss: 0.7527 - acc: 0.74 - ETA: 17s - loss: 0.7512 - acc: 0.74 - ETA: 17s - loss: 0.7510 - acc: 0.74 - ETA: 17s - loss: 0.7544 - acc: 0.74 - ETA: 17s - loss: 0.7581 - acc: 0.74 - ETA: 17s - loss: 0.7562 - acc: 0.74 - ETA: 17s - loss: 0.7543 - acc: 0.74 - ETA: 17s - loss: 0.7548 - acc: 0.74 - ETA: 17s - loss: 0.7544 - acc: 0.74 - ETA: 17s - loss: 0.7517 - acc: 0.74 - ETA: 17s - loss: 0.7528 - acc: 0.74 - ETA: 17s - loss: 0.7519 - acc: 0.74 - ETA: 16s - loss: 0.7545 - acc: 0.74 - ETA: 16s - loss: 0.7558 - acc: 0.74 - ETA: 16s - loss: 0.7529 - acc: 0.74 - ETA: 16s - loss: 0.7529 - acc: 0.74 - ETA: 16s - loss: 0.7575 - acc: 0.74 - ETA: 16s - loss: 0.7564 - acc: 0.74 - ETA: 16s - loss: 0.7583 - acc: 0.74 - ETA: 16s - loss: 0.7585 - acc: 0.74 - ETA: 16s - loss: 0.7584 - acc: 0.74 - ETA: 16s - loss: 0.7595 - acc: 0.74 - ETA: 16s - loss: 0.7594 - acc: 0.74 - ETA: 16s - loss: 0.7606 - acc: 0.74 - ETA: 16s - loss: 0.7605 - acc: 0.74 - ETA: 16s - loss: 0.7602 - acc: 0.74 - ETA: 16s - loss: 0.7569 - acc: 0.74 - ETA: 16s - loss: 0.7579 - acc: 0.74 - ETA: 16s - loss: 0.7578 - acc: 0.74 - ETA: 16s - loss: 0.7585 - acc: 0.74 - ETA: 16s - loss: 0.7580 - acc: 0.74 - ETA: 15s - loss: 0.7585 - acc: 0.74 - ETA: 15s - loss: 0.7561 - acc: 0.74 - ETA: 15s - loss: 0.7546 - acc: 0.74 - ETA: 15s - loss: 0.7544 - acc: 0.74 - ETA: 15s - loss: 0.7540 - acc: 0.74 - ETA: 15s - loss: 0.7561 - acc: 0.74 - ETA: 15s - loss: 0.7547 - acc: 0.74 - ETA: 15s - loss: 0.7549 - acc: 0.74 - ETA: 15s - loss: 0.7547 - acc: 0.74 - ETA: 15s - loss: 0.7540 - acc: 0.74 - ETA: 15s - loss: 0.7541 - acc: 0.74 - ETA: 15s - loss: 0.7547 - acc: 0.74 - ETA: 15s - loss: 0.7530 - acc: 0.74 - ETA: 15s - loss: 0.7537 - acc: 0.74 - ETA: 15s - loss: 0.7539 - acc: 0.74 - ETA: 15s - loss: 0.7555 - acc: 0.74 - ETA: 15s - loss: 0.7551 - acc: 0.74 - ETA: 15s - loss: 0.7542 - acc: 0.74 - ETA: 14s - loss: 0.7542 - acc: 0.74 - ETA: 14s - loss: 0.7548 - acc: 0.74 - ETA: 14s - loss: 0.7553 - acc: 0.74 - ETA: 14s - loss: 0.7557 - acc: 0.74 - ETA: 14s - loss: 0.7564 - acc: 0.74 - ETA: 14s - loss: 0.7582 - acc: 0.74 - ETA: 14s - loss: 0.7581 - acc: 0.74 - ETA: 14s - loss: 0.7579 - acc: 0.74 - ETA: 14s - loss: 0.7577 - acc: 0.74 - ETA: 14s - loss: 0.7571 - acc: 0.74 - ETA: 14s - loss: 0.7569 - acc: 0.74 - ETA: 14s - loss: 0.7574 - acc: 0.74 - ETA: 14s - loss: 0.7574 - acc: 0.74 - ETA: 14s - loss: 0.7571 - acc: 0.74 - ETA: 14s - loss: 0.7561 - acc: 0.74 - ETA: 14s - loss: 0.7581 - acc: 0.74 - ETA: 14s - loss: 0.7582 - acc: 0.74 - ETA: 13s - loss: 0.7599 - acc: 0.73 - ETA: 13s - loss: 0.7590 - acc: 0.73 - ETA: 13s - loss: 0.7601 - acc: 0.73 - ETA: 13s - loss: 0.7596 - acc: 0.74 - ETA: 13s - loss: 0.7574 - acc: 0.74 - ETA: 13s - loss: 0.7570 - acc: 0.74 - ETA: 13s - loss: 0.7555 - acc: 0.74 - ETA: 13s - loss: 0.7582 - acc: 0.74 - ETA: 13s - loss: 0.7575 - acc: 0.74 - ETA: 13s - loss: 0.7579 - acc: 0.74 - ETA: 13s - loss: 0.7574 - acc: 0.74 - ETA: 13s - loss: 0.7567 - acc: 0.74 - ETA: 13s - loss: 0.7555 - acc: 0.74 - ETA: 13s - loss: 0.7550 - acc: 0.74 - ETA: 13s - loss: 0.7543 - acc: 0.74 - ETA: 13s - loss: 0.7534 - acc: 0.74 - ETA: 12s - loss: 0.7522 - acc: 0.74 - ETA: 12s - loss: 0.7523 - acc: 0.74 - ETA: 12s - loss: 0.7531 - acc: 0.74 - ETA: 12s - loss: 0.7525 - acc: 0.74 - ETA: 12s - loss: 0.7519 - acc: 0.74 - ETA: 12s - loss: 0.7539 - acc: 0.74 - ETA: 12s - loss: 0.7541 - acc: 0.74 - ETA: 12s - loss: 0.7542 - acc: 0.74 - ETA: 12s - loss: 0.7537 - acc: 0.74 - ETA: 12s - loss: 0.7526 - acc: 0.74 - ETA: 12s - loss: 0.7516 - acc: 0.74 - ETA: 12s - loss: 0.7523 - acc: 0.74 - ETA: 12s - loss: 0.7521 - acc: 0.74 - ETA: 12s - loss: 0.7524 - acc: 0.74 - ETA: 12s - loss: 0.7511 - acc: 0.74 - ETA: 12s - loss: 0.7497 - acc: 0.74 - ETA: 12s - loss: 0.7497 - acc: 0.74 - ETA: 12s - loss: 0.7482 - acc: 0.74 - ETA: 11s - loss: 0.7471 - acc: 0.74 - ETA: 11s - loss: 0.7467 - acc: 0.74 - ETA: 11s - loss: 0.7473 - acc: 0.74 - ETA: 11s - loss: 0.7476 - acc: 0.74 - ETA: 11s - loss: 0.7466 - acc: 0.74 - ETA: 11s - loss: 0.7464 - acc: 0.74 - ETA: 11s - loss: 0.7471 - acc: 0.74 - ETA: 11s - loss: 0.7475 - acc: 0.74 - ETA: 11s - loss: 0.7490 - acc: 0.74 - ETA: 11s - loss: 0.7491 - acc: 0.74 - ETA: 11s - loss: 0.7493 - acc: 0.74 - ETA: 11s - loss: 0.7494 - acc: 0.74 - ETA: 11s - loss: 0.7493 - acc: 0.74 - ETA: 11s - loss: 0.7488 - acc: 0.74 - ETA: 11s - loss: 0.7478 - acc: 0.74 - ETA: 10s - loss: 0.7482 - acc: 0.74 - ETA: 10s - loss: 0.7477 - acc: 0.74 - ETA: 10s - loss: 0.7469 - acc: 0.74 - ETA: 10s - loss: 0.7462 - acc: 0.74 - ETA: 10s - loss: 0.7460 - acc: 0.74 - ETA: 10s - loss: 0.7459 - acc: 0.74 - ETA: 10s - loss: 0.7456 - acc: 0.74 - ETA: 10s - loss: 0.7466 - acc: 0.74 - ETA: 10s - loss: 0.7472 - acc: 0.74 - ETA: 10s - loss: 0.7481 - acc: 0.74 - ETA: 10s - loss: 0.7473 - acc: 0.74 - ETA: 10s - loss: 0.7470 - acc: 0.74 - ETA: 10s - loss: 0.7471 - acc: 0.74 - ETA: 10s - loss: 0.7463 - acc: 0.74 - ETA: 10s - loss: 0.7464 - acc: 0.74 - ETA: 9s - loss: 0.7465 - acc: 0.7459 - ETA: 9s - loss: 0.7461 - acc: 0.746 - ETA: 9s - loss: 0.7456 - acc: 0.746 - ETA: 9s - loss: 0.7451 - acc: 0.746 - ETA: 9s - loss: 0.7459 - acc: 0.746 - ETA: 9s - loss: 0.7460 - acc: 0.746 - ETA: 9s - loss: 0.7451 - acc: 0.747 - ETA: 9s - loss: 0.7444 - acc: 0.747 - ETA: 9s - loss: 0.7445 - acc: 0.747 - ETA: 9s - loss: 0.7443 - acc: 0.747 - ETA: 9s - loss: 0.7433 - acc: 0.747 - ETA: 9s - loss: 0.7432 - acc: 0.747 - ETA: 9s - loss: 0.7437 - acc: 0.7475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.7432 - acc: 0.747 - ETA: 9s - loss: 0.7439 - acc: 0.747 - ETA: 9s - loss: 0.7435 - acc: 0.747 - ETA: 9s - loss: 0.7436 - acc: 0.747 - ETA: 8s - loss: 0.7439 - acc: 0.747 - ETA: 8s - loss: 0.7446 - acc: 0.746 - ETA: 8s - loss: 0.7460 - acc: 0.746 - ETA: 8s - loss: 0.7460 - acc: 0.746 - ETA: 8s - loss: 0.7454 - acc: 0.746 - ETA: 8s - loss: 0.7448 - acc: 0.746 - ETA: 8s - loss: 0.7453 - acc: 0.746 - ETA: 8s - loss: 0.7459 - acc: 0.746 - ETA: 8s - loss: 0.7460 - acc: 0.746 - ETA: 8s - loss: 0.7455 - acc: 0.746 - ETA: 8s - loss: 0.7455 - acc: 0.746 - ETA: 8s - loss: 0.7453 - acc: 0.746 - ETA: 8s - loss: 0.7461 - acc: 0.746 - ETA: 8s - loss: 0.7456 - acc: 0.746 - ETA: 8s - loss: 0.7459 - acc: 0.746 - ETA: 8s - loss: 0.7458 - acc: 0.746 - ETA: 8s - loss: 0.7462 - acc: 0.746 - ETA: 7s - loss: 0.7458 - acc: 0.746 - ETA: 7s - loss: 0.7452 - acc: 0.746 - ETA: 7s - loss: 0.7448 - acc: 0.746 - ETA: 7s - loss: 0.7444 - acc: 0.746 - ETA: 7s - loss: 0.7445 - acc: 0.746 - ETA: 7s - loss: 0.7446 - acc: 0.746 - ETA: 7s - loss: 0.7436 - acc: 0.747 - ETA: 7s - loss: 0.7433 - acc: 0.747 - ETA: 7s - loss: 0.7429 - acc: 0.747 - ETA: 7s - loss: 0.7427 - acc: 0.747 - ETA: 7s - loss: 0.7427 - acc: 0.747 - ETA: 7s - loss: 0.7434 - acc: 0.747 - ETA: 7s - loss: 0.7434 - acc: 0.747 - ETA: 7s - loss: 0.7435 - acc: 0.747 - ETA: 7s - loss: 0.7425 - acc: 0.747 - ETA: 7s - loss: 0.7426 - acc: 0.747 - ETA: 7s - loss: 0.7430 - acc: 0.747 - ETA: 6s - loss: 0.7428 - acc: 0.747 - ETA: 6s - loss: 0.7419 - acc: 0.747 - ETA: 6s - loss: 0.7414 - acc: 0.747 - ETA: 6s - loss: 0.7412 - acc: 0.747 - ETA: 6s - loss: 0.7402 - acc: 0.748 - ETA: 6s - loss: 0.7409 - acc: 0.748 - ETA: 6s - loss: 0.7401 - acc: 0.748 - ETA: 6s - loss: 0.7391 - acc: 0.748 - ETA: 6s - loss: 0.7383 - acc: 0.748 - ETA: 6s - loss: 0.7380 - acc: 0.748 - ETA: 6s - loss: 0.7380 - acc: 0.749 - ETA: 6s - loss: 0.7378 - acc: 0.749 - ETA: 6s - loss: 0.7381 - acc: 0.748 - ETA: 6s - loss: 0.7379 - acc: 0.748 - ETA: 6s - loss: 0.7375 - acc: 0.749 - ETA: 6s - loss: 0.7370 - acc: 0.749 - ETA: 5s - loss: 0.7362 - acc: 0.749 - ETA: 5s - loss: 0.7370 - acc: 0.748 - ETA: 5s - loss: 0.7370 - acc: 0.748 - ETA: 5s - loss: 0.7364 - acc: 0.749 - ETA: 5s - loss: 0.7359 - acc: 0.749 - ETA: 5s - loss: 0.7358 - acc: 0.749 - ETA: 5s - loss: 0.7356 - acc: 0.749 - ETA: 5s - loss: 0.7350 - acc: 0.749 - ETA: 5s - loss: 0.7350 - acc: 0.749 - ETA: 5s - loss: 0.7359 - acc: 0.749 - ETA: 5s - loss: 0.7357 - acc: 0.749 - ETA: 5s - loss: 0.7351 - acc: 0.749 - ETA: 5s - loss: 0.7361 - acc: 0.749 - ETA: 5s - loss: 0.7363 - acc: 0.749 - ETA: 5s - loss: 0.7357 - acc: 0.749 - ETA: 5s - loss: 0.7351 - acc: 0.750 - ETA: 5s - loss: 0.7349 - acc: 0.750 - ETA: 4s - loss: 0.7347 - acc: 0.750 - ETA: 4s - loss: 0.7341 - acc: 0.750 - ETA: 4s - loss: 0.7347 - acc: 0.750 - ETA: 4s - loss: 0.7345 - acc: 0.750 - ETA: 4s - loss: 0.7339 - acc: 0.750 - ETA: 4s - loss: 0.7332 - acc: 0.750 - ETA: 4s - loss: 0.7334 - acc: 0.750 - ETA: 4s - loss: 0.7334 - acc: 0.750 - ETA: 4s - loss: 0.7337 - acc: 0.750 - ETA: 4s - loss: 0.7335 - acc: 0.750 - ETA: 4s - loss: 0.7335 - acc: 0.750 - ETA: 4s - loss: 0.7328 - acc: 0.750 - ETA: 4s - loss: 0.7326 - acc: 0.751 - ETA: 4s - loss: 0.7321 - acc: 0.751 - ETA: 4s - loss: 0.7313 - acc: 0.751 - ETA: 4s - loss: 0.7309 - acc: 0.751 - ETA: 3s - loss: 0.7310 - acc: 0.751 - ETA: 3s - loss: 0.7311 - acc: 0.751 - ETA: 3s - loss: 0.7302 - acc: 0.751 - ETA: 3s - loss: 0.7298 - acc: 0.751 - ETA: 3s - loss: 0.7296 - acc: 0.751 - ETA: 3s - loss: 0.7296 - acc: 0.752 - ETA: 3s - loss: 0.7293 - acc: 0.752 - ETA: 3s - loss: 0.7287 - acc: 0.752 - ETA: 3s - loss: 0.7283 - acc: 0.752 - ETA: 3s - loss: 0.7284 - acc: 0.752 - ETA: 3s - loss: 0.7285 - acc: 0.752 - ETA: 3s - loss: 0.7279 - acc: 0.752 - ETA: 3s - loss: 0.7278 - acc: 0.752 - ETA: 3s - loss: 0.7279 - acc: 0.752 - ETA: 3s - loss: 0.7275 - acc: 0.752 - ETA: 3s - loss: 0.7287 - acc: 0.752 - ETA: 2s - loss: 0.7288 - acc: 0.752 - ETA: 2s - loss: 0.7285 - acc: 0.752 - ETA: 2s - loss: 0.7284 - acc: 0.752 - ETA: 2s - loss: 0.7280 - acc: 0.752 - ETA: 2s - loss: 0.7274 - acc: 0.752 - ETA: 2s - loss: 0.7282 - acc: 0.752 - ETA: 2s - loss: 0.7284 - acc: 0.752 - ETA: 2s - loss: 0.7283 - acc: 0.752 - ETA: 2s - loss: 0.7285 - acc: 0.752 - ETA: 2s - loss: 0.7291 - acc: 0.752 - ETA: 2s - loss: 0.7289 - acc: 0.752 - ETA: 2s - loss: 0.7293 - acc: 0.752 - ETA: 2s - loss: 0.7294 - acc: 0.751 - ETA: 2s - loss: 0.7294 - acc: 0.752 - ETA: 2s - loss: 0.7295 - acc: 0.751 - ETA: 2s - loss: 0.7299 - acc: 0.751 - ETA: 2s - loss: 0.7296 - acc: 0.751 - ETA: 1s - loss: 0.7295 - acc: 0.751 - ETA: 1s - loss: 0.7291 - acc: 0.751 - ETA: 1s - loss: 0.7290 - acc: 0.751 - ETA: 1s - loss: 0.7294 - acc: 0.751 - ETA: 1s - loss: 0.7293 - acc: 0.751 - ETA: 1s - loss: 0.7296 - acc: 0.751 - ETA: 1s - loss: 0.7296 - acc: 0.751 - ETA: 1s - loss: 0.7303 - acc: 0.751 - ETA: 1s - loss: 0.7306 - acc: 0.751 - ETA: 1s - loss: 0.7303 - acc: 0.751 - ETA: 1s - loss: 0.7304 - acc: 0.751 - ETA: 1s - loss: 0.7298 - acc: 0.751 - ETA: 1s - loss: 0.7291 - acc: 0.751 - ETA: 1s - loss: 0.7288 - acc: 0.751 - ETA: 1s - loss: 0.7290 - acc: 0.751 - ETA: 1s - loss: 0.7293 - acc: 0.751 - ETA: 0s - loss: 0.7293 - acc: 0.751 - ETA: 0s - loss: 0.7291 - acc: 0.751 - ETA: 0s - loss: 0.7292 - acc: 0.751 - ETA: 0s - loss: 0.7292 - acc: 0.751 - ETA: 0s - loss: 0.7292 - acc: 0.751 - ETA: 0s - loss: 0.7291 - acc: 0.751 - ETA: 0s - loss: 0.7285 - acc: 0.751 - ETA: 0s - loss: 0.7280 - acc: 0.751 - ETA: 0s - loss: 0.7280 - acc: 0.752 - ETA: 0s - loss: 0.7282 - acc: 0.752 - ETA: 0s - loss: 0.7282 - acc: 0.752 - ETA: 0s - loss: 0.7278 - acc: 0.752 - ETA: 0s - loss: 0.7274 - acc: 0.752 - ETA: 0s - loss: 0.7271 - acc: 0.752 - ETA: 0s - loss: 0.7272 - acc: 0.752 - ETA: 0s - loss: 0.7273 - acc: 0.752 - 24s 998us/step - loss: 0.7274 - acc: 0.7524 - val_loss: 0.8577 - val_acc: 0.7088\n", + "\n", + "Epoch 00004: val_acc did not improve from 0.74290\n", + "Epoch 5/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14208/23769 [================>.............] - ETA: 27s - loss: 1.2790 - acc: 0.71 - ETA: 26s - loss: 1.0301 - acc: 0.70 - ETA: 25s - loss: 0.9794 - acc: 0.70 - ETA: 24s - loss: 0.8918 - acc: 0.71 - ETA: 24s - loss: 0.8653 - acc: 0.72 - ETA: 23s - loss: 0.8969 - acc: 0.70 - ETA: 22s - loss: 0.8851 - acc: 0.70 - ETA: 22s - loss: 0.8612 - acc: 0.72 - ETA: 22s - loss: 0.8428 - acc: 0.72 - ETA: 22s - loss: 0.8352 - acc: 0.73 - ETA: 22s - loss: 0.8676 - acc: 0.71 - ETA: 21s - loss: 0.8666 - acc: 0.71 - ETA: 22s - loss: 0.8541 - acc: 0.72 - ETA: 22s - loss: 0.8309 - acc: 0.73 - ETA: 21s - loss: 0.8166 - acc: 0.73 - ETA: 21s - loss: 0.8009 - acc: 0.73 - ETA: 21s - loss: 0.7835 - acc: 0.74 - ETA: 21s - loss: 0.7671 - acc: 0.74 - ETA: 21s - loss: 0.7636 - acc: 0.75 - ETA: 21s - loss: 0.7598 - acc: 0.75 - ETA: 21s - loss: 0.7527 - acc: 0.75 - ETA: 21s - loss: 0.7431 - acc: 0.75 - ETA: 21s - loss: 0.7455 - acc: 0.74 - ETA: 21s - loss: 0.7424 - acc: 0.75 - ETA: 21s - loss: 0.7370 - acc: 0.75 - ETA: 20s - loss: 0.7245 - acc: 0.75 - ETA: 20s - loss: 0.7207 - acc: 0.76 - ETA: 20s - loss: 0.7186 - acc: 0.75 - ETA: 20s - loss: 0.7225 - acc: 0.75 - ETA: 20s - loss: 0.7183 - acc: 0.75 - ETA: 20s - loss: 0.7122 - acc: 0.76 - ETA: 20s - loss: 0.7105 - acc: 0.76 - ETA: 20s - loss: 0.7071 - acc: 0.76 - ETA: 20s - loss: 0.7040 - acc: 0.76 - ETA: 19s - loss: 0.6970 - acc: 0.76 - ETA: 19s - loss: 0.6915 - acc: 0.77 - ETA: 19s - loss: 0.6898 - acc: 0.77 - ETA: 19s - loss: 0.6900 - acc: 0.77 - ETA: 19s - loss: 0.6926 - acc: 0.76 - ETA: 19s - loss: 0.6887 - acc: 0.76 - ETA: 19s - loss: 0.6850 - acc: 0.77 - ETA: 19s - loss: 0.6859 - acc: 0.77 - ETA: 19s - loss: 0.6818 - acc: 0.77 - ETA: 18s - loss: 0.6796 - acc: 0.77 - ETA: 18s - loss: 0.6797 - acc: 0.77 - ETA: 18s - loss: 0.6771 - acc: 0.77 - ETA: 18s - loss: 0.6776 - acc: 0.77 - ETA: 18s - loss: 0.6747 - acc: 0.77 - ETA: 18s - loss: 0.6744 - acc: 0.77 - ETA: 18s - loss: 0.6765 - acc: 0.77 - ETA: 18s - loss: 0.6775 - acc: 0.77 - ETA: 18s - loss: 0.6755 - acc: 0.77 - ETA: 18s - loss: 0.6718 - acc: 0.77 - ETA: 18s - loss: 0.6722 - acc: 0.77 - ETA: 18s - loss: 0.6710 - acc: 0.77 - ETA: 18s - loss: 0.6702 - acc: 0.77 - ETA: 18s - loss: 0.6714 - acc: 0.77 - ETA: 18s - loss: 0.6751 - acc: 0.77 - ETA: 17s - loss: 0.6745 - acc: 0.77 - ETA: 17s - loss: 0.6707 - acc: 0.77 - ETA: 17s - loss: 0.6714 - acc: 0.77 - ETA: 17s - loss: 0.6748 - acc: 0.77 - ETA: 17s - loss: 0.6743 - acc: 0.77 - ETA: 17s - loss: 0.6723 - acc: 0.77 - ETA: 17s - loss: 0.6730 - acc: 0.77 - ETA: 17s - loss: 0.6722 - acc: 0.77 - ETA: 17s - loss: 0.6717 - acc: 0.77 - ETA: 17s - loss: 0.6717 - acc: 0.77 - ETA: 17s - loss: 0.6703 - acc: 0.77 - ETA: 17s - loss: 0.6718 - acc: 0.77 - ETA: 17s - loss: 0.6728 - acc: 0.77 - ETA: 17s - loss: 0.6732 - acc: 0.77 - ETA: 17s - loss: 0.6775 - acc: 0.77 - ETA: 17s - loss: 0.6745 - acc: 0.77 - ETA: 17s - loss: 0.6756 - acc: 0.77 - ETA: 17s - loss: 0.6745 - acc: 0.77 - ETA: 16s - loss: 0.6727 - acc: 0.77 - ETA: 16s - loss: 0.6745 - acc: 0.77 - ETA: 16s - loss: 0.6723 - acc: 0.77 - ETA: 16s - loss: 0.6708 - acc: 0.77 - ETA: 16s - loss: 0.6734 - acc: 0.77 - ETA: 16s - loss: 0.6737 - acc: 0.77 - ETA: 16s - loss: 0.6713 - acc: 0.77 - ETA: 16s - loss: 0.6701 - acc: 0.77 - ETA: 16s - loss: 0.6732 - acc: 0.77 - ETA: 16s - loss: 0.6745 - acc: 0.77 - ETA: 16s - loss: 0.6744 - acc: 0.77 - ETA: 16s - loss: 0.6718 - acc: 0.77 - ETA: 15s - loss: 0.6734 - acc: 0.77 - ETA: 15s - loss: 0.6729 - acc: 0.77 - ETA: 15s - loss: 0.6715 - acc: 0.77 - ETA: 15s - loss: 0.6711 - acc: 0.77 - ETA: 15s - loss: 0.6723 - acc: 0.77 - ETA: 15s - loss: 0.6717 - acc: 0.77 - ETA: 15s - loss: 0.6723 - acc: 0.77 - ETA: 15s - loss: 0.6714 - acc: 0.77 - ETA: 15s - loss: 0.6706 - acc: 0.77 - ETA: 15s - loss: 0.6700 - acc: 0.77 - ETA: 15s - loss: 0.6700 - acc: 0.77 - ETA: 15s - loss: 0.6713 - acc: 0.77 - ETA: 15s - loss: 0.6721 - acc: 0.77 - ETA: 15s - loss: 0.6709 - acc: 0.77 - ETA: 14s - loss: 0.6710 - acc: 0.77 - ETA: 14s - loss: 0.6693 - acc: 0.77 - ETA: 14s - loss: 0.6684 - acc: 0.77 - ETA: 14s - loss: 0.6686 - acc: 0.77 - ETA: 14s - loss: 0.6672 - acc: 0.77 - ETA: 14s - loss: 0.6688 - acc: 0.77 - ETA: 14s - loss: 0.6692 - acc: 0.77 - ETA: 14s - loss: 0.6688 - acc: 0.77 - ETA: 14s - loss: 0.6664 - acc: 0.77 - ETA: 14s - loss: 0.6678 - acc: 0.77 - ETA: 14s - loss: 0.6668 - acc: 0.77 - ETA: 14s - loss: 0.6663 - acc: 0.77 - ETA: 14s - loss: 0.6658 - acc: 0.77 - ETA: 14s - loss: 0.6645 - acc: 0.77 - ETA: 14s - loss: 0.6636 - acc: 0.77 - ETA: 14s - loss: 0.6641 - acc: 0.77 - ETA: 14s - loss: 0.6626 - acc: 0.77 - ETA: 14s - loss: 0.6633 - acc: 0.77 - ETA: 13s - loss: 0.6630 - acc: 0.77 - ETA: 13s - loss: 0.6638 - acc: 0.77 - ETA: 13s - loss: 0.6628 - acc: 0.77 - ETA: 13s - loss: 0.6627 - acc: 0.77 - ETA: 13s - loss: 0.6616 - acc: 0.77 - ETA: 13s - loss: 0.6622 - acc: 0.77 - ETA: 13s - loss: 0.6616 - acc: 0.77 - ETA: 13s - loss: 0.6619 - acc: 0.77 - ETA: 13s - loss: 0.6628 - acc: 0.77 - ETA: 13s - loss: 0.6629 - acc: 0.77 - ETA: 13s - loss: 0.6623 - acc: 0.77 - ETA: 13s - loss: 0.6620 - acc: 0.77 - ETA: 13s - loss: 0.6635 - acc: 0.77 - ETA: 13s - loss: 0.6637 - acc: 0.77 - ETA: 13s - loss: 0.6628 - acc: 0.77 - ETA: 13s - loss: 0.6624 - acc: 0.77 - ETA: 13s - loss: 0.6622 - acc: 0.77 - ETA: 13s - loss: 0.6608 - acc: 0.77 - ETA: 13s - loss: 0.6602 - acc: 0.77 - ETA: 12s - loss: 0.6585 - acc: 0.77 - ETA: 12s - loss: 0.6593 - acc: 0.77 - ETA: 12s - loss: 0.6612 - acc: 0.77 - ETA: 12s - loss: 0.6604 - acc: 0.77 - ETA: 12s - loss: 0.6593 - acc: 0.77 - ETA: 12s - loss: 0.6592 - acc: 0.77 - ETA: 12s - loss: 0.6583 - acc: 0.77 - ETA: 12s - loss: 0.6568 - acc: 0.77 - ETA: 12s - loss: 0.6549 - acc: 0.77 - ETA: 12s - loss: 0.6547 - acc: 0.77 - ETA: 12s - loss: 0.6536 - acc: 0.77 - ETA: 12s - loss: 0.6523 - acc: 0.77 - ETA: 12s - loss: 0.6522 - acc: 0.77 - ETA: 12s - loss: 0.6509 - acc: 0.77 - ETA: 12s - loss: 0.6503 - acc: 0.77 - ETA: 12s - loss: 0.6495 - acc: 0.77 - ETA: 12s - loss: 0.6494 - acc: 0.77 - ETA: 11s - loss: 0.6490 - acc: 0.77 - ETA: 11s - loss: 0.6484 - acc: 0.77 - ETA: 11s - loss: 0.6472 - acc: 0.77 - ETA: 11s - loss: 0.6470 - acc: 0.77 - ETA: 11s - loss: 0.6473 - acc: 0.77 - ETA: 11s - loss: 0.6467 - acc: 0.77 - ETA: 11s - loss: 0.6461 - acc: 0.77 - ETA: 11s - loss: 0.6454 - acc: 0.77 - ETA: 11s - loss: 0.6446 - acc: 0.77 - ETA: 11s - loss: 0.6440 - acc: 0.77 - ETA: 11s - loss: 0.6433 - acc: 0.77 - ETA: 11s - loss: 0.6429 - acc: 0.77 - ETA: 11s - loss: 0.6417 - acc: 0.77 - ETA: 11s - loss: 0.6409 - acc: 0.78 - ETA: 11s - loss: 0.6406 - acc: 0.78 - ETA: 11s - loss: 0.6407 - acc: 0.78 - ETA: 11s - loss: 0.6413 - acc: 0.78 - ETA: 11s - loss: 0.6401 - acc: 0.78 - ETA: 11s - loss: 0.6419 - acc: 0.78 - ETA: 10s - loss: 0.6421 - acc: 0.78 - ETA: 10s - loss: 0.6423 - acc: 0.78 - ETA: 10s - loss: 0.6429 - acc: 0.78 - ETA: 10s - loss: 0.6433 - acc: 0.78 - ETA: 10s - loss: 0.6433 - acc: 0.78 - ETA: 10s - loss: 0.6424 - acc: 0.78 - ETA: 10s - loss: 0.6427 - acc: 0.78 - ETA: 10s - loss: 0.6427 - acc: 0.78 - ETA: 10s - loss: 0.6438 - acc: 0.78 - ETA: 10s - loss: 0.6437 - acc: 0.78 - ETA: 10s - loss: 0.6441 - acc: 0.78 - ETA: 10s - loss: 0.6447 - acc: 0.78 - ETA: 10s - loss: 0.6453 - acc: 0.77 - ETA: 10s - loss: 0.6461 - acc: 0.77 - ETA: 10s - loss: 0.6460 - acc: 0.77 - ETA: 10s - loss: 0.6455 - acc: 0.77 - ETA: 10s - loss: 0.6459 - acc: 0.77 - ETA: 9s - loss: 0.6457 - acc: 0.7797 - ETA: 9s - loss: 0.6458 - acc: 0.779 - ETA: 9s - loss: 0.6463 - acc: 0.779 - ETA: 9s - loss: 0.6464 - acc: 0.779 - ETA: 9s - loss: 0.6463 - acc: 0.779 - ETA: 9s - loss: 0.6456 - acc: 0.779 - ETA: 9s - loss: 0.6467 - acc: 0.778 - ETA: 9s - loss: 0.6460 - acc: 0.779 - ETA: 9s - loss: 0.6462 - acc: 0.778 - ETA: 9s - loss: 0.6461 - acc: 0.778 - ETA: 9s - loss: 0.6452 - acc: 0.779 - ETA: 9s - loss: 0.6445 - acc: 0.779 - ETA: 9s - loss: 0.6444 - acc: 0.779 - ETA: 9s - loss: 0.6436 - acc: 0.780 - ETA: 9s - loss: 0.6442 - acc: 0.779 - ETA: 9s - loss: 0.6440 - acc: 0.779 - ETA: 9s - loss: 0.6437 - acc: 0.779 - ETA: 8s - loss: 0.6438 - acc: 0.779 - ETA: 8s - loss: 0.6441 - acc: 0.779 - ETA: 8s - loss: 0.6442 - acc: 0.779 - ETA: 8s - loss: 0.6440 - acc: 0.779 - ETA: 8s - loss: 0.6457 - acc: 0.779 - ETA: 8s - loss: 0.6448 - acc: 0.7794" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 8s - loss: 0.6442 - acc: 0.779 - ETA: 8s - loss: 0.6443 - acc: 0.779 - ETA: 8s - loss: 0.6442 - acc: 0.779 - ETA: 8s - loss: 0.6439 - acc: 0.779 - ETA: 8s - loss: 0.6434 - acc: 0.780 - ETA: 8s - loss: 0.6427 - acc: 0.780 - ETA: 8s - loss: 0.6432 - acc: 0.780 - ETA: 8s - loss: 0.6439 - acc: 0.780 - ETA: 8s - loss: 0.6438 - acc: 0.780 - ETA: 8s - loss: 0.6445 - acc: 0.779 - ETA: 8s - loss: 0.6433 - acc: 0.780 - ETA: 8s - loss: 0.6435 - acc: 0.779 - ETA: 7s - loss: 0.6433 - acc: 0.779 - ETA: 7s - loss: 0.6425 - acc: 0.780 - ETA: 7s - loss: 0.6421 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6414 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6429 - acc: 0.779 - ETA: 7s - loss: 0.6423 - acc: 0.780 - ETA: 7s - loss: 0.6417 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6412 - acc: 0.780 - ETA: 7s - loss: 0.6412 - acc: 0.780 - ETA: 7s - loss: 0.6409 - acc: 0.780 - ETA: 7s - loss: 0.6405 - acc: 0.780 - ETA: 7s - loss: 0.6402 - acc: 0.781 - ETA: 7s - loss: 0.6402 - acc: 0.781 - ETA: 7s - loss: 0.6404 - acc: 0.781 - ETA: 6s - loss: 0.6406 - acc: 0.781 - ETA: 6s - loss: 0.6401 - acc: 0.781 - ETA: 6s - loss: 0.6406 - acc: 0.781 - ETA: 6s - loss: 0.6409 - acc: 0.780 - ETA: 6s - loss: 0.6417 - acc: 0.780 - ETA: 6s - loss: 0.6414 - acc: 0.780 - ETA: 6s - loss: 0.6408 - acc: 0.780 - ETA: 6s - loss: 0.6401 - acc: 0.781 - ETA: 6s - loss: 0.6398 - acc: 0.781 - ETA: 6s - loss: 0.6398 - acc: 0.781 - ETA: 6s - loss: 0.6402 - acc: 0.781 - ETA: 6s - loss: 0.6406 - acc: 0.781 - ETA: 6s - loss: 0.6405 - acc: 0.781 - ETA: 6s - loss: 0.6409 - acc: 0.781 - ETA: 6s - loss: 0.6412 - acc: 0.781 - ETA: 6s - loss: 0.6418 - acc: 0.781 - ETA: 6s - loss: 0.6415 - acc: 0.781 - ETA: 5s - loss: 0.6415 - acc: 0.781 - ETA: 5s - loss: 0.6405 - acc: 0.781 - ETA: 5s - loss: 0.6404 - acc: 0.781 - ETA: 5s - loss: 0.6399 - acc: 0.781 - ETA: 5s - loss: 0.6399 - acc: 0.782 - ETA: 5s - loss: 0.6393 - acc: 0.782 - ETA: 5s - loss: 0.6389 - acc: 0.782 - ETA: 5s - loss: 0.6384 - acc: 0.782 - ETA: 5s - loss: 0.6392 - acc: 0.782 - ETA: 5s - loss: 0.6388 - acc: 0.782 - ETA: 5s - loss: 0.6377 - acc: 0.782 - ETA: 5s - loss: 0.6375 - acc: 0.783 - ETA: 5s - loss: 0.6377 - acc: 0.783 - ETA: 5s - loss: 0.6382 - acc: 0.783 - ETA: 5s - loss: 0.6387 - acc: 0.782 - ETA: 5s - loss: 0.6382 - acc: 0.782 - ETA: 5s - loss: 0.6380 - acc: 0.782 - ETA: 4s - loss: 0.6381 - acc: 0.783 - ETA: 4s - loss: 0.6374 - acc: 0.783 - ETA: 4s - loss: 0.6374 - acc: 0.783 - ETA: 4s - loss: 0.6372 - acc: 0.783 - ETA: 4s - loss: 0.6376 - acc: 0.783 - ETA: 4s - loss: 0.6372 - acc: 0.783 - ETA: 4s - loss: 0.6376 - acc: 0.783 - ETA: 4s - loss: 0.6380 - acc: 0.783 - ETA: 4s - loss: 0.6375 - acc: 0.783 - ETA: 4s - loss: 0.6378 - acc: 0.783 - ETA: 4s - loss: 0.6378 - acc: 0.783 - ETA: 4s - loss: 0.6381 - acc: 0.783 - ETA: 4s - loss: 0.6390 - acc: 0.783 - ETA: 4s - loss: 0.6393 - acc: 0.782 - ETA: 4s - loss: 0.6395 - acc: 0.782 - ETA: 4s - loss: 0.6394 - acc: 0.782 - ETA: 4s - loss: 0.6385 - acc: 0.783 - ETA: 3s - loss: 0.6379 - acc: 0.783 - ETA: 3s - loss: 0.6377 - acc: 0.783 - ETA: 3s - loss: 0.6383 - acc: 0.783 - ETA: 3s - loss: 0.6379 - acc: 0.784 - ETA: 3s - loss: 0.6381 - acc: 0.783 - ETA: 3s - loss: 0.6384 - acc: 0.783 - ETA: 3s - loss: 0.6384 - acc: 0.783 - ETA: 3s - loss: 0.6382 - acc: 0.783 - ETA: 3s - loss: 0.6378 - acc: 0.784 - ETA: 3s - loss: 0.6377 - acc: 0.784 - ETA: 3s - loss: 0.6373 - acc: 0.784 - ETA: 3s - loss: 0.6372 - acc: 0.784 - ETA: 3s - loss: 0.6369 - acc: 0.784 - ETA: 3s - loss: 0.6374 - acc: 0.784 - ETA: 3s - loss: 0.6366 - acc: 0.784 - ETA: 3s - loss: 0.6358 - acc: 0.785 - ETA: 3s - loss: 0.6365 - acc: 0.784 - ETA: 3s - loss: 0.6364 - acc: 0.784 - ETA: 2s - loss: 0.6366 - acc: 0.784 - ETA: 2s - loss: 0.6370 - acc: 0.784 - ETA: 2s - loss: 0.6366 - acc: 0.784 - ETA: 2s - loss: 0.6363 - acc: 0.784 - ETA: 2s - loss: 0.6364 - acc: 0.784 - ETA: 2s - loss: 0.6364 - acc: 0.784 - ETA: 2s - loss: 0.6362 - acc: 0.784 - ETA: 2s - loss: 0.6361 - acc: 0.784 - ETA: 2s - loss: 0.6360 - acc: 0.784 - ETA: 2s - loss: 0.6356 - acc: 0.784 - ETA: 2s - loss: 0.6354 - acc: 0.784 - ETA: 2s - loss: 0.6352 - acc: 0.785 - ETA: 2s - loss: 0.6351 - acc: 0.785 - ETA: 2s - loss: 0.6353 - acc: 0.785 - ETA: 2s - loss: 0.6359 - acc: 0.784 - ETA: 2s - loss: 0.6357 - acc: 0.784 - ETA: 1s - loss: 0.6356 - acc: 0.785 - ETA: 1s - loss: 0.6359 - acc: 0.784 - ETA: 1s - loss: 0.6357 - acc: 0.785 - ETA: 1s - loss: 0.6352 - acc: 0.785 - ETA: 1s - loss: 0.6349 - acc: 0.785 - ETA: 1s - loss: 0.6346 - acc: 0.785 - ETA: 1s - loss: 0.6344 - acc: 0.785 - ETA: 1s - loss: 0.6347 - acc: 0.785 - ETA: 1s - loss: 0.6339 - acc: 0.785 - ETA: 1s - loss: 0.6343 - acc: 0.785 - ETA: 1s - loss: 0.6343 - acc: 0.785 - ETA: 1s - loss: 0.6339 - acc: 0.786 - ETA: 1s - loss: 0.6339 - acc: 0.786 - ETA: 1s - loss: 0.6343 - acc: 0.785 - ETA: 1s - loss: 0.6341 - acc: 0.786 - ETA: 1s - loss: 0.6334 - acc: 0.786 - ETA: 1s - loss: 0.6333 - acc: 0.786 - ETA: 0s - loss: 0.6332 - acc: 0.786 - ETA: 0s - loss: 0.6329 - acc: 0.786 - ETA: 0s - loss: 0.6331 - acc: 0.786 - ETA: 0s - loss: 0.6331 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6326 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6325 - acc: 0.786 - ETA: 0s - loss: 0.6325 - acc: 0.786 - ETA: 0s - loss: 0.6324 - acc: 0.786 - ETA: 0s - loss: 0.6330 - acc: 0.786 - ETA: 0s - loss: 0.6337 - acc: 0.785 - ETA: 0s - loss: 0.6333 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6324 - acc: 0.786 - ETA: 0s - loss: 0.6325 - acc: 0.786 - 23s 968us/step - loss: 0.6324 - acc: 0.7866 - val_loss: 0.5207 - val_acc: 0.8243\n", + "\n", + "Epoch 00005: val_acc improved from 0.74290 to 0.82431, saving model to models\\time.model\n", + "Epoch 6/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 25s - loss: 0.4004 - acc: 0.84 - ETA: 25s - loss: 0.4835 - acc: 0.84 - ETA: 24s - loss: 0.4817 - acc: 0.85 - ETA: 22s - loss: 0.4866 - acc: 0.83 - ETA: 23s - loss: 0.4733 - acc: 0.83 - ETA: 22s - loss: 0.5116 - acc: 0.82 - ETA: 22s - loss: 0.5383 - acc: 0.82 - ETA: 22s - loss: 0.5395 - acc: 0.81 - ETA: 22s - loss: 0.5827 - acc: 0.80 - ETA: 22s - loss: 0.6001 - acc: 0.79 - ETA: 22s - loss: 0.5915 - acc: 0.80 - ETA: 22s - loss: 0.5751 - acc: 0.80 - ETA: 22s - loss: 0.5685 - acc: 0.80 - ETA: 22s - loss: 0.5756 - acc: 0.80 - ETA: 22s - loss: 0.5668 - acc: 0.80 - ETA: 22s - loss: 0.5791 - acc: 0.80 - ETA: 22s - loss: 0.5834 - acc: 0.80 - ETA: 22s - loss: 0.5841 - acc: 0.80 - ETA: 22s - loss: 0.6073 - acc: 0.80 - ETA: 21s - loss: 0.6031 - acc: 0.80 - ETA: 21s - loss: 0.6119 - acc: 0.79 - ETA: 21s - loss: 0.6023 - acc: 0.80 - ETA: 21s - loss: 0.5968 - acc: 0.80 - ETA: 21s - loss: 0.5990 - acc: 0.80 - ETA: 21s - loss: 0.6008 - acc: 0.80 - ETA: 21s - loss: 0.5974 - acc: 0.80 - ETA: 21s - loss: 0.5956 - acc: 0.80 - ETA: 21s - loss: 0.5910 - acc: 0.80 - ETA: 20s - loss: 0.5929 - acc: 0.80 - ETA: 20s - loss: 0.5874 - acc: 0.80 - ETA: 20s - loss: 0.5980 - acc: 0.79 - ETA: 20s - loss: 0.5977 - acc: 0.79 - ETA: 20s - loss: 0.5957 - acc: 0.80 - ETA: 20s - loss: 0.5944 - acc: 0.79 - ETA: 20s - loss: 0.5904 - acc: 0.80 - ETA: 19s - loss: 0.5981 - acc: 0.79 - ETA: 19s - loss: 0.6001 - acc: 0.79 - ETA: 19s - loss: 0.6009 - acc: 0.79 - ETA: 19s - loss: 0.6005 - acc: 0.79 - ETA: 19s - loss: 0.5984 - acc: 0.79 - ETA: 19s - loss: 0.5977 - acc: 0.79 - ETA: 19s - loss: 0.5948 - acc: 0.79 - ETA: 19s - loss: 0.5961 - acc: 0.79 - ETA: 19s - loss: 0.5953 - acc: 0.79 - ETA: 19s - loss: 0.5960 - acc: 0.79 - ETA: 19s - loss: 0.5949 - acc: 0.79 - ETA: 19s - loss: 0.5957 - acc: 0.79 - ETA: 18s - loss: 0.5933 - acc: 0.79 - ETA: 18s - loss: 0.5963 - acc: 0.79 - ETA: 18s - loss: 0.5975 - acc: 0.79 - ETA: 18s - loss: 0.5994 - acc: 0.79 - ETA: 18s - loss: 0.5970 - acc: 0.79 - ETA: 18s - loss: 0.5988 - acc: 0.79 - ETA: 18s - loss: 0.5973 - acc: 0.79 - ETA: 18s - loss: 0.5958 - acc: 0.79 - ETA: 18s - loss: 0.5940 - acc: 0.79 - ETA: 18s - loss: 0.5936 - acc: 0.79 - ETA: 18s - loss: 0.5943 - acc: 0.80 - ETA: 18s - loss: 0.5921 - acc: 0.80 - ETA: 18s - loss: 0.5960 - acc: 0.79 - ETA: 18s - loss: 0.5975 - acc: 0.79 - ETA: 18s - loss: 0.5971 - acc: 0.79 - ETA: 18s - loss: 0.5965 - acc: 0.79 - ETA: 18s - loss: 0.5968 - acc: 0.79 - ETA: 18s - loss: 0.5994 - acc: 0.79 - ETA: 17s - loss: 0.5995 - acc: 0.79 - ETA: 17s - loss: 0.6029 - acc: 0.79 - ETA: 17s - loss: 0.6067 - acc: 0.79 - ETA: 17s - loss: 0.6064 - acc: 0.79 - ETA: 17s - loss: 0.6045 - acc: 0.79 - ETA: 17s - loss: 0.6016 - acc: 0.79 - ETA: 17s - loss: 0.6019 - acc: 0.79 - ETA: 17s - loss: 0.6034 - acc: 0.79 - ETA: 17s - loss: 0.6039 - acc: 0.79 - ETA: 17s - loss: 0.6057 - acc: 0.79 - ETA: 17s - loss: 0.6083 - acc: 0.79 - ETA: 17s - loss: 0.6087 - acc: 0.79 - ETA: 17s - loss: 0.6102 - acc: 0.79 - ETA: 17s - loss: 0.6117 - acc: 0.79 - ETA: 17s - loss: 0.6101 - acc: 0.79 - ETA: 17s - loss: 0.6103 - acc: 0.79 - ETA: 17s - loss: 0.6102 - acc: 0.79 - ETA: 17s - loss: 0.6104 - acc: 0.79 - ETA: 17s - loss: 0.6114 - acc: 0.79 - ETA: 17s - loss: 0.6124 - acc: 0.79 - ETA: 17s - loss: 0.6103 - acc: 0.79 - ETA: 16s - loss: 0.6098 - acc: 0.79 - ETA: 16s - loss: 0.6096 - acc: 0.79 - ETA: 16s - loss: 0.6095 - acc: 0.79 - ETA: 16s - loss: 0.6089 - acc: 0.79 - ETA: 16s - loss: 0.6067 - acc: 0.79 - ETA: 16s - loss: 0.6057 - acc: 0.79 - ETA: 16s - loss: 0.6055 - acc: 0.79 - ETA: 16s - loss: 0.6063 - acc: 0.79 - ETA: 16s - loss: 0.6051 - acc: 0.79 - ETA: 16s - loss: 0.6044 - acc: 0.79 - ETA: 16s - loss: 0.6028 - acc: 0.79 - ETA: 16s - loss: 0.6028 - acc: 0.79 - ETA: 16s - loss: 0.6037 - acc: 0.79 - ETA: 16s - loss: 0.6056 - acc: 0.79 - ETA: 16s - loss: 0.6057 - acc: 0.79 - ETA: 16s - loss: 0.6068 - acc: 0.79 - ETA: 16s - loss: 0.6078 - acc: 0.79 - ETA: 16s - loss: 0.6076 - acc: 0.79 - ETA: 16s - loss: 0.6069 - acc: 0.79 - ETA: 15s - loss: 0.6068 - acc: 0.79 - ETA: 15s - loss: 0.6046 - acc: 0.79 - ETA: 15s - loss: 0.6034 - acc: 0.79 - ETA: 15s - loss: 0.6023 - acc: 0.79 - ETA: 15s - loss: 0.6006 - acc: 0.79 - ETA: 15s - loss: 0.5992 - acc: 0.79 - ETA: 15s - loss: 0.5983 - acc: 0.79 - ETA: 15s - loss: 0.5976 - acc: 0.79 - ETA: 15s - loss: 0.5970 - acc: 0.79 - ETA: 15s - loss: 0.5958 - acc: 0.79 - ETA: 15s - loss: 0.5975 - acc: 0.79 - ETA: 15s - loss: 0.5963 - acc: 0.79 - ETA: 15s - loss: 0.5957 - acc: 0.79 - ETA: 15s - loss: 0.5955 - acc: 0.79 - ETA: 15s - loss: 0.5941 - acc: 0.80 - ETA: 15s - loss: 0.5953 - acc: 0.79 - ETA: 15s - loss: 0.5940 - acc: 0.80 - ETA: 15s - loss: 0.5934 - acc: 0.80 - ETA: 15s - loss: 0.5923 - acc: 0.80 - ETA: 14s - loss: 0.5914 - acc: 0.80 - ETA: 14s - loss: 0.5909 - acc: 0.80 - ETA: 14s - loss: 0.5900 - acc: 0.80 - ETA: 14s - loss: 0.5918 - acc: 0.80 - ETA: 14s - loss: 0.5914 - acc: 0.80 - ETA: 14s - loss: 0.5913 - acc: 0.80 - ETA: 14s - loss: 0.5909 - acc: 0.80 - ETA: 14s - loss: 0.5921 - acc: 0.80 - ETA: 14s - loss: 0.5934 - acc: 0.80 - ETA: 14s - loss: 0.5939 - acc: 0.80 - ETA: 14s - loss: 0.5941 - acc: 0.80 - ETA: 14s - loss: 0.5944 - acc: 0.80 - ETA: 14s - loss: 0.5946 - acc: 0.80 - ETA: 14s - loss: 0.5933 - acc: 0.80 - ETA: 14s - loss: 0.5929 - acc: 0.80 - ETA: 14s - loss: 0.5919 - acc: 0.80 - ETA: 14s - loss: 0.5908 - acc: 0.80 - ETA: 13s - loss: 0.5903 - acc: 0.80 - ETA: 13s - loss: 0.5897 - acc: 0.80 - ETA: 13s - loss: 0.5894 - acc: 0.80 - ETA: 13s - loss: 0.5879 - acc: 0.80 - ETA: 13s - loss: 0.5882 - acc: 0.80 - ETA: 13s - loss: 0.5874 - acc: 0.80 - ETA: 13s - loss: 0.5887 - acc: 0.80 - ETA: 13s - loss: 0.5891 - acc: 0.80 - ETA: 13s - loss: 0.5897 - acc: 0.80 - ETA: 13s - loss: 0.5899 - acc: 0.80 - ETA: 13s - loss: 0.5892 - acc: 0.80 - ETA: 13s - loss: 0.5894 - acc: 0.80 - ETA: 13s - loss: 0.5906 - acc: 0.80 - ETA: 13s - loss: 0.5910 - acc: 0.80 - ETA: 13s - loss: 0.5910 - acc: 0.80 - ETA: 13s - loss: 0.5906 - acc: 0.80 - ETA: 13s - loss: 0.5892 - acc: 0.80 - ETA: 12s - loss: 0.5882 - acc: 0.80 - ETA: 12s - loss: 0.5871 - acc: 0.80 - ETA: 12s - loss: 0.5864 - acc: 0.80 - ETA: 12s - loss: 0.5865 - acc: 0.80 - ETA: 12s - loss: 0.5857 - acc: 0.80 - ETA: 12s - loss: 0.5866 - acc: 0.80 - ETA: 12s - loss: 0.5884 - acc: 0.80 - ETA: 12s - loss: 0.5893 - acc: 0.80 - ETA: 12s - loss: 0.5904 - acc: 0.80 - ETA: 12s - loss: 0.5899 - acc: 0.80 - ETA: 12s - loss: 0.5895 - acc: 0.80 - ETA: 12s - loss: 0.5884 - acc: 0.80 - ETA: 12s - loss: 0.5885 - acc: 0.80 - ETA: 12s - loss: 0.5872 - acc: 0.80 - ETA: 12s - loss: 0.5871 - acc: 0.80 - ETA: 12s - loss: 0.5873 - acc: 0.80 - ETA: 11s - loss: 0.5872 - acc: 0.80 - ETA: 11s - loss: 0.5872 - acc: 0.80 - ETA: 11s - loss: 0.5873 - acc: 0.80 - ETA: 11s - loss: 0.5900 - acc: 0.80 - ETA: 11s - loss: 0.5901 - acc: 0.80 - ETA: 11s - loss: 0.5902 - acc: 0.80 - ETA: 11s - loss: 0.5919 - acc: 0.80 - ETA: 11s - loss: 0.5921 - acc: 0.80 - ETA: 11s - loss: 0.5921 - acc: 0.80 - ETA: 11s - loss: 0.5919 - acc: 0.80 - ETA: 11s - loss: 0.5916 - acc: 0.80 - ETA: 11s - loss: 0.5912 - acc: 0.80 - ETA: 11s - loss: 0.5912 - acc: 0.80 - ETA: 11s - loss: 0.5915 - acc: 0.80 - ETA: 11s - loss: 0.5918 - acc: 0.80 - ETA: 11s - loss: 0.5918 - acc: 0.80 - ETA: 10s - loss: 0.5916 - acc: 0.80 - ETA: 10s - loss: 0.5925 - acc: 0.80 - ETA: 10s - loss: 0.5926 - acc: 0.80 - ETA: 10s - loss: 0.5919 - acc: 0.80 - ETA: 10s - loss: 0.5915 - acc: 0.80 - ETA: 10s - loss: 0.5912 - acc: 0.80 - ETA: 10s - loss: 0.5916 - acc: 0.80 - ETA: 10s - loss: 0.5908 - acc: 0.80 - ETA: 10s - loss: 0.5908 - acc: 0.80 - ETA: 10s - loss: 0.5896 - acc: 0.80 - ETA: 10s - loss: 0.5894 - acc: 0.80 - ETA: 10s - loss: 0.5892 - acc: 0.80 - ETA: 10s - loss: 0.5887 - acc: 0.80 - ETA: 10s - loss: 0.5894 - acc: 0.80 - ETA: 10s - loss: 0.5894 - acc: 0.80 - ETA: 10s - loss: 0.5897 - acc: 0.80 - ETA: 10s - loss: 0.5882 - acc: 0.80 - ETA: 9s - loss: 0.5881 - acc: 0.8024 - ETA: 9s - loss: 0.5884 - acc: 0.802 - ETA: 9s - loss: 0.5876 - acc: 0.802 - ETA: 9s - loss: 0.5877 - acc: 0.802 - ETA: 9s - loss: 0.5873 - acc: 0.802 - ETA: 9s - loss: 0.5866 - acc: 0.802 - ETA: 9s - loss: 0.5859 - acc: 0.802 - ETA: 9s - loss: 0.5861 - acc: 0.8030" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.5858 - acc: 0.803 - ETA: 9s - loss: 0.5853 - acc: 0.803 - ETA: 9s - loss: 0.5850 - acc: 0.803 - ETA: 9s - loss: 0.5850 - acc: 0.803 - ETA: 9s - loss: 0.5847 - acc: 0.803 - ETA: 9s - loss: 0.5857 - acc: 0.803 - ETA: 9s - loss: 0.5848 - acc: 0.803 - ETA: 9s - loss: 0.5843 - acc: 0.804 - ETA: 8s - loss: 0.5838 - acc: 0.804 - ETA: 8s - loss: 0.5835 - acc: 0.804 - ETA: 8s - loss: 0.5838 - acc: 0.804 - ETA: 8s - loss: 0.5842 - acc: 0.804 - ETA: 8s - loss: 0.5841 - acc: 0.804 - ETA: 8s - loss: 0.5831 - acc: 0.804 - ETA: 8s - loss: 0.5825 - acc: 0.804 - ETA: 8s - loss: 0.5816 - acc: 0.804 - ETA: 8s - loss: 0.5824 - acc: 0.804 - ETA: 8s - loss: 0.5828 - acc: 0.804 - ETA: 8s - loss: 0.5830 - acc: 0.804 - ETA: 8s - loss: 0.5832 - acc: 0.804 - ETA: 8s - loss: 0.5833 - acc: 0.804 - ETA: 8s - loss: 0.5831 - acc: 0.804 - ETA: 8s - loss: 0.5830 - acc: 0.804 - ETA: 8s - loss: 0.5833 - acc: 0.804 - ETA: 8s - loss: 0.5826 - acc: 0.804 - ETA: 7s - loss: 0.5829 - acc: 0.803 - ETA: 7s - loss: 0.5829 - acc: 0.803 - ETA: 7s - loss: 0.5823 - acc: 0.804 - ETA: 7s - loss: 0.5826 - acc: 0.803 - ETA: 7s - loss: 0.5827 - acc: 0.803 - ETA: 7s - loss: 0.5831 - acc: 0.803 - ETA: 7s - loss: 0.5825 - acc: 0.803 - ETA: 7s - loss: 0.5815 - acc: 0.803 - ETA: 7s - loss: 0.5814 - acc: 0.803 - ETA: 7s - loss: 0.5809 - acc: 0.804 - ETA: 7s - loss: 0.5804 - acc: 0.804 - ETA: 7s - loss: 0.5799 - acc: 0.804 - ETA: 7s - loss: 0.5796 - acc: 0.804 - ETA: 7s - loss: 0.5798 - acc: 0.804 - ETA: 7s - loss: 0.5802 - acc: 0.804 - ETA: 7s - loss: 0.5790 - acc: 0.804 - ETA: 7s - loss: 0.5781 - acc: 0.805 - ETA: 6s - loss: 0.5776 - acc: 0.805 - ETA: 6s - loss: 0.5775 - acc: 0.805 - ETA: 6s - loss: 0.5760 - acc: 0.805 - ETA: 6s - loss: 0.5762 - acc: 0.805 - ETA: 6s - loss: 0.5753 - acc: 0.806 - ETA: 6s - loss: 0.5748 - acc: 0.806 - ETA: 6s - loss: 0.5735 - acc: 0.806 - ETA: 6s - loss: 0.5738 - acc: 0.806 - ETA: 6s - loss: 0.5739 - acc: 0.806 - ETA: 6s - loss: 0.5735 - acc: 0.806 - ETA: 6s - loss: 0.5733 - acc: 0.806 - ETA: 6s - loss: 0.5727 - acc: 0.806 - ETA: 6s - loss: 0.5741 - acc: 0.806 - ETA: 6s - loss: 0.5741 - acc: 0.806 - ETA: 6s - loss: 0.5738 - acc: 0.806 - ETA: 6s - loss: 0.5735 - acc: 0.806 - ETA: 5s - loss: 0.5731 - acc: 0.806 - ETA: 5s - loss: 0.5735 - acc: 0.806 - ETA: 5s - loss: 0.5733 - acc: 0.806 - ETA: 5s - loss: 0.5728 - acc: 0.806 - ETA: 5s - loss: 0.5733 - acc: 0.806 - ETA: 5s - loss: 0.5731 - acc: 0.806 - ETA: 5s - loss: 0.5732 - acc: 0.806 - ETA: 5s - loss: 0.5723 - acc: 0.806 - ETA: 5s - loss: 0.5723 - acc: 0.806 - ETA: 5s - loss: 0.5724 - acc: 0.807 - ETA: 5s - loss: 0.5715 - acc: 0.807 - ETA: 5s - loss: 0.5715 - acc: 0.807 - ETA: 5s - loss: 0.5713 - acc: 0.807 - ETA: 5s - loss: 0.5713 - acc: 0.807 - ETA: 5s - loss: 0.5710 - acc: 0.807 - ETA: 5s - loss: 0.5709 - acc: 0.807 - ETA: 5s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5706 - acc: 0.807 - ETA: 4s - loss: 0.5711 - acc: 0.807 - ETA: 4s - loss: 0.5706 - acc: 0.807 - ETA: 4s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5702 - acc: 0.807 - ETA: 4s - loss: 0.5700 - acc: 0.807 - ETA: 4s - loss: 0.5698 - acc: 0.807 - ETA: 4s - loss: 0.5692 - acc: 0.807 - ETA: 4s - loss: 0.5689 - acc: 0.807 - ETA: 4s - loss: 0.5692 - acc: 0.807 - ETA: 4s - loss: 0.5694 - acc: 0.807 - ETA: 4s - loss: 0.5698 - acc: 0.807 - ETA: 4s - loss: 0.5692 - acc: 0.807 - ETA: 4s - loss: 0.5690 - acc: 0.807 - ETA: 3s - loss: 0.5686 - acc: 0.807 - ETA: 3s - loss: 0.5684 - acc: 0.807 - ETA: 3s - loss: 0.5680 - acc: 0.807 - ETA: 3s - loss: 0.5684 - acc: 0.807 - ETA: 3s - loss: 0.5685 - acc: 0.807 - ETA: 3s - loss: 0.5684 - acc: 0.807 - ETA: 3s - loss: 0.5688 - acc: 0.807 - ETA: 3s - loss: 0.5683 - acc: 0.807 - ETA: 3s - loss: 0.5677 - acc: 0.808 - ETA: 3s - loss: 0.5688 - acc: 0.807 - ETA: 3s - loss: 0.5681 - acc: 0.808 - ETA: 3s - loss: 0.5675 - acc: 0.808 - ETA: 3s - loss: 0.5684 - acc: 0.808 - ETA: 3s - loss: 0.5676 - acc: 0.808 - ETA: 3s - loss: 0.5672 - acc: 0.808 - ETA: 3s - loss: 0.5675 - acc: 0.808 - ETA: 2s - loss: 0.5676 - acc: 0.808 - ETA: 2s - loss: 0.5679 - acc: 0.807 - ETA: 2s - loss: 0.5681 - acc: 0.807 - ETA: 2s - loss: 0.5678 - acc: 0.807 - ETA: 2s - loss: 0.5684 - acc: 0.807 - ETA: 2s - loss: 0.5695 - acc: 0.807 - ETA: 2s - loss: 0.5695 - acc: 0.807 - ETA: 2s - loss: 0.5695 - acc: 0.807 - ETA: 2s - loss: 0.5701 - acc: 0.806 - ETA: 2s - loss: 0.5706 - acc: 0.806 - ETA: 2s - loss: 0.5711 - acc: 0.806 - ETA: 2s - loss: 0.5708 - acc: 0.806 - ETA: 2s - loss: 0.5710 - acc: 0.806 - ETA: 2s - loss: 0.5713 - acc: 0.806 - ETA: 2s - loss: 0.5720 - acc: 0.806 - ETA: 2s - loss: 0.5721 - acc: 0.806 - ETA: 2s - loss: 0.5715 - acc: 0.806 - ETA: 1s - loss: 0.5714 - acc: 0.806 - ETA: 1s - loss: 0.5713 - acc: 0.806 - ETA: 1s - loss: 0.5709 - acc: 0.806 - ETA: 1s - loss: 0.5708 - acc: 0.806 - ETA: 1s - loss: 0.5712 - acc: 0.806 - ETA: 1s - loss: 0.5708 - acc: 0.806 - ETA: 1s - loss: 0.5707 - acc: 0.806 - ETA: 1s - loss: 0.5702 - acc: 0.807 - ETA: 1s - loss: 0.5701 - acc: 0.807 - ETA: 1s - loss: 0.5699 - acc: 0.807 - ETA: 1s - loss: 0.5701 - acc: 0.807 - ETA: 1s - loss: 0.5703 - acc: 0.807 - ETA: 1s - loss: 0.5701 - acc: 0.807 - ETA: 1s - loss: 0.5697 - acc: 0.807 - ETA: 1s - loss: 0.5698 - acc: 0.807 - ETA: 1s - loss: 0.5702 - acc: 0.807 - ETA: 0s - loss: 0.5702 - acc: 0.807 - ETA: 0s - loss: 0.5698 - acc: 0.807 - ETA: 0s - loss: 0.5699 - acc: 0.807 - ETA: 0s - loss: 0.5693 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5698 - acc: 0.807 - ETA: 0s - loss: 0.5696 - acc: 0.807 - ETA: 0s - loss: 0.5698 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5688 - acc: 0.807 - ETA: 0s - loss: 0.5683 - acc: 0.807 - ETA: 0s - loss: 0.5677 - acc: 0.807 - ETA: 0s - loss: 0.5676 - acc: 0.807 - ETA: 0s - loss: 0.5672 - acc: 0.808 - 24s 998us/step - loss: 0.5674 - acc: 0.8079 - val_loss: 0.4905 - val_acc: 0.8402\n", + "\n", + "Epoch 00006: val_acc improved from 0.82431 to 0.84021, saving model to models\\time.model\n", + "Epoch 7/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13856/23769 [================>.............] - ETA: 25s - loss: 0.7763 - acc: 0.75 - ETA: 25s - loss: 0.5529 - acc: 0.78 - ETA: 24s - loss: 0.5891 - acc: 0.77 - ETA: 24s - loss: 0.5748 - acc: 0.78 - ETA: 23s - loss: 0.5857 - acc: 0.78 - ETA: 23s - loss: 0.5700 - acc: 0.80 - ETA: 23s - loss: 0.5880 - acc: 0.80 - ETA: 22s - loss: 0.5760 - acc: 0.80 - ETA: 22s - loss: 0.5486 - acc: 0.81 - ETA: 22s - loss: 0.5384 - acc: 0.81 - ETA: 22s - loss: 0.5457 - acc: 0.81 - ETA: 22s - loss: 0.5382 - acc: 0.81 - ETA: 22s - loss: 0.5584 - acc: 0.80 - ETA: 21s - loss: 0.5528 - acc: 0.80 - ETA: 22s - loss: 0.5614 - acc: 0.80 - ETA: 22s - loss: 0.5667 - acc: 0.80 - ETA: 22s - loss: 0.5716 - acc: 0.79 - ETA: 21s - loss: 0.5598 - acc: 0.80 - ETA: 21s - loss: 0.5614 - acc: 0.80 - ETA: 21s - loss: 0.5586 - acc: 0.80 - ETA: 21s - loss: 0.5728 - acc: 0.80 - ETA: 21s - loss: 0.5661 - acc: 0.80 - ETA: 21s - loss: 0.5702 - acc: 0.80 - ETA: 21s - loss: 0.5710 - acc: 0.80 - ETA: 21s - loss: 0.5667 - acc: 0.80 - ETA: 21s - loss: 0.5665 - acc: 0.80 - ETA: 20s - loss: 0.5613 - acc: 0.80 - ETA: 20s - loss: 0.5581 - acc: 0.81 - ETA: 20s - loss: 0.5632 - acc: 0.80 - ETA: 20s - loss: 0.5644 - acc: 0.80 - ETA: 20s - loss: 0.5585 - acc: 0.80 - ETA: 20s - loss: 0.5561 - acc: 0.80 - ETA: 20s - loss: 0.5509 - acc: 0.81 - ETA: 20s - loss: 0.5479 - acc: 0.81 - ETA: 20s - loss: 0.5446 - acc: 0.81 - ETA: 20s - loss: 0.5394 - acc: 0.81 - ETA: 20s - loss: 0.5366 - acc: 0.81 - ETA: 20s - loss: 0.5404 - acc: 0.81 - ETA: 20s - loss: 0.5415 - acc: 0.81 - ETA: 20s - loss: 0.5422 - acc: 0.81 - ETA: 20s - loss: 0.5437 - acc: 0.81 - ETA: 20s - loss: 0.5423 - acc: 0.81 - ETA: 19s - loss: 0.5406 - acc: 0.81 - ETA: 19s - loss: 0.5410 - acc: 0.81 - ETA: 19s - loss: 0.5418 - acc: 0.81 - ETA: 19s - loss: 0.5458 - acc: 0.81 - ETA: 19s - loss: 0.5460 - acc: 0.81 - ETA: 19s - loss: 0.5432 - acc: 0.81 - ETA: 19s - loss: 0.5426 - acc: 0.81 - ETA: 19s - loss: 0.5379 - acc: 0.81 - ETA: 19s - loss: 0.5387 - acc: 0.81 - ETA: 19s - loss: 0.5428 - acc: 0.81 - ETA: 19s - loss: 0.5411 - acc: 0.81 - ETA: 19s - loss: 0.5397 - acc: 0.81 - ETA: 19s - loss: 0.5352 - acc: 0.81 - ETA: 19s - loss: 0.5370 - acc: 0.81 - ETA: 19s - loss: 0.5390 - acc: 0.81 - ETA: 19s - loss: 0.5386 - acc: 0.81 - ETA: 19s - loss: 0.5365 - acc: 0.81 - ETA: 19s - loss: 0.5376 - acc: 0.81 - ETA: 19s - loss: 0.5379 - acc: 0.81 - ETA: 19s - loss: 0.5379 - acc: 0.81 - ETA: 19s - loss: 0.5377 - acc: 0.81 - ETA: 18s - loss: 0.5379 - acc: 0.81 - ETA: 18s - loss: 0.5401 - acc: 0.81 - ETA: 18s - loss: 0.5418 - acc: 0.81 - ETA: 18s - loss: 0.5434 - acc: 0.81 - ETA: 18s - loss: 0.5421 - acc: 0.81 - ETA: 18s - loss: 0.5481 - acc: 0.81 - ETA: 18s - loss: 0.5458 - acc: 0.81 - ETA: 18s - loss: 0.5440 - acc: 0.81 - ETA: 18s - loss: 0.5433 - acc: 0.81 - ETA: 18s - loss: 0.5439 - acc: 0.81 - ETA: 18s - loss: 0.5443 - acc: 0.81 - ETA: 18s - loss: 0.5453 - acc: 0.81 - ETA: 18s - loss: 0.5469 - acc: 0.81 - ETA: 18s - loss: 0.5450 - acc: 0.81 - ETA: 18s - loss: 0.5432 - acc: 0.81 - ETA: 18s - loss: 0.5419 - acc: 0.81 - ETA: 18s - loss: 0.5439 - acc: 0.81 - ETA: 18s - loss: 0.5462 - acc: 0.81 - ETA: 18s - loss: 0.5442 - acc: 0.81 - ETA: 17s - loss: 0.5434 - acc: 0.81 - ETA: 17s - loss: 0.5446 - acc: 0.81 - ETA: 17s - loss: 0.5434 - acc: 0.81 - ETA: 17s - loss: 0.5423 - acc: 0.81 - ETA: 17s - loss: 0.5437 - acc: 0.81 - ETA: 17s - loss: 0.5490 - acc: 0.81 - ETA: 17s - loss: 0.5506 - acc: 0.81 - ETA: 17s - loss: 0.5521 - acc: 0.81 - ETA: 17s - loss: 0.5519 - acc: 0.81 - ETA: 17s - loss: 0.5521 - acc: 0.81 - ETA: 17s - loss: 0.5518 - acc: 0.81 - ETA: 17s - loss: 0.5495 - acc: 0.81 - ETA: 17s - loss: 0.5473 - acc: 0.81 - ETA: 17s - loss: 0.5478 - acc: 0.81 - ETA: 17s - loss: 0.5459 - acc: 0.81 - ETA: 17s - loss: 0.5449 - acc: 0.81 - ETA: 17s - loss: 0.5469 - acc: 0.81 - ETA: 16s - loss: 0.5458 - acc: 0.81 - ETA: 16s - loss: 0.5456 - acc: 0.81 - ETA: 16s - loss: 0.5440 - acc: 0.81 - ETA: 16s - loss: 0.5441 - acc: 0.81 - ETA: 16s - loss: 0.5418 - acc: 0.81 - ETA: 16s - loss: 0.5434 - acc: 0.81 - ETA: 16s - loss: 0.5438 - acc: 0.81 - ETA: 16s - loss: 0.5424 - acc: 0.81 - ETA: 16s - loss: 0.5420 - acc: 0.81 - ETA: 16s - loss: 0.5456 - acc: 0.81 - ETA: 16s - loss: 0.5461 - acc: 0.81 - ETA: 16s - loss: 0.5464 - acc: 0.81 - ETA: 16s - loss: 0.5478 - acc: 0.81 - ETA: 16s - loss: 0.5492 - acc: 0.81 - ETA: 16s - loss: 0.5508 - acc: 0.81 - ETA: 15s - loss: 0.5510 - acc: 0.81 - ETA: 15s - loss: 0.5498 - acc: 0.81 - ETA: 15s - loss: 0.5492 - acc: 0.81 - ETA: 15s - loss: 0.5489 - acc: 0.81 - ETA: 15s - loss: 0.5469 - acc: 0.81 - ETA: 15s - loss: 0.5457 - acc: 0.81 - ETA: 15s - loss: 0.5442 - acc: 0.81 - ETA: 15s - loss: 0.5441 - acc: 0.81 - ETA: 15s - loss: 0.5436 - acc: 0.81 - ETA: 15s - loss: 0.5445 - acc: 0.81 - ETA: 15s - loss: 0.5423 - acc: 0.81 - ETA: 15s - loss: 0.5410 - acc: 0.81 - ETA: 15s - loss: 0.5403 - acc: 0.81 - ETA: 15s - loss: 0.5403 - acc: 0.81 - ETA: 15s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5400 - acc: 0.81 - ETA: 14s - loss: 0.5397 - acc: 0.81 - ETA: 14s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5402 - acc: 0.81 - ETA: 14s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5407 - acc: 0.81 - ETA: 14s - loss: 0.5397 - acc: 0.81 - ETA: 14s - loss: 0.5388 - acc: 0.81 - ETA: 14s - loss: 0.5376 - acc: 0.81 - ETA: 14s - loss: 0.5360 - acc: 0.81 - ETA: 14s - loss: 0.5349 - acc: 0.81 - ETA: 14s - loss: 0.5349 - acc: 0.81 - ETA: 14s - loss: 0.5357 - acc: 0.81 - ETA: 14s - loss: 0.5354 - acc: 0.81 - ETA: 14s - loss: 0.5337 - acc: 0.82 - ETA: 13s - loss: 0.5328 - acc: 0.82 - ETA: 13s - loss: 0.5344 - acc: 0.82 - ETA: 13s - loss: 0.5348 - acc: 0.82 - ETA: 13s - loss: 0.5362 - acc: 0.81 - ETA: 13s - loss: 0.5369 - acc: 0.81 - ETA: 13s - loss: 0.5377 - acc: 0.81 - ETA: 13s - loss: 0.5389 - acc: 0.81 - ETA: 13s - loss: 0.5388 - acc: 0.81 - ETA: 13s - loss: 0.5377 - acc: 0.81 - ETA: 13s - loss: 0.5373 - acc: 0.81 - ETA: 13s - loss: 0.5394 - acc: 0.81 - ETA: 13s - loss: 0.5399 - acc: 0.81 - ETA: 13s - loss: 0.5387 - acc: 0.81 - ETA: 13s - loss: 0.5381 - acc: 0.81 - ETA: 13s - loss: 0.5375 - acc: 0.81 - ETA: 13s - loss: 0.5380 - acc: 0.81 - ETA: 12s - loss: 0.5378 - acc: 0.81 - ETA: 12s - loss: 0.5375 - acc: 0.81 - ETA: 12s - loss: 0.5365 - acc: 0.81 - ETA: 12s - loss: 0.5361 - acc: 0.81 - ETA: 12s - loss: 0.5355 - acc: 0.81 - ETA: 12s - loss: 0.5352 - acc: 0.81 - ETA: 12s - loss: 0.5362 - acc: 0.81 - ETA: 12s - loss: 0.5375 - acc: 0.81 - ETA: 12s - loss: 0.5396 - acc: 0.81 - ETA: 12s - loss: 0.5403 - acc: 0.81 - ETA: 12s - loss: 0.5410 - acc: 0.81 - ETA: 12s - loss: 0.5410 - acc: 0.81 - ETA: 12s - loss: 0.5418 - acc: 0.81 - ETA: 12s - loss: 0.5415 - acc: 0.81 - ETA: 12s - loss: 0.5420 - acc: 0.81 - ETA: 12s - loss: 0.5419 - acc: 0.81 - ETA: 11s - loss: 0.5416 - acc: 0.81 - ETA: 11s - loss: 0.5416 - acc: 0.81 - ETA: 11s - loss: 0.5425 - acc: 0.81 - ETA: 11s - loss: 0.5423 - acc: 0.81 - ETA: 11s - loss: 0.5414 - acc: 0.81 - ETA: 11s - loss: 0.5428 - acc: 0.81 - ETA: 11s - loss: 0.5429 - acc: 0.81 - ETA: 11s - loss: 0.5424 - acc: 0.81 - ETA: 11s - loss: 0.5420 - acc: 0.81 - ETA: 11s - loss: 0.5426 - acc: 0.81 - ETA: 11s - loss: 0.5422 - acc: 0.81 - ETA: 11s - loss: 0.5413 - acc: 0.81 - ETA: 11s - loss: 0.5414 - acc: 0.81 - ETA: 11s - loss: 0.5408 - acc: 0.81 - ETA: 11s - loss: 0.5415 - acc: 0.81 - ETA: 10s - loss: 0.5436 - acc: 0.81 - ETA: 10s - loss: 0.5435 - acc: 0.81 - ETA: 10s - loss: 0.5428 - acc: 0.81 - ETA: 10s - loss: 0.5426 - acc: 0.81 - ETA: 10s - loss: 0.5424 - acc: 0.81 - ETA: 10s - loss: 0.5425 - acc: 0.81 - ETA: 10s - loss: 0.5422 - acc: 0.81 - ETA: 10s - loss: 0.5421 - acc: 0.81 - ETA: 10s - loss: 0.5421 - acc: 0.81 - ETA: 10s - loss: 0.5424 - acc: 0.81 - ETA: 10s - loss: 0.5422 - acc: 0.81 - ETA: 10s - loss: 0.5427 - acc: 0.81 - ETA: 10s - loss: 0.5430 - acc: 0.81 - ETA: 10s - loss: 0.5429 - acc: 0.81 - ETA: 10s - loss: 0.5432 - acc: 0.81 - ETA: 10s - loss: 0.5429 - acc: 0.81 - ETA: 9s - loss: 0.5427 - acc: 0.8161 - ETA: 9s - loss: 0.5420 - acc: 0.816 - ETA: 9s - loss: 0.5414 - acc: 0.816 - ETA: 9s - loss: 0.5402 - acc: 0.816 - ETA: 9s - loss: 0.5404 - acc: 0.816 - ETA: 9s - loss: 0.5399 - acc: 0.816 - ETA: 9s - loss: 0.5397 - acc: 0.8171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.5383 - acc: 0.817 - ETA: 9s - loss: 0.5374 - acc: 0.817 - ETA: 9s - loss: 0.5364 - acc: 0.818 - ETA: 9s - loss: 0.5358 - acc: 0.818 - ETA: 9s - loss: 0.5353 - acc: 0.818 - ETA: 9s - loss: 0.5359 - acc: 0.818 - ETA: 9s - loss: 0.5361 - acc: 0.818 - ETA: 9s - loss: 0.5368 - acc: 0.818 - ETA: 9s - loss: 0.5362 - acc: 0.818 - ETA: 8s - loss: 0.5367 - acc: 0.818 - ETA: 8s - loss: 0.5366 - acc: 0.818 - ETA: 8s - loss: 0.5367 - acc: 0.818 - ETA: 8s - loss: 0.5365 - acc: 0.818 - ETA: 8s - loss: 0.5366 - acc: 0.818 - ETA: 8s - loss: 0.5371 - acc: 0.818 - ETA: 8s - loss: 0.5371 - acc: 0.818 - ETA: 8s - loss: 0.5380 - acc: 0.818 - ETA: 8s - loss: 0.5379 - acc: 0.818 - ETA: 8s - loss: 0.5373 - acc: 0.818 - ETA: 8s - loss: 0.5369 - acc: 0.818 - ETA: 8s - loss: 0.5365 - acc: 0.818 - ETA: 8s - loss: 0.5370 - acc: 0.818 - ETA: 8s - loss: 0.5365 - acc: 0.818 - ETA: 8s - loss: 0.5367 - acc: 0.818 - ETA: 8s - loss: 0.5361 - acc: 0.818 - ETA: 8s - loss: 0.5355 - acc: 0.819 - ETA: 7s - loss: 0.5358 - acc: 0.818 - ETA: 7s - loss: 0.5357 - acc: 0.818 - ETA: 7s - loss: 0.5350 - acc: 0.819 - ETA: 7s - loss: 0.5344 - acc: 0.819 - ETA: 7s - loss: 0.5344 - acc: 0.819 - ETA: 7s - loss: 0.5342 - acc: 0.819 - ETA: 7s - loss: 0.5345 - acc: 0.819 - ETA: 7s - loss: 0.5347 - acc: 0.819 - ETA: 7s - loss: 0.5348 - acc: 0.819 - ETA: 7s - loss: 0.5354 - acc: 0.818 - ETA: 7s - loss: 0.5352 - acc: 0.818 - ETA: 7s - loss: 0.5348 - acc: 0.818 - ETA: 7s - loss: 0.5346 - acc: 0.819 - ETA: 7s - loss: 0.5341 - acc: 0.819 - ETA: 7s - loss: 0.5342 - acc: 0.819 - ETA: 7s - loss: 0.5343 - acc: 0.819 - ETA: 6s - loss: 0.5340 - acc: 0.818 - ETA: 6s - loss: 0.5338 - acc: 0.818 - ETA: 6s - loss: 0.5336 - acc: 0.819 - ETA: 6s - loss: 0.5330 - acc: 0.819 - ETA: 6s - loss: 0.5317 - acc: 0.819 - ETA: 6s - loss: 0.5320 - acc: 0.819 - ETA: 6s - loss: 0.5315 - acc: 0.819 - ETA: 6s - loss: 0.5316 - acc: 0.819 - ETA: 6s - loss: 0.5317 - acc: 0.819 - ETA: 6s - loss: 0.5318 - acc: 0.819 - ETA: 6s - loss: 0.5310 - acc: 0.820 - ETA: 6s - loss: 0.5310 - acc: 0.819 - ETA: 6s - loss: 0.5303 - acc: 0.820 - ETA: 6s - loss: 0.5302 - acc: 0.820 - ETA: 6s - loss: 0.5303 - acc: 0.820 - ETA: 6s - loss: 0.5303 - acc: 0.820 - ETA: 5s - loss: 0.5307 - acc: 0.819 - ETA: 5s - loss: 0.5303 - acc: 0.820 - ETA: 5s - loss: 0.5304 - acc: 0.820 - ETA: 5s - loss: 0.5305 - acc: 0.819 - ETA: 5s - loss: 0.5304 - acc: 0.819 - ETA: 5s - loss: 0.5309 - acc: 0.819 - ETA: 5s - loss: 0.5312 - acc: 0.819 - ETA: 5s - loss: 0.5311 - acc: 0.819 - ETA: 5s - loss: 0.5306 - acc: 0.820 - ETA: 5s - loss: 0.5305 - acc: 0.820 - ETA: 5s - loss: 0.5301 - acc: 0.820 - ETA: 5s - loss: 0.5299 - acc: 0.820 - ETA: 5s - loss: 0.5291 - acc: 0.820 - ETA: 5s - loss: 0.5287 - acc: 0.820 - ETA: 5s - loss: 0.5288 - acc: 0.820 - ETA: 5s - loss: 0.5285 - acc: 0.820 - ETA: 5s - loss: 0.5279 - acc: 0.820 - ETA: 4s - loss: 0.5278 - acc: 0.820 - ETA: 4s - loss: 0.5286 - acc: 0.820 - ETA: 4s - loss: 0.5290 - acc: 0.820 - ETA: 4s - loss: 0.5291 - acc: 0.820 - ETA: 4s - loss: 0.5284 - acc: 0.820 - ETA: 4s - loss: 0.5278 - acc: 0.820 - ETA: 4s - loss: 0.5272 - acc: 0.820 - ETA: 4s - loss: 0.5275 - acc: 0.820 - ETA: 4s - loss: 0.5274 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5274 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5276 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5276 - acc: 0.820 - ETA: 3s - loss: 0.5284 - acc: 0.820 - ETA: 3s - loss: 0.5284 - acc: 0.820 - ETA: 3s - loss: 0.5282 - acc: 0.820 - ETA: 3s - loss: 0.5276 - acc: 0.820 - ETA: 3s - loss: 0.5272 - acc: 0.820 - ETA: 3s - loss: 0.5267 - acc: 0.820 - ETA: 3s - loss: 0.5265 - acc: 0.820 - ETA: 3s - loss: 0.5264 - acc: 0.820 - ETA: 3s - loss: 0.5259 - acc: 0.820 - ETA: 3s - loss: 0.5258 - acc: 0.820 - ETA: 3s - loss: 0.5253 - acc: 0.821 - ETA: 3s - loss: 0.5247 - acc: 0.821 - ETA: 3s - loss: 0.5239 - acc: 0.821 - ETA: 3s - loss: 0.5236 - acc: 0.821 - ETA: 3s - loss: 0.5229 - acc: 0.822 - ETA: 2s - loss: 0.5221 - acc: 0.822 - ETA: 2s - loss: 0.5222 - acc: 0.822 - ETA: 2s - loss: 0.5220 - acc: 0.822 - ETA: 2s - loss: 0.5216 - acc: 0.822 - ETA: 2s - loss: 0.5207 - acc: 0.823 - ETA: 2s - loss: 0.5212 - acc: 0.822 - ETA: 2s - loss: 0.5221 - acc: 0.822 - ETA: 2s - loss: 0.5218 - acc: 0.822 - ETA: 2s - loss: 0.5220 - acc: 0.822 - ETA: 2s - loss: 0.5216 - acc: 0.822 - ETA: 2s - loss: 0.5214 - acc: 0.823 - ETA: 2s - loss: 0.5211 - acc: 0.823 - ETA: 2s - loss: 0.5217 - acc: 0.822 - ETA: 2s - loss: 0.5214 - acc: 0.822 - ETA: 2s - loss: 0.5218 - acc: 0.822 - ETA: 2s - loss: 0.5218 - acc: 0.822 - ETA: 1s - loss: 0.5216 - acc: 0.822 - ETA: 1s - loss: 0.5215 - acc: 0.822 - ETA: 1s - loss: 0.5213 - acc: 0.823 - ETA: 1s - loss: 0.5209 - acc: 0.823 - ETA: 1s - loss: 0.5210 - acc: 0.822 - ETA: 1s - loss: 0.5213 - acc: 0.822 - ETA: 1s - loss: 0.5211 - acc: 0.822 - ETA: 1s - loss: 0.5208 - acc: 0.822 - ETA: 1s - loss: 0.5204 - acc: 0.823 - ETA: 1s - loss: 0.5203 - acc: 0.823 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 1s - loss: 0.5205 - acc: 0.823 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 1s - loss: 0.5212 - acc: 0.822 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 0s - loss: 0.5203 - acc: 0.823 - ETA: 0s - loss: 0.5202 - acc: 0.823 - ETA: 0s - loss: 0.5198 - acc: 0.823 - ETA: 0s - loss: 0.5203 - acc: 0.823 - ETA: 0s - loss: 0.5201 - acc: 0.823 - ETA: 0s - loss: 0.5195 - acc: 0.823 - ETA: 0s - loss: 0.5202 - acc: 0.823 - ETA: 0s - loss: 0.5204 - acc: 0.822 - ETA: 0s - loss: 0.5200 - acc: 0.823 - ETA: 0s - loss: 0.5195 - acc: 0.823 - ETA: 0s - loss: 0.5200 - acc: 0.823 - ETA: 0s - loss: 0.5204 - acc: 0.823 - ETA: 0s - loss: 0.5198 - acc: 0.823 - ETA: 0s - loss: 0.5196 - acc: 0.823 - ETA: 0s - loss: 0.5196 - acc: 0.823 - ETA: 0s - loss: 0.5197 - acc: 0.823 - 24s 1ms/step - loss: 0.5194 - acc: 0.8233 - val_loss: 0.5294 - val_acc: 0.8205\n", + "\n", + "Epoch 00007: val_acc did not improve from 0.84021\n", + "Epoch 8/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13824/23769 [================>.............] - ETA: 27s - loss: 0.5609 - acc: 0.84 - ETA: 25s - loss: 0.6138 - acc: 0.85 - ETA: 25s - loss: 0.6006 - acc: 0.84 - ETA: 25s - loss: 0.5875 - acc: 0.83 - ETA: 25s - loss: 0.5760 - acc: 0.82 - ETA: 24s - loss: 0.5706 - acc: 0.82 - ETA: 24s - loss: 0.5816 - acc: 0.82 - ETA: 24s - loss: 0.5719 - acc: 0.82 - ETA: 23s - loss: 0.5450 - acc: 0.83 - ETA: 23s - loss: 0.5402 - acc: 0.82 - ETA: 23s - loss: 0.5229 - acc: 0.83 - ETA: 23s - loss: 0.5088 - acc: 0.84 - ETA: 23s - loss: 0.5010 - acc: 0.84 - ETA: 23s - loss: 0.4894 - acc: 0.84 - ETA: 22s - loss: 0.4933 - acc: 0.84 - ETA: 22s - loss: 0.4892 - acc: 0.84 - ETA: 22s - loss: 0.5021 - acc: 0.84 - ETA: 22s - loss: 0.5061 - acc: 0.84 - ETA: 22s - loss: 0.5010 - acc: 0.84 - ETA: 22s - loss: 0.4978 - acc: 0.84 - ETA: 21s - loss: 0.5055 - acc: 0.83 - ETA: 21s - loss: 0.5104 - acc: 0.83 - ETA: 21s - loss: 0.5026 - acc: 0.84 - ETA: 21s - loss: 0.4986 - acc: 0.84 - ETA: 21s - loss: 0.4996 - acc: 0.84 - ETA: 21s - loss: 0.5025 - acc: 0.84 - ETA: 21s - loss: 0.4967 - acc: 0.84 - ETA: 21s - loss: 0.4919 - acc: 0.84 - ETA: 21s - loss: 0.4885 - acc: 0.84 - ETA: 21s - loss: 0.4933 - acc: 0.84 - ETA: 21s - loss: 0.4926 - acc: 0.84 - ETA: 21s - loss: 0.4969 - acc: 0.84 - ETA: 20s - loss: 0.4916 - acc: 0.84 - ETA: 20s - loss: 0.4909 - acc: 0.84 - ETA: 20s - loss: 0.4853 - acc: 0.84 - ETA: 20s - loss: 0.4807 - acc: 0.84 - ETA: 20s - loss: 0.4770 - acc: 0.84 - ETA: 20s - loss: 0.4788 - acc: 0.84 - ETA: 20s - loss: 0.4729 - acc: 0.84 - ETA: 20s - loss: 0.4675 - acc: 0.85 - ETA: 20s - loss: 0.4708 - acc: 0.85 - ETA: 19s - loss: 0.4670 - acc: 0.85 - ETA: 19s - loss: 0.4658 - acc: 0.85 - ETA: 19s - loss: 0.4650 - acc: 0.84 - ETA: 19s - loss: 0.4655 - acc: 0.84 - ETA: 19s - loss: 0.4693 - acc: 0.84 - ETA: 19s - loss: 0.4747 - acc: 0.84 - ETA: 19s - loss: 0.4745 - acc: 0.84 - ETA: 19s - loss: 0.4754 - acc: 0.84 - ETA: 19s - loss: 0.4807 - acc: 0.84 - ETA: 19s - loss: 0.4829 - acc: 0.84 - ETA: 19s - loss: 0.4854 - acc: 0.83 - ETA: 19s - loss: 0.4846 - acc: 0.84 - ETA: 19s - loss: 0.4861 - acc: 0.84 - ETA: 19s - loss: 0.4886 - acc: 0.83 - ETA: 19s - loss: 0.4898 - acc: 0.83 - ETA: 19s - loss: 0.4911 - acc: 0.83 - ETA: 18s - loss: 0.4954 - acc: 0.83 - ETA: 18s - loss: 0.5017 - acc: 0.83 - ETA: 18s - loss: 0.5028 - acc: 0.83 - ETA: 18s - loss: 0.5065 - acc: 0.83 - ETA: 18s - loss: 0.5072 - acc: 0.83 - ETA: 18s - loss: 0.5038 - acc: 0.83 - ETA: 18s - loss: 0.5062 - acc: 0.83 - ETA: 18s - loss: 0.5066 - acc: 0.82 - ETA: 18s - loss: 0.5077 - acc: 0.82 - ETA: 18s - loss: 0.5061 - acc: 0.82 - ETA: 18s - loss: 0.5066 - acc: 0.82 - ETA: 18s - loss: 0.5073 - acc: 0.82 - ETA: 18s - loss: 0.5093 - acc: 0.82 - ETA: 18s - loss: 0.5079 - acc: 0.82 - ETA: 18s - loss: 0.5058 - acc: 0.82 - ETA: 18s - loss: 0.5055 - acc: 0.82 - ETA: 18s - loss: 0.5056 - acc: 0.82 - ETA: 18s - loss: 0.5033 - acc: 0.82 - ETA: 18s - loss: 0.5048 - acc: 0.82 - ETA: 18s - loss: 0.5037 - acc: 0.82 - ETA: 17s - loss: 0.5033 - acc: 0.82 - ETA: 17s - loss: 0.5011 - acc: 0.82 - ETA: 17s - loss: 0.5022 - acc: 0.82 - ETA: 17s - loss: 0.5020 - acc: 0.82 - ETA: 17s - loss: 0.5018 - acc: 0.82 - ETA: 17s - loss: 0.5004 - acc: 0.83 - ETA: 17s - loss: 0.5007 - acc: 0.83 - ETA: 17s - loss: 0.5013 - acc: 0.82 - ETA: 17s - loss: 0.5019 - acc: 0.82 - ETA: 17s - loss: 0.5014 - acc: 0.83 - ETA: 17s - loss: 0.5041 - acc: 0.83 - ETA: 17s - loss: 0.5063 - acc: 0.82 - ETA: 17s - loss: 0.5049 - acc: 0.83 - ETA: 17s - loss: 0.5047 - acc: 0.83 - ETA: 17s - loss: 0.5055 - acc: 0.83 - ETA: 17s - loss: 0.5056 - acc: 0.83 - ETA: 17s - loss: 0.5060 - acc: 0.83 - ETA: 17s - loss: 0.5046 - acc: 0.83 - ETA: 16s - loss: 0.5030 - acc: 0.83 - ETA: 16s - loss: 0.5018 - acc: 0.83 - ETA: 16s - loss: 0.5003 - acc: 0.83 - ETA: 16s - loss: 0.5005 - acc: 0.83 - ETA: 16s - loss: 0.4995 - acc: 0.83 - ETA: 16s - loss: 0.4986 - acc: 0.83 - ETA: 16s - loss: 0.4973 - acc: 0.83 - ETA: 16s - loss: 0.4959 - acc: 0.83 - ETA: 16s - loss: 0.4976 - acc: 0.83 - ETA: 16s - loss: 0.4975 - acc: 0.83 - ETA: 16s - loss: 0.4970 - acc: 0.83 - ETA: 16s - loss: 0.4971 - acc: 0.83 - ETA: 16s - loss: 0.4964 - acc: 0.83 - ETA: 16s - loss: 0.4958 - acc: 0.83 - ETA: 16s - loss: 0.4951 - acc: 0.83 - ETA: 16s - loss: 0.4964 - acc: 0.83 - ETA: 16s - loss: 0.4962 - acc: 0.83 - ETA: 15s - loss: 0.4942 - acc: 0.83 - ETA: 15s - loss: 0.4932 - acc: 0.83 - ETA: 15s - loss: 0.4919 - acc: 0.83 - ETA: 15s - loss: 0.4915 - acc: 0.83 - ETA: 15s - loss: 0.4900 - acc: 0.83 - ETA: 15s - loss: 0.4895 - acc: 0.83 - ETA: 15s - loss: 0.4896 - acc: 0.83 - ETA: 15s - loss: 0.4890 - acc: 0.83 - ETA: 15s - loss: 0.4885 - acc: 0.83 - ETA: 15s - loss: 0.4872 - acc: 0.83 - ETA: 15s - loss: 0.4883 - acc: 0.83 - ETA: 15s - loss: 0.4897 - acc: 0.83 - ETA: 15s - loss: 0.4872 - acc: 0.83 - ETA: 15s - loss: 0.4864 - acc: 0.83 - ETA: 15s - loss: 0.4853 - acc: 0.83 - ETA: 15s - loss: 0.4858 - acc: 0.83 - ETA: 14s - loss: 0.4857 - acc: 0.83 - ETA: 14s - loss: 0.4852 - acc: 0.83 - ETA: 14s - loss: 0.4854 - acc: 0.83 - ETA: 14s - loss: 0.4849 - acc: 0.83 - ETA: 14s - loss: 0.4868 - acc: 0.83 - ETA: 14s - loss: 0.4875 - acc: 0.83 - ETA: 14s - loss: 0.4870 - acc: 0.83 - ETA: 14s - loss: 0.4874 - acc: 0.83 - ETA: 14s - loss: 0.4885 - acc: 0.83 - ETA: 14s - loss: 0.4884 - acc: 0.83 - ETA: 14s - loss: 0.4888 - acc: 0.83 - ETA: 14s - loss: 0.4891 - acc: 0.83 - ETA: 14s - loss: 0.4913 - acc: 0.83 - ETA: 14s - loss: 0.4932 - acc: 0.83 - ETA: 14s - loss: 0.4926 - acc: 0.83 - ETA: 13s - loss: 0.4931 - acc: 0.83 - ETA: 13s - loss: 0.4924 - acc: 0.83 - ETA: 13s - loss: 0.4912 - acc: 0.83 - ETA: 13s - loss: 0.4914 - acc: 0.83 - ETA: 13s - loss: 0.4906 - acc: 0.83 - ETA: 13s - loss: 0.4902 - acc: 0.83 - ETA: 13s - loss: 0.4907 - acc: 0.83 - ETA: 13s - loss: 0.4902 - acc: 0.83 - ETA: 13s - loss: 0.4908 - acc: 0.83 - ETA: 13s - loss: 0.4910 - acc: 0.83 - ETA: 13s - loss: 0.4904 - acc: 0.83 - ETA: 13s - loss: 0.4892 - acc: 0.83 - ETA: 13s - loss: 0.4889 - acc: 0.83 - ETA: 13s - loss: 0.4882 - acc: 0.83 - ETA: 13s - loss: 0.4890 - acc: 0.83 - ETA: 13s - loss: 0.4896 - acc: 0.83 - ETA: 13s - loss: 0.4894 - acc: 0.83 - ETA: 12s - loss: 0.4897 - acc: 0.83 - ETA: 12s - loss: 0.4894 - acc: 0.83 - ETA: 12s - loss: 0.4905 - acc: 0.83 - ETA: 12s - loss: 0.4907 - acc: 0.83 - ETA: 12s - loss: 0.4901 - acc: 0.83 - ETA: 12s - loss: 0.4895 - acc: 0.83 - ETA: 12s - loss: 0.4890 - acc: 0.83 - ETA: 12s - loss: 0.4900 - acc: 0.83 - ETA: 12s - loss: 0.4894 - acc: 0.83 - ETA: 12s - loss: 0.4888 - acc: 0.83 - ETA: 12s - loss: 0.4882 - acc: 0.83 - ETA: 12s - loss: 0.4874 - acc: 0.83 - ETA: 12s - loss: 0.4881 - acc: 0.83 - ETA: 12s - loss: 0.4872 - acc: 0.83 - ETA: 12s - loss: 0.4871 - acc: 0.83 - ETA: 12s - loss: 0.4879 - acc: 0.83 - ETA: 11s - loss: 0.4888 - acc: 0.83 - ETA: 11s - loss: 0.4884 - acc: 0.83 - ETA: 11s - loss: 0.4882 - acc: 0.83 - ETA: 11s - loss: 0.4879 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4888 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4875 - acc: 0.83 - ETA: 11s - loss: 0.4877 - acc: 0.83 - ETA: 11s - loss: 0.4873 - acc: 0.83 - ETA: 11s - loss: 0.4874 - acc: 0.83 - ETA: 11s - loss: 0.4878 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4878 - acc: 0.83 - ETA: 11s - loss: 0.4881 - acc: 0.83 - ETA: 10s - loss: 0.4876 - acc: 0.83 - ETA: 10s - loss: 0.4874 - acc: 0.83 - ETA: 10s - loss: 0.4871 - acc: 0.83 - ETA: 10s - loss: 0.4859 - acc: 0.83 - ETA: 10s - loss: 0.4866 - acc: 0.83 - ETA: 10s - loss: 0.4863 - acc: 0.83 - ETA: 10s - loss: 0.4866 - acc: 0.83 - ETA: 10s - loss: 0.4864 - acc: 0.83 - ETA: 10s - loss: 0.4865 - acc: 0.83 - ETA: 10s - loss: 0.4858 - acc: 0.83 - ETA: 10s - loss: 0.4861 - acc: 0.83 - ETA: 10s - loss: 0.4866 - acc: 0.83 - ETA: 10s - loss: 0.4868 - acc: 0.83 - ETA: 10s - loss: 0.4871 - acc: 0.83 - ETA: 10s - loss: 0.4869 - acc: 0.83 - ETA: 10s - loss: 0.4878 - acc: 0.83 - ETA: 9s - loss: 0.4875 - acc: 0.8359 - ETA: 9s - loss: 0.4873 - acc: 0.835 - ETA: 9s - loss: 0.4868 - acc: 0.836 - ETA: 9s - loss: 0.4867 - acc: 0.836 - ETA: 9s - loss: 0.4870 - acc: 0.835 - ETA: 9s - loss: 0.4872 - acc: 0.836 - ETA: 9s - loss: 0.4872 - acc: 0.8359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.4875 - acc: 0.835 - ETA: 9s - loss: 0.4878 - acc: 0.835 - ETA: 9s - loss: 0.4886 - acc: 0.835 - ETA: 9s - loss: 0.4888 - acc: 0.835 - ETA: 9s - loss: 0.4887 - acc: 0.835 - ETA: 9s - loss: 0.4894 - acc: 0.835 - ETA: 9s - loss: 0.4904 - acc: 0.834 - ETA: 9s - loss: 0.4915 - acc: 0.834 - ETA: 9s - loss: 0.4919 - acc: 0.834 - ETA: 9s - loss: 0.4924 - acc: 0.833 - ETA: 8s - loss: 0.4929 - acc: 0.833 - ETA: 8s - loss: 0.4930 - acc: 0.833 - ETA: 8s - loss: 0.4938 - acc: 0.832 - ETA: 8s - loss: 0.4949 - acc: 0.832 - ETA: 8s - loss: 0.4942 - acc: 0.832 - ETA: 8s - loss: 0.4938 - acc: 0.832 - ETA: 8s - loss: 0.4934 - acc: 0.832 - ETA: 8s - loss: 0.4934 - acc: 0.832 - ETA: 8s - loss: 0.4934 - acc: 0.832 - ETA: 8s - loss: 0.4933 - acc: 0.832 - ETA: 8s - loss: 0.4933 - acc: 0.833 - ETA: 8s - loss: 0.4927 - acc: 0.833 - ETA: 8s - loss: 0.4923 - acc: 0.833 - ETA: 8s - loss: 0.4928 - acc: 0.833 - ETA: 8s - loss: 0.4925 - acc: 0.833 - ETA: 8s - loss: 0.4931 - acc: 0.833 - ETA: 7s - loss: 0.4933 - acc: 0.832 - ETA: 7s - loss: 0.4929 - acc: 0.832 - ETA: 7s - loss: 0.4925 - acc: 0.833 - ETA: 7s - loss: 0.4923 - acc: 0.833 - ETA: 7s - loss: 0.4931 - acc: 0.832 - ETA: 7s - loss: 0.4922 - acc: 0.832 - ETA: 7s - loss: 0.4921 - acc: 0.832 - ETA: 7s - loss: 0.4915 - acc: 0.832 - ETA: 7s - loss: 0.4908 - acc: 0.833 - ETA: 7s - loss: 0.4908 - acc: 0.833 - ETA: 7s - loss: 0.4911 - acc: 0.833 - ETA: 7s - loss: 0.4908 - acc: 0.833 - ETA: 7s - loss: 0.4907 - acc: 0.833 - ETA: 7s - loss: 0.4896 - acc: 0.833 - ETA: 7s - loss: 0.4900 - acc: 0.833 - ETA: 7s - loss: 0.4903 - acc: 0.833 - ETA: 6s - loss: 0.4904 - acc: 0.833 - ETA: 6s - loss: 0.4905 - acc: 0.832 - ETA: 6s - loss: 0.4908 - acc: 0.832 - ETA: 6s - loss: 0.4909 - acc: 0.832 - ETA: 6s - loss: 0.4902 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4894 - acc: 0.832 - ETA: 6s - loss: 0.4892 - acc: 0.832 - ETA: 6s - loss: 0.4893 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4900 - acc: 0.832 - ETA: 6s - loss: 0.4905 - acc: 0.833 - ETA: 6s - loss: 0.4899 - acc: 0.833 - ETA: 6s - loss: 0.4899 - acc: 0.833 - ETA: 5s - loss: 0.4898 - acc: 0.833 - ETA: 5s - loss: 0.4907 - acc: 0.833 - ETA: 5s - loss: 0.4913 - acc: 0.833 - ETA: 5s - loss: 0.4910 - acc: 0.833 - ETA: 5s - loss: 0.4916 - acc: 0.833 - ETA: 5s - loss: 0.4917 - acc: 0.833 - ETA: 5s - loss: 0.4921 - acc: 0.832 - ETA: 5s - loss: 0.4926 - acc: 0.832 - ETA: 5s - loss: 0.4916 - acc: 0.833 - ETA: 5s - loss: 0.4912 - acc: 0.833 - ETA: 5s - loss: 0.4909 - acc: 0.833 - ETA: 5s - loss: 0.4914 - acc: 0.833 - ETA: 5s - loss: 0.4913 - acc: 0.833 - ETA: 5s - loss: 0.4912 - acc: 0.833 - ETA: 5s - loss: 0.4911 - acc: 0.833 - ETA: 5s - loss: 0.4911 - acc: 0.833 - ETA: 5s - loss: 0.4912 - acc: 0.833 - ETA: 4s - loss: 0.4914 - acc: 0.832 - ETA: 4s - loss: 0.4906 - acc: 0.833 - ETA: 4s - loss: 0.4905 - acc: 0.833 - ETA: 4s - loss: 0.4902 - acc: 0.833 - ETA: 4s - loss: 0.4900 - acc: 0.833 - ETA: 4s - loss: 0.4893 - acc: 0.833 - ETA: 4s - loss: 0.4897 - acc: 0.833 - ETA: 4s - loss: 0.4905 - acc: 0.833 - ETA: 4s - loss: 0.4900 - acc: 0.833 - ETA: 4s - loss: 0.4898 - acc: 0.833 - ETA: 4s - loss: 0.4901 - acc: 0.833 - ETA: 4s - loss: 0.4904 - acc: 0.833 - ETA: 4s - loss: 0.4905 - acc: 0.833 - ETA: 4s - loss: 0.4903 - acc: 0.833 - ETA: 4s - loss: 0.4902 - acc: 0.833 - ETA: 4s - loss: 0.4904 - acc: 0.833 - ETA: 3s - loss: 0.4903 - acc: 0.833 - ETA: 3s - loss: 0.4903 - acc: 0.833 - ETA: 3s - loss: 0.4904 - acc: 0.833 - ETA: 3s - loss: 0.4898 - acc: 0.833 - ETA: 3s - loss: 0.4897 - acc: 0.833 - ETA: 3s - loss: 0.4892 - acc: 0.833 - ETA: 3s - loss: 0.4895 - acc: 0.833 - ETA: 3s - loss: 0.4895 - acc: 0.833 - ETA: 3s - loss: 0.4890 - acc: 0.833 - ETA: 3s - loss: 0.4884 - acc: 0.833 - ETA: 3s - loss: 0.4885 - acc: 0.833 - ETA: 3s - loss: 0.4889 - acc: 0.833 - ETA: 3s - loss: 0.4887 - acc: 0.833 - ETA: 3s - loss: 0.4883 - acc: 0.833 - ETA: 3s - loss: 0.4885 - acc: 0.833 - ETA: 3s - loss: 0.4880 - acc: 0.833 - ETA: 2s - loss: 0.4885 - acc: 0.833 - ETA: 2s - loss: 0.4890 - acc: 0.833 - ETA: 2s - loss: 0.4892 - acc: 0.833 - ETA: 2s - loss: 0.4889 - acc: 0.833 - ETA: 2s - loss: 0.4886 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4878 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4882 - acc: 0.833 - ETA: 2s - loss: 0.4876 - acc: 0.834 - ETA: 2s - loss: 0.4870 - acc: 0.834 - ETA: 2s - loss: 0.4863 - acc: 0.834 - ETA: 2s - loss: 0.4863 - acc: 0.834 - ETA: 2s - loss: 0.4861 - acc: 0.834 - ETA: 1s - loss: 0.4861 - acc: 0.834 - ETA: 1s - loss: 0.4859 - acc: 0.834 - ETA: 1s - loss: 0.4856 - acc: 0.834 - ETA: 1s - loss: 0.4857 - acc: 0.834 - ETA: 1s - loss: 0.4859 - acc: 0.834 - ETA: 1s - loss: 0.4860 - acc: 0.834 - ETA: 1s - loss: 0.4857 - acc: 0.834 - ETA: 1s - loss: 0.4854 - acc: 0.834 - ETA: 1s - loss: 0.4849 - acc: 0.834 - ETA: 1s - loss: 0.4844 - acc: 0.834 - ETA: 1s - loss: 0.4845 - acc: 0.834 - ETA: 1s - loss: 0.4839 - acc: 0.834 - ETA: 1s - loss: 0.4837 - acc: 0.834 - ETA: 1s - loss: 0.4833 - acc: 0.835 - ETA: 1s - loss: 0.4826 - acc: 0.835 - ETA: 1s - loss: 0.4824 - acc: 0.835 - ETA: 0s - loss: 0.4819 - acc: 0.835 - ETA: 0s - loss: 0.4818 - acc: 0.835 - ETA: 0s - loss: 0.4813 - acc: 0.835 - ETA: 0s - loss: 0.4807 - acc: 0.835 - ETA: 0s - loss: 0.4803 - acc: 0.835 - ETA: 0s - loss: 0.4807 - acc: 0.835 - ETA: 0s - loss: 0.4802 - acc: 0.835 - ETA: 0s - loss: 0.4798 - acc: 0.835 - ETA: 0s - loss: 0.4795 - acc: 0.835 - ETA: 0s - loss: 0.4791 - acc: 0.836 - ETA: 0s - loss: 0.4790 - acc: 0.836 - ETA: 0s - loss: 0.4797 - acc: 0.835 - ETA: 0s - loss: 0.4793 - acc: 0.835 - ETA: 0s - loss: 0.4793 - acc: 0.835 - ETA: 0s - loss: 0.4799 - acc: 0.835 - ETA: 0s - loss: 0.4797 - acc: 0.835 - 24s 1ms/step - loss: 0.4793 - acc: 0.8358 - val_loss: 0.5314 - val_acc: 0.8281\n", + "\n", + "Epoch 00008: val_acc did not improve from 0.84021\n", + "Epoch 9/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 27s - loss: 0.8435 - acc: 0.75 - ETA: 26s - loss: 0.7932 - acc: 0.76 - ETA: 24s - loss: 0.7639 - acc: 0.76 - ETA: 24s - loss: 0.6599 - acc: 0.79 - ETA: 23s - loss: 0.5871 - acc: 0.81 - ETA: 24s - loss: 0.5589 - acc: 0.82 - ETA: 23s - loss: 0.5460 - acc: 0.82 - ETA: 23s - loss: 0.5346 - acc: 0.83 - ETA: 23s - loss: 0.5334 - acc: 0.83 - ETA: 23s - loss: 0.5292 - acc: 0.83 - ETA: 23s - loss: 0.5164 - acc: 0.83 - ETA: 23s - loss: 0.5101 - acc: 0.83 - ETA: 22s - loss: 0.4981 - acc: 0.84 - ETA: 22s - loss: 0.5063 - acc: 0.83 - ETA: 22s - loss: 0.5009 - acc: 0.83 - ETA: 22s - loss: 0.4867 - acc: 0.84 - ETA: 22s - loss: 0.4847 - acc: 0.84 - ETA: 22s - loss: 0.4821 - acc: 0.84 - ETA: 22s - loss: 0.4727 - acc: 0.85 - ETA: 22s - loss: 0.4599 - acc: 0.85 - ETA: 22s - loss: 0.4558 - acc: 0.85 - ETA: 22s - loss: 0.4582 - acc: 0.85 - ETA: 21s - loss: 0.4520 - acc: 0.85 - ETA: 21s - loss: 0.4494 - acc: 0.85 - ETA: 21s - loss: 0.4527 - acc: 0.85 - ETA: 21s - loss: 0.4489 - acc: 0.85 - ETA: 21s - loss: 0.4377 - acc: 0.86 - ETA: 21s - loss: 0.4331 - acc: 0.86 - ETA: 21s - loss: 0.4409 - acc: 0.86 - ETA: 21s - loss: 0.4366 - acc: 0.86 - ETA: 20s - loss: 0.4333 - acc: 0.86 - ETA: 20s - loss: 0.4351 - acc: 0.86 - ETA: 20s - loss: 0.4347 - acc: 0.86 - ETA: 20s - loss: 0.4368 - acc: 0.86 - ETA: 20s - loss: 0.4382 - acc: 0.86 - ETA: 20s - loss: 0.4365 - acc: 0.86 - ETA: 20s - loss: 0.4336 - acc: 0.86 - ETA: 20s - loss: 0.4376 - acc: 0.85 - ETA: 20s - loss: 0.4332 - acc: 0.86 - ETA: 20s - loss: 0.4338 - acc: 0.86 - ETA: 20s - loss: 0.4323 - acc: 0.86 - ETA: 19s - loss: 0.4317 - acc: 0.86 - ETA: 19s - loss: 0.4300 - acc: 0.86 - ETA: 19s - loss: 0.4291 - acc: 0.86 - ETA: 19s - loss: 0.4299 - acc: 0.86 - ETA: 19s - loss: 0.4288 - acc: 0.85 - ETA: 19s - loss: 0.4308 - acc: 0.85 - ETA: 19s - loss: 0.4292 - acc: 0.85 - ETA: 19s - loss: 0.4342 - acc: 0.85 - ETA: 19s - loss: 0.4310 - acc: 0.85 - ETA: 19s - loss: 0.4309 - acc: 0.85 - ETA: 19s - loss: 0.4323 - acc: 0.85 - ETA: 19s - loss: 0.4291 - acc: 0.85 - ETA: 19s - loss: 0.4306 - acc: 0.85 - ETA: 19s - loss: 0.4292 - acc: 0.85 - ETA: 19s - loss: 0.4252 - acc: 0.86 - ETA: 19s - loss: 0.4246 - acc: 0.86 - ETA: 18s - loss: 0.4265 - acc: 0.85 - ETA: 18s - loss: 0.4248 - acc: 0.86 - ETA: 18s - loss: 0.4250 - acc: 0.86 - ETA: 18s - loss: 0.4246 - acc: 0.85 - ETA: 18s - loss: 0.4232 - acc: 0.85 - ETA: 18s - loss: 0.4209 - acc: 0.86 - ETA: 18s - loss: 0.4212 - acc: 0.86 - ETA: 18s - loss: 0.4205 - acc: 0.86 - ETA: 18s - loss: 0.4205 - acc: 0.86 - ETA: 18s - loss: 0.4212 - acc: 0.86 - ETA: 18s - loss: 0.4249 - acc: 0.85 - ETA: 18s - loss: 0.4224 - acc: 0.85 - ETA: 18s - loss: 0.4231 - acc: 0.86 - ETA: 18s - loss: 0.4231 - acc: 0.85 - ETA: 18s - loss: 0.4227 - acc: 0.85 - ETA: 18s - loss: 0.4239 - acc: 0.85 - ETA: 18s - loss: 0.4237 - acc: 0.85 - ETA: 18s - loss: 0.4229 - acc: 0.86 - ETA: 18s - loss: 0.4248 - acc: 0.85 - ETA: 18s - loss: 0.4270 - acc: 0.85 - ETA: 18s - loss: 0.4289 - acc: 0.85 - ETA: 17s - loss: 0.4305 - acc: 0.85 - ETA: 17s - loss: 0.4292 - acc: 0.85 - ETA: 17s - loss: 0.4284 - acc: 0.85 - ETA: 17s - loss: 0.4296 - acc: 0.85 - ETA: 17s - loss: 0.4294 - acc: 0.85 - ETA: 17s - loss: 0.4282 - acc: 0.85 - ETA: 17s - loss: 0.4277 - acc: 0.85 - ETA: 17s - loss: 0.4283 - acc: 0.85 - ETA: 17s - loss: 0.4276 - acc: 0.85 - ETA: 17s - loss: 0.4252 - acc: 0.85 - ETA: 17s - loss: 0.4262 - acc: 0.85 - ETA: 17s - loss: 0.4250 - acc: 0.85 - ETA: 17s - loss: 0.4267 - acc: 0.85 - ETA: 17s - loss: 0.4279 - acc: 0.85 - ETA: 17s - loss: 0.4268 - acc: 0.86 - ETA: 17s - loss: 0.4282 - acc: 0.85 - ETA: 17s - loss: 0.4286 - acc: 0.85 - ETA: 17s - loss: 0.4268 - acc: 0.85 - ETA: 17s - loss: 0.4274 - acc: 0.86 - ETA: 16s - loss: 0.4277 - acc: 0.86 - ETA: 16s - loss: 0.4251 - acc: 0.86 - ETA: 16s - loss: 0.4249 - acc: 0.86 - ETA: 16s - loss: 0.4246 - acc: 0.86 - ETA: 16s - loss: 0.4236 - acc: 0.86 - ETA: 16s - loss: 0.4242 - acc: 0.86 - ETA: 16s - loss: 0.4233 - acc: 0.86 - ETA: 16s - loss: 0.4221 - acc: 0.86 - ETA: 16s - loss: 0.4211 - acc: 0.86 - ETA: 16s - loss: 0.4202 - acc: 0.86 - ETA: 16s - loss: 0.4187 - acc: 0.86 - ETA: 16s - loss: 0.4187 - acc: 0.86 - ETA: 16s - loss: 0.4178 - acc: 0.86 - ETA: 16s - loss: 0.4179 - acc: 0.86 - ETA: 16s - loss: 0.4165 - acc: 0.86 - ETA: 16s - loss: 0.4158 - acc: 0.86 - ETA: 16s - loss: 0.4167 - acc: 0.86 - ETA: 15s - loss: 0.4156 - acc: 0.86 - ETA: 15s - loss: 0.4164 - acc: 0.86 - ETA: 15s - loss: 0.4155 - acc: 0.86 - ETA: 15s - loss: 0.4151 - acc: 0.86 - ETA: 15s - loss: 0.4171 - acc: 0.86 - ETA: 15s - loss: 0.4196 - acc: 0.86 - ETA: 15s - loss: 0.4213 - acc: 0.86 - ETA: 15s - loss: 0.4214 - acc: 0.86 - ETA: 15s - loss: 0.4222 - acc: 0.86 - ETA: 15s - loss: 0.4223 - acc: 0.86 - ETA: 15s - loss: 0.4220 - acc: 0.86 - ETA: 15s - loss: 0.4226 - acc: 0.86 - ETA: 15s - loss: 0.4247 - acc: 0.86 - ETA: 15s - loss: 0.4249 - acc: 0.86 - ETA: 15s - loss: 0.4242 - acc: 0.86 - ETA: 15s - loss: 0.4243 - acc: 0.86 - ETA: 14s - loss: 0.4251 - acc: 0.85 - ETA: 14s - loss: 0.4243 - acc: 0.86 - ETA: 14s - loss: 0.4236 - acc: 0.86 - ETA: 14s - loss: 0.4234 - acc: 0.86 - ETA: 14s - loss: 0.4233 - acc: 0.86 - ETA: 14s - loss: 0.4230 - acc: 0.86 - ETA: 14s - loss: 0.4232 - acc: 0.85 - ETA: 14s - loss: 0.4232 - acc: 0.85 - ETA: 14s - loss: 0.4217 - acc: 0.86 - ETA: 14s - loss: 0.4216 - acc: 0.86 - ETA: 14s - loss: 0.4236 - acc: 0.85 - ETA: 14s - loss: 0.4237 - acc: 0.85 - ETA: 14s - loss: 0.4254 - acc: 0.85 - ETA: 14s - loss: 0.4266 - acc: 0.85 - ETA: 14s - loss: 0.4267 - acc: 0.85 - ETA: 13s - loss: 0.4265 - acc: 0.85 - ETA: 13s - loss: 0.4265 - acc: 0.85 - ETA: 13s - loss: 0.4275 - acc: 0.85 - ETA: 13s - loss: 0.4266 - acc: 0.85 - ETA: 13s - loss: 0.4266 - acc: 0.85 - ETA: 13s - loss: 0.4283 - acc: 0.85 - ETA: 13s - loss: 0.4278 - acc: 0.85 - ETA: 13s - loss: 0.4280 - acc: 0.85 - ETA: 13s - loss: 0.4277 - acc: 0.85 - ETA: 13s - loss: 0.4273 - acc: 0.85 - ETA: 13s - loss: 0.4274 - acc: 0.85 - ETA: 13s - loss: 0.4276 - acc: 0.85 - ETA: 13s - loss: 0.4264 - acc: 0.85 - ETA: 13s - loss: 0.4274 - acc: 0.85 - ETA: 13s - loss: 0.4270 - acc: 0.85 - ETA: 13s - loss: 0.4273 - acc: 0.85 - ETA: 13s - loss: 0.4267 - acc: 0.85 - ETA: 12s - loss: 0.4260 - acc: 0.85 - ETA: 12s - loss: 0.4260 - acc: 0.85 - ETA: 12s - loss: 0.4270 - acc: 0.85 - ETA: 12s - loss: 0.4261 - acc: 0.85 - ETA: 12s - loss: 0.4252 - acc: 0.85 - ETA: 12s - loss: 0.4259 - acc: 0.85 - ETA: 12s - loss: 0.4264 - acc: 0.85 - ETA: 12s - loss: 0.4263 - acc: 0.85 - ETA: 12s - loss: 0.4261 - acc: 0.85 - ETA: 12s - loss: 0.4269 - acc: 0.85 - ETA: 12s - loss: 0.4280 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 12s - loss: 0.4278 - acc: 0.85 - ETA: 12s - loss: 0.4276 - acc: 0.85 - ETA: 12s - loss: 0.4283 - acc: 0.85 - ETA: 12s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 11s - loss: 0.4264 - acc: 0.85 - ETA: 11s - loss: 0.4269 - acc: 0.85 - ETA: 11s - loss: 0.4265 - acc: 0.85 - ETA: 11s - loss: 0.4264 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4279 - acc: 0.85 - ETA: 11s - loss: 0.4275 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 11s - loss: 0.4268 - acc: 0.85 - ETA: 11s - loss: 0.4268 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4263 - acc: 0.85 - ETA: 10s - loss: 0.4270 - acc: 0.85 - ETA: 10s - loss: 0.4264 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4260 - acc: 0.85 - ETA: 10s - loss: 0.4254 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4259 - acc: 0.85 - ETA: 10s - loss: 0.4261 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4267 - acc: 0.85 - ETA: 10s - loss: 0.4260 - acc: 0.85 - ETA: 10s - loss: 0.4257 - acc: 0.85 - ETA: 10s - loss: 0.4271 - acc: 0.85 - ETA: 10s - loss: 0.4276 - acc: 0.85 - ETA: 9s - loss: 0.4276 - acc: 0.8566 - ETA: 9s - loss: 0.4273 - acc: 0.856 - ETA: 9s - loss: 0.4275 - acc: 0.856 - ETA: 9s - loss: 0.4278 - acc: 0.856 - ETA: 9s - loss: 0.4280 - acc: 0.8561" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.4294 - acc: 0.855 - ETA: 9s - loss: 0.4292 - acc: 0.855 - ETA: 9s - loss: 0.4300 - acc: 0.855 - ETA: 9s - loss: 0.4303 - acc: 0.855 - ETA: 9s - loss: 0.4301 - acc: 0.855 - ETA: 9s - loss: 0.4343 - acc: 0.854 - ETA: 9s - loss: 0.4359 - acc: 0.853 - ETA: 9s - loss: 0.4355 - acc: 0.853 - ETA: 9s - loss: 0.4367 - acc: 0.853 - ETA: 9s - loss: 0.4367 - acc: 0.853 - ETA: 9s - loss: 0.4370 - acc: 0.853 - ETA: 8s - loss: 0.4376 - acc: 0.852 - ETA: 8s - loss: 0.4385 - acc: 0.852 - ETA: 8s - loss: 0.4389 - acc: 0.852 - ETA: 8s - loss: 0.4390 - acc: 0.852 - ETA: 8s - loss: 0.4395 - acc: 0.852 - ETA: 8s - loss: 0.4392 - acc: 0.852 - ETA: 8s - loss: 0.4388 - acc: 0.852 - ETA: 8s - loss: 0.4386 - acc: 0.852 - ETA: 8s - loss: 0.4388 - acc: 0.852 - ETA: 8s - loss: 0.4387 - acc: 0.852 - ETA: 8s - loss: 0.4386 - acc: 0.852 - ETA: 8s - loss: 0.4380 - acc: 0.852 - ETA: 8s - loss: 0.4384 - acc: 0.852 - ETA: 8s - loss: 0.4384 - acc: 0.852 - ETA: 8s - loss: 0.4385 - acc: 0.852 - ETA: 8s - loss: 0.4378 - acc: 0.852 - ETA: 8s - loss: 0.4370 - acc: 0.853 - ETA: 7s - loss: 0.4359 - acc: 0.853 - ETA: 7s - loss: 0.4356 - acc: 0.853 - ETA: 7s - loss: 0.4350 - acc: 0.853 - ETA: 7s - loss: 0.4357 - acc: 0.853 - ETA: 7s - loss: 0.4354 - acc: 0.853 - ETA: 7s - loss: 0.4351 - acc: 0.854 - ETA: 7s - loss: 0.4353 - acc: 0.854 - ETA: 7s - loss: 0.4358 - acc: 0.853 - ETA: 7s - loss: 0.4366 - acc: 0.853 - ETA: 7s - loss: 0.4373 - acc: 0.853 - ETA: 7s - loss: 0.4380 - acc: 0.853 - ETA: 7s - loss: 0.4383 - acc: 0.853 - ETA: 7s - loss: 0.4382 - acc: 0.853 - ETA: 7s - loss: 0.4376 - acc: 0.853 - ETA: 7s - loss: 0.4375 - acc: 0.853 - ETA: 7s - loss: 0.4377 - acc: 0.853 - ETA: 6s - loss: 0.4373 - acc: 0.853 - ETA: 6s - loss: 0.4374 - acc: 0.853 - ETA: 6s - loss: 0.4371 - acc: 0.853 - ETA: 6s - loss: 0.4367 - acc: 0.853 - ETA: 6s - loss: 0.4370 - acc: 0.853 - ETA: 6s - loss: 0.4363 - acc: 0.853 - ETA: 6s - loss: 0.4363 - acc: 0.853 - ETA: 6s - loss: 0.4360 - acc: 0.853 - ETA: 6s - loss: 0.4369 - acc: 0.853 - ETA: 6s - loss: 0.4367 - acc: 0.853 - ETA: 6s - loss: 0.4372 - acc: 0.853 - ETA: 6s - loss: 0.4372 - acc: 0.853 - ETA: 6s - loss: 0.4375 - acc: 0.853 - ETA: 6s - loss: 0.4376 - acc: 0.852 - ETA: 6s - loss: 0.4381 - acc: 0.852 - ETA: 6s - loss: 0.4374 - acc: 0.853 - ETA: 5s - loss: 0.4373 - acc: 0.853 - ETA: 5s - loss: 0.4371 - acc: 0.853 - ETA: 5s - loss: 0.4371 - acc: 0.853 - ETA: 5s - loss: 0.4374 - acc: 0.853 - ETA: 5s - loss: 0.4381 - acc: 0.852 - ETA: 5s - loss: 0.4389 - acc: 0.852 - ETA: 5s - loss: 0.4390 - acc: 0.852 - ETA: 5s - loss: 0.4395 - acc: 0.852 - ETA: 5s - loss: 0.4394 - acc: 0.852 - ETA: 5s - loss: 0.4388 - acc: 0.852 - ETA: 5s - loss: 0.4386 - acc: 0.852 - ETA: 5s - loss: 0.4385 - acc: 0.852 - ETA: 5s - loss: 0.4389 - acc: 0.852 - ETA: 5s - loss: 0.4384 - acc: 0.852 - ETA: 5s - loss: 0.4376 - acc: 0.852 - ETA: 5s - loss: 0.4376 - acc: 0.852 - ETA: 4s - loss: 0.4381 - acc: 0.852 - ETA: 4s - loss: 0.4387 - acc: 0.852 - ETA: 4s - loss: 0.4389 - acc: 0.852 - ETA: 4s - loss: 0.4393 - acc: 0.852 - ETA: 4s - loss: 0.4402 - acc: 0.852 - ETA: 4s - loss: 0.4399 - acc: 0.852 - ETA: 4s - loss: 0.4398 - acc: 0.852 - ETA: 4s - loss: 0.4398 - acc: 0.852 - ETA: 4s - loss: 0.4396 - acc: 0.852 - ETA: 4s - loss: 0.4402 - acc: 0.851 - ETA: 4s - loss: 0.4397 - acc: 0.852 - ETA: 4s - loss: 0.4402 - acc: 0.851 - ETA: 4s - loss: 0.4405 - acc: 0.851 - ETA: 4s - loss: 0.4408 - acc: 0.851 - ETA: 4s - loss: 0.4412 - acc: 0.851 - ETA: 4s - loss: 0.4420 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4418 - acc: 0.851 - ETA: 3s - loss: 0.4422 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4419 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4422 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4419 - acc: 0.850 - ETA: 3s - loss: 0.4417 - acc: 0.851 - ETA: 3s - loss: 0.4419 - acc: 0.850 - ETA: 3s - loss: 0.4416 - acc: 0.851 - ETA: 3s - loss: 0.4416 - acc: 0.850 - ETA: 3s - loss: 0.4415 - acc: 0.850 - ETA: 3s - loss: 0.4408 - acc: 0.851 - ETA: 2s - loss: 0.4401 - acc: 0.851 - ETA: 2s - loss: 0.4402 - acc: 0.851 - ETA: 2s - loss: 0.4397 - acc: 0.851 - ETA: 2s - loss: 0.4394 - acc: 0.851 - ETA: 2s - loss: 0.4395 - acc: 0.851 - ETA: 2s - loss: 0.4393 - acc: 0.851 - ETA: 2s - loss: 0.4392 - acc: 0.851 - ETA: 2s - loss: 0.4384 - acc: 0.851 - ETA: 2s - loss: 0.4384 - acc: 0.851 - ETA: 2s - loss: 0.4383 - acc: 0.851 - ETA: 2s - loss: 0.4380 - acc: 0.851 - ETA: 2s - loss: 0.4385 - acc: 0.851 - ETA: 2s - loss: 0.4386 - acc: 0.851 - ETA: 2s - loss: 0.4387 - acc: 0.851 - ETA: 2s - loss: 0.4388 - acc: 0.851 - ETA: 2s - loss: 0.4386 - acc: 0.851 - ETA: 1s - loss: 0.4385 - acc: 0.851 - ETA: 1s - loss: 0.4383 - acc: 0.851 - ETA: 1s - loss: 0.4383 - acc: 0.851 - ETA: 1s - loss: 0.4379 - acc: 0.852 - ETA: 1s - loss: 0.4381 - acc: 0.852 - ETA: 1s - loss: 0.4379 - acc: 0.852 - ETA: 1s - loss: 0.4383 - acc: 0.852 - ETA: 1s - loss: 0.4385 - acc: 0.851 - ETA: 1s - loss: 0.4394 - acc: 0.851 - ETA: 1s - loss: 0.4400 - acc: 0.851 - ETA: 1s - loss: 0.4401 - acc: 0.851 - ETA: 1s - loss: 0.4405 - acc: 0.851 - ETA: 1s - loss: 0.4408 - acc: 0.851 - ETA: 1s - loss: 0.4409 - acc: 0.851 - ETA: 1s - loss: 0.4406 - acc: 0.851 - ETA: 1s - loss: 0.4409 - acc: 0.851 - ETA: 0s - loss: 0.4408 - acc: 0.851 - ETA: 0s - loss: 0.4415 - acc: 0.851 - ETA: 0s - loss: 0.4417 - acc: 0.850 - ETA: 0s - loss: 0.4420 - acc: 0.850 - ETA: 0s - loss: 0.4420 - acc: 0.850 - ETA: 0s - loss: 0.4423 - acc: 0.850 - ETA: 0s - loss: 0.4423 - acc: 0.850 - ETA: 0s - loss: 0.4422 - acc: 0.850 - ETA: 0s - loss: 0.4422 - acc: 0.850 - ETA: 0s - loss: 0.4418 - acc: 0.850 - ETA: 0s - loss: 0.4416 - acc: 0.850 - ETA: 0s - loss: 0.4415 - acc: 0.850 - ETA: 0s - loss: 0.4417 - acc: 0.850 - ETA: 0s - loss: 0.4413 - acc: 0.850 - ETA: 0s - loss: 0.4413 - acc: 0.850 - ETA: 0s - loss: 0.4411 - acc: 0.850 - 24s 1ms/step - loss: 0.4411 - acc: 0.8506 - val_loss: 0.4261 - val_acc: 0.8633\n", + "\n", + "Epoch 00009: val_acc improved from 0.84021 to 0.86331, saving model to models\\time.model\n", + "Epoch 10/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13856/23769 [================>.............] - ETA: 27s - loss: 0.2064 - acc: 0.93 - ETA: 25s - loss: 0.3155 - acc: 0.90 - ETA: 26s - loss: 0.3755 - acc: 0.88 - ETA: 25s - loss: 0.3878 - acc: 0.87 - ETA: 24s - loss: 0.3765 - acc: 0.87 - ETA: 24s - loss: 0.3647 - acc: 0.87 - ETA: 23s - loss: 0.3561 - acc: 0.87 - ETA: 23s - loss: 0.3628 - acc: 0.88 - ETA: 23s - loss: 0.3772 - acc: 0.87 - ETA: 23s - loss: 0.3752 - acc: 0.87 - ETA: 23s - loss: 0.3953 - acc: 0.87 - ETA: 23s - loss: 0.3723 - acc: 0.88 - ETA: 23s - loss: 0.3903 - acc: 0.87 - ETA: 22s - loss: 0.3933 - acc: 0.87 - ETA: 22s - loss: 0.4089 - acc: 0.86 - ETA: 22s - loss: 0.4107 - acc: 0.86 - ETA: 22s - loss: 0.4061 - acc: 0.85 - ETA: 22s - loss: 0.4089 - acc: 0.86 - ETA: 22s - loss: 0.4034 - acc: 0.86 - ETA: 22s - loss: 0.3981 - acc: 0.86 - ETA: 22s - loss: 0.3910 - acc: 0.86 - ETA: 22s - loss: 0.3945 - acc: 0.86 - ETA: 22s - loss: 0.4023 - acc: 0.86 - ETA: 21s - loss: 0.3957 - acc: 0.86 - ETA: 21s - loss: 0.3965 - acc: 0.86 - ETA: 21s - loss: 0.3924 - acc: 0.86 - ETA: 21s - loss: 0.3869 - acc: 0.86 - ETA: 21s - loss: 0.3890 - acc: 0.86 - ETA: 21s - loss: 0.3932 - acc: 0.86 - ETA: 20s - loss: 0.3891 - acc: 0.86 - ETA: 20s - loss: 0.3932 - acc: 0.86 - ETA: 20s - loss: 0.3942 - acc: 0.86 - ETA: 20s - loss: 0.3967 - acc: 0.86 - ETA: 20s - loss: 0.4003 - acc: 0.86 - ETA: 20s - loss: 0.4000 - acc: 0.86 - ETA: 20s - loss: 0.3975 - acc: 0.86 - ETA: 20s - loss: 0.3965 - acc: 0.86 - ETA: 20s - loss: 0.3978 - acc: 0.86 - ETA: 20s - loss: 0.3959 - acc: 0.86 - ETA: 20s - loss: 0.3921 - acc: 0.86 - ETA: 20s - loss: 0.3971 - acc: 0.86 - ETA: 20s - loss: 0.3982 - acc: 0.86 - ETA: 20s - loss: 0.3922 - acc: 0.86 - ETA: 20s - loss: 0.3893 - acc: 0.86 - ETA: 20s - loss: 0.3898 - acc: 0.86 - ETA: 19s - loss: 0.3893 - acc: 0.86 - ETA: 19s - loss: 0.3921 - acc: 0.86 - ETA: 19s - loss: 0.3911 - acc: 0.86 - ETA: 19s - loss: 0.3937 - acc: 0.86 - ETA: 19s - loss: 0.3930 - acc: 0.86 - ETA: 19s - loss: 0.3956 - acc: 0.86 - ETA: 19s - loss: 0.3969 - acc: 0.86 - ETA: 19s - loss: 0.3964 - acc: 0.86 - ETA: 19s - loss: 0.3981 - acc: 0.86 - ETA: 19s - loss: 0.3984 - acc: 0.86 - ETA: 19s - loss: 0.3968 - acc: 0.86 - ETA: 19s - loss: 0.3961 - acc: 0.86 - ETA: 19s - loss: 0.3960 - acc: 0.86 - ETA: 19s - loss: 0.3984 - acc: 0.86 - ETA: 18s - loss: 0.3980 - acc: 0.86 - ETA: 18s - loss: 0.3989 - acc: 0.86 - ETA: 18s - loss: 0.3972 - acc: 0.86 - ETA: 18s - loss: 0.3988 - acc: 0.86 - ETA: 18s - loss: 0.4001 - acc: 0.86 - ETA: 18s - loss: 0.4027 - acc: 0.86 - ETA: 18s - loss: 0.4012 - acc: 0.86 - ETA: 18s - loss: 0.3986 - acc: 0.86 - ETA: 18s - loss: 0.4002 - acc: 0.86 - ETA: 18s - loss: 0.3989 - acc: 0.86 - ETA: 18s - loss: 0.3974 - acc: 0.86 - ETA: 18s - loss: 0.3976 - acc: 0.86 - ETA: 18s - loss: 0.3952 - acc: 0.86 - ETA: 18s - loss: 0.3972 - acc: 0.86 - ETA: 18s - loss: 0.3976 - acc: 0.86 - ETA: 18s - loss: 0.4002 - acc: 0.86 - ETA: 18s - loss: 0.3994 - acc: 0.86 - ETA: 18s - loss: 0.3988 - acc: 0.86 - ETA: 18s - loss: 0.3963 - acc: 0.86 - ETA: 18s - loss: 0.3980 - acc: 0.86 - ETA: 18s - loss: 0.3972 - acc: 0.86 - ETA: 18s - loss: 0.3984 - acc: 0.86 - ETA: 17s - loss: 0.3980 - acc: 0.86 - ETA: 17s - loss: 0.3975 - acc: 0.86 - ETA: 17s - loss: 0.3987 - acc: 0.86 - ETA: 17s - loss: 0.4016 - acc: 0.86 - ETA: 17s - loss: 0.4006 - acc: 0.86 - ETA: 17s - loss: 0.4049 - acc: 0.86 - ETA: 17s - loss: 0.4069 - acc: 0.86 - ETA: 17s - loss: 0.4088 - acc: 0.86 - ETA: 17s - loss: 0.4093 - acc: 0.86 - ETA: 17s - loss: 0.4101 - acc: 0.86 - ETA: 17s - loss: 0.4092 - acc: 0.86 - ETA: 17s - loss: 0.4082 - acc: 0.86 - ETA: 17s - loss: 0.4088 - acc: 0.86 - ETA: 17s - loss: 0.4068 - acc: 0.86 - ETA: 17s - loss: 0.4056 - acc: 0.86 - ETA: 17s - loss: 0.4076 - acc: 0.86 - ETA: 17s - loss: 0.4072 - acc: 0.86 - ETA: 16s - loss: 0.4064 - acc: 0.86 - ETA: 16s - loss: 0.4079 - acc: 0.86 - ETA: 16s - loss: 0.4074 - acc: 0.86 - ETA: 16s - loss: 0.4069 - acc: 0.86 - ETA: 16s - loss: 0.4071 - acc: 0.86 - ETA: 16s - loss: 0.4079 - acc: 0.86 - ETA: 16s - loss: 0.4073 - acc: 0.86 - ETA: 16s - loss: 0.4069 - acc: 0.86 - ETA: 16s - loss: 0.4051 - acc: 0.86 - ETA: 16s - loss: 0.4056 - acc: 0.86 - ETA: 16s - loss: 0.4055 - acc: 0.86 - ETA: 16s - loss: 0.4083 - acc: 0.86 - ETA: 16s - loss: 0.4085 - acc: 0.86 - ETA: 16s - loss: 0.4082 - acc: 0.86 - ETA: 16s - loss: 0.4077 - acc: 0.86 - ETA: 16s - loss: 0.4077 - acc: 0.86 - ETA: 15s - loss: 0.4066 - acc: 0.86 - ETA: 15s - loss: 0.4066 - acc: 0.86 - ETA: 15s - loss: 0.4063 - acc: 0.86 - ETA: 15s - loss: 0.4058 - acc: 0.86 - ETA: 15s - loss: 0.4066 - acc: 0.86 - ETA: 15s - loss: 0.4088 - acc: 0.86 - ETA: 15s - loss: 0.4072 - acc: 0.86 - ETA: 15s - loss: 0.4063 - acc: 0.86 - ETA: 15s - loss: 0.4063 - acc: 0.86 - ETA: 15s - loss: 0.4071 - acc: 0.86 - ETA: 15s - loss: 0.4070 - acc: 0.86 - ETA: 15s - loss: 0.4073 - acc: 0.86 - ETA: 15s - loss: 0.4072 - acc: 0.86 - ETA: 15s - loss: 0.4070 - acc: 0.86 - ETA: 14s - loss: 0.4061 - acc: 0.86 - ETA: 14s - loss: 0.4070 - acc: 0.86 - ETA: 14s - loss: 0.4077 - acc: 0.86 - ETA: 14s - loss: 0.4080 - acc: 0.86 - ETA: 14s - loss: 0.4075 - acc: 0.86 - ETA: 14s - loss: 0.4081 - acc: 0.86 - ETA: 14s - loss: 0.4085 - acc: 0.86 - ETA: 14s - loss: 0.4076 - acc: 0.86 - ETA: 14s - loss: 0.4075 - acc: 0.86 - ETA: 14s - loss: 0.4081 - acc: 0.86 - ETA: 14s - loss: 0.4070 - acc: 0.86 - ETA: 14s - loss: 0.4074 - acc: 0.86 - ETA: 14s - loss: 0.4064 - acc: 0.86 - ETA: 14s - loss: 0.4072 - acc: 0.86 - ETA: 14s - loss: 0.4061 - acc: 0.86 - ETA: 14s - loss: 0.4050 - acc: 0.86 - ETA: 14s - loss: 0.4063 - acc: 0.86 - ETA: 13s - loss: 0.4067 - acc: 0.86 - ETA: 13s - loss: 0.4061 - acc: 0.86 - ETA: 13s - loss: 0.4061 - acc: 0.86 - ETA: 13s - loss: 0.4072 - acc: 0.86 - ETA: 13s - loss: 0.4066 - acc: 0.86 - ETA: 13s - loss: 0.4069 - acc: 0.86 - ETA: 13s - loss: 0.4062 - acc: 0.86 - ETA: 13s - loss: 0.4062 - acc: 0.86 - ETA: 13s - loss: 0.4060 - acc: 0.86 - ETA: 13s - loss: 0.4049 - acc: 0.86 - ETA: 13s - loss: 0.4044 - acc: 0.86 - ETA: 13s - loss: 0.4040 - acc: 0.86 - ETA: 13s - loss: 0.4036 - acc: 0.86 - ETA: 13s - loss: 0.4045 - acc: 0.86 - ETA: 13s - loss: 0.4048 - acc: 0.86 - ETA: 12s - loss: 0.4044 - acc: 0.86 - ETA: 12s - loss: 0.4048 - acc: 0.86 - ETA: 12s - loss: 0.4045 - acc: 0.86 - ETA: 12s - loss: 0.4044 - acc: 0.86 - ETA: 12s - loss: 0.4040 - acc: 0.86 - ETA: 12s - loss: 0.4040 - acc: 0.86 - ETA: 12s - loss: 0.4050 - acc: 0.86 - ETA: 12s - loss: 0.4051 - acc: 0.86 - ETA: 12s - loss: 0.4045 - acc: 0.86 - ETA: 12s - loss: 0.4037 - acc: 0.86 - ETA: 12s - loss: 0.4027 - acc: 0.86 - ETA: 12s - loss: 0.4029 - acc: 0.86 - ETA: 12s - loss: 0.4020 - acc: 0.86 - ETA: 12s - loss: 0.4032 - acc: 0.86 - ETA: 12s - loss: 0.4038 - acc: 0.86 - ETA: 12s - loss: 0.4041 - acc: 0.86 - ETA: 12s - loss: 0.4042 - acc: 0.86 - ETA: 11s - loss: 0.4034 - acc: 0.86 - ETA: 11s - loss: 0.4033 - acc: 0.86 - ETA: 11s - loss: 0.4031 - acc: 0.86 - ETA: 11s - loss: 0.4029 - acc: 0.86 - ETA: 11s - loss: 0.4048 - acc: 0.86 - ETA: 11s - loss: 0.4064 - acc: 0.86 - ETA: 11s - loss: 0.4065 - acc: 0.86 - ETA: 11s - loss: 0.4066 - acc: 0.86 - ETA: 11s - loss: 0.4078 - acc: 0.86 - ETA: 11s - loss: 0.4096 - acc: 0.86 - ETA: 11s - loss: 0.4110 - acc: 0.86 - ETA: 11s - loss: 0.4109 - acc: 0.86 - ETA: 11s - loss: 0.4114 - acc: 0.85 - ETA: 11s - loss: 0.4116 - acc: 0.86 - ETA: 11s - loss: 0.4119 - acc: 0.86 - ETA: 11s - loss: 0.4117 - acc: 0.86 - ETA: 10s - loss: 0.4110 - acc: 0.86 - ETA: 10s - loss: 0.4111 - acc: 0.86 - ETA: 10s - loss: 0.4117 - acc: 0.86 - ETA: 10s - loss: 0.4119 - acc: 0.85 - ETA: 10s - loss: 0.4121 - acc: 0.85 - ETA: 10s - loss: 0.4124 - acc: 0.85 - ETA: 10s - loss: 0.4131 - acc: 0.85 - ETA: 10s - loss: 0.4139 - acc: 0.85 - ETA: 10s - loss: 0.4135 - acc: 0.85 - ETA: 10s - loss: 0.4135 - acc: 0.85 - ETA: 10s - loss: 0.4125 - acc: 0.85 - ETA: 10s - loss: 0.4122 - acc: 0.85 - ETA: 10s - loss: 0.4120 - acc: 0.86 - ETA: 10s - loss: 0.4121 - acc: 0.86 - ETA: 10s - loss: 0.4123 - acc: 0.85 - ETA: 10s - loss: 0.4120 - acc: 0.85 - ETA: 9s - loss: 0.4122 - acc: 0.8598 - ETA: 9s - loss: 0.4127 - acc: 0.859 - ETA: 9s - loss: 0.4119 - acc: 0.859 - ETA: 9s - loss: 0.4114 - acc: 0.860 - ETA: 9s - loss: 0.4110 - acc: 0.860 - ETA: 9s - loss: 0.4109 - acc: 0.8600" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.4102 - acc: 0.860 - ETA: 9s - loss: 0.4106 - acc: 0.860 - ETA: 9s - loss: 0.4098 - acc: 0.860 - ETA: 9s - loss: 0.4105 - acc: 0.860 - ETA: 9s - loss: 0.4113 - acc: 0.860 - ETA: 9s - loss: 0.4115 - acc: 0.860 - ETA: 9s - loss: 0.4113 - acc: 0.860 - ETA: 9s - loss: 0.4114 - acc: 0.860 - ETA: 9s - loss: 0.4114 - acc: 0.860 - ETA: 9s - loss: 0.4125 - acc: 0.860 - ETA: 8s - loss: 0.4129 - acc: 0.859 - ETA: 8s - loss: 0.4127 - acc: 0.860 - ETA: 8s - loss: 0.4122 - acc: 0.860 - ETA: 8s - loss: 0.4121 - acc: 0.860 - ETA: 8s - loss: 0.4119 - acc: 0.859 - ETA: 8s - loss: 0.4122 - acc: 0.859 - ETA: 8s - loss: 0.4113 - acc: 0.860 - ETA: 8s - loss: 0.4120 - acc: 0.859 - ETA: 8s - loss: 0.4113 - acc: 0.860 - ETA: 8s - loss: 0.4117 - acc: 0.860 - ETA: 8s - loss: 0.4116 - acc: 0.860 - ETA: 8s - loss: 0.4120 - acc: 0.860 - ETA: 8s - loss: 0.4117 - acc: 0.860 - ETA: 8s - loss: 0.4123 - acc: 0.859 - ETA: 8s - loss: 0.4122 - acc: 0.859 - ETA: 8s - loss: 0.4120 - acc: 0.859 - ETA: 7s - loss: 0.4120 - acc: 0.859 - ETA: 7s - loss: 0.4134 - acc: 0.859 - ETA: 7s - loss: 0.4139 - acc: 0.859 - ETA: 7s - loss: 0.4136 - acc: 0.859 - ETA: 7s - loss: 0.4136 - acc: 0.859 - ETA: 7s - loss: 0.4134 - acc: 0.859 - ETA: 7s - loss: 0.4128 - acc: 0.859 - ETA: 7s - loss: 0.4128 - acc: 0.859 - ETA: 7s - loss: 0.4133 - acc: 0.859 - ETA: 7s - loss: 0.4132 - acc: 0.859 - ETA: 7s - loss: 0.4128 - acc: 0.859 - ETA: 7s - loss: 0.4119 - acc: 0.859 - ETA: 7s - loss: 0.4118 - acc: 0.860 - ETA: 7s - loss: 0.4116 - acc: 0.860 - ETA: 7s - loss: 0.4121 - acc: 0.859 - ETA: 7s - loss: 0.4123 - acc: 0.859 - ETA: 7s - loss: 0.4117 - acc: 0.859 - ETA: 6s - loss: 0.4121 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4124 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4128 - acc: 0.859 - ETA: 6s - loss: 0.4132 - acc: 0.859 - ETA: 6s - loss: 0.4133 - acc: 0.859 - ETA: 6s - loss: 0.4128 - acc: 0.859 - ETA: 6s - loss: 0.4127 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4126 - acc: 0.859 - ETA: 6s - loss: 0.4121 - acc: 0.859 - ETA: 6s - loss: 0.4123 - acc: 0.859 - ETA: 6s - loss: 0.4126 - acc: 0.859 - ETA: 6s - loss: 0.4128 - acc: 0.859 - ETA: 5s - loss: 0.4125 - acc: 0.859 - ETA: 5s - loss: 0.4125 - acc: 0.859 - ETA: 5s - loss: 0.4129 - acc: 0.859 - ETA: 5s - loss: 0.4127 - acc: 0.859 - ETA: 5s - loss: 0.4128 - acc: 0.859 - ETA: 5s - loss: 0.4134 - acc: 0.859 - ETA: 5s - loss: 0.4137 - acc: 0.859 - ETA: 5s - loss: 0.4136 - acc: 0.859 - ETA: 5s - loss: 0.4135 - acc: 0.859 - ETA: 5s - loss: 0.4151 - acc: 0.858 - ETA: 5s - loss: 0.4148 - acc: 0.859 - ETA: 5s - loss: 0.4147 - acc: 0.858 - ETA: 5s - loss: 0.4154 - acc: 0.858 - ETA: 5s - loss: 0.4152 - acc: 0.858 - ETA: 5s - loss: 0.4157 - acc: 0.858 - ETA: 5s - loss: 0.4154 - acc: 0.858 - ETA: 4s - loss: 0.4155 - acc: 0.858 - ETA: 4s - loss: 0.4156 - acc: 0.858 - ETA: 4s - loss: 0.4160 - acc: 0.858 - ETA: 4s - loss: 0.4163 - acc: 0.858 - ETA: 4s - loss: 0.4159 - acc: 0.858 - ETA: 4s - loss: 0.4162 - acc: 0.858 - ETA: 4s - loss: 0.4166 - acc: 0.858 - ETA: 4s - loss: 0.4165 - acc: 0.858 - ETA: 4s - loss: 0.4163 - acc: 0.858 - ETA: 4s - loss: 0.4157 - acc: 0.858 - ETA: 4s - loss: 0.4150 - acc: 0.858 - ETA: 4s - loss: 0.4145 - acc: 0.859 - ETA: 4s - loss: 0.4146 - acc: 0.859 - ETA: 4s - loss: 0.4145 - acc: 0.859 - ETA: 4s - loss: 0.4148 - acc: 0.858 - ETA: 4s - loss: 0.4147 - acc: 0.858 - ETA: 3s - loss: 0.4146 - acc: 0.858 - ETA: 3s - loss: 0.4146 - acc: 0.858 - ETA: 3s - loss: 0.4146 - acc: 0.858 - ETA: 3s - loss: 0.4152 - acc: 0.858 - ETA: 3s - loss: 0.4154 - acc: 0.858 - ETA: 3s - loss: 0.4152 - acc: 0.858 - ETA: 3s - loss: 0.4147 - acc: 0.858 - ETA: 3s - loss: 0.4150 - acc: 0.858 - ETA: 3s - loss: 0.4144 - acc: 0.858 - ETA: 3s - loss: 0.4141 - acc: 0.859 - ETA: 3s - loss: 0.4136 - acc: 0.859 - ETA: 3s - loss: 0.4134 - acc: 0.859 - ETA: 3s - loss: 0.4134 - acc: 0.859 - ETA: 3s - loss: 0.4129 - acc: 0.859 - ETA: 3s - loss: 0.4129 - acc: 0.859 - ETA: 3s - loss: 0.4125 - acc: 0.859 - ETA: 2s - loss: 0.4122 - acc: 0.859 - ETA: 2s - loss: 0.4117 - acc: 0.859 - ETA: 2s - loss: 0.4108 - acc: 0.860 - ETA: 2s - loss: 0.4104 - acc: 0.860 - ETA: 2s - loss: 0.4103 - acc: 0.860 - ETA: 2s - loss: 0.4106 - acc: 0.860 - ETA: 2s - loss: 0.4101 - acc: 0.860 - ETA: 2s - loss: 0.4098 - acc: 0.860 - ETA: 2s - loss: 0.4100 - acc: 0.860 - ETA: 2s - loss: 0.4096 - acc: 0.860 - ETA: 2s - loss: 0.4094 - acc: 0.860 - ETA: 2s - loss: 0.4096 - acc: 0.860 - ETA: 2s - loss: 0.4090 - acc: 0.860 - ETA: 2s - loss: 0.4089 - acc: 0.860 - ETA: 2s - loss: 0.4089 - acc: 0.860 - ETA: 2s - loss: 0.4083 - acc: 0.860 - ETA: 1s - loss: 0.4089 - acc: 0.860 - ETA: 1s - loss: 0.4087 - acc: 0.861 - ETA: 1s - loss: 0.4087 - acc: 0.860 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4078 - acc: 0.861 - ETA: 1s - loss: 0.4077 - acc: 0.861 - ETA: 1s - loss: 0.4083 - acc: 0.861 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4079 - acc: 0.861 - ETA: 1s - loss: 0.4084 - acc: 0.861 - ETA: 1s - loss: 0.4081 - acc: 0.861 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4078 - acc: 0.861 - ETA: 1s - loss: 0.4085 - acc: 0.861 - ETA: 0s - loss: 0.4088 - acc: 0.860 - ETA: 0s - loss: 0.4088 - acc: 0.860 - ETA: 0s - loss: 0.4085 - acc: 0.861 - ETA: 0s - loss: 0.4085 - acc: 0.861 - ETA: 0s - loss: 0.4087 - acc: 0.861 - ETA: 0s - loss: 0.4086 - acc: 0.861 - ETA: 0s - loss: 0.4080 - acc: 0.861 - ETA: 0s - loss: 0.4075 - acc: 0.861 - ETA: 0s - loss: 0.4073 - acc: 0.861 - ETA: 0s - loss: 0.4074 - acc: 0.861 - ETA: 0s - loss: 0.4070 - acc: 0.861 - ETA: 0s - loss: 0.4073 - acc: 0.861 - ETA: 0s - loss: 0.4083 - acc: 0.861 - ETA: 0s - loss: 0.4086 - acc: 0.861 - ETA: 0s - loss: 0.4084 - acc: 0.861 - ETA: 0s - loss: 0.4089 - acc: 0.860 - 24s 1ms/step - loss: 0.4091 - acc: 0.8608 - val_loss: 0.4260 - val_acc: 0.8732\n", + "\n", + "Epoch 00010: val_acc improved from 0.86331 to 0.87315, saving model to models\\time.model\n" + ] + } + ], + "source": [ + "if config.mode == 'conv':\n", + " X, y = build_rand_feat()\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2], 1) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_conv_model()\n", + "elif config.mode == 'time':\n", + " X, y = build_rand_feat()\n", + " print(X.shape)\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2]) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_recurrent_model()\n", + " \n", + "# Setup weights so that our gradient updates based on our class distribution \n", + "# (less bass drumbs => stronger gradient from these samples)\n", + "# This will give a little extra accuracy as well as reducing bias\n", + "class_weight = compute_class_weight('balanced', np.unique(y_flat), y_flat)\n", + "\n", + "checkpoint = ModelCheckpoint(config.model_path, monitor='val_acc', verbose=1, mode='max',\n", + " save_best_only=True, save_weights_only=False, period=1)\n", + "\n", + "# Fit our model\n", + "model.fit(X, y, epochs=10, \n", + " shuffle=True,\n", + " class_weight=class_weight,\n", + " validation_split=0.1,\n", + " callbacks=[checkpoint])\n", + "\n", + "model.save(config.model_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Audi_Classification_ML/.ipynb_checkpoints/predict-checkpoint.ipynb b/Audi_Classification_ML/.ipynb_checkpoints/predict-checkpoint.ipynb new file mode 100644 index 0000000..8de89ca --- /dev/null +++ b/Audi_Classification_ML/.ipynb_checkpoints/predict-checkpoint.ipynb @@ -0,0 +1,166 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "import numpy as np\n", + "import pickle\n", + "from tqdm import tqdm\n", + "from scipy.io import wavfile\n", + "from python_speech_features import mfcc\n", + "from keras.models import load_model\n", + "import pandas as pd\n", + "from sklearn.metrics import accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def build_predictions(audio_dir):\n", + " \"\"\"\n", + " Function which takes an audio directory as input (which should contain a series of wav files), \n", + " and returns true labels, predicted labels, and a dictionary of probabilites corrosponding to labels\n", + " for each file.\n", + " \n", + " Arguments:\n", + " ----------\n", + " audio_dir : location of folder containing wav files\n", + " \n", + " Returns:\n", + " --------\n", + " y_true : A list containing the true labels for each file\n", + " \n", + " y_pred : A list contianing predicted labels for each file\n", + " \n", + " fn_prob : A dict containing the probabilities of each label for each file\n", + " \n", + " \"\"\"\n", + " \n", + " y_true = [] # List containing actual labels\n", + " y_pred = [] # List containing predicted labels\n", + " fn_prob = {} # Dict containing probability of given label\n", + " \n", + " print('Extracting features from audio')\n", + " for fn in tqdm(os.listdir(audio_dir)):\n", + " rate, wav = wavfile.read(os.path.join(audio_dir, fn))\n", + " label = fn2class[fn]\n", + " c = classes.index(label) # Grab true label\n", + " y_prob = []\n", + " \n", + " # Step through audio file in chunks\n", + " for i in range(0, wav.shape[0]-config.step, config.step):\n", + " sample = wav[i:i+config.step] # Take chunk of audio file\n", + " x = mfcc(sample, rate, numcep=config.nfeat,\n", + " nfilt=config.nfilt, nfft = config.nfft) # Take mfcc of our sample\n", + " x = (x - config.min) / (config.max - config.min) # Normalize based on max/min\n", + " \n", + " if config.mode == 'conv':\n", + " x = x.reshape(1, x.shape[0], x.shape[1], 1)\n", + " elif config.mode == 'time':\n", + " x = np.expand_dims(x, axis=0)\n", + " y_hat = model.predict(x)\n", + " y_prob.append(y_hat)\n", + " y_pred.append(np.argmax(y_hat))\n", + " y_true.append(c)\n", + " \n", + " fn_prob[fn] = np.mean(y_prob, axis=0).flatten()\n", + " \n", + " return y_true, y_pred, fn_prob" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting features from audio\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████████████████████| 300/300 [01:08<00:00, 4.36it/s]\n" + ] + } + ], + "source": [ + "df = pd.read_csv('data/instruments.csv')\n", + "classes = list(np.unique(df.label))\n", + "fn2class = dict(zip(df.fname, df.label))\n", + "p_path = os.path.join('pickles', 'conv.p')\n", + "\n", + "with open(p_path, 'rb') as handle:\n", + " config = pickle.load(handle)\n", + " \n", + "model = load_model(config.model_path)\n", + "\n", + "y_true, y_pred, fn_prob = build_predictions('data/clean')\n", + "\n", + "\n", + "acc_score = accuracy_score(y_true=y_true, y_pred=y_pred)\n", + "\n", + "y_probs = []\n", + "# Iterate through each sample\n", + "for i, row in df.iterrows():\n", + " y_prob = fn_prob[row.fname] # Grab probabilities for each class for the sample\n", + " y_probs.append(y_prob)\n", + " for c, p in zip(classes, y_prob):\n", + " df.at[i, c] = p # add probabilities to dataframe\n", + " \n", + "y_pred = [classes[np.argmax(y)] for y in y_probs]\n", + "df['y_pred'] = y_pred\n", + "\n", + "# Save as csv file which now contains all samples along with true label, predicted label, and probabilities for each class\n", + "df.to_csv('predictions.csv', index=False) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Audi_Classification_ML/__pycache__/cfg.cpython-37.pyc b/Audi_Classification_ML/__pycache__/cfg.cpython-37.pyc new file mode 100644 index 0000000..7887f57 Binary files /dev/null and b/Audi_Classification_ML/__pycache__/cfg.cpython-37.pyc differ diff --git a/Audi_Classification_ML/__pycache__/eda.cpython-37.pyc b/Audi_Classification_ML/__pycache__/eda.cpython-37.pyc new file mode 100644 index 0000000..0a8c3b6 Binary files /dev/null and b/Audi_Classification_ML/__pycache__/eda.cpython-37.pyc differ diff --git a/Audi_Classification_ML/cfg.py b/Audi_Classification_ML/cfg.py new file mode 100644 index 0000000..eaa5189 --- /dev/null +++ b/Audi_Classification_ML/cfg.py @@ -0,0 +1,12 @@ +import os + +class config: + def __init__(self, mode='conv', nfilt=26, nfeat=13, nfft=512, rate=16000): + self.mode = mode + self.nfilt = nfilt + self.nfeat = nfeat + self.nfft = nfft + self.rate = rate + self.step = int(rate/10) + self.model_path = os.path.join('models', mode + '.model') + self.p_path = os.path.join('pickles', mode + '.p') \ No newline at end of file diff --git a/Audi_Classification_ML/cleanup.ipynb b/Audi_Classification_ML/cleanup.ipynb new file mode 100644 index 0000000..f040378 --- /dev/null +++ b/Audi_Classification_ML/cleanup.ipynb @@ -0,0 +1,517 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib as mpl\n", + "from tqdm import tqdm\n", + "from matplotlib import pyplot as plt\n", + "import eda\n", + "from python_speech_features import mfcc, logfbank\n", + "from scipy.io import wavfile\n", + "import librosa\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " fname label\n", + "0 5388d14d.wav Saxophone\n", + "1 c685f05f.wav Saxophone\n", + "2 36d20ab5.wav Saxophone\n", + "3 d6665734.wav Saxophone\n", + "4 7352e28f.wav Saxophone\n", + ".. ... ...\n", + "295 3c713bcf.wav Clarinet\n", + "296 2fc00271.wav Clarinet\n", + "297 b0c06255.wav Clarinet\n", + "298 71c6451f.wav Clarinet\n", + "299 5de123c3.wav Clarinet\n", + "\n", + "[300 rows x 2 columns]\n", + " fname label\n", + "0 5388d14d.wav Saxophone\n", + "1 c685f05f.wav Saxophone\n", + "2 36d20ab5.wav Saxophone\n", + "3 d6665734.wav Saxophone\n", + "4 7352e28f.wav Saxophone\n" + ] + } + ], + "source": [ + "df = pd.read_csv(os.path.join('data', 'instruments.csv'))\n", + "print(df)\n", + "print(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "df.set_index('fname', inplace=True) # Set our index to be the fname collumn" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " label\n", + "fname \n", + "5388d14d.wav Saxophone\n", + "c685f05f.wav Saxophone\n", + "36d20ab5.wav Saxophone\n", + "d6665734.wav Saxophone\n", + "7352e28f.wav Saxophone\n", + "... ...\n", + "3c713bcf.wav Clarinet\n", + "2fc00271.wav Clarinet\n", + "b0c06255.wav Clarinet\n", + "71c6451f.wav Clarinet\n", + "5de123c3.wav Clarinet\n", + "\n", + "[300 rows x 1 columns]\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "# Read in the rate and signal for each of our wavfiles\n", + "# and add their ratio to our df as a length collumn/feature\n", + "for f in df.index:\n", + " rate, signal = wavfile.read('data/wavfiles/'+f)\n", + " df.at[f,'length'] = signal.shape[0] / rate" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " label length\n", + "fname \n", + "5388d14d.wav Saxophone 4.14\n", + "c685f05f.wav Saxophone 1.54\n", + "36d20ab5.wav Saxophone 4.90\n", + "d6665734.wav Saxophone 10.50\n", + "7352e28f.wav Saxophone 6.24\n", + "... ... ...\n", + "3c713bcf.wav Clarinet 6.14\n", + "2fc00271.wav Clarinet 4.20\n", + "b0c06255.wav Clarinet 4.08\n", + "71c6451f.wav Clarinet 3.56\n", + "5de123c3.wav Clarinet 3.34\n", + "\n", + "[300 rows x 2 columns]\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a class list and class distribution\n", + "classes = list(np.unique(df.label))\n", + "class_dist = df.groupby(['label'])['length'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "label\n", + "Acoustic_guitar 6.948667\n", + "Bass_drum 1.937333\n", + "Cello 5.000667\n", + "Clarinet 6.596000\n", + "Double_bass 3.206000\n", + "Flute 8.054667\n", + "Hi-hat 3.357333\n", + "Saxophone 7.124000\n", + "Snare_drum 3.987333\n", + "Violin_or_fiddle 4.530000\n", + "Name: length, dtype: float64\n" + ] + } + ], + "source": [ + "print(class_dist)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEJCAYAAAA3l/RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3gc1dWH37O7apYsyd0qtuVesLAx2MZVsumhhY4TQicQIIR8AeIEQkQKIaEklJhOMD2U0GISCDaWuy0b94p7lS3JVm9bzvfHjGxJVtdqV+W+z7PPzs7cufeMtPubO+fee46oKgaDwWAIDI5gG2AwGAwdCSO6BoPBEECM6BoMBkMAMaJrMBgMAcSIrsFgMAQQI7oGg8EQQIzoGgwGQwAxomtARG4UkUWtwI40EXnL3u4rIoUi4vRT3S+IyG/s7VQR2e+Peu36pojIVn/VZ2jfuIJtgMFQE6q6F4iqr5yI3AjcqqqT66nvDj+ZhogoMFhVt9t1LwSG+qt+Q/vG9HQN7R5/9ZYNBn9gRLeDISJ9RORfIpIlIjki8lwNZZ4WkX0iki8iq0RkSqVj40RkpX3ssIg8Ze8PF5G37DpzRSRDRHrVY0t/EUkXkQIR+R/QvdKxJBFREXHZn28UkZ122V0i8kMRGQ68AEywXRG5dtnXReR5EflCRIqAafa+P1Rr/9ciki0iu0Xkh5X2zxeRWyt9Pu5+EZEF9u61dpvXVHdXiMhwu45cEdkoIpdUOva6iPxdRObY17JcRAbW9XcytC+M6HYg7B7fv4E9QBKQALxXQ9EMYDTQFXgH+EBEwu1jTwNPq2o0MBB4395/AxAD9AG6AXcAJfWY9A6wCktsf2/XUZPdkcAzwAWq2hmYCKxR1c12O0tVNUpVYyud9gPgj0BnoCZ/dW+73QS73ZdEpF4XgapOtTdH2W3+s5qtIcDnwFdAT+CnwNvV6p4BPAJ0Abbbdho6CEZ0OxbjgHjgflUtUtVSVT1JkFT1LVXNUVWPqj4JhHHCZ+kGBolId1UtVNVllfZ3AwapqldVV6lqfm2GiEhfYCzwG1UtU9UFWGJVGz5gpIhEqOohVd1Yz7V+qqqLVdWnqqW1lKloOx2YA1xdT50N4UwsX/RjqlquqvOwbnQzKpX5l6quUFUP8DbWDc7QQTCi27HoA+yxf+y1IiK/EJHNIpJnP7LHcOLR/xZgCLDFdiFcZO9/E/gSeE9EDorIX+xeX23EA8dUtajSvj01FbTLXIPVqz1kP5oPq+da99VzvKa24+s5pyHEA/tU1Vet7oRKnzMrbRfTgAFDQ/vBiG7HYh/Qt8JPWhO2//aXWL2+LvYjex4gAKr6narOwHp0/jPwoYhEqqpbVR9R1RFYj/8XAdfXYcshoIvtOqigb22FVfVLVT0HiAO2AC9XHKrtlDrappa2D9rbRUCnSsd611NXZQ4CfUSk8m+rL3CgEXUY2jFGdDsWK7DE7jERibQHvyZVK9MZ8ABZgEtEHgaiKw6KyHUi0sPuyeXau70iMk1Ekm2/cT6Wu8FbmyGqugdYCTwiIqEiMhm4uKayItJLRC6xRbIMKKxU92EgUURCG/OHsKloewrWTeIDe/8a4HIR6SQig7B695U5DAyopc7lWKL9gIiEiEiqfV01+c4NHRAjuh0IVfViCcAgYC+wH+uxvTJfAv8BtmE9FpdS9VH9fGCjiBRiDapda/tMewMfYgnuZiAdeKsek34AjAeOAr8F3qilnAP4BVYv8iiQAtxpH5sHbAQyRSS7nvYqkwkcs+t8G7hDVbfYx/4KlGOJ62z7eGXSgNn27IQqfmBVLQcuAS4AsoFZwPWV6jZ0cMRkjjAYDIbAYXq6BoPBEEDMMmBDi2K7IWriAnv5rMHQoTDuBYPBYAggxr1gMBgMAcSIrsFgMAQQI7oGg8EQQIzoGgwGQwAxomswGAwBxIiuwWAwBBAjugaDwRBAjOgaDAZDADGiazAYDAHEiK7BYDAEECO6BoPBEECM6BoMBkMAMaJrMBgMAcSIrsFgMAQQI7oGg8EQQIzoGgwGQwAxomswGAwBxIiuwWAwBBAjugZDIxCR+SJyXrV994rIayLyYT3nporIv+3tS0RkZkvaWosN94jIZhF5uy4basttJyKvi8iV9vZ8ETmjJe1tj5jElAZD43gXuBb4stK+a4H7G5NoU1U/Az7zs20AiIhTVb21HL4TKynoLvtzi9hgqB3T0zUYGseHwEUiEgYgIklAPLBfRDbY+8JF5B8isl5EVovItOqViMiNIvKcvf26iDwjIktEZGdFT7ImxOJxEdlg13+NvT9VRL4RkXeA9bWc+wIwAPhMRH5ezYb+IrJURDJE5PfV2ntORDaJyBygZy11n2uf/62IfCAiUfX+JTsoRnQNhkagqjnACuB8e9e1wD+Bymm177LLJgMzgNkiEl5P1XHAZOAi4LE6yl0OjAZGAWcDj4tInH1sHPCgqo6oxfY7gIPANFX9a7XDTwPPq+pYILPS/suAoUAycBswsXq9ItIdeAg4W1XHACuB/6vjGjo0RnQNhsZT4WLAfn+32vHJwJsAqroF2AMMqafOT1TVp6qbgF51lJsMvKuqXlU9DKQDY+1jKyq5DRrLJE5cx5uV9k+t1N5BYF4N554JjAAWi8ga4AagXxPtaPcYn67B0Hg+AZ4SkTFAhKp+a7sZKpAm1FnWwPPrOlbUhHYro43cX4EA/1PVGc1sv0PQbnu6InKZiKiIDAtAW7Eicmelz/H1jWT7se0l9nuSiPwgEG12dFS1EJgPvMbJvVyABcAPAURkCNAX2Oqn5hcA14iIU0R6YPVEV/ih3sWc6L3/sFp719rtxQEn+aeBZcAkERkEICKd7Os21EC7FV0sX9oiTnyRWpJYrFFhAFT1oKrWOhjiT1S1wseWBDRKdEXE6XeDOg7vYvlV36vh2CzAKSLrsfy9N6pqWQ3lmsLHwDpgLdaj/gOqmln3KQ3iZ8BdIpIBxFRr7zuswbnnsdwZVVDVLOBG4F0RWYclwi3e2WmzqGq7ewFRwAEsP9qWSvsfwPryrAUes/eNxvqSrMP6gnWx988HzrC3uwO77e1TsHoWa+xzBmP98ErsfY9jCeAGu7wTeMJudx3w0zrs/h6wBetm8Qzwb3t/GnBfpXIbgCR7u9B+Xwbk2Tb83LZhIfCt/Zpol0sFvgHeATYF+39lXubV0V7t1af7feC/qrpNRI7avrde9v7xqlosIl3tsm9gCWG6iPwO+C1wbx113wE8rapvi0golqjOBEaq6mg4Po2ogh8D/YHTVNVTqd0q2KPbLwJTVXWXiNT02FoXM7GE+SK7vk7AOapaKiKDsXpmFRPZx9n2NnXQxWAwNJH2KrozgL/Z2+/Znx3AP1S1GEBVj4pIDBCrqhWPTLOBD+qpeynwoIgkAv9S1e9E6hw3ORt4QVU9Fe3WUm4YsLOSEL6LJdhNJQR4TkRGA16qjp43Z5S7xUiaOScaSLRfCZXeu2Fdj8t+Dyk/vdsuX/fwAYAH6/oKgaM1vHKwZg/szZw22hfQC2oGIpJM1VkEAGWqOr4B53YD5tZw6Cy1prwZgki7E137CzcdGCkiitUTVeAj6h+FrYyHEz7v43MsVfUdEVkOXAh8KSK3AjvrMqmB7dal3JVtqWJPHfwcOIzld3QApZWONXeUu8kkzZzTFRiPNc1pAFXFtXND61GXwwVMaUTT5b2/WbML2F7ptRVYlTltdG03wqChquuxXF9NOTenqecaWp52J7rAlcAbqnp7xQ4RScfq9dwsIu9UuBfs3u4xEZmi1hLOH3FioGA3cDqW//bKSnUNwOqRPmNvn4rlI65NML4C7hCR+RXuhVp6u1uAASKSpKq7gWsqHduNNWke21XSv4bzC6rZEAPsV1WfiNyAdfMJKEkz57iw/j5nYgntmVg+8KZMqWouoViT/IdWP9D7mzXfYf2fl9vvqzOnjS4PrHmGjkJ7FN0ZnLyi5yNgONY685UiUg58AfwaayL3C7YPdCdwk33OE8D7IvIjqk4Ivwa4TkTcWCt3fmeL92J7Geh/gL9XKv8K1qP9Ovucl4HnqhutqiX2tLP/ikg2VacBfQRcb088zwC21XDd6wCPiKwFXscaQf9IRK7CGjhr8d5t0sw5kcA5WKuWzsS6aXVq6Xb9wGD7VTFVqrz3N2tWYt0wvwQyMqeNri2WgcHQKES1MU/chpZERKJUtVAsJ/Hfge/05OWarQpbaC8CrsKafRERiHbLxvdYqLGhjXEvNIejwH+Bz4H/ZE4bnRegdg3tECO6rQgR+TlWzzsUWA3cVjHw15pImjmnE1WFNuC92QCLbmXcWD3gN4DPMqeNLq2nvMFQBSO6QUBEPuZkv+wvVfXLmsq3BmyhvRC4miAJbWWCKLqVycOa7fImsDBz2mjzYzLUixFdQ50kzZwzBGu10vVYi05aBa1EdCuzG/gH8HzmtNFZQbbF0IoxomuokaSZc87BWiRyAcGZbVAnrVB0KyjF6vn+NXPa6M3BNsbQ+jCiazhO0sw5TqzZGTOx4qe2Wlqx6FagWDNZnsqcNrqmhQqGDooRXQNJM+eEYrkPZgIDg2xOg2gDoluZ1cBDmdNGfxFsQwzBx4huByZp5hwHcCvwG6xVYW2GNia6FSwAZmZOG7002IYYgkd7Du1oqIOkmXPOxFpo8SJtTHDbMFOBJb2/WfNJ72/W1JhSx9D+MT3dDkbSzDk9gT9jzQdudQNkDaWN9nQr48UKsPSrzGmjjwTbGEPgMKLbQbAHye4EfocVdL1N0w5Et4Jc4FfAS20pCpqh6Rj3QgcgaeacKViBzJ+hHQhuOyMWeP5MXfSPufMGnhJsYwwtj+nptmOSZs7pjZXJ4rpg2+Jv2lFPF5e6d7/Mj3qH4nYAfwD+dNb0HZ5g22VoGUxPt52SNHPOeViRx9qd4LY37uavx0Jxh2PF3PgdkDF33kATD7ed0h5DO3ZobN/t77D8hG12oKyj0Fd3LxrL8snVdo/GEt4/AY+cNX2HCSvZjjA93XZE0sw5cVhpWn6NEdxWj6gv51ek1TZ1zIU1f3rO3HkD/e6HF5EHRWSjiKwTkTUiUm8aoJZERNJE5L5g2hAojOi2E5JmzjkbKxNwSrBtMTSMK3lvSzQFNSYqrcR5wIq58wb6LaW5iEzACs05RlVPxcrjt6+ZdbbIU3NL1RtMjOi2cZJmznEkzZzzO6wMBz2DbY+hYXTWvNXf56NJDSw+GFg+d97AC/3UfByQraplAKqaraoHRWS3iDwiIt+KyHoRGQYgIuNEZImIrLbfh9r7bxSRD0Tkc6wYw4jI/SKSYfegH6nLCLu3vVVEvqZSGiURmS8ij9pptn4mIq+LSOWUWYX2e6qIpIvI+yKyTUQeE5EfisgK2/5WuaTdiG4bxp6d8DXWY6j5X7YVVEsf4uEujTwrGvhs7ryBv/KDBV8BfWyhmiUilZ+OslV1DPA8UPG4vwWYqqqnAQ8Dj1YqPwG4QVWni8i5WDeIcVh+6dNFZGpNBojI6cC1wGnA5ViJSisTq6opqvpkPdcyCiv0aDJWjsMhqjoOK03WT+s5Nyi0u657RyFp5pxRWFGs4oJti6FxTGThskT2pzbhVAfw6Nx5A08Fbj5r+o6SprRvp4Q6HSub8jTgnyIy0z78L/t9FZYYgpXkdLaIDMaKnhZSqbr/VUq0eq79Wm1/jsIS4QU1mDEF+LgiM4qIfFbt+D8beDkZqnrIrmMHdo8bWG9fW6vD9I7aIEkz50wE5mMEt80RouU7bue5hroVauNaYNHceQP7NLUCVfWq6nxV/S1wN3CFfajMfvdyolP2e+AbVR0JXAyEV6qqcsJTAf6kqqPt1yBVfbUuM+o4VrleD7ZW2fkDQysdK6u07av02Ucr7VQa0W1j2MHFv8KsLGt7qOq9/KXIhTek/sL1MgZrWlmjBVxEhtq91gpGA3vqOCUGOGBv31hHuS+Bm0Ukym4nQURqG2dYAFwmIhEi0hlLzGtjN1ZmaYBLqdrTbnMY0W1DJM2ccwXwbyAy2LYYGs8AdiwazepT/VhlL2De3HkDr2rkeVFY7oJNIrIOGAGk1VH+L8CfRGQx4KytkKp+BbwDLBWR9cCHQOdayn6L5UJYA3wELKyj/ZeBFBFZAYynai+4zWGWAbcRkmbOuQnry1frl74j0daWAYv6sl7kxtBIimJaoHoPMOOs6Ts+bIG6DX7G9HTbAEkz5/wMeBUjuG2WH/DGdy0kuGD5Lt+dO2/glfWWNAQdI7qtnKSZc9KAv2FWmLVZYvXoyu/x+cQWbqZCeK+ot2QAEZFu9oq36q9uwbYtWBj3QismaeacvwD3B9uO1kibcS+oFj/J3Ud7kxmo7Bwe4Kqzpu/4JEDtGRqJ6em2UpJmzvkFRnDbPCnMywig4ILV431v7ryB0wPYpqERGNFthSTNnDMDKw6uoQ0TqqVbb+GF5s7JbQphwCdz5w08vd6ShoBjRLeVkTRzznTgdYwPt22j6rufRz1OfMGaoN8Z+M/ceQOHBKl9Qy0EVXRFxGs71dfaQTZaerChevuFgWyvXtJiThkj2x6n6oobQxtkKJsXjmBjsNPv9AC+mjtvYHyQ7TBUItg93RJ7ueAorKDbfwqyPYhIcKZlpcV0Bz7/KDRt8MWOJSuDYoPBLzjUe+h+Hh0TbDts+gGfzp030NzIWwnBFt3KRAPHAEQkSkTmVgoxd6m9P1JE5tg94w0ico29/7GK1TUi8kRtDYhIfxFZaoee+32l/aki8o2IvAOsF5EkEdlQ6fh9IpJmb88Xkb+KyAIR2SwiY0XkXyLynYj8oUlXnhYTgrV6p78InZ8JeW70L13v1hQkxNAGuJFX9kRQUuNKrCBxBtaqMkMrINiiG2G7F7ZghWKrEMJS4DI7xNw04Ek70MX5wEFVHWUH3/iviHQFLgNOsQMy1yV8TwPPq+pYILPasXHAg6paWyT/ypSr6lTgBeBT4C5gJHBjE+cfPkel4OMiuH7i+nzqGyF/Sgczp68xFH3wFtk3XUH2zVeS+/uZaHlZlePezIMc+8Xt5Nx6NUd/fiverMMAePbuJuf2H5Bz69WUb1wLgHo9HLvvdrS04cG8uuuR5Wfx1Zn+uyK/8bO58wZeGmwjDMEX3Qr3wjAsQX3DFlcBHrXXhX8NJGCtM18PnC0ifxaRKaqaB+RjifQrInI5UFxHe5OAd+3tN6sdW6Gquxpod0UYuvXARlU9ZAeE3gk0LvJTWszdwI9rOjTVuT5lQejPl4dT1qQQfh0Nb9YRij9+l24vvE331z4En4/SeV9WKVPwwl8JP/dCur3yPlE/+jGFLz8LQMm/PyTqtnuISXuc4vffsPZ9+gHh51yIhEc0zADVwod4uMmRvwLAP+bOG9g32EZ0dIItusdR1aVAdyzn/w/t99NVdTRwGAhX1W1Y0YbWYwXgeFhVPVi91I+A7wP/ra+pWvbXGErOJrxa2crh46qHlmv4aHVazOnAU3UV6es4cmZG2J07e3Isq8H1dmS8XrSsDPV60LJSHN16VDns2bOT0DFWOrCQ08ZStmS+dcAVgpaVomWl4HLhKyygbOkCws+tK/hVVc7hP6t6kNWaB626YM3hbZUhDzsKreaPb6cGcQI5WKHkjqiqW0SmYQ0GICLxwFFVfcueeXCjHUauk6p+ISLLgO11NLMYKxbpW1jCXhuHgZ62q6AQK59UfWLeONJiImw76g1T11lKTlkcds/+S8t/v2OTJgUsBUn2F3+jZEcGzk4xxN8yC4DcBW9SvH05iODsFEu3792Lq3NVj0rpnnUcnffy8c/unP30uOQBOg2ZQNbnj+PO2kPEwLF0SbnBqnPxu4T27E+nwc17Knf26Enk1deTfe0FEBZG2BkTCBs7oUqZkIFDKFswl05X/ICyhfPQ4iJ8ebl0uvRq8h77DbjL6fzzhyh640Uir7sF68GrfsK1ZNP1vNb6V8hZmR7+CPwy2IZ0VILd063w6a7BCvN2g6p6gbeBM0RkJZY4brHLJwMr7PIPYvlvOwP/tl0R6cDP62jvZ8BdIpKBJew1oqpurDTmy7FCKW6prWwzeAJocLLBEPEmzgn9dffzHcu/bQFbaiQq+Wx6XlU1zVX0+CuIv/k54m96loiBY8lb8u5J54X3O5X4m54l/qZn6XXtozhCwgjvfxrlRyzvTfzNz1G2fyO+siI8hUcpP7St2YIL4CvIp3TxfLq/8296fPAVWlpCyf/mVL2mO35O+dpV5Pz4WsrXrcLRvSc4nTh7xdH1r6/Q9bk3kPBwvDlZOPv0J+/Rh8j93S/x7Ksj3Kyq95f83uFAg/17aij3z5038IJgG9FRCWpPV1VrnJ6lqtlYd+Tq7MYKlFydcQ1sb1e1eh+z98/HysRQuewzwDM11JFaabvKeZWP1UlazAXAnQ0qWwkRYp4PeTr5ae/lC//mubLFe1XhfUbiyTtcZZ8jrNPxbXWXUt8ajuKtiwkfcDqOkHDE4UI95aj6UK8HxEHewreInXKdX+wtX7UcZ1w8jlgrwW7YlOm4N64l4pwT+Ryd3XsS+zsr7ZavpJiyBXNxRFWdaFD46t+JuvlOSj5+l/CzL8DZO56iN14k5sFHqYmRrFs0hK1tKQuzAG/MnTdw9FnTdxyot7TBr7SVO3P7IS2mG/BaU08XIeRe17+mvBLy+PxgzWw4tuAN9s+6kaJN8+sVzKLNC4gcbulRSPc+uDr34NDrPyNy2GQ8xw4BENrLPx4TZ6/euDetR0tLUFXKv12Bq2//KmV8ecdQnw+A4ndeI+KCqgP65WtX4uzeA1diP7S0FMQBDoe1XQMO9e7/OX8+wy8XEFi6A+/MnTfQhAsNMK3Gp+tPRORBoHo0/Q9U9Y/BsKcaTwO9m1vJ2c7VqfPkviUXlP9pTBmh1Qf6WpQuU6+ny9TryVv6PgWr/k3slJrd457Co7izdhPR/8Q6ga5nn5ioceTDR+h63t3kLfkn5Ud2EZ40ms6jz2+yXSHDkwlPOZuc238ATichg4YRcdEVFP5jFq4hIwiflEr5mpUUvvKsdfc6dQzR95xIrquqFL31CjEPW1NaIy66nLw/Pgg+L53v/XWNbd7GrEPhlAUyoI0/mYqV3fe3wTakI2FCOwaStJjzsTL4+o087bR+WtmT8UeJaZH4pJ68wxz58JHjA2lVjx3hyIdpNR4DyF/5Ke7svXQ7/+RM2MXfLaP88E4iR6SQu+htelzyAJlv/5KeVz+CI6T+e0hrCO3YSw8tfYq7a3KDtSU8wKizpu/YFGxDOgrGvRAo0mIisRZT+JUYKU5eHnZ34VDZ29A5xs3CffSEC7B4+3JCutbeySvadMK1UBn1eshf+RnR4y9HPWUc9wurgtfjb5NbBtW8h3h4QLDN8AMuahi7MLQcRnQDxx+xp775mxDx9vtP6MwuZzlWrfFnvVmf/YXMN+/DffQA+/9+AwVrvyI3fTYHX72Tg6/dTemub+liuwvKDn1Hzn9O/HY9eYfxFmQR1nfkSfUWfDuHqJFn4QgJJ6RHf0A5+OpdhCUOxxEe5c9LaDEu4pO1XTnaK9h2+ImzmpDc0tBEjHshEKTFjAWW0cI3OVXKH/dckzHLe2kwYrgGlGC6Fzpp0fqXuH6ktK/wm/uA4WdN39GmM+22BUxPNzA8RQD+1iKEPhDyz0mzQv6W3tJtdVhU3b8iLbydCS5Yy9cfDLYRHQEjui1NWsyFwORANvk954qUL0MfWByCpzyQ7XYETmPl4gHsHBxsO/xNeXn4qtXffu+StLS0FnGBGU5gRLclSYtxEKQYwUMd+yetCLtzcywFx4LRfnvEqZ499/Bka4wg1mR8PsfOrVsmZSxfdtXphYXdTuFEpD9DC2FEt2X5IdbS5aDQRQpHrQi7K3eAHKxjDauhodzF33JCcQd0TnRLocrRA/uHpS9eNKPvkSMDxlY69MO0tLTRQTOsA2BEt4XY+GgPF/BIvQVbmFDx9P869P6oqY6164JtS1smUfcuHs/SMQD79pVz+4/3H39dcvEuPvoor0r5ggIvv304k9tu3c9ddx5g1y7L05Ob6+VnPzvArbfsY/GiE2NWv/lNJtnZLT9dThV37rHe6cuWXu3YuXNsCjiqL5ByAH9ucUM6MEZ0W4hrE3rfOrlvQl56RPjaYNviEO02O+TPQ29xfrEk2La0SVSP/Zq0oRUf+/QJ5cWXEnnxpURmPZ9AWJiDyZM7VTnlnXdyGTgojJdfSeSXM3sw6+/ZAHwzr5Bzz+3MM88m8P77uQAsXVLE4MFhdO/esgtES0sjV3y76uL969efk+LxhMXWUfTctLS0s1rUmA6MEd0WIHl2cgjwqzync/TdvXuOSumbsHpxRPj6YNokQthDrrcm/DXk7/ODaUdb5HLe3xBDXveajq1eXUJ8vItevapG6Nyzp5zTTrOCn/ftG0pmpodjRz04XUJ5meJ2KyKC16v86195XH11rUHvmo3X69y2adPUbzNWXD6uuDi2f/1nACb0Y4thRLdluBE4HqH/qNN52h29eyZP65OwakV42MZgGSWCXOZcnDon9FeLXHjcwbKjLRGl+Wuu4P1a5wN/800h06afvKBj4IAwFi203AdbtpRy+LCHrGwv06dHkbGymF/NPMT1N3Ths0/zOeeczoSH+/+nqErW3r0jFy5ZPGNQTna/xibKPCctLW24340yGNH1N8mzkx3U0kvIdjlPvyWu1yln94nP+DYsdHOATTvOKY49k5eH3bUhmsK8+kt3YFTLHuK3tXZB3W5l6ZJiUqZGnnTs2hmxFBZ6uf3H+/nk43wGDQ7D6YSoKAePPhrHrOcTGTw4lGXLipkyNZInn8zikbTDbNpYczSzxplN2dGchPlLl1wTtmf3aVOsUGlN4uSgGYZmY0TX/5wP1Bmr8LDLNfaG+N7Dz0uMX74+NHRbgOyqQjcpOC0j7K7sJDm0LxjttwXGs2RpH/bW+ji+YkUxgweH0aXryb7YyEgH9z/Qkxdfsny6ebleeveu6oJ4881j/OCHscybV8iQIWHcd38PXn31aLNsLinpvGzlykuPbNw4PdXrDY1uVmVwfVpaWsv5PTooRnT9T4ODkx8McY3/QXyvwd9LjFu2OTRkR0saVb/rShYAACAASURBVBNh4h44L/S+8ImODUFzebRWXFq+806emVhXmW/m1exaACgs9OJ2W0vsv/iigORTw4mMPPFz27/fTU6Ol1GjIigrVURABMrLm7Ys3+NxbdqwYdralRnfP7O0JNpfyTEjgVv8VJfBxoiuH0menZwENC4NiojsCwk58+r43v0vTohbsi0kJCDRwipwiPZ4O+TRAdc7v1wayHZbNar6M54ocOEJra1IaamPVatKmDz5hGvh88/z+fzzfAD27nFz6y37uOnGfWSsKOauu6pG3nzttaPcdJOV4WLa9Ci++rKAn959gKsaOaCmKod27xq9aOmSa4cfO5o4qlEnN4y70tLSjE74ERPwxo8kz07+M/BAsypR9Q52u5c9eSQ7sb/b0+AlmaUeZeo/iijzgscHVw538ci0qvP49+b5uOGTEnJLFa8PHjs7jO8NDmHxXg8/mVPKUV+nAr38qc4hXeLxlRaS9emf6Xn17xqcnDGQtGTAmyTdufCP3N+qk0yqUpyd3Tdj29ZJY30+V6f6z2gWl6alpX3Wwm10GMwdzE8kz04OA25udkUizu9CQyddkhCXcFV870V7Xa79DTktzAnzbohk7R1RrLk9kv/u8LBsf9XJ9n9YUMbVI0JYfXsU710ZwZ1zrEGbJ5eW89HVEfzjfF/nsctnHnDi9eQueY+YCVe3SsFtSUR92TP53cnxKFsJqmhRUczijBWX5W3ZnJISAMEFuCcAbXQYjOj6j6ux8k75BxHXlrDQyRcmxvWaEddr4QGX82DdxYWoUEsg3T5we08OgyVAfpn1ZJNXqsR3tv79IU4o8UCxWxkWVZjwev7tWyQ/0x3eN2grmIPGNby9tTMFXYJtR014PCHr1687Z9O3qy6ZVFYWFRfAps9KS0sbEcD22jXtMkdakLitRWoVCdkQHjbl/MT48tFl5QseP5I9pLfXW2OONa9POf2lIrYf9XHX2FDGJ1b996alhnHuW8U8u6KcIrfy9Y8sf+SvJofx489LiQiBNy+L4L6vskfOn16y+x45ErJPeya0yHW1QmL02KqL+aTVxSL2+WT/rl2n7z14YHidA3stzN00IYO14WSMT9cPJM9OjgMOEIgYq6qlY0vLlv85K3tED6+vR01FckuVy/5ZzLMXhDOy54lkr08tLUMVfjExjKX7PNzyWSkb7ozEUcmFsGCPh0+2eLjjjBB++XVZ6QrfsDLHub+McUa2rs6f3326qiVPcE9WHAf71l84MKhSeORI/1XffXfmePW5gh1o5wgQl5aW5guyHW0e417wD5cTqKDWIuEZEeEp0/skRP64V4/0HIcju3qR2HAhtZ+L/26v6tN9dbWbq0+x5opO6OOi1KNkF5+46aoqf1hQxm+mhvFIehl/Oiss/KXTd4T3WPpEna6N9sBk0pe3FsFVxVdQ0HXhiuVXFG/bOjmlFQguQE+gXYW1DBZGdP3DFQFvUaTT0k4RKal9EyLu7NUjfVsxx3JLLQEtcStf7/IwrHvVf2/fGGHuLkuIN2d5KfVAj04n7hWz17q5cLCLLhFCsRscAiFOCZvq2hz3e9dr7TYbRYiWfXcbs1qFW8FdHrZ67Zrzv1uz+sIp5eWdegbbnmpcEmwD2gPGp9tMkmcn9wCmBs0AkciFnSJSvorqXpTz932FvdUb4QTn1aeEcNGQEB7+ppQz4p1cMjSEJ88N57bPS/nrsnIEeP37EcdnJxS7ldlr3Xx1nTUY/n9nhnLF+yWEOuHdKyJkiOvrlGGOvQuuKX94kg+Hsw6L2haq+gseK3XhDam/cMvh8zn27Ng+9nBm5pBxwbSjHi4BZgbbiLaO8ek2k+TZybcBLwXbjuOo5p1XVLzmt9lHT+us2txloCdxSLtmnF32+PAiIoKattdfPt3BunVBGr8O2k1TlbzMQ4PX7NgxdoKqs9bFGK2IwWlpaduDbURbxrgXms+VwTagCiIxX0ZFpkzql+ib2aNbepFIoT+rj5OjYzPC7jwQT/Yhf9YbDER9h+/nDy2xiqteVPHm5/VYsHzZVZ7t289MaSOCC8bF0GyM6DaD5NnJMcC0YNtREyoSOycqMmVCv8Syh7t3TS8RKfZX3Z2kbOjCsHs5Tb7b6q86g8GPeG1XJMUBD+hSXhaxcvW3F+5eu/b8qW53eLf6z2hVGNFtJkZ0m8dUIKi+wPpQkW4fd45KGd8vsej33bqkl4qU+KNep/ji/hX624QrHAsy/FFfoOmq2Rnn8Z+Ajsb7fI4dW7ZMWrl8+ZVnFBV1rTMSXStmUlpaWtdgG9GWMaLbPII3gNZIVKTH+9GdU8b3S8x/rGtsejmUNbdOEaKeCHlhzEOutxb4w8aAoVr0EA8HbEWXlQRy+ILFi2b0yzoy4IxAtdtCuIDvBduItowR3ebRZkS3Ap9Ir7djolPGJvU5+mSX2IXlUN6c+kRw3ur6Yuo7IX9IF3xtYuL8WXy1sheHE1u6nUpJIJ07d54xtYYkkG0V42JoBkZ0m0jy7OQooLEpUFoNPpG412Ojp4xL6nPkmS4xCz3QrFS0E52bUhaG3ZsRQZnffMctQZiWbL6RVya3dDulpZHLv1118QE7CWR7CwSeGmwD2jJtUnRFpLeIvCciO0Rkk4h8ISJD6ihfaL8nicgGP5kxkXYwz9krkvhybMyUsUl9Dr4QG73YC96m1pUo2eMzwn6yuxdHj/jTRr+h6n2AP+LA12LzjL1e59ZNG1NWZ6y4fHxxcWxSS7UTZHqkpaXFB9uItkqbE12xZvN/DMxX1YGqOgL4NdArwKa0OddCXXhE+v69S+yksUl99r0aE73EB01yFURJ6YjFYfe4k2Xnd/62sbkMZ+PiYWxukWSLqmTt3ZO8cMniGYNzcvqe1hJttDJGB9uAtkqbE12sKVpuVX2hYoeqrlHVhSJyv4hkiMg6EXmkrkpEJFxE/iEi60VktYg0dupXuxLdCtwiSX/rGjtxbL8+u96M7rxEodGrZ1ziS/gs9KFeFzmWrmoJG5uCQ70Hf8Gf/O4OUqUsJydh/tIl14bv2TO6OUkg2xpGdJtIW/yCjARO+jGLyLnAYGAc1hfidBGpSxjvAlDVZGAGMFtEGhRYxM74e3oj7W5TlDtk4F+6dZk4tl/i9vc6Ry1rrPiKEP1syLOj7nP9c2FL2dgYbubF/RGU+nUVXUlx56UrMy7N2rRxeqrXG9LZn3W3AYzoNpG2KLq1ca79Wg18CwzDEuHamAy8CaCqW4A9QK1+4WoMAAIRsT/olDkcg//YveuZ4/olbvsoKnJFY84VwXW369Mpr4c8lg7BW2/eQzOXTWOu32IaeDyuTRvWT1+3cuX3J5SWRrf4LIhWihHdJtIWRXcjNfcyBfiTqo62X4NU9dU66mlOKMYOl1Kh1OEYmtaj27jx/RI3fR7VaWVjzk11rkuZH/p/y8IoL20p+2pFNf83PJzkn6rk0K5doxcvXXLt8GPHEk71R51tmIFpaWlBjb/RVmmLojsPCBOR45kaRGQskA/cLCJR9r4EEakrNN4C4Id22SFAX6Chy1pbbQ6tlqbY4Rjx6x7dz5jQL3HDfyM7fdvQ85IchydkhP1ke3dys1rSvupcwOdrupFTY6aNhqJKcVZWv/lLFl8bs39f8iQrWXqHxwF09BtPk2hzoqtWWLTLgHPsKWMbgTTgHfu1VETWAx8CdfnZZgFOu+w/gRtVtaGrtIY11f72QqHDMfL+nt3HTOqbsG5up4jVDTknWkpGLg37aelw2bOjpe0DiNDijT/gjSbPybWSQMYuzlhxed6WzVNTA5QEsi1hXAxNoE3OM1XVg1iJIKvztP2qXj7Kft+N3UtV1VLgxiaaMLSJ5zWJ7K+yOZZ+DBS6pHSh+3lV8196i7zsf3U/5UfKcYQ4SLglgfDEcDz5HvY+uxdvsZdel/ci+nQr0uOep/cQf308IV2aHzYi3+k89d5ePYj1etc8mpXjmFJSWmfvJ0S8fb4I/VXeHe57V3/pG9dyU6tUPb/ikRAH2qSOhdsdum7zphRXXl7vVhHcvJViRLcJtLmebiuhrgE6v1K6v5Rj6ccY+PBABv1+EAVrCyjLrNohz/o8i4i+EQz+w2ASb0vk0NtW1MW85XnEToplwEMDyP6PldUnf3U+Ef0i/CK4lcl1Okff2bvnqal9E75dFh5W5wIUEWJeCPnbyJ85P1rkVyMqMYrViwayvaEDo8fx+WT/ju1nLF229JpT8/J6mwy4dROUsJhtHSO6jcTOFOH34OC1UXawjE4DO+EIcyBOIXJoJPnf5lcpU3qwlMgRVmbfsPgwyrPL8eR5wAnqVtSj4AD1Kjlf5dD9Av9liq9OjtM55ra4XiOn94lfmREetqm2ciKE/Dzko8kvhTw5398zG5zq2fcznmjUbAVVCg4fHpC+ZMm13Q8eHD7Bn/a0Y/o09gQReVBENtpz6deIyPiWMKxam6+LSKuJe21Et/E0a1CmsYQlhlG0tQhPoQdfmY+CdQW4c9xVyoT3DSd/lSXExTuLcee4cR9zE3tmLAXrC9j95G56fr8nR+cdJXZSLI6wlv+3Z7lcZ9wc12vEOX3iV6wNC611gPJc56rUr0PvXxqKu9lRzyq4g2cPh1HWIP9rRRLI5cuvKN22dVJrSQLZVuiRlpbW4C+TiEwALgLGqOqpwNnAvpYyrrViRLfx1Jj2vKUIjw+n+/e6s/vx3ex+cjfhfcIRZ9XB8x4X9sBb5GX7b7aT878cIvpFgAOcnZwk/V8Sg9IGEdEvgvw1+USfEc2B1w6w97m9FG9v+dg0mS7XuOvieg05PzF++YbQ0BqXBg9yHJyYEfaTrV3IP9rc9uJ0/5KJLGpQ+MTKSSDd5Z0C+n9tJ7iAxjw2xQHZFQPWqpqtqgdF5GF7JekGEXlJLFz2vlQAEfmTiPzR3j7LXkW6XkReE5Ewe/9uEfmziKywX4MqtT1VRJaIyM6KXq/dzuN2u+tF5Bp7f6qIzBeRD0Vki4i8bYcfQEROF5F0EVklIl+KSKNDhBrRbTwBz9DaNaUrgx4ZxIBfD8AZ5SS0V9XMLs4IJ4m3JjLo94NI/HEinnwPoT2qljny6RF6XtyTvGV5RCRFkHBLAoc/PByYCxCRAyGu8TPiew26KDFu6ZbQkJNmL8RI8anLw+4qGCz7dze5HdXcB/ltvf52n8+x+7ttZy5ftuzq0woKegRsUPTTTz/l8ccfZ9asWScdW7JkCY888gjFxTXfCNesWcOzzz7Ls88+y5o1awDweDy89dZbzJo1i4yME7HkP//8cw4dClg2pcY8+X0F9BGRbSIyS0RS7P3PqepYVR0JRAAXqaoHa6D7eRE5BzgfeMReNfo6cI29mtQF/KRSG/mqOg54Dvhbpf1xWAuiLgIes/ddjjUYOAqr1/14JRE9DbgXGIG1GGqSiIQAzwJXqurpwGvAHxtx/YAR3aYQ8B6RJ9+KulieU07+ynxiz4ytctxb5MXnseLTHEs/RuTQSJwRJwJplWWW4c51EzksEl+57/h/3ecOcPhbEdkTEjLhqvje/S9NiFuyPSRkV+XDoeLt92XoAzHTHKvXNqX6S/lofRdya/3/qJJ38OCQ9CWLZyRkZg5ucV9idUaPHs1111130v68vDx27txJTEzNESBLSkpIT0/n1ltv5dZbbyU9PZ2SkhJ27NhBXFwcP/nJT1i1yloZn5mZiaoSFxewGO0NFl1VLcRa2PRjIAv4p4jcCEwTkeX29M3pwCl2+Y1Yq0Y/B25W1XKsmUO7VHWbXe1sqsZBebfSe2Xf/Ceq6lPVTZwIjjUZeFdVvap6GEgHxtrHVqjqflX1AWuAJLvtkcD/RGQN8BDQ6BWJbXLKWJAJeE9373N78RZ6EacQf308zkgnR+dZT+Jdp3el7FAZ+1/eDwLhCeEk3JxQ5fzDHx2m1xXW9yz2zFj2PLOHnK9y6HlZwC/FQsSxMzRk4mUJvb2D3e7FTx7JTuzv9vQDcAhdXgt5PPIxz4zFL3ovbvB0rUgtXHcV79Y4J1cVT35+jyWbNqaO9HjCU2oqEwj69etHbm7uSfu//PJLzj77bN57770az9u+fTsDBgwgIiICgAEDBrB9+3bCw8PxeDz4KsWO/+abb7jooota5gJqplE53lTVC8wH5tsiezvWIoszVHWfiKQBlf3qyUAuJ4SyvoUpWst25TEDqfZeE5XLe7G0UoCNqtqsgVYjuo0n4D3dAb8ecNK+rtNPpKnqNKgTQ/5c++yovnf1Pb7tinYx8KFWkp5LxPldaOikSxLiPCPKyxc9cSQnqY/HkyhC6K9C3p2U7NiVfrf7nvpFUrX8QX4bKTX8iMrKIlZu3DC9S1FR11YZFW7r1q107tyZ3r1r7zAWFBRU6QVHR0dTUFDAKaecwrp163jllVeYNGkSW7duJS4ujs6dAxp7p8EB2kVkKOBT1Qrf/misVaCnAtn2atIrsRY2ISKXY4n6VODfIjIO2AIkicggVd0O/Airh1rBNVjug2uApfWYtAC4XURmA13tdu6n9sVPW4EeIjJBVZfa7oYhdo+8wRjRbTxmwMXfiLg2hYVN/l5inDu5rHzhE1nZg+I93riLnMtSBsv+xReVPzrWjavWFOVjWb6kH7tTK+/z+Rw7tm2deCwrq3+rzUnmdrtZuHBhjS6HymgtM+ocDgdXXHEFAF6vl7feeosZM2bw5ZdfkpeXx6hRoxg6tMVd1o2ZPhkFPCsisViZSrZjuRpygfXAbiADQES6Y4nnWXYP+DngaVW9QURuAj4QEZdd/oVKbYSJyHIsJ9qMeuz5GMsFsRarV/yAqmaKSI2iq6rl9iDcMyISg6Wff8OKB9NgjOg2HhPko6UQCVkfHjblvMT4sjFlZel/OZIzbCj7J60Iu3NNatlTSXlExVY/xaXu3Xfx1+OPe6rkHNg/YuOuXadNBEcr6dLXzNGjRzl27BgvvGBpRn5+Pi+++CK33XYbUVEnvmbR0dHs3r37+Of8/HySkpKq1JWRkcGoUaPYt28fTqeTK6+8kldffTUQotvgnq6qrsLKuFKdh+xXdY4/vqnqM5W252INdNXE31W1SixtVb2x2ueKFaqK1bO9v9rx+VgukIrPd1faXkMzY2mbgbTG02KpXgw2ImHfhoennN0nPuaW3j3TPa7ihBVhdx7rLwf3Vi96N389FoInTBX3MSsJpGvXrtPbRBLIXr16cf/993Pvvfdy7733Eh0dze23315FcAEGDRrEzp07KSkpoaSkhJ07dzJo0InZUCUlJXz33XeMGjUKt9uNiCAieDzNSnvXUNpb/rcWp9V/MVshJsJUoBAJXxERnjK9T0LxxJLSTe9lzUz8Ren96xf5kpMB+uruRWNZPrm0NHLFhvVn9SopiQnaIFlD+Oijj9i9ezfFxcU89dRTpKamMmZMzcksDh48yMqVK7nkkkuIiIhg6tSpvPzyywBMnTr1+KAaQHp6OlOmTEFEGDRoEBkZGTz//POcfnpA4uxHBqKRhqCqScG2oSFIbf4iQ80kz07+BpMNNTioFk4qKVvBwYvDvhp9ScljnX/Z5fDWUxwdJCdZa+WltLS024NtRFvC9HQbj+npBgNV7ZVLni8zNOaUvf/NHaR6eIvzgoE+oX+wTevglATbgLaGEd3GY/zgLUhUsR7rf1gPDD5I3sBD6u6TpeFdCukW6iFRIAFI2B8/ddk6766x5/a6ZI83KjZ/pWtn4TEpPA3pGCmUWhlGdBuJEd3GY3q6zSTEo6V9stg36KDmDD6oZf2OqLNHHrERZcQ7rPmSXWo7tyw05sjWQZcmkjcrbvHhfw2ZzBXzr+g0PrUcT/46156FG537urjF22EzewQBI7qNxIiuoUUQVV/PXA4NPKSZgw9o0YDDSu+jREaX0NvhI06smMSNjku88vQH9vg8B8Owl18uOvxR6qSel81PjBySeoZn4JQzPAPJloIdGa7t+w84jo5AzLzqFsaIbiMxott4CoJtQGuic7Ee7Z+pB4+7A7I1PNZyB/SpcAf4q60d/S9ZWBYWO8VXlFF5BRKLj3ycOqnn9+cnRg5NBeiunQde4D5toA+fZ5vz0IrVrl0UUTYGMd/3FsCIbiMxX8LGkxNsAwJNdXdA0hF1drfcAQm2O6BrvZU0k6KIXnv29D13DIDPs++k1WmLj3ySOrHnpfP7RA5LrdjnwOEa5k0YN8ybQBFlR1a5dmze7szs6xM1g2/+w4huIzGi23iaHfO1NSKqvl7HODggUw8POaCF/TNV4o4R1bmEng4fCU11B/gDRbyrxtyXj0g/APXl962p3JIjn6ZO6KHpfaOGnzRfN5KwnlM9I3pO9YxgvyNnfYZrR16OFIxGzArDZmJEt5EY0W08bVp0o4s0p/9h2x1wUD2J2RrRpYhuIdbsgESaEKqupdk07EcLPSGdUgHUV5QFvlpdFkuzPktRdH6/qBGptZVJ9HVLTizvhhtP0Xrn3kUbXPuiy8Vj0ok3DSO6jcSIbuNp9e6FULeW9Mli/6CDmj34oJbbswO6RJQTL1bUpkaF4wsmudH9txzuNe54iEeve/du6gk6tCzr81RF5ydFnZJaV7kQXJFjvAMmj/EO4KgU7spwbd+z35EzXOV4GEFD/bR8+pF2hhHdxtMqerqi6ut9lAMDMvVIhTugt+UO6OVQ4oPpDvAXPnGVrRl1jwsrhJ61z72jqCHnLs/6d6qqzu/feWRqQ8p31aj+57lH9/eh3u3OQxmrnbt8BVI6BsG/aZPbH3nBNqCtYUS38QRUdGOKNCcpUw8MOaj5Aw/hSczWiNhCuod4SRQrG2ujM7K2FdYm/2SZzxlaxT/r8xxscLDYFdlzUkHn9++cnNrQcxyIc4g3fuwQbzwllGevcu3c+J3zUIJXfIPqP7tDsj3YBrQ1jOg2nkx/Vxjq1uK+R9g/6JDmDD6g5f2y1NU9j9iIchLamjvAX2R1O3XNsS5DTw6hp8WNCte4IvuLVEXnD+h8ampjbYggtPtkz7CUyZ5hHHQc25Th2p6TJfmnIiayls2xtLS07GAb0dYwott4Tkqq2BBsd8D+gYf0yOCDWjTAcgd0jrLcAXFSKXZoR8fjDM/fcMqtPbAzsFbg8+bsAfo1tr6M7P+kqvrSB0aPbnIUsnhflxGXlo/Fg7dkg3Pf4vWuvZFluEchHXqFYo3ZnQ11Y0S3kay/YX1B8uzkLGoZzIkp1Oz+h/XgkAOaP/AQ3oQcDa/kDuiL9TLUwarT/m+9Opwn5UfzuXceoAmiC7Ay58sURdMHRZ/WrPCPLpwRo71Jk0Z7k8iVor0Zrh279jqyBqsQ35x62yjb6i9iqI4R3SYQXqYb+mSTYC8WKO97RF3d84mNKCdRoDvWy9AE9sdPWVYUlVBjQkqve1ezonKvyvkqRdH0wdFj/BJ3N1Yj+57jPrWvor6djsOrVrl2ludLyRiEMH/U3wYwPd0mYES3CbzxlHcfMC3YdrQ3ykJjjmwbfHWtMy7Ue6TZK9++zflfiqovfUjMGX4LeC6IY6Cv9+kDy3tTSvmx1a7dy7Y6D/T2iK/Fc+UEGdPTbQJGdJtGoxLRGRrGyjH370EcY2s6pup1o+V+mUGw+ujcFEXTh8aM9XumiXBCu0zwDEmZ4BlCpuRuyQjZfuSw5J2KcFJ+t3aA6ek2ASO6TcOIrp/Z0f/ihWXhXabUdlw9h3ZQe2rsRrPm6LwU0AVDY8a1WGr23ho77OLyM4Z58ZVtcu5fus61J6yE8tFIu4nJbHq6TcCIbtMwoutHiiN67t3T97w6U+543TuP4EfRBVhz9JupCguGRo+dItVmSvgTJ46wZG/fCcnevuRLyYGVrh3bdzmODFDRtjzH+nBaWpqJuNcEjOg2jT1AEa0oKV9bRRHfyjH35yJS56wOn2d3i2RhXnv0m6mqvgXDYsa3qPBWEK0RCdPdIxMU1d2OrNWrXDtKcqV4DEJ4S7ftZ0wvt4m0l8ecgDJ8y2YFVgTbjvbA5mHXLfSEdKo32Ix6j/VuKRvWHUufujlv2SINYJZWQaS/r+dpV5ZPmPijsqllyZ6+C0PUuSlQ7fuBlcE2oK1iRLfpfBNsA9o6edH9t2b2Gj+xvnKqZfngbdEYuOuPLZiyKXdpQIW3gjBCYsZ7Bk+5oSx1xKVlY7+L83ZJR1t9YKV5wTagrWJEt+mYL10z8ImrbPWoe5yVg9nUWta9dycB+K5uyF04ZWPu4qAIbwU9NHrwhe4xKTeVTes8wT1kWScNW4niDZY9teAB0ustZagR49NtOiswft0mszb5jpOC2dSGz70jYJGsNuYungIsOiV20kQRCVqnxIkj9BRvnzNP8fahkNJDK0N2bNvpOJzkE23Sijw/k2EG0ZqO6ek2keFbNruBRcG2oy2S1S15zbEuw2qdHlYdn2d/QAeZNuYunrwhd+ESVfUFst3aiCI8LtV9SsrNZdP7nVs+al1XX9QiNKhxbOcGse02j+npNo95wHnBNqItYQWzua07jehFqq8g4L27TblLJ6vq4uQuUycEs8dbnb6+7qf2Le9OOZ4CK+X8/i5u8QQ65bwR3WZgRLd5mMG0RvLtaT9fpw7n5IaWV19BJmiLzVyoi815yyYpuvjULimtSngBQnF1rkg5nyMFO1YELuV8CbC0hdto1xjRbR7fYkXOD3h81QcPHSK9qJCuTief9R8AwDPZWcwrKEQEujmdPBoXR0/XyeNUn+Tl8UKOFQb1jm7d+X5MDOU+H3cfOECmx82M2C7M6NIFgN9mHuKa2C6MCG/+E/6BuMnLCqMSGyy4AF73rj1AUEQXYEve8knA4lO7pJwpIi0yV7i5dKuWcn6NazeFlLZUyvnFaWlpZS1Qb4ehVd292xrDt2z2AguC0fZlMTG8lFh1QdPNXbrySf/+fJzUn5SoKGZlnzzrKNfrZVZONu/1S+Kf/ZKYlZNNntfLouIiRoSH80lSf97PywVgS2kpPvCL4JaFRmdtHXJNnFmzFgAAHfRJREFUo9MH+dw7SpvdeDPZkrd80tqj3yxX1QbNIsgrLeD2j39D6svXMe3l61h1YMNJZZbuXc15/7iZs165nivf+SkAOcW5XP7WXZz16g38d9vC42Vv/uhXZBbUHyu8IuX8tWWTxv2gbPKxoZ74+Q6VnQ29zgZiXAvNxPR0m8/XwMWBbvSMTp044C6vsi/KeaIjVuLTGqNrLy4qYkKnSGLtshM6RbKoqIjODgdl6qNy7MRns7P5bW//5GhcOeaBXYhjXGPP83kyo/1iQDPZmp8xUdElo7tOH19fjzdt7jOkDhjPi5f9nnKvmxJ31ftGXmkBD371FG9e/QQJ0b3ILjoGwKebvubKkedzyfCz+NEH93H+kCn8b/tiknsNoXfnxkUL7URYjyme4alTPMPZ78jZsNK1IzdbCkYhNDjdUS0Y0W0mpqfbfD6A1jOP8m9ZWUzfsZ1/5+fx0+4n/1APe9zEhZy41/Z2uTjscTMxMpJsj5dr9+zmlq5dmVdYwIjw8BrdE41lZ9JFC8vCuzRacFVV0ZJGpedpSbblr5y4+ujcFapaa1zfgrIilu9by7WnXghAqDOEmPCqOvfJpq85f8hUEqKtG1r3SMuV43K6KPWUUe4tR8SBx+fh1ZUfcMf4Gc2yO9HXbeT3y8dNvqEsxXG6e8DiMHWta2JVOVguNUMzkCDOA283bB42/L8EYRbDAXc5P9m//7hPtzIv5eRQpj5+2r3quMqrR3Nwq3JHN0uQn8/OJtwh3NT1RBo2tyo/3r+P5xISeS47i0NuD5fERDM9qvGdpOKInnuXjXu4KyJRjT3X5zmys7zgrZMvLsgM6jxm6ZhuZ48VkZOeFDce/o5ffvk4g7slsfnIDpJ7D+GRs+6hU2jE8TJpXz+D2+dhW/ZuisqLufmMK7ly5PnklxXy089+R1bxMX6dcgfbsnfROSySq5Iv8Ps1HJPC3RmuHXv2ObKHqjTYZz4rLS3tLr8b08EwPV3/8EawDajOhdHR/K/g5PnrvV0hHHKf6Khlejwn9Wbfyz3GpdExrC0pIUSEJ+PjeTGn8atSrWA29+U2RXABfO6dh5pyXkuzveDbCatyvlqpqu7qxzw+Lxsyv+P6077Pf296lU4h4fx92dtVy6iX9ZnbmH3ln3nr6id4eslsdh7dR3RYFLOv+gtf3PAyI3sP4esdS/je0BQe+M9fuP3j39ToG24qXTQq6Vz3qJSbyqb3SCkfkdHZF7EM5aTrqcabfjOgA2NE1z98DOQH24jd5Sd8vN8UFjAg9OSsMZMiI/n/9s48PMry6v+fkxD2sAUwYFiVZVg0KqiAQbRKFfeWShG11moba31fNWpt+7Ol9dXGaltrxeJPX8W9sWqrplZcIvumbLLMgJCEJQmEBBLIPst5/3gmkED2zMwzM7k/18WVmXnu537ODDPfOXPuc5+zqqKcUq+XUq+XVRXlTOtxYlNdqdfLkrIyruvVi0qfD/F3Xqz2tf4XkWvMvGWeuB7NFrNpDK87N2zCNiez+9imC9cXf7L+ZOEdFD+AQfEDOGfwOABmjZnB1oP1C3INih/AjJHn071zN/p178MFSWezvbB+J/OnVy7inim38v72z5mYOIanZj3ME8teCPjziEFiR/kGTZ5TM/XCedUpRx2e05fGakxDxcm/mT9//pqAG9ABMaIbABwuZyXwTiiv+UB+HnP37CG3poZLdu/i3ZIS/nyokGtzsrk+J4dV5eX8YuBAALZWVfLIActp7BMbS2pCAjfuyeXGPbnclZBwfFEN4G/FRaQm9EdEuKhHD7ZVVXJdbg6z+7QuK640fviOgsQLmy1m0xTqPRTWveZ2H9t04VfFizfUFd6BPRMY1Gsgu4v3ArByz3pG9R9e77yZZ17Euv1f4/F5qHRXsbHAyZkJJ/Z/5Bzex8GyIqYMTabSU0WMWF991Z76C6eBphudE6Z5xl78w+pLRl1Vfe72gb5ey1Fqt2C/HtSLdyBMTDdAOMc6LgaW2G1HOOCTTtXLLnpyry+2c6tTxGpR9VRXlzwjQOcAmhYURvQ8a93k/lcki0hnsOK6D378B9xeN0P7DOaPs37Bh06rPtIt51wHwMK1b/H2lo8QiWHuWVdxx+Qbj893179+w0PT72BEvyEUlR/hjvd+ybHqctJSbmfWmBkhfW4evJXbYvdt2NJp780P//ZXuSG9eJRiRDdAOMc6BMgGhttsiu1sOuvupYf7jWtX/zGve+82d9k74wNlU7AZ0XPiusn9rzwuvFHGZ0npKZfbbUS0YMILAcJf2LzDLzQUJUzYfLivo8XFbBrD594d7vVk65FTtuX8dUUfbVbVaNyt9bzdBkQTRnQDS9hlMYQST2yXY1vG/zihNcVsGsPn3htxG3dyy7ZOXlv076+jTHgPAO/bbUQ0YUQ3gDhczl3Ax3bbYRcbku/brDGxSYGYS31HBgdinlCzp2zb5DWHMrdEkfC+lJSe0lwqmaEVGNENPI/abYAd5A+aurYsfkiritk0hvoqS8AXDsW628Te8u2T1hz6cIuq2l43op24MaGFgGNEN8A4XM5VdLBWPtVx8Ydco+cGbLuuz7M3GxosHREx7C13Tlp96INtqlppty3t4KWk9JS9dhsRbRjRDQ4dytv96ryHcpCYgOXUet27o6IVzL5y13mrCt93RqjwVgOP2W1ENGJENwg4XM4lwPLmxkUD2cOvWl7dtV+ri9k0hc+T1635UZHB/ood564q/FckCu+LSekp++w2Ihoxohs8ot7breg2YF/usCuTAz6xr2x4wOe0kf0VO89dWfgvl6ra2desNVQBj9ttRLRiRDdIOFzOT4G1dtsRLKxiNg8eQaS99Vnr4fOW5oEODOSc4UBexc5zVhS+tzNChHdhUnpKvt1GRCtGdINL1Hq7rjE3tauYTWP43NlR+5M2v2JXsl94y+22pQkqgHS7jYhmjOgGEYfL+W+isOjz0fhhOwsSp7SrmE1j+NzZ0ZLf2iD5FbuSlx98Z5eqltltSyM8l5SectBuI6IZI7rB5yG7DQgkPulUvSH5XiFINQZ83oN9gjFvOFFQmX32soPvZIeh8JYBT9htRLRjRDfIOFzOz7Fa+kQFX0/8yer2VA9rClWfF606MxhzhxsHKrPPWnbwH9mqGk7pcX9OSk9pvgOmoV1E3P72COV+YBbQo7mB4UxRwoTN+7sPmf7mJ/MpOJILCPMufoCRiSeKgX2du5LML19GJIYYiWX21J9yxqCJHCzZx6LPH8Pn8zIn5V5GJo7H6/Py3EcP85NvP0rnuK6otzAbCIqghyMHKnPOWnrw7S0Xn3bjcAnwgmQb2A383mYbOgSmtGOIcI51/JwIXqDwxHY5tnzak6WvLH0y6czEiUx1XIXH66bGU033Lie68VS7K+ncqSsiQl7xbl767FEembOId1c9x7ih55MQn8j7a1/kzpnzWbL1n3SN686FY6z2cu7KVSu8VWsCspU4kjit6/AtFyfeOExE7Ox8/O2k9JRPbLx+h8F4uqHjT8CtwDi7DWkLG5Lv21ThqUrZXbCFW2b8HIBOsXF0iq3fX61L3Il9DdXuKmp388bGdMLtqaHGU01sTCwV1WVs3bOau2edCCH63Llt8gAy1m1me0EhPbt05sErrDK+i7fuZG3OXnp2sVoWXTlxDI5Bp2aiLd+Zw5psa6frBSOHMn30CAAyNzvZceAQg/v0Yu4FViry+tz9VNS4SfGPCRQHq3InLjnw920zEr+fJCKta9ERGP5uBDd0RKToikgi8DQwGWu7Yi5wL/Ceqk5o5VyrVLVNK/Eichvwiao2m9PocDndzrGOO4AVRFgsPT9xyrqy+CEpxUW76Nm1N68v+QN5xdkMGTCK2VPvrie0AJtzVvDBuhc5VllC6hXWTtLp46/j1S+ewOOtYe70+/jP+lf59jnzEDlRYkG9RW3Kz500Iolpo4bz1tpN9R6fPmoEM8Y2XhKioPQYa7L38t+XXURsjPDisnU4Bg2kZ5fO7Ck+Qtq3p/PGmo0UlBylf88efJm7nzunB3Tz3XEKq/aO9wsvIRbeEuC+EF6vwxNRH34AsT6l/wSWqOoZqjoO+CVwWivniQVoq+D6uQ1ocQlCh8u5Gni2HdcLOdVx8UWuMTeNAPCql31F35Ay7loenv08XTp15dNNfz/lnLNHXMQjcxbx45m/499fLQKgX/xp3Hvtn3jghmfp3KkrpRXFnNZnCK9k/Z6XPn2UA0eyq8DTpqI5ZwxIoHvnuOYHnkTh0TKGJfSlc6dYYmNiGDkgga15BxARPD5FVXF7vcTGxPDFjmwuGjWc2JjgfWQKq/aO/+LAW3mqWtr86IBxX1J6yoHmBolI2Un3bxORZ/23U0Xk1gbOGS4irWphLCLXi0hE/hpsKREnusAlgFtVF9Y+oKqbgONJ9f7/7OUissH/b6r/8Rki8oWIvAls8T9WVufYEhF5R0RcIvKGX+ARkfNEZKmIrBeRxSIySERmA5OAN0Rkk4i0tF7AL4E9AXgdQsL68x7cjcQMAOjbYwB9egxg+GkOAJJHTmdfUUONYy3OHHwWRUfzKausryEfrnuJqyf/kCVb/8nkM7/FrEk/4P01C6oI8C+vlbv28MfFy8hYt5mKmlNLwib27kn2ocOUV9dQ4/HiOlBISUUlXeM6cVZSIn/+dAX9enSna1wn9h0uYcLpiYE0r0EOVe0bl1XwZr6qlgT9YpCZlJ6yqL2TqOpCVQ1UAf/ridAQXEuJRNGdAKxvZkwhcLmqngvMAZ6pc+x84Fd+D/lkzsEKU4wDRgLTRCQO+CswW1XPA14CHlPVd4CvgHmqmtzSgiYOl7McuAMI+xXM7OGzlld1Tbig9n6v7v3o23MAB0us77cdeRtJ7FO/7O2h0jxqF2f3HdqJx+umR9cT60Pf5G+md48EBvZOwu2ptrIcYmKorD7iCaTtU88cxi9mXcJ9M1Po1a0LH27afsqY03rFc8nYkfz/pWt5Ydk6BvXuRYy/6cUlY8/g/pkpXJs8jo+37uSKCaNZm72XV1dt4LPtjX/RBIKi6v2OrII3CoIsvEeAHwdiIhGZLyIPNHI4VkReEJFtIvJJrXMiIneKyJcisllE3hWR7n7n6FrgSb8jE7ByoeFERMZ0W0Ac8KyIJANeYHSdY+tUNaeR89ap6n4AEdmE1WSyBEvoP/U7vrFAQXuMc7icnznHOh4D/l975gkmVjGbWacUs/netHtY9PnjeH1u+vcaxM0zHmL59g8BSBl3DZtylrF256fExnQiLrYzt1/2yPG4rary8YbX+dHlvwZgmuMqFmU9js/n5aqJZxwAAlYeMr5rl+O3Lxg5lP9d/mWD4y4YOZQLRg4F4KOvXfTu3rXe8bwjlpfeP74H/9q4nbsvncLrqzdw6Fg5A+KDlwFYVJ3n+LzgDde3Bs1TEekbhEv8V1J6Smvex938n4la+gEftOC8UcBcVb1TRN4GvovVzv09VX0BQET+B/iRqv5VRD4AMv1OTVQSiaK7DZjdzJj7gIPA2VjefN0K/k3te6+7BdWL9foIsE1Vp7Te1Cb5DZbXPTPA87YbfzGbw4gMOflYUv8z+fl3/1bvsZRx1xy/fXnyXC5PntvgvCLCPVc/efx+Yt9hPPxdqzFB1ZGne4MvIPYDHK2solc3S0C37j/AoN4Np8Eeq6omvmsXjpRXsiXvAPd8a1q94x9v3cnsSRPx+WO8tc/D7fUGzNbGKK7OG/t5wes7vjXoZhWRfgGc+uWk9JTXW3lOpaoe/xL2LyJPasF5Of7wH1i/UIf7b0/wi20foCewuJX2RCyRKLpZwOMicmedb8rJQPc6Y3oD+1XVJyI/wPJO28oOYICITFHV1f5ww2hV3QYcA9qU1O5wOX3OsY6bsGozDG2HfQHHNWbuMk9cjxmhup76KorBd4rAt5TXV29k96FiyqtrePTDz5k5fhS7Dx0mv+QoAvTt0Y3Z500EoLSyin98+TV3+LMQXl21nvIaN7EifOfcCfUW5LbmHWBIv9709ov3sIQ+PLV4GYN6xzO4T2hSaour88d8VvDajssG3UKAhHcdcFcA5jkFsb6kP/TfXYjVL/BkR6Z27WMRcL2qbvYL+Ixg2BSORJzoqqqKyA3A0yLyMJYXm4sVi63lOeBdEfke8AVNe7fNXa/Gv2j2jD+VpxNWuto2rDfOQhGpBKa0tlC1w+Usdo51fA+r4HlQahm0lqPxQ78pSJwaaK++SXzu3Bwgoa3n3zzlnFMeqw0ZnEzvbl2PCy7A3Zc2nrwy4fTEeotn1ySP45pGRwePw9UFYz7Lf23nZYNvURFp8+uE1dn3O0npKUEpKqSq+4C63vDwJobHAwV+J2YekOd/vM2OTKRgdqSFAc6xjruwvihsxSexNcsueirXF9t5dPOjA0dNWeZSn3vnxaG8ZiTSt3PiN5cPvrWviLQl9l0DXJKUnrKqLdcWkTJV7Vnn/m3AJFX9mYjMB8pU9amTzhmOFZ+d4L//ANBTVeeLyF1YxaD2YGUSxavqbSIyDXgBy0Oeraq722JvOGNEN0xwjnW8Ctxipw2bJv506eGE8SEXv6qS579Cy1sSH+zw9O182q7LB9/aW/xpfK0gNSk9xXT2DQMiMWUsWknFnztsB0X9xm8+3G9cii0X1/LA7quNYo7UHDzzk/xXjqr6DrXitOeN4IYPRnTDBIfLWQF8Bwh5aT1PbJdjWyb8pB8iIX8/+LyH99KOeG5HpKSm8Ay/8Ba2YPgK4J5g22RoOUZ0wwiHy7kLK4UslNtA2Zh87yaNiW1z9kB78Lmz99tx3UinpKbwjMV5i8qaEd48YHZSesqp2/EMtmFEN8xwuJwbgStpR8ZFa8hPnLLuWPxQe8IKgM+dYwShjZS6D41cnPdyuaqvofY6xVjlGk3rnTDDiG4Y4i+Mcy31N3UEnJo6xWzswuctDGTSf4ej1F004uO8lyt86qtbtKYUmJmUnrLNLrsMjWNEN0xxuJxZWDvvguYJfnXuiWI2dqDq86DVHaI9TzA56i4asTjvpSqf+gqw+pxdmZSeEnUNUaMFI7phjL+b8DysnTwBJWfYlSuqup0oZmMH6j2wmxM7lAzt4Ki7ePjivJdKveq9Oik9ZbXd9hgax4humONwOf8B/IgAViWr6NZ/f87wq84O1HxtxVuzuyWr74aWUXHUXfzTYU/MWGq3IYamMaIbAThczleAuwmA8FrFbB4qxv5GiPg8e6T5UYYWUAbMSsvI/MJuQwzNY0Q3QnC4nH8Dvk87F9d2jJ673BPXw3YvF0C9h1vV7cPQIAeBGWkZmcbDjRCM6EYQDpfzbazOGW36WX40fug3+YOmXhhYq9qGak1ZW9vzGI6zE5iSlpHZXFF/QxhhRDfCcLica4ALgFNbITSBT2JrNiTf60OkS/Ojg4/PvXc35v3XHtYAU9MyMhsryG8IU8ybPgJxuJy5wFTgs5aes2XCnat8sV3GBM2oVuJzZ4eiB1i08j5waVpGZrHdhhhajxHdCMXhcpZi7Vx7sbmxxX0dXxf3mzA9+Fa1HJ9nX1h43BGGAr8DvpOWkdmq2s2G8CHiipgbTuBwOT3Anc6xjp3AE1itherhie1S9vXE1D52FLNpCvUdDatuGRFACXBzWkbmv+02xNA+wuqDaGgbDpfzSeA6rP329diY/N8bNaZTWAmc+soKQQfbbUcEsRmYZAQ3OjCiGyU4XM4PgbOAz2sfy0+8cN2x+GG2FbNpDK87J9duGyKIRVgZClHXQaGjYsILUYTD5cx3jnVcDjxYE9fzPteYeWFZHNznzjbxyOYpAn6SlpH5nt2GGAKL8XSjDIfLqQ6X8w8bz/6vK5CYA82fEXp8noKezY/q0HwATDCCG52YHmlRzILUrM7AI8DDhMmvGlXV6pI/HwV6221LGHIUuDctI/Nluw0xBA8juh2ABalZ5wEvAxPttsXnLcqpOfpqWIY9bOYd4P60jMx9dhtiCC5GdDsIC1KzOgE/BuYDttXQ9VSuW+mpWjHNruuHITuAe9IyMj+12xBDaDCi28FYkJrVCyvccC821LKtPpaxTD15YbVRwybKgf8B/pSWkVljtzGG0GFEt4OyIDVrCPAYcDMNbKoIFlVHnt0GNeNDdb0wxIOVBvbbtIxM05SzA2JEt4OzIDXrHOAp4NJgX0vVW1Nd8hcFOuIWYB/wFjA/LSNzl93GGOzDiK4BgAWpWVcBjwLnBOsaPve+7TVl/xgXrPnDFAX+Cfw6LSPTNIo0GNE11GdBatalQBpWMZ2Ahh3cFUuWeas3dJR4bhXwBvB0WkbmVruNMYQPRnQNDbIgNWsccB9wE9A9EHNWl766Un1F0Z65cBBYACxMy8g8ZLcxhvDDiK6hSRakZvUBfgCkAmPbM1fVkb/kgDdac3RXYJXZfMtkIxiawoiuocUsSM26BEuArwH6teZc9VWVVpc+14sQZkqEgGzgNeDVtIzMbLuNMUQGRnQNrca/0eJi4AbgeuD05s7x1uzc6C7PDNoiXQgpxOrc8BqwIi0j03yADK3CiK6hXSxIzRLgfCwBvgEY3dC4mvL/LPXVOC8OpW0BZCvwEZbYrknLyPTZbI8hgjGi2wAi4gW2AHFYyeyvAE+raps+bCJSpqqnVNYSkUVApqq+08r5lgAPqOpXbbEnmCxIzRoPXA1cBEwBEgCqSl9ch+/o+Xba1gp2AyuB5cBiUw/BEEjCovJUGFKpqskAIjIQeBOrKtZvbLUqArh74aXbgG3AE34veAwwFa2eiPUlNsH/N1w4hmXvaiyhXZmWkRmWJTEN0YHxdBvgZM9UREYCXwL9sXZT/Q2YhOUF36+qX4jIbcAkVf2Z/5xM4ClVXSIiZcDzwCXAEeD7qnqorqcrIucBfwJ6YhWwvk1VCxqxbwmwCetnfS/gdlVdJyLnA09j1VSoBH6oqjtEZDxWlbHOWDWUvwvkA28DSUAs8KiqZrT/1WuaP865ugtWFsRoYNRJf/sH6bIeoADYD7iwRHYbsD0tI3NvkK5pMDSI8XRbgKpmi9XYcSBWrQJUdaKIjAU+EZEG45h16AFsUNU0Efk1lsf8s9qDIhIH/BW4zi/Gc7DqItze1JyqOlVEpgMvYXmQLmC6qnpE5DLgcSyBTQX+oqpviEhnLJGdBeSr6lV+G0JS3zYtI7Maq+fX5pOP/XHO1T2wKqAN9P+tvd0X6wsjrs7fOKznUYlVPKaizt9jWCKbD+QBh0wc1hAuGNFtObWpThdhCSSq6hKRPTSyeFQHH1DrRb4OnNwRYAyWaH4qImCJSYNebh3e8tuwTER6iUgfIB54RURGYW0/rf0Zvxr4lYgkAe+p6jcisgV4SkSewPK2lzdzvaCTlpFZjiWcuTab0ix14v61XA8Mx4q1X93EeX2Am1T1ueBaaAhXTLueFuAPL3ix0oUayzP1UP/17NrElCfHdATYpqrJ/n8TVXVmM2adPIdi1U74QlUnYOXSdgVQ1TeBa7G8wsUicqmq7gTOwxKO3/s9cEPLqazz/5WsqrktPK8P8NMg2mUIc4zoNoOIDAAWAs+qFQBfBszzHxsNDMUqRJ0LJItIjIgMwYq31hIDzPbfvglr91JddgADRGSKf944fxy2Keb4x14ElKpqKdZiX57/+G11nsNIIFtVn8Hqv3WWiAwGKlT1dawqY+c2/2oYWoqIzBeRB+rc3yoiw4F04AwR2SQiT/qPPSgiX4rI1yLyW3ssNoQKE15omG4isokTKWOvYS1yATwHLPT/PPdgLXhVi8hKIAfLc9wKbKgzXzkwXkTWA6X4BbMWVa0RkdnAM/7YaiesBbGmqlIdEZFV+BfS/I/9ASu8cD+QVWfsHOBmEXEDB4DfAZOBJ0XEB7iBu1r20hj81L5HAHJU9YYWnvcwMKFOdsxMrIXE87F+8XwgItNVdVnALTaEBSZ7wWBoAw3lXovIDPwxXRGZD5Sp6lP+Y1ux8pfBiqFP8D/+FNavoBL/sZ7A71X1f4P/LAx2YDxdgyE4tDTGL1gi+3zwTTKEAyamG8aIyAJ/7K/uvx/abZehReTij5OLyLlAbXW1Y1hZJrUsBm4XkZ7+saf7N+QYohTj6YYxqnq33TYY2sy7wK3+uO+XwE4AVS0WkZX+cMN/VPVBEXEAq/3pgmVYueCFNtltCDImpmswGAwhxIQXDAaDIYQY0TUYDIYQYkTXYDAYQogRXYPBYAghRnQNBoMhhBjRNRgMhhBiRNdgMBhCiBFdg8FgCCFGdA0GgyGE/B9GbR3dVih3FwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.set_title ('class_distribution', y = 1.08) # 1.08 to move title up slightly\n", + "\n", + "# Setup pie chart with autopct to round off floats\n", + "ax.pie(class_dist, labels=class_dist.index, autopct='%1.1f%%',\n", + " shadow=False, startangle=90)\n", + "\n", + "ax.axis('equal') # Make the pie chart a circle rather than elipse\n", + "\n", + "plt.show()\n", + "df.reset_index(inplace=True)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we have an idea of how the classes are distribution. We can see the bass drum constitues a disproportionately small amount of the data. In order to even out the data we would have to throw out a lot of data which is not ideal." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "signals = {}\n", + "fft = {}\n", + "fbank = {}\n", + "mfccs = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "def calc_fft(y, rate):\n", + " n = len(y)\n", + " freq = np.fft.rfftfreq(n, d = 1/rate) # d is our spacing between signal (time that passes between each sample)\n", + " Y = abs(np.fft.rfft(y) / n) # Find the magnitude of our fft, scaled by length of signal\n", + " return(Y, freq)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "# Grab a sample for each class then calculate its signal, fft, fbank, and mfcc\n", + "for c in classes:\n", + " wav_file = df[df.label==c].iloc[0,0] # Use iloc to select by position\n", + " signal, rate = librosa.load('data/wavfiles/'+wav_file, sr=44100) # Read in signal and rate with sr coming from scipy.io\n", + " signals[c] = signal\n", + " fft[c] = calc_fft(signal, rate)\n", + " \n", + " bank = logfbank(signal[:rate], rate, nfilt=26, nfft=1103).T # Get nfft with sr / 40\n", + " fbank[c] = bank\n", + " mel = mfcc(signal[:rate], rate, numcep=13, nfft = 1103).T\n", + " mfccs[c] = mel" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hcZdnH8d89W7PpPaQuKSSEjnRDR1pAsSEKCOgroKgoCgQISAcrKipY6QiIAkroSIcACYYWEiC9957sZnfnfv94zobZ2dmamZ3Zne/nunKxc8pz7gl59pxzP83cXQAAAAAAAMgtsWwHAAAAAAAAgPpI2gAAAAAAAOQgkjYAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOQgkjYAAHRAZubN+DM3Ovb22p9zgZmdZGYvmtlyM9tiZvPM7GEzOzbN13nezJ5PZ5kAAADpZO6e7RgAAECamdkBSZsekvS2pCsTtlW6+//MbISkbu7+v7aKryFm9n1Jv5H0N0kPS9okaYSk8ZI+dPeL0nitsZLk7tPTVSYAAEA6kbQBACAPRD1pXnb307IdS2PMbL6kqe7++RT7Yu4eT8M1Sty9cnvLAQAAyDSGRwEAkOeSh0eZWXk0fOpcM7vBzJaa2QYzu9vMysxspJk9aWYbzexjMzsjRZl7mNm/zWxNNMTpFTM7uBnh9JK0NNWO5ISNme1oZveY2QozqzSzaWb2+aRjroy+y661MUt6INpXb3iUmfUxs1vMbFFU5gwzOzvpmAFmdoeZLY6OWWJmj5pZv2Z8PwAAgGYrzHYAAAAgZ10i6XlJZ0gaK+lnkuKS9pL0Z0m/kPRtSbeZ2RR3f1+SzGxvSS9J+p+kb0naLOlcSc+Y2UHuPrWRa74h6Qwzmy3pEXf/MNVBZjZE0uuSlkv6oaQVkr4i6Z9mdpK7/zvplEck/VXST6PvkKrMbpJekdRJYRjZHEnHSLol6p1zc3ToXZKGSbpQ0gJJ/SUdKamske8FAADQYiRtAABAQ2a5e20vmiejnjKnSzrd3e+WJDObIumzkr4k6f3o2J9Lmi/pCHffGh33pKT3JF0u6aRGrnmupAcVEkQ/M7NVkp6WdJu7P5Vw3JWSTNKh7r4qIcYhkq6WlJy0+a27/6aJ73u+QjJmN3f/KNr2jJn1kPQTM7vF3aslHSjpUne/J+HcfzRRNgAAQIsxPAoAADTk8aTPM6L/Plm7wd3XKPR2GSJJZtZJ0qEKSYy4mRWaWaFCguUZSYc0dsGoZ81eURnXSZom6fMKCZmJCYceK+kxSetqrxFd50lJe0S9ZhI91Izve6xC7505KcrsrdDbSJLelHShmZ1vZruZmTWjbAAAgBYjaQMAABqyJunz1ka2l0Y/95JUoNCjpirpz3cl9TSzRp8/3L3G3V9094nufpSk4ZLeVejt0jM6rJ+kr6e4xs+j/b2Til3S2DUTyjwkRZm1vWhqy/yKQk+eiyS9I2mRmV3R1PcCAABoKYZHAQCAdFqrMGfM7yXdmeqAlq4A5e6LzewvCkuBj1KY92aVwrw5P23gtMXJxTTjUqsUeg2d38D+mVE8yyWdJ+k8MxutMOfPVQrz6tzSjOsAAAA0C0kbAACQNu6+ycxekrSHpLdamqAxsyHuviDFrjHRf2tXlnpCYW6Z9919S6sDrusJSd+TND9KzDTJ3WdKutTMzpW0a5riAAAAkETSBgAApN8Fkl5UmIfmrwpDk/pI2ltSgbtPaOTc98zsOYU5aOZI6ibpeIUJih9w9/nRcVco9Lh50cx+J2mupJ4KiZPh7v6NVsR9k8LQp5fM7CaFnjWdFRJGB7v758ysu8LcPPcozPFTJelz0bWfSlkqAABAK5G0AQAAaeXub5nZvpJ+Ium3krorDB16S9KtTZx+sUKS5mqFpbRrJH0oaYKkXydcY76Z7aOwitT1kvoqDG96T9IdrYx7nZkdpJAQuljSIIXhXjMl/TM6rCL6Ht9SWGkqHu0/1d0fac11AQAAGmLuzRniDQAAAAAAgLbEKgcAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOQgkjYAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2uQgMxtqZhvNrCBL199oZsOzcW0AANLFzMrNzM2sMPr8vJn9X7bjAjoCM7vSzO7ejvNvNbPL0xkTAHREeZ+0iR7g1phZSRZjmGtmR9V+dvf57t7F3WuyEU907dlRbLeb2bXZiANoz5JfFgFsHzP7mplNiRoWlpjZ42Y2LttxAR1dpuqeu5/r7tekIb7DzGzh9pYDdBSNNVCk4/nUzM40s5dbHyFaKq+TNmZWLulgSS7ps1kNpoPihRVtIUp8bokeKNeY2SQzG5LtuACkh5ldIOnXkq6X1F/SUEl/kPS5bMYFdHSZqnvZ6k0O5IqEZ9cNZrbWzF41s3PNLK/fz5Favv+j+LqkyZJul3RG7UYz62RmvzSzeWa2zsxeNrNO0b7Pmtn7UeV63sx2TjjPzWxkwudtvVTMrI+ZPRqdt9rMXjKzmJndpXAD/E/0wnlRiu7cvczsNjNbHL2QPtzUF4vKWRKd83+JsSVnX5OzpbXHmtnZkk6VdFEU23+i/RPMbFb0S2a6mX0+qaxXzOwmM1st6cqW/A8BtsOJ7t5F0g6Slkm6OcvxNMiCfP/9CzSLmXWXdLWk89z9X+6+yd2r3P0/7n5hdC+tvS+tMrMHzKxXM8qNmdnE6F6/3MzujK4FQE3XvRTH/8PMlkbPzi+a2S4J+243s1vM7DEz2yTp8KTn5MPMbKGZ/Siqj0vM7KyE80vM7BdmNt/MllkYWtXJzDpLelzSwOhZdaOZDcz4Xw6QHie6e1dJwyTdKOliSX/NbkjIRfn+0vB1SfdEf44xs/7R9l9I+pSkgyT1knSRpLiZ7STp75J+IKmvpMcUki3FzbjWjyQtjM7rL+lSSe7up0uar+iF091/luLcuySVSdpFUj9JNzV2ITM7VtIFko6SNFLSoc2Irx53/5PC383PothOjHbNUuih1F3SVZLuNrMdEk7dX9LsKNbrWnNtoLXcvULSg5LGSpKZjTez/5nZejNbYGZX1h5rZqVmdnf0orfWzN6s/T0QJSBnR8nJOWZ2amPXNbOC6IFypZnNljQ+af/zZnadmb0iabOk4ZY0NNIS5gdISN6eFcW9xkILzL5m9k4U7+/S87cG5LQDJZVKeqiB/d+XdJLCvW6gpDWSft+Mcs+M/hwuabikLpKoU8Anmqp7yR6XNErh+e8thWfIRF9TeC7sKinV0IoBCs+WgyR9U9LvzaxntO+nknaStKfCs+0gSVe4+yZJx0laHD2rdnH3xc2MF8gJ7r7O3f8t6SuSzjCzXc2se9SYsCJqXJhY2+BnSfNJWeohTyPM7I0oifpIQ40Z0XX+GiVKF5nZtda8nnBmZjdH5c8wsyMTdpxlZh9Ez9CzzeychH0pOzJE+y6OYthgZjMTy8x3eZu0sTAWd5ikB9x9qkIi4mvRP5pvSDrf3Re5e427v+rulQoVaZK7P+3uVQrJnU4KyZ2mVCn0ABgWtVK85O7ejDh3ULgZnevua6JzX2jitJMl3ebu77v7ZoXEStq4+z/cfbG7x939fkkfSdov4ZDF7n6zu1e7+5Z0XhtoipmVKdTVydGmTQoJ2h4KiZRvm9lJ0b4zFB4Qh0jqLelcSVuilrvfSjouagE5SNK0Ji79LUknSNpL0j6SvpTimNMlna3wwDqvmV9pf4WH4K8odFG/TCEhu4ukk82sVUlZoB3pLWmlu1c3sP8cSZe5+8LoXn2lpC9Z08NzT5X0K3ef7e4bJV0i6ZRmnAfki6bqXh3u/jd335BQD/dI6r32iLu/Ej0/VqQookrS1dGz7mOSNkoabWamcI/9obuvdvcNCsO1TtmO7wbkHHd/Q6GR/2CFHuPdFRoVDlV4lj2r4bPr+brCO+1ASdUKz7Wp3BHtH6nwDHu0pOZM2F/bSN9H0k8k/SshMbRc4Zm4WxTzTWa2d7QvZUcGMxst6buS9o2evY+RNLeZ37XDy9ukjcLL2lPuvjL6fG+0rY9Cq8KsFOcMVMKLlrvHJS1QyPY35eeSPpb0VJRxnNDMOIdIWu3ua5p5fG2cCxI+L2jowNYws6+b2bQoQ7pW0q4Kf28ZuR7QTA9H/x7XS/qMQp2Tuz/v7u9GD4nvKPSWq010VCk8lI6MErRT3X19tC8uaVcz6+TuS9z9/Sauf7KkX7v7AndfLemGFMfcHiVTq6PEb3Nc4+4V7v6UQgLq7+6+3N0XSXpJ4QYLdGSrJPVpJJkyTNJDCfekDyTVKDwMNqbOPT36ubAZ5wH5oqm6t03U2/RGC8MU1+uTl62WPB+uSkoQbVboAddXocf51IR6/kS0HehoFiuM9PiKpEuiROhcSb9UaPxrrrvc/b2oN9rlCg19dXrQRL3Lj5P0g2j443KFER3NSYguV3jurYoa8Wcq6mXu7pPcfZYHL0h6SiERJTXckaFGUomksWZW5O5z3T3V+3heysukjYX5aU6WdKiFsbdLJf1Q0h4K/4gqJI1IcepihYfD2nJMIamyKNq0WeGmUmtA7Q9RhfuRuw+XdKKkCxK6fDXW42aBpF5m1qMFX3GJpMEJn5MnZN3UUJwp1InNzIZJ+rNCJrS3u/eQ9J4ka+gcoI2cFP17LFH49/mCmQ0ws/3N7Lmoe+k6hd40tQ+Rd0l6UtJ9FuZ/+ll0o9ikcLM8V9ISCxMbj2ni+snJ0lQ9aVqT0FyW8POWFJ+7tKJMoD15TeG+fFID+xco9IrrkfCnNEpsNqbOPV1hfrlq1a1jQD5rqu4l+prC5MRHKfQOKI+2p+P5cKXC/W6XhDrePZrHbnvKBXLRIIUGhGLVb1hoTkeBWsnPpEWqm0SVwj2wSOFZtzYh+keFIY5NWZQ0amSewrOwzOw4M5scDX9aK+n4hGun7Mjg7h8rTEFypaTlZnafMT/VNnmZtFG4+dQozHmxZ/RnZ4VW669L+pukX5nZwKjl4EALS4I/IGm8mR1pZkUK3bsqJb0alTtNYYhVgYV5ZbYNWzCzEyxM7msKPQFqoj9SeEAcnipQd1+iMEb4D2bW08yKzOyQJr7fA5LOMrOdo6EiVyTtnybpC2ZWZmFy4m82UlZybJ0Vbo4rou91lkJPGyAnRD1m/qVQv8Yp9KL7t6Qh7t5d0q2KHiKjDP9V7j5WYQjUCQq/A+TuT7r7ZxQSuTMUkpWNWaK6CdKhqcJL+tySBCqQl9x9ncJ97PdmdlJ07yqKHgp/plCnr4saFWRmfc2sOSvb/F3SD81sRzProjDc4v7mDgUBOrpm1L1EXRWeiVcp3NeuT2MccYV78E1m1k+SzGyQmR0THbJMUm9jInG0c2a2r0Ji5mGFHinJDQu1jRHNeX5MfiatUkiAJlqgUG/7JCREu7n7LmraoOi9NvEai6N35n8qTCPSP2pQfUyfPHs32JHB3e9199opTFxhLisof5M2ZyjM+TLf3ZfW/lGYgPBUSRMkvSvpTUmrFf7BxNx9pqTTFMYYrlT4h3aiu2+Nyj0/2rY2KidxladRkp5RGJ/7mqQ/uPvz0b4bJE2MMpw/ThHv6QoVbYZCV7QfNPbl3P1xhXGLzylkMl+LdlVG/71J0laFm9wdqj9RXKK/KnRTW2tmD7v7dIXuea9F5+8m6ZXG4gHakgWfk9RTYZhEV4UhhhVmtp9Ca2DtsYeb2W5Rd9H1CvWsxsz6W1gprrNCvdmoT5KsDXlA0vfNbLCFiRObMwRymsIcGkVm1tA8OEDec/dfKUywP1Gh0WCBQo+6hyX9RiEx+5SZbVCYz2r/ZhT7N4Xedi9KmqPQo+B7aQ8eaMeaqHuJ7lRoaV8kabo+mVcuXS5WeKadHA2/ekbS6CjGGQpJ2NnR8yqt82hXzKybmZ0g6T5Jd7v72wrPldeZWdeoUeICSbWTD0+TdIiZDY2SlZekKPY0MxsbNeBfLelBd6/zLBt1DnhK0i+jGGJmNsKaN19iP4Xn3iIz+7JCB4jHFHoIlSj8vqg2s+MU5smp/a4pOzKY2WgzOyJK+lQo9K5r6tk7b5g3PRcu2jkLy5K/J6mEFkR0RGY2V2EeihqFzPw8STe4+z1m9iWFRGMvSS8ojLPv4e6nmdlXFbphDlZIzNyvcFPsq3Dj3DMqb5qk70RJy4ZiKFTo8vl1hZvQLxQSwUXuXm1mzyvciP+ScM5whQfNXaLYZknqFcVWrvAiWVRbb81soaTTahO+FlYOmOHu17bubw4AAABtLeHZtVphHsXpCkmZW929JmoAvFlhQt4Khd5m10Y9z2Rmv1foJLBSoYPBn1T3mfM1SUdKGqPwjHmWu69Mfr6Mkj43KnQ86KowufBP3f2+RmI/U2Fy8P8pdC5YJum70fyLMrPzFHrplUj6j8IQrI/dfaKZ/VCho0NfhdUe/+ju15jZ7pL+opD8qVIYyXK2sxqcJJI2HZaZfV7SJIXhTHdIirt7c8YkAwAAAACAHJCvw6PaPTO71Mw2pvjzeHTIOQrd0mYp9D74dtaCBQAAAAAALUZPGwBoJjO7VWFeq2R3u/u5bR0PAAAAkG488+YWkjYAAAAAAAA5iOFRAAAAAAAAOaiwJQf36dPHy8vLMxQKkNumTp260t37ZjuOVKibyGe5Wjepl8h31E0gN1E3gdzUUN1sUdKmvLxcU6ZMSV9UQDtiZvOyHUNDqJvIZ7laN6mXyHfUTSA3UTeB3NRQ3WR4FAAAAAAAQA4iaQMAAAAAAJCD0pq0eW7mcj03c3k6iwQAAAAAAMhLLZrTpiln3famJGnujePTWSwAAAAAAEDeYXgUAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOQgkjYAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkINI2gAAAAAAAOSgjCRtlq6ryESxAAAAAAAAeSMjSZvK6ppMFAsAAAAAAJA3GB4FAAAAAACQgzKStHHPRKkAAAAAAAD5IyNJmz+9NDsTxQIAAAAAAOSNjCRt7n19fiaKBQAAAAAAyBtpS9psrKxOV1EAAAAAAAB5L21Jm9Ubt6arKAAAAAAAgLzH6lEAAAAAAAA5iKQNAAAAAABADiJpAwAAAAAAkIPSlrQxS1dJAAAAAAAAoKcNAAAAAABADiJpAwAAAAAAkIMylrRZsHpzpooGAAAAAADo8DKWtPnH1IWZKhoAAAAAAKDDy1jS5rfPfpSpogEAAAAAeWRTZbUe/t+ibIcBtLnCdBXE6lEAAAAAgEy44pH39c+3FmpIrzJ9aljPbIcDtJm09bTZUFGdrqIAAAAAANhm6fotkqTNW3nvRH5JW9LmvzOWp6soAAAAAADqMTHEA/mFJb8BAAAAADnt7QXrsh0CkBUkbQAAAAAAOW1jZRgWtXbL1ixHArStjCZtaisWAAAAAADb67v3/i/bIQBtKqNJm7cXrM1k8QAAAAAAAB1W2pI27l5v2+wVG9NVPAAAAAAAQF5JY9Km/rbbXpmbruIBAAAAAADySvqSNim2zV65KV3FAwAAAAAA5BVWjwIAAAAAtBvlEybp5mc/ynYYQJsgaQMAAAAAaFd++fSHisdTjfcAOhaSNgAAAACAdmf3q57KdghAxmV0ImIAAAAAADJhY2V1tkMAMi5tSZt4A1mbiqqadF0CAAAAAAAgb2R8eNTj7y3J9CUAAAAAAHmohnlt0MFlPGnzw/vfzvQlAAAAAAB56K8vz852CEBGFaarIPKbAAAAQMPKJ0yq83nujeOzFAnQccxbtTnbIQAZlb6eNsxEDAAAADTbus1V2Q4BaPd4C0VH1yZLfnNDAgAAQL5aX1FVr5eNJO1xddstV1w+YVLKGID2bv0W3jXRsaVteFRjUt2QZl57rEoKC9ri8gAAAEDW7H5l2yVnEqVK0pxz1xT98fR9shANkBmPvrNE1560VT3KirMdCpARaetp09JuaaMnPqGPl29I1+UBAACAnFNZXZOV6zbUq+bJ95epfMKkrMUFZMJNT3+Y7RCAjGmT4VENOepXL+rsO6dkMwQAAAAgI6pr4ho98Ylsh5HS6IlPMFwqzW55fpZ2uaL+/+/T/vK6yidM0ppNW+vtq4m7nLlBt9uSdRVatbFSl/zrXS3fUJHtcIC0St/qUa38XfPU9GUpbxj/+s5B2ntoz+2MCoAkubv+/sYCLd9QoR8ctVO2wwEAIC+MvOzxJo8pnzApLatItTYBs6myWp1L2mTGhIx6f/E6jf/ty3W29Sgr0rQrjt72+cbHZ+jWF2bpC3sN0q++smeLynd37XjJY5Kkcw4ZrkuO31mSFI+7hl/6WJ1jG/p/sdc1T0uS/vPdcdptcPc6x8245liVFjF1RGs9NX2Znpq+TJL09zfmS5LevfJozVy6Qf27lUqShvQqy1p8wPZI45Lf6c0Qf+EPr0qSbjtrXx0+ul9aywbyzRWPvK+7Js+TJH3viFEqiFmWIwIAALXufX2+vrb/0Faf/5eXZrf63F1+8mSdz3NuOF5m7e85ITlhI0lrN1fVSYrd+sIsSdK//reoyaTNmk1b9eeXZuuiY8fUS8z88cXZ+uOLszX3xvH1EjbNceLv6sc65vLQQ4fkTfrs1sRcUr//2t46fExflRW3/6QlOra0/QuNZ6hX31m3vSlJemXCERrUo1NmLgJ0cLUJG0mqqokr7qY3567WQSP6ZDEqAAAgSZc+9O52JW2unfRB2mL55h1T9Lcz901bec31wocrdMbf3pAkHTi8t/5+9gH60i2vasq8NXWOu+/sA/Tihyv0ncNHqktJoV78cIX227FXo2WXT5ikD689rs62/81fo70a6dVf2yvmD8/ParTcdBtz+RNp6XmFpp1371vbfj7tgKE655AR6tu1hKQZck7Wh0c116dv/K8k6Z/fPlCfGtb4L2YADXvxwxU6+66p2z4fPKqP9hrSQ0vWVei/M5Zrl0Hddec39stihADas6qauN6cu1p7DempqnhcpYUFKi7M6hR6QIeROEQnU/47Y3nahmw1V3Ly47XZqxpMiJzyp8mSGk+mpLLTxLpD1T7/h1c1+ZIj1atzcb3fUe8tWteistOtoqqGxEEbu3vyfN09eX697Z8Z21/jd9tBB43srX5dS7MQGdBGS36n0xdveW27yzhoRG+dsPtAfWZsf/XpUtwuu4ACrZWYsJGklz5aqZc+Wrnt84sfrtAXb3lVP/3i7hrcs5Mqq+LqXlbU1mECaCV318I1W1RWXKCNldUa1ruz3F3zV2/eNq6/pDCmuEs/f3LmtuEC7ckVJ4zVvuW9NKp/FxUVxFQTd8XdU77kxOMuM3GvR857Z+Fa7T64R8p9s1Zs1JG/fKFN4ymfMEmPfm+cdh3UfdvnWn88/VM6566pmjh+Z31z3I4trl/rK6qytgx6ogNueDbbIaQ05vIn9PLFh2twT+Zgybanpy/T09FcOQ05frcBqqyK6/yjRmm3Qd3lLsWYigBp1O6SNunw6qxVenXWKl360LuNHvfZPQbqkuPHqLSwQJ2KC1RcELLwW2viqqyKq7ImLJXYo1OxigqsWTcsd+fBETlv6rw1OupXnzwcTjhujEoKYxrRt4sO2alvvePjcVdFdY1KCgu0papGy9dXqDAW09aaGnXrVKTenUtk4gYGtFZ1TVz/eWexfnj/29kOJSdc/ej0bIeQUklhTL/+yp4yM40Z0FWFBaYuJYXqUlKowgJ6G6Fxn/3dKyl7t8xYul7H/vqlLEQknXBz/blXJOmcqAHo2kkfNDg06+PrjtNJf3hF7y1an7H4OrJxP31O7191TIeYJLqje+zdpZKkZ2csb3UZh43uq1dnrVK30iJdfsLOeuzdJdp9cA99ce/BevL9pTpoRG8N7V2mj5Zt1Mh+XVRcENPWmrhKCmO8W+aBtP0WWLpuS7qKyhn/fnux/v324myH0eFdevyYbIcgSfrqfkPVtbTj9SiZtmDtdpdx4+MztrsMM6lTUYE2b61R19JCFRfE1K1Tkeas3KTy3mUqLIhpeJ/OqqiOa1CPUvXrWqriwpi6loZfUxsqqjV98XrNXrlJ+5X31JrNVVq5sVK7Duqu/81fo7Wbq7Sholqj+neJhmesUU3c1atzsQZ0K9VHyzfo0J36abdB3bVpa7Ven71Kh4/ppw0V1SoqiKlbp0J1LS2SKQzvcNe26dWTl+Ks/Vg7Afsnn5s+5pP9qc9NPK7B8mvP3Y54av9z26tzNX63HTQ0YUWFxHu/yeptT3w0qHNsAw8Nn5xXv6xGy4v2fHPcjh0y4ffU+0t19l1TdcFndlJJYUw17orHXTVxbfv5d899nO0w0QKV1XF9+563mj4wQ/Ye2kPjdx+oa6Kk1veOGKmy4kJtrY7rpmc+3Hbc5/YcqEemheebw0b31dJ1FepWWqQ35q6WJHUtKdQho/vqifeWqibuGtG3s2at2KTvHzlK8bjr8feW6MyDynX6geVt/h3bwt2T52niw+/p4mPHqLQopsKYqSAW/nvRP9+pc+wPjhqlksICFcSkmJliZiqImWIx0+PvLmnxtTvSEtzNWTkLjUucJPqgEb316qxVDR57wPBeOmrn/urVuVhf2HtwW4SHNHp+5gpJ0sqNlTr/vmmSpCffX6afPzkzm2HljJLCmCqr45Kkn5w4ts6iKqmmaUl+dt+2PdW2VOenPK7588GkOnRIrzIdu+uAZpeRyFpy8X322cenTJmSct+Rv3xes1ZsalUQQC5oarJrM5vq7vu0YUjN1ljdvOf1ebrsoffaOCJkWnICpTZhYvX218+OJKY/am+AuWzW9cc3uuJZrtbNxuql1PTLWcwyN8k/sL2KC2L68LrjGj2mo9ZNIJftMrCbJn3/4EaPoW4Cbe+IMf2anOS9obqZtp42RXT7bRPlvctUVeOKxaSaGtfidRX1jhnQrVTdOhVqVP+uKjBTYczUs3Oxlq2vUMxMpUUxFRXEtHjtFnUuKdSGimoN7tlJhTHTlqoaDe1VplWbtqoweknq3qlIGyqq1bmkUAUxU0lhTFU1rqICU3U0j0CXkkIdu8sAfbxioyqqajR35Wbt2Kez1ldUSQovlIUxU1VNXFu21mhkvzi/e30AACAASURBVC6qjruG9+mcM90+O3XQCd9O3X9Y2pI2nYsL9Jmx/fX2wnX69mEj1KusWPe9OV+j+ndVzKSy4kLNWblJVTVxxcy0aM0W7bdjL1VHc0oM7F6qLVU1KozFNKp/Fy1cs0WlRTEdMLy3Vm3cqjfnrlZ5784a1rtMrvBveUtVjbZsrVH3siK5h2REdY2rsrpGGyqq1amoQO7S5qpqdS0tUjzuWrR2iwpjpu6dirR0fYVq4q6xO3STTNpYUa0uJYUqjjL2RQUxFRaYNlVWqyBm2lxZoy6lhSqKRb/TahMdrUiSJHc8ST6mqTLrHJOhrq+1ifva8hMT+XV7/aj+/jrlJB6buoyWHJt4WgfsZCNJeufKo7VkbYUGdC+NWvITWumjOViqauIaRWt1h5bYeljryDH9tGrTVh0yqo8GdO+kjZVV6t25RN07Fak6Hn6/bq2Ja9/yXmG4dnWNigpi6tO1RGs2bdXyDRXaZWB3VVbFVVwYU3FhTBVVNZqxdIN6lBUpZqZenYv18fINGtyzTL06F2vN5q36cOlGlfcp0/TF67XzDt0Ud1dFVVwFMdNHyzbo8Ciu3p2LVVmV+wnf1pp+9TGqjrtiZqquias67qqJu6rjrjWbtirurlkrNmr/HXurd5dixWt7x23rLeeKu7ShokpHtGIemj0Gd9d+O/bSn1+ak4Fvh/ZmzyE9dPNX91J13PWD+6fp7agH9YXHjFY87tptcHftNqi7CgtiipkabeQAMqWsuEC9uxRr2bpKDe7ZSZ2KCzRz6QaNHtBVO3TvpGc+WKbxu+2gj5dvVFlJgY4eO0DTl6zXkJ6dVFwYU1lxgYoKYupZFt5ZR/TtoqLCmLZsDXPzDezRSR8sWa/enYvVq3Nxveunek5uqCakeqS2VEen2tRAoak2J8dUsB3P8ml7Wy4rbl8vvNd/fjftt2NPDevdOWXCKflFBs3Trxuzqnc0w/t01kXHjtGYAV01rHdZvTpx1Nj+abnODt07bZvsMFFjSb0d6h8uKXQ/rDWqf9c6+/p1TT466FY7NK6B/R1V8v/PxM+pf/3xOzFdupUWqduAxodkFhXE6sxxUV0T19xVm7VqY6X6dC3RoB6dVFpUIHfXba/M1RPvL9Ubc1ZnOnQkKS6M6aJjRuvgUX01fck6HbfrDioqiGXl5alLSeG234GJEzN3LinUp4bVXd44cTXOfl1Lt62Mkmry05H9ukjSth6pHXllm7Lihu87td+/oQmDE/XtWtLiayfW98vGj932c3vrYTDz2mNVUljQ7uLONXNuOL7OffmR8z6dxWiQSVecMFYzl27Qfjv20kl7DdLmraFhkvnQPnHA8N7ZDiFr0pa0+ea44Xrr3uyN45akL+w9SD/94u56c85q/eD+aVq+oVJSmKvksvE7q0sLenSQrEE+GNmviz5evrHOth26l+qgEX10xJh+6lxSoE+P7ENPOiBHFBbENLJfl20v0LXMTN8Yt6O+MW7HZpdVE3e9NmuVTvvr6+kOs028dNHh6lRcoKJYTF2iua9qeyhl0+gBeZb5RZv4wt6D9K+3FmXl2g+f92ntOaRHgwmYgd1L9eolR6bc19iy4SR0Gvaf747TboMbaJlCu3Dd53fVV/cd2uo5+TriPJtovbQlbUqLMv9S986VR2vd5ipd8+h0VVbH9a2Dh+ugEb3rVYaDRvbRG5cdlfF4gPZoSK9OWrB6i+765n46eFRfvfjhCh00orcKC2KKx71DTvgKoL6CmGncqD6NvlQlm7Vio+au3KR3Fq7TiXsM1JyVm3TkmH71fm+sr6jS9MXr1aWkUNMXr9fRu/RXt9Iifr8AjfjRZ3ZqcN+vTt5TX9lniL7yp8ltGFHdpMsrE47Q2s1btcvA9CQTasuuibtGXPpYWspsrdnXH69YzLRg9WYd/LPnshqLJBI2Oewbn95RY3boqs/vNYhGTbSZtCVtWjCfcYu8/ZOj1b3TJ5nGbqVF+tPXc27eLKDdeOmiI+p8TlzCmxcqAI0Z0beLRvTtoiN3DsMik3v81OpWWrStG3OqYY8A6vvuESMb3b//8N51kigXPfi2vnfEqLQnGfp0KdGUifUbPwf16NTogg2tVRAzzb7+eJ1x2xt66aOVjR77+PkH691F63TRg+/o51/aXe6qt6JXSyQnrYf0KtPcG8dr0jtLdF6WRxAgffp0KdbFx47RoaP7qm+XEq3fUq0upYXM/4N2I+fmtPn+kaP0w6NGZb17M9AR/ZmEJwAAOamlz74/+9IekkLiIZ1DjW45be+0ldVcsZjprm/ur58+MUN7Demho3cJy+K+t2idLnhgmhas3qLpVx8jM9POO3TTyfsM2XbuyfuGn5v6O5hzw/Ha8ZLm9egZv/sOOu/eVn4Z5IRbTt1bx+46IGW96l7G0CO0L2lL2qQjyfLAOQdqvx17NX0ggBa58JjR+v1zH+szaZo0GAAA5I5HvzdOJ9z88naXc/kJY7VvefaexS8+dkydz7sO6q6nfnjodpe7X3mveu8qM645ttFzPrz2OP3rrYU6Zb+hisddw7M8hAstc9xuO2Q7BCBtcmYg3kfXHUfCBsiQ8w4fqelXN/5wAgAAsqMlc0ulkq5hiN9swWTm7ckD5x4oSdpr6CerfjW1AlpxYUyn7DdUUsPDx885dHiaIvzEmQeVp73MfHDq/kM198bxOuPAYbr2pF2zHQ6QVmnradNag3t20ssXH9H0gQAAAEAHs70Jm+01ZeJR6tOl5cuT55o3LjtS+133bL3tiavHPvSd1i+ZnWoY2iXH7aw/vjC71WWmcuVnd0lrefmiWzQH6lWfI2GDjidrPW0GdCvVzGuPJWEDAACADmmfYT0b3f+9JiYfbom5N47Xe1cd0+LzOkLCRpL6dS2tt+3pHx7Sqr+T5njmgjBsq7VJt7k3jldxYazeNrTO948Yle0QgIxp0542Uycepd4d5MYAAAAANOaW0z6lfa97RoeN7qvbzty33kS4Pzp6dFqv16WksEUT7nY0M689VqMnPqFrTtpVpx8wLO3lN5RU+c93x+nE3zV/TqE5NxwvKcybc8vzs7Tfjr30qSYSfGhcpzQtigPkojZN2pCwAQAAQL7o27Wkzov+3BvH64IHpumVj1fqgXMOzMg1zazZK0p1tJ4dJYUFWflOuw3urrk3jlc87qqsjmvnK57Ytu+UfYfovjcXSJJ+fPRO+m5Sj5BvHzaiTWPtiF648LBshwBkVJslbZ74wcFtdSkAAAAgJ/3q5D2zHYIk6fdfa/ulvTu6WMzUqbh+4ujInfurV+dietNkyLDenbMdApBRbZa0Gd6nS1tdCgAAAMhrYwZ01YylGxrcP353lkRuK58Z2z/bIQBox9I2EbG7N7o/eaItAAAAAJnx+PkN93LvaMOikL9u/MJu2Q4ByLi0ZVImz16VrqIAAAAAbAcz03mH150vZXT/riRs0GGceVC5TtlvaLbDADIubcOjquKN97QBAAAA0HYuPGaMLjxmTLbDADKicwkrRiE/pHF4VMP7dh/cPV2XAQAAAAAAyAvpS9qo4azNL768R7ouAwAAAADIc+ceynLpyA/pmx24kZ42O/XvmrbLAAAAAADy1zmHDFfX0qJshwG0CZZ0AgAAAAC0G/uW98p2CECbIWkDAAAAAACQg9I4p01qj35vXLouAQAAAADIc2bZjgBoO2lcPSp12mbXQawcBQAAAAAA0FJtsuQ3AAAAAAAAWiajc9qceVB5JosHAAAAAOQZhkchn2R0TpsfHDUqXcUDAAAAAADklbQlbcaN7FNvW4+y4nQVDwAAAAAAkFfSlrQZ2a9LuooCAAAAACAlE+OjkD8yOqcNAAAAAADbq2tp4bafy/t0zmIkQNsqbPqQ5onFyHYCAAAAADLnxQsP19DeZdkOA2gzaetpQ8oGAAAAAJAR0co33cuKshsH0MbSl7QhawMAAAAAAJA2aexpUzdr06cLK0cBAAAAANKATgLIUxnrafOlTw1JV9EAAAAAAAB5J2Nz2hw8qk+6igYAAAAA5DPPdgBAdqRvye+krM3ug7unrWgAAAAAAJhLFfkmY3PadC1lVm8AAAAAQPo4PW6QZ1g9CgAAAACQ23jfRJ7K2Jw2AAAAAACkBT1skKfSlrTpVFyQrqIAAAAAAKiHER7IN2lL2pQVF6arKAAAAAAAgLyXvtWjEnxqWM9MFAsAAAAAyGNMRIx8k5GkTRlDpQAAAAAAALZLRpI2AAAAAACkG3PaIN9kJGlz6v5DM1EsAAAAAABA3shI0maH7p0yUSwAAAAAAEDeYHgUAAAAACCnnbzvEElSSSGvsMgvrNMNAAAAAMhplx2/sy48ZrRKCln0BvmFpA0AAAAAIKfFYqbSGAkb5J+M9C3bbVD3TBQLAAAAAACQNzKStInFWIcNAAAAAABgezCLEwAAAAAAQA4iaQMAAAAAAJCDSNoAAAAAAADkIJI2AAAAAAAAOSitSZseZUXpLA4AAAAAACBvFaazsMmXHJnO4gAAAAAAAPJWWpM2pUUF6SwOAAAAAAAgbzGnDQAAAAAAQA4iaQMAAAAAAJCDSNoAAAAAAADkIHP35h9stkLSvMyFA+S0Ye7eN9tBpELdRJ7LybpJvQSom0COom4CuSll3WxR0gYAAAAAAABtg+FRAAAAAAAAOYikDQAAAAAAQA4iaQMAAAAAAJCDSNoAAAAAAADkIJI2AAAAAAAAOYikDQAAAAAAQA4iaQMAAAAAAJCDSNrkCDMrNzM3s8JsxwLgE2b2vpkd1sA+6i3QjpjZXDM7KttxAAAANBdJmyyIHhq3mNnG2j+SBrbgfF4UgTRJ9RJnZmea2cuS5O67uPvzGbq2m9nITJQN5AIzG2dmr5rZOjNbbWavmNm+2Y4LQO4zs9vN7NpsxwFkgpndamaXN/PYbc+LLTmvLZjZtWa20syWmtnQ6N22oIFjrzSzuxspa9szeVPH5hte+rPnRHd/pvaDmZVnLxQAANLLzLpJelTStyU9IKlY0sGSKrMZF5CvzGycpJ9J2kVSjaQPJP3A3d/MamBAB2RmT0p63d2vSNr+OUl/lDTY3atbWq67n5umELebmQ2R9CNJw9x9ebS5SxZD6rDoaZOjklv/k7KNL0b/XRtlMw+MjvmGmX1gZmvM7EkzG9bWcQMdTTOHU5xqZvOjlobLEs7dz8xeM7O1ZrbEzH5nZsXRvtp6/HZUj7+Sqe8AZMlOkuTuf3f3Gnff4u5Pufs7ZjbCzP5rZquienOPmfWQpGjfajPbO/o8MDrmsITP/46O+djMvlV7wehe+aCZ3W9mG8zsLTPbIymuPc3snaj3z/1mVppw/reiMldH1xiYsM/N7Fwz+yi6z/7ezCxhP/dg5KyEJOrNknpJGiTpKqU5idpWvcDpbY524HZJpyfeJyKnS7qnNQmbbGiirg2TtCohYYMMIWnTPh0S/beHu3dx99fM7CRJl0r6gqS+kl6S9PdsBQjkmXGSRks6UtIVZrZztL1G0g8l9ZF0YLT/O5Lk7rX1eI+oHt/ftiEDGfehpBozu8PMjjOzngn7TNINCkODd5Y0RNKVkuTusyRdLOkeMyuTdJuk2xOGKf5d0sLo3C9Jut7Mjkwo+3OS/qHwYnqvpIfNrChh/8mSjpW0o6TdJZ0pSWZ2RBTTyZJ2kDRP0n1J3+kESftK2iM67pjoXO7ByHWNJVHPNLOXzewXUdJxjpkdV3uimZ0VJSQ3mNlsMzsnYd9hZrbQzC42s6UK9VVmdoKZTYsaLV41s92bCtDM9ooSrRvM7H5JiQnVetexhKHMCcclDiO53cz+YGaPR40jr5jZADP7dfQ9Z5jZXtv59wo05GGF+9DBtRui++AJku60pOF/jTUaJEo8L6Fe/MjMlkcNhGc1FZiZdTezO81shZnNM7OJZhaL9p0Z1ZWbzGy1ontzijKOkvS0pIFR/brdkqbwMLMdzeyFqE4/rfA8nFjG6dH1V1lCo2cD1zsg+l2y1szetgbmm+yoSNpkz8PRP7q1ZvZwGso7R9IN7v5BlLm9XqE1kZY+oGmJ9XGtpD+08PyrogfgtyW9rfBCJ3ef6u6T3b3a3ecqdIc9NK2RAznK3dcrJDRd0p8lrYgeRPu7+8fu/rS7V7r7Ckm/UkLdcPc/S/pI0usKCZTLpG1dscdJutjdK9x9mqS/KLRc1prq7g+6e1VUbqmkAxL2/9bdF7v7akn/kbRntP1USX9z97fcvVLSJZIOtLrDl29097XuPl/Scwnncg9GrmssiSpJ+0uaqfBS9TNJf03oIbBc4UWzm6SzJN1kUU+4yACFl9Nhks6O9v1NoV70Vrj3/dvMShoKzkIv1Icl3RWV9Q9JX0w6rM51mvm9T5Y0MfpelZJek/RW9PlBhd8RQNq5+xaFocFfT9h8sqQZ0fPiNs1sNGjIAEndFXrPfVPS71PU72Q3R+cMV7j3fl2hbtfaX9JsSf0kXZeqgGiaj+MkLY4aH89Mcdi9kqYq1LdrJJ1Ru8PMxkq6ReH+PVDhd8XgVNcys0GSJkm6VuF3wI8l/dPM+jbxPTsMkjbZc5K794j+nJSG8oZJ+k3CS+dqhZbMQWkoG+joEutjD0W9YZJZwuThZjY0YdfShJ83KxrPa2Y7mdmjFiZnW6/wIlenlQHoyKIkxpnuPljSrgoPZr82s35mdp+ZLYrqxt2qXzf+HJ1zc5REUXT+anffkHDcPNW91y1IuH5cn/TKqZWyvkbHzEs4d6OkVUllN3Qu92DktMaSqNEh89z9z+5eI+kOhRfH/tG5k9x9lgcvSHpKCb0HJMUl/SRKwm6R9C1Jf3T316NePXcoJEwSk6fJDpBUJOnX7l7l7g9KSp5rJ/k6zfFQ1IBSIekhSRXufmf0Pe+XRE8bZNIdkr5sZp2iz1+PtiVrTqNBQ6okXR3Vm8ckbVTo/Z2ShUmCvyLpEnffEDUq/lJ1Gz8Wu/vNUaNjc+ta8nWGKvRMvTyqsy8qNJTU+pKkR939xeg7X65Qx1M5TdJj7v6Yu8fd/WlJUyQd35rY2iOSNrlrk6SyhM8DEn72FMcvkHRO4ounu3dy91czGiWQR6KWhNo/85txyi2SZkga5e7dFIZPJI9tBvKCu89QGOO/q0KLokvaPaobpymhbphZF0m/lvRXSVeaWa9o12JJvcysa0LRQyUtSvg8JKGcmELL3eJmhLhYIflSe25nhZa/RQ2e8Qnuwch5DSVRo91LE47bHP1Y2wBxnJlNjoZtrFV4UUpMsq6IkiK1hkn6UVIP1iFqfKXUgZIWuXviM+68pGOSr9McyxJ+3pLiM5OmImPc/WVJKyR9zsyGKyQx7k1xaHMaDRqyKml+nMQGhVT6KCwMkFi/Gmz82A4DJa1x901J10ncn9jIsknhO6cyTCH5lfg7ZZxCcjkvkLTJXdMknWJmRWa2j0I2stYKhUzk8IRtt0q6xMx2kbaNVfxym0ULIJWuktZL2mhmYxRW0Um0THXrMdBhmNmYaJz94OjzEElflTRZoW5sVJhQf5CkC5NO/43CMKf/U+gSfaskufsCSa9KusHMSi3Mk/FNSfcknPspM/tCNKb+Bwot/JObEfK9ks4ysz2jYRzXK6z8MbcZ53IPRruSlERtUFQX/inpF5L6R71RH1PdBojkxsQFkq5LSmKWuXtj8zwtkTQoYUiWFBKydcJO+lyngdPMBgjIPXcq9LA5XdJT7r4sxTHb02jQUisVeuckDt9NbvxI1UGgpZZI6hl9l8TrJO5PbGQpU/jOqSyQdFfS75TO7n5jGuJsF0ja5K7LJY2QtEZhdv9tWdmoBeQ6Sa9E2cYD3P0hST+VdF/U1fw9hXGGALLnx5K+JmmDQnf05MmGr5R0R1SPT27j2IBM26AwLv51M9ukkDh5T2F50Ksk7S1pnUJS5l+1J1lYDvVYSbXLml4gaW8zOzX6/FVJ5QoPuQ8pDJd4OuG6jyh0/V6j8JD8hWh+m0a5+7MK995/KjxMjpB0SnO+KPdg5LomkqiNKZZUotBgWG1hguKjmzjnz5LONbP9LehsZuOTesgle01StaTvm1mhmX1B0n5NXOdtSbtEidZSNTBhKpBld0o6SmHYYKqhUdL2NRq0SDQ08AFJ15lZ12jutQsUhimn8zrzFIYwXWVmxWY2TtKJCYc8KOkEMxsXzWl1tRrOTdwt6UQzO8bMCqJGm8Nqf5/lA5bLywJ3L0+xba4SWi3cfbbCw25DZVwh6YqkbXcpTOAGoJkaqI+3K7RAptyfcNxcJQ13cvfDEn5+UdKYpNOuSNh/q6IeBEBH4+6LFCZVTOV9SZ9K2vbL6LxHFBIvteVslDQy4fNChUlRG1Lh7qc1EFN50ucrkz43WCfdPbmun5n0mXswclltEvUCM+shaa3CEuAXKqx6lpK7bzCz7yu85JUozEnx78Yu5O5TzOxbkn4naZTCMKSXJb3YyDlbo0TNnxUmG31MCcncBs750MyulvRMdI1LFCY/BnKGu881s1cVFqlIWXfc/Vkzq2006KnQo7RZjQat9D2FyYhnS6pQqHd/y8B1vqaQqFqtkJi9U1IPSXL3983sPIWEVWeFScEXpirE3RdEDTo/U1iZsUbSG6rfg73DsrpDRwEAANonM7tS0siGkjYAAADtDcOjAAAAAAAAchA9bQAAAABkVLQE8PQGdo9t5qqMAJrBzN5X3cmGa53j7vek2N5QObcqrPCY7G53PzfFdmQASRsAAAAAAIAcxPAoAAAAAACAHNSi1aP69Onj5eXlGQoFyG1Tp05d6e59sx1HKtRN5LNcrZvUS+Q76iaQm6ibQG5qqG62KGlTXl6uKVOmpC8qoB0xs3nZjqEh1E3ks1ytm9RL5DvqJpCbqJtAbmqobjI8CgAAAAAAIAeRtAEAAAAAAMhBJG0AAAAAAAByEEkbAAAAAACAHETSBgAAAAAAIAeRtAEAAAAAAMhBJG0AAAAAAAByEEkbAAAAAACAHETSBgCALKqqiauyuibbYQAAACAHkbQBACBL3F2jLntcoyc+QeIGAAAA9RRmOwAAAPLVnJWbtv38zsJ12re8V5tef9HaLbr+sQ806Z0lKff/5pQ99bk9B2Xs+ne8OldvL1yrX355D81ZuUnlvTsrFjO5u96av1YVVTX69Mg+dc5xdy1eV6GB3UslSWbWYPnTF6/Xxspq7TOsp2KxT45bs2mrbnlhlmJm+vHRO2lzVY26lhTWK+uVj1dq76E99db8NdpQUa3PjO2vgljD1wMAAEg3kjYAAGTJEb98YdvPX771Nc29cXybXdvd9ekb/9voMeffN03n3zdNc244vtHkSEut3Fipfa59Ztvnf721qMlzav9udrzksZT7J19ypAZ0L1X5hElNlrPXNU9v+3zrC7PqXUOSdpr4uLZWxxuMAwAAoC0wPAoAgDy0x1VPNfvYxesqtutaP3rgbZVPmKSVGyv16scr6yRsmmvz1upG9x9ww7PasrXpIWaNHTN59qptP6dK2CQrnzBJ5RMm6Y8vzFL5hEkae8UTTZ4DAADQEiRtgDzyzPRlemDKgmyHASAHrK9oPAmSqLV9bN5btE7lEybpn28tlCTtc+0z+tpfXm9VWWOveLLJY86+a0qTxyQmZpKd8qfJTZ6/eO2WettueHyGJGnz1hptrGz+3ysAAEBTSNoAeeT/7pyiix58J9thAGhnZq3Y2KLj127eqvIJk3TCzS9nKKLUXvpoZZPHnHfvW43uX71pa6P773htrqQwX04qu/6kbnJpy9Ya3fv6fI25PPVwKwAAgMaQtAEAAI36aFnLkjZ7Xv100we1wtsL1m53GZubGEK19zVP68UPVzS4/48vzJYkfdzMRNbOVzyhSx96VxVVce008fEm59wBAABIRNIGAIAO7KWPVuje1+dvVxnPzVyepmi2z+d+/0qbXOfDZRuaPOaeyfOaPKYm7im3r93ceG8eAACAWqweBQBAO+HuqqyOqyBmKipout3lV0/N1G//+7Ek6av7DWn1ClArNlQ2+9hnpi9r1TVyybWTPmh0/3uL1un1Oasb3P/uwnU68XcNDw3b8+qnWYUKAAA0C0kbAABynLvXW+r6D6fureN326HBc3a54gltShgK9NtnP9b5R41q1fVnLG2650mt/7uz6cmA27uzm/iOjSVsAAAAWoLhUQAA5IiG5jtJTthI0nfueUsH3vCsyidM0gUPTKuzb/HaLXUSNpJ00zMfpi/QPLe9S6ADAAA0F0kbAAByyOPvLqnz+flG5pNZEiUP/vXWItXEXX95abbeW7ROB93434zGCAAAgLbB8CggT7innhATQG759j1vae6N47Vla42WrNuiM297s1nnjbi0fm+ctlZVw5LWrXHQDc9q8boKvXzx4Rrcsyzb4QAAgBxC0gbIA+6u0/76erbDANBM7q6dr3giY+Wvr6jKSLkfLFmfkXI7osrqGo2eWPf/8bifPqc5Nxzf6gmjAQBAx8PwKCAP/P2NBXrl41XZDgNAM/3tlbkZLX/qvDUZKfcPz83KSLkdUXLCplaq+YsAAED+ImkDdHBVNXFd+tC72Q4DQAtc8+j0jJY/Y0nzV4NqiSfeX5qRcgEAAPIVSRugg5vZgqV6AXRstXNb3fna3KzGgcYxNxAAAKhF0gYAgDyzhCWrc9pPH5+R7RAAAECOIGkDdHCvfLyy3rYDb3g2C5EAyLbNW2syVvbazVszVna++cvLc7IdAgAAyBEkbYAObvaKTfW20coO5KfVm7bqrNveyEjZT09flpFyAQAA8hlJGwAA8sSWqho9N3NFq869e/K8Rvdf+OA7rSoXqTGvDQAAkEjaAB2ey7MdAoAc8eg7S1p97sSH30tjJGjK2wvWZjsEAACQA0jaAB1cnJwNgMhvn/0o2yGgmb5062t1Pt/+yhztd90zWYoGAABkC0kboIOLO1kbAJm1cM3mbIfQoS1dV6Er/zNdyzdUqnzCDK8fRQAAIABJREFUpGyHAwAA2hBJG6CDe6YFk4P+9tmPNHn2qgxGA6A921RZnXL7oT9/vm0DyTMHsOIfAAB5i6QN0MGtr0j9kvXg1IWqTpro8ldPf6hT/jS5LcIC0A7t8pMn9ZeXZtfbXsM4zIzxFL0l73xtbpvHAQAAsoOkTQe3tTqu9RVVqqiqyXYoyDE//sfbOuO2N7RsPct/A2i+ayd9UOfzhoqqLEWSH3a85LF626545P0sRAIAALKh8P/bu+/wqMq0j+O/M5NeSEghhFACCUV670JoCmHFdS3LWlBcxb66q74GWBsquLbdZdW117Vt0XWliEgTFQQRlI506ZGWUBJS5v0jySSTTGZSZuZMJt/PdXll5pznnNyRnMzMfe7nfswOAN7V4Y/z7Y/jI0P0z5sHqUVMuMJDrCZGBX/x1fajGjBzkXY/Pt7sUAA0IJ9tPKRim02D0xPU/aHPzA4nYFWuhgQAAI0PSZsAtulAjsPzo6fPadTTyyRJu2ZlyjAMrd59TJ9vPqwvtv2s2RN7qn1StBmhwmQ7sk8pLTHK7DAANBBT3l5jdgiNQvr0+e4HAQCAgEbSJoBlzl5e7T5n5dZj/vyFltyTobYJkd4MC35o1NPLtGnGhWaHAQAAAACogJ42fmb5j9n6bu/xGo8/kpOnc4XFKigqdiijfn/V3jp9/xFPLVVq1lwdO32uTsej4Vq/76TZIQAAaqhyr7riYpu+/+mESdEAAABvodLGz1zz6ipJ0tZHxyo0yHXfmbV7j+uS57922Pb6df0UEmRR1ofr6xVH70cW2qdQeVpBUbEWbzmiCzoneeX8qJvb3v3O7BAAADX0yJxNeuySbvbn7aaVV9DSpwwAgMBBpY2f6vjHT92OqZywkaTJb6zWVa9845EY/rZ4e62PKSwq1smzzlcSKSgq1sx5m9V++nzd9PYajZ/9pdNlYguLivX19p+VmjVXt7/7nRZuOiyp5K6is6VP4Rk/n6K6CgAaine+qVtFLQAAaFiotPFjqVlzNXlIqh68qIsp3/+Zhdv0zMJtNb5jd+XLK/X1jqMO2zo1j9a8350vi8XQr57/Wuv3l0/B2XQwR2nT5mnHzExZLYaKim1Km+bYa2fODwc154eDDtv6tGmq/9wyuI4/FQAAgaX3Iwsdnp84c06xESEmRQMAADyJShs/9/pXu/Xish2mxvDDPsc58kdy83TiTHlVxjc7jyo1a26VhI0kbTmUq3bT5ik1a65DwqaitGnzNHvRj1USNtVZs6ek54/NZtOSrUeovgEANGqV+9D1nLGwmpEAAKChodLGj5wrLHa6fdb8Lbp+aFsFW83JsU149it9/ofheuDjDQ6JmUmD2uij7/YrN7+w3t/jmYXbajX+SE6e+s9cZH/O/H3P+njdfl3cM8XsMAAAbizdesTsEAAAgBdRaeNHzpyrPvnRfvp8H0ZS1ehnllWppHlrxR6PJGzqomLCBp535/vrdPPba3TmXKHeXrmnViuaAQB84+DJs7ru9dVmhwEAQJ18uuGQUrPmKjVrrl77cpfDasgoR6UNAKc+3XhIYR9a9N91ByRJq6aPUmGRTet+OqHMbskmRwcAGDRrsdkhAABQa3N+OKDb313rsG3GnE2aMWeTy+PenzJQA9vFuxzz3qq9GtguXm0TIusdp78gaeNHnCyk5MBms7FENnyqLGEjSf0fW6S4yBAdO33O7XS03LwC5eYVqkVsuLdDBAAAAOBHbDabjuTma0Dp7IiU2HDtP3G23ued+NJKh+fdUmL08W1DZLGUfEZOzZrrsH/XrMyA+PxM0saP/Ovbn1zu//eafbq8bysfRQNUVdbs8t1v9mpCzxaKCnX+JyRz9nL9dOwsvYYAAACARiQ7N1/9HvvcYZsnEjbOrN9/Uu1cLGbTduq8gPg8QtLGh5ZsPaLJr6+u9hdn1vwtLo+/998/kLSBX5j20Xq99tUuff6H4VX2bT6Yo5+OeecPMwCgZo7k5KlZkzCzwwAABLAb3lytzzf7d0P8t1bs1qRBqWaHUS80IvahyaXNAie+tMLkSID6237klJZsPaLs3HyH7eP+utz+uMjdnD8AgFd88ePPZocAAAgwZ88VqduDC+zNg/09YSNJD3y80ewQ6o1KGxOs3HnM7BACDv1+zFGWiKyueixt2jwt/78RahUX4cuwAKDR+/C7fbqsT0uzw2iQsnPzte/4GfVq3bTaMd/uPqZgq0U9WsV6NZacvAJt3J+jQWnVN97cdCBHOXkFbptzBhKbzaa1P51Qr1ax1b7/y87N15o9xzW2a3MfRwc0fDabTZNeW6Xl3ADwCyRtfMRmo+LAm/YeO6M28YHTIbyhSc2aq/vGdtLH6/ZX2Xf+E0v08qS+Gn1es2rfWC3/MVs2mzSsQ6K3QwWARuHrHUfNDqHB+sXflutwTr7LPgiXvVBSNe3tXgm3vfOdlv/4s9Y9MEaxESFOx2TOXu6TWDzpyQVb9NySHXWO+eN1B3TXB+v014k9dXHPFKdjJr22SpsP5mjjwxcqspoefEBjt/foGV3x4godyskzOxSv+nTDoQadwGV6lI+cPFvgkfPkFxZ55DyB5uDJwP5D0xD86dMt2nIo1+m+G9/6Vm2nzrOXUlaUV1Cka15dpUmvrfJFmAAAuHQ4p2Ta753vr3UzUnr6s61ejWVr6evqhX/5wu3YG95c7dVYqrNsW7ZW7nSdJPzxcK4mvrRCP+w7IUl6bskOSdLBk+U98D5YvVfXvb5Kp/ML3X7PHdmnJEl3vr+u2jH7jp2RJHV5cIHb8wGNxb/X7LO/H0/NmqthTy4J+ISNJN38jzVmh1AvpJ195JtdjlOi8gqKFBZsrfV5fv/BOj1/VR9PhRUwJr60skHdYWrsyhI3UaFBSowOtW+/4oUVeuKy7so+la9+qXE6ceacCopsys0rUHRYsMNYAAC86eN1B/TxugNaOXWUmsc4b+r8t8Xb9dyS7do5yzvvQSylFaqHc/KVmjVXn9w+VN1axjgd+/nmI0rNmqvtj41TkNW792V3/Xxazy/Zrn+t2Wff1jouQu/eOEAtm0bo2OlzCg+2KnP2cnVvGaOP1x2QJE149isNTU+wHzP3h4M6kpuvpCZhemTOJkklSZa//LqnftnLeQWN5NgzLzVrrh6e0EXXDk51GFOxuDc1a64W/n6Y2idF1+fHBhqck2cK1GPGZ2aHgXoiaeMjN73tmN3LnL1ci+/OsD/PK6hZBc289Yf03qq9usTFC1lj9f6qvZrYv7XZYaAWTuUX6lSFO2qrdh9TxlNLXR5z7aA2apsQqUt6tdTh3DxFhQZpz9EzahUXruSYcB3OyVNyTJgMw1B2br7+sXKP7hzVXhYLPY8AALU3cNYi3T2mg24dkS6rk9eSYltJUmDmJd00sV8rj77eVL4DftGzX+rG89vqngs7KjTI+c2/9Onzde+FHXXL8DSPv/ZVrpataO+xMxr6pyXq0SpW3/90wr5918+nHcZ9ub28R8ajczc7PdddH6zTXR+s04aHL1SUk6lNldc5ePB/G7Vh/0ndf1FnNQkLliTl5DlW7Iz58xf6dd9WeuSXXRUSxGQDNDxFxTZNePZLbTyQY3Yo8DGSNj5QVsJZ0c7s00rNmqsOSVHadrjqflemfrheUz9c76nwAkbWh+vVPilKfdrEmR0KvOjNFXskSQ99sqnGx/x10Y8u96clRmpH9mn9dmhbXTc4VRaLodjwYIc58HuOni7pJ2CTXlq+QxP7tabBMuqF1dWAhuPphdv09MJtkqStj451OmbaR+s17aP1ahIWpO8fvMBrCyS8vHyXXl6+S5K08eELnY55csFWPbmgZOqWpypvajpFv2LCpr66PrhAQ9Lj9Y/fDnD4/+lsCtW/1uyzV/58/ofhTs/3wbc/6YNvf5IkbZ4xVuEhta96BzytrPdp2e+4zWZT26nzzAwpIKVmzdXa+8eoaaTz/mD+zKhNg9y+ffvavv32W6f7Tp4t0J6jp2XIkGGUlHNaLKVfy56X/mcY0qz5mzW2a7Jax0Wo2GZTSRglX21SyVebTcU2ySab9h07q/SkKIUHW2W1lJzTsJ9T2nP0jP67br86JEVraHpCeQxGxbFyiKHimHOFxRr25BJJUkx4sF67rp/2HT+j2Yt+1I7s005/5qsGtNaVA1rLZit5811ks8lms6moWCq22VRcuu2aV+nVYZbWcRH606XdFRMeLJvKf9ed/dp3SIp2eefFMIw1NputrzfirC9X16aru2KAv/vk9qHq0qKJy7vF/npturoupZLXjbRpvCmDd/VvG6fMrs11cc8UHTh5Vp2Tm9Q7mbDn6GntP3FWg9MSXI5rqNemL143bxuRprFdku1TeAxDDu+hS56XVIf4yn9uGWz/viUxlTwqe37xc1/5LBZ/Uva5IMQLU868kdcLC7YovZnraWAN9drcmX1Kp/IL7deKVH7t2B9XuJYMlf0/rrBfJb/bhhzHljEM5/tz8wo0+hnfXY/wrZTYcKXEhuv2kemKKE3mlv9eGA7Pq/sb6TjG8RhJig4LcrtwTnXXpseSNp9tPKQpbzfsBj9o3L7KGqmU2PBq9/vrC5xE0gaBzd1dYn+9Nv3hgyFQG5f0SpHFMGS1qPQGmWH/+sWP2dpZ6SaWu15yXJuA73VObqJ5d57vckxDvTYnvbZKX2zL9mFEgOeM7NRMr13Xz+WY6q5Nj02P6tW6qV6ZVHL+4rIKGVtJpUmxvWrGpuJiqaCoWFkfrlffNk1124h0qZqsp8VQ6T5Dn28+rB6tYhViNcorWUordIptNn3y/QEt2ZqtdomRmjruvNJ9Jd+72EkMZcfaVLJv18+n9dIXO+0/z+uT+2nTgRx7aWl1Xri6j73yx2IxZC2r7imtMrJaDF1euiwkzHHnqPY6L7mJJMdsZ+UsaVw1S2kCMM8LV/d22kMCgOd9u+eYiovLq4fLKoaLimzKrcGKPqidVyb1LXk/KlWpOC97n3rHe+5XsPKUF67uo9Dg0gS5reyLzV6d/Ns3q/8wHej+flVvBXu40sZbE2Sd9QAKFL8f3V6TBrYpvWYqXjtSlRkbFZ5L5VOQHPZV2l96GTocW3b+42fOuf1ciIbvhat7KzI0yP7vXuX3p2xghb+R9k22Sl8rHZtQjwVVPHZVJ0aHanTnpBqPr23D2EFp8S73/6p3y1qdz5lpmec5PB/RsVlJUqmeFt89XCOfXlbv88C9S3u31NNX9DA7DDQwyTFhOngyT9cNTlXruAj9sleKCouLVVhk09bDuWqXEKmY8GB98v0BpSVGad2+ExrVKUnnCouVHBum8GCrwoOtKrbZdLagSFGhQQ7TD07lF8piSBEhgftGCrX3zbRRGjBzkdlhoJGZc8dQtYmPUF5BsRKiQlRQZKt1U9ayFf0aqyX3ZGiEi6b56c2i9Pp1/TzS98xd0mbpPRluG/gvunu40hKj6h3L9w9cYNoqNJUbK3e6f77yCoqrHf/Pmwbpihdd3zRddPdwtWoaQVPiBqRX66amfn9PfC6sjfzCIn264ZCWbc2W1WI4rNaGunv8V90a3OI1fILwgXbVvFCWlRV/vG6/Nh3M0YvLdjod58z7UwZq4ksrPRJfICFh03isnDpK0WFBCrIaWr3ruNrERygs2Krs3HylN4vy2JuwFhWmzF0zKFWSNDjdeR8HiwxFO7kTF8h3vVB3SU2cLyEMeMobk/spo2Mzp/uiS3/9QoJqX8nWGBM2vVvH6p83DXI5VfPuMR10x6j2Xo8lISpEy+4d4dAsv7Jf9U7RM1f09Oj3jYnw/b/7538Y5rQ/S8fmTZw2PHY31T06LEirp49WWDANiOH/QoOsurhnii7uWbJq8JOXu/+ck19YpB8Pn1KXFiWzDM4WFOmCP3+hfcfPejXWhuCDKQM1oJ3rQhB/xScJHxmSHq+vth+1P181fZT9cdnFWJOkzTs3DNCQaj4wNnbu5tajYXj12r6at/6Qnrq8uwzDUEFRsV5ctkO3jUiXYRhas+e4zkuOdqhaGdq+/JpIrEfpIQAEkuoSNqi5wWnxeuv6/i6TNe/eOMBtU2ZP2fboOJc3JZ65oocu6ZXitZWrvrxvhNbuPaHx3ZI1Y84mvfH1bof9S+7JUGx4sHo9slDPXtlLkSFBmvzG6lp/nyHp8fr71X3sy3dXdkHnJIekzZZHxrpNxOycmenxJdABfxMaZFXXlBj784iQIH1530iHMXkFRbr8hRVav/+kr8MzzZJ7MtQ2wXUTYH9G0sZH/n51H3V/qLyktFl03e6wkrBxbny3ZLNDQA1Vbiq78cBJ/W/dAR3KydNfJ/aSJI06r3yqZbDVottHlt+57NPG3NJYAEBg+/Su8zX2L8slSbN+1c1pwmbZvRka/uRSSfJqwuarrJEa8vhiSSVTfpwlbCpOtczsluy1hI0ktWwaoZZNS6Z9PTShizbsP6mY8GBd0a+VrIZh/1BU8UbaiqkjNWjWYr16bV/957t9euKyHur64AJJJSsEdmsZo2Onz+mT7w9oeIdE/W3xdreV0zcPT9MbX+9Wdm6+JvRo4TRhs3nGWJ33wKeSpPl3nk/CBigVFmzVJ3cMrfH4ya+v0pKtDbcBdJOwoAadsJFI2vhMdXcK4Bl3jfZ+OTJcG9mpmRZvOeJ0n8WQhnVI1BOXdq/y5rdLixh1aRHj9DgAAHytU/Mmbqt328RH+qTCNyU23O33SWoSZlq18b9vGex2THJM+c9QdlPmF92TNeeHg+rWsuT1Py4yRNcOTpVUs6nuVouh1dNHuxwTHmKlChvwgNcn91dhUbGufvUbrdx5zOxwamVEx0S9Prm/2WHUG0kbPxISZNG5wuqbqqF67ZOqzneGb+yYmSmrxdCWQzlOkzbuSrkBAEDj8pdf99SfLu1udhgAaijIatH7UwZV2Z5fWKSFmw5rzZ7jev2r3b4PzIWaTJtsKEja+JHIECtJGzQoZUveSyV3JnfMzFTatHn2/SFBFhI2AADAQZDV4rJPEICGITTIql90b6FfdG+hBy/q4nb8F9uyNem1VV6PK9Cq7EjamGBiv1ZOt99wfjs9uWBrrY8DzHDT8Ha6sEuSwzZrpfni2x4d58uQAACl7r2wo9khAADgYFiHxGoTKg/9b2OV5uY18dTlPZQSG67OLZooJjwwW5KQtPGhXbMyNX/DIY3r2tzp/sQo16vePE4ZKUxya0aanl+6w/78uSt7a3x3182f5/3ufG+HBQCoRq9WsWaHAABAjT00oYsemuC6Wic1a679caBV07hC0saHDMNQpotVjjo0py8L/MvVA1srr6BYvx/TQVf0baWMp5ZKUpUKm4qGpifoy+0/q3OLJj6KEgBQWWK06xtBAAA0NI0pUVMRSRs/0iYuwuwQAAeP/rKb/XFqQs1Wynjl2r46nV/ozbAAAG7QoB8AgMBA0saPWAzD/SDAR27NSKvTcWHB1oDp1A4AAAAAZqJtuz9xkbPZ8PCFvovDibtGt9eaP46u8/G/HdrW5f7nr+qtKwe0dnuepCahmv2bXnWOAzX3f2M7mR0CAAAAADRqVNr4EVeFNlGh7v+p1j90gU6cKVBKbLjaVVh2ub5m/6aXJvRoIalkHuHeo2e09qfj2nf8rMZ3S1ZuXqEWbDykZ5dsr3LslkfG2qsu7v9FZ4fmUWXKptxkdkvW3WM66FR+oYY/uVT9U+P03FW9FRcZUmVVot+9t9b+mIa3nve7kelmhwAAAAAAjR5JGz8SYq174dPfftNL0WHBig7z/DJnZQmbMq3jI9Q63rH/TreWMbp1RJqeWrBNVw1srRCrRa2c9OjZ/tg4pU+fb39euUdKfFSo4qNC3fZOeffGAbry5W80eUgqDW+9oH/beLNDAAC4sWLqSA2atdjsMAAAgBcxPcqPVNcHpFVcuNtjL6qUWNk0o/7TqVrFheuVSX1rPD4iJEgPXNRZaYlRThM2khRktej3oztIkt66vn+dYxuclqDdj4/Xgxe5XhYOAIBAlRwTrmX3ZlTZvmNmpu+DAQAAXkGljZ8a0zlJL17dRxsOnFT3lrG1Pj4ipO7/tNGhQVrvxR46d45urztHt/fa+QEAaCzaxEfaH4/pnKSXa3GzBQAA+D8qbfxU1rhOslgMlwmbtfePkSQNbBfndP/WR8fq/PYJVbZHhwbp7jEdtPvx8dr9+HjFRYZIkr67f4x2Pz7eqwkbNAw1qe4CAPiHaZkljeNfuqaPyZEAAABPo9LGz6ycOkofrd2vtMQot2ObRoa47P0SGmTVW9f3V9up8zSyUzM9cVl3WQ1D0WFBCqrQP+e70uQPUKbinVsAcGZUp2ZatOWI1j0wRlsP5erXL600O6RGa8qwNE0ZlmZ2GAAAwAtI2viZ5jFhuiXDc2+8DMPQ5hljFRpkkcXiYnkqBKzOyU206WCO2WEACAC7Hx+vL7Zlq0l4sHq2Kq8E7dYyxsSoGqdds+hbAwBAY0DSphEID3He4BiNg62W48OraYgNAJI0rENilW1BFmZb+9LmGWNlGNyIAQCgMeBdFhDgbLaapW3uKm0OnRgd6s1wAASgkCDeTvjKrlmZ3IwBAKAR4V0W0EitvX+MKt6onVC6bDyz6IDAlRAVYnYIqIfdj4+nwgYAgEaGpA0Q4KortGkaGaI7RpZU19w1ur39g0CwlT8LQKD69o80ngcAAGhI+HQGBLjiGk6PSo2P0C0ZaXrl2r5ejggAUBOuVogEAACNA42IgQDnKmnTOi5CktSyaYQMw9B9Yzv5KiwAASY5JkwHT+aZHQYAAEBAodIGaMQu7Z2id28YoEt7p5gdCgAfufH8tl4570e3DvHKeRurnTNLlvSellmSTF81bZSZ4QAAAJNQaQMEOFeTowzD0OD0BJ/FAsB84SHeeelvHhPmlfM2VpbSrvBThqVpyrA0k6MBAABmodIGCHROsjYfTBno+zgA+IWwYF76/R29bAAAQBneuQEBLi6y6hK/A9rFmxAJAH9w7aDUOh3XNiHS7RgSQgAAAJ7FuysgwF3Uo4XZIQDwI5GhdZseldQk1O2YS3rRH6u+Ft893OwQAACAHyFpAwAA3LppuPu+KreNSPdBJIGtXWKU2SEAAAA/QtIGCHC2Skt+D05jahSA2hvePtHtmJZNI3wQSeAqWzEKAACgDEkboBFJbxald2+kCTGA2itbzQjese6BMfw/BgAAVZC0AQJcRIXlfR/9ZVcTIwEAVCc2omrTeAAAAJI2QIALDiq/c5vejF4JAAAAANBQkLQBAAAec/XA1maH0CC8eX1/++PbaeAMAACqQdIGCHDxkeXL9FoN+iUAkNomRHrt3FPHnee1cweSbikx9sfXDUk1LxAAAODXSNoAAW5Yh/IVX5pG0jMBaAiW3pOhqwaUVKz0S23q8fNfNzjV4+csExka5H4QFFfh73FCVKiLkQAAoDEjaQMAgJ9JTYjUY5d008uT+uqdGzy/4tuYzkkePydqbvOMsZKkXbMytWsWy3wDAIDqkbQBAMBPjemcpJCgmr1UL7p7eI3Pm9QkrFZx1LZPzSNeWqnuvrGdvHJeXwsPsUqSDMOQwbRVAADgAkkbAAD83Jo/jnY7Ji0xSq9M6qtLe7d0O9ZqqV2iYFC7hFqNv7J/a6XGR9TqmJrI6JjofpCPtIipXeILAACgLkjaAADgRy7q0aLKtvioUD15WXe3x47unKSnr+jh8Zg6No+q1XirxdDSe0d4PI7QGlYd1dcdI92v5pRYi2qlNyb3046Zmfo6a6S2PDK2PqEBAIBGhqQNAAB+pF01Kztd3reVhndwrDRZcNcw9WgVq9XT3VfimOE/twz26PnaJdYueVRXTSNcN21vEx+h6ZnVr5L1v9uHODzP6NhMVouhFrHhCgu2eiRGAADQOJC0AQDAT2R0TNS1LlZ2evP6/npjcj9J0vNX9VbH5tH6+LYhSoz2z9WH+rTx/MpXvhAZ6jqxMnVcJ3VMina6L6Njorq3jLU/v3l4mkdjAwAAjQvrcgIA4CfemNzf7ZiMjs20+/HxLsf8++ZBuuyFFS7HtE2I1K6fT9corpZN696fZlC7eK3YebTOx5thTOfmuu8/66vdP7ZrcpVtlf9Nds3K1KaDOerSIsbj8QEAgMaDShsAAAJM39Q4rX/oAodtQ9LjHZ4vrsVqU/WZ0vPelIHqllKSuEhqYn5F0Ag3zYyDrYbiIl1Pj6rs7jEdqmwzDIOEDQAAqDcqbQAAMInFkIpt3jl3dFiwMjomaunWbEnSOzcMdNhvGIYentBFD/5vo8vz7JqVWe9YPrljqP2xzWbT0dPnNOyJJTpzrqjaY9ISIxUeYtWG/TlKjgnTknsyJEmbZ4zVeQ98KklaNX2UdhwpqRbq1DxaMeHBOltQpC4PLpAkXTuojd5csUfNokP151/3VPtmUWrWJEwnzxSox4zPHL7fnDuG6qdjZzSuW0kVzcqpozRw1iLde2FH3TI8TQdz8nTBM8v014m97Me4q3gCAACoL5I2AACY5Df9W+udb/ZKkj661bNNe6WS6Vb7T5zV7mqmQV07OFXXDGwjSbLUchnwujIMQwlRodo0Y6zOFRbr7LkixUQE1/j48BCrQ7KkWbTjKk6RoUEO+x++uGuVc8REBDtNuHRNKa+MaR4T5jAmJTZcG2ew8hMAAPAtkjZAIzCoXXyty/0BeN8jF3dVp+bR2n7klHq19k7T3pTYcKXEhle731fJGmdCgiwK8dEy3gAAAA0RSRugEXhvykD3gwD4nMVi6JpBqWaHAQAAAD/F7S0AAAAAAAA/RNIGAAAAAADAD5G0AQAAAAAA8EMkbQAAAAAAAPwQSRsAAAAAAAA/RNIGAAAAAADAD5G0AQAAAAAA8EMkbQAAAAAAAPwQSRsAAAAAAAA/RNIGAAAAAADADxk2m63mgw0jW9Ie74UD+LU2Npst0ewgnOHaRCPnl9cm1yXAtQn4Ka5NwD85vTZrlbRkwLy+AAAAZklEQVQBAAAAAACAbzA9CgAAAAAAwA+RtAEAAAAAAPBDJG0AAAAAAAD8EEkbAAAAAAAAP0TSBgAAAAAAwA+RtAEAAAAAAPBDJG0AAAAAAAD8EEkbAAAAAAAAP0TSBgAAAAAAwA/9P59ZF3PmdD6AAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hdZb328fuelkISQug9olIVUcFyjl2PiuARFTsqHLu+x2M5igUVBSxYUBHFDggqCIIFkHJo0pSEIsUAISak9zqZvn/vH8/aw5qdPTUzs9fMfD/XNVdmr/rsyTyz1r6fshwRAgAAAAAAQLHU1boAAAAAAAAA2BahDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAwwmyfaDt6+XpFDcpzqu0Y4XPc1Md7zn/NHslyDIXtF9meY3trVsaDa10mAAAwMTXUugAAAEwgb5K0pGLZQzUox88k/WWEz/FhSTNyr78g6ShJ/1mx3fIRLsdQnCdplaRjJLVIWljLwgAAgImL0AYAgNFzb0TMr9XJbU+KiLaIWKJtw6OhHrNRUmdE9Oi5ExEPVWy3WlJ7RNw5mLIORxkHw/ZkSU+S9LOIuHEYjmdJjRHRvt2FAwAAEw7DowAAKAjbB9m+3PYG2y2277T96optzrO9sMq+N9m+Kff6JdnQnjfY/mkWmqzM1m0zPMp2g+3P2p5nu832MtvfzkKM8jazs2N+2PaZtpdJapM0czvf9wez4z4/e/8bJd2crSsvW5L9TObZ/rLtSRXHuNP29baPtn1vNrTpftvHVGx3qO0/2l5tu9X2ItsXl8uh1LNGks7IyjQvt+9J2THbsv1/aXu3iuOvsP2z7D09IqlD0sttH5wd779sf9P2KtubsmNMztZfb3uL7Udtv3Wg5QYAAOMXPW0AABg99bbz196IiC5Jsr2XpFslbZb0/yRtlPQRSVfaPjYirh7iOc+WdLWkd0qa3Md2F0p6raRvSLpd0iGSTpM0W9IbK7b9vKS7JL1fUr2k1iGWrdLFWTl+kB1X2fnvkvRzSVskPV3SFyXtL+nEiv0PkXSmpK9JWi/pZEm/t31gRCzKer1crdTL6AOS1kraR9Kx2f6/l/SwpBsk/VDSr5SFOLY/Kul7Wfk+LWk/SV+V9BzbR0ZEOeyRpKOVhoJ9ITvHfD3xs/+SpOsknSDpGVlZQ9JzJZ2Tlf+jki6yPTciHh1AuQEAwDhFaAMAwOiZV/H6NkkvyL7/hKSdJD2/PITK9lVKc96cofShfSj+HhHv7WsD2y+U9BZJ746IC7LF19teJ+lC20dExL25XVZKen3lkKhhcFFEfC6/ICJ+kyunlYKtFknn2v7viNic23wXSf8WEYuy7e+XtFgpdPqOpL2Vwpb3RcS1+fNm51ple2u2bHF5KJftJqWw5ZqIeGeuPI8pBTDvlPST3PFmSHpGRKzJbVuezPjB3P/HtbZfKukkSW+KiEuzbe9V+hm/QSlE67PcAABg/GJ4FAAAo+f1Sj0wyl/vya17kaQ783PeZL1wfiPpCNv5SX0H4/IBbPNqSe2SLsuGSTVkPYLKAcGLKra/YgQCG6lKWW3vlA3TWqA0FKtD0k+VeuI8uWLzB8uBjSRlc/dsUAo8JGmFUm+Vb9l+j+3K/XvzNEmzlHrZdIuI65XClRdXbP/XfGBToTJ8Kwd51+SOu0qpp9C+21luAAAwxhHaAAAweh6IiDm5r4dz62ap+pOUVkiyUi+coRjI05l2k9SkNPyoI/e1Klu/8xCOORTVjnuhUk+UsyS9Qins+kS2rnK417oq+7eVt4uITkkvk/QPSd+UNN/2fNvvqbJf3qw+yrcit159bFe2vuJ1u6Suih5D5eXbW24AADDGMTwKAIBiWCdpjyrL91Ca86QcSLQqBSyVdlaa66TSQHrErM2O+8Je1i8bwjGHonJy5OlK88N8OiLOzi0/asgniHhU0gm26yQdIeljkn5me0EfT4sq/+x7+/95oPI0Qy1fb4ZYbgAAMMbR0wYAgGK4WdLzbM8uL7BdrzTXzD25nhiLJO1ue5fcdk+WdNB2nPsvSr06dqzoCVT+qgxtRstUpV5GHeUF2bw2797eA0dEKSLulvS/2aKn9bH5A0rBTeUTnV4uaXdlT7oaDYMsNwAAGOPoaQMAQDGcpfQ0pOtsf0nSJkkflnSgpPxjq3+n9FSni2x/R2ny3c9K6m0OlX5FxE22fyPp0uyYf5dUUnpy02sknRwRjwz1+NtRrpXZpLyfsb1GaX6a9yu950Gz/RylJz5dIukxSY2S3qs0FOmmPsrRbvvLkr5n+5dKT7naT2mC6IdUMdfNcBtquQEAwNhHaAMAQAFExDLbL1B6WtCPJE2SdK+kYyLiL7nt5ts+XtLpkq6Q9IjSHC+f2/aog3KCpP+W9F9Kj/Ruk7RQaYLcldt57O3xJqXHb/9YUrPSxMznKT2ee7CWKs038ymlJzK1KM0T85qIuL+vHSPi+7Y3K/2s364Uql2pNHSrpa99h8GQyw0AAMY2j8zDHwAAAAAAALA9mNMGAAAAAACggAhtAAAAAAAACojQBgAAAAAAoIAIbQAAAAAAAAqI0AYAAAAAAKCACG0AAAAAAAAKiNAGAAAAAACggAhtCsj2fra32K6v0fm32D6gFucGAGC42J5tO2w3ZK9vsv3eWpcLGA9sn2r7wu3Y/1zbXxjOMgHAeDThQ5vsBm697Uk1LMNC268ov46IxyNiWkR01aI82bkXZGU7z/bptSgHMJZVflgEsH1sv932nKxhYbntq22/oNblAsa7kap7EfHBiDhtGMr3EttLtvc4wHjRVwPFcNyf2j7R9q1DLyEGa0KHNrZnS3qhpJD0nzUtzDjFB1aMhiz4bMluKNfbvtL2vrUuF4DhYfsTkr4r6auSdpe0n6QfSnpdLcsFjHcjVfdq1ZscKIrcvetm2xts3277g7Yn9OdzVDfRfyneJelOSedJend5oe0ptr9te5HtjbZvtT0lW/efth/MKtdNtg/J7Re2n5J73d1LxfYutv+c7bfO9l9t19n+ldIF8E/ZB85PV+nOPcv2L20vyz6QXtHfG8uOszzb5735slWmr5VpaXlb2++X9A5Jn87K9qds/WdsP5b9kXnI9usrjnWb7bNsr5N06mD+Q4Dt8NqImCZpT0krJZ1d4/L0yslE//sLDIjtHSV9RdJHIuL3EdEcER0R8aeI+FR2LS1fl9bavsT2rAEct872Kdm1fpXtC7JzAVD/da/K9r+zvSK7d77F9mG5defZ/pHtq2w3S3ppxX3yS2wvsf3JrD4ut31Sbv9Jtr9l+3HbK52GVk2xvYOkqyXtld2rbrG914j/cIDh8dqImC5pf0lfl3SypJ/Xtkgooon+oeFdki7Kvl5le/ds+bckPVvSv0maJenTkkq2D5T0G0kfk7SrpKuUwpamAZzrk5KWZPvtLulzkiIi3inpcWUfOCPizCr7/krSVEmHSdpN0ll9ncj2qyV9QtIrJD1F0osHUL5tRMRPlH42Z2Zle2226jGlHko7SvqypAtt75nb9bmSFmRlPWMo5waGKiJaJV0q6VBJsn2M7Xtsb7K92Pap5W1tT7Z9YfZBb4Ptu8p/B7IAckEWTv7L9jv6Oq/t+uyGco3tBZKOqVh/k+0zbN8maaukA1wxNNK5+QFy4e1JWbnXO7XAHGX7H1l5fzA8PzWg0J4vabKky3tZ/1FJxyld6/aStF7SOQM47onZ10slHSBpmiTqFPCE/upepaslPVXp/u9upXvIvLcr3RdOl1RtaMUeSveWe0t6j6RzbO+UrfuGpAMlHaF0b7u3pC9GRLOkoyUty+5Vp0XEsgGWFyiEiNgYEX+U9BZJ77b9NNs7Zo0Jq7PGhVPKDX6umE/K1Yc8Pdn237MQ9Q+9NWZk5/l5FpQutX26B9YTzrbPzo4/z/bLcytOsv3P7B56ge0P5NZV7ciQrTs5K8Nm2w/njznRTdjQxmks7v6SLomIuUpBxNuzX5r/kvQ/EbE0Iroi4vaIaFOqSFdGxHUR0aEU7kxRCnf606HUA2D/rJXirxERAyjnnkoXow9GxPps35v72e3Nkn4ZEQ9GxFalYGXYRMTvImJZRJQi4mJJj0p6Tm6TZRFxdkR0RkTLcJ4b6I/tqUp19c5sUbNSQDtTKUj5kO3jsnXvVrpB3FfSzpI+KKkla7n7vqSjsxaQf5N0bz+nfp+kYyU9U9KRko6vss07Jb1f6YZ10QDf0nOVboLfotRF/fNKgexhkt5se0ihLDCG7CxpTUR09rL+A5I+HxFLsmv1qZKOd//Dc98h6TsRsSAitkj6rKS3DmA/YKLor+71EBG/iIjNuXr4jIrea3+IiNuy+8fWKofokPSV7F73KklbJB1k20rX2I9HxLqI2Kw0XOut2/HegMKJiL8rNfK/UKnH+I5KjQovVrqXPan3vbfxLqXPtHtJ6lS6r63m/Gz9U5TuYV8paSAT9pcb6XeR9CVJv88FQ6uU7olnZGU+y/azsnVVOzLYPkjS/5N0VHbv/SpJCwf4Xse9CRvaKH1YuzYi1mSvf50t20WpVeGxKvvspdwHrYgoSVqslPb355uS5ku6NkscPzPAcu4raV1ErB/g9uVyLs69XtzbhkNh+122780S0g2Snqb0cxuR8wEDdEX2+7hJ0n8o1TlFxE0RcX92k/gPpd5y5aCjQ+mm9ClZQDs3IjZl60qSnmZ7SkQsj4gH+zn/myV9NyIWR8Q6SV+rss15WZjamQW/A3FaRLRGxLVKAdRvImJVRCyV9FelCywwnq2VtEsfYcr+ki7PXZP+KalL6WawLz2u6dn3DQPYD5go+qt73bLepl93Gqa4SU982BrM/eHaioBoq1IPuF2VepzPzdXzv2TLgfFmmdJIj7dI+mwWhC6U9G2lxr+B+lVEPJD1RvuCUkNfjx40We/yoyV9LBv+uEppRMdAAtFVSve9HVkj/sPKeplHxJUR8VgkN0u6VimIknrvyNAlaZKkQ203RsTCiKj2eXxCmpChjdP8NG+W9GKnsbcrJH1c0jOUfolaJT25yq7LlG4Oy8exUqiyNFu0VemiUrZH+Zuswn0yIg6Q9FpJn8h1+eqrx81iSbNszxzEW1wuaZ/c68oJWZt7K2cVPcpme39JP1VKQneOiJmSHpDk3vYBRslx2e/jJKXfz5tt72H7ubZvzLqXblTqTVO+ifyVpGsk/dZp/qczswtFs9LF8oOSljtNbHxwP+evDEur9aQZSqC5Mvd9S5XX04ZwTGAsuUPpunxcL+sXK/WKm5n7mpwFm33pcU1Xml+uUz3rGDCR9Vf38t6uNDnxK5R6B8zOlg/H/eEapevdYbk6vmM2j932HBcoor2VGhCatG3DwkA6CpRV3pM2qmeIKqVrYKPSvW45EP2x0hDH/iytGDWySOleWLaPtn1nNvxpg6TX5M5dtSNDRMxXmoLkVEmrbP/WzE/VbUKGNkoXny6lOS+OyL4OUWq1fpekX0j6ju29spaD5zs9EvwSScfYfrntRqXuXW2Sbs+Oe6/SEKt6p3lluoct2D7WaXJfK/UE6Mq+pHSDeEC1gkbEcqUxwj+0vZPtRtsv6uf9XSLpJNuHZENFvlix/l5Jb7A91Wly4vf0cazKsu2gdHFcnb2vk5R62gCFkPWY+b1S/XqBUi+6P0raNyJ2lHSuspvILOH/ckQcqjQE6lilvwGKiGsi4j+Ugtx5SmFlX5arZ0C6X7XiVbweTIAKTEgRsVHpOnaO7eOya1djdlN4plKdPiNrVJDtXW0P5Mk2v5H0cdtPsj1NabjFxQMdCgKMdwOoe3nTle6J1ypd1746jOUoKV2Dz7K9myTZ3tv2q7JNVkra2UwkjjHO9lFKwcwVSj1SKhsWyo0RA7l/rLwn7VAKQPMWK9XbXXKB6IyIOEz92zv7XJs/x7LsM/NlStOI7J41qF6lJ+69e+3IEBG/jojyFCahNJcVNHFDm3crzfnyeESsKH8pTUD4DkmfkXS/pLskrVP6hamLiIclnaA0xnCN0i/aayOiPTvu/2TLNmTHyT/l6amSrlcan3uHpB9GxE3Zuq9JOiVLOP+3SnnfqVTR5il1RftYX28uIq5WGrd4o1KSeUe2qi379yxJ7UoXufO17URxeT9X6qa2wfYVEfGQUve8O7L9ny7ptr7KA4wmJ6+TtJPSMInpSkMMW20/R6k1sLztS20/PesuukmpnnXZ3t3pSXE7KNWbLXoiZO3NJZI+ansfp4kTBzIE8l6lOTQabfc2Dw4w4UXEd5Qm2D9FqdFgsVKPuiskfU8pmL3W9mal+ayeO4DD/kKpt90tkv6l1KPgv4e98MAY1k/dy7tAqaV9qaSH9MS8csPlZKV72juz4VfXSzooK+M8pRB2QXa/Sus8xhTbM2wfK+m3ki6MiPuU7ivPsD09a5T4hKTy5MP3SnqR7f2ysPKzVQ57gu1Dswb8r0i6NCJ63MtmnQOulfTtrAx1tp/sgc2XuJvSfW+j7TcpdYC4SqmH0CSlvxedto9Wmien/F6rdmSwfZDtl2WhT6tS77r+7r0nDEf/c+FijHN6LPkDkibRgojxyPZCpXkoupSS+UWSvhYRF9k+XilonCXpZqVx9jMj4gTbb1PqhrmPUjBzsdJFcVelC+cR2fHulfThLLTsrQwNSl0+36V0EfqWUhDcGBGdtm9SuhD/LLfPAUo3modlZXtM0qysbLOVPkg2luut7SWSTigHvk5PDpgXEacP7ScHAACA0Za7d+1UmkfxIaVQ5tyI6MoaAM9WmpC3Vam32elZzzPZPkepk8AapQ4GP1HPe847JL1c0sFK95gnRcSayvvLLPT5ulLHg+lKkwt/IyJ+20fZT1SaHPwepc4FKyX9v2z+Rdn+iFIvvUmS/qQ0BGt+RJxi++NKHR12VXra448j4jTbh0v6mVL406E0kuX9wdPgJBHajFu2Xy/pSqXhTOdLKkXEQMYkAwAAAACAApiow6PGPNufs72lytfV2SYfUOqW9phS74MP1aywAAAAAABg0OhpAwADZPtcpXmtKl0YER8c7fIAAAAAw4173mIhtAEAAAAAACigQQ2Psv2XkSoIUHRF/v0vctmAkVbU3/+ilgsYLUWtA0UtFzBailoHilouYLT0VgcaBnOQGTNmvOrII4+kaw4mqk21LkBvqJuY4ApZN6mXAHUTKCjqJlBMVevmoEKbpz71qZozZ87wFAcYY2w/Wusy9Ia6iYmsqHWTeomJjroJFBN1Eyim3uomT48CAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACggQhsAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAFN7qzW36whUPqKOrVOuiAKOG0AYAAAAAUHhf/tOD+tWdi3TtgytrXRRg1BDaAAAAAAAKrxRR6yIAo47QBgAAAAAwZoQIbzBxENoAAAAAAArPcq2LAIw6QhsAAAAAAIACIrQBAAAAAIwZTG2DiYTQBgAAAABQfIyOwgQ07KHN2i1tenDZxuE+LAAAAAAATEOMCWXYQ5tjz75Vx3z/1uE+LAAAAABgAqOjDSaiYQ9tlm9sHe5DAgAAAAAATDjMaQMAAAAAGDOCmYgxgYxYaPOe8+7Sl/7wwEgdHgAAAKipTa0dOumXf9fKTfQ0B0aDzQApTDwjFtr837xVOv+ORSN1eAAAAKCmfj93iW58eLV+eOP8AW1/8V2P68p/LB/hUgEAxpOG4TxYa0fXcB4OAAAAKKxSNkJjoK3/J192vyTpmMOPGakiAQDGmWHtaXPyZf8YzsMBADDurd3SpnXN7bUuBoAhKGXzajBiAxgdVDVMRMMa2ty3eMNwHg4AgHHv2adfr2eddl2tiwFgCO7J7n0vvmtxjUsCTCzMQ4yJZFhDmzqaGQAAADBBLFjdLEna2s4UAcBo4OMmJiIe+Q0AAAAMQR0fIIGaWLGpVS2EpZgghjW0KdFPDQCAIesqhf5w71KVSlxPgbGAXubA6Cp/3Pz61fN0ws//VtvCAKNkWJ8exS0mUEwPr9isfWdN0dSmYa3yAIbRBXcs1ILVzTrv9oVqae/SW5+zX62LBKAf9LQBRtcf71vW/f3cRetrWBJg9NDTBhjnOrpKetV3b9EHfjW31kUB0Icv/uFBnXf7QknS6s1tkqQb5q3UzY+sliSVSqHrH1qp4FoLFMZ9SzbWugjAhPfwis1cGzGuDW9oU9p22cu/fZNuenjVcJ4GwCCUw9Q7F6ytcUkADFR5dNR/nTdH7/7F3yVJv/7743rvBXN06dwlNSwZgKHa2t5Z6yIAY1q1JxXf/fh6veq7t+jHtyxQF0OLMU6N+ETEj61u1ucvf2CkTwOgF1bqu82FDBg7ukoltXf2bAlZtalVkrRsQ/p3XXO71je3j3rZAAzND26YX+siAGPaQ8s3bbPszL/Mk5TmuHnRmTeOdpGAUTGsoU1v3dI6q3XBATAqIpttiswGGDu+f8N8HXjK1T0XZhOelnvPPeu06/TM064b7aIBGKIf3vRYrYsAjGkdXdt+prxzwbru75duaNHv76Y3KsafYZ7TpvrylZvaNPszV2r2Z67UkadfX3UbxiECI4OqBRRTc1unzs/msOnPOTfO18MrUgtjnd2j59xHLrpbt81f0/2aJ08BxbN8Y0utiwCMec1t/T/i+xOX3Kf5qzaPQmmA0TNsj5JZuKZZK7Ku231ZsyUFOAfvMV3zVmzWkfvvpDm5mb8P2GUHPedJs7TfzlO1pbVTe82cotaOVEEb6+u0qaVDdXVWS3uX6uqs3WdM0qSGem1s6dDyDS165n47aXNrh866/hE9fe+ZetGBu2hza6d2nzFZjfVWfTbN//INrZrcVK+pjfVauLZZMyY3avcdJysiuh/fWF/nHh94yz0WysvKT3m0rFDIskq5/ct6exrkSD9wIH/b3t+5ytsOd5nsoYcGo/0UzRcfuJumNNWP7klHwUd/c0/397M/c6Uk6XVH7KXD9pqhhro6TW2qV1NDnVo6ujS1qV6N9U9kuZX/d+WXDdvxuIyI9H87Wv+9lb9+4+lBH9XqSLX6NtafSPvKQ/dQ3Th8RMuzTrtObZ0D64n6zWse7v7+rOsf0VnXP9L9+sr7l+vK+5dLSk+yKYX03y97iuYsTNfWPWdO1u/vXqqTX32w9thxkq59cKWWbmjR8w7YWXvtOFmTG+s1Y0pjd90ISWu3tGnHqU2qt7WptUNdpdCsHZrU0VVSU33f7T3D/ftWec1FMTQ11OllB+9e62KMiAvvXKRTrnhAZ7/tmd3Xu/Lv3/KNrdp52iQ11lktHT0/QF5+zxJdcc8yveWofWVJXRG69/ENOmTPGfrk7+7rse1Xr/qnzr99ob7+xqdrckPPe4+Vm1p16p8e6n598qsP1uydp/bYpnx/9aGL7u6xfLfpk/SV1x3WY1nPe9k0jOTxdVu18w5NOuP1T+uxTVTsEwpdfvdS/d+8VTr9uKdpl2lNvf3YhqR8TzDQbasZjr8NEem9e5iOV0vTJzfq35+yS62LMSLOvuHRAW333vPn6LlP2llb2jp17OF7qlTl3rP8/1021v/fUXy7Tp+kZ+8/a0j7ejA9XI488siYM2dO1XV3LVynN517x5AKARTBbZ95mfaeOaXX9bbnRsSRo1ikAeurbn760vt0yRy6imLsmn/G0WroIygoat3sq15KT4SowFi0y7QmzTnlP/rchroJjL5D95yhq/7nhX1uM1br5ku+eaMWrt06iiUChs/LDt5NvzjxqD636a1uDltPmyP330k3fPLFWtfcrifvOk1rtrSpvs7q6AqFQl2l6E7TWztSy+K0SQ0qRVreUJ+mS23rLKVW//Yu2Wmbxvo6Nbd3qt5WY32dOrpKmrVDk9Y2t2uHSQ1q7ehSqRTa1NqhHSY1yLJaO7q058zJWt/coZlTG9XS3qWuiO4u5eUeMU31dWrvShM+Tm6sk7LeMuVtLPdIXvMtkWXl9xXxRCtneZ9qPXXKPXOKptxTKP9+B9PCWblt/r3ne9wM5lijaddpk0b/pKPgGwQ3Qi8AACAASURBVG88XP/zigMlpfq045RGbWzpUHNbp+pstXeW1FkqaUpTvVo7St3jhcv/TdX+v7pK6u5dJvX83e5LKNW7cr3vradIf78jg2mZy5ert3pXebyx0LLfVx2p9l7Gsvpx2MtGSmHUuTc/pmmTGhSSVm1u04sP3DX1fJncoAWrmzV1Ur26SqF/Lt+kOlsrNraqqaFOR82epQN23UH3Lt6gSQ11mjm1SZtbO3XIntO1vrlDm1s7tLmtU5Ma6jSlMfVG3XunKWpu61J9nbWlrVMzJjdoSlO9Nm7t0Iwpjd3lsqUtrZ2a0lSv+jqrztamlg411NfJkiY11lWtI+Phdw0Dtz09Lotu3mmv1uX3LNUR+87cZt3KTa2aMaVRUxrrZadJ/nebPllrtrSpFKFVm9u0x4zJklKdaO8qaVJDqjML1mzRkfvP0oPLNmrm1EY9trpZB+8xvUcPV0nasLVDj69r1nUPrdIrD91dT99nxx7r7fTEVjs9OadUCl370EpNaqjXh15ygKY2bXt7n783e2DpRl1+z1J95KVP0awdmrbZpnzNLL9e19yumx9ZraOftsc2ZR0O1Xqp96ZyM/7ubGtSw4g/Z6Zm/vKxF2lzdn3asLW9+/Pl1vYuNTWkz4gNdWlkRVf22XBqU4Pq7KojJvKf4YCRNm3S0KOXYetpA4x3RW2VkKibmNiKWjepl5joqJtAMVE3gWLqrW6O3ygWAAAAAABgDCO0AQAAAAAAKCBCGwAAAAAAgAIa1Jw2tldLWjRyxQEKbf+I2LXWhaiGuokJrpB1k3oJUDeBgqJuAsVUtW4OKrQBAAAAAADA6GB4FAAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2hSE7dm2w3ZDrcsC4Am2H7T9kl7WUW+BMcT2QtuvqHU5AAAABorQpgaym8YW21vKX5L2GsT+fFAEhkm1D3G2T7R9qyRFxGERcdMInTtsP2Ukjg0Uge0X2L7d9kbb62zfZvuoWpcLQPHZPs/26bUuBzASbJ9r+wsD3Lb7fnEw+40G26fbXmN7he39ss+29b1se6rtC/s4Vvc9eX/bTjR86K+d10bE9eUXtmfXrigAAAwv2zMk/VnShyRdIqlJ0gsltdWyXMBEZfsFks6UdJikLkn/lPSxiLirpgUDxiHb10j6W0R8sWL56yT9WNI+EdE52ONGxAeHqYjbzfa+kj4paf+IWJUtnlbDIo1b9LQpqMrW/4q08Zbs3w1Zmvn8bJv/sv1P2+ttX2N7/9EuNzDeDHA4xTtsP561NHw+t+9zbN9he4Pt5bZ/YLspW1eux/dl9fgtI/UegBo5UJIi4jcR0RURLRFxbUT8w/aTbd9ge21Wby6yPVOSsnXrbD8re71Xts1Lcq//mG0z3/b7yifMrpWX2r7Y9mbbd9t+RkW5jrD9j6z3z8W2J+f2f192zHXZOfbKrQvbH7T9aHadPce2c+u5BqOwciHq2ZJmSdpb0pc1zCHqaPUCp7c5xoDzJL0zf53IvFPSRUMJbGqhn7q2v6S1ucAGI4TQZmx6UfbvzIiYFhF32D5O0uckvUHSrpL+Kuk3tSogMMG8QNJBkl4u6Yu2D8mWd0n6uKRdJD0/W/9hSYqIcj1+RlaPLx7dIgMj7hFJXbbPt3207Z1y6yzpa0pDgw+RtK+kUyUpIh6TdLKki2xPlfRLSeflhin+RtKSbN/jJX3V9stzx36dpN8pfTD9taQrbDfm1r9Z0qslPUnS4ZJOlCTbL8vK9GZJe0paJOm3Fe/pWElHSXpGtt2rsn25BqPo+gpRT7R9q+1vZaHjv2wfXd7R9klZILnZ9gLbH8ite4ntJbZPtr1Cqb7K9rG2780aLW63fXh/BbT9zCxo3Wz7Ykn5QHWb8zg3lDm3XX4YyXm2f2j76qxx5Dbbe9j+bvY+59l+5nb+XIHeXKF0HXpheUF2HTxW0gWuGP7XV6NBXn6/XL34pO1VWQPhSf0VzPaOti+wvdr2Itun2K7L1p2Y1ZWzbK9Tdm2ucoxXSLpO0l5Z/TrPFVN42H6S7ZuzOn2d0v1w/hjvzM6/1rlGz17O97zsb8kG2/e5l/kmxytCm9q5Ivul22D7imE43gckfS0i/pklt19Vak2kpQ/oX74+bpD0w0Hu/+XsBvg+SfcpfaBTRMyNiDsjojMiFip1h33xsJYcKKiI2KQUaIakn0pand2I7h4R8yPiuohoi4jVkr6jXN2IiJ9KelTS35QClM9L3V2xXyDp5IhojYh7Jf1MqeWybG5EXBoRHdlxJ0t6Xm799yNiWUSsk/QnSUdky98h6RcRcXdEtEn6rKTnu+fw5a9HxIaIeFzSjbl9uQaj6PoKUSXpuZIeVvpQdaakn+d6CKxS+qA5Q9JJks5y1hMus4fSh9P9Jb0/W/cLpXqxs9K174+2J/VWOKdeqFdI+lV2rN9JemPFZj3OM8D3/WZJp2Tvq03SHZLuzl5fqvQ3Ahh2EdGiNDT4XbnFb5Y0L7tf7DbARoPe7CFpR6Xec++RdE6V+l3p7GyfA5Suve9Sqttlz5W0QNJuks6odoBsmo+jJS3LGh9PrLLZryXNVapvp0l6d3mF7UMl/Ujp+r2X0t+Kfaqdy/bekq6UdLrS34D/lXSZ7V37eZ/jBqFN7RwXETOzr+OG4Xj7S/pe7kPnOqWWzL2H4djAeJevjzOV9Yap5Nzk4bb3y61akft+q7LxvLYPtP1np8nZNil9kOvRygCMZ1mIcWJE7CPpaUo3Zt+1vZvt39pemtWNC7Vt3fhpts/ZWYiibP91EbE5t90i9bzWLc6dv6QneuWUVa2v2TaLcvtukbS24ti97cs1GIXWV4iabbIoIn4aEV2Szlf64Lh7tu+VEfFYJDdLula53gOSSpK+lIWwLZLeJ+nHEfG3rFfP+UqBST48rfQ8SY2SvhsRHRFxqaTKuXYqzzMQl2cNKK2SLpfUGhEXZO/zYkn0tMFIOl/Sm2xPyV6/K1tWaSCNBr3pkPSVrN5cJWmLUu/vqpwmCX6LpM9GxOasUfHb6tn4sSwizs4aHQda1yrPs59Sz9QvZHX2FqWGkrLjJf05Im7J3vMXlOp4NSdIuioiroqIUkRcJ2mOpNcMpWxjEaFNcTVLmpp7vUfu+6iy/WJJH8h/8IyIKRFx+4iWEphAspaE8tfjA9jlR5LmSXpqRMxQGj5RObYZmBAiYp7SGP+nKbUohqTDs7pxgnJ1w/Y0Sd+V9HNJp9qela1aJmmW7em5Q+8naWnu9b6549QptdwtG0ARlymFL+V9d1Bq+Vva6x5P4BqMwustRM1Wr8httzX7ttwAcbTtO7NhGxuUPijlQ9bVWShStr+kT1b0YN1XfT8pdS9JSyMif4+7qGKbyvMMxMrc9y1VXjNpKkZMRNwqabWk19k+QCnE+HWVTQfSaNCbtRXz4+QbFKrZRenBAPn61Wvjx3bYS9L6iGiuOE9+fb6RpVnpPVezv1L4lf+b8gKlcHlCILQprnslvdV2o+0jldLIstVKSeQBuWXnSvqs7cOk7rGKbxq10gKoZrqkTZK22D5Y6Sk6eSvVsx4D44btg7Nx9vtkr/eV9DZJdyrVjS1KE+rvLelTFbt/T2mY03uVukSfK0kRsVjS7ZK+Znuy0zwZ75F0UW7fZ9t+Qzam/mNKLfx3DqDIv5Z0ku0jsmEcX1V68sfCAezLNRhjSkWI2qusLlwm6VuSds96o16lng0QlY2JiyWdURFiTo2IvuZ5Wi5p79yQLCkFsj2KXfG6RwOn7T0EFM8FSj1s3inp2ohYWWWb7Wk0GKw1Sr1z8sN3Kxs/qnUQGKzlknbK3kv+PPn1+UaWqUrvuZrFkn5V8Tdlh4j4+jCUc0wgtCmuL0h6sqT1SrP7d6eyWQvIGZJuy9LG50XE5ZK+Iem3WVfzB5TGGQKonf+V9HZJm5W6o1dONnyqpPOzevzmUS4bMNI2K42L/5vtZqXg5AGlx4N+WdKzJG1UCmV+X97J6XGor5ZUfqzpJyQ9y/Y7stdvkzRb6Sb3cqXhEtflzvsHpa7f65Vukt+QzW/Tp4j4P6Vr72VKN5NPlvTWgbxRrsEoun5C1L40SZqk1GDY6TRB8Sv72eenkj5o+7lOdrB9TEUPuUp3SOqU9FHbDbbfIOk5/ZznPkmHZUHrZPUyYSpQYxdIeoXSsMFqQ6Ok7Ws0GJRsaOAlks6wPT2be+0TSsOUh/M8i5SGMH3ZdpPtF0h6bW6TSyUda/sF2ZxWX1Hv2cSFkl5r+1W267NGm5eU/55NBDwurwYiYnaVZQuVa7WIiAVKN7u9HeOLkr5YsexXShO4ARigXurjeUotkFXX57ZbqIrhThHxktz3t0g6uGK3L+bWn6usBwEw3kTEUqVJFat5UNKzK5Z9O9vvD0rBS/k4WyQ9Jfd6idKkqL1pjYgTeinT7IrXp1a87rVORkRlXT+x4jXXYBRZOUT9hO2ZkjYoPQL8U0pPPasqIjbb/qjSh7xJSnNS/LGvE0XEHNvvk/QDSU9VGoZ0q6Rb+tinPQtqfqo02ehVyoW5vezziO2vSLo+O8dnlSY/BgojIhbavl3pIRVV605E/J/tcqPBTko9SgfUaDBE/600GfECSa1K9e4XI3CetysFVeuUgtkLJM2UpIh40PZHlAKrHZQmBV9S7SARsThr0DlT6cmMXZL+rm17sI9b7jl0FAAAYGyyfaqkp/QW2gAAAIw1DI8CAAAAAAAoIHraAAAAABhR2SOAH+pl9aEDfCojgAGw/aB6TjZc9oGIuKjK8t6Oc67SEx4rXRgRH6yyHCOA0AYAAAAAAKCAGB4FAAAAAABQQIN6etQuu+wSs2fPHqGiAMU2d+7cNRGxa63LUQ11ExNZUesm9RITHXUTKCbqJlBMvdXNQYU2s2fP1pw5c4avVMAYYntRrcvQG+omJrKi1k3qJSY66iZQTNRNoJh6q5sMjwIAAAAAACggQhsAAAAAAIACIrQBAKBAlm9s0YLVW2pdDAAAABTAoOa0AQAAI+v5X7tBkrTw68fUuCQAAACoNXraAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUEKENAAAAAABAARHaAAAAAAAAFBChDQAAAAAAQAER2gAAAAAAABQQoQ0AAAAAAEABEdoAAAAAAAAUUE1Dm7bOLv3v7+7Tyk2ttSwGAAAAAABA4dQ0tLnuoZW6dO4SfeVPD9WyGAAAAAAAAIXD8CgAAAAAAIACIrQBAAAAAAAoIEIbAAAAAACAAiK0AQAAAAAAKCBCGwAAAAAAgAIitAEAAAAAACigQoQ2oah1EQAAqLl1ze21LgIAAAAKpKahjeVanh4AgEJ5YOnGWhcBAAAABVKInjYAAED0OwUAAEAPhDYAABREKZ6IbbpKRDgAAAATHaENAABFkctpOrpKtSsHAAAACqEQoU3QmAgAABPzAwAAoIfaTkTMPMQAAHTLN2LQoAEAAIBC9LQBAAAENQAAAOipEKENN6kAAPSciJihUgAAAKjt8KhanhwAgILJxzQ0aAAAAKAQPW0AAEDFnDa1KwYAAAAKgtAGAIDCyA2PoqsNAADAhEdoAwBAQZToaQMAAIAcQhsAAAqCR34DAAAgj9AGAICCaG7vfOIFoQ0AAMCER2gDAEBBPLRsU/f3PPIbAAAAhQhtuDEFAIDJhwEAANBTTUMbO/3LPSoAAD1HRHFtBAAAQI172ri2pwcAoECCp0cBAAAgpxDDowAAgNSZe+Z3fqjUmi1t+sENjzJ8CgAAYIIhtAEAoCBK+dAmt/yTl9ynb137iO5+fMPoFwoAAAA1Q2gDAEBBlCLf0+aJ5VvaOrNl9LQBAACYSAhtAAAoiB4TEedelcMcMxUcAADAhFKI0IZ2QwAAen9iVHm5SW0AAAAmlEI88hsAAFQMf6ryLZdNAACAiaUQPW0AAEDFnDb5Fd3Do4htAAAAJhJCGwAACqIr37sm9335oVJENgAAABMLoQ0AAAXR85Hf235fR08bAACACYXQBgCAgugqVX/kd6mU/iWzAQAAmFgKEdr09rQMAAAmkt7mtOEyCQAAMDHV9ulRtTw5AAAF0yOoyQc4wfAoAACAiagQPW1oQwQAoOecNnnl/IbMBgAAYGKpbU8b7j4BAOjWY3hU/klSTEQMAAAwIRWkpw0AAOilo80Tj/wmswEAAJhQCG0AACiIXnvaZC8Gmtm0dXYNY6kAAABQKzUNbf61ZoskadHarbUsBgAAhdDz6VHbPklqID1t7lywVged8hfd8djaYS4dAAAARltNQ5vL5i6VJD26akstiwEAQCGUSr2s6B4e1X9qUw5r7lhAaAMAADDWMTwKAICC6NG7Jjc8qjSI4VHdvXKGr1gAAACokRo/PaqWZwcAoFjyPW3ycxKXvx/Q06PKAQ/XWADABLFmS5s+8uu7taWts9ZFAYZdTUMbKhUAAE/oORHxE9+X534bTBBj+toAACaI713/qK78x3JdNndJrYsCDLuahjYzJjfW8vQAABRKz4mIt0UQAwDAtsqNGvkGD2C8qGloU8eMOgAAdCv1eMz3tuvvWriux+vNrR3a2t6z1yq3qwCAiYYmDYxntQ1tGHAPAEC3ni2E28Yv65rbe7x++qnX6vlfu6HqsbjEAgAmGhouMB4R2gAAUAOL123V3yoey90V1Z8e1b2syu3oxpaOQZ23rbNLHV29PVscAICxx3yuxDjG06MAAKiBi+9arLf99M4ey/JZSqlKaPO96x/t97jt2UHuX7qx6vqDTvmLXvO9vw68oAAAjBFMaYPxiJ42AADUQF2dtwlm8sOjuqqkNs3tXd3fP5ALZTZufaK3zaMrt0iSrntoZY99l25o0WOr07pHV20ZesEBACiY8sfK0hBSm9aOLl19//JhLhEwfGrb06aWJwcAoIbqyjeYuXAmf7PZ343n167+Z/f3z/jKtd3f9/bkjH//+g16+bdvHkpRAQAotO15uuKX//SQPnTR3br78fXDWCJg+NDTBgCAGihfA3sGNU+sr9bTJu+2+WurLqdnOAAAA7dobbMkqSXXmxUoEua0AQCgBurryqHNE8vyAU7XILt4l3vsbGnt7GdLAADGl+35XNnSkcKa8nUZKJqahjabuLEEAExQ1cbf53OaUj89bXo7Xn7em8pHhG+vUil6HX4FAECtlOOW3i5Rtz66Rv9cvqnqunse3yBJDI9CYdU0tOmt4gAAMN7VVxke1VWqPlRqMHaZ1tT9/Y9veWxoB+nFAZ+7Sq//4e3DekwAALZXfxMRn/Dzv+nofp6cuKll8B0KHli6Ud+9/pFB7wcMRk1Dm6G65/H16sg/FxUAgDGmPKdNPqjJd+/ub06b3vz10TXd3//45gWSpHsXb9hmu65SaH1zu2Z/5krd+PCqHuvmLlqvH99cPfCpdqxqTvvzQ7rinqUDLTYAANtte4ZJNQxheNRx59ym717/6KB7xwKDMeZCmweWbtTrf3i7vnrVP/vfGMCIWbxuq6Q0/OLLf3pwu4LUlZtah/wBtZrmtk7dVPEhFCiauipz2ixau7X7+8E+tvTxdVt7XXfcObdts6y9s6R/ZI8N//lf/9Vj3Rt/dLu+dvW8Hst6GxYVkcKfSj+/9V/62MX39ltuAACKoLc5bWZ/5kod/6PqvUw7s4t4R4kOBRg5Yy60ufmR1ZKkX962sLYFAcaxJet7//AnSX95YLleeOaNumHeSp36xwf1y9sW6rqHVg7qHFvaOvXwis1avblNz/3q/+nMa+ZV3a5UikEFOhu3duj4c+/Qib+8qztYam7rVGcfoVJXKbqfHDBvxSYt3dDSve7exRtoPcGIqPbI77zBBpkL1jQPKjy9d/EGbWrpkCTdOn9N1W3yx+voql6eb1/7iJ552nVas6Wt6nrmwAEAjLThuNRU62lTvobNWdT3fDe9XSMfWrZJm1o7tr9wmNAaal0ASdp9xqQBb/vnfywf9PFLpdABn7tK3zz+cL3pyH0HvT8wkVz/0Eq994I5Ouftz9Jrnr6HfnDDfL3lOftqUn29fvLXx7R4XYu2tqcxv2ffML978rYPX3S33nzkPrpkzhLtOKVR933plZKkzq6SFqxp1ivPukWS9B+H7q5dpk3Sb/7+eI/z/vjmBZo5pUmN9dYu0ybpmMP3VClC//71G7RmS7vu+OzLtGR9i5686zSta27XrB2a9KzTrpMknXLMIdptxmR1lUr6+MX3dR/z4RWb9fd/rdMnf3efXnfEXvreW5+pB5dt1DHfv1UH7j5NHV2hM48/XG869w5J0jePP1yfuvQfkqS/fe7luvnh1fr0Zen1XZ9/hXadPkldpdCW1k7tMKleDy7bpNdlPRhOP+5pet0Re6lUkiY31WnVpja1d5VUKoVKIR20x3Stb27Xuq3t2nvmFE1urFdzW6dumLdKpQi1dZS0w6QGHXP4nlX/XyJCttXW2aWOrtC0SYX4843t0NaZApF8j5pXHba7rnkwBaCdvbTatbR3aUpT/TbLV2xsVXPbtuPxWzuqP8L00rlLdNndS7pfn3PjfH3kpU/psc3cRev11p/cqbPe8gwdvs/M7uX/WtOsJ+2ygyTpBzfOlyQddcb1evT0o9VQX9fjnG2dJU1uTOWNCP1u7hK96dn7yDxCEgXX3llSQ527e8UBmHhaermGVmrvLEkVH2k7ukp6zffTPDoLv37MNvssXrdVN8xbpXf/2+ztLSbGOQ+mBezII4+MOXPmVF0XEbrmwZU6ZM/pqrN1/u0L9bNb/1V122oa6tzdvaw3xzx9T115/xOhzSsO2V1b2jp054J1evfz99f0yY1avH5rd8vg/Us3anJDvR5dtaV7n6Nm7yTL2nunKdp3pym6+oEVetZ+O6krQrc+ukbTJjdo352maGt7l/72r3Xadfokve05+6nOkmWFQvvvPFWN9XVqae9SfZ3VUF+nKY31mtpUr7XN7dp/1lQtXNusmVObtM9OU9RYV6f7lmxI+3R0qlSSVm9p06wdmtTZFdp31hSt39qh6ZMbtLWtS3csWKPpkxv15F2nac2WNq3Y2KrGemtTS6c2tnRo1rQmrd3SpoP2mKGZUxr1koN2lW0t39Cits6SWju6NKmxTpMb69VUX6eOrtDUpno11Fs7TmnU6s1t2nvmFG1o6VBXKdTRVVKdrT13nDzg/6+85rYuTW6qU0NdnTq7Smpq6NmBK/8rNpB79PLPufL7atsNp+mTG/q8MbM9NyKOHNaTDpO+6mZHV0k/uWWBvnnNwzrp32fTSw2FVueew4WOf/Y++tabntHnPkWtm33VSyl1t57I9p01RYvXtfRY9qlXHaRvXvNwj2W7TZ+kNz57H/3opp5z7Hz3LUfoT/f9//buPbap644D+Pfce/12YicmToKTkBAoJVmahTZijKpjpbzasKqt2qmbqsGEpk2Vqv3BH0w8pDFQ90e1P5g0rVJX/uhYpbaqVB4tagdaW+hCANFUJZlCyKMtIYQ8mthO7Ni+Z39cx7HJg4AC3ITv56/o3mP7XDs/+57f+d1zu3Dif5mXQv7jV4/gUk8Ip1t7U+v77HpqORxWFce/7s5Y8+df21biXOcAhkZi+OrKIBra+1Hqc+K5FUUYjiXw9ZXBVPtnagKIxBJo7w2jusgLj9OCyz0huO0aqou8WJznwpfffo8rAyNYs8yPbIeGUCSO4lwnjjR24dkVRSjIvr3fWVMSgMdhmb7JHI1NKSW6BiNY/eeTU7Zx2zS4bCrqHlqI850DiOs6WrpDGL2h2m2J343WtPNQGmdRBfxZdlwPRWHTFCxe4EK5341v+4cRS0isKMlBZ18YS/xuFOU6oQqBjr4wRuM6Cjx2OK0q7JoKX3Lx9ZZrISR0HSU+F3KcFiR0iWAkjo7eMLIdFjisKvxZNnidxnl0KBqH26bBYVVh01QIAfQMGX1x2TT4s2yQAIKRWCpZrgiBhC5R4LHDqt78goWRmDFWUBWB3lDUeD2LiuHkXf7iuoTLpsKiKIjGdcQSOtw2DUIYSQAhBKyqAgljAkjAOJcWMCZxLMk+pJ9fj8Z1+G/yXTNXY7PlWhBHG7uwdXUZElKiezCCohwHpAR+d+g86tv6se3RMry0ahGcVg0SElICFlVJTfRd2L0OCSlTn6kqBGqS+7b8uBS/f2IpAGP8IgG09oTwwuvG5F7DzrVI6BLxhDF+iusyNSl5cGstaoq9qcfqUuLQmW/wl09aUq+bThEC1Xs/BgDU/2EtLKowPmNhPP7StSB+8cYZvPpsFR57IA8Oi4r0Ycrhxi6U5Drxw+LxCZWxMVc0rmPLwQYc3FoLhyVzkkdKY5KmMpCNny7zZ2wfTeg4096PV96+gLM7n8ioPBr7H/vjkSbUPVSIhxflTPh8rgej6OgbRm3p+L6ZjNckJNp7wwhF46gKeCYcz3i79OPIvImDogioQkAmZDphkgAAA/ZJREFU9+nSeF5I47zyxvdh7HWHRuLGGHCSQepY3KmzNMmkqQKum0y6ThWbs5a0eeu/Hdj9wcUZPxeR2Zze8TgCXseU+836AwdMH5tvfN6Gfce4BhTNXV/uWQev0zrlfrPGJpM2NJ8tcFtxbte6advM1dh89cNmvP5Z213sEdHsqS724oOXV0/bZq7GJn83aS57/EE/3txSO22bqWJz1urrf15bgj8dbZ4ww0B33qrFPhR67Hh/BnfpyLZrGIrEJ61s2l1XAYt6a5nE3mAUB062YnlhNhRhZLJ/Vr0wlSVOT0zqEphJhfFYu+kqdO7EEgnZ9vl5uckzNQG8eaodXYORe90VotsyXcJmLmvdvwlLdn40YfvGygIcv9g9YfuBF2vwytsXMrZVBTz464s1WPPafzK2766rgCKMGbF0GyrzsfEHBRmXEdLds6eu4l53YdbYJ5m1nC/WLs/HdwMjGdXdROnysmx4eU35tG16glH8LVkh6M+yoSdorPv1y5UlOHRm/BJxj8OCDZX5eOeccbnqjk0PYmgkhrMd/YjEdGyuLkTz1SB8LisCyaqShC5xuLEL6yvy4bRpqVoGCcyvir4bvPZ8Nba/24gnqwrw/XAMX1zuS32vNl0dwnvnv8Nvf1KOv396GaU+Jx7Iz0Kuy4ql+VnYf6wJugR+89hiDI/G8c/6b7D36Uokkmsn7jvWjLIFLrz0o0Vptw837oS4siwXhR47Hi7NhaYIaIqARVWgqQIt10I4cOISdj65PLWQcTgaT1Vm7T3ahBUlXmyuXphxLFICxy92o6G9HxsrC/BIaQ7aesOwaQoCXgfq2/rw7+YeVAU8yM+2YWWZL/X8upSpCdk9dRUZ4yQB4GznAI59dRXbHi3DwrQJ6fRqmeJcB369uiyjP1ZNQUN7Pw43dmHXU8bxCIxXuIy9T06riu3rl0143rfqO9F2PZzq062M1/YebZryeNKlX1o99mc4moDDokBirBpNJCvSjD6fau3DqnLfpDU/De398LmtKM9zz7yzt6koZ+rigJuZtUobovnOrLMSAGOT7m9mjU3GJd3vGJtE5sTYJDKnqWJzzt09ioiIiIiIiIjofsCkDRERERERERGRCTFpQ0RERERERERkQre0po0Q4jqAzjvXHSJTWySlzLvXnZgMY5Puc6aMTcYlEWOTyKQYm0TmNGls3lLShoiIiIiIiIiI7g5eHkVEREREREREZEJM2hARERERERERmRCTNkREREREREREJsSkDRERERERERGRCTFpQ0RERERERERkQkzaEBERERERERGZEJM2REREREREREQmxKQNEREREREREZEJMWlDRERERERERGRC/weESwT1hQdGiQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEhCAYAAADFzF13AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydebxdV1n3f09ukmZo2jTpEJoOl7bM+IIIgiAiAgICCq8KKMigqKjIK+gLDuiLgqI44CygCAqIIsokgxUVZIYi1VIs0JZ0SkPTpGnSjDe56/1jPb9z1vmds3Jv2tCcNr/v53M/6+6911577bXXdJ7nWc+KUgqMMcYYY4wxxhhjzHSx5FhnwBhjjDHGGGOMMcaMY6GNMcYYY4wxxhhjzBRioY0xxhhjjDHGGGPMFGKhjTHGGGOMMcYYY8wUYqGNMcYYY4wxxhhjzBRioY0xxhhjjDHGGGPMFGKhjTHGGLMAEfGciCidv0dnnEfn8bc2930sIj7UHD8gIl4eEWtvp3xfMCG/N0bEhyPiMbfTs59zG9J4QkS8LyK2RsRcRGyJiHdHxPccxazqM0+MiLfmM0tE/E6ef1hEfDYiduf5+0bEWyLi8iNM/3l5/1lfnzcAIuLFEfHkr1f6xhhjjLn9WHqsM2CMMcbcgfh+ANfKuS9m+BkA3wLg0sPc/wAA/w/AmwDsONqZOwyvBPC+/P8MAC8E8L6IeGgp5aLbMR+LJiL+EMBPA3g7gJ8EsAXAXQB8N4B/iIj7lVIOV9a3lhcCeCqA5wK4HMDmPP9G1G/2JAB7AFyB+i3XHGH67wbwBQA3HI3MdngxgA8BeNfX8RnGGGOMuR2w0MYYY4xZPBeXUiZaVpRSdgL41O2cH0TEcgBzpZRymGhXlFI+1dzzrwBuAvAUAFMntEnrnJ8G8DOllD+Qy2+PiD8AcPPX6fH3AnBNKeUtTX6WAbgAwMtLKf/WxL3iSBMvpWwFsPU259IYY4wxxwVeHmWMMcYcBSYtj5LrzwPw53n41Wa50ll5fWlE/FJEfCki9kfEdRHx2xFxQpMGlxz9eET8bkRcD2AfgBOPMLt7ARwEsKxJe2VE/EFEXJpLgK6PiPdExD30PTIPD4qIt0XEzojYHBG/3+a1Uwan5RKjSxdYHvSLqAIyFdgAAEopny2lDCyeIuK7IuLTEbE3InZExDsj4m4Tnv99GW9Pxnu7lH8B8EwAd22+z8sAHAAQAH41z12e94wtj8rlVa+OiCvyO26JiHdExGlSfmfJfc+PiP+OiH25NOvP22V0zF8ur3tRRGyKiF0R8e8Rca8m3rUANgJ4dvMOf5HX7hkR74qIG/I5V2cZeD5ojDHGTCkepI0xxpjFM5M/nvk3cwT3vhvAq/L//426lOpbMFwm8zYAvwDgzQCeAODVAH4MwF9PSOtXAMwC+NFM68ACz17S5HkjgNegWtv+QxNnZf79GoDvAvBTAFYD+GREnD4hzbcC+FI+/3Woy4pe0stARJwH4BOZ14e3QheJdw6AuwF47wLvxPhPBPBPqJZDT8183w/AxyJiQxPvBahLrS4B8L0Anp/xPhwRJ5ZSDqJ+jw+hLoHj9/krAI/IZF6X576vk5cTAPxr5uGNqN/xBahWQV0/RlH95vwRgH9GXf71UgBPBPD+CQKV5wD4TlRLpB8BcB6AdzV18Umoljzvb97hN/La+wFsAPATAB4L4OcBzKEKpIwxxhgzhXh5lDHGGLN4LpPjjwOYaFmjlFK2RsSVefj5UsomXouIR6IKAp5RSvmbPP2hiNgB4E0R8cpSyiVNcteVUr73CPL9hvwj+wA8r5Ty6SZ/21GFRMzTDKoQYSuAp6EKFVreXEp5RZPXbwHwAwBeIfEQEd8I4AMAPgvgqaWUvYfJ69kZXrWI9wKqv54vA3hCKeVQPu/TqN/qxQBeEhEnoQrM/qKU0r7jZzPecwD8cSnlUxGxDcB+WU7G5UzXtucn8GwA35x5eX9z/h29GyLifAAvAvDLpZTfaM5fAeDDqAK0f2pu2QfgSSlkQgp13gbgmwB8ppTy+Yg4AGCrvMMGAHcF8ALJ29/AGGOMMVOLLW2MMcaYxfMUAA9q/n7kKKX7ONQf4+9sLXkAXJjXHy7xj9TB7K9imOfHAvhLAH8REd/fRoqIp0fEZyLiZtTlU7egWt/cA+O8T44vAXDOhHiPBPARVCuPpywgsDkiUhhzPwB/S4ENAKTfoU9haCHzMNQlZG+V8r0KwFcAfNtRytJ3ogrU3r9gzNF7lkzI28dRHR5r3i6kwCahMG9S2bfcgPq+r84lWhccQR6NMcYYc4ywpY0xxhizeL7Qc0R8GzkdwArUH+mTWC/H1x9h+ptkl6gL80f77wP4ewCIiKegWmy8EcDLAdwIYB7V2mbFhDS3y/H+TrwnoAp+Xi/Chh7XZHjuIuKuy3BSeWxBFegAtXyBarkyiSMtzx7rMb672EIwb5sOk2bLpHIHJpf9gFLKfEQ8CvXb/haAdWn59VullNcvOrfGGGOMuV2x0MYYY4w59mxDFdg8onN9sxwfbqeoxXIpgO+MiPWllG0Ang7gslLKDzNCRKzAYXyxLJJfRPXP8s8R8bhSyicPF7mUcnVEfAXVN8uvLJA2BRgbJlzbgFquaMIfwvgSNwDYtcBzFsuNAB5yhPcwb48CsLOT5lGhlHIFgB/KJVX3Q/VD9LqI+Gop5V+O1nOMMcYYc/Tw8ihjjDHm9oNWESvl/AcBrAKwupRy0YQ/FdocDf4X6pIsCixWoS6JankWbvtc4QCq499/QxXcPHQR9/wGgPtHxAsnXYyIB0bExtxm/WIAT20d9qbT44egLssCgI8B2A3g/E75funWv94IFwI4KyIef4T3FABnd/K26VbkYz/G69iAUsp8KeXzAH42T933VjzDGGOMMbcDtrQxxhhjbj++mOELIuItqDv3/Fcp5UMR8feoPm1+D8BnMt4sqiPan00riVvL+RFBC5BTADwZ1bLjD0sp3HnqgwD+OHcy+gCq/5ufwmTrjyOilDIXEU9FXX71zxHx+FLKxw4T/00R8QAAfxARD0NdwvU1AGegWu08A8D9AVwH4JcBvAfAeyPizwCchLoD1jbUXbJQStkRES8F8PvpkPcD+V4bUX3u/Esp5e9u63ui7jT1PABvj4hXAfh05ufxAF49aWldKeXLWeZ/llt3/weq0OVsVH83f1ZK+egR5uOLAB4REU9ALbetqMusfht1B60rAMyg+mSaA/DvR/qixhhjjLl9sNDGGGOMuZ0opXwuIl6B+sP++ahWLGej+kH5AdTlKs8F8DJUK5hNGO7gdFt4Wf4BdfvpK1C3ff7zJs5rUYUYzwHwk6gChydi3OHwrSIFN09H3Sr8AxHxhFLKfxwm/gsj4sLMy2sBnIwqiPkUgCeXUi7NeP8UEVxK9Q5Ugce/AXhJKWVLk96fRMRVAH4OwDNRhRbXoQpJ/usoveOBiHg0qt+YH89wG4CPAthxmPteEhGX5ru+EMAhVN8+/4r6rY6UlwJ4PaqwayXqzmEvQ33fn0P9zvsA/DfqTlcX34pnGGOMMeZ2IEo5GsvijTHGGGOMMcYYY8zRxD5tjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbYwxxhhjjDHGGGOmEAttjDHGGGOMMcYYY6YQC22MMcYYY4wxxhhjphALbaaQiDgnIm6JiJlj9PxbIuK8Y/FsY4wx5mgREbMRUSJiaR5/OCKed6zzZcydgYh4eUS85Tbc/9qI+OWjmSdjjLkzctwLbXICd1NEnHAM87ApIh7N41LK1aWUE0sph45FfvLZV2be3hQRrzwW+TDmjoz+WDTG3DYi4gcj4qJULFwfER+IiG891vky5s7O16vtlVKeX0p5xVHI37dHxLW3NR1j7iwcTkFxNOanEfGciPjYrc+hOVKOa6FNRMwCeDiAAuC7j2lm7qT4B6u5PUjB596cUN4UEe+LiLOPdb6MMUeHiHgxgN8H8BsAzgBwDoA/BfA9xzJfxtzZ+Xq1vWNlTW7MtNDMXXdFxI6I+EREPD8ijuvf52Yyx3uleBaATwF4E4Bn82RErIyI342IqyLi5oj4WESszGvfHRGXZuP6cETcq7mvRMQFzfHASiUiTo2If8r7tkfERyNiSUS8GXUAfG/+4HzJBHPudRHxxojYnD9I37XQi2U61+c9z2vzptJXlZYybkT8GIBnAHhJ5u29ef3nI+KK7GS+GBFPkbQ+HhGviYjtAF5+JB/EmNvAk0opJwK4C4CvAfijY5yfLlE53vtfYxZFRJwM4NcA/FQp5R9LKbtLKXOllPeWUv5vjqUcl7ZFxNsjYt0i0l0SES/Lsf6GiPjrfJYxBgu3vQnx/z4ituTc+T8i4j7NtTdFxJ9FxPsjYjeAR8o8+dsj4tqI+Nlsj9dHxHOb+0+IiN+JiKsj4mtRl1atjIjVAD4A4Mycq94SEWd+3QvHmKPDk0opawCcC+A3AbwUwBuObZbMNHK8/2h4FoC35t9jI+KMPP87AL4JwEMBrAPwEgDzEXF3AG8D8DMATgPwflRhy/JFPOtnAVyb950B4BcBlFLKDwG4GvmDs5Ty6gn3vhnAKgD3AXA6gNcc7kER8TgALwbwaAAXAHjEIvI3Rinl9ahl8+rM25Py0hWoFkonA/hVAG+JiLs0tz4YwJWZ11+/Nc825tZSStkH4B0A7g0AEfGEiPh8ROyMiGsi4uWMGxErIuIt+UNvR0R8lv1ACiCvTOHkVyPiGYd7bkTM5ITyxoi4EsAT5PqHI+LXI+LjAPYAOC9kaWQ0/gEa4e1zM983RdXAPCgi/jvz+8dHp9SMmWq+BcAKAO/sXH8hgCejjnVnArgJwJ8sIt3n5N8jAZwH4EQAblPGDFmo7SkfAHA31Pnff6LOIVt+EHVeuAbApKUVG1DnlhsB/AiAP4mIU/LabwG4O4D7o85tNwL4lVLKbgCPB7A556onllI2LzK/xkwFpZSbSynvAfA0AM+OiPtGxMmpTNiayoWXUeEX4k8qJi95Oj8iPpNC1Hf3lBn5nDekoPS6iHhlLM4SLiLijzL9yyLiUc2F50bE/+Qc+sqI+PHm2kRDhrz20szDroj4Upvm8c5xK7SJuhb3XABvL6V8DlUQ8YNZaX4YwP8ppVxXSjlUSvlEKWU/akN6XynlX0opc6jCnZWowp2FmEO1ADg3tRQfLaWUReTzLqiD0fNLKTflvR9Z4LanAnhjKeXSUsoeVMHKUaOU8vellM2llPlSyt8B+AqAb26ibC6l/FEp5WApZe/RfLYxCxERq1Db6qfy1G5UAe1aVEHKT0TEk/Pas1EniGcDWA/g+QD2pubuDwE8PjUgDwVw8QKP/lEATwTwjQAeCOD7JsT5IQA/hjphvWqRr/Rg1Enw01BN1H8JVSB7HwBPjYhbJZQ15g7EegA3llIOdq7/OIBfKqVcm2P1ywF8Xyy8PPcZAH6vlHJlKeUWAL8A4OmLuM+Y44WF2t4IpZS/LKXsatrh/cR67d2llI/n/HHfhCTmAPxaznXfD+AWAPeIiEAdY19UStleStmFulzr6bfh3YyZOkopn0FV8j8c1WL8ZFSlwiNQ57LP7d89xrNQf9OeCeAg6rx2En+V1y9AncN+J4DFOOynkv5UAP8PwD82gqEbUOfEJ2WeXxMRD8hrEw0ZIuIeAF4A4EE5934sgE2LfNc7Pcet0Ab1x9qFpZQb8/hv8typqFqFKybccyaaH1qllHkA16BK+xfitwFcDuDClDj+/CLzeTaA7aWUmxYZn/m8pjm+phfx1hARz4qIi1NCugPAfVHL7evyPGMWybuyPu4E8BjUNodSyodLKZfkJPG/Ua3lKOiYQ52UXpAC2s+VUnbmtXkA942IlaWU60sply7w/KcC+P1SyjWllO0AXjUhzptSmHowBb+L4RWllH2llAtRBVBvK6XcUEq5DsBHUQdYY+7MbANw6mGEKecCeGczJv0PgEOok8HDMTKm5/9LF3GfMccLC7W9AWlt+ptRlynuxPDH1pHMD7eJgGgPqgXcaagW559r2vkH87wxdzY2o670eBqAX0hB6CYAv4uq/Fssby6lfCGt0X4ZVdE3YkGT1uWPB/AzufzxBtQVHYsRiN6AOu+dSyX+l5BW5qWU95VSriiVjwC4EFUQBfQNGQ4BOAHAvSNiWSllUyll0u/x45LjUmgT1T/NUwE8Iura2y0AXgTgfqiVaB+A8yfcuhl1csh0AlWocl2e2oM6qJAN/Ccb3M+WUs4D8CQAL25Mvg5ncXMNgHURsfYIXvF6AGc1x+qQdXcvnxMYyVtEnAvgz1EloetLKWsBfAFA9O4x5nbiyVkfT0Ctnx+JiA0R8eCI+Pc0L70Z1ZqGk8g3A/hnAH8b1f/Tq3Og2I06WD4fwPVRHRvfc4Hnq7B0kiXNrRFofq35f++E4xNvRZrG3JH4JOq4/OTO9WtQreLWNn8rUrB5OEbGdFT/cgcx2saMOZ5ZqO21/CCqc+JHo1oHzOb5ozE/vBF1vLtP08ZPTj92tyVdY6aRjagKhOUYVywsxlCA6Jx0GUaFqEAdA5ehznUpEH0d6hLHhbhOVo1chToXRkQ8PiI+lcufdgD4rubZEw0ZSimXo7ogeTmAGyLib8P+qQYcl0Ib1MHnEKrPi/vn371QtdbPAvCXAH4vIs5MzcG3RN0S/O0AnhARj4qIZajmXfsBfCLTvRh1idVMVL8yg2ULEfHEqM59A9US4FD+AXWCeN6kjJZSrkddI/ynEXFKRCyLiG9b4P3eDuC5EXGvXCryK3L9YgD/OyJWRXVO/COHSUvzthp1cNya7/VcVEsbY6aCtJj5R9T29a2oVnTvAXB2KeVkAK9FTiJTwv+rpZR7oy6BeiJqH4BSyj+XUh6DKsi9DFVYeTiux6iA9JxJ2ZPjIxGgGnNcUkq5GXUc+5OIeHKOXctyUvhq1Db966lUQEScFhGL2dnmbQBeFBF3jYgTUZdb/N1il4IYc2dnEW2vZQ3qnHgb6rj2G0cxH/OoY/BrIuJ0AIiIjRHx2IzyNQDrw47EzR2ciHgQqmDmXagWKapYoDJiMfNHnZPOoQpAW65BbbenNgLRk0op98HCbMzfte0zNudv5n9AdSNyRipU34/h3LtryFBK+ZtSCl2YFFRfVgbHr9Dm2ag+X64upWzhH6oDwmcA+HkAlwD4LIDtqBVmSSnlSwCeibrG8EbUivakUsqBTPf/5LkdmU67y9PdAHwIdX3uJwH8aSnlw3ntVQBelhLOn5uQ3x9CbWiXoZqi/czhXq6U8gHUdYv/jirJ/GRe2p/hawAcQB3k/grjjuJa3oBqprYjIt5VSvkiqnneJ/P+bwDw8cPlx5jbk6h8D4BTUJdJrEFdYrgvIr4ZVRvIuI+MiG9Ic9GdqO3sUEScEXWnuNWo7eYWDIWsPd4O4IURcVZUx4mLWQJ5MaoPjWUR0fODY8xxTynl91Ad7L8MVWlwDapF3bsA/AGqYPbCiNiF6s/qwYtI9i9Rre3+A8BXUS0KfvqoZ96YOzALtL2Wv0bVtF8H4IsY+pU7WrwUdU77qVx+9SEA98g8XoYqhL0y56vWzps7FBFxUkQ8EcDfAnhLKeW/UOeVvx4Ra1Ip8WIAdD58MYBvi4hzUlj5CxOSfWZE3DsV+L8G4B2llJG5bBoHXAjgdzMPSyLi/Ficv8TTUee9yyLi+1ENIN6PaiF0Amp/cTAiHo/qJ4fvOtGQISLuERHfkUKffajWdQvNvY8boizsC9fcwYm6LfkXAJxgDaK5MxIRm1D9UBxClcxfBeBVpZS3RsT3oQoa1wH4COo6+7WllGdGxA+gmmGehSqY+TvUQfE01IHz/pnexQB+MoWWvTwsRTX5fBbqIPQ7qILgZaWUgxHxYdSB+C+ae85DnWjeJ/N2BYB1mbdZ1B+Sy9huI+JaAM+kwDfqzgGXlVJeeetKzhhjjDHG3N40c9eDqH4Uv4gqlHltKeVQKgD/CNUh7z5Ua7NXpuUZIuJPUI0EbkQ1MHg9RuecnwTwKAD3RJ1jPreUcqPOL1Po85uohgdrUJ0L/1Yp5W8Pk/fnoDoH/zyqccHXALwg/S8iIn4K1UrvBADvRV2CdXkp5WUR8SJUQ4fTUHd7fF0p5RUR8b8A/AWq8GcOdSXLjxXvBgfAQps7LRHxFADvQ13O9FcA5kspi1mTbIwxxhhjjDHGmCngeF0edYcnIn4xIm6Z8PeBjPLjqGZpV6BaH/zEMcusMcYYY4wxxhhjjhhb2hhjzCKJiNei+rVS3lJKef7tnR9jjDHGGGOONp7zThcW2hhjjDHGGGOMMcZMIV4eZYwxxhhjjDHGGDOFLD2SyKeujzJ7NupeKu3dsUpiMgK3bt87erx/fnivGvrwFu5xRLESN/yal5Dnl0l6S+RYmZfjdkMx5kFfQ9PSNPR8SKj3L3R8OBZ7b5FQxXTM2yGJp2FglEnpaVqE5bFQHmc6aet+V/rtNR3S1jGmrWnxnrkF0poHNs0BNx4qWhJTwamnriyzs2sAnJhn+MIHJFwhd7IQ29fqNUqtyHOdY4XP3jc53ZLXuSG99g17MuQrAePtnfTqd3Suk16913ZxuPt6afT2a+N5LdZDnZDFuztDrdPLO+m03fMSCbXtLdRn6fmFyrN3X3td+8teOWraTbhpD3Djgelrm+sjytkYVu2dGa7MkOe1GFdn2HapjMOqr9WHaHe7Om88lBe0mw1mRsdSJrRSzrMesl7ta15kvcRhXWW3xHjLJWQ85mFNJ51TMjwo15kOuxh2c0uaOHyPXc219l7IMZ/JguL7s3/ai1G0fE6QPPF5JzbnWR7ML/NIbpI88dmMz/tvlrRnJD7zqu/Mrlnb1Krm3m1yL99TK+mWDPnt8ht97lrcWEo5DVPG6oiyFsPPxFdnUWn3yuvL5fochtWWxc+i4ufRqsN+gE3sBDlmenwGPzc/F9MPOc+qxk9QMKwa/FyEzZd51PfUqZ9OxflORKsS8z4vx3zOCRif1h+QY74386BpHpJ4fDbTYXPifWz62lT5TVlGK5p8LpUQJ2XIgmPiTISZzQKev66GSxjvrAy1D+PLyIfad3XmiR9gaZMZ7bvZZ2kb1Y+Qefzc16azbZ566qlldvYcDGs0C5sthV/4xgz5UbRFBIaFpa1R58b6g4O1Je+fPzh6WecrWmH4TZbIeR7PYfg9dK4Xco/OgVhndB6nv0mXynkNVQLQpqNzbP29pY0RcqzP1mfode1gNP1WNqCTIC1z7Wy0wS/UOS2R60s717WzmzvMvb1NyzV+hp/78uS2eURCm9m73hUXXfQKAPfIM6dKDDYwNiQOF9dmeIuEwLAhaRr7JC6Pd2S4W84flPgLpHfgwGgybJ/t704dQXbLMZPkvZzc8EdmO3Fs4xPex46V6eukse2A+T+foXnkaE10ZGWeZuQ686Kdh05oNb1JP6R3SZwDmIx2WMvlWNPTkbonHCJtY9By07zpwDkhrw98U+faFDA7uwEXXfRyDJv0pzNk2/tahl+owU05bTzl9Bp++YYanodhEzs1B8LrMu7G82r41StreHbG+0+MHn8iwwdleEmGrOdfyXBthtzIL5Md1GF+M6a7CXXTwvaZ6zL8SIasA2dKvLtlyO97nlx/RIZ/neGDJW9sN5on/lBZh2FRr5NrKyTcLPF4zDrI8k8uye705Dxmr3padnn8AXD+3tHbL+N53tCgjyazOSe6Lrvljfm+JfPG5rM6y/emTOCUM/LCVnkA2zi7ZbbxVU18fitW0TPkeE0TFxjUm5I/aL8A4OmYTs4A8AYA1+Txhgy3Z8gRmVWDTYPF0w4NKhLlNXZzLB4WOYtx+fzoM/hMNoWNj8t/Hpgh6zbbp35L1mtm4GQM293JElczS5ZIPJ1sLZPzRMevwa86Hah4YSmGc4NWWgKMz/jQOe5JXXVA1/i96RULdh/GpUwqVNdnq9Rmh8TTdDS93rtNeo4+Q2F5Mp7OvWqaEVde1UngmBKoVZ1Vlm2S7Yzdjs6aOXTwrXc397J/5D35ex0PzZBfm/HZZjmjztF50HbZb9w/Q+232XVyisQpI/Mx1+SF4wSPtenpTLz9bQkMawHT5nSXeWG3wTxQfks4DWD57cP4tJXlwWexv9Sp9bdmyFkO7+czOQV5WobsTi7KkP3rNRLvsRlegEaOykLnXPHb5WY+fGOGLLgHZPjLGbLgX54hx2X2p3xp3pds+7Earm/7YxbMvTNkBeCLs2Kw4jFtppHE72Iq2+bs7CwuuugiAG/NMyxc/ua8NENOuvhisxnyhbdg+CXZ+r6Uof4S35ThNjm/b/T6LdmS2h/qwLAh8dGsF3w8h6iBEGfV8BlFfiQFhVCaRwkPdn5cLc2HlPnRvCkqxDgcvQyBC9YAACAASURBVDEbch6LvK5ERwNY9IfdIu7Ve2LJ5PO9clF670x6hgRHgihnY93ktunlUcYYY4wxxhhjjDFTyBFZ2lTR8PswlFRS+qlWMFSR0uJGpYRrJ5wjallzncTbMhp9oO1RI8aOZFIlmippXIZxaxJK0VRFOSchk560nKO9T6VxaqqstJYrauWjaa+WY76L2ocSXTWjeVsr8Zg+09vZxFVVDeE9TEttWonmTVVeMxJSRcYy0e/WpqfScKZBsaWa4+u324qhZeZUsgrANzXHbEdvyMOslKybtDCZSQuba5rzs/n/l/Ljsq7tvnI0Lpv5xRlSLrwpQ34XdhdUwbGbWC3xqbJj3qglyia/5X+ADU+p/3/wnTV83H0z6VRRrqbpcWqc9ub7ruSzRS249/K8nnndlO8wy7qjdZIqOmqyWJ7LMGZZU7L7i6ynB1KzNljpkWldnWn0quhfZkgt4OszVIMkHjNLNJz4CIDzJfv6CdgUd2Ub3pTHXxTzDub9/CzHK/J4NusCq8bZN46+AzWobLIrUtW8GcDZXx19Jo95z+o9o9fX573Uh30Aw6o4bdwA4A8xVIi+J0Nqm1kd2Y0+PMMvTkiL2nd+ElZNljkN21h/qHSlFp/NaQMTImzfVEPT3IfD+xqJx2OaC5yL4dh4pcQ9U45Z4fjCHDPOkmN+XD6LmmVdLjUYG3KAolZ8Vx7PN3EO7ZycB12LoeOTrqnoWZuy/bMs9hwYjT8otz3D9AeWsnmOYyTfn+/NxqAWfyxXPvOanaPPYt7Y8DnXUG2wHs9hWNbMUy8PLK+75GB6dRao9p1TxlLUYuNn0ykVi06LiG2WU4cVTVxOEVjcrVUJMGwy5Ew5vq8c8z5deca8rMNk+MmWYHxFBKsA7+Vn1vdXw3J+djZxvvOs5EkNZ2nkSkscpjeLYZXSVZFbJOR5GqdwisBn6golNptL5HiNhMwby6L9pis5WPEj6cPU6q+nAufD1IvEIhl840la/N4zdf6qeVyMZcUxZSuA16HaPAHD33X8PUiLm7VyXa0ogeEsha2TAyBreE4CB3Nmjce0c0A8kZ1zWvms5PX8LcolvL1VIvwNenDP+HcYRM1+nI2z59WA8dUY5cD85PP8/pwk8n61cN2HYWfVNooWvU50PNR2wnbA3wX8hLszs5x3qNkx83w3DCdIHPe25L2caF25wHX+VtG5DCdLOtbxmNWRHRHLqzUN3CfXOA7q71+ixra6GkSwpY0xxhhjjDHGGGPMFHKEljbzqGIhitComjtR4lHCqB4z27WF1I2qpQ3FTmPuv5JT5byuU+/5uMljrn1fJpq5gYOudm08rXPmJz9C1+krauWiDofUMqenwWtV7z3niZqWStR7Dq+Yjj675/RUxXztWj79zGqRpFJdZaG8LTY9Taf1aaNONhdrHbUKU25pU1DrK3VKj8owj2dS9EzVk6qwqDzYhaFUebY516JS7HYBPTCUgvP70RSA6TB9arC2j16/NLXt99lUw71fHWZ5g+Yl3+Pf8vBBqfygcH7ggzQl6wNnrJknagXPz3Q2MWvbR7POUl2WEvbl2maXAHuzq5m5ZTTtM24ePeYr7Mk0KLRX91qq6Ff3OhTus/hYddtPCdRPrN2Aur5SrxXqtoRQOaIGEfzU/LTqJ+9mud5qVFmE6l9HXNiMuf7h9YuxoHLimHEagBdgWB+/I0PtVolqgHc28XRlvh6rhRbhNxw0HbUc4Ueilkkta+6XIcdKdVaxG8MKxDTZtvnx2Hdqn65Wk/ohmZeVvDHH+5K1frCWfa2EZB9GLXyBQcltVB97DHWOob5a1ONGck6al5U9w0eP5D2fe5elw3cIVWOmKm8jn5HPPp3HnO/MZrhpNK9rWS58Jt9FnFrQZQKPT1EfggcxNsc6SSdAmqdM6xwtz54J8bFlCWqps31oleVbqp+aFRKvtZ5RpbD6plK/UixBNik2Td43K3nm+bPlPNM5N0M2m/0Y9jU0ZuPUR99zYJAmed2UIZss+yb2x2r7zjyqYS2bOruRr2B8Ksc8qHszVd6r0Yoqr1nj1DJJLT85ftEqla1m5TIMKwQLmwXCh6s1Gz+ydtDab2ofqO6nZC4e6jp0WROXabF/1e5E573qV2VqOYi6UkP67EFfzi9KkwkWAPsszjgub+LyGguU96pFzAq5rqs5tH9TE5RMp9yAibDSb8P4hEy71l5d6ZnBqcNdtfpgyP6fEwz1NdjmSX/XMY2tcqzvoiaJ2gGoszA1AVSLYD5nA4bzBcI5CtPUDuIecp2w/M6V61q+tLBRp4TsaNi212E4SdaVItqhaqfH/oO/rzpMfdM1xhhjjDHGGGOMOR45MkubsgM4+E5gKVfqqn6WyaXG6WCKqZZSdJaipb17Gu1TckuzBr1F1YgqlVYNH1Ht/0I7GA3WuU+IqL5rVI2sW5bpblC67UfPF85CO2nMYbw85ptrk9JSepYmvS3Q9V013VbK2ttMYyF/MkQF1qp11Tz1VMuTtk7UqrrQN5j0zN4mGlPBHgCfw1ATwX0VUquwRcS3fG+aTLQ7manKje+tasQdEqrfJJ6nOkt3YTvczm3AQFI/soY+pfvsgVjnuFT15NHTQ7KeHsj3XZHhQEO3dTS6ZkkF7+vywrK54XnqdliVqBVkNVdLElWa6DLl3q6ELE6ifg30uWswbizFNFTDy+ZMRYIqcqiYUS30Ljnu7disuvrW5lINseSTDMpvlVzfjPGqMy3sBPAvGK6a1/fnt9ogx+y6qPi5DEOdI8+x3NTdGMuaaVKLzE1JPrVn9PrJ76vhKYNtyTKkhpkNkGZn7a5RPGbmuB5dnVQMtMy677XshnSi7o6kFrcZxixG0ftIa6PUs97t3avXe/cL3JpUt+/W9CZuUN9Lu7cjlZyPxe6I1TvP45nmf6Z5mK0VR66rP8Hf7tx3bKHdOA0qqNhdaPqmLhpahbAqk9Ug81yJp7vBn9C5zj6Pz2YeD8h1taCcR9+Virpa4tf7khyzO+BYoFZDTJ/999iUOkOOKWua+Gqcwm6E47t2I0THBqLjDLudTZJnfjOd9g4U+Osw7P/40XizWhrqznmtdTYw7BNPlvOqae/5L1Ht/goMKwpDWk6o3xBNi+cXsSHPseUg6ginvmo4SH0uwxwxD365hkuzIP4ja93ZGJ9Q6TZnakmyMtPYu3P0/GBHJ6KzTDkeWFFKH7s8j09rfNrQMpL+cdbukTTkh+8p+mxdeaJ9cGeM29jd2B64ywKrXs7p7WzI6708ZnhXtWCVeHef5J8IAFYAd7+lcy3vvXeWn/5GZHnerbOLFOPpbrOQ6+ygJu0aNSv3qEhBOzctJg4ev46J2NLGGGOMMcYYY4wxZgo5Mkub/agLUVen6m3gmTlDSpTVqcK6FBFT3XgagC0pflILGl3CSOmyxlOVJKVVlFZTjaAu8tVChcf0VL0C4xYeFG3xfXs7N/E8NZKUyvXSowRdVTpMb49cb+PwWTRY4oJlln3PKznT7Hmw5n1cw7dVzqt1UZt3VbjxG1CyrRYZmta1C+StXdMIjDvzYHosI9a3Q829N0tcVXH38rYVfUuiqeAAagHyhbhuNyXRrLvaPlhGXL57JiabQwDDMtkh5/kd1HqJZTovx/y+amKxQ6LvH33ccmCweQCze1oK3NVXiq5KXrV/9JFUetF6Y1b8zlAYzqz1DM/azca4rwFhsajmVrWv6oRfLUqYBzZtdrOE6apvhrYLpWax9XPT3tszetJyVWsY3cGIx6oNUC1su3Rbl0jre6tScLuEc6genaaRedTvrRspsD6x+bFOsBxZPrQgY7cFjHejuoGQ7ir2yQxVQcxvzPRO4QfQpf3aj3OMbjWUmyQTao7A4210KrVzNK2BUvL0/Ef8Buiuj8GBvbdbZDuhUG2tmuv2tJP6Euo/T/0sQM6rpnJSPL2mfhJUVa7x1IePwjycKsf6jswH07vxMHFYDqzVB+X8HYOVqLs16fBE41NWe1bpXt94MsZ9hqnRhG50qb7C1H+XGmv0nq3WLuxHWuPWnhUO09JpJt9X3WCwv90q8dTonW7z+FxOTdWKpjXqZa3k2NebpvNe5pl5WSfXCdOnywvmif0p49OYZtBHtpY2HHD1NwoLZrec14/DgmIlUF9ianmjPkL4cm3HL26yxgYDHQSITkammkk/T/nCj8gw+56lMln9th3NddqO7Ri9Z6X2nWIJsvKM0fhjFic6buh1HQek/1+6tH8tevfqM3o/SnrjYs9ScxKLvbdngdm7X33MaR46Oz+PvHNvTM3yiFWSZdk9WlecsP0sZsVFe5+++iGMr17R35I9J4T6jA62tDHGGGOMMcYYY4yZQo7M0mYOVVV9dnPchlQTqk8RSoVVFQiMq7LVX4Z6z9aFuLyuOwapFcDuTnxNZwZDybeqTSieV+Gm+rJRD+0q9aYqp1XTtzDeeok3CZXaUc2uaeqxSgO13Hiehhu9XaNa6yPNJ5+hanZNi++r6ij9RjzPOsLy1t2lJikpmTdVN/OeWTmv5bMC4zt2TRXLUXVaqu3MD8q2yZ2daHLCMmKb3oRxj+k8ZjmzbaqVG8+rGkx93LBNrpXzW0dvU78AWwE8aNdoHFrS/FeGWgWouesZgalPFrXiYLGxWamOvRW0q18YdQk0L/Go2VXjL7VW4TP5yZgeqzQtfLQ42Wzuj2GXxvKiYaEq9XivbhCmn5bvxu+wRELdWKB1mQQMm1frm2C3nOM9fH/15XNdc31aLW2Wo9Yd6vr4DizHe0h8NkMdUvZgXKmqmzWwfqg7A9YL9cvE89/AG6i8pPpZd2JQM7bVzfWBg5wMVRPc88GmGt81N4zG0+sDnw3bR4/JYNekVjun0xw1ISSTNHrtMcP9GEWP98l5Op5Q1dokLed+udaz/tFnqeZxIR82C/nxac/3tJo9TTU5nBb32EMrOL6pTjO0D+sZhZ+BYVPo+SVTY2v2bWzv++S8WuKwKc5mqH6rVOHb+jnT99MdlCDHarWjXjXUh9rJEo++s3QnLB3/dqE/ZWOc3XJejbZ1Ryzd2FWNYtg70M+X/iRZzZe5G4Z+Ldgf6laJfJiaKHFwZaLMJF2iMHM6D2LT1988atkIjA8QOlnQe3SOPdVW40CtGZOcSNLCsOdfTHayw8kA7tOkCYz3kbp7FI+ZlljodHcu7vl46VmMTLK00f5YfbdoS7lZrvd20VJryJkFri/FwDdt15Jysde1UnJ3rWwAnAssz56Cuy+y2PnZePsujE+qWa9lJ9oBvFdXAfXuV/N3tmXdBpWwU9yO4cSURayrOTgJZ5tk/8IfG5wsdrCljTHGGGOMMcYYY8wUcut82lBbz4WilBCpGFw1cjx/LoZqQUW1er0dhNTKordcXeP3lt9RQEn1SxuX4X45VgcXN8v1nndoSvcozVNVjlqktIo8XfeqJgW6cJmoEw7Ise4ORUmilpuWX5sey023QGDe9Juo+YOmrYpKxtddTNQ7tyo+lzR5k43Mhk5P5DxptRtTvXvUDKo4WRuAaENpaXT55MsAxrXilBxrGWk9VtMStczR9Hk+pd6HMj1V8PNNLsFw96deM9gjx/potd7ohVplmS6rmnZxcxj3F6OGh7pRF6uiuvpRbSPTuW+GbJqaB5aFamnb6t9uRNeGkOsHJFSjQ1VEaHpqNKeuuLSKtc9gN8r3Ux8+VJbwPWcxtAyaNjicsFxpscVvq8Z7HEL1Oy3DsL7oJm1sJ/wmPQMZNn21XNqblWMlKxYd6ag5gPqHY4XcDOCekvhJrBnpS6WkBU1kCZRsYXGe3CjayN0Z75R8+E35lqw4apU52LGJ6VHb16ZN/y7s/DZlqD4K1krIwYItTjWykPO8j87aJlm10NaK6jVd58+JEr1uMA98ptqfaTweM322TJYB83b/DL/QXOf0kD3UfSUOVYiEZf1NGX4E08wh1CrO9jHbiadjjBp9z2Hc7SFhk9GpirpgZB7YPwx2KZTrRKeo6rqkdSWlLujU8g5N3DaeGm8QvgufoZvw6FjBsVR9B52JYe0+Q+7RsU2NeYkaq+tUUv296X0Mz2Fn+bQMnwLgsfl/PD7/oemxtlHxv/UcKfEn7O7EZ0lku7lifjTT7LD/NMNJu8iyQrEp/l++CNt3r2/KZ/98b1vdY80y1Jdif8VJ6KYMr6jBgRz5+RonckTl+6/AmH/HsbGB/k5ybFEzLx1j1P8JJF7vt5b+vpmfcE0r8uF8p7TPWOh+ov5VerTPU0t7ncQR9as0NrnMXksddA3MvcXCRrfOa39v8Nuwg+TkmnMYblnHyaNY8w/SZrvhMMrJ5065zskVYXWk9VxrDfTZ/F99sObgcEM6GWTfdtIFo9evphPCDra0McYYY4wxxhhjjJlCjszSZj2AZ2O49kw9MkdHBnQwRWSteJsqCUq2et7Md0lIKDnjfWpdQSiJU8lkT/Xcon5NiFrWqEXBQuJ/XTyt0k9Nn6yYkCcKonUbmJ4qnegzmS5VErp+l9dV4tiaKDAt9X2ga/xU7a6o1Fh3FKPpgS6+VhVY6/RhlVxTgxSVnmu57cP495gqrgXwYgw1K6lF2JkabkqY+V5sT5fIcbvdhNYl9Smkfil0Yf4aiacS+Kxru1PdptYduinV3dA39FKrAjW8Uw2nGn2ppQ3PUxdGYbk27dbaQe9lMbEJaXfR28hNm6S6qeJSe9WIqiUP02mXyKoGUn0i6PJhos1eNbtardQoq1eOk8pNLY56RpQ8fwaGXcK0Eaj5VSsoKoDUB1BP07wGQ8Ur76F2Wl18qe8J2nI8KEPWnxlGYIJUKD8xQz5w+Tn5D1XP/Ir5Fndfi0G/s3y9xMmaFPL1AoLq0jM85aAcsxVRS7opw9S8Dmo7z98yfKbuenQg+8bBfIa1nnk/X86rDwQNmbcFdg0ZsYKkFvgCicNnrZbjBSwpu34V+O4ny7FaE7VTQvUb0fO70JtG/lSGKzvXjy0zqO1KN0U7QeKpixGdxrUbZ7JkzpQ4C00z1AcOjzfqnEbcQowNYLzOKr0fw+o+PxqVNljqi401TneqYjy6bFHLP07p1aaL4xK7GdrWtVaGOi6pQbSObTrVYPnSSJDvoBZKLBbd3WuQ+TObMO6eB7QwY3+gFnm9fqBnx8t47Ctzgnzul2uo89mVg631hs/Vj3kS34wmj0x7ISvA/8ZUUrYAB141brXCich1cjwwS86WdWbad50GYMOVo2mwsm3KkJXl0xnSbJdFRJ9ErIRqSk10q006WmRD43flp9qMcX8murtX7/dpbwtJnYipKd+hznWWc77z3suBlWzAfEY2rm0fG4mKmTNHr9/0odGkT+eKnCyHA++pIYtr47dJHvP+f8nyfsx35nkaon0I+Kc89TTOWbKPu+HzNXx3nv7RR+c/F9fgUzeOPvtJ2bR3pvEoq9OmDL89h+dL87775Pf4bL4cX53vOnsm8EHWkwwfnKsaTpkbeb3BJ/xJ1rf8Nr1FSMSWNsYYY4wxxhhjjDFTyJFZ2sRaYPkjMVz9m1LcgdZMNUspS1qaYqqlKeVduR8Die+pW0bj7k1JqYrCdV2dqjAYDnaPkFejR2q1DphkUcFrFJhTKknxnPr4oMiRElVmgSobVYEqavWiEuF2fSJVNJTmqQd7VUGovxH1Jq/71TOP1Dyor5ueqcP8hGczT7o4ureVgm6b0zNrUDU/1TK9ReetXxq+J7+RqrZ7u2ntwXhdmSrWAXgGxtQG+95bQ669pD8qrUetJJ7lzMXouoWQmgGoSYzuCKdrg0VlqdYw6gKr1UryUWop09toTXcv0o3MmJ4udWU8Fg89RFCyzue3HiWYJu+hEoV5UIfzukkcr6uPAH4adaZPVFur3c0GjOv6aG3BT8xnsitjXvjpdccQhferJlN3Q9GyWIfx5qw7geg3OU3i7cHCS7SPFUtQy0S7dLUIYx3odXFt10+0DbB+bJDrhGV+T90OhuPURRmy4s5muO7qGp7yVnlCawJ5glyjepJfvt2Voj3WOYOGZJuc186I6XIQpla8vSYlsnyFXFfrFtVSq4a9tzuSTqs0/Uk7n/TeX7X56utGdzbRHnHSjiVtSEsf1cDvw/DbiPXm4B7duUp9R0y1EzjMYLRf49uwJs9OiA8M2+aq5poaSatvm0EaefNKhlkFTxLLmUMcRLTjPU1CQk09i7ydH2bc5fnM5WIJu7KjrV8uVuza//JYdwJU1xdqVXRNc6xG1Nr/8XrPtYcaHKnritkM9ecC76MxxJYc4L/9jXliO4BHp+XLub89mim17mBFoMac22f9Z4bq74uZ4belaZKaZ/H3B33d/E+W5AkYN1n9RE6qH58PZQEMzCol7Um+DKeJOVTrCZ2fc8Ly0QxnM9Stzz7QpMMKyHem6SldbtE8i2lrJbpErucQUy6sYeR33Jn14qS0HLkuLVI25lT8c/ku35Td5JYbgQ2Z9sXZtd6fdSLb3k37R7P6JMni4PNn+K0Zsr18ReJ9o1xn/WcRPTTzcSWAuax/bFsPuXJ4rc3DA7Jc1mfHSS9pl2X4/TSCzc6R7Z/pbBR/rDfkO7NZPEbMkL/SPHswLcjhkD9vBuS9B/K9OMU5S64zC5RGDOZrNw6fCQAb8oLOxQeWNluH1YY/czmdOmXbyCMH1jzb8mOs3z56vYctbYwxxhhjjDHGGGOmkCOztMFeAJdifMcC1TjxeIucpzZnx3BNJkV8PQcPKnrndUpUVZkzI54x1GKi5+G71TJQw8Bn75E4tNJoLTjatFXFwPs1vqpO1efLpIXPTEsVjbpzFYte1UNqBaQ7fKnoUFXEqhJpLX32N/+3cSlazbzvFXMIXbesn4zLU/nqPefs+okptN7T3MPXXJ0nKOXsLRHd1pzvuV2aDgL1o4rWky+gpiRaV1s12UJrf9XqSlVvasXGwlXtTuZhJhW5p+QHXp3nWYX52E3No1VDR40B/RNo9VXlmFrKMN46iUfUaEjPH8KwmB6D0fyz6bGYqA3gkmHex3fSPCs9NweEeWf6JzT/U/mnn4aKO1XEqaGdutBiHqkk7O36wft1uf7XMFR8MU/qkJ9VdbCGWvLautOaNpaglsV95bz6jWh91/A+YHxHqPZcq+kHxsuH5bdcro851uDHUItP/XiDbaaoS2MNX4qhNQb1Y7S6oOcd9u782rrzEktAd26SHT7GLHO0pqklyYkT0tZ7T5ZjTaPnP0ZtwYhaFen8SK8D45Y0PQsZHanUGkjL40QJe56h1C5rbfOsLZ24+h76DXqmxdMBd3bTzQ45JrAf5VdXPymtoUVvV76xjWbywlrxraju3waG0V8bvT6fx2yqdCNZpAMccS+pu5ESmQuUfHiILwvextPsi9Q9xnI51p2btLWtx3DcYBy11KQGnFm9QK6rBSc5Tc4znrZ0Fhs3ixnMVa/AUB3PF5nNcKvEpTULTQcenCEtOLTb0MnLN2So22Xyo7PyXNuc123GHij3Mq9qGsw09bfItLEbQx8zwLgJhO5yy+ssD5qenInxCsh0/z1DOpjjpni0rGGZ6mTwqtFHn5YDMj///a8ZvW3L3Gh8Wn3sALAhI3FMp7WObgpMu8pNGerPNJ7naEs7S91Vk/WfbZWvyuLk/PkrGLdue0h2jKz2LHLatq7Pd+FClIGrlhzaZnaN3jeQDojZCstim15vynEw4spWo7pTHc+rr5p1cl3W+4z1C2x6arGv4oO9c8Nr/GaDn+a3jN7L8hnsJpsRF/qdaUsbY4wxxhhjjDHGmCnkCC1tDqJqvjY1x8CYJkv90uh2KsDC4iJVQfJeSp1V8qr3qTdtSrFVTam+YQ40z1L1vIrAKMGl1cqMhOqTRh1y9JxYqGVPa81CESDFkNSSZNrUsNyU56m1pnRUjX+Y9ENkLeXV+0fvo2SW6/MoJdT0gKHkldp7Whbw9flMakPaNc7AqHULAHxHhvzkVBb8W4ZqJMRjKhm2N8+k8mNZlg8ls5Q4UwmiVXYZxgXu00VgtDlzsXwecl0pP5w6CmHhUtQOjDva0O1qVNzMyqAOO1Qtpv6VxAxqeVYUXT+6FsOmdvboLYNl5Nq0qFlgs2GzZ31WTZ1acbB+0D5ALXWY9eUY73r0WWxiuk+M7uBEeq6aiNZRHrNsVPPZPotlSiUh25xabxB1t6XuiZjH9RjlNLmuBns3N2lpdej5OVC7hvthqAmZNgI131p+HHa0/HRzQH6vfU0crRdatoTfX40yr85MzNGIJcPzWdlzp4WBmkkXWa/IXK5pTEVXZGQ2nDWZ2Er1McfE1UpDrVJoedLZgelAPlsLjMetkysWcrAzZFq0Bhq8RIZUvfZ8tfC8buXD+9XPjPrvaY97UzB9f7VH1XJhmqvlPPOoPmtU/a/WSK2VDN9H89R6zZr0zOn2aaP+plhy7LNYldWNYns/UKueWoCezovSaZf8fKFzxmSlDkQy0MyooVXGD92RlOzAuLkPmwHzkPeEbmuYTVrHSqLjEacH7K/bvgsYn9KvwLDPYtaYJS0+nVLoXEw2vxkbx+RVB8zkjaeoRfp2DCesnDQ+hLMMbofDfiFL5nG6I5tauanJB+doHX9TKzM8NcNvRh+a945Z6vV8hrEtP/IwiR5DdgP4LIZmCuqrRhupmqq1O/Lwc8jvt49nPX+Y+LD5YFaSx3HcU8vTuZFgYFHB3zH3z3rDORXrpro82oeh7yo+ilWOYzzT5G8o3qtzodygaNDmWJ23STy2UdZAtcShRfBVGDe8ZV435TE/zeC3X/6j5cFiPymvs+0ONuOVbVbVHatOcHehmevki9FlrXaPvM48qC8g9sfqllMfrbam6kurXXii+2Cqu1ndlU/TVJevii1tjDHGGGOMMcYYY6aQI7S0OQPAT6KvlcnVbCtvGQ0p1T2llfup5Pfa0bhFrHUorlItvaqbdUGcqm+pNlDFFZpjPpPSXKrrVQSoGkjVniy0U5Xez3dR3zBqemRLGwAAIABJREFU8QN0xW2HUixK6SilnXyUamMHQkyRDvORzIpaGFwj53dgWKQUbDMNet5OZ+qDeN+TIf2RUHqs65hp3cNipXT4WomnGnpKOq/CuHae1kAsFz6THhnUMGsdxqvKdLEPNfcs/Vy4yxekdk0dB1H03haeWsixXuv2EGfIeRYWP9RqCalOYxvUysjjbG/LsxKfzus7gJ15TjfP0HX2asWlWlIaEagvAh7TWqW39JvPaTUeZ8q1nvcI9V2zQo5Vaaruo4j6tNkn59ltbcT42n7tmlTLrJZ4LAcaMLD8WDW2yzHjq5JK3/1kjPdN6sNGq4+WA9BsYDhlLEetS+oOrWeEqTvTtEOJDmE81vrB8mL58ZvwWdSEsd7xW654Tw03MiI7WiZIczNWUFaGVU2crRLnTPqWk/F8Zufw3hZ1XNbRco41Kt2xrh1bBzsj7hxNG1eP5nXgqoV6S8gFtbjpWQsxU+qnRtNbinHrFU1TffrQmllsBsZ2z5xkMdOi1jFqPXQQ4++hOkT19aM+gaabGdRqqz7H1N0fq+i65j5g1PeeGln3rK4HFjasc2w32ph7A492iurrUU1JNmB8QGIbGlOl12AvjeQ6c0x+fc2qap97/n1ubo45/nDshMRV/4YK+y4dV3raarVKPElNa7VDbhMf25lO671asekudD2/UovZXe5I6VnaaBueUujThj8OHlqDTTlBn9WtzMQU67qs0xu3Yvz3WLYZDm8Pa3/EYGjV8jg15xKLDx2zN0s8/UlKf4Lf1TxuZ/M/MG5VzGHsMomnw9+mDPlbicWi1hxfk+tM9ySJP+I3Rp69XcLBT/M9k+PxnU7aOXqe704rGVr6qWWw7j67A81P6Yykrl4Ho96uyXnSFSI6fdANi7Ucdf7cpqP+UHWhDq/rzq09D3nKEfYKK1CN+/U2HdR1W0/dlvNGDH893iLXEq7z2ZdfqvfLRR1S6S8AXbOgSzp0kjeHvmRDHQPzq/S2i9aRh9fZwfAXpX6tTH/n/tHHD5ylYdyvGCuAbnHMR+pqMi1GdcTE4qCgZbAlXIbsS7WCAkPjUcL8szPUpUq6LR0dWbEj6TkJ5nl2viqne0SG12BYToyjzgT5KbbL9d3NccG00060E/5y54xTe3MWFgtzD8Y9AJN2vVkLC1H9k6u9n0rXdGKqg6vM2HbPD+v9VRhF51y9bbH5k4bpsBdi1s+U+PrjmcWoS3pmMO7jT+flHFC1q9LfpZoOZWMccJknHeDV3/kD5BgY9hMq3NJlgersWOf5urhCBU2Mp36v1Qp9BYa//XWli07YOdlXAdM2DL/rtHEIowO5wvLgu2i89ie3LkdgmesyKI2nQx7RVbkD53x8KCWX+ttEvYauxfCDq5f4KyWuVnZdDkLGPLJmyErCPKhCRD2MLsH4GjTtf1iAJ/Kf3rIpdfqrS7pUUMKwM8fBLc010nPmK8KVgUJMf/jpEiW9rser5bgVPOmuBoQCH6Z1llzXH4jTyTxqDnXfCV16wP6pJ9QBhlWIw+2VIrHQZT5rcuCZp0wuUTmJNrXQKTUnST2J9qRM9pSIee/gh4oIgDi+MC865qqCT8cz9i9rm/NciKgKN53WM01VtnBsvKecZ55W9gYsHeD0Vxow/mt76zsz8QxZ9nRs+70ZcqDmRJiZaZdsAsOXXsqESLafA/Ir+B0ZrsNwXbOuz2DalC+xQFl5T8yvd8tCizCmgHngUA76M/me/G1wbk5kBssCZfLAHmvjfoy7xMgyGWwPnWVH4cFA+CKKfTrq1pW4+huIG63wU+h+Nu1Um+fYJHvKsGvlmP2MCoZYPufJ9a1yndWecypdsnMdxu0bRLY1tgeO9qO7JSy3jKbH/mLQr4gj3sEcPiMcakQBuiRLl1zxGxURoLVlP+mddPOGnt0EQ60De5pr2h/qMyHHGvbw8ihjjDHGGGOMMcaYKeRWWNrcp7mN+m7KqdT0ZEvn/Kbh9qGQS2onpmI80tHGj4n5KfWmmF9t2tQKZteEvKinT1WF61oNxtd9dcWM5YbNo9F62v1WiqfmWVQgvDtDWrBvlXhUBqhigcVCpQCLh5YnVDLwuVS+flbSAYZWCrqkQqWZRFfVUF+nSynU7J/vpFvHafpMdw/GFS1qytvUTADD96Q0fjmmfXkUkeWGKu7fKaGaU2/D8EOqd0VVnands2rReaymUvKhaFZJp4BcAqVWYa0ZOrPfc16tW3nrq6gjXTZhdhe75TrvV2fYrYW5WpncneqQZEf2ZboFMz8NFXFqXNBbMTJpk15g3MDp4UuGic2J5lfhedWyqKFEzxCC5c62qtt36wq59psyTXVGqavtdKnbHMYNNaaFpah9LMtVtXQsB3WUqWUBDOumOjPW5RvabtT5oH4z7acHvoNZgXSdiKrSWtWQjqeMo5W7V4HUzEEHk57ZJfPYmkZC4vZ87w7WGeZXOWPz6H06IGtlU+siTX+3HLf9pJh+DwqdH57zH23sB+Qf7dBWZQ+plhhsRKHurNWKqDXZyF7v4IHRKEvVyTTkWC10pgs6Cddlh7paTq2aGb+d5ukSRDWu0OUMaufAr6H367T2DDHMiuwEqN3XqrnvlnHDDrUEVUtGdaBJdPmuLknSPTJ0rrpd4u2bkKYu44Wc743jX5F4A6PAjMDl/2zKpzCiejxuO0k1R6WZ+en8WjljfYzUlHvpkiSaU+X55R0n6/qb6JrRw4H5xA4MJ880eqPljTbrQRuV9r18yi1t5gEcAGZkJwnWC5bcSnZJMokYvN0hDPs+MVEYrKAVC7OBxWm2rQNiOUPYXlh1OD6rYTkfr8tgDkw4p78F1Tid8dnfqJG7etZQA6ze/E2vt2lqXvTnrT5Lf4Lvl/j6c1iNbpk+7+NK4HZKwTKl9ZOWNdFpRM85sFpZ6v3ap+mim1ZMocvX9Vnsg1j/tL54y29jjDHGGGOMMcaYOyC3wtLmns1tFPNSl0dp7pYm/qTHbABWbqr/3pDyMxXf6dpcdTis4j21yOntg0qRGcVc++W4XQOvTlvVSicl4UXc7vR8wpH1J4wmp251KE2eZDmiCgJVFjIPlPpyaeu9O/GJKiypXOAWcKoRoTS6NUJS58W69pvrjvUTKXw3lWbulus0CGE5s/z4ifn83RivJupDQqXDLJ+B1H3qOYTqH4HanR0jwXChbqLi4NYip93nHOhrvdULF0XIh+S6mjXJevKZfHZPo9Emq9uPatLMilqjqBWCZlnjMX214DlNjlstpjrg3j3Y07CiUv6e75ueT0rNK5NXZZO6JDk0DyyZH73GnlstPmjBxHJQC5Gelwq+k/otYPrsE1RbvQ/jBh36LVWzwOutv4dp1T4E6nvxXdSpMsu151y4td5Sgxfty9WBc89djGrQmA7HjNM/kv9wATwdT6hFKTvY1iUDP45ap7D/UY/f7LTZmbNSq6kBn02VOjO9Wa6zkbW7TrNgVklcbWB8n41yrAOVfiwdPNUsVTXmrRWQTgLYMHueFVUlq/ssa2WgploH9jXbR+9TJ28t/CZq6rcsa/GyL9dQO6DWCd8UsgSjFh1qbKH9kVoLtnMHbbfqDLznpFd9/bNq8Rn6ebSvZ0Ks2nr/HMbHFX4+Hea1b1ZjdN2HQ+en7D90LqrGdO0YPLYFd4YydI6Vh1pfa59I1Bk7y4ca+oFj6P0SzmD8Nwn7qrVZAsvVebgiFjW3iAnxoC/cM/k5On9SBz/tNe0v1XpwmbT36XY3VSvGLmBvVoSV2ZdoHVqpZSmWF4fmgRk1KtJKJ/fQf8yhPL+QM+zeog+1cFOLinbPG/XvolPuPRKy3uviD51XEI756meGv9Q57LDL3ozxn8Hqa0at3fW3lLqhUwN8vU/9J/bu24/xctFn6+87nXNDzveMZdU6SA1jVRwx1/yvrm61qZ4nx1qVe0zrXNcYY4wxxhhjjDHmuOYILW32ALgIQ1nSFzKkTImeUyhzz7WcB68ejXY5xrX0Ko6kCFAXym2X+BSl875tcrxL4nPbIxX/t7vpdNbZc8npytRe6a6blH7OqDmM7iKVEc/bP3pad66hoo60+zmoFJc7xfA16B+GeaJCjlB62pOO6s4JymyGrQRTLWIULVb1G6Jet9XXAqWnvV1Qets1n4fxT6CSa76nasja6jOt2wpXqIvPJn1FyqnZFHX/OXXO0lrRqCmUqsy0zar4WRfIqgZW018yGo1as0lSb/0+/OZ8HWrSdJcndcehu5/2dh/i83QbeVVMz2CozaPWQg2LaJCguyOppqa3rl81pTzm8/RTznITnEb9eOja0Xu1HNVYSqX/apmj/lQUPa/ukHY3/6vlCKsZjSk0rVZDM61tk62yt13wTBMPGN9gsNVG9epob5twrePrJLxS4rH+HsgCX85BQ1WMun3MHMbVSL095jWTagmrDot0YOIgoB2BFnBrmaIOgtjZ97bqUYuinhMgfRdV1zEPOrC3766qOm30PfWu5mmDXG+36GnTXyMhOyWWTfvuLHt1XkJ6vn7U4cKUMoOhIRKP25Cvx0+ifqd4vi16vUd3tIdcJ/o5mS+mrVporXJqYTLYhal12qNqZnkoLRK0SaqxlzbdnnZa55KsRmx+qzBstrqxkvqO0DLXqkXjON0gjs+c0bau5lT6oHYexEQ2Sfj5LLBTZdsh+pfhy9DMnajpljrooQkDX5YvN9vkTX8v6byu51+rt5XglHFwH7Dtf4Zj1IMy3/SxOei+1AwjaS0sluW1leJcRXeJ0p+Qau2iQ1xvg2K1tNBxuJ1OL+T3Ro04D0jI65wbqCGVWs3p7z22O7VgmsP4T2u1btF5rLp+XSHn9f3154PmsbWsadPdh/Hfr2rdpH50eKy/NdXyvrcCheWr82BdDdJOhbSf5HvSipB1WMtnIf+MtrQxxhhjjDHGGGOMmUKO0NJmL4BLMRTnfinDSzNM2WJJ+SjNPhhStElRJjC+y4SKO3Udp4oEVXQ4cAme0DKnpy3S40PANi49zXCJrHnccPPosa5Zo4+OnhueFSn2Y3Gohrm31q9d50tNDF+by+Z1nTHztilD3RWGeaKljm6YRUk3UVcEpBX+q8R0pxyrRkuViZReUrPF9NTb+FY5VkOP1o0L86YWR5rn6+R6K8nt+SiaDgqG/mww1JiqTwP9CCo6XoZ+xVY1lu5YopXigFxXsw7xwzCoF/tHjwftDuNKfvXboW0Gcl61A7qeX+saX3WVHFMJphY97Tn1kXCWXO/tJKLL7FXDo9pY1eoOurRW/UBtap6ihkU1O4Tx1LpDy6nnGkkNB9Q/QusvYrnE0f6BbVbddJB1GN1laZqg3wwdZnT3PnVFov34HowboSy01p6oxoucKdfHjF962/7xhvZD9Cxmexav7AvYSfMjtxavbWZUxc5na4XTLbWAYQGxANVHC1HzSm1wuv2DFpyqyLSfU4ckhzA+qOjuWGpSsJDDPH2mqmh1sb9aBTH9/c3/PWd92hmqGd6UW9oA9VXUGkb9obGdaDwasbYbDamVDquc7hpHtAqq7xXtE1fmDYcywRkdoNjPt6Y4HWsEdVqhxrjar+g8VrXTvTLQZtK6OmqrW0tvNxi9rgYk6tqJ32iV+HTjjpWr94zmdTDutTvNcVKoZrunYhR1tKemBXzxno8VNQdWv1btN2UFUd+eva0m2e5V7T+lLF0KrF8LbOPGW/ke6ndprCzldDvurqAfo6wcA+u0AyPBoO5MsqIAxotQVwZA4hHdYa61MtbfLkTbmPpSIfobsvebqOPOZ2xjw1UYn6OofxedY0+a27X36RSg9+5qPah9wbLmf50D9dxtMr6+p35THco1T5DzOkw3U+2xaYMOm2zCWp96fR6xpY0xxhhjjDHGGGPMFHKEljZcoU9V1ZbR8PpUm1Fb1qoigFG381skjor3KW7SR1FizGeskOtEtfoUD6r4kzSiyoEfF104nGK7kiElZ9RQMKsqaFdt/mkSqjd+1Wi0/jPUykQ1zFz+qlJP1RKpVPhkiccyUG0Ld6NSKehujK91VImi7rzD9dq08iELKROp0ODSYf3Uqtlpd3c4TeLw3gdKXtQCYQ7Alzv5mQ5OBPAwDJr0Sf9aw5msXSxMflj6MlD1QhtH0bapPgzukSHboqoXGbJCs/CvGY2/XKyDljcma2x7fDS1JquysfFWlXar1oTndbMZfne1WuF13SWEtK6wVMuj7ZnoTmxa39VqSNtVT6k2sI6ZzbBp/Gd8ZjRvqkVRWG5scz0v/Krh0GX6qh1Qg4s2DyxHfkstH7WS2jUhP9PCMtQ+R/tf1eCo5kd3fGnLqecHR/vNhXaZIrozy0q2Z90KTNXR7RZXuo2Fos6SiKrEOBiqeRk7e3U40Ntuq82rqgQ1TrudR/tMNTPrqQ4nWOsCGO9jJzUytYjRvGqaatqmGnftzxfy5cFQtyPZgeF31q3gNC31W3QH0eYvQzXw0myr+yV1m6TaXU5hgeF4ohuV8XOwetN4Qz87i1ItTwZ5lg2IaEEyc8vkvM1jXPuu/m903qTafLXK7o0VamGj2m/Szkl150SdKmi17FkK9MYl3QBO33V9z+/kgeZ/fmBWhA2de9R0Vk3M+VGvkszpKoDB9pNy36Ym88wD507rmmttmhxE9T07FirTwr6DwGU3NkaeWSE4teTvn3O0Mi4ZiY45jM8XVuaJwZi8fyQYoNNXrWN6vefjidfVp2EbV33U6ByS1n4L7T6n9V/dkun9541GH5lv6HuowSq/jRpiqgEm5Pokt3PA+G5VapnUvrNawhBWd+3z1MKc6JCm0wrdratnHd8atPb8jKnFVs9/5EKW07a0McYYY4wxxhhjjJlCjtDS5iDqjlCX5/EVNShpYUMRESXFqhWjePSq5n/GhcThPamSOJCahOUq/U4J86Fc+zij6kRZy707zWHUAzglcWswvg5O1xX2fKoo+gyV+qkfmrVyrJqN3RiXMKofnB0SUtrHZ6kGVzflYDp8t2vkPO/7CkZpN+lgWmoBo8tqe/5HdJmuWvf0lvyqlqrdbUYVDEyLLhWYpj67lRZPt08bWtqQe9Zg7SdqSJG6Vmp1ad6KntUsRbdM0kqnZl3qHEB9OzAP58lxbzHxGiDyo86IiP0kFV9L+1+Z11eKWJv+pQbaAWpq8n5VFqu2pJWm9zbCiUyTWtKexUNPKa79iPo7IGoVNEk1qu18IS2zvqda+Gl7UgMAwvi6jrnd3GTMN5ik0fOdsAJ9A4VjzhJgZgVwklSOkvVOx46eleLMEqDMj8bR+tYzKCGRH3VG1NYrMRqObWugPm34IHawqzH+EbXz18yquSXv1y3C1DcOC0xNJnms22+1ajk1P1WVn5rCsvC1P5pkzdPGg5xXJ0yt+WZvayI1LejsaDn2LDXv03fvbcWmzg1aR0w6ODLP8xKqSnvKmUGtpup7QKuJzrEm7eCpQ1/P6rfnXkZdOyo9PxE6h9Jq0ja7ng9BNm99P1Zn1ZxPsuZp6flDm+RnTqurNqGFxkj9NlouPUtSpss+NbRdLcf4/GZThro9kPr2UzW8mjnoljdqqqE75KrZUeunSM0ceMx+lRVSt6Kdcn9TOwF8CEPjbX6LMd8s+d5FKko7/VM/njN5cVAEu0eSGqu3+syFVgD0XBpNWu2g3a4+U/sTyLFuQKZte9LmsMCwaunvwPb+3uoM3YBQ7+0Zni5kQaJWR70NJttr2meR3u9cjac/cXoW29qP6Ea4HOKXN2n0dg5UA1W1qurtEkpsaWOMMcYYY4wxxhgzhRyhpc0+1B2juCI3Vxhyi6FNGdIMg1qd1XJ9O/rSZooQxTnCwJv7SaPnGc7o4jxCsVVqslbr+tEJjihW51pUepZfPj+a1Z5nbrXI6WlqKClTQyTSW/a/C8OiVNcBqgxTCaKuN1T03XT9Zs9fR4vuLKPPUkMNfbailk0qXVatkq5vbhUUqpjQPOrOVKrZmlafGUNWoFrXsEk/uAZnp6WNOl5SsXmrVdaKrCo29ROli/5V+0OtD2Eh04xLteg9E6x2gbKKo3vbIBE148gPP/iu7Fey7S9n2x9s+YaRG8bc/rQqUvU7kfee1NspT93pk3xWmRt9BVoT0iroUM8BQuu3ItOKE0azuGy/pK3bqYkWcR3LJY9p4cT71tAvkTT+gUZTdj851DyK/omKlAPvKdIPt9q0wJSyFNVyQ9RQkd9mpQ4KPdXy/PAd+f1nVKMr7WVGOy/9tkQdShB1qqZtjOFqjG95RpMsdXDBdsY80EkBG5T6tqPWmeP7fjnfa++tSZlaxPTMyHi9t7vUQoMp86KmcD2tduuHr6de6w1A/Ca6O5RODNRxgFrw8DvxndvJyzaJy/6+t4Uc60fPb+AU0harzglY5U5hfZF6Q3dxqzFeNbRKKfr5iGqZ1fWQ5nsxxk3a7NUFkc6N1CeDVhnV2qsfCN0VpWdktwz98tH3V2MWTbNnqaRGwZyq6I566n8Da5pM8KbZDHUL0t5WijrH0vkQj3sOz9T0gMxj+AKspPpMdWim1j5T3kbnUH9lXtCewLALYpH0rE/bKZXWHdbXwRzu0Oi9Gk+7Tg17OzzxWK1lJnWT2l/o59RVGL3dU9fKsQ4P2pZ7PqOWob8zqPp35Pv0jGx7Fnm9FRd8LtPRac4+jFsQcVrAe+fkvPpa1F39en631CcWUT+1raUgy7S3EkfT1qa4UNO0pY0xxhhjjDHGGGPMFHKEljanAvhhAOfn8cEanL+phpel6kFFYyqKa9dT83/6qNFtTSiu4r10cEIo8qKmSDVTujBXtWHqHGYFxrRVlJytzvdYnxZEu+dHH9HTBrA41MqDy0y3S3wySXDfW5unGpmehFDpWQPxnXUtn/ql2dMcq/RRXQVQ4qz+YnRtpFoLqWKD5aKuVPTTtwoMSlxVQs08bJDzWh7tDlTTCVfok001YKa5rZhqXidpYPVDrpc4uqZb/TGo2Fr9Vk0S6wPjlW9S/N52UKTnmr63jZE2KF3bzrzodlKT7tf36e0Is5DzGim/oDVLRyQ/owt4mUf2ia2mf81oHFq3zGjeO6rbgUFA5nlGvt3gurxjtB0FgJl8x5kVGLdC6SzgZjmsmBu/PLVtM1DLStV4Wh9751u1taq2VU3Ws9rpLYzXsU/rbU8DrKr0rRgu6macs+WYHTCtN9hVcXzX7XXUGk39YZHegvpWvaXXmLY6O9AtPHTg6pnWqipNF77zHbV9t+1S1bKQOLrLlG49x+vaf/Fd1eqZziLUmUi7uF/NbXUy0VMh9q5PGTOoxdhzHzToyzoq43Zexii6m+eMjI2rs25wY6FedVYNOuk1TXXhqE27RT/LQpY1OuzoUKjdjXZpaj2A5rwOp7330qFNy0UtBzSdXtc3yCvHL36vXRjWf91SUh/KNrRVrjOTOolmH8dMqV8vbfOYcMy0aK2nfbjucNXbJmdKWYL6LQdtMN93rcRTY2XSWnWoZQyL6GSJrN22Th17fql0eNU2qD5gWt84+lk0/+qybb2c1+GWqBEXq7Xe3zMaW4/xPkT952g/2ZvKaPn3/LGSnmUTaeuAXuO9valLb3NLbT49t1S6qoPl2lr+THL516JlrlZW6m5Omdq5rjHGGGOMMcYYY8zxzBFa2uwG8DkA/1gPd/5nDak9uypDSpzVb8yW5nxP+6xaKUq5ddsTyLFqy9TPA8VZFAuqCLLdTUcdt3S0zuqTprcGEHJelfg0MlpofXIr/dPdWvSZFMqzGHppq5EE01kjx4T3U/K4Ws6353r71euSf1Vk6rvoJh4q4V3I8/eBCXnhvSqpV4lrK1mdbgnnDgDvxrBJ585u9Buj22TRSkY12/swLk7u+Ulg5VKrHV30ruurCZ9JNYFWzi/I8T6Mi/l1ob2uByeq5e45plpolxa1biCTRPhajqTnS6N3f2+xdM/dvt7XvsNCW1f1tkbo9buqRuptS6UqslZ901OL6G41ycB/Taa9fBcQPZXVsWYGVaWnlg86tvRUx+17aWerdV5VNFofVEWuKi3Nk7YNfW5rYqpqMTUJUN9QmgdVbfXiqdM1Hed1F5X2HqJ1nHlkHWZdZZ/JvNA8Qn1VEJYPB3St15Ocfeh7qymo+vhR53XMi2r5Vf3Lfp7x6XeQ1nhqZrGiSUOs5MYGatZLdYoy5ihkumh3fQLGtd6DKrTAjqPtZ9amtFvqp15XY0zdoaZnBEa0uuiQMslvhnYtOozr+2nX1NvVbyFj1kn0ur+e9c4kX4qT7tf5sQ6d3bxN8iOjFqtq7qPzG31Ib45BdPw+ICHvY3+0tnkW+/yeCb467Tmc86MpYgmk+6SFLkbDnoVNawWnw6T6f9G0e1MV9ZekxrB6Hz8N80QrF75Xm3edGvMzsn2zKvQsyHSDQnVl1HN5xOvMY+tnRX1f6XRSrUzYj/Q2V4Sc5/3aBzC92QzV3dsa9P3ksMz1Z4KWB8MDcqy/b/ns0yRU9357mvhMg+77tFkzTeZVh96FmO7focYYY4wxxhhjjDHHKbfC0ubTwKW5I82mPP2lDLmL1KczpAiJmnRqg7ZjXCPGnUOurWHoIjzVUvE+iriu62RZHaWo9kx93ewHbpobZrN9lAqzr5TrRD12a9bp8P2S4SNHUK1KuzkDpXiU+DFPNJzQdYQ9r/q63J5SVT6T6dFQg3mgRFeVD2uavJ0r99AiiQpI9bvD91dtin7qnqGGKitVybgH424KNA2+b8+tym4MPDhNKXtQreBIvhEr8ebR010N9i701YCS9Jh7dHUHz0JkZe05DFLTLBVNsw84GeNmV0Tz3FvsSnSBcW/hraodeyo8YHzxr/Y9uuBWVZS6DUfPqYCaqPVUn63Vi35D7SBIT6XZ8+mjz1TUyQNRayNg/Lv3/OtMWhQ9rY1zCWqd1ffVLRPUAgxyHhhXp6lZZa/u99TYWpdJz6+Oaoxbi67eFgi9LSM0beZls8RT9Zv6x9K2MmmBvHb+vZ3nIPGAIoZFAAAgAElEQVTYz6nVi7ZzdZhGi2LOe3rbSu7C0HpntVxTp3HaLlkOVOf18sb7dduRNg/AuAXYKoxPBnSgZZ505687iDY/MFp1e7se6fBG2vlgz9Klx0KGD72dmTRdLXK1QNgv/wPjPhjVyljnrz1fFT33cYrmrW3aPe2yxtXuoFcepHdfz/p9cB93BtuH8TnAOgkVFoDOi7Qf4O8j9uccW1kBOVFW60T2K22FY39J1HpZKxrT0n50yliG6pZn0D4ODc8D4xY3Oqy0KwV6bYPTUvVRxc/b86nS29GNRa0rAPQ+NNfVj4lOeZgn9ami/Yb2XWo8qvF779A+p+fbR9PW1R58Fx1W9V17RrJqZKsGvisw/pNB3XAutGsfp6WyufRY+eqUXfs4/dbLJuRFraM0Df3mCxmo2tLGGGOMMcYYY4wxZgo5QkubAwCuBb6Yh6q9p4RZTVBWyfUdGJhqbEtx2voUH9EtzqoUw53Oe1T8Salzxjt0Yw1V8UZF1imZx8sy/hkp9aaiqrXa2PL/2XvzME2O6sz3jdq6qqu71Kto1FoKCe1gYcRuduMxYBgzGGMDhoHBDMydO8aDx5fBBl/MxXi83cEX2+CL7QHMYmxssFlsNnPBbAKBkc0iNtGSkBBqdavVa3VVV+X9I8/7ZXxvZtRXhZZOSe/veeqJ+nKNiIyIjDznxDmyTYNFMAtcFk5UqqlSfQq3TxvOekubQusWXWO5kOWB+aaEkNfWuPEU5quBBX8rqplgHnl9VdCRfdn/6hpAFRBErXbULYZqU1SJWAqAxLTL/YiubdaoA6WAGGMYrT07uRwF8CUMuvTiNXXKDqV9lA+wK+yEVoJqWPUBEVaQWohoY1OR+rWyndfpUn2WHgI7wgg/VMXtJR8ja11o2mVtoANAyeGA+v8oRbTS66sVgzqoYqM+0pGXtaqCSane1FlWyafQas4LtByq4SyFIyB5BKq+QXU+0WeuZSxZv+RqObWUKfl/0XvpAKr1OarN63Xy++rzLznCUMcamqcRkdRaZVYrli41lL7AS+aoGnVNI1upcwQNpaghGzWciPqoWMzurea8LIf6ruE11IKGL2C1INwmx2me9aXM407L7qFaebUcJJwPllSMPYOB3Uip2Zf83HWhQ5laW5d82JCSr44uH3tA+ZUw1rFfh41Rr4SS+zbtcqU8qqsWvc8YylrjkluttRoRjrKs0fNa113q2Mk+qib4aubODwhWYCn65qgwO9o4OBm/Gs1D3BMpo4PeIr/1I2aUc6CeMI62jxigbAWjbhTz5699quWqMXaomyD1e6moJQq/Z0rR2E6R7bmlWSnwKodr5qHkPqnUP3QI1m8p1oFO9/LfOpzragV9tTNwGb+99dVccgmnxsh6Xm6Jos9bfdGUyplb6wDt+ixdd1Qd5G5wSy5AWaeMHlX6Fh1lqGpLG2OMMcYYY4wxxpgesj5Lm6VDwHUfbtZkUkNOk5MQMS3vH958Ac8PC5xvrLSVWQ8NMROF1xRWXx4ixEsikszuEEPdENt3hdjp45JVXYP26Lj+5+P3uZFS+kVF1Xh2b1UkcakpJWUsPiVklKSyDOoeg2Xlva+U48+Q34TSw6NoSwxLS911f16+PC2t/dUgHSqo1+X+C2hLa7X8qgBWyyTdr17XIdsV1a6sZjyiCm4N0kHp6IEs7WuAmppbALy/+RlupwZWb/T5pO7OV1Mb8hg2HqoeKELXRqaUzLp0Qar6X9DF9LkmSjtXKcSFNhK1ctG8a+PVhf+jLHS67kFUHURKPltISd2q6hT10UHyBquLl0v3IKX6W6sPFh1gRi3CzlGLIb02ydtPQn/JrWS0vKMi7XRZnOjASjQsRUmtr3nQqD8l30zq14jHb0C5n+iC91Hb9Xz1/6SLz0v9Py9jV2S3rnuqak+tnkrWY2rJU1LNduVNr0VK/Yjosy71jeOSMq9qYdnlE0gdRZTU2fri1RBIPUV92pTcfpV+50OhWpcg25ejw7AeX/Izo/tL2usu6xc1flOfNaOiPulrWLX3aiWgfkVKhqM5JWO/fIjpuqd2TX09laLyaFNV66GhVyov9kX5/e1IOemel5vpGMcKL/nlIiVLwHzSrQXQ8VEbUMt5D3oNI7sN2prMcUruyUhulVHqtwu64fjwNdV1YMkyTQ1P1YpDh8P8G47/b5N9/ObTFRSj+pRG3C25LOzyr5PnOb+XrlxgquXndjU41ePVGFTdLun0T8eLjWi/mvXa+mpSixqdqmtUYeaFz0W/C3VlRn59fq+Woo1xlYz6UtN6K2FLG2OMMcYYY4wxxpgekqqqWvvBKe1F4yXDmLsbZ1VVtXP0YXc87pvmbk4v+6b7pTHum8b0FPdNY/pJZ99cl9DGGGOMMcYYY4wxxtwxeHmUMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqGNMcYYY4wxxhhjTA+x0MYYY4wxxhhjjDGmh1hoY4wxxhhjjDHGGNNDLLQxxhhjjDHGGGOM6SEW2hhjjDHGGGOMMcb0EAttjDHGGGOMMcYYY3qIhTbGGGOMMcYYY4wxPcRCG2OMMcYYY4wxxpgeYqFNT0gpzaeUqpTSxMnOizGmIaX0lZTSowv73G+NuRORUtqTUnrcyc6HMcYYY8xasdDmJBCTxmMppcP8A3DaOs73h6IxtxFdH3EppeemlD4JAFVVXVxV1f93O927Sind+/a4tjF9IKX08JTSp1NKt6SU9qeUPpVSeuDJzpcxpv+klN6UUnr1yc6HMbcHKaU3pJRescZjB/PF9Zx3R5BSenVK6aaU0g0ppTPj23a8cOwrU0pvXeVagzn5qGPvbvij/+Tx5KqqPsIfKaX5k5cVY4wx5rYlpTQH4H0A/hOAvwQwBeARAI6fzHwZc3clpfRwAL8N4GIAywC+BuAXq6r6/EnNmDF3QVJKHwRwWVVVvybbfxLAHwM4vaqqE+u9blVVL7qNsnirSSmdAeCXAJxVVdWNsXnTSczSXRZb2vQU1f6LtPETkR4IaeZD45j/kFL6Wkrp5pTSB1NKZ93R+TbmrsYal1M8K6V0TWgafjU790Eppc+klA6klL6XUvqDlNJU7GM/viL68c/cXmUw5iRxHgBUVfWOqqqWq6o6VlXVh6qq+peU0jkppX9MKe2LfvO2lNIWAIh9+1NK94/fp8Uxj85+/10c862U0gt4w3hXviul9M6U0qGU0hdTSpdIvu6XUvqXsP55Z0ppOjv/BXHN/XGP07J9VUrpRSmlb8Z79g9TSinb73ew6S2ZEPV1ALYB2A3g13EbC1HvKCtwW5ubOwFvAvDs/D0RPBvA234Qgc3JYERfOwvAvkxgY24nLLS5c/LISLdUVbWpqqrPpJSeAuBXADwVwE4A/wTgHScrg8bczXg4gPMB/CiAX0spXRjblwH8VwA7ADw09v9vAFBVFfvxJdGP33nHZtmY251vAFhOKb05pfSElNLWbF8C8JuolwZfCOAMAK8EgKqqvg3gpQDellLaCOB/AXhTtkzxHQC+G+c+DcBrUko/ml37JwH8FeoP07cDeE9KaTLb/3QAjwdwLwA/BOC5AJBSemzk6ekA7gngagB/IWV6EoAHArgkjvvxONfvYNN3VhOiPjel9MmU0u+G0PE7KaUn8MSU0vNCIHkopXRVSumF2b5Hp5S+m1J6aUrpBtT9FSmlJ6WUvhRKi0+nlH5oVAZTSj8cgtZDKaV3AsgFqq37pGwpc3ZcvozkTSmlP0op/X0oRz6VUtqVUnptlPPKlNIP38p6NabEe1C/hx7BDfEefBKAtyRZ/rea0iAnPy/rF7+UUroxFITPG5WxlNIpKaW3pJT2ppSuTim9PKU0FvueG33lf6aU9iPezR3XeByADwM4LfrXm5K48Egp3Sul9PHo0x9GPR/Or/HsuP++lCk9C/d7SIwlB1JKV6SCv8m7KhbanDzeE43uQErpPbfB9V4I4DerqvpaSG5fg1qbaE2fMaPJ++MBAH+0zvN/PSbAVwC4AvUHHaqq+kJVVZ+tqupEVVV7UJvDPuo2zbkxPaWqqoOoBZoVgDcC2BsT0XtUVfWtqqo+XFXV8aqq9gL4v5H1jaqq3gjgmwAuQy1A+VVgYIr9cAAvrapqoaqqLwH4E9SaS/KFqqreVVXVUlx3GsBDsv3/T1VV11dVtR/AewHcL7Y/C8CfVVX1xaqqjgN4GYCHpuHly/+jqqoDVVVdA+Bj2bl+B5u+s5oQFQAeDODrqD+qfhvAn2YWAjei/tCcA/A8AP8zhSVcsAv1x+lZAP5j7Psz1P1iO+p339+llDaUMpdqK9T3APjzuNZfAfgpOWzoPmss99MBvDzKdRzAZwB8MX6/C/UYYcxtTlVVx1AvDX5OtvnpAK6M+eKANSoNSuwCcApq67nnA/jDjv6tvC7OORv1u/c5qPs2eTCAqwCcCuA3ui4Qbj6eAOD6UD4+t+OwtwP4Aur+9n8B+PfckVK6CMDrUb+/T0M9Vpzeda+U0m4A7wfwatRjwH8D8NcppZ0jynmXwUKbk8dTqqraEn9PuQ2udxaA388+Ovej1mTuvg2ubcxdnbw/bkFYwygpcx6eUjoz23VD9v9RxHrelNJ5KaX3pdo520HUH3JDWgZj7sqEEOO5VVWdDuA+qCdmr00pnZpS+ouU0nXRN96Kdt94Y5zzuhCiIM7fX1XVoey4qzH8rrs2u/8KGqsc0tlf45irs3MPA9gn1y6d63ew6TWrCVHjkKurqnpjVVXLAN6M+sPxHnHu+6uq+nZV83EAH0JmPQBgBcD/GULYYwBeAOCPq6q6LKx63oxaYJILT5WHAJgE8NqqqpaqqnoXAPW1o/dZC+8OBcoCgHcDWKiq6i1RzncCsKWNuT15M4CfTinNxO/nxDZlLUqDEksAXhX95gMADqO2/u4k1U6CfwbAy6qqOhRKxd/DsPLj+qqqXhdKx7X2Nb3PmagtU18RffYTqBUl5GkA3ldV1SeizK9A3ce7+DkAH6iq6gNVVa1UVfVhAJcDeOIPkrc7Ixba9JcjADZmv3dl/1cdx18L4IX5h2dVVTNVVX36ds2lMXcjQpPAv2vWcMrrAVwJ4NyqquZQL5/Qtc3G3C2oqupK1Gv874Nao1gB+KHoGz+HrG+klDYBeC2APwXwypTStth1PYBtKaXN2aXPBHBd9vuM7DpjqDV3168hi9ejFr7w3FnUmr/rimc0+B1sek9JiBq7b8iOOxr/UgHxhJTSZ2PZxgHUH0q5kHVvCEXIWQB+SSxYz8DqkVJPA3BdVVX5HPdqOUbvsxa+n/1/rOO3naaa242qqj4JYC+An0wpnY1aiPH2jkPXojQosU/84+QKhS52oA4MkPevovLjVnAagJurqjoi98n350qWI6jL3MVZqIVf+ZjycNTC5bsFFtr0ly8B+NmU0mRK6QGopZFkL2pJ5NnZtjcAeFlK6WJgsFbxp++w3BpjutgM4CCAwymlC1BH0cn5Pob7sTF3GVJKF8Q6+9Pj9xkAngHgs6j7xmHUDvV3A/hlOf33US9z+nnUJtFvAICqqq4F8GkAv5lSmk61n4znA3hbdu6lKaWnxpr6X0St4f/sGrL8dgDPSyndL5ZxvAZ15I89azjX72Bzp0KEqEWiL/w1gN8FcI+wRv0AhhUQqky8FsBviBBzY1VVq/l5+h6A3dmSLKAWyA5lW34PKThTSrtgTP94C2oLm2cD+FBVVd/vOObWKA3Wy02orXPy5buq/OgyEFgv3wOwNcqS3yffnytZNqIucxfXAvhzGVNmq6r6H7dBPu8UWGjTX14B4BwAN6P27j+QyoYG5DcAfCqkjQ+pqurdAH4LwF+EqfmXUa8zNMacPP4bgGcCOITaHF2dDb8SwJujHz/9Ds6bMbc3h1Cvi78spXQEteDky6jDg/46gPsDuAW1UOZveFKqw6E+HgDDmr4EwP1TSs+K388AMI96kvtu1MslPpzd929Rm37fjHqS/NTwb7MqVVV9FPW7969RTybPAfCzaymo38Gm74wQoq7GFIANqBWGJ1LtoPjfjDjnjQBelFJ6cKqZTSn9hFjIKZ8BcALAL6SUJlJKTwXwoBH3uQLAxSFonUbBYaoxJ5m3AHgc6mWDXUujgFunNFgXsTTwLwH8Rkppc/heewnqZcq35X2uRr2E6ddTSlMppYcDeHJ2yLsAPCml9PDwafUqlGUTbwXw5JTSj6eUxkNp82iOZ3cHHC7vJFBV1XzHtj3ItBZVVV2FerJbusavAfg12fbnqB24GWPWSKE/vgm1BrJzf3bcHshyp6qqHp39/wkAF8hpv5btfwPCgsCYuxpVVV2H2qliF18BcKls+704729RC154ncMA7p39/i5qp6glFqqq+rlCnubl9yvld7FPVlWlff258tvvYNNnKER9SUppC4ADqEOA/zLqqGedVFV1KKX0C6g/8jag9knxd6vdqKqqy1NKLwDwBwDORb0M6ZMAPrHKOYshqHkjamejH0AmzC2c842U0qsAfCTu8TLUzo+N6Q1VVe1JKX0adZCKzr5TVdVHU0pUGmxFbVG6JqXBD8h/Qe2M+CoAC6j73Z/dDvd5JmpB1X7Ugtm3ANgCAFVVfSWl9J9RC6xmUTsF/27XRaqqujYUOr+NOjLjMoDPoW3BfpclDS8dNcYYY4y5c5JSeiWAe5eENsYYY4wxdza8PMoYY4wxxhhjjDGmh9jSxhhjjDHGGHO7EiGAv1rYfdEaozIaY9ZASukrGHY2TF5YVdXbOraXrvMG1BEelbdWVfWiju3mdsBCG2OMMcYYY4wxxpge4uVRxhhjjDHGGGOMMT1kXdGjtqZU7QYwPRkbluvk8EqdzsTm8cnh826KQJunxO/JCWD5RBwbsRhOhMHPxHgcFOKklTj3YGyeinQx0kORnsGYDowEfxjDmWJJj9fJwuLw9cY2Zscdif83yDV4zSgvIq+HFupUbZamJc/gPY7K9Zm1yBslaSfk9tiAQZ0vxs6puPiJKA+zzuLORh6X4rxJ5iE4FHnZzBOiEEfieFZr/ARjNbL+p+L6x5ebct4yfKnBI2F5eFxUGzZtlAMWh3+S4+iGZWR9Lh0d3j+5NSsAM86LsbI3yG/efFOkh4E9S8BNJ4ajh/SFHWOpmp8AwKC22yPlQ4g62rc3du+s06X4fUt22NYpOTdlOwHccKxOd7GBR3+4Kep2R9TlStQxs8RhgX15i5The5HeI9KxyMdKXHcs6y9Lx4ezprF8OS5s5b0j70eXh4qCA5Hy0nORsj70eoR5vCnSU9E0HTatjZG5A9XwPVkPPJ55YH3cECnHS5aRTZdl1fGG/YxdOX+mLBfzps+CeeFYw3GEXZPX4nkcAjfIcfpsb46U3Yll2Zr9juY0GC9vlPIwLzsiZZ2TmbjPkap/fXPHVKrmZzB4dyxGxQ3eCQxUqRXLwfFItp37+JCiIXwlrr2N95RLDiqSjYBEg1rcV6dsA2xfvA1vO8YDWMv52FJ1bMtTnrsix7GxskK0c/BePI8NScdv3occyY7jPtaDjvHaoTZIqnni8Txfxsnl/cObr4v0LJYxOsuJA9l8h5XNe+oY/P1IOfDEM2On2RsD1IHhzYO2cKVcnmMLm8RmNp68vlnHHMf5Dg0G85Mtw8fpM/3CPtxUVdVO9Iwdk6man0ZTEJnXDtoNB17pEAdjsJvbgabMPJcvDD4/nbhqe+YAGucfj/6/gQ+K1+N5fHAcPHm5aJsTHFcOdtxL5nrFcnLuHePLHJ8g+wHPPyC/2fh0wsbrc061DByP/A/KmY93+bEyp1s4MXwrVjubb0xrBu2f7yUWVR85U07xOVTkMGu8pz7KwTgp9+JwwUfFpiDV3BpOdGrK995GtKbKg2ritbS83K5Newn97JvbUqpOR1Nng++NSFkO+ZwZvDbzZ6DDNsuuzfWE7Oe92RbYtngPosMG28Hg2zJStq18eNTXps5nV+ScSvZrG5yR41iWJCnkN6+Tz1EPyjG8ps5LNW9JxrJjMQ7MMHO8Gb9R2LD5II7Jfo4j7ID5PlbufrkGxwt+sMa5y1Fx48zL1uH9g4luPPTDsX3T7uH9gzExrr8c4/P4WVledILOhnPPSDlIsYMzz1GmLxzv7pvrEtpsQR0XcG8U/PzY/s5I7x/pubGfd+PiVY7t555oJphXR8H+JH6/PB70KcvD5Xh1pOdEyvL+a6QvjOtcFJX5q7H9d6IB3Cd+/32kV0R6UaT3jhudgTrGGgDsim0Picr+dvQMxiHduTR8LTb4f4r0EZEyLunOuN474vdjojFyPsa2/PVIWUbG/T77eDNA/L+RPjxOYid+X6Rsuw9eHr7m8yMPHIjexbzFiHVt/Ga743PifXkdtr+XxfV/F8DDYtv1kV4VKeuY80yW55WR/lHkiRNL5uF+kX4xUn2f8/cTIw8XxXXY3vjx++ItaBpjdPZ90RCuiHPPp/BKzj2PPWQReABv3EPmJ4HL74mm8n46Ug5Cp9XJlb9Xpxc8q04XX1unH4/DFgA8mZ1MPyCjDt9+eZ0+88Lh/S/9Wp3+1rl1uvzlOv1mHMbx4mORPlY+hl4d/eHlHIjPrJNj36rTmbMx6GQ3x7XZ5/i8yEciZd87M940/7p/qCj4LIav88RIOabxRfyZSDm+Mr7gJ7P7sE/xEVwQG94ZYxJfdhz/45EM+uDjIn1FpP8xUo4DrC72ryXZf99IuXiZ48whAP89/o9HNyg/z2V/PztS9t1LIuX4zGf4z5EylvO5ch5/fzDSL0XKd+3zIh0H8O34n+PEn0oe2X5+PtI/jpSTokcB+BX0k/mNwOWPAvZEgE+2jUcwePX/EemuSNnXWGgOfitoBlBWbjy8h8W1+b55TaTj/GLhgPso7oj06kgZ4JMVyoGVD4DjgL4MmNfNaM8yOZBulHN4nIwpg5T1wPN5HicCbLB7IuWLjoIDdli+lK/P8sAOwmuz0XNiwnPZQdmRmDfei+dRGiNS6SNvGM76H0T6kvPiH06U3grgXvE/nyk72HyknBR8KFIOEhw0zqiTV7+7TtlP2VeeE+kjh7OIH4v0hyN9AQdK1uMimokJG228oG+O8Yx9/VIGpI1xejDQxTNO7x+0tF4xfz5w+d+gef7Mv7YHtjlt22QjmjZBodq0HMO63BMp65l9im2I/Z79QF8qfNHpFyKvx8H0xZHeJ7sGxw+Wk19lvAbLwPevKF8HZWJ9zMvxkP0M2sv6YrvIy8q+peVkXgj7AYVVLCfLrRJ+jpscZ47K8XxOHAvlRbi41FxqTg7ZxfFEJEb7Yq7F4pWEN6p80fe7yucof+O3677sGDYDdjBeg/dkGfgIeE+e/9/Rz745DuChaOqGj5PN5f6SsnwcFjlHOhdNfbMJ8DXIuuF8lHXJsZNdkU0yppx4aqRsBpdJHtgUPx+pKif5nfQnGAzfeEakfOYsJ7sMYRk4RF0r+3k+v0GfFilfL+wOHF443/vtSDkHu0+WB96D87L/HOmlnAyzgKxQPhTejO/iiyPlB9qzI/1ApCowYObjYd4c85ytY2hebDyHE3ZWKB/KYyONCeiR+EaZvTS2873HBsYJ/UPjnn8d93xpbI8PpYOxfe7f1Oli/J76HdTvdaApPx8WO91/jfT1kfJhsNzRidO3uvuml0cZY4wxxhhjjDHG9JB1WdosoxYWUdzFNycAACAASURBVMOikkoKvajxoyKKgqR/jHQvGmUWpXiUar49UkoAKcymAI3STAr5aJ1BIRWVhZRO04KAeaHQixr2wZKtLD8UtlHLfCjElxTGUYpLwRmvSSkoy8uy/ZNsp5KAwn5CgeSeSFn2a7N0r2xjuXltKmJ4HJWFlM6xbHxWFAbyPEriWV9UzvB58L48jxYNl6MtBaYAls+dyhM+Iz5L1keuVAYaKyqWhZJrSsofLudr3bDN4BFoNFpfHc6bLu9gOxhIx0O9cWSlyVefWY5MjuuyBC6P44Gxfyo20DpuSHIv5vD8rZsJjQfYiMbj3ptXhjY35qW8UORBFZjcz+Nnsl2DJUiFvOjqDNaDPmdq0VhuydJgjGN/YBvXJV9A018HS7Xi5puHf7bMadVKiJZ8tLTh9cRCfHA/9umHyX5dMga0y88+wzywm7DczCPHF7VUZZ/QMrHZcXylwoP3y+tC+5UqqdUcWcePhY5r9IYEYBKYD83NPAd5faHpi4jb+aJcRlMxojZ9efzk+DnOlx9Vfqwwnq/3oEnjsqQcBPmwVMOcm/PqA9CGpstD2DiZhy3ym+fzPOaBjYEmW1oWQjO26Sy/bNyz2T6gqftxOW6n/B6saQtUhRuNnvMCvt+pvRzkkffdlV2bqdYDuUS2M28bh0/7mUj53md1UXusVUHjo8GBuTXVtJwUdT0bZoeDcrE+z+o+vrccQz3p4oRF18Qcku2c+PEZ8KVxEZr2rCYPrAudFLHNcFLEa7IfHZKUAyon32qZd5UcvyfSDWjaLSdzOi4wb8wDB2n2C5abD5xl5eSb11OruHyAzu+TD/B8oRyVfSwP+zGvoabeS5LqOn6On0TPY32x78d5U8vAVOw7Es9ksCos8poirwfDwoaPlnMFhUMWmw2HON6aj4PVyeGFhlH5kMBi0pCazYjn6FyEj7A0lPWN46ibAPNL4w3WHR8b5z58Njtl/3S2je9HvoI5h2Ez5nOg4cfVchybHsd1dhM+Aw5//G5h3XNexhUc+WuWx+gcjuVW6x1dordftuffsUAz79LXiq5WfmWk7B6HAJwZBTozLv4jatXKCuN8gxWmVrQcN/Tlo32UmWbj5BgXFbz1QfG7a+2iWhzyfcmCxjVnHyP3JrwXz4vrbaW1srwL5+4z/HuKFrOTaE/4+ZDVYpdjG+/Nh8iBgh1fsKWNMcYYY4wxxhhjTA9Zt6XNAbQlyVQaUvKo+ylgp0BtMxqpI1FFGqWXXBZLXwyUTlPYxuX6qsWnBQrzNibb6aOCeeL1ltAIAnNHnkDbaRm3U4qtmnBKZLkWUjXm6suGygV1GUArpBU0S94ppKNEmRYDFHZSYMh7UiLLa/GZ5G4JgKa+tslxzCs1c1xCyGc9iebZ8By1IKAlBiXNvDfzTEEkBYzflP0qXaZ0mnlVhRCtgzCNRhL7/eG8ca3nl+WcgcXRUvNbHSP3iq0AngaMs5L4MPhAo6Gc84T4zeNCYjwfEur5A2gaKBsRJd8hCX82G7Z0hH/PvIi2fDclx3HPJ1KizkYcdfwLfNCUlkej3sr7bW7KQSXgzL2GDkX1nSgHs05JeeThHFkwfnbc+yI5/knhHI1Z4n6OF7oU/9TMbO4+7CxRjnvHQCJ+SAfjBy3HWG3viXRgKSb3VKUixzaODXwsVCqMo3ncbO98JBTyf1H2sx+wbzGPrD6Ou1oWnsfr0+qSZePYwPsuoWkGrB/62eAzpVKDmqznZ+fy3mqd0xvmUPshUfNM9kM2LDV93NKxXU2O4lpPDCueJ3JQo7qODYEPlRWtnhKJvuDUUkJfhLk3arW0UdOrkqWNmrydIserSnCLpOq4d0z2L2T3YGMWB+qtPLNRq3pSJynsoGzUoSmj5eeuGBMevyTH8zk8INvGxj0vx47JOcyjvMC5xF8tafUyNLZgM/wPrG8+J6q0T0HbGiTG7Sm1xOLAw8GQz4QTwr4SVnAtTadqlFnX6pdpS/ab4786meBkhvtZR9qWdFBn3akbSj1PPbKqtcxONI1Axxi1UlNfPmoNpw4xOPljvXGM4+DP/jYmx/G6x9Eup5rxsqHy3qw/rReWn9feLdvZhjUghZqKIjsurjUbKZ2YpigPHY4ziyyKfoOU3HTpEMgsqS8cdv3cqkKbAd+7+u3Fe+q3jAZW6BuTqLuM5pflpLUM5wbsinycnK98FW0jNzZDdlU2FXV2zONY7xwa98px+jwJmypfy2p4cT+0uzuHCV0Bocat3E7XLdfKcbnFDNB+D+hUYmsUYiYa29aNaAqYW60CTYHV4oWNTSeRrMCNknJ8OEV+czKqfZIdaRnNw2TBONnVsZt54pjExsA88N58MfI8Wg/p+KSTctYByzyO5h3Oa/LDl98FvPdF2TlA0zB0CY5gSxtjjDHGGGOMMcaYHrIuSxtCYRSdz1NwRIklI4tQiqgKjBU0AitKCOcj5RJXDd2m6wh5LUqzuSyfEkgKCSlg02XsVA7x+nsizT196xJ/SqspdKNigdfmNalcoYCRBgvqD4b1xjJRCKjLeHMNvVrz8Dcl7BTeUUhJaxUN0qFLiFlPK7KfZaSQkHmkEJXXeyCa8vBaRK15eM8fl+0UOGpQj7NkP58HBbPM83ykrL+B0utIdlJIUHdTHRoFHY+L0NrpAXLtPWhHcOsVE6g7CTOs2jJWii5+VedRp6Ft+kAVxOlyjmjOptjQtbFpw84tZ4BBh0k0sWCH4gOm5nZ7c80Z9W0RjS9FB55ip2KHVm1q5Glete+Rt5m4zwW8joYL5hrZ3AlObBuEPIxrnsd7aLzN+H0J1+zGcQ+ODjAX5T6H9VSwPrhUtYahXmF0u++jGW9pObQrLIp2xTk7456qdGX1cWxXK0Aet122s8i7GIs06m933Gc5U0vxGmwuF2A4LxqYSN2ZAD1eo79zC/CixwD4qfr3q9hJNsmBrIVQz9wrTL0ewkChN6EZhRkjM/b9Mo/hG4pPQSq/dU8yIak6M1E7Jj0+n0Zo7G21qzxRSPXeE7Kf9XNYtpfydGKVfbxHqX42yXGa8jos055Iaw96P/Lk99Y/OXawM6hvoK1jaGYuDNk3L7856LLVR4/80eE8zb2q/vXEzmeyluhqXbZqhTp9KetWRwHaRdP7Q+jD/9PrRt79pDCD2nRYTZw5WLJ4qinmu4TkIfC0qXDyopEYCa+pEzOdALNrR7SSQZNl3lSdz3A009mxeyLlYMlBXR8j60GtWXger8P3Mst6NobhZF6t7dgfTs+O4bVYHkZJY/2w/FpO7me9UXNesvLSySjLzLzlkc94z2BOJuzj8Z7drWYv8cwulmdeiW8/ZmEmyr4oIdJZbeqPZgHNm+AMOZaWJ1+Xc9Qo4gD6zVHUowfrSH27qIUNq55Vnq8oKAV/4zlz2bFAYyDB5q9hxkt+DXk9NUglvG/uC5X/50Z7ecr5Gu/N712ep+6jNPptyWepGtN+PXY8hAduRtOv+aHPcY8NUv2s6ZjHeT4Lx0yr5S9/6/jL/eJvaugY9tc8HHieR16bH8g8ntfiZJN55FIS3lP9z3C/djzWxflovpcIHxLvxXP1W43XHmFKY0sbY4wxxhhjjDHGmB6yLkubcdQCKgqh5iPVOPS5RBhoLB7yZfqHsv+BRlDGlEI6ET631mLqUjVKYGkpQYkrBWUUeqmwi5LpS9BWzlMJQAmsBudg+ahnoiSMwjxdpqvuDSjcZJ5osUMpKwWXR9HUi3pJ16V3FFqyftSahb+pZFIFUF4fQCMkpNBVXRDsRdtFgNYDy0Vpr0bdWi5sV8MNCjLH5TiWQY0jMImmQuajHO+vU/Wyz+WHacPwPU473vNgGEfQOGoC2gtwNRKEWm+wEW9HU6HaoNlA2Ul10S47GQcAogttVYpNDR0bABs1H8pstp/nUBFN1/8afUMjVWjYAbXm0carUT0IByTWTe4HIw9ZkF+bv9UiJvKwVdftB8txr3FdNK2hBGL7QVqNyeV2Akjx/KdDe3jkpuEsMatqyae+wtT6UKMRMEu83s1hGDF+ePj6vO8WNFVYWm+tAVTUJckY+uxvagm1XpSdhE6WVPfJmlvNkmRT4Ri1IDlc2A7ZDtmvliSjLG3Uqqbr2qO2K1rukkXNqOtOr3JMtzVK+56aasvU/QE7BV+WzMoh2b5lpfar0nkPPkPViXN/ydpprfWjMJN5mxpVP5rXW2T/D2TIfcexIQHnTAKbYzTi8+G7gs8x96WQb6e5wzTapso8lhMltfDQqEXqX0YdmxCd7Kg1Ku//wOwcmn6eEifzHUbts/rPKpWzZIHD4/W9pL/V/05uOq7qYzVnyKOa5cdr3+KE9nzZr1ZTnAfx2TJP+aRchz3WkzqUvF6O04h5kdcUx53K+ohnu0yfdzyPzzLux6lOFXOOo2j7cGHxNNqu2sDx1q1InT1jFvUUls2A01h+g7HcfHx8rGwuN2QpHwO/nfioWReci7AO1YqJsIvviVQDw7GJqnHYLjk+D1ymU0V9jrwW88T64LBwgxyngeA0mjDrgEZ2Z0bbPFOdHj4YTT8Pn3lq1T6A23efGv9cHCnnOmotK1/1P3V4+HfLUljfbdvR1Gpse6SaC7KlLEjKa/CDSJ+OvrPkvAfp+1jnSFuA89ZoVfwgnU/ItZ7xenRhSxtjjDHGGGOMMcaYHrIuVcgYaiGbBjLYIr815VItCvZX0AjrFuQYtQihlPSAHCeBZwbKEVqIqGJDfb1ooJrcib9KL6ks0aXMlOWplloE5QNJudaHLmWjAo5SZCoLcmsZ5pOS87OzfUAjP1QJPA0SdDkhpc36DKlEoASbZVdlTG51dUC2EUqyKe09V35rUANd3k1LI+aZz4PPiWXQeqYHeTwWrYWncxQ5x8MbPFuN5hCVP7MXGOtzNIyNaMzLgLY/GV3Qq2vC+VCOor22nb/VzE2jaPCa1LDx+FJkCzVB0/O7olyo4JwPjuJnCvHZaXgP1gc7q0brUK/zJdccWge5VpLnsEGyoTJvei7LJYuo5zQMRZRpkVEsbhkuwtzYcBGm4vcs87MBgzrdectwlmbFo/9s7J+Mi2uRVEPHLM7EBVeinam1mwYTUjcfADATeTj76PC19X2jgUCm0GOd/v4jwF98Grh/xEt8V2yfj5SL1NW3BQudVzj7MAc+fQFreD1W4D7ZTzjA8uGqM7KSaRNfcLlvpnHZRtjm1TyS91TLAVXGabQpdW7A/VRrMs/nZsdr39Uwblp/GkVqqrCfef7XSPls6ayNlo9/Eynrl5ORxwHYzFAZkarjBMJzHiD7ec8/rpN/iOh5j6dPkKjn90Ze2Lz4GB5I3yevjfQfI70WwM/H/yznX0b6vkh57tMwnHfWM0NZ9ZXlCrh5sW0Jwjak47CGh2E5s0hDLYeFbMeseJ00qjMO/b1FjqfKnZNpnYh1+a/ZLBY2eg+WUwdp7t8n2w9JqpGbmGeOQ3wPTslxS9n/nLjyXC0nGby4ItVJZ8k6KLfWzberFWtuzVoKxcP64r04VnMMYnvSdqM+O8QydnA/DVtEf318Ry9j8CzVuFcNjHlttQJRHX/fmEDdZTSfuqJC3ajo6oRJtIPzaAA3XvMiOY6Pa5dsZzPmddSfjH4mdBmMM++jAjLp61ItcPjtqK9BPm82NX1dDoxldCKWz2fVJw3HMGZiTLYPLGz4dHgBWphox1CL4ZKFplr+3gONFY/6l+PTvEV+q6WNhJVt+bEjalU6wjpmyEK1ZGlTsh7eUtg/jC1tjDHGGGOMMcYYY3rIuhSUU6gld5RmUrakUT5UOUAo/ZxGI0TmsbosVhXghJJlFZDTKoUKqLPleC47pfKAkkZ1/ryARnD+RMkjl8tSN0YZHqWZuryWAkhdbqwuPUTw3hLIs4xHsjywzjW8PGQ/4RpGXY6sUV/4+76yXR15q5HARjTyVT5D+hNiOdXTOZWhpSWSaohBKC2eluMeI3nc/hPxz7OzllhFy6OGm2Jxis9VkJqvLf/bQob6wASGGwH/p/qAlU7NFRuCatmAxgqAGn1dKKtWLrymNmAVCWsjU02WOg3ibzb63BmWNhoK9VXTqB1e/eWUHKho41MVCDtU7pZfOxe1hxT6a1gzlo8dQbUd+4ePmxK1zIzU95REDNsX9922BKRo3+OsB3XyJVHFpliWeIanSpQNdiMWfzbqmWN8CkXGvvCdIwG1GsOMU4Cjkc+5yL+6PlIFt7ohWkSPtQ/bNgM/+xAAz69//wpriKVUjZBqhqh1OY6ytqek2SFdkYFyRkVi0rTLl80o2DhLWiS9tk5N8npY7fwuNL8lnz0lXz+le8SzujRmRM9l3MgYEP8L7WGZd2r32AbujVZUqFbKQUQjXsVvRnJ6aZ08vqUZrH8/uVifogX92dyXjhzz4rjni5m3wkC+Ndr0M/fU6bN+Eb3kOOp3i04+VTVeCu3Cid0k2pGU2ORKVjtTkio8Twe/grWGRhQcWDltQ/Ou0kk1x/w8OmOeR6LRYZgnllH9we2V48Sac6hMmm+dCzDvaurJsmyX/TopVDN4Pkud73EiS6bR9ivEe2yU7WqawXazT7ZrcD89n3mOIe4Yo3KK5ekk2o9Qm6ZazKtBVq/9MwbjaPLJ7zuN5HtIfqvPve1opoaEb1g1AB/lv49NlCMy61JXCtxffqu/ndzIi82RedBvRQ28erbs59Sb9aCrQTjV5PdcPmQBwOJNw79poZb2oG0ZKpFTWwV96MfqdDxSjgMa/pfpZZGq70dWCj+0+QDPzvbTkm5RzlGTIl16s1OO50eq+sDS631atmsUKp73SbSXv+g0gtfSEMxMv4pV6e1c1xhjjDHGGGOMMebuzLosbVZQC6zUQoKCIQqlKDDicao43otGCLVNjlFLG7WsoYCLgnMVxKuPGlEYDySRVFRQEpnDSEm7xa/AfUMqd2Bl+Jqq7NAQ7moFo0oX1ouGhKeAk/X89ewYlkMVDLq9FNlLXQQM/GFEqmVTZYAqbabQFihSSsx2wLw8PFIKQVle1getovhs1FXDfKQU2H4+0lMZ+kk1GzjQzp2aYqmomtJdFvwoeuw4A22fNqo+YPkoHWdHOxfDHEHbXE0bCRuH+n/RtdgcGNQ6hs9HrWC0sXYtH1XVklqncDvrQqN50DREtYbcTwm+RsBQDR7vSy3CNjRr96lQZ2dSvxysX41WslQ4XjWW6mNE1+mHhmQ71SqH0NYe81rMCx1q7ZftzIsMlFxffybbiC6qj7JtlwF9pkNru4ttMvJ/qvo5KQ2goWaaXWqiU/WPRdS2qWx4Whhdz6xWM7l1DQupb0ntBLo2vGS9MoqSBcqo6Et5Hta6vXTPUevC15IXZa2WNmu9tkZ60hggrH9ayfAlsx3NYFGysNEIGqP8AZDjhe2l9nWgY/u35Zzdcswoy6Qd6DUbUL/j1PJBw7+oJUmXH5np7H+gGW/3yXadQPG4PBQe0J6ILchvNZVQy55HZcdpFCctp05guV/9UGlz1jkGx2W1ROF1jsv22Y576Dtf5wxELZH0noVANa3zifrz2oe2VY7WsYby0XpWpmS/GgCyjHHdGbYR8W2Xn6bGz2qArO4BS+6Z+sY46hFQ32z6Pcgpjk5vchdJnLrwWuqjhtfSlRLqCk6HAXU/p4+V178vhtkTae62rDSlU2sewmkam5QaA6rvIpaJ07WtDIGs/txyK0J1iMR5mjp7ZcGZ+SXZrhFb+UCYOU6NeD4zqWMfl/gAjYkRjVs5D+fHt45RrDBeQ/10fjlSlk2duNLqh2U4TfbzvlvQDtnF+uNYxLr+50h/OFKOQfqwBVvaGGOMMcYYY4wxxvSQdaneJlHrWlQaqNGQVPFOoVYe1KLl2yBS1TNxVfgB2a9O40tet9UogEJAdYRNweMt2b6DYfIxF9K3a6LgFN7RIkcDZKhSRQNBbJPjaFmigX227xjecdF3GusUDWChCp5F2U+2y3Fq6XS97FeLGl22m/sDLwUkYiCLrXwYD66TU+lISMyjLo7w9P9wfDgvqvBh2R4Y6b6Qug4sDCjpfM0KMBlPgQ/3LZGqlolrHBmKihwEcAz9ZRl1B+MDpKWQqg+Irg3PVRolMb2GJmCHHpPfWqfMS+6EJL83UV8vvF6u0dPy8Bo6IOji7VLEC82Dagc04oVK/1mmSbQHRlULsTws//WSaoQrdjKtX4V51PtTq3AETb1pHU/Jb7Io+1VdpKHyqEVgX6YWhvWkGtXc6RbrllZOB2Q7VV7UfrB+8sXkX0I/WTkOHPsGMPOp2MCHQmuFL0R6eZ18KSqK9UYNTl5fqmrRlx9RVWKSE0+sdB+nlgfaR7SdLXUcQ9QCQfOuFgZEX1wDHyDsuCVLnNX8+8ib43DcXKNtsf2pxRc5JNtpOnov5o2zCb7AWZE03WBDvwyNxQzTcDJwXeSNbXyKak4OpvQgx8X4qjLVqZ36SFILL6oqN2VpyRqHas6PR/rmOvmXqMiuNttHxieArduA6sb6dxIHM9csDv9WNXb+PuOpah2hps03yO88wh/Q1njr8bqfvyWrg2eQTsXgWW+OF82ochJ13qFOK1nWI3K8RqVSi8l8MqlWOmrNq9a4OvZoKEHN+3HZz77LtknjsUXZn+dBLVzVhF6vvU328/2lDiLVcYl+nIhFz2xeR/RrF5tmGFly//CtiL7e+x49ahJ1Nei3E18jGsBLm5ZeCyi7XFRDZVa/Wi11TV2Att/UZTlO3THNZalOv3kNDW6mwRTp5nGXHKcrKPRbfLB6IT6sZ1kp7C/5fJAfcLTaY+U+LFK24xmW6NJIaebOzsV3TbzbBqXmO08tUxW1EzsdeCSvzXcs31W8h76r9B763lNLZ6aRRxZtAO/H92Vc/3559Cgi12ptZxpf56fyaT9ebwrAljbGGGOMMcYYY4wxvWTdljb3QCP8V4mkWmdI8JMhGRclf+rtWhXdvDbvdYrsp95yTLbzOJVE0tJEJbWUbW1DI0Ckhc2xkEaqwkGXrlJIqV7JdZmturSgKxbmgUoSXYC6hPayYfXho5Y3rDddnpgbCOR5oXCVZaMcUpdY83psC4fQ6PzUQGPrhZIpVjCVh7rmL5yP3/eKOqV0mPVHxaZCIxleZzsf/tVoCsq1i/ytYnY2UtV8ldYp94lxtNUD6kNE3S6Qlew41byr1YqqP/Jz81Qbpa5PV/VAKRpDruHjc2BDZEdn2+JzU4sbXczN3+oUqhRpQ9ef0wcM62Ij2p1RBwDVBnIwms+ukecR8lvN3dS0TZ/TYCDJ4ACi5oHse6q6KoWZ4PmqHNF+or6heLxqoIG2DwQNCbFaXn6QgEZ3BGNjwMw0GusLjpJq8RAN+X4frdNjUQkzPxT7z0KjVVKfLPo7mFLrCmHixPDpZFPpvO7IRPVv/q+6Q+ZZfbOUtFEnhg9vlU3NirRTdXU2tboJjdem0MptouULtXShhjwcnVwj/ugYei8+o6dGSk0j86plZWc7kN1TFunvDsusxWtiOwemMFMdtCemGsmp5LtGUQ1jl7az5PuHFRFqyHM/XKczjOPIvP154d4nmxMAbmqayoRE6DozZjeL4s1CJ5uTaM8nSj7T9B2hVqzqx+wcOV5DZ4q/k4FVx8CXzo3AzNhwHib4/FjOuPkJsbjRiau+l4nmhbCsvCzflXwHjWd5mpdraDnVHxzLp92/5KdH5wUl30K5qYL6tVPrH+bhluycHJ5PQwR99jrf0bJzvNHu1+XbTyhF31Vjyr5Soa5mdcmoU0gt5y45Dtk1uI/naOBYXpOPS6Mfa1XrtJa2j2weB4cPH3TR3KJHm+98pGPZMUDTBdmM1a+sGrGzPmggrZGMWXZ+pE9HOs7MbUbbQmxefg+in0ZJT4sPt/lI06mSG5Yixh+GIGXFTsWT0HFIretmtqE9ryD60RHv8sF8SjvVLvktY2NrrqNzok2yPX/X63v/sGznOeq/bnVsaWOMMcYYY4wxxhjTQ9ZlaTOGWugsQZUGAuNc6Qw0gmUKhfNgKhrdiajriWk5Tj140y2KKp0pSdRANZvlOHU3sQBgO3eGF2uuG90dBy3HwkMVsKvQXnWDuiSW5+say3lWME1wouJm9wD3oLfsgPWkxgrqe0YjM1EJr75tiCoNdqvGPG4wHUrKfWiXkz5/qq/VaVJrFvUZIH5Ddke6LR7eDM+nIk/Mfc67QjLNQl2b/c+6pRRZtUdstOr06Bb0V5sPAHNjwI9NAyeiUvcWjtNFrmrNALQ7nZpjlbzF854U56uPGz4D5uGg/FbtmJq05YNPrhHI86LaATUp01SthLQzagQoJdd+qRGAhiFQFYxq90pqMa2H0nEa6i1Xw7CeWH9qgcSUz1AtZjQ8g/qt0AGHqM+Frmes53DfLbJdrYJyx12XoZ8srgDXHAXOpNMdWkyo9zYWNrQvAwsbvuFOR2O2tKmQqlmY6vHYMdf62i9FCVotAtRaIzCNisw0KspU6bhSnvN9ap6gEZlogUOLnFuGt89p5KZdkioaySnvdCVfM6FJnOK96PuI1is6CNBip6QRVLif2k9aG+2J9OvZMRpyT619YvsMB3heq8/hFoG67z0SmOAAzf7BfhPPc0oja8XvrV1aVfVbEM+X1jpqIqB+TUq+odRMWyedOpncQccTsxiMDxPfz7YBrfY/sZZyAu1IZtKuqSnX+RLzqj7u8n18Z5bKqSYH+i5QqxWivrN07qnWnONom8TrPIjNXd+hRN/vvLfmWS2aSq49WG8LaC9jiPKNx3t7Tk0vIm8zsX1O50c9YwL1G1IDlKm7H3XVp01uHI0FjE6z1C2iPj71oUm6pqVAe7qmVjKQ7Xke9kqqRtd8s/Bx0hpIDcbUc0upbGSWmWbEJt74/mimHhzudbnGvdRqhXOaeTmR6zXEwiRFOiXvoAl9F6pPtR1onMzQclmXRPDYeC/OcE0OP6A5TjOP/NhWszY+XZ1jlTr9apY2ivqVU6ude3aeZUsbY4wxxhhjjDHGN5DvOgAAIABJREFUmB6yLlXIRAK2TwBjIf5TYTihbGo8lIjbVbu/BByj9UQIl6oQfFF2R8WBLh9WXy0lRQUlk5QkVkvDx1N3pAr7M4BGoq2LICMTZ8ZJN8Y1KSebiu2LS8PXVmE+Uyq9yaAeKU7VqBZXN1miBHa+O4st3zZq5HJEtmvEK7VMajnDiQudRuUNGoMC1gerkUFLliPT45+OHXwIhJmOhlWtDOd5kNl8TTTQiNnVyz8L9YCsIFz6r9FuNITXj0XKBrgX/ba0QQIw3azLvycrU7W/olU+EWYfucZFGwfrc6s4zFmMB8VGQ8k8Gyefi16PjbS0znxO9ufmZHxepcgNaomj5m+qYVILEKIdgQYSapGTr+/VcrAtUSGt9aJWJzqoqYKBfVAVG2rpxOPz0HklrScNPUqOuPL2n29X7aE+D/4mLJtqRPNoHbqmf4Mcq9fMVWYb0E/GIfnWhypWHANtC0/i2u3taDd+dcClfmNK1hbrtW4Z4X9mTceudft686x5Kf1eyzmjUtZ3KQIT63+7bFcLm9yEjBo/1eixY/IadG6ia/m1Uyir1UN+PWoaGSrkBoyO7qHPSjWjJZOBvjCFenBmvudlP7Wy6u+gq15Uny7xTulfqopBX02jSz7E1LpS31M6ng6qnG1wR0f+5yPl8/uW7Bdrr0F5p+W3+IhiISbit5aV7wq+36fGmkme+slQPzI6oS2ZP5BRvvvUhIPkIV9LHzhqna1Wqa3Js8C5J91Y8b1eOl6/B8bR/jZhXtQ6deDbKFK19rkevWQcdbWoEbEaf+uKDXanksu9/BxeQ6c+6uNGvbSVgsjxuupuUY2RyaEsf7p6hffU77cjsl8/edhEmMc9keqMgemxOHBGD7wEbQvolv8ktfTluMETS75aStax++R3adyd6Lh3ybeNvk/1HT7qOtOF/ToG5sfrOFqa05TuvbqV7LqENisVcGSpadR8NFM75EANq6em9YvAjCyJUF9DF0U6zvloHHCzCF/4auIjUQEJe1CK+liIutZvjEFZJtHEkOYSAPYUDnBxsy03De8ej7xNycfGgggfOMAk+Qamw+NBBdOqLDNLm/7c4F8AzWCmhvHqj02tbjkIbJXlInzPDkKpD5xNyQ3igstXNPnRQWlGPspZPy1TVx1xo96T2jyqRIqokzoeT0fHz8i2XSUp80jzQOaF92YbfhiAf0B/WVkGDu9v6mYHGxE36AASHWJcnG3egvbbZyAEiwpWR3lqZ6prHNUM+JD8JvmECWg7VT6anUuBn15DJ4YqCODAoWs2VaijjooptNABIw+VqBPobLwb2q7hsgknXOpksNRvNEyqHk8OoD0TKYV11qWKpf0aipV5Pi77dVmZXu94tq/LwSeyvGvecmFeaVlBH1gGmv6nE5NwOHvwG3U6x+nbWZKejrYwoCRUIGtdKjPKLaXu12VFE6vcqxSCujRxK02GRk1VSvfPf+tyDt7riOwvpZoXneDdJL91gqdlW0DT6UtLruYjvVi2azjVtbLWNnMKup9znnK7Cq10uVlfoURVPcTyOepHCH9z4O4KJ88Xk9ZNwCUBMypVkOfIiRjHPp3IcV6ijvgHAoSvR7oDbQGflrO0kH+DbIfsJ/qBFPtTlGnqJjku/3ASKZS+65gFlpeHs5wa8luX72oWWe2j5iAbs3uozwGNxqHKLf1y1q99nT9paHGdo+g6nWW0hXSqGCsF2OC1VbjTM9gzVWDC70JdQf/VSFXndAjNG7fUynW5iXY17cmqBmWT0reI3k8FLwvZvflm11X56olARfQ6nWPeuAJ/RdLNkg6mUDHUz3FO+TG0fWdwajIYDnhXCvrnI6W6nuyJlBp+FZwMPlrk/HxyCDSlPz87lpJPjrvfjlScHg/uSc0ya0prVMd+/lbfG1rj+fjNcVAF+VpePW5ejuvGy6OMMcYYY4wxxhhjesj6HBFPAbO70ZbqU1ilzkApWKOkjlqBOTRizLBeGY/fcxrOlgKykEJvVfNQOtiK42fi93JuSgg0znw3Df9uSbfH0F6GQNEWt0cep0JcOcVy0gI2BIQphIFb1ZmpOkULZqSsLVu2ZWBWbO4GljC08pFlDbMqrIx6nuVx1GTEc6D1zyyfKfM4MH2SPIeIe+Yo2hoItSNUnhYpI6TyvE9G+r5INY6dtg31Zk3hJ5XU+9G02fNl31uyY/Jrq5fpzajjEPaVsTFg0yZgk2o9tRGJBJomaAMLvQPA4o3D12Yb4zo3rm1k/9fny9+UzKuFhPYrdaCrJlu5olvNyEtO/krLolR7oCZ+uixKPcKpKV+uwtB8q6WhekdXy5iSCbha6qi1inqd0zFtI9rqIj1HNZg8XlVXamlDlY6GDNexrDBuA2jKV/Lox1SdSudm6T11qIgl1EqgrfSUzJdFbocMYI6WFNTo/G2kH4x0Hu2wzkSXM5SW8Ywy0yVqtVKykula4qRhLddqKly6N9E8lBz4duW9ZEmkFiNqIUIt3p46OXh0+LBTz4x/qGnkeV+JlMtOeB2ti01oO5dmvkNjWIVp7cAsdz5SnsfJVr4cBmhrELWMvB9flrxevvyqFOKb5fp4nRyOUN+c50zRbFVNsPvGBIaXHZKCM+GBFld16Qtonhv7sbZD1bpygqG+A+K4gZPOqPtTQ5N8QixjN0W72KR9nhOdCbSdn6vGV39fLb9Lfev8wnbVcu+T35nZy8DyKDbNsJzS1zZF49JybhfrX33/q/8DprIUv2WJA7StddS8Xy2/mQdWM69VWlI8avUg57X6Tl5BO7gB76UmGzoH4TU4/+G8t2eMo/5c1KVHurSJlGzBxtB8dmrQFr3GYHWB/NampMfzMfGTouS/eqOk09mxbDL6icjHx9GC9+I1xiXVRS6k9AnGZjOYetFtyVh2sauHz2nmdpH7TeoYQ5dFMVVzaB1f+DGq7x2OK3lH0Pe+LoMqzR9Kcxm9px6nS0P1/Nyih+UojbeKOjdePfS3LW2MMcYYY4wxxhhjesj6FkQz5jdFleo3Qh1kqnaWbEQ7/J8uJNS1mHptlZjLGs1xavl1ratqzlWrO4tGwniu7KOvm1AsDaT64kgsaXk17rY6ZNWy0qpFvQMfAnBf2cZ6U98RzDMFjyqS1bzoekUVij4H3Xw8u54+O9YPxbms+1nZTv8ykN9aLyWrHwpgWZ/0PUQF6KVzzUVuDCsSLoJVTQtTDY28B+Wwz71gFnX4Omo3S9q0WfndsT59al7OpaaOWrHobDMQSvfkelNxWJjfE0BbE9c1PJV8MNDMLR5Smho+7FghDKmG3y4Jw9U6rmstvPYxwmurM2xdf5475c33Q/arxY3mSa2BFjA8vuXnKKVxVx1CcrxVlY/mWa2BSO4LSFG/A+qnSBe070d/owsfBfDPAGajoW37lzrdxAGGjYGBSX8kUtX85A2zZGmjjXeUP5lSfx3lqLjreiULGb02U/WXMsq6h2OHWizofbrKwv9LIdC1PvlbLEUY6ntOLZtogcGw3DHeHQw1tqo/maa55tiWhi/W0nMcuyleVP8cL67TI6Xhlvr44JxELYrVSpXzL9XIb51q8kKrB15bxyn6f2OT3hkv8HF9sfeNSdSWRupIU30QlXz2MD2OtgZW2+8op768tobjlj46sWX48Fa/4fXoWHo72s6r11tO1XSvtaxdFknAsCMe9RxyYviSxXLGOKBW6RLieoD6WlPnj13vbJ0ja6znkv8YyG+1MlVfNUTLwLyq3738WI26THSo47XUZ1DPKflw0UfC4Ut9wgDNI1bXmYoaZ6vxrj7eUkwK3ls9SKkro+1o7Bw16rsuUqDtItG8qWGVor5xSv52Bs1oJ9oravTmg4PpJJ9Whhx77iEHlsYT/RZRH2Icb/iyu0d2D61lvk9pHqTzCV5bAz2opeson3v6jZIHiShZyui5eg8dn7uxpY0xxhhjjDHGGGNMD1mffnICtSCJWhy1mFDJdClCSS4mpKJR463xXI3HRom5+r7Re+l+lRaqJiqPcEMLDYo3NYQut5cizlCkq2XSdajcriH/mJ4rx08C+G78P0ppSE24erxXLb8+M7U84e8LGYpJeNQX6/Q6NM+GdakLMTUYActFoaiKwM+S36xvdd+ulgbM855Izz4ITMtacOaJy7KpLVRBbL5YtNciTg1fWgprW1qTyYo5graku6TB12gpo8L6qvnGqDC+tJ6JhpKyB1DJmnf10TIuZlElKxTdT9QST/uLMpVdU6M/qQpHjQV0HClZ8+jxuka+FMZ8Cc04Wsq/5lXX0Zd8BOl4W9JGlup3qePckrWlaiAXs+P76m9qG+rodenHYsMuSX800nMwjEZBOB9N7Hh1TITCb9UO6faSBU7J10VJQ3SiY9uoPJGSP53SmvKSI4iSpU6XFZDWC19UrGuOa9Ts3SD7JZwzHhzp/PD2uYXhtNNHDK/Ne/EFf93w7x2RpwfQNDDge0wj0XAIT2qKoL7OlAPZ/sjnRGw7NXadKlEvzonynYgOOfGw2M/JxnsL9zrZTKPuVyXfPfk7EWj6H9uPvv9yVKvK37QyofWqTkz1fKY8XvuiRh8jnNjsQDORGlVOTuA2yG8eV+rjul8jofH+zGveN9dbTnmBTYizNoZWn75x+HAWXS30NdIiH88KGosy6XJFy3lSct0xyq+OmmIoXV1WTS54b43YqRGP2ey+U7jXSWYawHkdEeE1CBaLp1WrrgvzY8clqi0vflCi/BI1bNapJuS3hvjmdnUfNI32wg8JPNxyITgmqRq9lNwnlcKXa5kGgVs/ByQGoPunSDmcPy5SGtI84n/VKY2FNz0h/rkgUjY+faertS3kOB1n+W7cgcaqZ16uwZTvU53D5O83oJl36Xux5OtmlA+cvPWo4KNkvcNzt2Mt9Poz1BhjjDHGGGOMMebuyvosbaZR+xNRrauGZSe6vjpfLKhLWUviSwrY1YpDF/FR6aVa2lJ0GF3Tmmt+6TeG3uOp9KIEXNeR574VcnTRo2qMWW8qyi0JIKfQtpxRnxPUAlADp1ppluEU2c+yUNinGnM8HZ2c/cXhfOT55j11DfyS7Cfq56hkOaALNPUZs719OdIfz/J3Ziy8Py0c31we2xnZR62cWK9Xob/afABAQt2dVWKsWjPuVw0XOSX7n8eyE6o5V8n7u3Zi1aarfwqVWkseU26aEscy6sQ0fdhER54oRJmZiuOXo7GwTalwm+MItWsl9YqqOKamGn86pfXipWhR2h9KaqXSWKnjB9twHlVNNXJ6T7WIUXG+5lnHV8h2XSyt18/vr1Y7JVWXjtU5fVU/LAC4EsCFfGlo+/xspBys1CKCDfII2tFrShYxpcgKSskqb60RnNZCKYoUUe37uPxebx66rAFGnaPh2rjOnevmtb71uuq768pI+aJS8818jN4l+6j50whW4TxuPN63+v6fYecoRQ2E/OZxG2Q/LR0m0K43mgozbyxvlGGCJsrnY5i+WtqMoa4HjXKlVqkaBYRp/m4tWXrp+1atW7ifdUvU582oCFf6vLl/R3aPUeVUmEedQ6y1rJoyb3k0KZ1LrLWcpT4dWvkJhk+NF5R+b6jpgZpujKN532i0Ql0FUPKHp+GI9B3Fe7N6Sz4T9T2fX5MckmN5b50j31lIqOs9mhyLk6KuxqP84/Fstke3qiRa7tQY2nMP9WMU86U5iQZGK5+ZOH8x6p+WOuNiSDGl95H9u0sG64jouxlV3GvQLNl2tM3JXHAxugsPn4l/ZkbNGSPvs13zKP0W/HykfFUwk9+M9GF/X6fnMPKlWgZ3RJED0LZiid/0R5m3/zmu/DhHzlErWd4jrHQWY2I/xQ9hvuM5Nqp1DH+XLHH0Gygf07S8JV9gWj+rR9js61TXGGOMMcYYY4wx5m7N+qNHTaOtIWZUD0oBKaTSdda5o2eVFOoiPWqL1X+MSv00KgrzoE6lS/4kqI3OozE9IP6fOC+O+cbwPb8o12SeaaTA+iAqmVe4/5Ac99hIWTefRFNfJT9CGv1JNedqWaPu16fkt67XVXKLJ/VjoVGyVJOuviwg+wml0Kqw1PN1HS8tdt6HJrLFI+frdCLWp5//uTqllRTLTSUi73EAPfe4P4FaWkzTkZJEWLfvk99dlLyeq4RYr62NlNvZUXh+aRjqshzgNUO7m/Qc1X6LNJ8Rr2YK60tpkbNDy6h+AFQrsAlI9AFRsFSYODychznZfyI6p/aHkh+ekuWO+o+ZRHs8gPxW8b1ei31bNFkD1JJP/c+ololj3Aa0tYaq/VRfP7p9Af1VPxwBcBmA6YgadS9a1FDDc1mkusaaUaSoAcorqWSSVLIEUWsKfYilvr9Wq5bVokfptUrWPaV7lnzclCx3Snns2laKdFXyp6F9XzVlRNfgE/pEoYpyC9paOI7H34o0tJXXiWMNjY55jD6+RGWr70j1QTWjGkdaycyjbbVB4uW4GJ184Zo6nWNbplayZILdF1ZQP2M+T7Vu0/eYtrWSBVt+rFqbdPlc6jqelKKjjOoX+btZ36OlcpYsbnh8aQJUKqtqoVcrq0asGlVOohZM/B3HL0vUSDb3kr+4fC5eUrqrtai+fzm86hxbox7q94NG0FWHJmphnh+r3zc6h9Brlnzb9YVxAJuBFNPZKV0poZbOcVyi1Ute56UoxvqdKtZXSQwwB66GSr6H9Pr67aRzrUk05dg2fAzLMa7lLVkuR9uY0jzx+7ZkxaXtJF/doNFOOVzwVcFv8/lI6bqK5bsxLjYpS1B0vqefJlPyPp2J9yn9VE4CzTuW4wK/KXTMFks+1hvfXVP6jaLzCo5L7NS8Dy15mA/e93Q073e1tNHvI/XZs0u2d9PXqa4xxhhjjDHGGGPM3Zr1L1IfQyOBO0X2qeJPndHnCnlK+NQXDdFIImq1Q03tcTmOqPSOEkn1r0N4/S0AJs6MH6F1ovadUrkz9g/noeTquyR5VYsbjYpE6eglctzXs2tqObT8Wm7VfOu6zpI78sEz1TXX0XToCyaX8PKaVA7qml61BtJ2w3pQzUS4oWlJmXkdXveI7N8O4JHMIKO1xDM9OyxtGD2Kh6nWYxIdVh19YgaNR3WgLTnWDqGNMz9+U/Z/DrVf1Dyr5k4HBI34cJP8HhVNisezk4+jrGHXKB26XSnUA/3SpGgIlWgJ1KprE8/PfQcwD5F/RroqRXsiqk0qafJU+zLqvHxdt46jWh62e+1belxJy8RHrtpJjUq12hp7rR8d29QfwRL6628qoa4r1svNDFER1pstLW5Y5Ex9NDbQ0mYTmjaroUBIyXJE+6v2HbUCUFQTz0X/0ViWMdp3nLaDEvq+IgVtaNHKLL9/qT3l1rVAo5yjZahGkNPhSvuj+sfSKIrqhy83eOLrlfdkHuhbTd/3/yq/1YKYqJaZ731aA++MTJ7y1TqdYkqzagCLUUHsu7wXlY0sz3K06YVI7zR+NEZFN2Qf1OhhXf2pZOk5KoKbhrQpmUboO6b0fuvq06PKqVpqfV9rHvm7VNaSFV1+nfWWk9fQ84hYP9Hq9ZhYsepp+n5bzo7RuaD+Xips11St/nXVQOn6GtF1Ee3vl5K/R1LyddNXJlB/B5UsorTuSxEmc0sbflfpygaOyxxj9T2h1on67QTZr981TFdbUcBvJZ1XaR7UN80R2a555XH8ztbvRX0/k4UsL3ov9d3K7zW+5zQUlYbPKkULZR62xIfeohzH53YGgNmw7txwzfAxfHZan/xO1ZU9vFdp/qBTLJ2ftFb6XJ/5meNNZHylRb32walTh48rYEsbY4wxxhhjjDHGmB6yPksbSj81aDx/c501JWlc40YJHCWbs2hLLWUpdlG7nFtP5Nsp6aLGSpeZl7xmU2k5JFX8yfjxE5HSwiA0EKf9Yp1S2kaNmWqzeU/1VaNSQbVuYT1upeQtHtMDr2+uRamlau9Ug66SQ/WSX9Ie6vbv/Q6G4HXyZ6qaSS7t02envm94D5aBkluNBKYS3FE+grjmcjMAaGSLkGbuzI/JUIuDnfjBgqfcYUyirnA2xlHRJUrr0PN9qoFT/y58kNSc6bp01ezxwRJdD6pr7zWvuWd2zataH1BbqD4B9B7o/k2LGz1NrWU2UQt7DtrawWD5muFzSmvjdb2yaiLUwkwj6ZW0LLlEX9t5l4axaz8ZrDsu5EHVAMwLmwj7LPO0hGbMZp/Ta6hPLB3jDnXksy8cA/BVNM2TzZL1TEuKloI9VEXn5VFgdHBWi7iS3wztM5Dtsra6OjicF6LtMZ8HlLTShO1FrW5L0Q1L0cxS/DMu2io9PteoMZIMw4FoX9ZrcD+tL9VKl31I/e+p7z5e7ww5nm3gKNoRadR/E/PAIFIkd4uT541zrRuGDx+853QOwusuyHGTK42Prqk4afnocDn4zNh/dZ6nxrm9g37gSpalJZ8+XdGk+FD5/lWfCDrBUr8G3F5qEESPV590au2ygGFrvTxvpFROnlfywcBOfmvKut5y6jV1zBMrQO3rGslUI5zm75GSZYxGeTwq+3Xer+frdfRbR6IYtb6BFtCuLrXuL1mpkr6+L0lC3Yz0vViyGF7N/48GUuU1OG6r9QrrX7/j1BpF5yn6PaJ51/25pSW/Z0t+PnWOx2tult9E52e5sTpQjtDJ65yCcvn3y/YrIqU1C4dCujTreicDTVnZf7iSgl2d9++a0vN7X/3j8Llr+9D3Ke/Neuf7sxRskXMItZLRb9lZNFb6pfF2ohRGTL97urGljTHGGGOMMcYYY0wPWb+lzRa0NcO6JlA1wSphW0IjdaSkTKV6qihXawuNmsQ8UVM0SspZkjieAjQiQjqVYUSPiAahkRt0zSlkP8uglkkljTqvP7AOCe79V03kqi5P5ECzVl3XIaqGfa3SY0Jpqp7HvM6i7UtGpaBsD8zLETmOZdiGbqjJU02nwv18LpNA4+L8WcPHbnpVXOuqOmV70DWgi+i5pQ21hqW17mo9U9oPtLVcqkkrWeLo8Wr+VvLQXsrLapJnNgaqT9S0rqR5VH8EwaI40ShFeiCDLDGvx+X/7KAJdhJqAfcPZ037VGk7KeVJNXhdUSZK1j4aNa4UJYpwzbBqGYm+E9i31dogf/RqhaPr89V6ELK/jyTUZWfzpKHfjsJ652NiDTI4cQva/YT72C+7KjW/BxkRkUWtWUrRy8gCmmfDZ6iGfWplqRrv8cL21jtzZTgvqmFWjSwALEgDKfmDuEF+c/gqWadR46gadfYlNf5Ta+L83GvlGI2CyTxoH1fLLfXfoPOEQ5IelXRIyxmdnH2dQy7RuYL6BFLfB71jBfV7QaNA6TtC3x36HgPa/tv0GiV/U9yuEcpozaKWJMflOM0TUzocyucEanWqjpBK19RxQq2Bbk1Zb2054zz1WaNWLGoByDbKoqgvtiW0xyIdY/SRHxk+fHBP9RdX8seFwvYuC0d9x2t5S3MG0vfoUROorSA0IixR65jS994U2nM5yG+dXqqVhs6V9Holw4mSfxR9/vmx6stNo/gyb6V3sr5nFf1m5/F6n0m056N6D7WK1dUzGtFZ60XLrJY56vMpn1NyXjnDi0cmOWfhvXVljq7+2J07s80pWDNPyHg08EHEMXJXdi318Vka69WCmufT9GgYW9oYY4wxxhhjjDHG9JD12Q5wnSFRCxqVWFKaRaF5blFRijdPVLOk11RhVkniXIpvf0h+D62JVA0LtQG3dOep5DWclKJIlSxuBhJ+sUhYQmPZolroXLOY52VUdC6tB9UqMu+noRsKC6dRjorFPM5mx+b3Um1qKaKVWhWVIoro8eMA8Kn4oQ/jRyJPV3Wcg+F66bWIcxy1VLi0bp2UokrpfqAtbR4VXUbN4FQjd4P8Zv/aJ7+ZdlkIaP5Pj1Qj5JT6sOxfFGsC1WCVfGux3Z+nVkE5Wh+RF9XyqUYN8lu16Zo3jVLRtZ6dfY9uhdj3VJuiEWJ0ff1R2T7K95hqWzTvOWqxWNKaavkOYJTD/ZPHFGqfJvRrMogwFO1Go5XNRF+byX0l8Xht4zqg0upMHZXomKCWNmpJF+00xfkzh2W/+prKnSyUrHhi+yamcTwt3Lqsw4Cm3UxE/ZyIA7XtrxYNUS1Add5Czi5s5/yF12E7VYtP5kX90PB+auWyEU17UCMIHqPRM9UiKfePA5SjvKlVMNkp+3m9zWjefSy/KDVbwclUUajKy95xHMC30dZ06vtJ+12X/xWNtFTyTVOyGFEtrFrMap70PSYRvrbuiX8m0FgZ3xblBG7bst7KcpasUka9Y0vH5dfT92/Jop7wWurzRq191A+L5mlUdMgVtMeo0tyZqAVir+eyqMuxGW0fXzqe6QqM/Hygfhaj6kYta/R7Qr9RS98n+o2lUXJLPgrza6rPMX1Xlax9SvfW+lKrF6LfzzklP0JEjft4Lb4HtR40TyW3VvreJEeze03LeFCK6KbRGXltRk/ceONw3kr+VnW+rHPT6f3NObQGUv9COg6ULLMK9L3rGmOMMcYYY4wxxtwtWZ+lzSTqdWeUKpXW25EDchxZyq6xmmUD0Ja+6T1U2qmepktSQmqY8jwN7vuh+PEzctHp4byuJXLF4Jpoa5dLkt/t8ptahqMYHT9elSkl6SjzrpY4JYmvRusiquztOoZoPemSP1KKhKXaSPWBo3UwVN9czLhHbvbR4XvquXcaseYYak14SbuuEWZ0zbhquIAmegT3UcOmljF8+Kxj3osPJHxBDVTPJe0a86JWQJn2fmCZQLU4GybzQBE87xn3ooZen29J20W0LbfaNuso77SsJ1oWybr70j21OlSTrdYs6luMdK3/1rFatXcaAYaPQjWVamlTUqrOF/LG/blPHL12ac1/SavUZ582uaUHkGmNFod/H2D7DEcgp0W66xt1uoy2dYXWSykioGpXtV5HtS+2jZ0Hu6+/kp3DPJa0kHzvlvydqTaT74jxOIBl3y/Had5zi5INGEatUrSeNJKEtnGepxpE7mdGSEaOAAAHsUlEQVQUDeaN7y21YtuCdv9Qn086Hh2S4zTClc45dJ7DMh2RVOddk2jmDtpeOMSq9lL9KfQ9Qs3AQobvGzYUVQGr5QnHd3I4O+ZItg1oW5cyPS6/eT7fW/m1AZyIRqvPQq0/mG6NeQ2m0Q4ldmvKmR93W5ZVyql+zUrl1FSt+/meUcvQtVyPx5SsdYZ8JmbbVfuu46m+r0Zo1gfkGnv9DtIVA+ovRL/BuF8fcV+gpY1a92m5Sel9M4b2t2WnJX6Gft+qLxo9rhS1k3Wv30h5u9BxW/Oi99R2q+8urR89X1dDlNpil8E9ySMldZ2r36irB0Mq+ygszZOvQlO3nHbrOKHl4BxHz1NLO6LfzyXfQS1LG7S/90ufOWrNw/oc8d6803ySGmOMMcYYY4wxxtydWJ+lzRhqqRA1Ryoh02gJ/N21ZnPIhwza1imjtMgqvVYJIn+rdUcpwsrQWr898ePqSKkZuGw4j/R2rXkjJS1zqWxkoBmU++9EO9KSWoTo2juN4EX0mfCequlkukeur/U+jvYz1HWSpXWUJUmuag00qpQ+0y4p+4DCAvvrrh8+trSGdA7t59tLSj4lKN6lelR9vOTns65KquYr5dxLI6XVCVHfGtTIhYatCjWYSslJyypmsXkuF/Jaupg1ynUsVPHUeqtlSClVDR/pivwCABfS58gWNPXx7To5EeWjE3iNVFHSDqj0n79L7a+0Jp6/L0F7vTbhtb8V6TcjvUH2az3pPXVcvX+kqgmilp51shft+lCt6KJsV+tLBoHpI9cDeCWa6HuE9UKLEY6/tIygDxyO9wto6kxdRLH9nBXpfKRqMaJ+hXgd9pEPRkrrDT6zcPc1eKZshxxKjqPxeab+lzQKGQ3kODdgtEOWX7V3zINqvXkf1lOpTEfQjkC5X479aqTzkfIZMI+s949EynrWZxTtdN/76/QDsfnZ/zb+4eucz+3fodHkxZAxaCcsL+vrAZF+JtL71Mmxt9XpIKAHnzGfB8uk0d7UZ9X5cnwe8WyPHPvlSONZfCOeMe0sZ2nkyfrpLccxbHlbirKmlqEaDXEBbSsVnvP9wna9Jq0xxWeTanJLFja6/+Y4YOvVaFsX35py5sffBmUtzcdLFp6lein5nSnNKdQaTP1m5NGj1EeNXnOUbw61BlS/GRz71OqhpHGf7NinflJK/h51Xt9X6D+1y/8L0P4O1BUF+TPQFRF6jl57o+wn+lxL0T3V4mS1vI0qh87p+P21mg83oG0dVPr+U99nXRY/JV+1XVGwgNG+n/TbVX28qCWU9otFNPnme17nkPrs1K8d76mfhbo6SPOqqX53r2Tn6Lyf9+b7n3nks9wleShgSxtjjDHGGGOMMcaYHrI+S5tx1JKpkpdj9fVyvHDcFpR9hqi1REmSqNI9SqvU87pK+0re0ylVnwJwU4jIdvx+bAzNwrEPD19TJYDqDwZynEaAKK2xpGRz8dPD17kOZf84aoFDSutlVQNOVIugeVRJfe7rprQ+U/NQKrfmrbSWVKXv2iY6feIwetT7u69FjW9JjLmEWvrfWyZQW7qodQzkt6p9uiI6hBp3oGpmR9Y161+P9MGRqk8bioxpxiEaPSryVPurmotcO8ZnfKE2EqqrTjTHAo1WnffaK6lqMtTT+ygJ+8B30A405Q5V/MSe4YtRG5BbAQBty5JRkTFK0SVK0afG0PQJtWRQKzamzBPzrGM6KWldWO/6mHj93AiL9cFnpJFz1MpCta4LKGt1TjLHloGv7AcupjWHWLG8+jt1+pzY/LFInyCH70VTpc98evyjllnxuqheW6d/GJv/d1ppsA2wvu8baVhlfP7v6vSlsfm9kbJqXxKu3miU8YhIrwBw2hVDl8JDon9cF+2Gxjq/G8c9L34/hcZ5D4yUY/rf18mr4xm//DGxPdrRq2P/y6P7XRlDygUPjePivPdcDjyFFrGhVbsxhq1TL4ztao1HSxpa3MTxvxXt7qXRJ37ua3XKrvGySGmHSIMU1e4fDIOEuY9g0P/+Me5Bg5t3RPreeOizUemLUX9Tl9RpVMNgyvGOyOO2GHJfHGnESBx0GTaJyyO9kUYS+Vh8iWyLYxb3Dxfr9ZGyPVzEZ9HTPtlwFMAX0Aw8GiVRLVBKvtiOdGzjy0wiLTFaYck6o2RBo+Os+hbT9xXH2S2fAxI7wFrLqZYyap4yqqyM9LQ4nGct06GObWstp777FuS4UuQltWDQd2b+7i35TivNX0f5ptEoMYp+NxD93ujy0zJK/a5573vf5KoO9XVG9NtAre1zKxpdbVH65ixZepT8r5a+T0orKEh+fmklCNGVE6TU1jg/U6seLfso36hbUP6OGxXNV6+l9bgiqbb7PCJxF4eya01l2/I8Krpdn52mmoeStZZG21pA2cpNfRqpfKT0bS/Y0sYYY4wxxhhjjDGmh6SqqtZ+cEp70azMNubuxllVVWk8jl7gvmnu5vSyb7pfGuO+aUxPcd80pp909s11CW2MMcYYY4wxxhhjzB2Dl0cZY4wxxhhjjDHG9BALbYwxxhhjjPn/27FjAQAAAIBB/tbT2FEYAcCQtAEAAAAYkjYAAAAAQ9IGAAAAYEjaAAAAAAxJGwAAAIAhaQMAAAAwJG0AAAAAhgL+5ZtbRD3XXAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEUCAYAAACRe8tpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydebyeVXXvfyuQECAMYQgRBCIgMoiiRMURuU61imK12jqgtr3Wqtc63OvQUmsrttbWobWOdazzPKJVUREHqEaLoogDGOYpQAxTCCT7/rHX77zPWeec5CQE8gLf7+dzPvu8z/O8+9nz3u9aa68drTUBAAAAAAAAAMB4MWdLJwAAAAAAAAAAAKaC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAsMlExLMiouXfgdPcf+jg/sM3If6TI+LkWTzXZvj70Ma+E9ZPROwbEW+NiN9ExOqIuCYifhARr4yIHbdgul4SEcduqfdvCtF5RkR8MyKujIg1EXFBRHw0Io66Bd+7Z0R8MSKuyn7ygrz++Ij4WdZri4gFEfHdiDhpI+M/ISJuumVSL0XEnIh4dUQ89JZ6BwAAwLiw9ZZOAAAA3C64WtIzJP1NuX5c3tvhVkjD+yW9s1y7/FZ47x2G/JH8eUkXS3qTpJ9L2kbSkZJeKGkXSf9vCyXvJZJOkvS5LfT+jSIitpb0CUnHqLfdf5V0laR9JD1Z0skRsaC1du0t8PpXS3qQpGdJulTSbyNinqQPS/q2pOdJWiPpOknPkdQ2Mv53SPriZkrrdMyR9Lf5/8m34HsAAAC2OAhtAABgc/AZSU+PiFe11pokRcS2kp4o6dPqPw5vaS5srZ0224cjIiTNba2tuQXTdLshInaT9ClJZ0h6ZGvtusHtr0bEGyXdb4skbiOJiG1aazds4WQcL+lYSX/QWquCpg9FxKMlrb2F3n2wpP9prX3eFyJif0nbS/p4a+2UwbNnbmzkrbULJF1ws1MJAAAAbI8CAIDNwgcl7auuvTdPkLSVutBmChFxVER8IyKujohrI+KrEXH3WyqBue3k/RHxvyPil+qWBI/Kewsi4p8jYnluUTknIl6Rgp1hHEfkdpHVGd9fR8Rrh1tBIuKA3Fry9PLdh+f1B5XrT4qI/46I6yJiZUR8IiLuPEPanxYRZ2V5/TAiHjBNPo+OiJMiYlU+95OIeFbe+6+I+OE037lrRKyLiD9dTxE+R9Kukl5QBDaSpNba1a21iW00synTQZkcGxH/mflfFREfjIhdShpfEhG/iIjrcyvRDyPicS4fSXtJemaMtsa9O++dkJ8PiYivR8Q1kj4yKNd3l/dsnc8fP7jmOA7MOK6LiHMj4ri8/8yI+GX0rWLfjIi7rKccFRHzJb1Y0hemEdi4PL/SWls9+M4zI+KnEXFDRFweER+IiD2mifu5+dzqfO4/ImLnvHdARDT1fnp0KavfZBQfyGsn5XembI+KiEUR8Y4svxsi4vxMz9xBed1UvrN19pdf5ncuzPaxzeAZ950/yzgujr6F6/MRsafjkXRjfuVvB3k4Pu8fme3/yqynsyPiLeurDwAAgHEGSxsAANgcnCvpFPUtUt/Ja8dJ+qyka+rDEfEY9W02J0qycOPlkr4TEfdorZ2/CWmI/EE3QWut+tV4hKQj1LdWXK6+LWSupK9JOlDSayT9TNIDJP2dpIWZLkXEIknfVLcgOE79h+PLJN1Zm0h0XyL/Jum96ltWdsr3nhwRh7fWhmV3tLqFxF+rC5xOkPSliFjSWluV8T1RfcvNKepClhWS7q4uUJOkt0n6fETcu7X240Hcz1Hfxvax9ST34ZLOb62dPot8zapMB7xF0lclPUXSQZJeK+lO+U5FxDMl/VN+/3uStpV0T3UhktS3GH1V0g/zfZJ0WXnHFyS9R9I/SFq3oTzMwKck/Yek10t6gaT3R8RBkh6i3hbmS3qzpA9JeuB64rmvpB0zTRskIp4n6a3qwqaXS9pbPR/3jYgjLESLiH+R9JeZhv+r3jZfK+nQ6MLC8yXdX9K71bc+vTBfcZGkr6vX/6vVy/J3M6RlF0mnZvpPULe8Wizp8ZLmaiRQqXxU0qMlvU7SaZIOlfT36tvBnlKePV59HHm2ejt4g7pg+GGttZsyL99Vr08L3c6PiJ0kfSXTd5z62LNEffseAADAbZPWGn/88ccff/xt0p/6tqcm6QBJf6Luk2O++g+tm9SFJA/NZx4++N5vJH2jxLWjupDhzYNrJ0s6eRbpaDP8HTB45gL1H3GLynefnc8+oFz/W0k3SNo1P/9Tft5r8MwOkq6UdNPg2gEZ39NLfA/P6w8a5PdqSe8qz+2v/sP3BSXtV0jaaXDtyIzvyfl5jvqP8tMkzZmhnOZIWi7pnYNr89QFWP++gTL+taTvzLJdzLZMXSZfKs89M68flZ/fIekHG3jnBZLeP831EzKu58/wnXeXa1vn88dPE8dTB9d2Uxf+XC5ph8H1l+Sze60nrU/LZx42i7LcOt9xUrn+0IzjeYN2s1bSX5XnjsrnHju4dto08R00Q7v97vBZdWHRTZLusZ40n1D6xNG1/Eo9H1b6Th0bXpHXF5U6enV5zn3ikNm0U/74448//vi7LfyxPQoAADYXn1R3SnuM+o/SSyR9oz4UEXdV/4H54dwysXVayFynriF/yCa+/72S7lP+qsXO91tr1QLj9ySdLekHJT1fUxdo2E/L/SV9r7V2ob/YWrta3VpoU3igpAWaWg7nqgtIajl8r7U2tH44I8N9MjxE3bLi3a21aS1J8vq7JD01Iuwc+onqAojqxPnmMNsyNZ8onz+u/uP7/vn5h5KOiIh/jYiHRcR2m5Cmz27Cdypf8T+ttRXqQsbvZzswZ2W492Z4n9TrdTd1650JWmsnS7pQXSgjSY9UF8rV9vQ99b61qf2q8khJp7XWfroR3/k9SaslfXaa9iBJDy7P1z5V2/pM/FLSKkn/EX0r4SZbwQEAAIwLCG0AAGCzkD9cP6e+Reo4SR+eQXiwKMP3qFuUDP8eq9GWl43l4tbasvJXnc1ePEN6bN0y/Pt+3nd67qR+0k5lumuzweVw8jTvPlhTy+HK8tl5m1/SuSEHsO9WF5w8LT8/V13wcMbMX5HUBWD7buAZM9syNZPKsHVfLqvU/dRIXSD3AvUtVl+XdEVEfDoiNvQjfsh0db9RtNauKpfWqFuX1WvSqF6mw8LE2ZSnfftMl/5LBvfdnpZrarlvp03vV5VdtfFOhhepl8d1JV0XDeIcsqG2Pi1ZP0ert6d3qG+ZOiNuY0fBAwAADMGnDQAAbE7+U11LPkfSH8/wzBUZvlL9iObKLXma03RHF1+hvl1rpvT+NsOLJU1x/DrNNTuPnVeu1x+mLodnaGSdMeTqaa6tjxUZ7rW+h1prl0XEpyX9eUScrG6B8cxZxH+SuvPaw9uG/drMtkzNpDJMR707qluSqLXWJL1d0tvTp8qj1P2cfFTr9x0zQcZRWa0N19MtwQ/UhVLHqAuk1ocFGIunubdYIwfCbk8Py7grK6a5tims0Aba2DRcoS6wOWqG+xfNcH2jad1X0x+kJc991H1AfSoiDmut/WJzvQcAAODWAqENAABsTr6uvtVlZWvt5zM880t1a4BDW2uvu7USth7+S/3H8+9aa79ez3OnSnpRROzlLVK5xegx5bmL1a0I6klY9bnvSrpW0v6ttQ/p5vMLdQuOP4uI984gpDBvU3f0+k51oUDdnjQd71L31/LvEfGI1tr1w5sRsb2k+7d+gtRsy9Q8WV3gZ54iKdTLfBKttSslfTQi7q/JwqYb1B0UbwznasP1tNlpra2OiDdJelVEPL4Njt42EfEoSd9WP3J7haQ/kvSBwf2j1IUn385LX1MXSu7dWvuAbjm+JunlEXH31trPZvmd/5L0Uknbt9a+vaGHN0TrzojXaT313boT8lMj4lXqdXqQeh8BAAC4TYHQBgAANhuttbWa2brCz7SIeL76KUbz1AUGK9StLR4g6bzW2htv8cSO+E91h8rfytN3zlC3vjhA0uPUHbjeoG7Z8VxJX4uIv1O3CHq5uuBlR0fWWlsbEZ+U9JyI+I26f5rHqfjtaK2tjIiXS3pzRCxW95fiLUFHS/p6a+3js81Ea21dRLxI3bfQSRHxTvVyPVTSwtba3w+e/W5E/FTdyuZNbXC09HriXxERT1I/9evHEfHv6qdCbaN+GtJfqJ9udJJmX6bmnnns9Ccl3U3d2e03/AM/It6jvg3pVHWnvHeT9FSNfKJIXbhxVJ5Mdqmky1tr524gWx+T9K5M41ckHZ7pvjU4QdI91K1A3ifpS+p53FvSkyQdq+7geHVE/K2kt0bEB9Sti+6sXkZnKQU5rbVfZT7eHhEHq58gdkPG90hJb2+tfUc3nzeo9/FvRoRPj9pd0hMk/Wmb/jj4k7JPfDYi3qhuaST1k51+X9JLW2tnb2Q6zpR0TER8XdJKdaus+6o7RP+cumB4gaQXqfer/97I+AEAAMYChDYAAHCr01r7ckQ8RH3rwrvVNeaXqJ9qM2tBxWZKy5qIeIT6dq2/UP8heY36tpMvK48wzm1FD5P0r+pCiRXqFivbqZ9uM+T/qFuKvCbDj6kfxTzJoqK19taIOFf9eOanS9pK/cfnKZJ+sgl5+UxaaBwv6X3qlhe/kfSmaR7/lLrQ4F0bEf/JEXFP9eOtX6IuPLhR/Qf0v6pvYZp1mQ54gbpD5E+ol9fnNDqOWupWSc9St6zZQX07zQfUj6c2L8+8fFK9Pb1H0p9tIEvvVReS/Umm8xRJfyDpVxv43s0mrUWepF7vf6KenwXqAqdTJD24tXZtPvu2iLhW3Vrlj9S3zp0o6WVDIUlr7WUR8XNJz1Mvv7Xq1lffUHcMvTnSfWVaOZ2gXr+7ZJq/qZmP+5a6oOeF6ieLHa++NW25+vHil29CUp6v3uZOVBcI/o2kT6sLql6l7oNqlboT64e11jbbFiwAAIBbk1i/9TQAAACsj7Q2eEVr7TalCImI0yRd31o7egum4eHqW+qOztOQAAAAAGDAbWqBCQAAAJtORGwj6d7qjnzvp1vBfwsAAAAAbDoIbQAAAO447K1+7PZVkl7TWvvyFk4PAAAAAKwHtkcBAAAAAAAAAIwhc7Z0AgAAAAAAAAAAYCoIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQZgyJiH0i4pqI2GoLvf+aiNhvS7wbAABgcxERSyKiRcTW+fnkiPizLZ0ugNsDEfHqiPjQzfj+OyLibzZnmgAAbo/c4YU2uYC7KiK22YJpWB4RD/fn1tp5rbUFrbW1WyI9+e5zMm3vj4gTtkQ6AG7L1B+LAHDziIinRsSyVCxcHBFfiYgHbel0AdzeuaX6Xmvtua2112yG9D00Ii64ufEA3F5Yn4Jic6xPI+JZEfHdTU8hbCx3aKFNRCyR9GBJTdLjtmhibqfwgxVuDVLweX0uKK+KiBMjYu8tnS4A2DxExEskvVnSP0jaQ9I+kt4m6fFbMl0At3duqb63pazJAcaFwdr16ohYGRHfj4jnRsQd+vc5TM8dvVEcJ+k0Se+X9ExfjIhtI+INEXFuRPwuIr4bEdvmvcdFxM+zc50cEQcPvtci4oDB5wkrlYjYLSK+lN+7MiK+ExFzIuKD6hPgF/MH58umMefeJSLeFxEX5Q/Sz20oYxnPxfmdPxumrUpfq7TUz0bEcyQ9TdLLMm1fzPuviIizc5A5MyKeUOL6XkS8KSKulPTqjakQgJvBMa21BZLuJOlSSW/ZwumZkejc0cdfgFkRETtJ+ntJz2+tfaa1dm1r7cbW2hdba/8v51LPS1dExCciYpdZxDsnIo7Puf6yiPjPfBcAaMN9b5rnPxkRl+Ta+ZSIOHRw7/0R8faI+HJEXCvp6LJOfmhEXBARL83+eHFEPHvw/W0i4l8i4ryIuDT61qptI2J7SV+RtGeuVa+JiD1v8cIB2Dwc01rbQdK+kl4n6eWS3rNlkwTjyB39R8Nxkj6cf4+KiD3y+r9IOkLSAyTtIullktZFxIGSPirpRZJ2l/RldWHLvFm866WSLsjv7SHpryS11tozJJ2n/MHZWnv9NN/9oKTtJB0qaZGkN63vRRHxe5JeIunhkg6QdNQs0jeF1tq71Mvm9Zm2Y/LW2eoWSjtJ+jtJH4qIOw2+ej9J52RaX7sp7wbYVFprqyV9StIhkhQRj4mI/4mIVRFxfkS82s9GxPyI+FD+0FsZET/0OJACyHNSOPnbiHja+t4bEVvlgnJFRJwj6THl/skR8dqI+J6k6yTtF2VrZAz8AwyEt8/OdF8VXQNzn4j4aab33zdPqQGMNfeXNF/SZ2e4/0JJx6rPdXtKukrSW2cR77Py72hJ+0laIIk+BTBiQ32v8hVJd1Vf//1YfQ055Knq68IdJE23tWKx+tpyL0l/KumtEbEw7/2TpAMlHa6+tt1L0qtaa9dKerSki3KtuqC1dtEs0wswFrTWftda+4Kkp0h6ZkTcPSJ2SmXC5alcON4Kvyj+pGL6LU/7R8QPUoj6+ZmUGfme96Sg9MKIOCFmZwkXEfGWjP+siHjY4MazI+IXuYY+JyL+fHBvWkOGvPfyTMPVEfHLYZx3dO6wQpvoe3H3lfSJ1tqP1AURT81G8yeS/rK1dmFrbW1r7futtRvUO9KJrbWvt9ZuVBfubKsu3NkQN6pbAOybWorvtNbaLNJ5J/XJ6Lmttavyu9/ewNeeLOl9rbWft9auUxesbDZaa59srV3UWlvXWvu4pF9Luu/gkYtaa29prd3UWrt+c74bYENExHbqffW0vHStuoB2Z3VByl9ExLF575nqC8S9Je0q6bmSrk/N3b9JenRqQB4g6fQNvPp/S3qspHtJWirpSdM88wxJz1FfsJ47yyzdT30R/BR1E/W/VhfIHirpyRGxSUJZgNsQu0pa0Vq7aYb7fy7pr1trF+Rc/WpJT4oNb899mqQ3ttbOaa1dI+mVkv5oFt8DuKOwob43idbae1trVw/64T2L9drnW2vfy/Xj6mmiuFHS3+da98uSrpF0t4gI9Tn2xa21K1trV6tv1/qjm5E3gLGjtfYDdSX/g9UtxndSVyocpb6WffbM357Cceq/afeUdJP6unY6PpD3D1Bfwz5S0mwc9ltJv5ukv5X0mYFg6DL1NfGOmeY3RcS98960hgwRcTdJL5B0n1x7P0rS8lnm9XbPHVZoo/5j7WuttRX5+SN5bTd1rcLZ03xnTw1+aLXW1kk6X13avyH+WdJvJH0tJY6vmGU695Z0ZWvtqlk+73SeP/h8/kwPbgoRcVxEnJ4S0pWS7q5ebrfI+wBmyeeyPa6S9Aj1PqfW2smttTNykfhTdWs5CzpuVF+UHpAC2h+11lblvXWS7h4R27bWLm6t/XwD73+ypDe31s5vrV0p6R+neeb9KUy9KQW/s+E1rbXVrbWvqQugPtpau6y1dqGk76hPsAC3Z66QtNt6hCn7SvrsYE76haS16ovB9TFpTs//t57F9wDuKGyo702Q1qavi75NcZVGP7Y2Zn14RREQXaduAbe7usX5jwb9/L/yOsDtjYvUd3o8RdIrUxC6XNIb1JV/s+WDrbWfpTXa36gr+iZZ0KR1+aMlvSi3P16mvqNjNgLRy9TXvTemEv+XSivz1tqJrbWzW+fbkr6mLoiSZjZkWCtpG0mHRMTc1try1tp0v8fvkNwhhTbR/dM8WdJR0ffeXiLpxZLuqd6IVkvaf5qvXqS+OHQ8oS5UuTAvXac+qZjF/ic73Etba/tJOkbSSwYmX+uzuDlf0i4RsfNGZPFiSXcefK4OWa+dKZ3TMCltEbGvpP9Ql4Tu2lrbWdLPJMVM3wG4lTg22+M26u3z2xGxOCLuFxHfSvPS36lb03gR+UFJX5X0sej+n16fE8W16pPlcyVdHN2x8UEbeH8Vlk5nSbMpAs1LB/9fP83nBZsQJ8BtiVPV5+VjZ7h/vrpV3M6Dv/kp2Fwfk+Z0df9yN2lyHwO4I7OhvjfkqerOiR+ubh2wJK9vjvXhCvX57tBBH98p/djdnHgBxpG91BUI8zRVsTAbQwFT16RzNVmIKvU5cK76WtcC0Xeqb3HcEBeWXSPnqq+FFRGPjojTcvvTSkm/P3j3tIYMrbXfqLsgebWkyyLiY4F/qgnukEIb9clnrbrPi8Pz72B1rfVxkt4r6Y0RsWdqDu4f/UjwT0h6TEQ8LCLmqpt33SDp+xnv6epbrLaK7ldmYttCRDw2unPfULcEWJt/Ul8g7jddQltrF6vvEX5bRCyMiLkR8ZAN5O8Tkp4dEQfnVpFXlfunS/qDiNguunPiP11PXDVt26tPjpdnvp6tbmkDMBakxcxn1PvXg9St6L4gae/W2k6S3qFcRKaE/+9aa4eob4F6rPoYoNbaV1trj1AX5J6lLqxcHxdrsoB0n+mSVz5vjAAV4A5Ja+136vPYWyPi2Jy75uai8PXqffq1qVRQROweEbM52eajkl4cEXeJiAXq2y0+PtutIAC3d2bR94bsoL4mvkJ9XvuHzZiOdepz8JsiYpEkRcReEfGofORSSbsGjsThNk5E3EddMPM5dYuUqliwMmI268e6Jr1RXQA65Hz1frvbQCC6Y2vtUG2YvfJ37fAdF+Vv5k+ruxHZIxWqX9Zo7T2jIUNr7SOtNbswaeq+rEB3XKHNM9V9vpzXWrvEf+oOCJ8m6RWSzpD0Q0lXqjeYOa21X0p6uvoewxXqDe2Y1tqajPcv89rKjGd4ytNdJZ2kvj/3VElva62dnPf+UdLxKeH8v9Ok9xnqHe0sdVO0F60vc621r6jvW/yWuiTz1Lx1Q4ZvkrRGfZL7gKY6ihvyHnUztZUR8bnW2pnq5nmn5vcPk/S99aUH4NYkOo+XtFB9m8QO6lsMV0fEfdW1gX726Ig4LM1FV6n3s7URsUf0k+K2V+8312gkZJ2JT0h6YUTcObrjxNlsgTxd3YfG3IiYyQ8OwB2e1tob1R3sH6+uNDhf3aLuc5L+VV0w+7WIuFrdn9X9ZhHte9Wt7U6R9Ft1i4L/s9kTD3AbZgN9b8h/qmvaL5R0pkZ+5TYXL1df056W269OknS3TONZ6kLYc3K9inYeblNExI4R8VhJH5P0odbaT9TXla+NiB1SKfESSXY+fLqkh0TEPimsfOU00T49Ig5JBf7fS/pUa23SWjaNA74m6Q2ZhjkRsX/Mzl/iIvV179yI+EN1A4gvq1sIbaM+XtwUEY9W95PjvE5ryBARd4uI/5VCn9Xq1nUbWnvfYYi2YV+4cBsn+rHkP5O0DRpEuD0SEcvV/VCsVZfMnyvpH1trH46IJ6kLGneR9G31ffY7t9aeHhF/rG6GeWd1wczH1SfF3dUnzsMzvtMlPS+FljOlYWt1k8/j1Cehf1EXBM9trd0UESerT8TvHnxnP/WF5qGZtrMl7ZJpW6L+Q3Ku+21EXCDp6Rb4Rj854KzW2gmbVnIAAAAAcGszWLvepO5H8Ux1ocw7WmtrUwH4FnWHvKvVrc1OSMszRcRb1Y0EVqgbGLxLk9ecp0p6mKSD1NeYz26trajryxT6vE7d8GAHdefC/9Ra+9h60v4sdefg/6NuXHCppBek/0VFxPPVrfS2kfRF9S1Yv2mtHR8RL1Y3dNhd/bTHd7bWXhMR95D0bnXhz43qO1me0zgNThJCm9stEfEESSeqb2f6gKR1rbXZ7EkGAAAAAAAAgDHgjro96jZPRPxVRFwzzd9X8pE/VzdLO1vd+uAvtlhiAQAAAAAAAGCjwdIGAGCWRMQ71P1aVT7UWnvurZ0eAAAAAIDNDWve8QKhDQAAAAAAAADAGML2KAAAAAAAAACAMWTrjXl4t3nRlgxPhK9GOhv6PN31DRn6bC5DoI2J5+a+09+PDdwfZ24LadwQmzkPy9dKK9a1mWp1i7JrRNtn8HldhmvL583ZJDe2u8/0/GzvD9lYafPGVtpMaYkN3N+YuDb0/MaUx3TcmhL5Wr41jTOV26YwXbmslHRtG7++uUtE21vjMZzOVDi+7vYyp16on+sXY5prs/1sNnYdsDkLdEOtZuxa1c1gtvWxGfnRNVrRWtv9ln/TxrHb/GhLFgwuzLRu25Q2u7nL9dZsg7NZt2/K982tmZeN7dse47bS6NdRHQc3Nv1boM9tkKyjH509nn3T8+ZMbI716s2Ja7rv35Z/7t2SzFQ+41AuG1rXbwmchl9q+r65UUKbvW+Uvv47aeET88L9MlyS4b0z3N+j3OIeXJMndS3YM68foH4CmCTtluHKwb3pkrY8w2lkZwAAACAASURBVHMz9Gzr792zPO+Tredn+JMMH5XhBTM8t7Wkncu1rWZI091LWlaXNM2f/PjEc8syPCrDLCddk2F9/yUZ3nnwjNN/RYZHlHf5uysyPKik0Tj/7yxpdJoeWOJz2o/M0GVy0yDuEzN0OTiu+5XvnJXhkpK24UpKkr6XofPu77v8lmgyzpPLbf7gO/+d4fIM75zh/uXdTru/d42WLj1O48pdFkjLDlc/qE/qh05LkrvcjRlel+H5Gfp5d6ud1M8bk/pBfJL04wwPyfCcDN3lfAi2m+3yDD0efDXDKzP0wX1LS/x5/bzf9HCfg3t47S9GST7oMf3/07OJHZ7PXJjP7OXhZF4P1mSc85xWV6tXBN/P8LE9OOMLPTzMw5DTOhRWS6Mm53LdRtIv8/+5mY/senvl5VUZ/s5R5DB59rrJUV0+ORr9Y4a/n+EHMnSPvDpDF//55f6+knbN//fL0MI8v8N4lPh1hu65azJ0cbhq3RT2LWlxnv0e58nF6BH1Eo163tkZLhnck0b5cpr2Ks9/Qv28yHFkV0knaFRO7gI7ZXhphp4x15XP7opXaFQOtc7Wlc++7++6KR+e4eK75T/uA4/O8NkZLvSg4bHPX/DY6JblziaNxu5DM/SA4jHb84g7oOctD1Qel91RPS57LP92hl58eB5yGpxWp3H54L7vzS/3HLe/47ny3PK88+be4LXLz8tz/r7T7vltcXluOL+7JQzn0eE7a9qdVsfhuXEPTeaGkgavD7wO8mBVB8bhWsbvrGukBSVcXtJqevlEvOlcjSFLJC1bqNEc6EHJnc+DmedMD9CusrtmOHdwb/vBNWlUNJ5L3RT8Lhe7B0a/q+L7jn91uX51ue7n1g7uOU05N07k+8bBs0PWlvsO3XU98Fxb0u7Bvk4ybpK7ZOgyGKbboQd/p9FpdtxZBy27XLhO3C38fa9Z/C6n3eXjPHlp6p8Hdx/k58KSfufH5epu4Xw5354kX5qhh9V/ycxclrPql/O6J4PHZbhjhn9Z8uI8StLDy3e9lnK5+SfKL8v1bIdxtMayb+53xD21bNlJGv3OeVWGuUDTezJ8b4Yeezw2/2mGH9do/HLl3zS4J+mmu2QUj8jrL8/wqRm6095UQq9c3AA8xr63fHbaPAeeOLju4vdvmVz8TqxucsE7scLy+F1/vz5IkzktQ6/o6u+a5Rl6VeB4HO8STf295ZWn52B31kxT+2kP4wl53eXy6R5cle194dGTk3rVtyZHd6fS0M/LRbr73Z3uO8rHr37VQ4+vCx+Q//ysB7/IVffBHkBcB7neuDA7+V7unFkO7bIeerxZlJ15VXYwj7tbO16n9bJRc5mXHfj6TMPyvO5114KcaC5eN/ldmZfYc/q+yfYoAAAAAAAAAIAxZKMcES+NaMvmSJ9JwdDKct+C6TPL9ftnaC3jWk1WBEgjDbDjsCDLAjTL3rZNQer1KfW2AN3CfguhwxHMKTeqWnpuCecNEuXILby14NDSeReA4zRVFWphnOPdvXx2pi0Fr9qSPQafnS+rzh1Htajw56oFMM6b03pq+Wxp4N3K81Z320piQvk2TxMS2dOum5y2wzLc8Q/zHxe+JbeWijvjlipnrZ73z9OnedEDyvNDze8w/oM0oQW9MHXey/OWy+ku981/rMe36sLS8k9r6dLLtWzZmnEwbp3C0j2iLfsjjdqq26Tb1IMzdGe0FsfYlGLBdhqVo+vJUno3ulTbXJ9SblfbwmPyH2ug3XisebYU35J7q3+qrYUl/EvK89topJGw+suafWsgLOaullPOi/PgPDptPyvvcqZm0qIbq/RuGqT3bRl+uHzXKjOn2XE7TR7FXE5Os+NxW/y3DK1GW17uZ9mc8oMenqNRO3jigfnPn2To8qmWCh7cqtWfn7OGvpaL026swXHeXF6LB59rn/O7nAbny+3DaVie4Y+0dOkXtGzZirHrm0uXzm/Llu2rkXbKlhHuqG7HHuSrFcvQ8sFl7PbiNu8ydn9zv3JdLC7X/bz7WbaFNcf38A96sPbE0ZulkQWXrYaGdqWe2z1teDix8shDt6eEYe0P71dLJLc+T197l+er7Yrf6+YuTTVeuKRcr9O5P59ZrntIHe6gGD7vd9YWXo0iPK1fPohz7xLWtLrcnE+vl5wGK9j9Di853Ko8vbscXW5nDNIijcrk7hotU1wnphodOi7bQrkcbIjyVulHrbWlGjOWHhZt2Rc0yrQL28OQG5MtSpZn6EoYWqi4kdgaw5XugvU6wxXuuGx26QbvwnYhOy0u1LXlOa+FqqWKh4gbNTLxdKPwu9wQPTS7Me1S7jsttdMal4MrvFryOT7n1WWwUqP15PnlGZebF/4eLo3f5e85306Lp3N3lGvLddet33evDD0VrZTWpgGA+9bbM/QKxEmvv2H8Cts+vDVDF7uNedzsqpWqi9n8vwzdH/fUqDnV2fl9GdpwqC7fHYez/5xx7Zs7R1v2IEk2fnEhO6XVatsF4Lbq3xznaNSWXMCO6yVZii+7aPJ3npEN9i35Evexah13nwzdth6TM8Mbc8B4bEnrkbk+PvGLPdxbo8bls5lsle52aUuqRa/r4S9eMTkv7qOH/k3+89oenJ5pONwdKBv2iq/30OPKoW5duRY4O1v5/jYTkybWIG87pYfPc5y5xj4582Or9b/yDPn4/N5ne+gO8+IM98nKelX2BHeIJ2d43z/u4f/9aA8d7SslLVzU//+LtIhZkvde7sEm8/OX2dIfkpefmOV0/Wt6+Ka8bivjan34pQyfkb9dv/7JHnr567bk8fa9kp7rRpgjxWlf6aGNif/S5fcPPfj0sT20kVXmP/abvm9iaQMAAAAAAAAAMIZsnKXN0kVt2bInabTXz5o7y4a9V69ozs9L6Z0l72dqqnMDS8wt1XTUlmKmkG9CMVmtLpyEumfVWgFL4otPjzW/m3x7B0mx2+CDNLJKqJYyzoMludXNzHDP7iCta8s7LST216rBzXBLcd1l7+xbmFu96Fju6CRWQaKTuDjz0q6bHL+1jVY2WcBoHa+lfvMGcS+xSsEvSX503ehZSTosn/tVloeVHC4HCy+3v8vgJYOXXvGLyWl0U3HavVvzCo2antO4bdl/fEamwc3LVexyO0zdp8hPxtDZqSQtXRxt2dM1agDfyfCg8qDzba2CVTZDtw21XfvepeU7LiQ3wqrStmS9tIOJ510Z7vuO39ZAVl0NHaSk0H3CFUb1p1PN/KzGuqg8Z02FVVFu0L+Xmft5fsHl6cbljuZGOtSsOi6XwyMyA9ekbUL1Dm0ti8uzmg+4/I/ISvuvovmp5opLMnT/W2CrmgWa0JacngOpHZ1UM4FaTleU5zzO2tzCqny3EZer8+q0uDNbS7XL4PmqTVZ55tzy2ezjAeFILV36Yy1bdvXY9c2ld4227M2SHpOJX5F16PJxXbtOJwamoeMCSVotrcrKqf4vdvQo7BEvVTarUsXuMnff+WaG1oylxvCE1CzbC4pjc1NxU68uK6SpzeE35fp+5bOz4O7kHFjB6Hiqvx7bGrnY3GSsu3Iz9Xi/dpBuf7fGaYY+oKSpLi28DHB3re6u/Hx12WFDB793OOx52NmzhO5OXgbVtDl/HkJcJ6aWRzXMrUYV/uy8rBykwXXpru26OWzwrDQaxo3z9qJx1ebvHW3ZizVaI7oQXbEuZM9ztdG5Mf9ao0JwI/G450p3xbrBn13ue+6oVtbLM/S4W83CqtV28Yug+Ro1zDrvOn+e2zwOOw6/w2lxY6kNvppx2CrGja5as/9u8Fz1E1PdQnrgMNXf3uXlOX/fJmRe/7juflg+146TY+O1PxhZjlXrwSPKWnni94IfdNxZZ5ekoYGLffvn5D+eW+u6qZjbrX1XD7f648FFDyru6I6jms7tXu67rrMcY9l49s1DI9rHNFrGps2GTsrQVkwT9tM2SM0lwY+ynw2bTx337bnmLRm6a2ZxT7gictdyU63jnJuqDSlsSVWN376boV0WDX8zednqz3uW7/i+rbxcrY7bU7q7h73GeIiqSyg3Mbdxd2l3l+Ua/dzyOxynx3UPRa4LDwN+p+f0Ohe5vFwf+5bP1QiuDnFXr+c7rsP9c5Jae+nk+667A91esl9clhEtqmNXJtabR450AXp8z352fRr2bHsXjSrBBVEtF50hLyxU7mcjiFOxtAEAAAAAAAAAuM2wUadHaeXl0ufeLi1LyxmL5+xaxCKgKjm2lsCqmjM01edKVcX5O1aP2QWDVUv1IAhTN2dbmuX4bQ2T0q95maZ5/t4lmnmTe1Wt2ZKgqq2ct0qK+bbKtMz/n/ycUr9FKcpdWywTHP06jYrY2a8KFitsLFm9onyeyejh0VlellRaw2etaz1z6vQMh9JYCxDn/G5yui389/ZAp+Gx+ZylyNUqyE3gQb/toSXdFoZ+raTJVe2ysTT5Zxrl381g8ZWT32UH/m6irkIrn67TSEkxjpx3qfS8N4zK0MqcS9Ow4j5Wl7sirSatIvb7a9QILJau+/GtDqiaOFeAC37nct0i92ou5g3YbhiL3p//vDDDl2V4g7RH7kXd+h49vC491t8jP6/Nz27AzstM1hzu085bKxY21erIHdDWP0NnWv7/Ef7SU3qwIE86uP6yyd/xGOV3O//10Dh7vL8x9w57u/Ei13b1R5P6mPfnDvetNBooPFZbjbE8Q9eZB4QqzncaD0zfT1ekv5zq96FqMOtJI1Wjuqumlq2fdflYq+jsus72sW+WR2pkDzBmbKc0WcmCsSZ+nivRKh2PbrZStU3juaPPO1qXl/ne0aO9G3fxGbVjFvKO2Vgfm3urvU/ec222u+PtJ8Ldzu3Pfcn93UkaTgr1VLblGdrBg1Vj7o8eG2y2UR3leKCuKkEfoeZJxWlz/B6zXIyrNCqealXn/lYP1cw0rTplchK3Le6xdnX7dJpdfraiyPFusfPmPOfYu9eF0v2yG02cfuNqz8nz3mn95Hl2q+wja7KPWPPqV3gYd1ey4davstyrIYhblJcyQ1cKLnrPs65irwlc1HbtYMMtF/3/0pgzX71N7Df4LE1Vkbu91HWeT127UaOxqlqvuN0uLvfruOm26T5Xzdq8Dq5uv+p4W+fa1Zo69zkffqfT6sbhNFQHSR67nX+ffuLx5qbMVF0nV+dPvn9nTV3UeTiMeoKdfafVHwaupHtOfv73XGnFIeXSHAON68cdIMeC7feQHn3p5Dds+9z8J/0DTjHr9Dpm/8nz8uKLL5sUt7ZOfxwTvto8MHiRNtl34FbvtI9A98CbNPVkour/7XvlfrVh9PFRtjMZL7bdSjpsgXR6JtvrczdR1+6EQVZaOrg7eQj+b00d3utZgG4RXqq4O/x7htWVTV0e1wNYPRbX3yNeoVwyCL2M9G+g6tnOyzafmeU43ZWcX5ePm6AtlFzrznP9aerm7xZos47zNdXSxvn1+O8hz8ZrbrW/LqEtj+rhsqZuBnA9+H12a+Qh81xNNRZcPbgnSXtk311S4rTl0qOvmZwmD0lb5Xi0R/kZ4LzMt7F7hi4D19MOv518Mqok7ZkPTVi75prl8/nZ+5YmzqquPnELWNoAAAAAAAAAAIwhG+fTZnG0ZcdpJKK0mMlCbovtqhXNhzK0Jmqtpmo3ziyfq7OW5RlaXGXNmkWO1iBbrFqPn7D40wrOun/Zz9+gqXt2q8VNOuCeEJNa9HVlec55qXt9nRZ/3zjPw817w3TsNHjWYki/s/rTqOK+3UtYT5XyZtHqn+TJ5bpVc1avOa+rNRJRu779Dmt6vEnUafc7h57epVE5XTr5+TX52VlebMWE25LzVv2b7D5Im+vdkbiM3X6sobL4eEmGv5aWLpOWrRpTnzb3jrbsFI20X9ekDN5lbLXnjt4Ybc2VKzStQvRAjWTA1tZYjl3OKvhtnh5lsfdu1oMsKe+witpaoOxQa1LHUdv7ojRBmzhxxwPMTdKP0trkiBPy2jcytI7ANmDWMGXFX5Nqc7frRalHuD7l927HO2YeTl81OW0eA9xOqoXOHI2sCpwUF63F/7ZwqCeAVKdW7ms2nLBG16Zqjqceuec2fpd9evje8zSB+5zHP6sorKKplkV2aOKxzfm0WsT9w1SnGE6T81R9Mrhv3k2j8nDzOat8x83PffPH5f4xDxlfnzaHRVv2OY3K3+OxT3NzedlyxGVweBb8edmP99lOowyXfnVNNkZbnVRrsgOz4K7JQl/w6PKAtdbLM/TA6r6V72vZYF13noPPHfy/wDvfPVZUXZ4r0xNWVv6a7J+ue9e18+Tycf/zOF4tbt2n9h3c37486xM66gb/Hcpzlbo33aYlbvvV0Vy1cHBde330y0FcLg7juKoFktNw73LfY4/jcRrc39x/PW557NiuPOeyWLTdyGmH69t92XP/ttaBpl77F5kYz8M5fsW9xtNvxtJDoi37oEZtzeOQy/QebsvVk5JtiTw//kSjk9iKtePESW0m51Y7+POauPoU81ju+tg2E3l9Vobb3LwcJy7MccLjstdUV2s05tSjhtxH6hFvbp91nlpdPlcHSVX9bV9bF68bpUUa9endNZpXHUd1aOg4XR42JagWRtXXXDVFcF6rUy3PzY7f5XY3jY5cc/v3CT/VR8/CHJTOywFhn1ybXJ+n8W1ryxq3Ba+DPJn6lNO0qJ0oaBew29arMtxao7aXg9lvc1K8y6fy+t9nODx9cEg/wTLig2PZNw+IaK/XqLrrzzR/drVXa5ph060/R32vuuGb6QAzL4H8Ti9tbH1Rh1pby9iqw0Ny9VJ3kUZDjy2H9ijPzPRz2GE9VK66jXLeqjvAOk1O56fOS5F66qGn6F01Ga8aTi3X3bicf0+bLi+vRhy/rYTcVX2wk7vyVzUaNl5Q0u/h76Jy33XlpaPf9cgMbQVVlxVLy3WVz7Vt7Snpf8qz+5XQyw8PeW7j1Vfes2bwBYelDQAAAAAAAADAGLJRljYHRbT3aKTUeUC5f5gVEhah1b2yqbz++TVTDWisvLH0s0r+LMmyhO2cct3xWSpoBYbjs/Df+xdtzGEJ7XCrfT2FyBJFv9P6F0vn6gkMZrty33sE71P2pc+ziNIRDLX30mT/Iy7bueVZi4mr1q/6Dqh7oV2g9cSEat3jeC2ytIjXhTNn8M7/GVwbxl20+b9KBa7Lxa9aaOVAVs6q9GmzY37vqkzbQhtgOA9VQzqsfKe3nuzlhmaRd7WgMGukpRdKy24YT0ubrSLafA1O8MrwnzN0VTzw7vmPtW/Ot/1YfEkjDXE9ialqt/wyt7EqzvdzdY+mv2dLM4veXfYvK9fdkXbUaFPvMzOsrvz92eoNNy6/0wXhNDv/zmt122/jBuel5nFZhgdoJEqvp8lVvwROSz0Bw+J/x2NLHafRdTY8TWsYzxHOrDV6TvzDpPbB/q8tFoy1ns63B0intVrIWC3i/lO1037e9TD0+TMMrVraTlOtmKwOqZvFrXOoffO+T9DSpd/SsmVXjV3fXLpftGX/oFGejNUrnqiq9trjsOtrvqaeLladd1kFVgeBRXmK2MVpGVe1+fUYIMdbfb5sm36jrkq/UQuzYf7qzFE7OiatvMyKtPZy0/TGdLcDq89skLM8Q5eP+4bLr/q+c791GVjNZz9INwzidFm7nOqmfZP5v+rKURTSVOOHWqWO3kk+KE89XJ7zl6t2f582M5yvPI/W+daqwyPLy7yASZXq9TlebeujPDzmuu5cXu5jHsc8xniM9eLuQRqNCXao4HWKy83zr9/1jxnaIiHnkfjomFraHBxt2fskHek2mwuS35ZjLt0v3ABcpksyvFpTHVz4meUZ7liue26rVhvGY5wbm991Yblf19ru226MW2lkfFotzlznNa46zlbfa86r24PHfDdwz0/V96P7utdge2vU9+pawDgf/o7HKo+X7uc3lrBafrrcPZ7WunXe/tAV9USNJvAcrC7+ZA+dZlu+LsnwTRnaEvYNGXo943LwKX7ug+777tNeU7hcbbTlUzUv1WgcdRpct8/P0P26Wv2XdhofHtO+uX+0Za/XqKy8XrBPszRYW3Pu5O/Z8GyiDobONquDF5uZeK1Xjsc7K0+nrcac9SQ+h+4m1SWqq/mu5frVGnX7erBoXQZUQzxXo6vdQ7WLw0vFaozt7uLu4+5U3dEu18jY2kOL43Sv8Dvr0OX8edlaDfnqT81qJVSfd/W5XJcP4nDXMLV83LAdl6d+V7WXGfXwNS9P6tBWf9LUw2jnazRU+V496ctLFhtbG3dp//x6IpY2AAAAAAAAAAC3HTbq9KgFe0gPPE56YPUrYzFT9ZRvMdbHM0yR5aGLNSEBf7BFhfWgelPFcRNunjO06GxJhpeU5y1RT/HXkU5T3f8/1D5aRFY1m7sPnpFG4rl6SLzTYKG9RY8pIrPliB+fmyY7Fo5bemjJ4vkXjJJqCZ+LbXFq5uxl3dLN6prGSXRWJk6jSKnyZSne84lWVfnv71c3P2Z3japqnq16qlVL2SN9YJZHSzFzVCuQrIcdrZm0Z/+UgF+f0ndLly1dddonRJTnjnahO0mWeroczvzN5DjuXZ6/pybv9xw37jVfWnaARpXgPvkd59CF+JgM6y7abEDXnTLqE7ZWOTg19RMVk5YcJ2ZrcL9wH7IGtmpHvlkS7fvHZehG+7DcA/6xPHXBaogdNFJ32CV9bhvXn2foDbFWa7hTOZvuIBOnIWXezkkrBKsmlmRo3zdnZw+wKN5ptUbnwsF3nC+7D3KDdN24GK3hMe7w9XmPs8sztOrG49CE1Uqm0Xn7SVbI/14xevYemcETz5kcl+u6Wux5wLCmvmqlPJ5aQ2+qtUa1nvH3txvE7XHXJowedKyFtQpieXnHfU8cvGjMmKveP6oFn+usmoR6MLNWdUmG1r5Ko/7mQdh1YAtHW0m5rtZm2846WvWfeTlvL7TpqIvQ/dFa7wlrxLSw8XFCT8hJ23OpJJ1/3uS4/jVDD8DW+rt9Zdu+Nk9R2t5WllkuP888Vfcw7s4ulj3L56FhqZvXnssmP2OqwcDuOazVQ6HqNOZu7BF2eYYujtU5z3+2pHHlitFzE5bEOccvyc/u+h/J8LHpm6weNhRZ187Tg63NdzvL7t6y7i/PBxfluuH6HPa3TaugSSf/ZAYvy7a6yAUyZ/CMNNEOr818be+x4DSNN019jFmTbdZjn8twYgGWYVWzDtXjftZ90evZaulR/So5jqFPRWm08HCj8bzlBVlVT7u+zy3hdhqNp/cqcXsBWv07ep6uPmq87neHsao4cr5eddnk+DxvVecYQ2vXalLv0AuwO+WXdshOWZ18LC6fqxXwxJEsGboeDvbEV30OPS3D1RpVRv5MutPnJn/n/3gtlT5njvEa6609+CvH6X+yA707B7mLswK8RvHvJw84Xmx7PB+2Nw9qtmqzyYTrxu6m6umNNrWw1cmHNZ5cJunNmurnz/0m63XeTFsr7C5oF43q3P24Onpx2bhd5nh2kAf2fMeS6tu0+hGt/pXc30ymeS8/v8sgLW6vdaJz/8/128KcJw6tzmxy7bR/tTx3uXj9VyyTJibKctTvg7cf3HM3qBZ2ntNtDVr7sq1DzyjXnX//3vP45Dx5YvX2G68ZPI5cqKlHFtY69jre5Wl5g+vQa8rlGeYY9wiXTz1FNd99SY6Ri+eU53JsPPuiUVI8VPtRR+1hs26GqacmzwSWNgAAAAAAAAAAY8hGWdqcdal05D+PBGePz9DCwsdlWLfnW9Hu7/1OI6mSBV8WWlbDmupGw1uy7Xqhatz8PUurrMBwvJeeMvm6n3Mehj5tLDGryhALJasipnr4rvvg/A4LP6vbB1/34Uu1DFYP/rcUb/eUmLscZnIjUhXhLvfVKYl0uVpLaAG3y9VSQQs4beA0PAjD5fKgSyen0d+tChyfVzSR5p9N/rw6NXdWMm21YnJ8Vt67XGuevz24Xw8RqAqq6k7ovRlamHy+ploXjRM3rpYu/Jm0lzUwLrT/SHOFk1JEvPd/9PDFed/7qE8dfK/uh35fauotEnale9NrlWq7s7kx2WLCFevObq2kO8DyDJekxu4p5fpdjpFeladH7ZUZ+LPcSH7kMzL0jtslPTjWJzMYi//dI7JWJ07AesDk+zelamr/VLuszsxYk+pOO0cjDa2vucF7QPAA6UboOKwlq6emubwPzso898zJ8ft0jh3tHCuv3zc1n/OyHHXuqIH/IBuItarupB5Q/U4Pdk7LIeW+81Tz6DxcUD47j9X3wzqN0ua2W08K8X2rGJwmtzst0Eh1OGaE+qA9kw8yW8NkeZyVeTtozuTrOl9TDxVxlutG7uq3yO0sy9fKKXfTy7/VwwmD0u9Ojt7ddo8Te+hm/kCn5xLpqnx4oSeOHJxPyzH7yMz3D/Ozq/ihmb+JAxlTab00LWyqoZZdKu2T5bk4H/DY7OI61OU3PJUptWFPyvzFwXl9SYb+jtubx8G55bnk2KrVzPZ4RNnwfrg1h8VPyRHnaOqpTfZZknG9xGnw6X/VQV5qIR/g/mYz3eWT8xJp/bjIBZWWDNtaS7pXCe82Sv8iT6TOV/Wbl337ik/3cHuP9x5KbZk1bsxX18jPy8LcYc3k+9VixGOg62B4qtIO5Znq0MEWAS5D14Pr0RYQXqiYeiJmHtQ1xVeJx/HqWHGdpjpgmOl0tLqAdVo83+84+fGRf8PLJl+viyqXV837wnnSwuKg694Z15184lKyyBYx6bRlUTa2mqkFVtvbZM+dL00vDkprwYmV/6EZpgnHj97ew+F4OzHfpIMVW/nOy0r+Rg6wD3tlDz+Szp2e+pCSRpsg57tcHsfmWubYelqnO6MHhVyTtHVS7FiezZOlfpGmx3vlemgvm3Q6LqfF2x9qgxsTrpP0Y+nCtMrYK9cRP0+rj0NtGVgtzrxucT9ZranOVNwkavvepTxna1dPhPUkUS8ll2foucZV4vVLdQLjHwvAkAAAIABJREFUeWaxRuYXXie571XLIeehTnTG3/M8Uv2kOu1Oi38wenyx9Yt9ou2tqVZtXkfY4s7ftUWR07okQ5enl9ouV6fNY6RPuPWY5rHSggMv4d1012okfMjuOrEW9DhoK553Zei5aOhPSxr97nHdOI/1WK/syos/kZ+9nvW4vaQH+39+8C4vcjJfSxxXzifbz5v83GLfd7nWH+0JljYAAAAAAAAAAGPIRlna7CPpHRopRC0QswzXQqeJU5JSQndGSpos3NpPI0HVjtU/g6V4lu7ZMUnxTfMCSwZT2v+HlnJW3wHzy3VL+SyptCTS0tcbBmkZHr4+TNucyZ+XVPOeqlWtJiDWUDw2Q0tJJ8xfMlxXPg+fsVTSalP7z7DU0mnJ7/6vvSd/nsivNUFZnkuc5pSeHmuBviWzlkR6z6iVU9trqnmOybT8fj3RIp8/yHsmi6Jros4zrVekxmPX1JDum75tFlrq7vJym0opdrtypIS20Lz6+HHzsIsSF8NQQO3kjCNzlP3RbdNt2PVlqxdnzKZSPhlk6B/D2le3d5en1d3uDz4txNpdWw24TdkKw23SiiZXhtvJSzP0Zs8d08nGq9IEwLzwi4O+kJo394Off3Dyuy2V935wa4vXZYdxPKtz1JrY65v3Pcj5ucVrJqfdbfj0wXPWyLkROS2WoFcRuft91UgOTcQk6dlZiS7PibEyG7z7nSX8ay6blBV9/cxROTmfrjOPRY7T/br6pKn7tb233KYPLg9riJxnx2dNiONzWfxGo7HI5eCxy+3N1gb1RCGn/YdXjjRI48Y69bHVA4z7Y/a3y3LsW5Tl58cOcn+15ug7Gpk5ug48B7ou3F+N68Rao6zz3/PJG1lmbtIe316doQ0MPKyuLOEFmcYvauS35e/SqsLNx+Pnr9PCxs3CirKzUjFeFYmRfWHxlZOzcqjnkJyP5uWLFjl0W7I2/CCN+kG2wXDbc3l6bnMb8js8Pnmt4EnDbdpaXReQ52DXh8dJz70eUx6Z4Q0ajbVVGe/vukG4YJZnWHwheJjavp46VHwVTGDlvcesesLjWZroy79K66e7puYv6hyTw7SVlnunNXPY2GGcmSOpZcW6sbq+awfwuFN87mlvTbVmWZi96eqM2+Xs9acXwK4492UvqquZsnE9eTx1Wh2f5zvX4zqN+r/HT7elqs33POJFUvVpY1z/1crHbcr9wvFV7b7ngLZm4MgwG8ud3Ghs4+wJa0mGdZDz8+44/jXiTnra5OciByKfFKa02Hl/VnL6+9JKTT2S1oNWjp9anYO5y/5duSByG1iTHcH53yl9J3l94HLYPq2Ft7V10REZumxsNpKO++IxGlWa852JmnBGmesh52FNWhh5kB9nB41S7097a2LdekbOk25CbqPX5vXtl+f1bLNXpT+xhXOlNVnOE0u+DBdV65zqm9Ghx33Xl8dY96M6QXod57rw7xu/z+1pZ436ffU9VLeiuE86je6DM/0oOafcX1Xue+z+dbnu+eJKjeYgtyGn0Wlzf3d7d3nVtNbtH15w1KOZqs/YOs663K7TqC58z2OQ8225geuiWiz53Y7TeXW8Hqfr2tRjqcdf14/zsERT/Wk5jc63x10PZY7DbcH+vLC0AQAAAAAAAAC47RCttVk/vHTraMt20kgKZQmcpVmWHNWN6NZYpLbhjItGW/gstLR83F6Zf7Vu8isstKq+asy2dV9iPdzdkrGq9a5WMfM1Ve1nKV11VlNP0bK0z2mwhM0MT0wZxmcJpgvBkl1L7JzplYN3VM2ZNTkpzbs2497+zuW+01oL1NLN+s56mozTbk2wy10aaWScNsfhsnccltDakKIeCbJVCc8qn+t+8eJ1fG1K2beyEmKORu3hW4NrgzQvT42v29XCvH/eutGrf1/ST1oLjSFL50Zbtqumuh73vtx6opvbwZcydB3trlG7/Vn5jp91/7cm2qfPGNeT20j1/bB3Ca1ttpS81ru//0pJ787/vf379Rlae+U43DasHau+VKrm0wq9h2bnPS07ULVMqxL7cwfX3afctnyyg9P0w/Idjy+2erEE3pZJfpfjseOPJRm6npZn6HHH73P93G/wLpfLMzOspzr5vvc2W2tSNf/W3DjPdiXgPjzTaQhOq98zbxCHn6kaGefH7dBj+kAzvPQz0rLLx69vLj0w2rK3SvpyXvCYn+W59nU93OqFed0OzZ6Qocew6zSywHL5VGWr56N6ioPvu9w8B7oN1xOd3G/9njq/uS15TLlCWntKyYfHeJvgVAdmViJ7DLCVnjVk9uHiMeB9Gf5Bhs77D8t1W9W432+nUb48xzl/bqu28BuenCRNNSn2vLOu3F9Z7rsdL7xvD1fl0VjO+/6pSrv+x6O6qGsql70tId23XeZ+h8canwJjv1kun6vLZ2v97YfAbcr91PPkURrVodPg9uTxyP3W77B/AY/FmdZ4kX7UWps4zHFcWHqvaMu+KWlhmhOvykHN66/d8mTB89Knm8cj59vtyGUmTdXset6ovotcZra8cxy1rVZtrdu75wynoY6JQ2eNvmcLL4/pdx48I009vqQeVWr2327ygyuyI3he81rC7cV5tNW283qJpjp4dFqsbXb7dp+bl5FcmHXlflDL22nePyO4LCNwWThvbv8ep5YP0lisIi9J4xxPfR6yXBU2CH1q+W2xKi0tJk5utXWq8Xs8x5YyuSzXrEMfji7ie09+dGIIm1vuW4k/cZhWWqfHb8ezb949on1G0oG5IP9VttkDc8y+MMcrV2ftLjZ23FlTh8CZfhq6+PfPH6dnZ715SK7GLdXnqJueDa88LdRThBb5FOF1U7/r4SHcxfKBVf49l5e38v1MxITFkQ3PSiInTgms/qU0+bmJF9yoUUF5PKxWLb5eLWuc8fp7zjizft7jgoUCF5X7/r77+g81mrM93nnt4/m0+nZzXF5b2xLXaXHcHk+95qkObB2fK9nvd/xnDu7Vk6jcEL32ubyE7qTZCOJd0/dNLG0AAAAAAAAAAMaQjfJpoz3Unbdbw2QplbefVkch1sD7+ZQgHfbfGkn2LH3KvXXXpjT7QEsSdynPFcuQS1JztK0lXhZDVU/5FlPXfb2WGlrEeYVGUrW6n9zSPWugTNVU/Lpct/mGy8lSvbov2c8ba8UuH1yb2LOaocvJcaUGbWJve/VDMnFESIaWKNY97S53a3YscXS5+vt+/zxN3tcnjdqHy8NSTqfFEkh/z3s/HWfdO12PEjOXTP64lSWZfs9KjerX2iZLovNdS6wltVg937HPYP/p3OqrZ4y48ibpI5dK+6YG4oEuA2uoXNbVmsWS6XmD+/7/OxkuL991m3CceajChGWO66nWQz2KrFq9uW+67fn9bpurNer/Pu2onsDkvmSptVUw/12e83WrqP4lw+2yAVS/FO5HluA7L24fO2m0jf6dJS31pCBL+Y3Ly3nxeFF9LNxQnnc5uk86fve3eYPnLPX32FYt9Xz9zPLZfcv9w2Nhtdzzc7aMqNaWLkf3XVvmvHCQj7XlOx7TbCnid/jUMvsxW6nxPaFmjroGyX2laFO3elx53mXgNj/0J2ENrPM93OMtjerGbduWm27zrnPXpa2p/i1Dt5EXZegxfnEJtymft5K2shXYE1O327ISfUjJH92jhyvSt8JurtxszA/Phud568jM3JFLMi153ydKVN819WSalYPr1p7ZAsTjlN9l6xzj9lb34tex1ONXVfe6b9wtLWzcvq0N3CPL5lyNxlRb2nhe3yvVj/fy6XV5fTinSaOxwX3GafFYtLaER5XnvKaplrbzJM1LJ1kP+P7kd9p31tZOTDaEQzIRbrN75cD+ojE9oeZG9TreOcu4nqpkC5vq98FlZyvW4SlgnlfrmsVjtPue66uajteTQ1zEbhf2g3jf7B93vW5yfNZu28Tico36vdu759XqV6eulatFne+fn+/cORuv+0O1ZKt+0daUcKVGfeyM8my1vvRzy4tzjuon0U3NfXNlXjhHk3GdOo/ufx4T52o0XuT6xifV+cTWA+1LMcfq/bOOWi4hfuL5OnHWLsy1y5Jyfd8cf7dP51BestiVXXq+0Z6SHpH/e+j2tG0DRRdbMeycGBbG1gdcMn9O/w24phwKuSrHVpeNl44XTX5s4v6emmp06CHQzbAeoLc2682G5XVJ6ZnLyzp37XpIoLtBMerX7tkkf6ZRd3UzdFzX5ct2v27yfS+NL71u8menbaf0P1aHowkDwCsnX3fePD34hF5JmlsK1V2tHobl63W5u+sMz3l6dN6jWP9cmw94eTNxymNW5LW/lZRT6/a+57Vu9us1+VtznvtoTqdX5biw0P1/aCUpjcYJJ3p4rPQgDRPji3Hm5muqJbMzUv3QunNWy8S6M6GApQ0AAAAAAAAAwBiycT5tto+27BCNpE6W2NdzyavU29fNOYPvDPbFS5oq1rQE3qJGs6R8tjTL2kJLyKq1xu/K9brf7mpNtYSxiNQSML/LkvSqEXf+69FE5dz2KZqIuh+6nBChrTSS6PlZl7ElgxbLWxttx/MVx+3yqJtCnQa/2+9ZnqHz6LZw7eCZ6jU837X2oslRb7/H5OfW5vddNROnTzgvzntqgtZm2quBV2xTnt9fo43IE5tCM6z+hWpkgza89FJp2Zrx85shSftEtJdqqkHVMd4/Xf0rWS3g/mcfB/M1UtvUtmCqd/R62o8/1z5WfWC5X32/POfvWQv8qQyP1mgP+vEZ2rLDPizqaSyub48vFvNbFWPNpS1rji7POY/WhFoS734z9CNj7abTWC0brHqwRdFnMvT3rJqpPkhsWeH4qqVAVf24PF0GKwfpfkC5Z82ixyiPZW5ILgeXX9VG27+Fy8+qPD/vNNbTUfz5QRrVr8vSqhznu56kULXY95OWvkpa9tvx65tLD4227BMajcseT4qhyZTT3lwv7hMnadQuHLq9mOXls1WKB2ehfzELvaoE7S+mWm75vndVu67dvw9Pnx8/+NVUNWbdA35wdurfZgHcJS1vfKrLqnJq2+FuKGkMfHIO4A9NPzHu+D/I62771cfHfI3aj8vc/oWsnXN5uv3VU0JcHtWPTFXvVj9OrtNqBWMLh/MHcVvT7363JEOfVONxzGOJxwy3F/sl8tjieP1Oj0mry3N1bDdLNNV/XfV/53ne86zbkdOW747nj6ffjKWHRFv2EY3qP/4w/7lm8oMtTSMmVMJ5cqEL+ZrzRm3lTm7XNo36eYbudH+aoQczq2U9kbninIaXlFR7IDkuw29k6Ery956Y4U7STa/o/26dg//12de2dUXlu1uODzYxqP1h6ItGGuW5+omp6wLPW1Xlfp2mWuc4+/VEGfctr++rvymfBFctOquFsdNcT2x9UoYuku00yte2Waftp5Pj8He95vDc6nnea8kFHjC8oJ0/+fOaTNy8fK7lGDnR3lyXdgy2vaQf5f9eyLgA7dzLE3J1oOewvzti1Vj2zcMj2jc0mj5cpGeW5zzseSh3kQ+tOdwMveSwAbhLpi5p3HS8hPGQW43o6s9aD6XF6GOiSTm+nQf3l+T/9VBNNzG3gPrueohpdTdXp7w6pTmttUuuHDznaUqDa9KoThx32bQwUfYzuc9xV/T3XbfblPtOsw2MHc+5GtVzTYPL3EOUu6TjGuZvGHf9ye3nvAT191Xu17YzX6N2Vn9C72ofVzdOjnPiEL4sQA/Dc4RPGwAAAAAAAACA2wwbZWkTEZdrJKAEuKOxb2ut7oIcC+ibcAdnLPsm/RKAvgkwptA3AcaTafvmRgltAAAAAAAAAADg1oHtUQAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQBgAAAAAAAABgDEFoAwAAAAAAAAAwhiC0AQAAAAAAAAAYQxDaAAAAAAAAAACMIQhtAAAAAAAAAADGEIQ2AAAAAAAAAABjCEIbAAAAAAAAAIAxBKENAAAAAAAAAMAYgtAGAAAAAAAAAGAMQWgDAAAAAAAAADCGILQBAAAAAAAAABhDENoAAAAAAAAAAIwhCG0AAAAAAAAAAMYQhDYAAAAAAAAAAGMIQhsAAAAAAAAAgDEEoQ0AAAAAAAAAwBiC0AYAAAAAAAAAYAxBaAMAAAAAAAAAMIYgtAEAAAAAAAAAGEMQ2gAAAAAAAAAAjCEIbQAAAAAAAAAAxhCENgAAAAAAAAAAYwhCGwAAAAAAAACAMQShDQAAAAAAAADAGILQ5v+3d+7xdlXVvf9NkhxyeBwTEkIghBxIRSA8IgkQC1papdWqlYto64OKtV7rbetta1urrRbbWnrt7dX6qLbU1relpZWqxY8iVRFRNKGA8hCBHsCESAKJSSAhJJn3jzW+e609zjkkkUc28Pt+Puczz157PeZjzDHnHmOsOY0xxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttjDHGGGOMMcYYYwYQG22MMcYYY4wxxhhjBhAbbYwxxhhjjDHGGGMGEBttBoRSymgppZZSpu7pvBhjWkop15dSTp/kO/dbYx5HlFLGSinP2dP5MMYYY4zZVWy02QPEpHFzKWUTf5IO2Y3r/UPRmEeIiX7ElVLOLaVcIUm11kW11q88Ss+upZSfeDTubcwgUEo5rZRyZSnlR6WUe0spXy+lnLSn82WMGXxKKR8upfzZns6HMY8GpZQPllLeuovn9uaLu3PdY0Ep5c9KKWtLKatLKYfFb9spk5x7Xinl4w9xr96cfGfnPtnwj/49xwtrrV/iQylldM9lxRhjjHlkKaWMSPqcpNdL+mdJQ5KeKemBPZkvY56slFJOk/ROSYskbZd0o6TfqrV+e49mzJgnIKWUL0i6qtb6tnT8RZL+VtKhtdZtu3vfWuuvPUJZfNiUUuZLeqOkBbXWu+PwfnswS09YHGkzoGTvf7I2Xh7p+rBmPiPO+ZVSyo2llHWllC+UUhY81vk25onGLr5O8YpSyh3hafjDzrUnl1K+UUpZX0q5q5TyvlLKUHxHP742+vEvPlplMGYPcaQk1Vo/VWvdXmvdXGv9Yq31ulLKwlLKf5ZS7ol+84lSygxJiu/uLaWcGJ8PiXNO73z+TJxzSynltTwwxsqLSikXllI2llKuLqWckPK1uJRyXUT/XFhKmd65/rVxz3vjGYd0vqullF8rpXw/xtn3l1JK53uPwWZg6RhR3yvpAEnzJL1dj7AR9bGKAne0uXkc8GFJ53THieAcSZ/4cQw2e4Kd9LUFku7pGGzMo4SNNo9PnhXpjFrrfrXWb5RSzpT0FklnSTpQ0tckfWpPZdCYJxmnSXqapGdLelsp5eg4vl3Sb0uaLekZ8f3/kqRaK/34hOjHFz62WTbmUedmSdtLKR8ppTyvlDKz812RdL6aV4OPljRf0nmSVGu9VdKbJH2ilLKPpH+U9OHOa4qfkvSDuPZsSX9eSnl2594vkvQvan6YflLSxaWUaZ3vXyrpuZIOl3S8pHMlqZTyM5Gnl0o6WNLtkv4plekFkk6SdEKc93NxrcdgM+g8lBH13FLKFaWU/xtGx/8upTyPC0sprw6D5MZSym2llNd1vju9lPKDUsqbSimr1fRXlVJeUEq5JpwWV5ZSjt9ZBkspTw9D68ZSyoWSugbVcc8pnVeZO+d1XyP5cCnlb0opnw/nyNdLKXNLKe+Oct5USnn6w6xXYybjYjXj0DM5EOPgCyR9tKTX/x7KadCle12nX7yxlHJ3OAhfvbOMlVKeUkr5aCllTSnl9lLKH5VS9orvzo2+8q5Syr2KsXmCezxH0qWSDon+9eGSlvAopRxeSvlq9OlL1cyHu/c4J55/T+k4PSd53rLQJetLKdeWSdabfKJio82e4+IQuvWllIsfgfu9TtL5tdYbw3L752q8ifb0GbNzuv1xvaS/2c3r3x4T4GslXavmB51qrStqrd+stW6rtY6pCYf9qUc058YMKLXWDWoMmlXSBZLWxET0oFrrLbXWS2utD9Ra10j6f+r0jVrrBZK+L+kqNQaUP5R6odinSXpTrXVLrfUaSX+vxnMJK2qtF9VaH4z7Tpe0rPP9e2qtq2qt90r6rKTFcfwVkv6h1np1rfUBSW+W9IzS//ryX9Ra19da75D05c61HoPNoPNQRlRJOkXS99T8qHqnpA91IgTuVvNDc0TSqyW9q0QkXDBXzY/TBZL+Z3z3D2r6xSw1Y99nSil7T5a50kShXizpY3Gvf5H04nRa33N2sdwvlfRHUa4HJH1D0tXx+SI1OsKYR5xa62Y1rwb/cufwSyXdFPPFHrvoNJiMuZKeoiZ67jWS3j9B/868N645Qs3Y+8tq+jacIuk2SXMkvWOiG8QyH8+TtCqcj+dOcNonJa1Q09/+VNKr+KKUcoykD6gZvw9RoysOnehZpZR5kv5D0p+p0QG/K+lfSykH7qScTxhstNlznFlrnRF/Zz4C91sg6a87PzrvVePJnPcI3NuYJzrd/jhDEQ2TKZ3Fw0sph3W+Wt35/37F+7yllCNLKZ8rzeJsG9T8kOvzMhjzRCaMGOfWWg+VdKyaidm7SylzSin/VEpZGX3j4xrfNy6Ia94bRhTF9ffWWjd2zrtd/WPdnZ3n71AblQMT9tc45/bOtZsk3ZPuPdm1HoPNQPNQRtQ45fZa6wW11u2SPqLmh+NBce1/1FpvrQ1flfRFdaIHJO2Q9MdhhN0s6bWS/rbWelVE9XxEjcGkazzNLJM0TdK7a60P1lovkpTX2snP2RU+HQ6ULZI+LWlLrfWjUc4LJTnSxjyafETSS0opw/H5l+NYZlecBpPxoKQ/iX5ziaRNaqK/J6Q0iwT/oqQ311o3hlPxr9Tv/FhVa31vOB13ta/l5xymJjL1rdFnL1fjKIGzJX2u1np5lPmtavr4RLxS0iW11ktqrTtqrZdKWi7p53+cvD0esdFmcLlP0j6dz3M7/9cJzr9T0uu6PzxrrcO11isf1Vwa8yQiPAn83bELl3xA0k2SnlprHVHz+kR+t9mYJwW11pvUvON/rBqPYpV0fPSNV6rTN0op+0l6t6QPSTqvlHJAfLVK0gGllP07tz5M0srO5/md++ylxnO3aheyuEqN8YVr91Xj+Vs56RUtHoPNwDOZETW+Xt057/74FwfE80op34zXNtar+aHUNbKuCaMILJD0xhTBOl8PvVPqIZJW1lq7c9zb0zn5ObvCDzv/b57gsxdNNY8atdYrJK2R9KJSyhFqjBifnODUXXEaTMY9aX2crkNhImar2Rig278mdX48DA6RtK7Wel96Tvf7rpPlPjVlnogFaoxfXZ1ymhrj8pMCG20Gl2sk/VIpZVopZakaaySsUWOJPKJz7IOS3lxKWST13lV8yWOWW2PMROwvaYOkTaWUo9TsotPlh+rvx8Y8YSilHBXv2R8an+dLepmkb6rpG5vULKg/T9Lvpcv/Ws1rTr+qJiT6g5JUa71T0pWSzi+lTC/NOhmvkfSJzrVLSilnxTv1v6XGw//NXcjyJyW9upSyOF7j+HM1O3+M7cK1HoPN44pkRJ2U6Av/Kun/SjooolEvUb8DIjsT75T0jmTE3KfW+lDrPN0laV7nlSypMcj2ZTt97nNwllLmypjB46NqImzOkfTFWusPJzjn4TgNdpe1aqJzuq/vZufHRAECu8tdkmZGWbrP6X7fdbLso6bME3GnpI8lnbJvrfUvHoF8Pi6w0WZweaukhZLWqVndv2eVDQ/IOyRuOmanAAAgAElEQVR9PayNy2qtn5b0fyT9U4Saf1fNe4bGmD3H70p6uaSNasLR82LD50n6SPTjlz7GeTPm0Wajmvfiryql3KfGcPJdNduDvl3SiZJ+pMYo829cVJrtUJ8riW1Nf0fSiaWUV8Tnl0kaVTPJ/bSa1yUu7Tz339WEfq9TM0k+K9a3eUhqrZepGXv/Vc1kcqGkX9qVgnoMNoPOToyoD8WQpL3VOAy3lWaB4p/dyTUXSPq1UsoppWHfUsrzU4Rc5huStkl6QyllainlLEkn7+Q510paFIbW6ZpkwVRj9jAflfQcNa8NTvRqlPTwnAa7Rbwa+M+S3lFK2T/WXvsdNa8pP5LPuV3NK0xvL6UMlVJOk/TCzikXSXpBKeW0WNPqTzS5beLjkl5YSvm5UsqUcNqcjj57MuDt8vYAtdbRCY6NqeO1qLXepmayO9k93ibpbenYx9Qs4GaM2UUm6Y8fVuOBnPD7znljSq871VpP7/x/uaSj0mVv63z/QUUEgTFPNGqtK9UsqjgR10tako79VVz372oML9xnk6Sf6Hz+gZpFUSdjS631lZPkaTR9Pi99nrRP1lpzXz83ffYYbAYZjKi/U0qZIWm9mi3Af0/NrmcTUmvdWEp5g5ofeXurWZPiMw/1oFrr8lLKayW9T9JT1byGdIWkyx/imq1hqLlAzWKjl6hjzJ3kmptLKX8i6UvxjDerWfzYmIGh1jpWSrlSzSYVE/adWutlpRScBjPVRJTuktPgx+Q31SxGfJukLWr63T88Cs95uRpD1b1qDLMflTRDkmqt15dSfl2NwWpfNYuC/2Cim9Ra7wyHzjvV7My4XdK3ND6C/QlL6X911BhjjDHm8Ukp5TxJPzGZ0cYYY4wx5vGGX48yxhhjjDHGGGOMGUAcaWOMMcYYY4x5VIktgG+Y5OtjdnFXRmPMLlBKuV79iw3D62qtn5jg+GT3+aCaHR4zH6+1/toEx82jgI02xhhjjDHGGGOMMQPIbi1EPHuvUkefDC9UUSu5rNi3droHxSPElPR5RycPjzWTScq2R+FZLPX4cMtaOiltmduU/O+Y5Fqo0tgOae2Omr8ZCGbP3quOjnYbabLKq7vw/WRF3Nm1uXJTpe4sSw+HyWRmZ/d+uM+myBNtfPpo52V3zi8pnexeu5vnXX3uZPfblftzzkPca2yVtHbd4PXN2cOlju6vndc/TFYfA1eyJyCPB//VIMrBTuptxd1aW2s98LHJzK4ze6TU0QM1vm/uyhA5GT/uGLerenFX9fS0SLtzn0eynI/UdQ+3nJMdf6TPeySfsbv1tit52dnxSc5bcd+A9s1ppY5O166Ph7tS7l3Vnbsw33jE2V29/uPmZXeew7l5Wp+PZ73yaI1R3Xb5cedRmUEaT1NeVvxw4r65W0ab/ar0uu0Sm8vvE+l3I+XubPEwEunqSO/rnHd/OnZLpE9L99qSnoGc8HNwTaTHRjoa6VXp+NxIV0X6nUgPSd9Pl/Rn2/vPPSLS9ZH+aqTsW0jep6XzDkh54vzvRUo9PRDpnZFujPTfIx9sYP8MNUvwd88l39iRru6Uo3vthki5Pued+o5HaizSoUgvjC9oD9qPbXCu7jyL/NO25JF7U5/Uw2mR3hvpteqHZ1Kmp6Tv9430aek4151zrHR3CBB72bF0+/+M9DnpWupzRqTT1NT/oLLjnqrD73mwJ3svipTPyPn5kdJuF0VKn5ak00LjUQektBtbutAPxiJ9Z/TKV6dn027HREpf/ulUhisipS1GI0XWj+2c++lIaWNkjmdxzc9EemKkN0VKu5J3dBWyiP5AZrnfUDrv9yJ9msbbWCkHumZWpAelz/+Zzidela1x0Hk8mzwBeooy0j++EelKSc+M/z+X8sC11Bt1TP8+IVL0yrxIaVva9Ki941kP9N+PbT+4HzqSsh2oVvZGQ2F+OxQBMsuzFsWmjnfEvgLUx9ynSEs3aSAZnSMtf5NaZceARSOhkHNn47x70nGpFXrSKyOl0kcjzRvrdpWZ1HYanoVQ0Bm2RkpFM+ADeZqu8ULJZ65FiOkkDA7ZWE7epqc01wNKPw8O5JlBdVrnHPLPtQ92zunmLeeBemSQvCedz/2px++n56BM6EwMiKvVtgmDJ8+gLWgjOgmDHM+gk/AMBlEmH0Pp/FyvBM3nqeEWteXqHpPaNuMeSyOl/NRr5L38gW7XALLXRmnZRunL8RmRRN9QTESX5mQcRCf+vFqxo7nyWIAIZXGlqvJckPuh02nWsUhRGxn07NmR3qBWPXw15ZE0/yajnIgW5URn57l7Zlb6ft/0GRF+UG19UE7q/rZI2XaR+qBNuI480o2oT8Zruhz3zeqI6+guP4p0H7VtSFvxTNqfe1CPMCWlnIdaIY90uTXpe+C5w6G3VkfF769WBXFtVqvIC9BmqGXu/WINZt+cs036+03jVMm4YeSg9Jl27pLvcUD6vDGdh3zem45Td7mdkEmGF/KAvNAf8jB7b+deyMISbkIDxc3qjv57k2fmb92hWGrmfJJ0Jvqdh9IBUEhUBjcmI3M7mePcB9I1KY+9TGVBxwBARdA56fSMTZSdijou0qxwHuzkk2fc2sl3N088k7zRKFzPPGxNSrkO5fdzkd6W0hPS559Vs7m5NL4T8mx+PPBDl/qlMaP+ymcm7ptPhrgZY4wxxhhjjDHGmMcdu7WmzdIjS13+frWWISxjmPB/MlLcAFi7sKRhaZqn1mzJMZYlOynSbA7FXZBN6ljxcANgBv9SpFjruB8WMaxcuDhGO/fHNY73aw6ux8jst8Luj1WP8zG5kmfqCXcAVk9CDbIbgLxRX5SRfMzo3Iv6It+Y37AM5vATrH7UD6bpb6f70C7ZhP/HKU/UO2EBt6ktb3jCe585N79W9q5IkRvqgfAIQg+QESy0tB3yx/W0MV7J93XKwL1OiRRL61XpGsqd5W1/aemXpeUD+AqGJC09qtTlf6e2HD8VabZy/+9I/zTSd0faXRbw9yOlfrF04975rXQe/eDv0z2JLkCugXAPLM7RXzZ/qEmHXxzHcbMRHvNUjY8OoE/R97BWE0JEexNCgq4Kj8PWkKWed+wX4p/QH+vu7/vYcyKciaxhgf8favvg5ZEiY9QL9UlbRP/Y/vl4doRy/VuEyJy1X3wfUSRT4v6ro6xEz6FOyMq+4T24NNyG8yUdRbly2BTtTltFNIv+q78M31nVXwTUCeplJCJtrg9vzCLC0rJ3HnnkwvulzeGZGJ7dpP+5tv8UuujzIv3nSLuO/jMlfacOXt88oZR6idpqJqXLUN0MmTl4g66zRm3VMQTgFf5IpDmiDVXOEDg/HecZRFvinUOFLEjnZY9iN/Irex9R/TmAKHvfD0jn5+AgujtqGFWESshRnNwXVbWq8wy6I+Ugz5SPa3FKzk/HuSfdl2EalcN9UD3kibwz3PPcH3XyNC2dS55pyxz9MRYpQyKRo7leCIL5lPrh/pSF6Eiu20utLNIGlJ9nwrJIaTvamOtfLK2otS7VgHFiKfVrGu8hp45nRaNsCOGlfw2FrlsRum7J4Rrnlt8agops5Gfk6I2FkTJ9Y3hj+MpTaeQkD61ch3o/RK0MDcf4sSEKiHzOjMxtvr//PBrwmijT4sPTQ4LNMT6hN7Lzmv5DGdB112p8OZE1ysW90Js5wh6hQr8gc0zfGEO4nrzkiJM87Z2l8dE99K3F6RrIUR7ox71THunrBBrk6Kusb9H3OeJDasUOnZV/gnA8R30gH3sPaN9cenypyz+nVpmg+CkwygYlPS+EeGWcyHXTNHmkSA7TpoIXRgdYG7VJpdLACNFe6fhkUR00wg/S540aH8U5ldZGGvbji0iZBUSnu3tD/7Py79zj+e3KOhBx4uYoFPXJb1iE83tqJ14RLn1zPJJ5x50ppY/lqC9ujY6jBP8jUh7TfbTUvi2ADmV+slGtTqP6+EmBXFMdzH24B/0bsUE/XJtS5mVE//9hpEyLvxYpYzrBNW/sXJPnF4gXP0X5TYE45YCj/5qkbzrSxhhjjDHGGGOMMWYA2a01bbRFjTkN209+Zyu/FzYWaXhO+yycGBIx2032zjVmpRz5gRkcs112/2RrJ99zfnaDzegcXxIP/XpYI2/Y0J8XXApT0uf8QinW07zIS84D98EcSJ2Mpfsfqtaqy7n5Zc7u4iRSa4rMbUVZeGsuv/SaX9S9ModLxUuEa89s85xfCsfUSF7JAy478obrhdCB7JbKcjU/nYepEtMlplsicDZ2jhH1cEakmG+pRwzdmGB5FsUfVDar6ZvUBXVP/qlropiOjhVlXhNv9F/ROQ/zMeS1LLDivyV8SXdFZ8TcTV8i2odn4g15fQjbHGztTWcffn34g5ecE8dPjfTrkS5RawN/aZNsij6KjPHs8yI9koYmM9jSRyVJQ70VeoBVjj4qSZoZyusl163qP+34NzfpX8YqQU/T+Do/OernlKgfQheOxMfW+Ben6LL4/HxJ0lkrIgRtye/F93SEJi9zQ5jnhvo+8q7YIfXgF8Z5jXfmjHVRn9eq1dm4BNCveZGfM2lsPDO/Lkk6rhdS15y4sKfEfjHSJZKkRb0OFfE/34rVh5AZXPmnHx//zNNwT2k19fEz+tv43IRinbU1QpeGPihJelVvRSa8UM/X3ksv1CAybUSat0w64IvNZ5phZkQVKcSoN1agf0Ivz6Oap2n8QhiRvoqIQvo4os4CRIyVOayDcQYX2RHpvLzYAuM3HkvGiKeoHT/IG89EH+V39bl3Xjclh+CQF8ap+9Lx7N6/N6X7qB1HJlvAArrvzEvtmBD3HqV+Ii+j9HOIMr8OFYOs/12kLDTCfT6n1g2PG5L2596EXvxjpFHuBeGOnBORwj9/S38RhvpP129EioiQtX2RwzwPmqF2nkIbpVCUrVHHQ0RG5jWA8FBT/gFjryX7a9/ly0RtzOwVkAWymuMjWtH3Gd24ZG3Ec8z+TbX6stGDQyEko1rU98w5vXtnwW8a8qTepA89+vOSpFm6RJK0UNfE8WdLkpb1zqMDXBIpYbBflXrXHBrlYUKOtDQD03BvbEQYm4na4g2hf0d+O45Thp/qu260N3Fo9PLMngA149S8Xv0ujrLeorZj/0KU87K41/V9z1jS+4yAMm4zR6Cem/r/mV5IMfGnTHAYMwjjReHQEWjrn1P7w4VnMg8hLoh6YEENypuiGnptxAQgL4rF5+jEm0KZ0n/oT2ORDqnVn8yZN3a+k9rwBvpkdvtTpF/WYLJFTcgFv0fymivT0/l3R53lhUEPUFsn1FleGCevSbZ/VPxYOo9xIeu3PPZxv/z7kPt1f5Pl9em+muaZeRHSvC4d49z2lPJ7ZXkICKJJXnLYJOHaXTmJOvzOjv5bECly0iHpACegBgjy+WakdLm8OCyLOlI22qG7MJfU/r7brnbaGVFL5xNBTz1RHuZC3JN5KNFOqAfGWZ5FXvhNw/SX35GEexNRzvMv6OSTOma+RLnf0CRviQj7nhomPDDavBDek3CkjTHGGGOMMcYYY8wAsvtr2rxH7cuYeacLvEZYlvCuYUzHSnqAWosehu6xSHFmpPdme5ZTXmbL67+w4AEWWDzK+aXX7OkD8laGpN/f2n/uaHoWURjkZbIdLbInDisgFrjsDsNqjuUWqx75eIbGv8RM3rByphWoe1ZP7ol1FCvwWHpG9oDSHgQ/UEbaA2vg99TWB/fEo4m8rErHj+YfPOd4U77QJJsigoAy88zRSJGvmXOa9LK7mxQrK7xLvTq/I5wjh7GWEfWE1TevSn5Me97Sc6TlNwzeuhmStPSYUpd/Uq2luOdtjzreFib5v4rjr48Uh1V395GXxf84hkYjpR1+M1Lanv5wXjrOPbFCY73GoozDKtrg5r9s0iPx/lD33Sg85BeZ4qVVPEtYs69N36ObKAN9D0s6HgrW2bmi/3gNZ2PBIff2SNkC6+gj1Oss667sK1cE7bQyhdzyPbqKNmOtJ9qIl3zzlhF5pXwiy3gO9X+K2gCiYdz84UW8bkP/M2gjXtrldNow6+uzIkXX4VQ89+T4JxTTuujL1PPsaNxNN4zf3gFnMZEiyDSBWUTLkdcTpaVvkJbfPHh9c3Ep9TK1AU2oYYYC1C7qeGX6vhtgyjmICQ4aujTdkGXhUOEn4ZrJi9pEva8L71te3oihIwetZuftg2rFAtDs5JlH5jUYDsvbZ+R1tKgA9HVkhh3EDqNfQ8jEfVGm76gtdu4u5CnvoEZWZqTzv52O590lF0ehVsazKfvcPBbHDbeymFDnGRQbOZilfqjXvLbHNelzDqxk10Qgz5z/8kiJ17hfbfnIW97FjjxyD+SEe6OODhrUdTNKqVepDQobpp0O6j9vLGSNoYehBpX4SklzaJi8EFfexSsqk8AAmBOVuy4aFof4UTHefDvUNTK7jMykgB123qO7zNxb2hzz8TwFHiJv7E4U5Zwbfeo7cR1DAdOCmQhJyPP2GBunEMSC0KL6+T3A9XHefZtaGToyyrkiykl1HUdBUqT419IOg8j7nGi7z0YF5ilEd3nI7nXUCQ73ZdOk1VFhiAP3IA6JNea2pjWCqOcR5k+QowTzojdEJlC/KFWiLRhE5qutD2SWTkfBiKBAPnJBQ/7KWwe0by4udfmX1JYTJdML5kIbxcsi26IX5wC2/Q5TLyJqQ9yMuihR4TXmQIXBh4kpkVUhsL3QQiafocC3xfV50aEcDUTe9gup3dqJqhmKZ3/s/v5rWYsxRxihbOlryEFJa/uwfSdwfX5TI0chjWp850LxUT15F8YvaGLoVMzFmceyDi3zX/QRujMvaoPCvUcEILb1wu+YXD/dreqk8WthpqbsRf2gKIiaYQ1QJknUK3lkC8I3dPJJfyeil/ZnfUl+Y+Q5dXwuX/KaNsYYY4wxxhhjjDGPG3Yv0mZhqcv/Qq01F7J7hxQrF5a27ircWMhwBRFlMjvMz7eG5XQsPQM3I1YqzN+8m5Z3bsrvr2M2x8JIhArW7FWSFuLixnWA6btZc0J3PL1J85o05BGDLZZz3Ak8A6sfXn/ymqOP5uFShn+Xrvts/7VY2POaNcAzxyLFgogVELcqVlXKgBcAN9QXU14p49zOZ9waq1L6KxEJsy4iYWbig+PdX8znZBJTbLh+1sZ1tDmyg+USa+nMsEFeF4L2gSjCB6Uh3j3k5f5owp5cIAdYaqlP6uUmaen50vLbB8+bL0lLjy11+b+ptfLS97pyLbXW8LeEcN4aHY/olwPUrveTvTTIO+1wOgtyhKn8gkub9JVxOL8fujAqc1tkZirrmjTv5+uaCDFZzF4mvFOOnJying9yXTTuzBBUdnSjP6AHDifig4ZlCf9QGFvjPkMIfLj2tkXmWc3/+rR90uGhI/4yrn+dpBEqjgLzTDw2yDnlQfio0NdEyho3KDXcAIQsUgaWJOM5KEcWmcBlcWEnT2NNwnvz9H/W8erdg2fFWgFbQ+8MpQiaXpQceSFaLl4C/mzUG7KAl+b016olv+tP+VAuCC3Pek+k6OWjtHTphVq+/IcD1zeXHlDq8jPUeqmQT7zPRHYRGYb+ZczArXuA2mZGd/OZ96tZ7ilvF8U9GQuzjsuesLwDBeSxo7tuTA7HYYyjCfMaNYgPXSCvgcP51BddADFFr+XtdPK6abM0fn6SI4DXp89cm8vAGJJ3aCQveEWRcYa590f6rEhRNf+o8eMOcwnyined/vOq9Pn16TNlw9PO/fLcIssS53e3BLshnZMjj7mG8tJNmedFBEH51oB68+eVuvz1amUP+UcdIf9E7hL1gc7EK/v7arcUWhgNcHnoV2QHkDHaKa/jQB3zbNQxbUG/WBLj0l2hX+lXeSfXL6jVLbQja0vQt5DB76XjXMfcgGVymFscHfO6r9zdXxZkl76ZtyrrrnnIMylnnhMvisysu63/GXjWkeu81RK7ndI36bOUnb46mvKEnl7cyTfzHoZT5rnomvUpZd7P9ZRxLFLqF31Km/FsZIExIvK6LraumXm42vYmD5QjwqJWxrU5wAYo0j6DGgX39FKX/6fa/kIfzTs95d8heY2XUzT5OqD5HqPpWcgiMkS7IGPkhcodi5Qxm+gZ5lo8d5gHbpHqjv68INfkn3LNTynjQv4tRP9Az+edS/Puy8goddOV1fQ2y00xHT8qRSJSL+xKl3eLQ70sYrpG2SjLLf3Ht8d9pqT+d33MFRbtpbYPAuWnrbIdIMJk74gyUA0j6LK8Hiv3oQ5ekL4nAof1fL7cOS+vr5vXlWXOhz4ZjTSt61uucKSNMcYYY4wxxhhjzOOG3Yu0ObrU5R9RuyvK5jBJYiHCKprNu2ORYh2botbahqV8NNLhw+KfMGltiEiAlek8LGC8aI5ngXeFsaCRt+w1mxdeghXhJcCqd6ekD8b/2LiyNZPPec0aLGlYFPPK31Oj3nj/Eut/fume43nDpuPUWnmx5uUX77NVOO/gdCqutPCMr7i//zzuA9znxefFP7hERvmicyGVHt72r8c6FqeGbXBtmFBnR2jMtigo0QzYZL8V51FuPA5ZZqgDsnL6S5p05b80Ke2w35x2vRteFuda6piNEahPzMO0yT3S0pdJy68f0Egb1ptCBl8e7bw2ZI2++dZI8ZpRx8jcvWoDGlgogWvpz7Epkd4Y6akp2uXkcDXdEX03e/rou8g9eoHV1HnnE6s/Mjmq1gvOwh3oBdoVUeKZOYotezopN/3m/nQcSzrXIRfom+5aBrgY8ppVXJN3KMMbgBc17wB3QErz2k60HZ47ZJU8UwdL1dY11+QoC+SeNuqstyFp/IIe9B+Ch3g2bYbupE3zDkWsBTRF49cxwbOb1wjDo483inp6mrT0Umn5vYPXN5cOlbr8QPXqdUN4ix5M583C85s8ietCb/9IrQOQ9R849+LQjwQKZMfOUdnLRn2GWt4c3icCCuj2z+zPSk+M80ZQWzR+07q8wUZePwZxHGU9h27EptQr2+YIuhpOa5BtuLFJe+tG8ADG5uhL6/67s1MXnn7qmMzSX3OUz4z+87dHBU2J/rs6CkNZezsxBWNRr3T3IfpEN+KJPOQdKOlfKdLo7mhUVEleyovuNxopXYb92KgCxI3HvirqfXP0wa588n/e8yZv6ElWZ6ETorzlQ4PpzX96KfWrkkaYJ9Au6KE832PqE5V8aQRInnGs2vW2iPpFhzF34V6soYbc0v6QF1fBw0tl0ynJE88hKBPv7Vikn5dWE/RDX0POUSi9xZciRWhi/Lg00jMQGqLjiRzDy5x3DaWsRLfQR7u/Dygn+afuT0nnch7jBuNKXjwr6uObsc7OMr6nzxNhTd/u/iaRWg/6EWrnIXQAdnDLa8cx7c1vGvBsxmHqiV1xkCc6MXmkHmkn8swONmerjarMEfd0aO6ZI5GQl2jr8geD2TeXLp1aly9/inRXKLw8V8o7OaVA4l57/rTGvzUwm1gFKpHIZ24SynZDXDCSor1ol96iUEsiJaKahqUxIiwG5dqN4i8IYOThWzc3KRGoeQ2WY9Jx9EBmZiiii6/uz3PeSZL+RuTO8jYdC7ll3KcJzjg8/klrVfUGFdoEeWdMo9/kwQudh+7k+hypT0bG2mevCznoNcnR8U9aM6w38aDp81qYcZ87op+wVt598Ry6WZ6KPzP9dF23o+1qnMsyQ9sjT7xURJYWpSjkrTG+7D1JFJwjbYwxxhhjjDHGGGMGkKk7P6XDfZK+IWn/rf3HsZzl9+Ow5uH+waI2X601DesZ1tDpEZ2R3wvL793md/fwhON5vyedjycdK+fWiLzA0kYZ5kt6R/x/OK4EXAthelz56SbFEnirJgZDK56cGVv78473Basp1mO+/yUqFEvwdOn6u/uvpfzUF94MwCRI/UyLPNwfKe/TZhdpjkw6+7wmxWuCkRrX3VJJt9/Wfy1t8LEd/XlYf3V/3o4JgenukiW11lIssNQT2xlwPW16eriZkIF5bCn2fOnZZBjwPVKRCEq4R6+O+kEuFh8pDVOAAQbLL9FcREzkdRZ4rzJbpKXW6p5XN39DpHh1lkRk090R2US73xy2ZGQJ7wAWd9rzSF7+Dvl+amRmJApxPMKHmjpIbXvFui9rQrbw7h4ZZu3juBd9iPaPnQR67rG8Q0DIIrJ7cNi174rnIINY6tlJi4gtqdV7rO1D3Zc5qTyjTXI6F+LmiLxcH4JNfdPH0a/k5SWRx5WRR6IVqOfbJYXK6rUFckIVL0u6prejQhzfFHnZLyIh16ad3dBZhFBQfwwVeY0S+vpxanUWOpr6I498j67B69Rdp4zwkEFjjhoZifoY6a7rJrUe5uy1DXmaGeI+c4faeiAkJrxBZ6K6aG8eTV0zTnE9Y23kaTja8KSIXjtpQbou8nwcnjTy2l3zCj1CH+cz7RwiyrJWPb2E/OR1ZKJ/DSOvRBDEM0fYPYI8omvGIo2dx2b+lMZHjVEO8o8aypGcpCHbU9B/8cy5OFSZm+D9j6iL0einld30KCOusgfbe4+LWEMOKF8MmXOO6z9+OusLMNfIWzjF5/MpC7ohR1dEGYajnof3UusyDGalXTEX8myiP5Bp2pS51YAyZZ408pvq3zJLaiNEGCupS/pF9Lcz0L/ddR5z5HjeFQ09mCME8Kei45Eltmzq7gTYhQi0Z4VQnRCNhhzMl+Z2d22V2vkSaxBRzrxbZMjkGe+Lz38RaV53Kcssn/dNn5F7dN6dasvPLixEpVDOybYky2tzfL//+2XouF+PlDZlfOK+6CPGVNzg09QurQZ5YRjOzfP4vPVf9M0NMQaPoGcuSnlBBsgLupTndHeT5Zn0NcpxbOccSYqIxF79EDFLfQ4qdXuz42lewwYZY2dJvkcH53Hnqs65cHv0kafGHGYEYYm54TUxaaEvPzUqeWaaC86NjlTid8HWePgQPwhDIdY4PhyNtHc08LclzQhFzryV/I9FSjszdlDOHPFMX6Ov7x8DBuvdIRgec0oAABXmSURBVIvoOqKx6cvICfX8amk08jCKbFGneQ7HM4/nLZnINGtdIcdEx6MLiWrL6/XMiRMui8pgXkhdHHmEtLVpk5msK5bXbOOZee0evl8Uhbq5f02ww5Cnw5q23jfWHDoO/RFlnkc7nBOys7WRmZk3aHzfCrGZEveeGfO3mUQ+pjWCh2ir52hCHGljjDHGGGOMMcYYM4DsXqTNNDUW3bzC/UnpPAIStqQUi9khGv9y++FhsbourJxYyvJuB2ORcj0WLzxVo5GeHvaoY1iKOo5jacZCyX3J8wFqvVtXxIuxWyLFC8D6J5i88NRhYd+avsd6NyWllB3PB2XCEvnX9/bf75gN47xfPQtqjm6iXNlryHm0Cd6xk9LxfD/2qT+awsZ2CddH3cxS69HMa1DkNTuI5MB6nFc4xxp8RDq+ONyuW27ozxtcnrz/14a76rufb+UJOaH98eSelfKY1xO5+Obx6/0MEnupkT/6C3KCHPBi5dKwXlMWvDdEXJ0o6bkhuEfETZD7vMPC+oiwIQLiVHaD4kBcuC3kGC9CbDKl5Skip2e5D+E7INLuTjP0hefHy+2HxIuzyPe6eAhBK3fGsw+MFFlan95PPiLlBQs96zAdHBduiftTB+/rRAvdHd8hW9lLNCNF9y2I8s1GCEf5oknWREXldasoQ28V/3C3fiHeh6a+6D+/dLJ0ergNN6zqz1vPexju0Bujb6GTNsY/9KkTo48tCxn5QdoyAM6NsI8XhMeHSADqgrLcp/FRguQpr+B/decaqZXxp2i8XhwUfijpXZ3PoRvXRZTQ5z7Ufzo9BycLYv2gOsMHG3jhIFyZTibyJq/5tT2lyBX98p1NclO0UW+XiGiPDe/p+6ih8BTVB6SyX/+5vX60sT9dHe+IzyWvC9L5yAdBreEpnDe7/7wN0e1HyCPyhFeQbvnPauUIqBd0O2M/FUz/QqbxuONtI0rxvCapkdfSjaCRVD+fjv8gpU9T288+EteEs5fDs3hHP++8g1eeaEjalChUyhhzjO+EV5N4w946P0SrEQ1Efd6i8Tt0jKU8UE+MHXntgcnWWxgUtqqpp7wTC+VCRilPjmLorg+WA3ZZzyGvd8L3eU2Jr6bz8q5ieQygvWm/KSnChoiUuWrnX8ghz0am8saKtHtaX6onlJyfd9FivGHuONnuY8jsPhpfzqw3uJbzIK+feUs6L0cX/WQ6niNOiJojcmmx2nko9cSmlnlOTQTGV3b0l6UXvdoox5ET7uh/FmTdx5ye9jo8GuSpUaHd30/oIu5JffF9b34TKXNy2vg/NLjs0PgFtEYjJRp7JH7C7p/e0OD8LWrbL++Ciqzw5sjG9NuTyNUhKi8GuTXXtfmTpP1v7r9uVnxm9yh0w3D8w7g92vmOuWPemSkvVkaU7QnpPMpL+fdJ5+VdHdmYlfGX5zLenK22fHNiXr85yk2bDIWA3p0mX5tjnkv/QEfxOyK/9EDeqL+1aWG1vOvjXbf171wpjVt/btybIvxu6EWxxT/o37zr5PdTX6YdqC+e85Wt/flYrrYtiKSBvMYl9+LZ6KadzGUdaWOMMcYYY4wxxhgzgOxepE1RYz3DmoclLVux8jvN3RXZpcb6jWW854lIO1GxMjWWL6xtWMZ4Np41IHoFD/kP0/dY3rDMYf26vfMZqxnWOiyzrOSfPQdY1Dam87OVO+/+wnlYGmFhpNlT1bXA7Z++yxbW3hpBkVLuA1NKm5FH7pvWENDRrMfx7EjDhLsIN9U26YTklaf+sO7zLjNuZKJ2/mVDf95pCyyQyNFJ4WlAZpCBJWF7/HBUENboS5rknhvbYh6HvKQVu/XaSLGovipS2urv1VqnB5EhNbJPe9MsveigaEjqjgoBvBHHqLWc5/e+Z4YMnBufN4RFveclDEs8cn1kCCF9diTa+0XR3nlbGvoLeduYju+rtr1uDFdm9lyORooVG08DsrUfLngE+9RIn69+WEcKF9ayJjmcCv3zSP+6SW7d2r+ujdTWw8lH8vAmWcICLN21eqRWWb2iSU6ncJGHeVQ015HHyMvZsS0F9TaPBRFWq1fJeeep3vu00a+PPqVzTTdPuB1x7UWjLP67/hvNo2yRzo51wXo76+QtoUbVul5w4czoT+fEO+LLWISBvOAWlfTHF2kgOVJNtAfyOadRPDO3NsrtnKHoIzfG+Ieexnsb7v0hTVWvc9/FFiAB1YZHrKcAQ2bXxfn0Q8arXjRVpEuavBxFGMemuC766chM3NW0XaMQi2arlcX+73oyHzI7t9ffeO8/5GTT/f2Xhz6aV0J+NkRE53bywjYyaU2qdVGo3o6NJ7bP2BZ6bWoo/81x7nAeLPdLKf0N5cn2Zc3OiYWy3h06ac5L4nj031uv6y8bLFCrA6O9y+Ymj6hjXRgpXkqW1yO6iqjfHJV6cP/ugcfNpox0RNb2ij62IjzVjKlHqR0j83oSiAHjQt6xEijvv2owOVTNOi3MT/MuJqwfRLlOfn2kK5p047ea9GWSpsZ6Dpvu6L9HXjuMMYJnoWaZt7JmIM3FzpvTQ3aXECKxKNIIlfjvFGE6ErvCvmmWdEfIOdElqGBUPe3HuPusGDeeFbuAbgz5ZY22wngWk3ii2RlzKQsRNcgRZadej1E7Rp4RBT4o9ODxCBkLkoQQsb0L8xueyZw8zxmJ9mHNjjzHRLanpc9bOs/gGG2GPPCM0cgTUwOaaEFk5qpIGb7I62ikzN35nvYgmm5+FIJ5dXdtHcozHOsLDkebfTeuoS1Qt4+XKLhtauqZNuithxnprSGs1HVeD1Sd8ylzjjTj9xShkKwJOG6dx7xIU0C75V3D0HtDMW7Q3t9HOIPjND56nTxxb67N5yELTB3JYpZR9BBRyswVkAeGg7wmzg61UZtTov/TBui0LZFZ6n5+6D768qkxpz6VCmEuHSGLRzNHyAv1xLj5XArNeYTs3CQd/Jb4HyXGHPL6dM8t6TPzVSqK+Qj6lDww5sf1p7LoVjznWVek8+O5J29Tq5TIE/mPClyWF7Jj7hT6dBHGj4kXtXGkjTHGGGOMMcYYY8wAsnuRNg+qscbntViImsmRNxjK8BLhOD5F498bz7sfYGDHEp89Flj38DjhQMdCiYUWQxsWTIxcWBTJK16kQ9Va53kveXr6/PqUF6yfef0drJ2UgfoiT9QX7xJjqQ0HaS/KiDwv6FzDs9enz1jp8/uEeDtgLNIT0vd51y7y/syIqjjlU3H+p/qfe6za8lJOrLovx22EN58wnrBOvgQraKyTgyf9gojIwPKN/PAcyn5gNC6eIurxN5pk1jtaz+W6OGcm8keb5l0F2DGhu85BOK8Gkr3U5JG6z1Efl0YdIRe06/OjIk6JSp790+pZiOdQ4QgJ7RbthecOj9DB4f3eSqVGuNIIDRXe3alhgZ8alufDcTFFiNkBsc1CL0In3AWbr5aGw8s3J1wER6WoA/pMLic66MEN/cenR15PiRQZQt9MxasIoTI/G0qCsh/UuWY43N6Xhjvkm/GO81h83wtYCOWzfzwbHbgYhYCFfjRSjueXssPdMhKRFrzn3Wu3Je3Np0W+6SN4cvT+JsGTmdeZeRaRDRSCiLtga7hy2OkCXThMB0J2QmGsjLqZprYf06+5ZDLPJhF7Wy5ts7ROg8lKSW9Rq1+nRwelrdeEDLBeBg6c2/BiNV6u+qBUkGmCnfJ6F4eGR4zIgdujbxCFQVsz/qC7e+ttNHnZENeNkKdojw3XNsfJxnCojq3339E7xtJZvfLu6F+XbeXa2/oePQVP4STrOtx6fxNhsxCPYJR18y1Nnxnm+jXxHPQ4+bjt6vHRuPemaJz1Tea2b4ryhxDn4XpNTAzaDa2aNb3oZYcxhzgl1vpCB3MBfQq1upd65b0v1oZan05dRjm4B6oSpyVtTZ9ArjZEhTPw3cDOlaHgqLfvRYdFj3WdwcgXfZnMMedCpz63SVav7b91yeszDBrr1Ozgw3yPaUr23qN/7v5Ak+LqHIv0CkmHhJc57wxK0BvzT/QpMsA98nqHvXVi4kKCuw6MzM5I0Rd0wJ4bNvT5xfe2HnLOzTKVndE3fqo/L1xHno6J8Syvs5Pnu6Q3pBSZnCYpAuh0XMgn60YdeGV/ufiN0dOjKW8MjZSf3w9ELtGWOcI46waeM6tzDGf+aCffkhTi0Ks/9CwBrvvFgSMik9Qnc8y8/iQOep69iOj2qOgZnXqPNbB68/1jQufMjgoisgJnPf2a+srz/EFjm5q5HHVLuyNza1Kad41CKd+mVj75jvpHV/L7gd+Qx6Tze504BIF2RL+hH5E9flNuCN2aAmx6ZSoj6k2YaPMcZU5fZcCE3tw4UsY98nR8ZObytEAKcwB0HfJAcAdBzBvV1g91Tz9ATtEry0bSCb8YKZEmDFpZKfbCrwMipxlgeOWE+SzhQaeqbRzOjejH3jwThcCPaQZnXqGgwomgQSETgcrcm8id0Ug/ESkRvigYKv4nOvdigOSeVChRPcvTefl38MQ40sYYY4wxxhhjjDFmANn9SJs1aq2AeJKWpvOw4mEV/dlIfyHSjWot3yyBABgGs3cQI9VY+pxXj943nYclHWvrDel7rIVYV7+rtjw5qgcrKNZILKrURy43VuCuZ01qLexHpPOoC6IFnpme9321HoQc7YT1n3rBaMm9e17FSPFa55XVuQ+Waq5nPR88fJQdo6nU1n3aMUTfipOPie00MCyeys2wikam127oLwv3IagC7yIWb9qL+mQnLKJljmnLMRNZxChMnvP7qUCbTVdbZ4PIA2q8RFjF8cAcHx1kc5jmhxH0sUjDnT4bVbBM2np+8y+rw2Mp3hydh/enn83WA8l1Tx879oImnRoeoxrRWoWG5V1O8hLRG1OjIUewdofFfcrV6lmjt4XXaWp0us0hYxj9h54X/4QCORirNmCpJ5wgBH7+eyOPh/Qf77my47rnxQv+6IT71eqJeVGXBKdMjdC8ZQg+Vnms9aNNcmCskdCLYomtc3r9A7KLh3rEM9FdL0aSVkjrolGQj6kRvTTCuh1xbSzNoMNYP4d6ovwoM64Lt8vq5E3kshpRRPSvGXEeen3/TjbpexSLyCGU3hl4U/DkhDJbslY6n7ocMOap2XmPsh0ecnV3cvkiGjiC8FLHWFEeVCtf6EF0M21K1+Y9dnQATYbuz7sa4rX71SYZQY9+p//7EXQmbRdRnEP7d/LG2JV3monyzzshfT+W8sYYGmPeQhxZRPWFaA/jjOJ6xrG8c9uhGh/BhXyt7j8+JfI4M8bAmXlNO1RCdKUXxhJSPfklupcxMa9dR3uwLs1B6o3j+8Y6H/uGup5HHplj0aXJA57ReRzgHf/XRIp3k9CBN6qfvMAOkzMq/AS1QtkN9ZXaRv1/TfKKxq0/N68FwVziaRpMtqjpG+SbqGTWfMKxSz9A7aKOuztw0gzIP32Obo5DGFn8r861UlulnJ/XZkEdMydlbEFOaCL6xboIM16tVi6ZW9N/cxQLeSYv9CXqhTzl+TBRHXkHm/x93rVtZeca5gx5fSGmiGmZM+X+T/3mtZ3oe/RJnkPb0dZ559er1Io71xCVQD30op/SPSk3Yx1ljDUWe/XANOjpkdLdkKXVMV9aH2lMy3SS2rZDfnrzkMgcckNbAbKeu/+gwnyO9mQMYmqUdTTt2P19dG06N0db5Z2YxiJF9y6I3yOHx49F6i7vakQ/SmN3b3xgPn0NHXFT+wwO0Td6kZCR5mi2/LuPPsYYMxI3vCqdxxwBPYJuoI+jTz6uVl6Z+jHG5rXLbo36WR+Rz9Mipd6Zeuf5B32Z3+BM2fNvsBwZ3M0D9Ufbci8ivo/5svoYjbS3C9TvNin1RB5z3qZ9oD8vzB3mfbY/zwepncMgB9Q9eoTf8MCYQfn2SnlOONLGGGOMMcYYY4wxZgDZvUgb1s3I60VgxcY6jmdlafoe6+f31FoncQ7niBisfFhFt6fPWNawAmbr3HHpc89iFikW573S8VUa5x0c97491l/yinPqgHQ+987vEeY8UC9YW4mSGUvPOUKt9w5jHB4GvIjUE14BLJFYJnkGnrq0W0eP9el7PJ3kHUtvd32FvNsPlkPaDA8DXqZ3RrQEFtkFsSYDjnReeeQ+5GVK+kxeWSsEazMe57PVWjmzdxqPDfKGJfrMiA7ZGl6Or6ndyWMQ2fdgadnr1JqS/ybSs5pk+DPxGdcVbiI6YCdUrRelQkeId1OHeRczPKzjdln5lSZZzHugRMpEQxZcGlR67AixNcziQ4SU0eC4VeL+Q/u0eZqatoEbRumQZ95Vxcwfrott8e737dH5FhLeFkI0RhZCaFfF+QvpaEvi+eHqPAwlN13jdqSaell8pt4oz3uaZF3I1kzKhFJMK9f3Ut7PzYtnYaoHzl/RnjcT5UN+T+2/pOc+5j1k8oqLlw6S2pTOe9jJKU+cF21+GHI32iQjfxWfL5O2pt030FEjeUciUqJqwt2xYVWr9waN7Wr0Ym+3jigTTY1e6r5LLo1fs6HrGc3dE93NeIO3Gu8bkYd4kbkX4w55y2MGTYbocL+8c+MWteXB0015gPGG7oa6+cn0mTLktbmI9KTMzCmIWqFMecOFmzR+7QjG3d66O5HincubSZEnxrHnxwlfiQqlDRk7jkjpTBa5wG0albB2R9veeW0S6vPontu9SW7d0X/vcTte0V9jV7ueLn15pPSpqPB6Qf/z9w8v6YNqvbDMZ5hTDZ/R/2za7vCoqHU7+q8bVLapkTO8plQ1QwY65Uvpe7zSeNbPVqu7uJa5AnVARAfX5ugMnoWHHZWOBxiVz/3w1l6UzmduhI64Vq2M0acoxzciReaI4Mtr1TBvI89r0vmUFT1Ev8p6Jg9T89TOjam3HFHDtf8WKXNwypSjrOmDrI3DHJAyoh/GIs2RC0xRFmp8tA7dN++8OCudl/OYd4vKuwyhf/Kwjr5BB9JHj1Cr06d3jknj13bhGZSF+iAPEfw+kExR22+Qg6khvIdG5VB3vfVpIqU956r9jTKUzqG+50Sl1BjgaK8cLXdg/F6hfXPEGvJNXg+jsjs77ErqDcR1R9sOPANZQk/Qnrx1kWWRcZZ+T9nICzJDWael8yfbXXh+5xj6j99p6APuGVFdW4m8RYfxLMrI7+Ssj7jfp9L3eXdldN76Cb7rLZKXnkn90VafS+fltV6RJ+qVts71hQ1gazp++wT5Rx7IKz8lyBt6hOu45yQ40sYYY4wxxhhjjDFmACm17vqWOKWUNWpjVox5srGg1nrgzk977HHfNE9yBrJvul8a475pzIDivmnMYDJh39wto40xxhhjjDHGGGOMeWzw61HGGGOMMcYYY4wxA4iNNsYYY4wxxhhjjDEDiI02xhhjjDHGGGOMMQOIjTbGGGOMMcYYY4wxA4iNNsYYY4wxxhhjjDEDiI02xhhjjDHGGGOMMQOIjTbGGGOMMcYYY4wxA4iNNsYYY4wxxhhjjDEDiI02xhhjjDHGGGOMMQPI/wdEuDii/vi7PwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "eda.plot_signals(signals)\n", + "plt.show()\n", + "\n", + "eda.plot_fft(fft)\n", + "plt.show()\n", + "\n", + "eda.plot_fbank(fbank)\n", + "plt.show()\n", + "\n", + "eda.plot_mfccs(mfccs)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at our time series, we can see a lot of empty space which we can remove later. Looking at Filter Banks and MFCCs we can start to tell each apart. We now create a function to find the envelope of a wave, an example of which we see here. This can help by ignoring, for the most part, portions where the values fall to zero.\n", + "\n", + "![](figures/signal_envelopes.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "def envelope(y, rate, threshold):\n", + " mask = []\n", + " y = pd.Series(y).apply(np.abs) # Convert to series and apply absolute value to deal with negative signal portions\n", + " y_mean = y.rolling(window=int(rate/10), min_periods=1, center=True).mean() # Get rolling average\n", + " for mean in y_mean:\n", + " if mean > threshold:\n", + " mask.append(True)\n", + " else:\n", + " mask.append(False)\n", + " return mask" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "signals = {}\n", + "fft = {}\n", + "fbank = {}\n", + "mfccs = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "# Grab a sample for each class then calculate its signal, fft, fbank, and mfcc this time with the mask\n", + "for c in classes:\n", + " wav_file = df[df.label==c].iloc[0,0] # Use iloc to select by position\n", + " signal, rate = librosa.load('data/wavfiles/'+wav_file, sr=44100) # Read in signal and rate with sr coming from scipy.io\n", + " mask = envelope(signal, rate, 0.0005)\n", + " signal = signal[mask]\n", + " signals[c] = signal\n", + " fft[c] = calc_fft(signal, rate)\n", + " \n", + " bank = logfbank(signal[:rate], rate, nfilt=26, nfft=1103).T # Get nfft with sr / 40\n", + " fbank[c] = bank\n", + " mel = mfcc(signal[:rate], rate, numcep=13, nfft = 1103).T\n", + " mfccs[c] = mel" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3ydZf3/8fcnO2nTpHu36YAuoMwyZINsBBFBQdZXVPy5F5YpG0QRFVEUByBLZKmUrcyyRymlFFq690xH0uzP74/rTjk5PRltz8k5SV7PxyOP5pz7vq/rc9Jcue/7c43b3F0AAAAAAADILFnpDgAAAAAAAABbI2kDAAAAAACQgUjaAAAAAAAAZCCSNgAAAAAAABmIpA0AAAAAAEAGImkDAAAAAACQgUjaAADQCZmZt+FrfrTvHY3fZwIzO9nMXjSzlWa22cwWmNmjZnZMkut53syeT2aZAAAAyWTunu4YAABAkpnZfnFvPSLpPUlXxLxX7e7vmtkoST3c/d32iq85ZvZdSb+R9FdJj0qqkDRK0vGSPnb3C5NY13hJcveZySoTAAAgmUjaAADQBUQjaV5296+kO5aWmNlCSW+7++cTbMty94Yk1JHv7tU7Wg4AAECqMT0KAIAuLn56lJmVRdOnLjCz681suZltNLO7zazIzEab2VNmtsnM5pjZOQnKnGhm/zazddEUp6lmdlAbwuklaXmiDfEJGzMbYWb3mNkqM6s2s2lm9vm4fa6IPssujTFLeiDattX0KDPrY2Z/MLMlUZmzzOzrcfsMMLM7zWxptM8yM3vMzPq14fMBAAC0WU66AwAAABnrIknPSzpH0nhJN0pqkLSHpNsl/VLSNyX9zczecvcPJMnM9pT0kqR3JX1NUqWkCyQ9a2YHuPvbLdT5hqRzzGyupH+5+8eJdjKzoZJel7RS0g8krZJ0uqSHzOxkd/933CH/kvQXST+PPkOiMntImiqpUGEa2TxJR0v6QzQ655Zo179LGi7pJ5IWSeov6QhJRS18LgAAgG1G0gYAADTnE3dvHEXzVDRS5ixJZ7n73ZJkZm9J+pykUyV9EO37C0kLJR3u7jXRfk9JmiHpMkknt1DnBZIeVEgQ3WhmayQ9I+lv7v50zH5XSDJJh7j7mpgYh0q6SlJ80ua37v6bVj7v9xSSMbu6++zovWfNrFTSz8zsD+5eJ2l/SRe7+z0xx/6zlbIBAAC2GdOjAABAc56Iez0r+vepxjfcfZ3CaJehkmRmhZIOUUhiNJhZjpnlKCRYnpV0cEsVRiNr9ojKuFbSNEmfV0jIXBqz6zGSHpe0vrGOqJ6nJE2MRs3EeqQNn/cYhdE78xKU2VthtJEkvSnpJ2b2PTPb1cysDWUDAABsM5I2AACgOeviXte08H5B9H0vSdkKI2pq476+LamnmbV4/eHu9e7+ortf6u5HShop6X2F0S49o936STo7QR2/iLb3jit2WUt1xpR5cIIyG0fRNJZ5usJIngslTZe0xMwub+1zAQAAbCumRwEAgGQqV1gz5lZJdyXaYVufAOXuS83szwqPAt9JYd2bNQrr5vy8mcOWxhfThqrWKIwa+l4z2z+K4lkp6VuSvmVmYxTW/LlSYV2dP7ShHgAAgDYhaQMAAJLG3SvM7CVJEyW9s60JGjMb6u6LEmwaG/3b+GSpJxXWlvnA3Tdvd8BNPSnpO5IWRomZVrn7R5IuNrMLJO2SpDgAAAAkkbQBAADJ90NJLyqsQ/MXhalJfSTtKSnb3Se3cOwMM3tOYQ2aeZJ6SDpOYYHiB9x9YbTf5Qojbl40s99Jmi+pp0LiZKS7/992xH2zwtSnl8zsZoWRNd0UEkYHuftJZlaisDbPPQpr/NRKOimq++mEpQIAAGwnkjYAACCp3P0dM9tH0s8k/VZSicLUoXck3dbK4T9VSNJcpfAo7XpJH0uaLOnXMXUsNLO9FZ4idZ2kvgrTm2ZIunM7415vZgcoJIR+KmmwwnSvjyQ9FO1WFX2Oryk8aaoh2n6mu/9re+oFAABojrm3ZYo3AAAAAAAA2hNPOQAAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSJgOZ2TAz22Rm2Wmqf5OZjUxH3QAAJIuZlZmZm1lO9Pp5Mzs/3XEBnYGZXWFmd+/A8beZ2WXJjAkAOqMun7SJLuDWmVl+GmOYb2ZHNr5294Xu3t3d69MRT1T33Ci2O8zsmnTEAXRk8TeLAHaMmZ1hZm9FHQvLzOwJMzsw3XEBnV2q2p67X+DuVychvkPNbPGOlgN0Fi11UCTj+tTMzjWzl7c/QmyrLp20MbMySQdJckmfS2swnRQ3rGgPUeJzc3RBuc7MppjZ0HTHBSA5zOyHkn4t6TpJ/SUNk/R7SSelMy6gs0tV20vXaHIgU8Rcu240s3Ize8XMLjCzLn1/jsS6+i/F2ZJek3SHpHMa3zSzQjO7ycwWmNl6M3vZzAqjbZ8zsw+ixvW8mY2LOc7NbHTM6y2jVMysj5k9Fh231sxeMrMsM/u7wgnwP9EN54UJhnP3MrO/mdnS6Ib00dY+WFTOsuiY82Nji8++xmdLG/c1s69LOlPShVFs/4m2TzazT6I/MjPN7PNxZU01s5vNbK2kK7blPwTYASe6e3dJAyWtkHRLmuNplgVd/e8v0CZmViLpKknfcveH3b3C3Wvd/T/u/pPoXNp4XlpjZg+YWa82lJtlZpdG5/qVZnZXVBcAtd72Euz/TzNbHl07v2hmE2K23WFmfzCzx82sQtJhcdfJh5rZYjP7UdQel5nZeTHH55vZL81soZmtsDC1qtDMukl6QtKg6Fp1k5kNSvkPB0iOE929WNJwSTdI+qmkv6Q3JGSirn7TcLake6Kvo82sf/T+LyXtJekASb0kXSipwcx2lnSfpO9L6ivpcYVkS14b6vqRpMXRcf0lXSzJ3f0sSQsV3XC6+40Jjv27pCJJEyT1k3RzSxWZ2TGSfijpSEmjJR3Shvi24u5/UvjZ3BjFdmK06ROFEUolkq6UdLeZDYw5dF9Jc6NYr92euoHt5e5Vkh6UNF6SzOx4M3vXzDaY2SIzu6JxXzMrMLO7oxu9cjN7s/HvQJSAnBslJ+eZ2Zkt1Wtm2dEF5Wozmyvp+Ljtz5vZtWY2VVKlpJEWNzXSYtYHiEnenhfFvc5CD8w+ZjY9ivd3yfmpARltf0kFkh5pZvt3JZ2scK4bJGmdpFvbUO650ddhkkZK6i6JNgV8qrW2F+8JSTspXP+9o3ANGesMhevCYkmJplYMULi2HCzpq5JuNbOe0bafS9pZ0u4K17aDJV3u7hWSjpW0NLpW7e7uS9sYL5AR3H29u/9b0umSzjGzXcysJOpMWBV1Llza2OFncetJWeIpT6PM7I0oifqv5jozonr+EiVKl5jZNda2kXBmZrdE5c8ysyNiNpxnZh9G19BzzewbMdsSDmSItv00imGjmX0UW2ZX12WTNhbm4g6X9IC7v62QiDgj+qX5P0nfc/cl7l7v7q+4e7VCQ5ri7s+4e61CcqdQIbnTmlqFEQDDo16Kl9zd2xDnQIWT0QXuvi469oVWDjtN0t/c/QN3r1RIrCSNu//T3Ze6e4O7/0PSbEmTYnZZ6u63uHudu29OZt1Aa8ysSKGtvha9VaGQoC1VSKR808xOjrado3CBOFRSb0kXSNoc9dz9VtKxUQ/IAZKmtVL11ySdIGkPSXtLOjXBPmdJ+rrCBeuCNn6kfRUugk9XGKJ+iUJCdoKk08xsu5KyQAfSW9Jqd69rZvs3JF3i7oujc/UVkk611qfnninpV+4+1903SbpI0pfacBzQVbTW9ppw97+6+8aYdjgxbvTav9x9anT9WJWgiFpJV0XXuo9L2iRpjJmZwjn2B+6+1t03KkzX+tIOfDYg47j7Gwqd/AcpjBgvUehUOEThWva85o/eytkK97SDJNUpXNcmcme0fbTCNexRktqyYH9jJ30fST+T9HBMYmilwjVxjyjmm81sz2hbwoEMZjZG0rcl7RNdex8taX4bP2un12WTNgo3a0+7++ro9b3Re30UehU+SXDMIMXcaLl7g6RFCtn+1vxC0hxJT0cZx8ltjHOopLXuvq6N+zfGuSjm9aLmdtweZna2mU2LMqTlknZR+LmlpD6gjR6Nfh83SPqsQpuTuz/v7u9HF4nTFUbLNSY6ahUuSkdHCdq33X1DtK1B0i5mVujuy9z9g1bqP03Sr919kbuvlXR9gn3uiJKpdVHity2udvcqd39aIQF1n7uvdPclkl5SOMECndkaSX1aSKYMl/RIzDnpQ0n1CheDLWlyTo++z2nDcUBX0Vrb2yIabXqDhWmKG/Tpzda2XB+uiUsQVSqMgOurMOL87Zh2/mT0PtDZLFWY6XG6pIuiROh8STcpdP611d/dfUY0Gu0yhY6+JiNootHlx0r6fjT9caXCjI62JERXKlz31kad+B8pGmXu7lPc/RMPXpD0tEIiSmp+IEO9pHxJ480s193nu3ui+/EuqUsmbSysT3OapEMszL1dLukHkiYq/BJVSRqV4NClCheHjeWYQlJlSfRWpcJJpdGAxm+iBvcjdx8p6URJP4wZ8tXSiJtFknqZWek2fMRlkobEvI5fkLWiuTgTaBKbmQ2XdLtCJrS3u5dKmiHJmjsGaCcnR7+P+Qq/ny+Y2QAz29fMnouGl65XGE3TeBH5d0lPSbrfwvpPN0YnigqFk+UFkpZZWNh4bCv1xydLE42k2Z6E5oqY7zcneN19O8oEOpJXFc7LJzezfZHCqLjSmK+CKLHZkibndIX15erUtI0BXVlrbS/WGQqLEx+pMDqgLHo/GdeHqxXOdxNi2nhJtI7djpQLZKLBCh0Iedq6Y6EtAwUaxV+T5qppElUK58BchWvdxoToHxWmOLZmSdyskQUK18Iys2PN7LVo+lO5pONi6k44kMHd5ygsQXKFpJVmdr+xPtUWXTJpo3DyqVdY82L36GucQq/12ZL+KulXZjYo6jnY38IjwR+QdLyZHWFmuQrDu6olvRKVO01hilW2hXVltkxbMLMTLCzuawojAeqjLylcII5MFKi7L1OYI/x7M+tpZrlmdnArn+8BSeeZ2bhoqsjlcdunSTrFzIosLE781RbKio+tm8LJcVX0uc5TGGkDZIRoxMzDCu3rQIVRdP+WNNTdSyTdpugiMsrwX+nu4xWmQJ2g8DdA7v6Uu39WIZE7SyFZ2ZJlapogHZYovLjX25JABbokd1+vcB671cxOjs5dudFF4Y0KbfraqFNBZtbXzNryZJv7JP3AzEaYWXeF6Rb/aOtUEKCza0Pbi1WscE28RuG8dl0S42hQOAffbGb9JMnMBpvZ0dEuKyT1NhYSRwdnZvsoJGYeVRiREt+x0NgZ0Zbrx/hr0lqFBGisRQrttk9MQrSHu09Q6wZH97WxdSyN7pkfUlhGpH/Uofq4Pr32bnYgg7vf6+6NS5i4wlpWUNdN2pyjsObLQndf3vilsADhmZImS3pf0puS1ir8wmS5+0eSvqIwx3C1wi/aie5eE5X7vei98qic2Kc87STpWYX5ua9K+r27Px9tu17SpVGG88cJ4j1LoaHNUhiK9v2WPpy7P6Ewb/E5hUzmq9Gm6ujfmyXVKJzk7tTWC8XF+ovCMLVyM3vU3WcqDM97NTp+V0lTW4oHaE8WnCSpp8I0iWKFKYZVZjZJoTewcd/DzGzXaLjoBoV2Vm9m/S08Ka6bQrvZpE+TrM15QNJ3zWyIhYUT2zIFcprCGhq5ZtbcOjhAl+fuv1JYYP9ShU6DRQoj6h6V9BuFxOzTZrZRYT2rfdtQ7F8VRtu9KGmewoiC7yQ9eKADa6XtxbpLoad9iaSZ+nRduWT5qcI17WvR9KtnJY2JYpylkISdG12v0juPDsXMepjZCZLul3S3u7+ncF15rZkVR50SP5TUuPjwNEkHm9mwKFl5UYJiv2Jm46MO/KskPejuTa5lo8EBT0u6KYohy8xGWdvWS+yncN2ba2ZfVBgA8bjCCKF8hb8XdWZ2rMI6OY2fNeFABjMbY2aHR0mfKoXRda1de3cZ5q2vhYsOzsJjyWdIyqcHEZ2Rmc1XWIeiXiEzv0DS9e5+j5mdqpBo7CXpBYV59qXu/hUz+7LCMMwhComZfyicFPsqnDh3j8qbJun/RUnL5mLIURjyebbCSeiXCongXHevM7PnFU7Ef445ZqTCheaEKLZPJPWKYitTuJHMbWy3ZrZY0lcaE74Wnhwwy92v2b6fHAAAANpbzLVrncI6ijMVkjK3uXt91AF4i8KCvFUKo82uiUaeycxuVRgksFphgMGf1PSa81VJR0gaq3CNeZ67r46/voySPjcoDDwoVlhc+Ofufn8LsZ+rsDj4uwqDC1ZI+na0/qLM7FsKo/TyJf1HYQrWHHe/1Mx+oDDQoa/C0x7/6O5Xm9lukv6skPypVZjJ8nXnaXCSSNp0Wmb2eUlTFKYz3Smpwd3bMicZAAAAAABkgK46ParDM7OLzWxTgq8nol2+oTAs7ROF0QffTFuwAAAAAABgmzHSBgDayMxuU1jXKt7d7n5Be8cDAAAAJBvXvJmFpA0AAAAAAEAGYnoUAAAAAABABsrZlp379OnjZWVlKQoFyGxvv/32anfvm+44EqFtoivL1LZJu0RXR9sEMhNtE8hMzbXNbUralJWV6a233kpeVEAHYmYL0h1Dc2ib6MoytW3SLtHV0TaBzETbBDJTc22T6VEAAAAAAAAZiKQNAAAAAABABkpq0ubVT9boyRnLklkkAAAAAABAl7RNa9q05su3vyZJmn/D8cksFgAAAAAAoMthehQAAAAAAEAGImkDAAAAAACQgUjaAAAAAAAAZCCSNgAAAAAAABmIpA0AAAAAAEAGImkDAAAAAACQgUjaAAAAAAAAZKCUJG1emr0qFcUCAAAAAAB0GSlJ2qytqElFsQAAAAAAAF1GSpI2d7wyPxXFAgAAAAAAdBkpSdosWrs5FcUCAAAAAAB0GSlJ2qzeVJ2KYgEAAAAAALoMnh4FAAAAAACQgZKWtKmqrU9WUQAAAAAAAF1e0pI2lTUkbQAAAAAAAJKF6VEAAAAAAAAZiKQNAAAAAABABiJpAwAAAAAAkIFI2gAAAAAAAGQgkjYAAAAAAAAZKGVJGx4BDgAAAAAAsP1SlrT54m2vpqpoAAAAAACATi9lSZv3l6xPVdEAAAAAAACdXtKSNpasggAAAAAAiFHf4HrgzUWqq29IdyhAu2IhYgAAAABARrv3jYW68KHpuvPVBekOBWhXSUvabKquS1ZRAAAAAABssa6iRpJUXlmT5kiA9pW0pM3Lc1Zv9V5NHUPXAAAAAAAAtkdKp0e9u3BdKosHAAAAAHQBs5ZvSHcIQFokLWnjvvV7D7y1OFnFAwAAAAC6qMffXy5JWr2pWp7o5hPopJKXtNHWDeehd0jaAAAAAACS4743FumvU+enOwyg3fD0KAAAAABAh/Hy7FXpDgFoNymdHgUAAAAAAIDtk8TpUQAAAAAApFY9N5/oQpI3PYqhNgAAAACAFOMpxehKWNMGAAAAANBhbKyq00UPT9etz81JdyhAyuUkq6DmxtnU1jcoN5vcEAAAAAAgOe57Y5Ek6Yt7DVG/HgVpjgZInZQvRPzkjOXJqgIAAAAAgC0mXfdfVdXWpzsMIGWSlrRpaCZr86cX5yarCgAAAAAAmvjPe0vTHQKQMimft/T+kvWprgIAAAAA0EWZWbpDAFKGxWYAAAAAAB3W7BUb0x0CkDIpX9MGAAAAAIBU+SNLcqATS/nToyRpxYYq9WdFbwAAAHRgZZOnNHk9/4bj0xQJAKCrSOJIm+bTNpMfmp6sagAAAIB298i7i7d6r7yyJg2RAAC6kqSNtGnJcx+tao9qAAAAgKSLH2HTaPernknbaJvGmBjtAwCdW7skbSSpocE18uLHm7z39qVHqnf3/PYKAQAAANgmi9ZWpjsESdKMJet1wi0vS5ImDOqx5f3z/vaG/nbepHSFBWSMsslTSGKiU2q3hYjjEzaStNc1z+o7972brBAAAACApDroxufSHYIqa+q2JGwk6YOlG7Z8/9xHq1Q2eYreX7w+HaEBGWXOSp4ihc4neUmbFpcibt5/3luqsslTtHJDVbJCAQAAAHZYc9OiYm2qrkt5HOMvf6rVfU783csqmzxFD7y5KOXxILEn3l+msslTVFPXsNW2URc/rrLJU7RqY3XCY+sbeBRvMmyuCT/7T1Zt0lX/man1lbVpjgjYccl7etQO/p2ZdN1/E77/uzP20PG7DpSZ7VgFQBdXUV2nGUvW69FpS3XNybsoO4s2BQBAc756x5tt2m+Xnz2lOdceq5zspPWFtilZ1JwLH5qu0/YZmrRYMlVzP6P4/4udL31CNXUNuuO8fXTomH7bVVd9g2tUNGuge36O3r/iqC33Ji9+vEpn//WNJvvvfOkTzZa1z7XPbvm+cSpP7GeZfe2xyk3i71JXc+LvXtZJuw/Sv6YtlST9deo8SdIlx43T1w4eqdkrNio7y1RSmKt6d/Ur5gnHyHzt8sjvHfHte9/Vt/WuuufnaMaVR6eoFqDzm/CzT3vpDhjVWydOHJTGaAAAyGz/nbWyzfuOvuSJpK2lsSMJm0YvfLxK58QkEjpbImBtRfNP7Rp9yROad/1xW5IqjaNezv3bm23+P/rV0x/p7APK1Kd7vmav2KjP3vzilm2bqus04qLHNfvaY5VltlXCZluUTZ6iy08Y3+S9nS4JCZ9bvrwH12rbqTFhE+vaxz/UtY9/2KbjLz1+nI4Y11+DSwuVl9N52g06rowZadOaTdV1Kps8ZavsNoBt99QHy5tcCLw8e7X2GdFT+TnZaYwKAICOa8aS9dplcMkOlfHJqk1JieWcuETCTklMKu0Id9eIi8KIlS9PGqaJQ0r0pUnD9L37321yo71Tv+5avalar0w+Qlf8+wPd8IVdZWb6aPlGFeVlt7rO0IiLHtfH1xyra6fMbPL+tEXl2n1oaYvHHnD9f7V0fZV++785Gt67SAvWJF6IujG5sqOuemxmwve/c9+7JG3S5JopH+qaKZ8meEb06aZrP7+Lxg7ooYLcLBXltduzfABJ7fj0qGRpzG5L0tTJh2twaWGaIwI6nsemL9N1p9SqR0Gu3pi3Vl/5y+uSpLu/uq9em7tGZx8wXLc9P1c/OmpnXf3YTB01ob/+8vI8jR3QQ5fF9QgB6Lqqauu33ATV1jcoPyebXkl0Wafe9opmXX1sm/aNTV60l3Q/Wee6xz/Un16cu+X1fW8s1H1vSJMffn+rfWevDMmrcZc/KUn6x1vbvk5PoilKJ986Vf/+9mc0vHc3lRTmbrXd3bV0/afrbDaXsGkvR938gp7+wSFpjQHSvNUVOuP215vdXlqUqytOnKDe3fM0tGeRhvcuYoABkippSZvyyuaHKabKZ274X1LKGVhSoH1H9NKhY/pp/1G91a84n4aGTm+3K57W6xcfoRc/XrXlvcbkzepN1br/zUXqlp+t+99cpPujRQ2nzlmjMQOK9ccXPtFT3z9Yy9ZXaXBpoWobGpRl1qmGXgOZbn1lrWrqG7SxqlYDSwpVmJetuvoGzV9ToZF9uquuwZWXk6WaugZd9uiM7brpyRTXn7KrdurXXROjHvJsM1XW1qt7fuLLmPoGZ90utLuq2q0Xn413yC+eS2sioHHq1dzrjlNW1EZip2M9+q3P6ORbp0qSXrrwMA3tVbTddT05Y7kuuPvtHYg2NT73u6npDqHNPl6xKe3JNrSuvLJW3//HtDbvv9uQEp20+2AtXFOhQ8f002dG91FeThbnLjQraUmbD5d33MerLVtfpUenLdWjCeY/JvKFPYfowmPGqCAnW/m5WcqPehXrGlz1Da6a+gbV1bvqGhrUoyBXBblMOUFm2jdmAfA+3fO0elNIvj730com/8a68MHpkkLP2INvL9bZ+w/XuwvL1bc4X1edNEEXPfy+fv6F3fTshyt02t5DW/39r6tvUE52lurqG1RV16Du+TlaW1Gj0sJcra2sUX2DqygvWx8s3aD9RvbW2ooa9SjIUXaWqcGl7CyTu5NoRYdXU9egB99erIsf2brXuau7KEFPfCbZuX93XXzcOOVmZ2lYryJlZZm65WWrMC+baaddzOJ1lRrSM3GiIxlr1STLyIsTj/JpTNhILT/q/OqTd9GZk4Y1Ww6Si8RN5zJ98XpNX7xeknTnqwt2uLyy3kWaHyWDj57QX3sM66mnPliuLDOdMWmYhvQs1BMzlmtwaaFOmDhQJtNrc9dop/7dNW5AD22urdfS8s0a3LNQRXk5aojuZ/Nzsri+zhDm27AYzd577+1vvfVWwm1H3/yiPlrRcRM36PwuOW7clu8T/f05fZ+hKi7Yeqjsp8fY2+6+dypi21Ettc1pi8r1zMzluvW5T1JSd35OlqoTPNpSkk7fe6hemr1KS9dXqbggR4NLC7VsfZXycrJUXlmjQ3buqxc+XqXjdx24JWn63cNH67f/m6Mz9x2mf7+3VAW52dp3RC89Nn2ZLjp2rH7z39k6ZOe+Kq+s1brKGh2360D96pmP9f8OHaXH31+mPYf1VElRrmYu3aBDx/TTc7NW6oDRvVVZE05Iuw8t1cxlG/SZUX00fXG5CvNylJ0V1uUa1qtIKzZUqzAvS7nZWcrLCf/W1DVoQ1Wtqmrq9eb8dTp6Qn9V1NRrw+ZaVdTU6cWPV+vMfYfp+idm6VuHjVJRXo7KK2s0qm93vbd4vcYNLNb81ZUqyM1Sz6I8zV9Tod2GlOiGJ2Zpz2E9NXZgsdZW1Gh0v2LNW71JEwaVaPn6KvUtztfqTdXKNlNJUa4Wra3UiD7dtWBNhQaWFGhtZa0Kc7OVnSXV1ruKC3K0ckO1+vfI1/rNtSouyNXm2nrVN7hyskzVdQ0qKcxVeWWtenbLlZlpc02dqmob5K42T2tpy/m7raf4tpR1/oEjt/QIJy4jM9tmS+1Skl6Zs1p3vDJfT89c0Y5RoTMZVFLQZCqHJB20Ux/1Lc5X9/wc5WZnqXt+jipr6nT7S/M0cUiJKmvqt0w9aclX9huml2av1uJ1m+q6gSgAACAASURBVDV2QLGO322g/vTiXOVlZ2nlxmr97MTxOu8zI1oso6O2zd8/P0c3PvlRO0YEJM/g0kJNnXx4i/t01LaZSYlPoNG3DxutXt3ymryXKMMytGehjpowoMWymmubSUva0IjQ0bW2RlKmnuCkltvmPa8v0CWPzGjniDJbbraptt6Vl52lmvoGZZmUEyVnkiU7y1Tf8Onf1yyTGnZwwfb4Ms1Svwh8JmjtUbqZ2jZbu/i86emPdMv/5rRjREDy9O6Wp7cv+2yL+3TUtsk1LTq6T647rsVpNrRNoP0dPraf/nruPi3u01zbTNr0qK5y89AR5Gabdu5frLp616pN1RrWq0jL11dpbWWNaurCULfGtUe654dpJkN6FqpfjwI1uGtgjwJlZ5uqauo1qLRQqzdVa+n6KvUqylNBbpZysrNUWpir1Zuq1S0/R5U19SopzFV1XYMGlhSoorpuy+9Cfm6WCnKz1ZgcbLwp7lGYq4rqeuVkm/JzslRb7yrMzdbA0gJ9sGS9enbLU5/u+VpbUaPCvGzJpY3VdTpgVG8tK6/Syo1VKi3K07qKGvXrka+6aCSBeyg7PydLWWZqcNfaihoN7VW05eQVm6iM/ZXt3klXgj9z3+Ea0KNAX72z+ZNgSwmFxsRGIkeN77/VKIHrPr+rLn7kff3k6DF6euYKfevQUZq5bIPeX7xeFx03TovWVaowN1u7Di7R5Iff1yl7DNaGqlqtq6jRTv2L9b9ZK3XqXkN016sLNHFIiVZvqtbMZRt0yh5DdP+bC/Xtw3fSUx8s126DS1RSlKuXZq/W1w4aqbtfW6DDxvTT1E9WK9tMp08aqidnLNdnx/XX3NWb1K+4QJtr67VqY7X2Gt5TU+es1q5DSsLvYZapZ7c8LVxTqdH9uqumvkG1dQ2qrW+IkjqmnkV5WldZo5LCXG2oqlW3/ByZpJUbq1XWu5vmra7QkJ6FWr+5VrnZWSrIzdLsFZs0flAPLVhTob7FBaqsqVN1bYMGlBRo9opNGjuwWMvXV6m0KFdVtQ1atbFaO/XvrnmrKzS0Z5FWbqxS9/wcmdmWdUuWlG/WkJ6FWrGhSiWFuapvcJlMWVnS+s216t+jQKs2Vqt39zytr6xVQV6YmrG5pl6lRbnasLlOpUW5WldRI5lUmJutgtxsmcIUz9a05e+8J+xf2L6yJHXa+d0/OmqMvnnoKL2/eL1O/9Nr6Q4HaTKwpEDLor8D5ZW12nNYqQ7ZuZ+q6+o1ul/3cE6VNGlEL328YpN2H1Kqj1ds1MShpcoyqaa+QTlZWWrwMEW7vsHVtzhfKzZUqV9xgfJyspSdZVpfWavq+nrlZWdp8brNGlhSoMXrNqtXtzz171Gg9ZtrtaR8s3bqF9ZDKsjN0owl6zVmQA+t2FCl4vwcFeRla8X6KhUX5Kq0qPmRqR3dvOuP06bqOu16xdPbXcYxEwboqAn99cMH3ktiZOjqjhzXT+ceMEIj+nbTP95cpN/+d/aWbVefNEEVNfU6c99hnfa8ia5rUEmB1lTUqLquQX2L88M96sZqVdbUqaxPN/Xulq/lGzarurZBo/p2V35ultZW1CgnyzSgpECSqbKmTnnZWerfo0C1DQ1qaAj3nwNKCpWbbVpXWaOC3GwV5obpzVW1DSouyFGvbnlavbFa9e4q691N/YrztWpTterqXaVFuSotzEscdFwzzNmBdpm0kTbjL39SlTX12x1IunXLy9aNp07U6H7dNbx3UbPrcDT+vJjf1/Vkaq+E1HrPxLRF5U3mqTdqTLZ+4+CR+mPMEx0kaeLQUr23qFyn7DFYD7+7pMm2XQb30IwlG3Tv+fvqjD+/rqPG91ePwlwdOLqPTtp9kD5ctlHjB/VIzocDWpGpbbO1dtmcsJhwpapq65VlplH9uikvO8wrf3vBOt3+4lw9+cHyFESMbfWFPYfo4J37aGSf7lq0rlJHjOu35f8KHb9tbk+vfkvrjpz559c0dc6abS4z01x90gSdtX+ZNtfUb3m6E1Lrnxfsr33KeiWtvI7aNhlpk1i3vGxVRPfhPzl6jMYOKNYHSzdoSM9CHbfrQOVmZ2lzbb0KcrJaHLmM9Ev5SJtzDyjT759PzZoZ2+ue8/fV3mU9NX3xev38iVl6a8E6SdK4gT308y/sql0Hl2zzhRUXYuiIendLnAHef2RvvfLJGg0qLVSf7nn67PgBqqiu07/fW6qrPjdBNz3zsX567Fg9/O4SlfUu0iE791VVbYO+dvAIPf/RKu0/qrfuPX9f7TygWH26528pl4QNsP1ysrM0ul/3hNv2Gt5Te5211zaVV11Xr5c+Xq3z79r2BFImefWiw5WdZcoyU6+iPDV4eMpGppyXdx1Sku4QkOHuOX+/jLrpnHHl0eqen9NiTBcfN1ZfP3hUwm2FedmtLo6bSZ+3o2IB4q5h3MAecnftN7K3fnz0mGafjthWR4zr3+T1jpaH9Era/15hOz4h6aCd+ujO8yZpSflm/e5/c1S+uUafmzhYR4zrl3CEzD5lvfTgNw9ot/iATFMSN4x9r+E9td/IXvr8HkN0zZSZOmXPwTrngDJJUnlljb6y33BNHFqqu/5vkqQwVDz+xmh0v2JJ0gGj+6T+AwDYbvk52TpyfP9tuvCvrqvXK5+s0ZpNYWjxsN5F6p6fo537F2+1b3lljWav3KQeBbmatmidjhzXXz2L8lpcPDoZstq83DWQOeZed5x++fRHae3ovPT4cTr/oJFbXr95yZGavrh8q5u8ZIj9u5NpCZzHvnOgdhlcInfX/DWVOuyXz6c7pK0c08qipchcX540VLsOLpVZWMukX3F+xnQyoOPpMCm3u7+6rw7cqenN4dBeRfr5qbulKSKg4yiKS2Y+FJPEvOO8SU22lRbladKIpkNwOckAXUt+TrYOG9OvTfuWFuVtGbY/ZsDWSR0An8rKMl14zFhdeMzYLe/d+OQslfXppj2GluqzN7+YsrqbS9z2Lc5PScImUf1vzFur0/74aqv7zr72WE1bVK7v3Puulm+o0kPf3F+lRXk64qYXtqnOi44dq+ufmLVVHLHMTCP6dNP8G45XQ4Nn1GPMrz9l13SH0KmcutcQPfj2YknhqbITBvXQTv2L1bMoVznZWVq/uVbd8rKZQoSMk9SFiJPpj2ftpaPG9+dmEUiC2JPPrWfsmcZIAADonG764sTtOi42gTP/huNTMiLllD0HJ73M7TFpRC+997Oj9JN/vqc/nf3psg0L1lTo1ufm6IG3Fmva5Z9VbnaW9inrpdcuPqLJ8Y0JlxuemKXbXmh5tNLXDx6prx44YqukTUuyskw/OXqMfvFUeOT79CuO0m47sCD1jurZzPR2bJsv7DlE15+yq/JysvTLFtppSWHnXWAdHVvSkjbJfHJU4xxbAMlTmJut7xwxWsfvNjDdoQAA0Ol8fo/MSIzEe+ibB2iv4T3THcYWJYW5TRI2kjS8dzfdeOpE3Xhq2xJfPz1mTKtJm4uPG7fVex9fc2yrZX/rsNEq691N+4zoqR4FuXrgG/u3aXQQMsv+I3vr1blh4e+bTtu+hCqQKTIqM7L38J6sPQOkyIdXH5PuEAAA6DDO2HeY7n19YZv2nXX1MUlbx+mlCw/TQTc+l5SyJGVUwiZZWhuJf/vZiR+MlJfTtmkvsR1c8VPGY+XnZKm6rqFNZWLH7T60VNMWlbe4z82nT9Tn9xgiSbr6sZka2rOwPUIDUipjpkdNu/yzKi1iCCAAAADS75Cd+7YpaZPsp/sM7VW0w2V09ScOfXb8p2v0JONnMe/64zTioqZr3Xx0zTHKz8ne4elsUycfrs/c8L+t3p9FZ9tW8tqw1kxh7qe3t5edMD6V4QDtJu2rLE2dfLjm33A8CRsAAABkjP1H9W51n5N3H5SSuuffcLymX3FUSsruLGZedfRW7/3prL1SkrCKH9lzyh6DlZ8THvLw5PcP2u5yp19xlAaXbj0SZP4Nxyd8Ii5ad9T41C+qDbS3dp8elejRwQAAAEAm6VHw6aKk8284XusqarTH1c802efXX9ojpfVvz8LEr8ct3ttZFeXl6MnvH6Rjfv2S7vvafm1Ksu2I5pJBYwf00GUnjNfVj83cpvKe+/GhW37H5l1/nK6Z8qHOP2iEBpYwnWd7PfadA5M2TRHIJO2atHnzkiNJ2AAAAKBDiL1R79ktTx9fc6x2u/Ip5edk678/OqTdYmhr4qarTYsaO6BHRnzmrx44Ql89cITcXZuq6zRl+jJNfvj9hPt++7DR+vHRY5q8Z2ZM5dlB5+w/XBMG9Uh3GEBKtGvSpm9xfntWBwAAACRNXk6WZl3d+hOIku2FnxyqQ37xfLvXi21jZiouyNWXJg3TlyYNa7Ltrlfna+/hvTSexEJK/PCoMQwOQKeVUU+PAgAAANDU8N7dWt0nE0acoHln71+W7hAAdFAkbQAAAIAObN71x6U7BCDlXL7Vez89Zqxmr9ioHgXc1qLzStrTo1objvbjo3ZOVlUAAABAlzL3uk8TM41PyDlrv+Gaf8PxTAtBl7V3WU/96vTdaQPo1NotJfn/Dh3dXlUBAAAAnUpWljEFCohDqgZdQdJG2rRaEY9fAwAAAAAkCSNs0BUkLWnjvvUcQwAAAAAAUmGPoaXpDgFIuXZb0wYAAAAAgGT4348OYTYHuoR2GWnz9A8OTlY1AAAAAIAubmTf7ukOAWgX7TLSZuf+xcmqBgAAAAAAoEtot4WIAQAAAAAA0HYpT9qcOHFQqqsAAAAAAADodFKetPnN6bunugoAAAAAAIBOJ+VJG1b0BgAAAAAA2HasaQMAAAAAyGgtPKwY6NSSlrQ5YFTvrd77+Rd2TVbxAAAAAAAAXUrSkjYj+3Tf6r3BpUXJKh4AAAAAAKBLSen0qM+M3nr0DQAAAAAA22v3oaXpDgFoNzlJKynBesNmLEIMAAAAAEiOO87bRweM6pPuMIB2w0LEAAAAAIAOoVt+jvJyuI1F15G033YG1QAAAAAAACRP8pI2ySoIAAAAAAAAyUva5GYzRA0AAAAAACBZkpZpyclirA0AAAAAAECypGx4zHeP2ClVRQMAAAAAAHR6KUvaHD2hf6qKBgAAAAAA6PRSlrTZqV9xqooGAAAAAADo9FKWtMnLYWFiAAAAAMCO83QHAKRJ8h75bSxEDAAAAAAAkCxJS9pk8/QoAAAAAEAKcLeJroo5TAAAAACAjMb0KHRVJG0AAAAAAB0CI27Q1ZC0AQAAAAAAyEApSdocNb5/KooFAAAAAADoMlKStNltSEkqigUAAAAAAOgymB4FAAAAAMhox+86UJI0pGdRmiMB2ldOugMAAAAAAKAl532mTF+eNEyFednpDgVoV4y0AQAAAABkNDMjYYMuKSVJm9P2HpqKYgEAAAAAALqMlCRt8nPJgAIAAAAAAOwIpkcBAAAAAABkoNQkbTwlpQIAAAAAAHQZKUna9CjkoVQAAAAAAAA7IiVJGzNLRbEAAAAAAABdRlKTNjv1657M4gAAAAAAALqspM5jmvLdg1TX0JDMIgEAAAAAALqkpCZt8nKylMcDqQAAAAAAAHYYGRYAAAAAAIAMRNIGAAAAAAAgA5G0AQAAAAAAyEDm7m3f2WyVpAWpCwfIaMPdvW+6g0iEtokuLiPbJu0SoG0CGYq2CWSmhG1zm5I2AAAAAAAAaB9MjwIAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSJkOYWZmZuZnlpDsWAJ8ysw/M7NBmttFugQ7EzOab2ZHpjgMAAKCtSNqkQXTRuNnMNjV+SRq0DcdzowgkSaKbODM718xeliR3n+Duz6eobjez0akoG8gEZnagmb1iZuvNbK2ZTTWzfdIdF4DMZ2Z3mNk16Y4DSAUzu83MLmvjvluuF7fluPZgZteY2WozW25mw6J72+xm9r3CzO5uoawt1+St7dvVcNOfPie6+7ONL8ysLH2hAACQXGbWQ9Jjkr4p6QFJeZIOklSdzriArsrMDpR0o6QJkuolfSjp++7+ZloDAzohM3tK0uvufnnc+ydJ+qOkIe5et63luvsFSQpxh5nZUEk/kjTc3VdGb3dPY0idFiNtMlR8739ctvHF6N/yKJu5f7TP/5nZh2a2zsyeMrPh7R030Nm0cTrFmWa2MOppuCTm2Elm9qqZlZvZMjP7nZnlRdsa2/F7UTs+PVWfAUiTnSXJ3e9z93p33+zuT7v7dDMbZWb/M7M1Ubu5x8xKJSnattbM9oxeD4r2OTTm9b+jfeaY2dcaK4zOlQ+a2T/MbKOZvWNmE+Pi2t3Mpkejf/5hZgUxx38tKnNtVMegmG1uZheY2ezoPHurmVnMds7ByFgxSdRbJPWSNFjSlUpyErW9RoEz2hwdwB2Szoo9T0TOknTP9iRs0qGVtjZc0pqYhA1ShKRNx3Rw9G+pu3d391fN7GRJF0s6RVJfSS9Jui9dAQJdzIGSxkg6QtLlZjYuer9e0g8k9ZG0f7T9/0mSuze244lRO/5H+4YMpNzHkurN7E4zO9bMesZsM0nXK0wNHidpqKQrJMndP5H0U0n3mFmRpL9JuiNmmuJ9khZHx54q6TozOyKm7JMk/VPhxvReSY+aWW7M9tMkHSNphKTdJJ0rSWZ2eBTTaZIGSlog6f64z3SCpH0kTYz2Ozo6lnMwMl1LSdRzzexlM/tllHScZ2bHNh5oZudFCcmNZjbXzL4Rs+1QM1tsZj81s+UK7VVmdoKZTYs6LV4xs91aC9DM9ogSrRvN7B+SYhOqW9VjMVOZY/aLnUZyh5n93syeiDpHpprZADP7dfQ5Z5nZHjv4cwWa86jCeeigxjei8+AJku6yuOl/LXUaxIo9LqZd/MjMVkYdhOe1FpiZlZjZXWa2yswWmNmlZpYVbTs3ais3m9laRefmBGUcKekZSYOi9nWHxS3hYWYjzOyFqE0/o3A9HFvGWVH9ayym07OZ+vaL/paUm9l71sx6k50VSZv0eTT6pSs3s0eTUN43JF3v7h9GmdvrFHoT6ekDWhfbHssl/X4bj78yugB+T9J7Cjd0cve33f01d69z9/kKw2EPSWrkQIZy9w0KCU2XdLukVdGFaH93n+Puz7h7tbuvkvQrxbQNd79d0mxJryskUC6RtgzFPlDST929yt2nSfqzQs9lo7fd/UF3r43KLZC0X8z237r7UndfK+k/knaP3j9T0l/d/R13r5Z0kaT9ren05RvcvdzdF0p6LuZYzsHIdC0lUSVpX0kfKdxU3SjpLzEjBFYq3Gj2kHSepJstGgkXGaBwczpc0tejbX9VaBe9Fc59/zaz/OaCszAK9VFJf4/K+qekL8Tt1qSeNn7u0yRdGn2uakmvSnonev2gwt8IIOncfbPC1OCzY94+TdKs6HpxizZ2GjRngKQShdFzX5V0a4L2He+W6JiRCufesxXadqN9Jc2V1E/StYkKiJb5OFbS0qjz8dwEu90r6W2F9na1pHMaN5jZeEl/UDh/D1L4WzEkUV1mNljSFEnXKPwN+LGkh8ysbyufs9MgaZM+J7t7afR1chLKGy7pNzE3nWsVejIHJ6FsoLOLbY+likbDxLOYxcPNbFjMpuUx31cqms9rZjub2WMWFmfboHAj16SXAejMoiTGue4+RNIuChdmvzazfmZ2v5ktidrG3dq6bdweHXNLlERRdPxad98Ys98CNT3XLYqpv0GfjspplLC9RvssiDl2k6Q1cWU3dyznYGS0lpKo0S4L3P12d6+XdKfCjWP/6Ngp7v6JBy9IeloxowckNUj6WZSE3Szpa5L+6O6vR6N67lRImMQmT+PtJylX0q/dvdbdH5QUv9ZOfD1t8UjUgVIl6RFJVe5+V/Q5/yGJkTZIpTslfdHMCqPXZ0fvxWtLp0FzaiVdFbWbxyVtUhj9nZCFRYJPl3SRu2+MOhVvUtPOj6XufkvU6djWthZfzzCFkamXRW32RYWOkkanSnrM3V+MPvNlCm08ka9IetzdH3f3Bnd/RtJbko7bntg6IpI2matCUlHM6wEx33uC/RdJ+kbsjae7F7r7KymNEuhCop6Exq+FbTjkD5JmSdrJ3XsoTJ+In9sMdAnuPkthjv8uCj2KLmm3qG18RTFtw8y6S/q1pL9IusLMekWblkrqZWbFMUUPk7Qk5vXQmHKyFHrulrYhxKUKyZfGY7sp9PwtafaIT3EORsZrLokabV4es19l9G1jB8SxZvZaNG2jXOFGKTbJuipKijQaLulHcSNYh6rlJ6UOkrTE3WOvcRfE7RNfT1usiPl+c4LXLJqKlHH3lyWtknSSmY1USGLcm2DXtnQaNGdN3Po4sR0KifRReDBAbPtqtvNjBwyStM7dK+Lqid0e28lSofCZExmukPyK/ZtyoEJyuUsgaZO5pkn6kpnlmtneCtnIRqsUMpEjY967TdJFZjZB2jJX8YvtFi2ARIolbZC0yczGKjxFJ9YKNW3HQKdhZmOjefZDotdDJX1Z0msKbWOTwoL6gyX9JO7w3yhMczpfYUj0bZLk7oskvSLpejMrsLBOxlcl3RNz7F5mdko0p/77Cj38r7Uh5HslnWdmu0fTOK5TePLH/DYcyzkYHUpcErVZUVt4SNIvJfWPRqM+rqYdEPGdiYskXRuXxCxy95bWeVomaXDMlCwpJGSbhB33ukkHp5kNEJB57lIYYXOWpKfdfUWCfXak02BbrVYYnRM7fTe+8yPRAIFttUxSz+izxNYTuz22k6VI4TMnskjS3+P+pnRz9xuSEGeHQNImc10maZSkdQqr+2/JykY9INdKmhplG/dz90ck/VzS/dFQ8xkK8wwBpM+PJZ0haaPCcPT4xYavkHRn1I5Pa+fYgFTbqDAv/nUzq1BInMxQeDzolZL2lLReISnzcONBFh6Heoykxsea/lDSnmZ2ZvT6y5LKFC5yH1GYLvFMTL3/Uhj6vU7hIvmUaH2bFrn7fxXOvQ8pXEyOkvSltnxQzsHIdK0kUVuSJylfocOwzsICxUe1csztki4ws30t6GZmx8eNkIv3qqQ6Sd81sxwzO0XSpFbqeU/ShCjRWqBmFkwF0uwuSUcqTBtMNDVK2rFOg20STQ18QNK1ZlYcrb32Q4VpysmsZ4HCFKYrzSzPzA6UdGLMLg9KOsHMDozWtLpKzecm7pZ0opkdbWbZUafNoY1/z7oCHpeXBu5eluC9+YrptXD3uQoXu82Vcbmky+Pe+7vCAm4A2qiZ9niHQg9kwu0x+81X3HQndz805vsXJY2NO+zymO23KRpBAHQ27r5EYVHFRD6QtFfcezdFx/1LIfHSWM4mSaNjXi9WWBS1OVXu/pVmYiqLe31F3Otm26S7x7f1c+Necw5GJmtMov7QzEollSs8AvwnCk89S8jdN5rZdxVu8vIV1qT4d0sVuftbZvY1Sb+TtJPCNKSXJb3YwjE1UaLmdoXFRh9XTDK3mWM+NrOrJD0b1XGRwuLHQMZw9/lm9orCQyoSth13/6+ZNXYa9FQYUdqmToPt9B2FxYjnSqpSaHd/TUE9ZygkqtYqJGbvklQqSe7+gZl9SyFh1U1hUfDFiQpx90VRh86NCk9mrJf0hrYewd5pWdOpowAAAB2TmV0haXRzSRsAAICOhulRAAAAAAAAGYiRNgAAAABSKnoE8MxmNo9v41MZAbSBmX2gposNN/qGu9+T4P3myrlN4QmP8e529wsSvI8UIGkDAAAAAACQgZgeBQAAAAAAkIG26elRffr08bKyshSFAmS2t99+e7W79013HInQNtGVZWrbpF2iq6NtApmJtglkpuba5jYlbcrKyvTWW28lLyqgAzGzBemOoTm0TXRlmdo2aZfo6mibQGaibQKZqbm2yfQoAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAAAAAACADETSBgAAAAAAIAORtAEAAAAAAMhAJG0AAAAAAAAyEEkbAADSqLa+QdV19ekOAwAAABmIpA0AAGni7trpkic05tInSdwAAABgKznpDgAAgK5q3uqKLd9PX7xe+5T1atf6l5Rv1nWPf6gp05cl3P6bL+2uk3YfnLL673xlvt5bXK6bvjhR81ZXqKx3N2Vlmdxd7ywsV1VtvT4zuk+TY9xdS9dXaVBJgSTJzJotf+bSDdpUXae9h/dUVtan+62rqNEfXvhEWWb68VE7q7K2XsX5OVuVNXXOau05rKfeWbhOG6vq9Nnx/ZWd1Xx9AAAAyUbSBgCANDn8phe2fP/F217V/BuOb7e63V2fueF/Le7zvfun6Xv3T9O8649rMTmyrVZvqtbe1zy75fXD7yxp9ZjGn82Iix5PuP21i47QgJIClU2e0mo5e1z9zJbXt73wyVZ1SNLOlz6hmrqGZuMAAABoD0yPAgCgC5p45dNt3nfp+qodqutHD7ynsslTtHpTtV6Zs7pJwqatKmvqWty+3/X/1eaa1qeYtbTPa3PXbPk+UcImXtnkKSqbPEV/fOETlU2eovGXP9nqMQAAANuCpA3QhTw7c4UeeGtRusMAkAE2VLWcBIm1vWNsZixZr7LJU/TQO4slSXtf86zO+PPr21XW+MufanWfr//9rVb3iU3MxPvSn15r9fil5Zu3eu/6J2ZJkipr6rWpuu0/VwAAgNaQtAG6kPPveksXPjg93WEA6GA+WbVpm/Yvr6xR2eQpOuGWl1MUUWIvzV7d6j7fuvedFrevrahpcfudr86XFNbLSWSXnzVNLm2uqde9ry/U2MsST7cCAABoCUkbAADQotkrti1ps/tVz7S+03Z4b1H5DpdR2coUqj2vfkYvfryq2e1/fGGuJGlOGxNZ4y5/Uhc/8r6qahu086VPtLrmDgAAQCySNgAAdGIvzV6le19fuENlPPfRyiRFs2NOunVqu9Tz8YqNre5zz2sLWt2nvsET09IxvQAAIABJREFUvl9e2fJoHgAAgEY8PQoAgA7C3VVd16DsLFNuduv9Lr96+iP99n9zJElfnjT0/7d334FNlesfwL9J9y7dCwidjEJLKaOsliVQVFARr6IiV8XrVtAroIBsFSeOn1uvV9HrwFmGUECGDAGBsttSCpRCF907Ob8/SgNpkjZJk5yM7+cfkjPe80A5TfLkfZ/H4A5QxVUNOh+7+fhlg65hSZZlnGh3/9GCCuzNK9O6P+tCBW56R/vSsMQlm9iFioiIiHTCpA0REZGFEwRBrdX1e9OTkN43VOs5fRZuQM11S4FWZ+bgybExBl3/5KWOZ560euCLjosBW7tZHfwd20vYEBEREemDy6OIiIgshLZ6J20TNgDwyFcHkbIyE7K5GZj97SGVfRfL61QSNgDwxubTxgvUznW2BToRERGRrpi0ISIisiDrswpVnm9rp55M4dXkwdqDBZArBHy84wyOFlRg6EtbTBojEREREZkHl0cR2QlB0FwQk4gsy8NfHcTZlyahrlGOwoo63PfZXzqdFzVffTaOuTXJ2dLaEENXZuJiRT12PjcKEV3cxQ6HiIiILAiTNkR2QBAE3P3JXrHDICIdCYKAXgs3mGz8yvomk4x7orDSJOPaooZmOeJeUP0ZD395K/JWphtcMJqIiIhsD5dHEdmBr/edx66cUrHDICIdfbrrrEnHP5B/xSTjvrc11yTj2qK2CZtWmuoXERERkf1i0obIxjXJFZj/Y5bYYRCRHpb+dtyk458s1L0blD42HLtkknGJiIiI7BWTNkQ27pQerXqJyLa11rb6YvdZUeOg9rE2EBEREbVi0oaIiMjOFLJltUV7ef1JsUMgIiIiC8GkDZGN25VTorYtZWWmCJEQkdhqG+UmG7u8ttFkY9ubj3fmiR0CERERWQgmbYhs3JniGrVt/JadyD6V1TRi5mf7TDL2puOXTTIuERERkT1j0oaIiMhO1DXJsfVUsUHnfrknv939z35/xKBxSTPWtSEiIiKASRsimydAEDsEIrIQvx0pNPjcF346asRIqCOHz5eLHQIRERFZACZtiGycgjkbIrpqdWa22CGQjqa+v1vl+ee78jBo+WaRoiEiIiKxMGlDZOMUArM2RGRaF67Uih2CTbtUUY8Xfz2OoqoGyOZmiB0OERERmRGTNkQ2brMexUFXZ2Zjz5lSE0ZDRNaspqFZ4/bUVdvMG4idGcKOf0RERHaLSRsiG1dZr/lD1vcHLqC5TaHL1zedxj8+3GOOsIjICvVZtBEf7zijtl3OdZgmI2iYLfnF7rNmj4OIiIjEwaRNJ1ypaQQA1DZq/lBMZMme+e4wZny2D5cr2f6biHS3LOOEyvOq+iaRIrEPPeatU9u28OdjIkRCREREYnAUOwBrJAgCHlvzNzKyVLtwjIgJwGOjopHQ1RfltU0I8XEVKUIi3ezKKcXgFZk4+9IksUMhIivy+7FLUAgChkYHoN+Lv4sdjs1qOxuSiIiI7A+TNgZ4c3O2WsIGAHZkl2BHdonyecYTwxEX7AVHB9UJTbtzS3GltmWWzs6cEoyIDkBiN1+E+riZNnAiLXKLqxEV6Cl2GERkJWb994DYIdiF6OfXix0CERERiYxJGwO8pWPL1Emrdyofv3NXf5wtqcGrv59WO27N3nMAgM2zR0Lm76GW5CEytTGv/YHjS8aLHQYRERERERFdxyqSNvVNcny5Jx8zh/WAg1RitHGrG5rRLFfA190ZQEshRblCgLOjetLkYnkd/swtxTPfHTboWo+t+bvDY8a+vl35+JMZyegb7oMgby6xIvPIulAhdghERKSj+iY5XJ0clM8VCgFZBRVI6OorYlRERERkbFaRtHl7Szbe3ZqLZRkncHzJeLg7dz7ssyU1SHt1GwDgtqQITE4Mw72f7gMAPJ/eCzOHyZCRVYibE8JQVtOIoS9t6fQ19XH/f/YDAHY+NwoRXdzNem1DHTpfjgBPZ6uJl1Q9uuag2CEQEZGOlv52HMtv6at8Hjn/WsFi1ikjIiKyHVaxDudSRYPyce+FG40yZmvCBgB+OHhBmbABgOXrTiD6+fV48ptD6DFvHQYs22yUaxpi+MtbcSD/isaWn8ZU1yjXuwtWRW0TVqw7gcKKOsjmZmDKu7sw/OWt2JVTgoo63buJNDYrUFRVj+2niyGbm4F3t+bgQP4Vtbayjc0KFmU0oZLqRrFDICIiHX11dWk1ERER2TarmGnzw8ELKs9lczOUjxfd1BvTB3fXuKTJVtz2f38CAJZO7oO7h3SHRGK8JWKyuRmID/fG0YJKjfsTuvris/sGws/DWWX7n7kluOujvQCAD7erJlemf7xX+Thn+USNNXryS2tw10d7UVBep7Zv1cZTysdtW8te76dHhyGR08CJiMjOJS3dpPK8vLZRufSbiIiIrJvVZzoW/3ocsS+sR02DfrNErNGCn4/h7S05HR6XU1QNuULzzJzLlfV45KsDWHvwgjL5pS1hAwCHz5cjaekmyOZmQDY3A+W1jZDNzVAmbDoS/fx6yOZmYPa3h1BZ34T80hrsyC5G6qptGhM2+pjy7i61bWdLapBTVN2pcYmIiKxJWY3qTMnEJZu0HElERETWxipm2uiiz6KNyJyTavNti1/fdBr3D++Bv86WIS0uCADw0fYzWL6uZUZKcvcu2J9/peXYaQmoaWjG5P7hmPb+bpy8VKUcZ13WJYOub+gbwbUHC7D2YIFB5+rqs115WPzrcQAtnbiig7xMej1b9vOhAkxODBc7DCIi6sC2U0Vih0BEREQmZDNJG6ClbbE9FN/rs6ilrk/vUG8cL1SdJdOasAGA2d+2dLpa8PMx8wVnZrK5GTj70iS8syVbpZ362Ne328X/BVN58ptDWJ91Ca/fkYAfDhagT5g3krp1ETssIiK6TmFFHe777C+xwyAiIjI6QRDww8ECle7Nax4cjIEyPzhpKL9hy2wqaQNc+xBvD9ombOzV1/vOqSRsyDg2HLsE17VS/HToIgBg3/Nj0CwXcOh8OdL7hoocHRERpaw0b2dLIiIiU9t0/DIe/GK/xn26luhoFR/ujZdu7Yf4cB+9zluXVYhwXzckWEj9VJtL2pD9mbc2S+wQbFZrwgYABi3PhJ+HM8pqGjtMjFbVN6Gqvhlhvm6mDpGIiIiIiCyYXCGgur4ZCUt+V24b2ysIm0+Ydonv0YJK3Pj2To371j0xAr3DvFW2PfXN3yqff1qJPSnE4pM2Dc1yvc+xp9k2RObUWuxyzd5zuDkxDJ4umn+FpK/egfNldbwPiYiIiIjsVG1jM3ov3Khxn6kTNh1JX71D52PFzi+YJWlTUt2A5GWb8f2/UpAs89Pr3L1nykwUFREZav6PWfh0Vx42z05V23eisBLnyzrXGYyIiDqnqLIeQd6uYodBREQ2rL2kjK0RM3FjlqRN8rLNAICp7+/W+y8qFzS3ru5Ik1yhtUCRQks7bLItgiBAIpGIHYbNyimqxtZTRYgP80Ggl4ty+8S3rmWt5QoBDlL+DIiIzG17dgmmDogQOwwiIrIRzXIF3srMxttbcsQORTTfH7ggymur2ZdHnS+rRVc/d52PP1daa9B1hqzIxIEF4zTuyy2uNmhMsi67c0sxNDpA7DBs2syrXUu0JWOj5q/Djn+P0uueJyKizlt7UJw3lrbgSk0jzpRUY0B3/WaHC4KAr/edx61J4XB1cjBRdEBFXRNOFlZicKS/XucJgoDvD1zAhPgQeLk6mSg6+9AsV+B4YSX6RehfpHTjsUtI6tZF5QsvIktQ1yhHv8Ub0STnBAdtnvnusG0mbSrqmlSej3hlq16zbd7cbFhXoNKrtTc0+WJ3vkFjknV5c3M2kzZmIpubgecm9MTPhwrU9o14ZSs+ujcZY3sFaZ35tCO7GIIAjIwNNHWoRER24c/cUrFDsFrTPtiN7KJqvWeHbz5RhPk/ZiGnqBoLb+ptouiAB7/Yj315ZTi+ZDzcnXV/K3/wXDme/f4I/swtxRt3JJosPjHJ5mbgsVHReGZ8nEmvs2rjKXyw/Qw2PDUCPUO8Oz7hqrpGOR767wH0DPHChqdGmjBComvkCgFHLpTjnS05yDwpbh0ZMozJkzYLfjraqfOv1DZ1fJAWCoUAqYalGf/dw6SNPdh3lvWQzOnlDSe17mvbtu/6N8L1TXLc88k+te1ERERiyC5qmZEtm5uBQwvHwdfdWafzqupb3rN+uisP5XWNeH2aaRIjJy5WAgB6L9yIPfPGIMRHt9pF5bUtX2j++HcBKuua8Ml9A00SX0cEQcDJS1XIKarGTQlhep9/5EI5dmSXwMVRigdGRKrtf2drjsakzclLLTX3fjtyEa/dngBHLWUUdIuhAgAw4c0d2PjUSMSFeOl0nuJq2YeTl6owYOkmrasCiAwhVwjIyCrE0/87BDnLgZjM+qxCTOwbatZrmjxp88th9ZZZP/1dgCn9w019aUz7YDe+f3ioya9DlutEYSV6her+DQiZh2xuBgDA08VRZXrwtPd345Wp/VBc3YCBMj+U1zaiSS6gqr4JXq5OnEpMRERmlbhkEwDg7iHdsGxK33aPvf4z0tqDBVh7sGX2qSm/kBiyMhMAcHNCGFbf2b/dYw+dL1c+zjxZpHwtNvUXJoIgtMx+jvJHUVUDHv/6b+W+2d8ewpTEcNye3BWDelxbjlbT0IzGZgW6eDhj68kizPz8L2x/dhQ2HCvEinXXviRalnECtyaF45G0KJwprlFur2uUw83ZAe9uzcHYXsHwdnPEhDev1dz7+WpL3y1zUhEZ6Kn336mu6Vp32/FvbgcARAV6IHNOWrvnXT/huLSmUfkzOLZ4PDy0dOQk0qRZrsDsbw9r/KxNpvXwVwfN/kWzSX873PPJXo3bn/rfoXaTNs1yBQB0KgMOAPvzr0A2NwNPjonB0+NiAYBZRzsz8a0d8HV3wpf3D0Z8uI/Y4VAb1Q3NqG5oVj7fd7YMaa9ua/ecGSnd0SPAA7f0j8Dlqnp4ujgiv7QWXf3cEOrjhsuV9Qj1cYVEIkFxVQO+3JOPJ8fEaJx1R0REpIsv95zDl3vOYfa4WAyLDkBiV1+1QvuCluYZsrkZmJIYhgEyP9zaP7zTH86rrnvdbPXL4Yv45fBFzBkXi4E9/DBQ5qcWn1TLEmXZ3AzclBCG/l19MTU5At5GqHfTmowYGRuI+kY59p0tw1uZ2WrHNckFfHfgAr47cAEAsPyWeDQ1K/Dir8fVjh25aqvGa12fIGvVa+EG5eNVG09pjXP0a38AAMb1DsaH9wzQuYHF9QmwVrnFNZDNzcALk3qhd5g3UiL91cbT9jPos2gjRsUFIlnmh+mDu+k8u4usT0VtExKW/C52GNRJ2lb0mIpE2wuMJsnJycL+/fs7PhDA6sxsvL5Jt3o03/0rBZcr6/HYmr87PpjIQG/9IxGTEw2f4SWRSA4IgpBsxJCMpr17s/WNE2kXFeiB3OIa3D+8B+4bKoNUKoGvm5PKG+v80pqWN1EC8OGOXPxjYDcWWLYQlnpvdvSaKVcIiJq/zowRkb0Re8mptd6b+rxuujs7YO/8MfB0ccQbm7OxWkNiQpvMOamIDPDQu9Olvq/rhxfdAB83J7y1ORtv6FEr8venRyImyFPv+HbnluLOj/bodY4leWFSL9w9pHu7xaT1/Rnsf2Es/Nyd0ShXoOeCDR2fcNU3s4ZgkMzP6B8OrfXetBStn5/b3hsKhYBRr21DvoGNdMj65K5IN2qnXG33ptGSNhV1TcgpqoKDVIop7+4yPFIiEfQM8ULGEyPaveks9QUOYNKGbNevjw1HnzDvdt+wWuq9yaQNWYJBPfyQHh+CyYnhuFhRh96h3np/CG8rv7QGBeV1GBrVfrF/a703Lfl185kbYvHq74Y16TCHlbf2xby1WWKHYdd0+ZLSWu/N2sZm3PnhHhy+WlOIyBoM6uGHh1OjEB3k2eEXvtruTaMtj9qXV6ZWbJTIWpy8VIXc4mrEButWSI6IzOOmd3YiZ/lESGF7y9uYsCFz2JdXhn15ZRqXm7R1S/9wSCUSOEgBB6nk6uOWP7dnF6vUDAHEn8ljjyw5YQOACRsL8OQ3hzo1s9xSCYKAxMWb0Hi1jAaRtWh9HR4VF4jPZg4yaAyjJW0SInzwwT0D0CwX8Oiag8YalshsmLAhsjzv351k1GmnRKTd/vwyKBQts8DkggDF1T/lckFjHRUyPz8PZ5TVNIodhlZ9w32QVcBZEGKaPrib2CGYhEQiwfv3JOGfn3OSAFmfVVP7GVT0vJXRkjZB3q4Y3ycEADCp3yRM+2A39uWx5TJZDk8XRxxdPF7sMMgChfq4orCiHvcNlaGbnzum9A9Hs0KBZrmAU5erEBngAR83J/x6+CKiAj1x6EI5xvQMRmOzAqG+rnBzcoCbkwMUgoC6Jjk8XRxVlh9UNzRDKgHcndkZgq7ZO38MBq/IFDsMsjO/PT4c3f3dUd+kQICnM5rkApwd9Wv80NrRj1q6AR19cTzKahqRumor9Ol38dOjwxDs7YIATxc46dF8Q9/lW8cWt8S3Zt85/N+2XJ3P+2bWEPQI8ICvuxNcHLXXd2lr/o9ZWLP3nF4xWprZ42IxpleQ1uWE+v4MDi4Yh6r6Jrg7O2Lg8s06n/fGHQkYERMId2cHvocAMLpnsNXM8KtuaEb25Sr89HcBFALg6eqo1/1H1mN0zyB8MiO500uP22Oyu//bh1Lw3PdH8L/95zXu13bD7T9bhv/uyccb0xIhlUqMtq74xJIJcHNuecGx5LXKZDpM2NiWPfPGwMvVEY4OEvyVdwXd/d3h6uSA4qoGRAd56v0hRJswXzfl43tSZACAodGa6zhIIYGXhjfenmzjSRoEe7uKHQLZuM9nDkRaXJDGfV5X//s5O+r/JtOeEzbB3i5YcGNv3NgvTGW7h4sjRsQE4o/TxVrPfXpsLO4f0cOkrwl+Hs5YcGMv3NI/Qi0+RQd1LJ8cE4OZw2Sd7ly0dHK81SVtXJ2k+PGRYegV6m2U8V69PQG3JYWrfIjz83BGRV1Tu+c9lBqJ+4bKEOrj1u5xZPk8XRzRv1sX9O/WRbntuQk99R5HoRBQVtuI8tpGRAddWxUgVwjYeOwSHvmKK1zEMCImAP+9f7DZrmfSTxIvT+2nNWmjTbLMD8kyP6Nc/5fHhiHIyxUhPnxjbK+6+blj+79HiR0G6eGTGclYl3UJr97eDxKJBE1yBT74IxePjoqGRCLBgfwr6BXqpfKN0/CYa0mUQC8XMcImIrI42hI2pJ8RMQF4584keLs5tvtN6tPjYtWSNtnLJ8JRKjHpN7Dhvm5Y9+QIeLu2H9/UpAh88McZlW2nlk2As4PUqPE5SCU4vOgGZBwpxF1Xl+qcLanB13+dw/bTJThRWKl2ztZn0hDo5QJPF0eU1TQiaekmPJwWpfyQ++7WHOzOLcXOnBK1c29LisD4PsGobmjG7G8PA2hZiuDp4oiHO/hA++5dSYgO8kRciH5L5Cf1DUVGVqHKtmOLx8PNyaHdwvluGjpSHV50A7xcHM3aPpish1QqQYBny4y86zlIJUjvG6pxIoQgCMgqqMDN77A5kCmIMdvL5F//RgZ6qBWuy14+0dSXBQD0i/A1y3XIcv3xbJrYIVAbOcsnwvG62SjHLlbgl0MXcamyHm/9oz8AYEyvYOV+JwcpHhsdo3w+oPu1byyIiIiMbcucVHy19xw+2ZkHADp/m5rY1RdrHhiMuz7eCwD48v7Bei170tWOf4/C53+eVcaXOSe13fbUrWKCvfC/WUNwx4ct7bjfv3uAXsue9OHj5qRM2ACALMAD8yb2wuSESqSv3oGNT41EXIgXPtmZh2HR/ugR4KE81s/DWe1D0aOjovHoqGi8vuk0/m9bDrKXp+NieR1e3XgKq6b2UyY8WpM2tyd3BXDtw5VcIeDTnXm4J6U7XBylWPzrcUwdEIH4cB+D/n6v3p6APuHeeGXDKQDAzudGwUOHGVTOjlL89OgwZafdBTf2ho+b/c5cI9OQSCToF+HbqeRCXaMcvRbq3p7eXpgrj9GW0Vp+a1PT0Iw+izaqbNPnP1BnljJpu86Xe/Lxwk9HDR6XrIcxM6GW2h4RsIyW36N7BmHLySKN+6QSYGRsIF65rR+CuCSEjMxS701dXjO5XJdMSezaD9Z8b5J1ks3NwNAof6x5cIjYoVg03pukj22ninDfZ3+JHYao0vuG4L3pA0x+HZO3/NZGl6xze0bEBGBHtvpUyI6svrO/1n2TE8OYtLEDPzycInYIdiF3RTocpBKcvFSpMWlzetlEo9WXISIiItLm2OLxcOF7DiKjSosLavdLgGa5AnvOlKG0pgHfH7ig9tl9WnIEvt1/wdRhmsTYXkH4eMZAscMwfdKmrd+fHqnX8bf0DzcoaXNzQpjWfSwKah/6hBk25ZV09/7dA5TtmHuGeCN3RTqi5q9T7nd2lDJhQ0RERGbR2S+LiUh/jg5SZX3JyYnhGo95ZWpCu2McPHcFt773p9FjM1RUoAcy56SJHYaSWX6zPZQaqSx8FhusX6GvCfEhyvWpxmLKYnBkOXRZ302Geyg1EuP7BKtsc2hTRO/0MnHWfRIR2btnx8eJHQIREZFOkrp10WlJ79GCCtz49k6jXfe96UkYEumP7aeLMSE+xGI/P5olaTNvYi+MiguCowFV0V0NKJDGD4pExvVIWhTe25arfP7uXUmY1C+03XPWPTHC1GEREZEW/buyGQMREdmW+HAfveq1CYKAHvOurQJYfHMfzBgqUztuSn/NM4QshdnmEA6J9DfoPEPa33E5BpFx3D2kG+qbFHh6XCymJXdF2qvbAEBths31hkcHYGdOCXqHeZspSiIiaivQy6Xjg4iIiGyYRCIRvSi/Mdjcws/Xbm9/vRzZlldu64d//3BE7DBs1rIpfZWPZQEeOv3S+3hGMmoamk0ZFhERdSBGz+XoREREZJlsbkrKbQMixA7BrPqEeWOgrIvYYYjm9mTNP++0uEAzR2J7HkmLMug8VycH+HvyG14iIiIiIqLOsqmZNrPHxXZ6DGcHKRrlCpVtQV4uKKpq6PTYxrL/hbH4Ync+UmMDMaB7S8Lm27/Om3TGyROjo+HoIEVSty6obmjCz4cuYv3RSzqde29KdyRE+GJyYhikEgm++es85v+YpfO1V97aF/PWZmFacgTuTZFh0/HLyC2uxopb+2otKv2pBbRms3b/ntBT7BCIiIiIiIjsmk0lbZ4YE9Op81uXfjQ2K3C5sh6BXi7KCtI9F6xHfZOivdPNJsDTRS1BNW1gV0wb2BWNzQpcuFKLvJIaDI8JwLqsQoR4uyElqqWm0IH8Mrg7O2JXTgne3pKDiromrdf5fOZApMUFadw3Ib6lCO2g5Zu1JrTuHNQNK26JV0us3DW4G+4c1BXF1Q3wdnVCZX0TVm04hayCCjycFoXeod6IDvJEs0KAk4NUOVar+HDVVt4pkf7YfaZUZZshtZDomidGR4sdAhERERERkd2zyqTN2Zcm4Ymv/8Yvhy8abcz3picpHzs7StHVz11l//HFExA5f13b08zqlv7heOOOxHaPcXaUIjLQE5GBnlfPUV0+NKC7HwCgV6g3HhgRiar6Jvxy+CJigrzQM9QLbk4OKKluQKiPm04x7Xt+LIoq6zFoRabK9pzlE+HooH31nUQiQZCXK4CW5TSrNNQicnLQLfHy9awhuPW9XThyoQJ3DuqGpVPidTqPtBvUw7DC4UREZD67541GysotYodBREREJmSVSRsAWH1nf5WkzebZqZ0aL71v++2LpVIJDi4Yh6Slmzp1HUO8cUcC9uVdwZwbOr/8qy0vVydMH9xdZZuuCZtWQd6ueOW2fvhkZx7G9wnGmF7B7SZsTGHtI8PMej0iIiKxhfq44Y9n05C6apvK9twV6eIEREREREZndUmbIZF+ysdnX5qE/NIaeLs6oYuHs17jPD02Fm9sPg0AeFXHjlN+Hs7IW5mu0utdVxP6hKBHoAc+3H4GcoXQ4fEHXhirUsy17YwZS9O6PIuIiIjMp7u/h/LxuN7B+OjeZBGjISIiImOziqTNF/8chHs/3QcA+GZWisq+69+s6OPJsTHKpM1UPTpOSSQS7HxuFDKOFGLl+pNq+2/sF4rfjhQCAM6sSMeiX47hnpTuiL3aevO5q8Vdsy9XYdwb2+HsKMWPjwxFnzAftbGIxNLVT7/ZVkREJJ756T2xYt1JfHjPALFDISIiIiOziqTNyNhA/PrYcJy+XGXUcVsLD+sroos7HkqNwoT4EKSu2obHR0fjqbGxKKluQLC3K169XY4muQJSqURrfZWYYC+Dr09kaoYmQ4nIfozpGYTMk0U4tHAcTl2qwh0f7hE7JLs1a2QUZo2MEjsMIiIiMgGrSNoAQN8IH/SNsKzZKN39PXBs8Xi4OztAIpEg2PtaYd3WrlNEYusd6o3jhZVih0FENuDsS5Ow/XQxvN2ckNjVV7nd0l6f7UHeStatISIisgdWk7SxVB4u/Ccky9ZxBSVVbkw4ElE7RsYGqm1zlJq3+Ly9O7FkAiQS3TosEhERkXXjuywiGycIuqVtnhobAwAI9HLp4EgiIlXOjnw7YS55K9Ph5szkOhERkb3guywiO/X3gnG4/ovamxPCAABSfnlLZLMCPPXrtEiW5exLkzjDhoiIyM4waUNk47RNtOni4YzHR7fMrnlqbIzyg4CTA38tENmq/S+MEzsEIiIiItIDP50R2TiFjsujZP7ueDgtCh/PSDZxREREpAt2mSQiIiJW0SWyce0lbbr5uQNoaWMvkUjw3ISe5gqLiGxMqI8rCivqxQ6DiIiIyKZwpg2RHbstKRxrHhiM25LCxQ6FiMzkwRE9TDLuj48MM8m49urMipaW3vPTW5Lp++aPETMcIiIiEgln2hDZuPYWR0kkEgyNDjBbLEQkPjdn07z0h/i4mmRceyW9WhV+1sgozBoZJXI0RETVfMJBAAAGoElEQVREJBbOtCGydRqyNv+bNcT8cRCRRXB14ku/pWMtGyIiImrFd25ENs7PQ73F7+BIfxEiISJLMCNFZtB5PQI8OjyGCSEiIiIi4+K7KyIbd1NCmNghEJEF8XAxbHlUsLdLh8fc0p/1sTpry5xUsUMgIiIiC8KkDREREXXoodSO66o8OiraDJHYtshAT7FDICIiIgvCpA2RjRPatPweGsWlUUSkv9SYwA6PiejiboZIbFdrxygiIiKiVkzaENmR6CBPrHmQRYiJSH+t3YzINA4tHMd/YyIiIlLDpA2RjXO/rr3vsinxIkZCRETa+LqrF40nIiIiYtKGyMY5OV775jY6iLUSiIiIiIiIrAWTNkRERGQ0dw/pJnYIVuE//xykfPwYCzgTERGRFkzaENk4f49rbXodJKyXQERAjwAPk409b2Ivk41tS/qG+ygf3zdMJl4gREREZNGYtCGycSNjr3V86eLBmglE1mDbM2mYPrhlxspAWRejj3/fUJnRx2zl4eLY8UEEv+t+Hwd4urRzJBEREdkzJm2IiIgsjCzAA8tv6YuP7k3GVw8Yv+PbuN7BRh+TdHdiyQQAQN7KdOStZJtvIiIi0o5JGyIiIgs1rncwnB11e6nOnJOq87jB3q56xaFvnZqlJupU99yEniYZ19zcnB0AABKJBBIuWyUiIqJ2MGlDRERk4Q68MLbDY6ICPfHxvcm4LSmiw2MdpPolClIiA/Q6/q5B3SDzd9frHF2kxQV2fJCZhPnol/giIiIiMgSTNkRERBbkpoQwtW3+ni5YNbVfh+eO7R2M16YlGD2muBBPvY53kEqw7dlRRo/DRcdZR531+OiOuzkF6jFb6fOZA5G7Ih1/zh2Nk0sndCY0IiIisjNM2hAREVmQSC2dnW5P7orUWNWZJhufGomErr746/mOZ+KI4YeHhxp1vMhA/ZJHhuri3n7R9u7+7ng+XXuXrF8eG6byPC0uCA5SCcJ83eDq5GCUGImIiMg+MGlDRERkIdLiAjGjnc5O//nnIHw+cyAA4L3pSYgL8cLPjw5DoJdldh8a0N34na/MwcOl/cTKvIk9ERfspXFfWlwg+kX4Kp//KzXKqLERERGRfWFfTiIiIgvx+cxBHR6TFheEsy9NaveY7/+Vgqnv7273mB4BHsgrqdEproguhtenSYn0x+4zpQafL4ZxvUPw3A9ZWvdPiA9V29b2Z5K3Mh3HCyvRJ8zH6PERERGR/eBMGyIiIhuTLPND1os3qGwbFu2v8nyLHt2mOrOk5+tZQ9A3vCVxEewt/oygUR0UM3ZykMDPo/3lUW3NGRertk0ikTBhQ0RERJ3GmTZEREQikUoAhWCasb1cnZAWF4htp4oBAF89MERlv0QiweKb+2DRL8faHSdvZXqnY/n18eHKx4IgoLSmESNf2YraRrnWc6ICPeDm7ICjBZUI9XHF1mfSAAAnlkxAr4UbAAD7nh+D3KKW2UI9Q7zg4+aEuiY5+izaCACYkdId/9mdjyAvF7xxRyJigjwR5O2KitomJCz5XeV6vz0+HOfLajGxb8ssmj3zxmDIykw8Oz4OD6dGobCyHje8/gfe+kd/5TkdzXgiIiIi6iwmbYiIiERy56Bu+GrvOQDAj48Yt2gv0LLcqqC8Dme1LIOaMVSGe4Z0BwBI9WwDbiiJRIIATxccXzIBjc0K1DXK4ePupPP5bs4OKsmSIC/VLk4eLo4q+xdPjlcbw8fdSWPCJT782syYEB9XlWPCfd1wbAk7PxEREZF5MWlDZAdSIv31nu5PRKa3dHI8eoZ4IaeoGv27maZob7ivG8J93bTuN1eyRhNnRymczdTGm4iIiMgaMWlDZAe+njWk44OIyOykUgnuSZGJHQYRERERWSh+vUVEREREREREZIGYtCEiIiIiIiIiskBM2hARERERERERWSAmbYiIiIiIiIiILBCTNkREREREREREFohJGyIiIiIiIiIiC8SkDRERERERERGRBWLShoiIiIiIiIjIAjFpQ0RERERERERkgZi0ISIiIiIiIiKyQBJBEHQ/WCIpBpBvunCILFp3QRACxQ5CE96bZOcs8t7kfUnEe5PIQvHeJLJMGu9NvZI2RERERERERERkHlweRURERERERERkgZi0ISIiIiIiIiKyQEzaEBERERERERFZICZtiIiIiIiIiIgsEJM2REREREREREQWiEkbIiIiIiIiIiILxKQNEREREREREZEFYtKGiIiIiIiIiMgCMWlDRERERERERGSB/h+deLCzg5ujWgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAFFCAYAAABWqRA7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hcZd3/8c93SzY9IYQWSiJdQEEMoj6gPMAjIvCIDZUmWHn0Z8MGCghKEwsiICigdARRsISOhF5MMPRACgnpPdmS7fP9/XHfszk7mdmdrXN29/26rr0yM6fds5l7z5nPXY65uwAAAAAAAJAuZaUuAAAAAAAAADZHaAMAAAAAAJBChDYAAAAAAAApRGgDAAAAAACQQoQ2AAAAAAAAKURoAwAAAAAAkEKENgAA9DEzO8XMvMDP4SUoz7lm5n18jOkdvOfkz5S+LEd3mNkHzGyGmW2MZdyz1GUCAABDU0WpCwAAwBDyKUmLc157tQTluFbSfX18jK9KGpt4frakAyT9b856y/q4HN1xvaSVko6SVC9pQSkLAwAAhi5CGwAA+s8sd59bqoObWZW7N7r7Ym0eHnV3n5WSWty9Xc8dd381Z71Vkprc/ZmulLU3ytgVZjZc0tskXevuj/TC/kxSpbs39bhwAABgyGF4FAAAKWFme5jZXWa23szqzewZM/twzjrXm9mCPNtON7PpieeHxKE9Hzeza2JosiIu22x4lJlVmNmZZjbbzBrNbKmZ/TKGGNl1psR9ftXMLjGzpZIaJY3v4fs+Le73ffH9b5D0aFyWfW1x/J3MNrPzzKwqZx/PmNlDZnakmc2KQ5teMrOjctbby8z+bmarzKzBzBaa2e3Zcij0rJGkC2KZZie2PTXuszFu/0cz2zpn/8vN7Nr4nt6Q1CzpMDPbM+7v82b2czNbaWbVcR/D4/KHzKzWzOaY2WeKLTcAABi86GkDAED/KTez5LnX3b1VksxskqQnJNVI+n+SNkj6mqRpZna0u9/bzWNeLuleSSdJGt7BejdLOkbSzyQ9Jentkn4qaYqkT+Ss+yNJ/5b0ZUnlkhq6WbZct8dyXBH3q3j8f0u6TlKtpHdIOkfSZEmn5Gz/dkmXSLpI0jpJP5D0VzPb3d0Xxl4v9yr0MvqKpDWSdpB0dNz+r5Jel/QvSb+VdJNiiGNm35B0WSzf9yXtJOlCSe8xs6nung17JOlIhaFgZ8djzNWm3/2PJT0o6URJ+8ayuqQDJV0Zy/8NSbeY2Ux3n1NEuQEAwCBFaAMAQP+ZnfP8SUkHxcenS9pC0vuyQ6jM7B6FOW8uUPjS3h3PufsXO1rBzA6W9GlJn3P3G+PLD5nZWkk3m9l+7j4rsckKSR/LHRLVC25x9x8mX3D32xLlNIVgq17S1Wb2dXevSaw+UdL73X1hXP8lSYsUQqdfSdpeIWz5krs/kDxuPNZKM9sYX1uUHcplZsMUwpb73f2kRHnmKQQwJ0n6fWJ/YyXt6+6rE+tmJzN+JfH/8YCZ/bekUyV9yt3vjOvOUvgdf1whROuw3AAAYPBieBQAAP3nYwo9MLI/X0gs+4CkZ5Jz3sReOLdJ2s/MkpP6dsVdRazzYUlNkv4Sh0lVxB5B2YDgAznr390HgY2Up6xmtkUcpjVfYShWs6RrFHri7JKz+ivZwEaS4tw96xUCD0lartBb5Rdm9gUzy92+kH0kTVDoZdPG3R9SCFc+mLP+48nAJkdu+JYN8u5P7HelQk+hHXtYbgAAMMAR2gAA0H9edvcZiZ/XE8smKP+dlJZLMoVeON1RzN2ZtpY0TGH4UXPiZ2VcvmU39tkd+fZ7s0JPlEslHa4Qdp0el+UO91qbZ/vG7Hru3iLpUEkvSvq5pLlmNtfMvpBnu6QJHZRveWK5Olgva13O8yZJrTk9hrKv97TcAABggGN4FAAA6bBW0rZ5Xt9WYc6TbCDRoBCw5NpSYa6TXMX0iFkT93twgeVLu7HP7sidHHmMwvww33f3yxOvH9DtA7jPkXSimZVJ2k/StyRda2bzO7hbVPZ3X+j/5+Xcw3S3fIV0s9wAAGCAo6cNAADp8Kik95rZlOwLZlauMNfMfxI9MRZK2sbMJibW20XSHj049n0KvTrG5fQEyv7khjb9ZaRCL6Pm7AtxXpvP9XTH7p5x9+clfTe+tE8Hq7+sENzk3tHpMEnbKN7pqj90sdwAAGCAo6cNAADpcKnC3ZAeNLMfS6qW9FVJu0tK3rb6zwp3dbrFzH6lMPnumZIKzaHSKXefbma3Sboz7vM5SRmFOzd9RNIP3P2N7u6/B+VaESflPcPMVivMT/NlhffcZWb2HoU7Pt0haZ6kSklfVBiKNL2DcjSZ2XmSLjOzPyrc5WonhQmiX1XOXDe9rbvlBgAAAx+hDQAAKeDuS83sIIW7BV0lqUrSLElHuft9ifXmmtknJZ0v6W5JbyjM8fLDzffaJSdK+rqkzyvc0rtR0gKFCXJX9HDfPfEphdtv/05SncLEzNcr3J67q5YozDfzPYU7MtUrzBPzEXd/qaMN3f03Zlaj8Ls+XiFUm6YwdKu+o217QbfLDQAABjbrm5s/AAAAAAAAoCeY0wYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG1SyMx2MrNaMysv0fFrzWznUhwbAIDeYmZTzMzNrCI+n25mXyx1uYDBwMzONbObe7D91WZ2dm+WCQAGoyEf2sQLuHVmVlXCMiwws8Ozz939LXcf7e6tpShPPPb8WLbrzez8UpQDGMhyvywC6BkzO97MZsSGhWVmdq+ZHVTqcgGDXV/VPXc/zd1/2gvlO8TMFvd0P8Bg0VEDRW9cn5rZKWb2RPdLiK4a0qGNmU2RdLAkl/S/JS3MIMUXVvSHGHzWxwvKdWY2zcx2LHW5APQOMztd0q8lXShpG0k7SfqtpI+WslzAYNdXda9UvcmBtEhcu9aY2Xoze8rMTjOzIf39HPkN9Q/FyZKekXS9pM9lXzSzEWb2SzNbaGYbzOwJMxsRl/2vmb0SK9d0M3t7Yjs3s10Tz9t6qZjZRDP7Z9xurZk9bmZlZnaTwgnwH/EL5/fzdOeeYGZ/NLOl8Qvp3Z29sbifZXGbLybLlpu+5qal2XXN7MuSTpD0/Vi2f8TlZ5jZvPhH5lUz+1jOvp40s0vNbK2kc7vyHwL0wDHuPlrSdpJWSLq8xOUpyIKh/vcXKIqZjZP0E0lfc/e/unuduze7+z/c/XvxXJo9L60xszvMbEIR+y0zs7PiuX6lmd0YjwVAnde9POv/2cyWx2vnx8xs78Sy683sKjO7x8zqJP13znXyIWa22My+E+vjMjM7NbF9lZn9wszeMrMVFoZWjTCzUZLulTQpXqvWmtmkPv/lAL3jGHcfI2mypIsl/UDSdaUtEtJoqH9pOFnSLfHnCDPbJr7+C0nvlvR+SRMkfV9Sxsx2l3SbpG9J2krSPQphy7AijvUdSYvjdttI+qEkd/eTJL2l+IXT3S/Js+1NkkZK2lvS1pIu7ehAZvZhSadLOlzSrpI+WET5NuPuv1f43VwSy3ZMXDRPoYfSOEnnSbrZzLZLbHqgpPmxrBd059hAd7l7g6Q7Je0lSWZ2lJn9x8yqzWyRmZ2bXdfMhpvZzfGL3noz+3f270AMIOfHcPJNMzuho+OaWXm8oFxtZvMlHZWzfLqZXWBmT0raKGlnyxkaaYn5ARLh7amx3OsstMAcYGYvxvJe0Tu/NSDV3idpuKS7Ciz/hqRjFc51kyStk3RlEfs9Jf78t6SdJY2WRJ0CNums7uW6V9JuCtd/zytcQyYdr3BdOEZSvqEV2ypcW24v6QuSrjSzLeKyn0naXdJ+Cte220s6x93rJB0paWm8Vh3t7kuLLC+QCu6+wd3/LunTkj5nZvuY2bjYmLAqNi6clW3ws5z5pCz/kKddzOy5GKL+rVBjRjzOdTEoXWJm51txPeHMzC6P+59tZoclFpxqZq/Fa+j5ZvaVxLK8HRnish/EMtSY2evJfQ51Qza0sTAWd7KkO9x9pkIQcXz80Hxe0jfdfYm7t7r7U+7eqFCRprn7g+7erBDujFAIdzrTrNADYHJspXjc3b2Icm6ncDI6zd3XxW0f7WSz4yT90d1fcfeNCsFKr3H3P7v7UnfPuPvtkuZIek9ilaXufrm7t7h7fW8eG+iMmY1UqKvPxJfqFALa8QpByv+Z2bFx2ecULhB3lLSlpNMk1ceWu99IOjK2gLxf0qxODv0lSUdLepekqZI+mWedkyR9WeGCdWGRb+lAhYvgTyt0Uf+RQiC7t6TjzKxboSwwgGwpabW7txRY/hVJP3L3xfFcfa6kT1rnw3NPkPQrd5/v7rWSzpT0mSK2A4aKzupeO+7+B3evSdTDfXN6r/3N3Z+M148NeXbRLOkn8Vr3Hkm1kvYwM1M4x37b3de6e43CcK3P9OC9Aanj7s8pNPIfrNBjfJxCo8IHFa5lTy289WZOVvhOO0lSi8J1bT43xOW7KlzDfkhSMRP2ZxvpJ0r6saS/JoKhlQrXxGNjmS81s/3jsrwdGcxsD0n/T9IB8dr7CEkLinyvg96QDW0Uvqw94O6r4/Nb42sTFVoV5uXZZpISX7TcPSNpkULa35mfS5or6YGYOJ5RZDl3lLTW3dcVuX62nIsSzxcVWrE7zOxkM5sVE9L1kvZR+L31yfGAIt0dP4/Vkv5Hoc7J3ae7+0vxIvFFhd5y2aCjWeGidNcY0M509+q4LCNpHzMb4e7L3P2VTo5/nKRfu/sid18r6aI861wfw9SWGPwW46fu3uDuDygEULe5+0p3XyLpcYUTLDCYrZE0sYMwZbKkuxLnpNcktSpcDHak3Tk9Pq4oYjtgqOis7rWJvU0vtjBMsVqbvmx15fpwTU5AtFGhB9xWCj3OZybq+X3xdWCwWaow0uPTks6MQegCSb9UaPwr1k3u/nLsjXa2QkNfux40sXf5kZK+FYc/rlQY0VFMILpS4bq3OTbiv67Yy9zdp7n7PA8elfSAQhAlFe7I0CqpStJeZlbp7gvcPd/38SFpSIY2FuanOU7SBy2MvV0u6duS9lX4EDVI2iXPpksVLg6z+zGFUGVJfGmjwkkla9vsg1jhvuPuO0s6RtLpiS5fHfW4WSRpgpmN78JbXCZph8Tz3AlZ6wqVM492ZTOzyZKuUUhCt3T38ZJelmSFtgH6ybHx81il8Pl81My2NbMDzeyR2L10g0JvmuxF5E2S7pf0JwvzP10STxR1CifL0yQtszCx8Z6dHD83LM3Xk6Y7geaKxOP6PM9Hd2OfwEDytMJ5+dgCyxcp9Iobn/gZHoPNjrQ7pyvML9ei9nUMGMo6q3tJxytMTny4Qu+AKfH13rg+XK1wvts7UcfHxXnserJfII22V2hAGKbNGxaK6SiQlXtNWqn2IaoUzoGVCte62UD0dwpDHDuzJGfUyEKFa2GZ2ZFm9kwc/rRe0kcSx87bkcHd5ypMQXKupJVm9idjfqo2QzK0UTj5tCrMebFf/Hm7Qqv1yZL+IOlXZjYpthy8z8Itwe+QdJSZHWZmlQrduxolPRX3O0thiFW5hXll2oYtmNnRFib3NYWeAK3xRwoXiDvnK6i7L1MYI/xbM9vCzCrN7AOdvL87JJ1qZm+PQ0XOyVk+S9LHzWykhcmJv9DBvnLLNkrh5Lgqvq9TFXraAKkQe8z8VaF+HaTQi+7vknZ093GSrla8iIwJ/3nuvpfCEKijFf4GyN3vd/f/UQhyZyuElR1ZpvYB6U75ipfzvCsBKjAkufsGhfPYlWZ2bDx3VcaLwksU6vQFsVFBZraVmRVzZ5vbJH3bzN5mZqMVhlvcXuxQEGCwK6LuJY1RuCZeo3Beu7AXy5FROAdfamZbS5KZbW9mR8RVVkja0phIHAOcmR2gEMzcrdAjJbdhIdsYUcz1Y+41abNCAJq0SKHeTkwEomPdfW91bvv4vTZ5jKXxO/NfFKYR2SY2qN6jTdfeBTsyuPut7p6dwsQV5rKChm5o8zmFOV/ecvfl2R+FCQhPkHSGpJck/VvSWoUPTJm7vy7pRIUxhqsVPmjHuHtT3O8342vr436Sd3naTdJDCuNzn5b0W3efHpddJOmsmHB+N095T1KoaLMVuqJ9q6M35+73KoxbfEQhyXw6LmqM/14qqUnhJHeDNp8oLuk6hW5q683sbnd/VaF73tNx+3dIerKj8gD9yYKPStpCYZjEGIUhhg1m9h6F1sDsuv9tZu+I3UWrFepZq5ltY+FOcaMU6k2tNoWshdwh6RtmtoOFiROLGQI5S2EOjUozKzQPDjDkufuvFCbYP0uh0WCRQo+6uyVdphDMPmBmNQrzWR1YxG7/oNDb7jFJbyr0KPh6rxceGMA6qXtJNyq0tC+R9Ko2zSvXW36gcE37TBx+9ZCkPWIZZyuEsPPj9Sqt8xhQzGysmR0t6U+Sbnb3FxSuKy8wszGxUeJ0SdnJh2dJ+oCZ7RTDyjPz7PZEM9srNuD/RNKd7t7uWjZ2DnhA0i9jGcrMbBcrbr7ErRWueyvN7FMKHSDuUeghVKXw96LFzI5UmCcn+17zdmQwsz3M7NAY+jQo9K7r7Np7yDDvfC5cDHAWbkv+sqQqWhAxGJnZAoV5KFoVkvmFki5y91vM7JMKQeMESY8qjLMf7+4nmtlnFbph7qAQzNyucFLcSuHEuV/c3yxJX42hZaEyVCh0+TxZ4ST0C4UguNLdW8xsusKJ+NrENjsrXGjuHcs2T9KEWLYpCl8kK7P11swWSzoxG/hauHPAbHc/v3u/OQAAAPS3xLVri8I8iq8qhDJXu3trbAC8XGFC3gaF3mbnx55nMrMrFToJrFboYPB7tb/mfFrSYZL2VLjGPNXdV+deX8bQ52KFjgdjFCYX/pm7/6mDsp+iMDn4fxQ6F6yQ9P/i/Isys68p9NKrkvQPhSFYc939LDP7tkJHh60U7vb4O3f/qZm9U9K1CuFPs8JIli87d4OTRGgzaJnZxyRNUxjOdIOkjLsXMyYZAAAAAACkwFAdHjXgmdkPzaw2z8+9cZWvKHRLm6fQ++D/SlZYAAAAAADQZfS0AYAimdnVCvNa5brZ3U/r7/IAAAAAvY1r3nQhtAEAAAAAAEihLg2PMrP7+qogQNql+fOf5rIBfS2tn/+0lgvoL2mtA2ktF9Bf0loH0louoL8UqgMVXdnJ2LFjj5g6dSpdczBUVZe6AIVQNzHEpbJuUi8B6iaQUtRNIJ3y1s0uhTa77babZsyY0TvFAQYYM5tT6jIUQt3EUJbWukm9xFBH3QTSiboJpFOhusndowAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAqefuWlHdUOpiAP2K0AYAAAAAkHo3P/uWDrzwYb26tLrURQH6DaENAAAAACD1np63WpL05uq6EpcE6D+ENgAAAAAAAClEaAMAAAAAGDBcXuoiAP2G0AYAAAAAkHomK3URgH5HaAMAAAAAAJBChDYAAAAAgAHDGR2FIYTQBgAAAACQfoyOwhBEaAMAAAAAAJBCvR7arKxp0KxF63t7twAAAAAAcO8oDCm9Htp85LLHdeyVT/b2bgEAAAAAQxijozAU9Xpos7q2qbd3CQAAAAAAMOQwpw0AAAAAYMBwbh+FIaTPQpsFq+u0fENDX+0eAAAAKLl1dfQyB/qLGQOkMPT0WWhzyC+m670XPdxXuwcAAABKaubCtXrXTx/UPS8tK2r9Sx98Qzc+vaBPywQAGFwYHgUAAAB0w4uLN0iSnp2/pqj1L3t4js752yt9WSQAwCDTq6ENw6EAAAAAAH2BwVEYino1tPnSjTN6c3cAAABAarVmwmSo1Q0tJS4JAGCw6tXQprqhuTd3BwDAoHft4/N1/ZNvlroYALohO5fNXf9ZUuKSAEMLN4/CUFLRmzujuxoAAF1z/rTXJEmn/NfbSlwSAF2V4Ysj0K+yN4/61u2zlHHXx/ffobQFAvpBr/a04RZsQPq0ZlxTzpimax+fX+qiAAAwqJSXce0L9Kf1GzeN7Dj9jhdKWBKg//RuaNObOwPQK5pbM5KkS+5/vcQlAVAMJvUHBo4KQhugXz36xqpSFwHod9zyGxjksh3gnMG/QOo98MpyvfeihzX99ZWlLgqAIlSUE9oAAPpW74Y2nLeA1LFYMRl3D6TbPj++Xz+86yVJ0ouLN5S4NACKQXsI0H/y3fRmZU2Ddj5zmv7z1roSlAjoH30+PGrGgrXa2MRtEIFSy3BlCaRabWOLVtc2SZJa2m4j3Nx2kTp7ebWmnDFNc1fWlKyMANp7at6aUhcBGDLue2n5Zq89PW+NMi6d949XtXR9fQlKBfS9Xg1tyvJMRPzJq5/Wt2+f1ZuHAdAFrvDlj8wGGEBihX3nuQ/onec+IEn6xwtLJUn3vbz5RSuA9Ju3qrbURQAGtJY83cavmj5PkjRr0Xq9/+J/9XeRgH7RL3PavEQ3bwAAitaaJ2Utjw0j2YvWx+es0lNzV/druQB0H3e6AXqmJZPZ7LXZy9v3Pl20dmN/FQfoN70a2uRLPyWpOeNydzW2tKqhubU3DwmgE/SwAQaeW559S++76OF2r5WXhVN2Jp5rT7ruOR1/7bP9XjYA3fPCovWlLgIwoLW0dn5Re/Alj2jxOoIbDC69HNpsnn5K0qqaRr3tzHu0x1n3ac+z79tseSbjqm1k3hugLyTr1qK1G9XKjMRAKrRmXDMXrs27bP3GZi1L3Pr76kfn6Z8vhuFRc1fVak1tY9uyo37zuKa9uKxtn/VNNI4AaTNjQf66DqB4bxXZi2Z54vwJDAYVvbWjBavrtGhtcZM/TTljmrYYWal1G5s1dniFqhs2fakcO7xC+0/eQofsvpVqG1s0buQwzVywVntPGidJenLearlL+++0hRat26h3T95C5WWmqooyNbZk1NSSUUNzq1bWNGpVTaPetdN4/eX5JXrfzltq70lj225/bDLNWVmj0VUVqm9q1dZjqzSqqvu/DuvmrbPyTAPUhWN2T/Ire1/f8Ksn76+/fXD3rTViWHmpi9HrPnjJI22PD048Pm7qDsq4tOe2YzSsokwbm1o1bkSlRlSWq7ys8/+4zv5v8/Xwyd2mUL0x42Z0ndl0K/ee7yPtPrTXtior4jM50Hz298/ouSK/yF187+y2x/e8tFz3JCZjfGVptb526/P62q2b1v/01B1V3dCstXVNmrzlSN0xY7G+ffju2n2b0frL80v05upafWrqjho/olJLNzRot61Hq7LctLauWWYh/Bk3olKVidsZZ1za2NSq6vpmjR8Z/lZI4XNU7OewJ5+5+uZWDa8oHzCf28FuWEWZDt1zm1IXo088MnulvnDDv3Xl8fu3vZb83LmHa6n1G9vfyebKR+bq5/e/rt+esL9W1TRq6YZ67bfDeGVc+tqtz7db99cPvaHXllXro/tt33a+29jUqpHDypVxqa6pRd+/80VJ0tcP3VV7bTe2rRzZ+patdlf8a65eXVYtSZo0brjOPnqvzepJcpt7Xlqmf8ag96oT9i+4bttzSbOXVWubccO15ahhhX5tcpeWbmhQbUOLths/XGOHF76uzh6jtrFFV02fp+8esYc6+jPvLjW0tGr5hka9beLIwiv2kPvAOTcWMmZ4pf5r14mlLkafuO25t4pa75NXP63tx4/Qie+drJ0mjFRTa6vKzGRmKrMwD2tf/jcP9M8Q+sZWY6r07skTurWteReu+KdOneozZszIu+yhV1foizfmXwYMBE+ecai2Hz+i4HIzm+nuU/uxSEXrqG6edN2zenwO815g4Jp7wZGqKC/cMTStdbOjeimFBgxgoJo4ephmnPU/Ha5D3QT6317bjdU93zy4w3UGat089BfTNX91XT+WCOg9h+65tf5wygEdrlOobvZaT5vD3r61LvzYO7TbNqO1y1ajVdvQomfmr9Fek8ZqwqhhWlvXpJaMqyLG6Bn3th4y9U0ZjR9ZqfUbm1VVWaaahhaNrqpQa8bbWvyGV5arqqJMdU0tamrJaNyISo0cVqGNTS1qbs2oNSONHBbWKSsz1Ta0aLZJsj8AACAASURBVGNTq0ZVlauyvEx1iSEiyZhqWHmZGlpa1ZpxDevgS0FHutvQ3ZMWcu/2UbtwjHiI3FbUYtPjgTaXylajq0pdhD5x3ecOUHVDs4ZVlGlkZbkqysviHFMZbahvVsZdJtOIynLVNrWosbm1re4V0tn/rSv0lMltmcxdJ3ef2c9af3y+B7Lc32V3WnQGUv0spufXQDTvwo/o1ufe0qtLN6i2sVXv3mm89txurIZVlKmizPT68hpNHF2lhuZWbahv1uzlNaqqKNO7dtpCo6sqNLyyTI++sUrjRlRq8pajNGZ4hUZXVWjZhgaNHV6h2sZwftxydJWWrKvXrluPVnmZKeOuDRubVV5mGjO8UtUNzRo3olLuoTdLmUnNra5RVeXt7grZ1JJRZXmZmlozqqrY/HxZzOewJ5+7jHveu1SiNCoGab2UpPkXfkTPzF+jLQr0Ksmer0ZXVWjEsHJVlJkWr6tXVUWZ1tQ1tdWnxes2aoctRqq8zNTY0qp5q2r1X7tO1JwVtRpeWab1G5s1afyItv21tLoqyi32CJAu/9dcHbH3Ntplq9F5e7Rl68OCNXV6ZPZK1Te36nPvn9LWC66Q6vpmPT5ntSrKTUfsvW2nvw8zaV1ds0ZXVaiivOP/95ZW18qaBm01pkqVRVxXNzS3asGaOu257dhO121pdVVVlvXJMO/B0MMmK9/f58Hinm8erOr6Zo0YVq6WVld9vGatbmjWsPIyDasok8lUUW7a2BTmUq0sL1NleTj3uYdeo315nTmQrq/Qv0b3ZFRPb/W0AQa7tLZKSNRNDG1prZvUSwx11E0gnaibQDoVqpuDN4oFAAAAAAAYwAhtAAAAAAAAUojQBgAAAAAAIIW6NKeNma2StLDvigOk2mR336rUhciHuokhLpV1k3oJUDeBlKJuAumUt252KbQBAAAAAABA/2B4FAAAAAAAQAoR2gAAAAAAAKQQoQ0AAAAAAEAKEdoAAAAAAACkEKENAAAAAABAChHaAAAAAAAApBChDQAAAAAAQAoR2qSEmU0xMzezilKXBcAmZvaKmR1SYBn1FhhAzGyBmR1e6nIAAAAUi9CmBOJFY72Z1WZ/JE3qwvZ8UQR6Sb4vcWZ2ipk9IUnuvre7T++jY7uZ7doX+wbSwMwOMrOnzGyDma01syfN7IBSlwtA+pnZ9WZ2fqnLAfQFM7vazM4uct2268WubNcfzOx8M1ttZsvNbKf43ba8wLrnmtnNHeyr7Zq8s3WHGr70l84x7v5Q9omZTSldUQAA6F1mNlbSPyX9n6Q7JA2TdLCkxlKWCxiqzOwgSZdI2ltSq6TXJH3L3f9d0oIBg5CZ3S/pWXc/J+f1j0r6naQd3L2lq/t199N6qYg9ZmY7SvqOpMnuvjK+PLqERRq06GmTUrmt/zlp42Px3/UxzXxfXOfzZvaama0zs/vNbHJ/lxsYbIocTnGCmb0VWxp+lNj2PWb2tJmtN7NlZnaFmQ2Ly7L1+IVYjz/dV+8BKJHdJcndb3P3Vnevd/cH3P1FM9vFzP5lZmtivbnFzMZLUly21sz2j88nxXUOSTz/e1xnrpl9KXvAeK6808xuN7MaM3vezPbNKdd+ZvZi7P1zu5kNT2z/pbjPtfEYkxLL3MxOM7M58Tx7pZlZYjnnYKRWIkS9XNIESdtLOk+9HKL2Vy9weptjALhe0knJ80R0kqRbuhPYlEIndW2ypDWJwAZ9hNBmYPpA/He8u49296fN7FhJP5T0cUlbSXpc0m2lKiAwxBwkaQ9Jh0k6x8zeHl9vlfRtSRMlvS8u/6okuXu2Hu8b6/Ht/VtkoM+9IanVzG4wsyPNbIvEMpN0kcLQ4LdL2lHSuZLk7vMk/UDSLWY2UtIfJV2fGKZ4m6TFcdtPSrrQzA5L7Pujkv6s8MX0Vkl3m1llYvlxkj4s6W2S3inpFEkys0NjmY6TtJ2khZL+lPOejpZ0gKR943pHxG05ByPtOgpRTzGzJ8zsFzF0fNPMjsxuaGanxkCyxszmm9lXEssOMbPFZvYDM1uuUF9lZkeb2azYaPGUmb2zswKa2bti0FpjZrdLSgaqmx3HEkOZE+slh5Fcb2a/NbN7Y+PIk2a2rZn9Or7P2Wb2rh7+XoFC7lY4Dx2cfSGeB4+WdKPlDP/rqNEgKbldol58x8xWxgbCUzsrmJmNM7MbzWyVmS00s7PMrCwuOyXWlUvNbK3iuTnPPg6X9KCkSbF+XW85U3iY2dvM7NFYpx9UuB5O7uOkePw1lmj0LHC898a/JevN7AUrMN/kYEVoUzp3xw/dejO7uxf29xVJF7n7azG5vVChNZGWPqBzyfq4XtJvu7j9efEC+AVJLyh8oZO7z3T3Z9y9xd0XKHSH/WCvlhxIKXevVgg0XdI1klbFC9Ft3H2uuz/o7o3uvkrSr5SoG+5+jaQ5kp5VCFB+JLV1xT5I0g/cvcHdZ0m6VqHlMmumu9/p7s1xv8MlvTex/DfuvtTd10r6h6T94usnSPqDuz/v7o2SzpT0Pms/fPlid1/v7m9JeiSxLedgpF1HIaokHSjpdYUvVZdIui7RQ2ClwhfNsZJOlXSpxZ5w0bYKX04nS/pyXPYHhXqxpcK57+9mVlWocBZ6od4t6aa4rz9L+kTOau2OU+T7Pk7SWfF9NUp6WtLz8fmdCn8jgF7n7vUKQ4NPTrx8nKTZ8XqxTZGNBoVsK2mcQu+5L0i6Mk/9znV53GZnhXPvyQp1O+tASfMlbS3pgnw7iNN8HClpaWx8PCXPardKmqlQ334q6XPZBWa2l6SrFM7fkxT+VuyQ71hmtr2kaZLOV/gb8F1JfzGzrTp5n4MGoU3pHOvu4+PPsb2wv8mSLkt86Vyr0JK5fS/sGxjskvVxvGJvmFyWmDzczHZKLFqeeLxRcTyvme1uZv+0MDlbtcIXuXatDMBgFkOMU9x9B0n7KFyY/drMtjazP5nZklg3btbmdeOauM3lMURR3H6tu9ck1luo9ue6RYnjZ7SpV05W3voa11mY2LZW0pqcfRfalnMwUq2jEDWustDdr3H3Vkk3KHxx3CZuO83d53nwqKQHlOg9ICkj6ccxhK2X9CVJv3P3Z2OvnhsUApNkeJrrvZIqJf3a3Zvd/U5JuXPt5B6nGHfFBpQGSXdJanD3G+P7vF0SPW3Ql26Q9CkzGxGfnxxfy1VMo0EhzZJ+EuvNPZJqFXp/52VhkuBPSzrT3Wtio+Iv1b7xY6m7Xx4bHYuta7nH2UmhZ+rZsc4+ptBQkvVJSf9098fiez5boY7nc6Kke9z9HnfPuPuDkmZI+kh3yjYQEdqkV52kkYnn2yYee571F0n6SvKLp7uPcPen+rSUwBASWxKyP28VsclVkmZL2s3dxyoMn8gd2wwMCe4+W2GM/z4KLYou6Z2xbpyoRN0ws9GSfi3pOknnmtmEuGippAlmNiax650kLUk83zGxnzKFlrulRRRxqUL4kt12lELL35KCW2zCORipVyhEjYuXJ9bbGB9mGyCONLNn4rCN9QpflJIh66oYimRNlvSdnB6sO6rjO6VOkrTE3ZPXuAtz1sk9TjFWJB7X53nOpKnoM+7+hKRVkj5qZjsrhBi35lm1mEaDQtbkzI+TbFDIZ6LCjQGS9atg40cPTJK0zt3rco6TXJ5sZKlTeM/5TFYIv5J/Uw5SCJeHBEKb9Jol6TNmVmlmUxXSyKxVCknkzonXrpZ0ppntLbWNVfxUv5UWQD5jJFVLqjWzPRXuopO0Qu3rMTBomNmecZz9DvH5jpI+K+kZhbpRqzCh/vaSvpez+WUKw5y+qNAl+mpJcvdFkp6SdJGZDbcwT8YXJN2S2PbdZvbxOKb+Wwot/M8UUeRbJZ1qZvvFYRwXKtz5Y0ER23IOxoCSE6IWFOvCXyT9QtI2sTfqPWrfAJHbmLhI0gU5IeZId+9onqdlkrZPDMmSQiDbrtg5z9s1cJrZtgLS50aFHjYnSXrA3VfkWacnjQZdtVqhd05y+G5u40e+DgJdtUzSFvG9JI+TXJ5sZBmp8J7zWSTpppy/KaPc/eJeKOeAQGiTXmdL2kXSOoXZ/dtS2dgCcoGkJ2Pa+F53v0vSzyT9KXY1f1lhnCGA0vmupOMl1Sh0R8+dbPhcSTfEenxcP5cN6Gs1CuPinzWzOoXg5GWF24OeJ2l/SRsUQpm/ZjeycDvUD0vK3tb0dEn7m9kJ8flnJU1RuMi9S2G4xIOJ4/5Noev3OoWL5I/H+W065O4PK5x7/6JwMbmLpM8U80Y5ByPtOglROzJMUpVCg2GLhQmKP9TJNtdIOs3MDrRglJkdldNDLtfTklokfcPMKszs45Le08lxXpC0dwxah6vAhKlAid0o6XCFYYP5hkZJPWs06JI4NPAOSReY2Zg499rpCsOUe/M4CxWGMJ1nZsPM7CBJxyRWuVPS0WZ2UJzT6icqnE3cLOkYMzvCzMpjo80h2b9nQwG3yysBd5+S57UFSrRauPt8hYvdQvs4R9I5Oa/dpDCBG4AiFaiP1yu0QOZdnlhvgXKGO7n7IYnHj0naM2ezcxLLr1bsQQAMNu6+RGFSxXxekfTunNd+Gbf7m0Lwkt1PraRdE88XK0yKWkiDu59YoExTcp6fm/O8YJ1099y6fkrOc87BSLNsiHq6mY2XtF7hFuDfU7jrWV7uXmNm31D4klelMCfF3zs6kLvPMLMvSbpC0m4Kw5CekPRYB9s0xaDmGoXJRu9RIswtsM0bZvYTSQ/FY5ypMPkxkBruvsDMnlK4SUXeuuPuD5tZttFgC4UepUU1GnTT1xUmI54vqUGh3v2hD45zvEJQtVYhmL1R0nhJcvdXzOxrCoHVKIVJwRfn24m7L4oNOpco3JmxVdJz2rwH+6Bl7YeOAgAADExmdq6kXQuFNgAAAAMNw6MAAAAAAABSiJ42AAAAAPpUvAXwqwUW71XkXRkBFMHMXlH7yYazvuLut+R5vdB+rla4w2Oum939tDyvow8Q2gAAAAAAAKQQw6MAAAAAAABSqEt3j5o4caJPmTKlj4oCpNvMmTNXu/tWpS5HPtRNDGVprZvUSwx11E0gnaibQDoVqptdCm2mTJmiGTNm9F6pgAHEzBaWugyFUDcxlKW1blIvMdRRN4F0om4C6VSobjI8CgAAAAAAIIUIbQAAAAAAAFKo5KHNs/PXqKU1U+piAAAAAAAApEpJQ5sZC9bq079/Rr95eE4piwEAQGrMW1WrlxZvKHUxAAAAkAJdmoi4t62saZQkzVlZW8piAACQGof98lFJ0oKLjypxSQAAAFBqJR8eBQAAAAAAgM0R2gAAAAAAAKQQoQ0AAAAAAEAKpSK0cS91CQAAAAAAANKlpKGNlfLgAAAAAAAAKZaKnjYAAAAAAABoj9AGAAAAAAAghQhtAAAAAAAAUigVoY2LmYgBAAAAAACSSjsRMTMRAwAAAAAA5JWKnjYAAAAAAABoj9AGAAAAAAAghVIR2jhT2gAAAAAAALRT4tCGSW0AAAAAAADySUVPGwAAAAAAALRHaAMAAAAAAJBChDYAAAAAAAAplIrQhnmIAQAAAAAA2itpaGPMQwwAAAAAAJBXKnraAAAAAAAAoD1CGwAAAAAAgBQitAEAAAAAAEihkoY2dY0tkqSV1Q2lLAYAAAAAAEDqlDS0ues/SyRJLyzeUMpiAAAAAAAApA7DowAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghQhtAAAAAAAAUojQBgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghUoa2riX8ugAAAAAAADpVdrQRqQ2AAAAAAAA+TA8CgAAAAAAIIUIbQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiLtHAQAAAAAApBA9bQAAAAAAAFKI0AYAAAAAACCFCG0AAAAAAABSiNAGAAAAAAAghZiIGAAAAAAAIIXoaQMAAAAAAJBChDYAAAAAAAApVNrhUWJ8FAAAAAAAQD70tAEAAAAAAEghQhsAAAAAAIAUIrQBAAAAAABIIW75DQAAAAAAkEL0tAEAAAAAAEghQhsAAAAAAIAUIrQBACAlZi5cV+oiAAAAIEUIbQAASInaxpZSFwEAAAApUtLQxqyURwcAIF2cGfoBAACQwN2jAABIieRpsaG5tWTlAAAAQDqUNrQp5cEBAEgZetoAAAAgiTltAABICTIbAAAAJBHaAACQEsnQhgAHAAAAhDYAAKSEt3tMagMAADDUEdoAAJASyTlt6GkDAACA0oY2XJACANAmkxweVbpiAAAAICVKfPcoLkkBANgk2dOGcyQAAMBQx/AoAABSgpwGAAAASYQ2AACkhBd4DAAAgKGJ0AYAgJTIMBExAAAAEghtAABIiZeXVG96QmgDAAAw5JV2ImIuSAEAaFPf1NL2mMn6AQAAQE8bAABSot2cNmQ2AAAAQx6hDQAAKZEMashsAAAAQGgDAEBKtJ+IeNPj5taMXl6yoRRFAgAAQAmVdk6bUh4cAICUac0kQpvE6xffO1tHX/6E5q2q7f9CAQAAoGToaQMAQEpkCkxkM2vReknS2rqm/iwOAAAASozQBgCAlMgk57Rp9zg8KbN+LhAAAABKqsS3/GaAFAAAWe0nIt70ZFOYQ2oDAAAwlNDTBgCAlMgUuH1U9qGR2QAAAAwpJQ1tnn9rfSkPDwBAqrS7e1RyQdvwKFIbAACAoYSeNgAApEShOW2yrxPZAAAADC0lDW323XF8KQ8PAECqtO9ps/ljetoAAAAMLfS0AQAgJZIT9HueXjdkNgAAAENLaUMb7h4FAECb1kz+8yKnSwAAgKGptLf8LuXBAQBImUz+m0e1DZuipw0AAJt7cfF6TTljmhasrit1UYBeV9LQ5vXlNaU8PAAAqdJ+eNTmTRvMaQMAwOb++vwSSdK/Zq8scUmA3lfS0KaxJVPKwwMAkCrJ4VHt7x7FRMQAAHSGkRwYjJiIGACAlCgwpc2mW36T2QAAsJlso0a+XqrAQEdoAwBASmQK3j0qzmnT3wUCAGAAKIsnSDIbDEaENgAApES70EbJx0ExPW3mrqzRlDOmac4K5o0DAAwNZTG1yZDaYBAitAEAICUyhaZ6axse1Xlq848XloV/X1zWS6UCACDdsmfHQsOMgYGM0AYAgJRo17smz0TExQyPauuV03vFAgAg3bLDo5iKGIMQoQ0AACmRbCFMXnZmHxd196hswENqAwAYIjZNRFziggB9gNAGAICU8HYTEW96vHDNRkldC2KMvjYAgCFi00TEpDYYfAhtAABIidbM5pMPJxHEAACwuez5kTltMBgR2gAAkBKdXWy+snRDp/vgehUAMNT05JbfD726QlPOmKYV1Q29WyiglxDaAACQEu2HR22+fPG6+nbP3372ffrIZY/n3Rdz2gAAhors3RW7c8vvm59dKKm4hhGgFAhtAAAogXV1TXpzdV2711oLzGnT9lpOP5r65la9uqy6bwoIAMAAYT2Y0yY7NLm8jK/GSCc+mQAAlMB1T7ypw3/1aLvXMpnE4zzXnX99fkmn+822Mr61dmPe5e88936d/Ifnii8oAAAp13b3qG5suyT2Ym1NnoSBFCG0AQCgBMqs/cTDUvtu3bnLJGn28pq2x4sSoUxTy6YLzdnLwjp3zlzcbtu1dU1aUd2g6oYWPfbGqp4VHgCAFMmOCO7O8Kj5sdfrY2+s7sUSAb2notQFAABgKCqLsya6e96x+J1deP7wrpfaHu9+1r1acPFRHW63/08f7FF5AQBIq03n1B7sg8ngkFL0tAEAoASyF4fJHjXJzjX5etokPT4nf4sgd48CAAw12byl0Knz3wvWau7K2g73UVlOaIN0GnChTWvGdcG0V7klGwBgQCsvy/au2fRau+FRXWwuzMQdbWxs7XnhAAAYQNrmtClw7vzU1U9vNo/cZvso63poc9X0eZpyxrQubwd0xYALbZ6dv0bXPP6mvnfni6UuCgAA3bapVTD/bb4znfS0KbS/DfXNba/VNrZ0u3wAAAwU2bilJ71Nu5HZ6Gf3zQ7H7cm4LKATAy60aYkXsdWJi1IAAAaa8k7mseliZtNmm3HD2x5fPX1e93ZSwJQzpunUP3LnKQBAuvznrfWSpCXr67u9j0K3/D7yssd10zMLO9x2RXVjt48LdGbAhTZ1sdVw1qL1JS4JAADdl29OG+/CnDaFJO8MdcUjcyVJLy/ZsNl6mYxrQ32z9jrnPj01r/38OC8uXq8bnlqQd/+PvF7cnacuffAN3ffy8iJLDQBA9933SjjfPDm3+3eAKi8wEfFry6p19t0vd7htTQMdCtB3Blxo8+S87lXE1bWNam7NdL4igKJk55Vav7FJF987Wy09qF+raxu7PBSkIxubWjb7EgqkTVmeOW3eStzGu6u3LV28rnDr4tGXP7HZa40tGb2waL02NrXqt4+075Hzv1c8qR///ZV2rxXq+u3ueS9WL3t4jk67eWYxRQcAoFf0ZJRSeZ5vxsVe3za35j/wyuoGNTQz1xx6ZsCFNq8vr+nyNvVNrZp6/kPa58f390GJgMFn+YaOJ/p+4JXlOvDCh/XoG6t03j9e1dWPztNDr63o0jHqGls0d2WtVtc2aur5D+lXD76Rdz1379I44Q31zTrh2md1/DXPalH8Alzf1Nphr4XWjLetO2dFjZZt2PTl9+UlG3o1UAKysmPnC32+utrTZt6q2i41TryweH3b/DdPFGiZTO6vpUB5Lnt4jt5x7gNaU0vXcABAafX23DKFwphche489Z4LH9bHfvtUbxYJQ1BFfx1o/cYm7feTB/XlD+ys3z82X7N/+uEO199Q36xVNY3adevR7V7/94J1XT72fa8skxRaFQF07F+zV+jz18/Q1SfuryP23lZXPTpPn3r3jhpWUabrnnhTS9bVqzq2ql/xrzltdfK0m5/XSe+drJueWahtxw7XMz88TFL44vnm6rq2GfuPfud2mji6StfnDL244pG5Gj+yUhVlpoljqvThvbdVxqVDfv6Ilm5o0LM/PEyL19Vr161Ga93GJo0fWan9fvKgJOncY/bSNmOHq6k1o2/+aVbbPt9YUaOZC9fpW7fP0if230G/PG5fvbasWkde9rj23WGcmltdPz12H33iqnAyvfTT++rbt78gSfr3jw7XE3NXtT2fedbh2nJ0lVozoVfBqKoKzV5Wo2OuCD0YvnHorvrKB3dRS8Y1orJcq2sb1dSSUUsmhE67bTNG1Q3NWlvbpG3HDdfwynJtbGrR9DjUpL6pVaOqyvXhfbbL+//i7jIzNbaEAGrksH77840+0hTPSckeNR/aaxs98GoIQAuFNg3NrRpeWb7Z68s2NLQNIU5qbMnfwvfX5xfrjhmL255f+/h8ffHgndut8+Li9frEVU/rN599l96x/bi21xeuqdPkLUdJkn790BxJ0kE/e0Qvn3eEysusXatisrzurrtnLdGx+20vK9ANHUiLb/7pPzpu6o76r10ntr2W/UKY1s9vbWOLVtU06m0TR+lvs5ZozopafedDu6e2vEDatWSK+/44smrz67IX4nQery2rzrvNob+crvmr6rTg4qO6X0AMCdaVNHLq1Kk+Y8aMvMsaW1p138vL9c4dxuvN1bU69++vtuvmPdCNqapQxl3DKsq05egq7bvDeO0/ebzqGlv0wqINmjR+uFbXNmnhmjrtse0YjRpWITOpur5FwyrKlHFXRWxW/dfrK7VkXb2qKsp14M4TtGRdvfbdcbxGDSvX9luM0EX3ztbx79lJb6yo0Yb6Zr2xorZguXaaMFITRw/TO7Yfp+XVDTpgygS1ZFwrqxs1dcoWas246hpbNGHUMLmk7ceP0Jq6Jq2qCcNRdtl6lMYMr9TwinKNqtr8S0DSmrombTlqmMrMVN3QrLHDK1XX1CIz0/CK0Gkre1GQvTRobMloeGVZ25eP8k6mZc9+HJPXFu7huanvLjhcrjHDKzssn5nNdPepfVaIHuiobja1ZPT/27vz2CjOM47j35k97F3sZV3sNT6CMcEBDK1tjiBEoBAgCeJISlMlTZS2Qo2qNK0aRUmbqkCVA6lqqipJlUZVCYpQlSpp1JarKCoUkCERKQkYBDbB2Jw22GAbn3ivt3+ss2B8AKrjrM3vI+0/M7M77+zso5153vd558+lVbz64TFWzs5n/d7qQW6dyM2zravlQpOzfYxKSWLDyrv7fU+ixmZ/cQnc9o8IzfF7ekwY+djMMby773SPbV9YPJHfbKvotuy1R4rZXFbDjoq6bsv/8N0SDpxuoupiK3uOXyQcNbz+aDEZqUm8XVrNJ9UNtHSGWfL1LB6elsu+6gYa24JsL7/ApbYg4wMpPFScTVswwpGa5vgcQd+emktHKMyJujZKxvjxeVycqGslJdlJ8R1+8tNHcPBME+caO5g3IUCyyyYUiZKb5mXzoRpWlOQy2pfMsGHBSI+r/02GaGzWNV+hsq6Vx9btG8RWCYDbYRPsZcSgw7aYPT6dz041Yowhy+/hyTn51DV3UlnfStZID/84cJaiXD9+r4tsv4eogc5QhPV7q8kbNYIFkwL4kl0YY0gb4aa8tpnWK2HGZaQwfWwajW0hdpRfYGJWKo3tIYpy/XSEwrgdDiwrNvLQadtkpCaR5nXRFoxgW9AejCWms0YmE44azl++QmNbrIMmPSUJh23dxPWvoT0YIclp0xmO4nU7uBKOEo0aLAu8bieXO0J43Y7Y51lWt2vlqInNx9IZieB22Pi97n73N1Rj8/MLLWwuq+GJWXmcaWjH63bS3BGiIDOVqS//O77dgdWL6AhF8LgcRI0hamDG2u0A7F+1kGA4SvOVEKO7OvzuXrsDgB/NHcdT8+4karpGegNHapr5/vrYBPyfrV7U7TrFGMO0V2Kf+8+nZzN2lLfbupe2HGXjwZp4myDWUWNZsbuakq4273puHj6PbiZB2wAABNZJREFUK97J0RmO8Nd9p3njP5W4HTa7np9HktMmFDGEIlGCkSjv/fcMOX4Py4qysbh672RM7J5t4e93s+cX8/G6nUSiJvYyhkjEMPfVnawoyWH10kK47r3PvHeQ3Z/Xs+kns7kjzXvNky5jo+Sfff8gJWPS+HHX9xQMR2OvSITy2hbe2nWCd5+c2ev52/DxKe6bnEmWzxNfZrqe93WpLcjJi21Mz/tan+e/Lw3tQZJdNi6Hjd313V57TG3BMF63E4dlxfd3M4y5ei87EPehTofFiF6Se9fqKzYHLGmz4eOTrNl4pNd1IkPB3hfuJcfv6XN9ov7BQf+x+faeal7ecnSQWyQycCrXLsbZW6F5l0SNTSVtZDhLT3Gzf9WifrcZqrH51F8+ZZsm0ZYhakqOjy0/ndPvNkMxNo0x5P/yX4PcIpGBc+/EAOt/MKPfbfqKzQEbX//IjDtYs/EI49JHUHWxbaA+VgbJipIcisf4+1zf0Bbkte3H+eZdGUzJ8fHmzhMsL8pmU1kse/zi8snxbb9IBJ5r6qDifAvzJgQwXaOUbjSvSGtnmJEeV48RNwNcntorX/LwLDd5qDibdaVV1N5gnhqRRBUxZvBqeQdR5drFjP/Vth7L75+cyYdHes4R9fqjxd3K/wAKs3y8+fhU5v9uV7flq5ZMwrKsHgnb+wozeWDKaJ59v+z/PwC5ZWu6ejWHg95K9IaLb5XksP9UI/UtmqdJbt7yomymj03r1ontdtqsWjLphtexn1Q3sPVwLQsmBthRUceyomw2d11j+5KdzCnIYOvhWopyR1KQmUogNQmv2xEvle4IxSoeMn3JLC/O/tKO8atkWRa/ffgb/PyDQ6woyeHvB87F1/3wnnze+egk4ajh+fsnsK+6gUNnm/jZggIcdmyMxFu7TnBnIIXcNA/HzrcQjhoeLM7B7bSxgFVdT4das7QQ24rtr+VKiK2Hz1Ne20xBIIXHZ44h2lUB8MUTIHdU1HH4bBNPzx8f3xfA5Y4wPo+TFzcfZf6EDObelRE7Dq6O1Dl4polNZTV8b1YeyS4HR2uaWTApwAefnuWegnT+tLsKgImjU3lgymgCqcm4HBZupx2/Hvj1sqv/K8bERiyfvNTOOx+d5JmFBfg9LhwOG4dl4bQtbNviub+Vxd97/W9z57E6So9f5DvTcinM9hGJGmzLwrZiJWDrSqvwuJ08WJSNbYHb6cDttHE7bf64s5KK8y2sWVrI9RWZxsBLW46Sm+Zh5ez8Hue39Hg9O4/V3/L/ZNQYXtlaTkEghSdm5WFMbNm1x3W8rpXxgZT4ubnZatFgOIrTYQ9YrUduWt+DA25kwEbaiAx3idorAYpNub0lamwqLuV2p9gUSUyKTZHE1FdsDrmnR4mIiIiIiIiI3A6UtBERERERERERSUBK2oiIiIiIiIiIJKBbmtPGsqx64NSX1xyRhJZnjMn4qhvRG8Wm3OYSMjYVlyKKTZEEpdgUSUy9xuYtJW1ERERERERERGRwqDxKRERERERERCQBKWkjIiIiIiIiIpKAlLQREREREREREUlAStqIiIiIiIiIiCQgJW1ERERERERERBKQkjYiIiIiIiIiIglISRsRERERERERkQSkpI2IiIiIiIiISAJS0kZEREREREREJAH9D6fTbQcqlxHEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEhCAYAAADFzF13AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eZilV1X2fa+u7uop3ekxadIZmgQIQ5DIIKMCMgsoOCAKMigiKvIK+oH6oi8KiuKAigPgAAqIIMokU0QBGYVEghAMkIRKOkMnnU46PXdVV+3vj73uc/a5z3m6qpImfUjfv+uqa9cz7Wc/ez5rrb12lFJgjDHGGGOMMcYYY8aLJcc7AcYYY4wxxhhjjDFmGAttjDHGGGOMMcYYY8YQC22MMcYYY4wxxhhjxhALbYwxxhhjjDHGGGPGEAttjDHGGGOMMcYYY8YQC22MMcYYY4wxxhhjxhALbYwxxph5iIjnRETp+Ht03vPoPH5Y89ynIuKjzfF9I+IVEbHudkr3XUak98aI+HhEPOZ2evdzbkMcT4yID0TEzoiYiYgdEfHeiPiBY5hUfedJEfG2fGeJiD/I8w+NiC9ExP48f15EvDUiLltk/M/L50//1nwBEBEviYinfKviN8YYY8ztx9LjnQBjjDHm24gfAXC1nPtqhp8H8GAAlxzl+fsC+H8A3gxg97FO3FF4FYAP5P+nAngRgA9ExENKKRfejulYMBHxpwB+AcA7AfwcgB0A7gTg+wH8c0Tcp5RytLy+tbwIwNMAPBfAZQCuzfNvQi2zJwM4AOBy1LJcs8j43wvgKwBuOBaJ7eAlAD4K4D3fwncYY4wx5nbAQhtjjDFm4VxcShlpWVFK2QPgc7dzehARkwBmSinlKLddXkr5XPPMvwO4GcBTAYyd0Catc34BwC+WUv5ELr8zIv4EwC3fotffA8D2Uspbm/QsA3AXAK8opfxHc+/li428lLITwM7bnEpjjDHGnBB4eZQxxhhzDBi1PEquPw/AX+XhN5vlSqfn9aUR8X8j4msRcTgiromI34+I5U0cXHL0MxHxhxFxHYBDAE5aZHIPAjgCYFkT98qI+JOIuCSXAF0XEe+LiHP1OzIND4iIt0fEnoi4NiL+uE1rRx5sziVGl8yzPOjXUAVkKrABAJRSvlBK6Vk8RcT3RcR/RcTBiNgdEe+OiLuOeP8P530H8r53Sv4XAM8EcOemfF4OYBpAAPjNPHdZPjO0PCqXV70mIi7PctwREe+KiM2Sf6fLcy+IiP+JiEO5NOuv2mV0TF8ur3txRExFxN6I+FhE3KO572oAWwE8u/mGv85rd4+I90TEDfmeqzIPPB80xhhjxhQP0sYYY8zCmcgfz/ybWMSz7wXw6vz/B1GXUj0Y/WUybwfwqwDeAuCJAF4D4PkA/n5EXL8BYBuAn864pud595ImzVsBvBbV2vafm3tW5t9vAfg+AD8PYDWAz0bEKSPifBuAr+X734C6rOilXQmIiLMBfCbT+t2t0EXuOxPAXQG8f55v4v1PAvCvqJZDT8t03wfApyJiS3PfC1GXWn0ZwA8BeEHe9/GIOKmUcgS1PD6KugSO5fN3AB6e0bwhz/1wR1qWA/j3TMObUMvxhahWQZ1+jKL6zXkdgI+gLv96GYAnAfjgCIHKcwA8FtUS6acAnA3gPU1dfDKqJc8Hm2/4nbz2QQBbAPwsgMcB+BUAM6gCKWOMMcaMIV4eZYwxxiycS+X40wBGWtYopZSdEXFFHn6xlDLFaxHxSFRBwDNKKf+Qpz8aEbsBvDkiXlVK+XIT3TWllB9aRLr/Jv/IIQDPK6X8V5O+m1CFREzTBKoQYSeAH0UVKrS8pZTyyiatDwbwYwBeKfchIr4TwIcAfAHA00opB4+S1jMyvHIB3wVUfz1fB/DEUspsvu+/UMvqJQBeGhFrUQVmf11Kab/xC3nfcwD8WSnlcxGxC8BhWU7G5UxXt+dH8GwA35Vp+WBz/l1dD0TEOQBeDODXSym/05y/HMDHUQVo/9o8cgjAk1PIhBTqvB3A/QB8vpTyxYiYBrBTvmELgDsDeKGk7R9gjDHGmLHFljbGGGPMwnkqgAc0fz91jOJ9POqP8Xe3ljwALsjr3y33L9bB7G+in+bHAfhbAH8dET/S3hQRT4+Iz0fELajLp/ahWt+ci2E+IMdfBnDmiPseCeATqFYeT51HYLMoUhhzHwD/SIENAKTfoc+hbyHzUNQlZG+T/L0SwDcAfM8xStJjUQVqH5z3zsFnloxI26dRHR5r2i6gwCahMG9U3rfcgPq9r8klWndZRBqNMcYYc5ywpY0xxhizcL7S5Yj4NnIKgBWoP9JHsVGOr1tk/FOyS9QF+aP9jwH8EwBExFNRLTbeBOAVAG4EMIdqbbNiRJw3yfHhjvueiCr4eaMIG7rYnuFZC7h3Q4aj8mMHqkAHqPkLVMuVUSw2P7vYiOHdxeaDaZs6Spwto/IdGJ33PUopcxHxKNSy/T0AG9Ly6/dKKW9ccGqNMcYYc7tioY0xxhhz/NmFKrB5eMf1a+X4aDtFLZRLADw2IjaWUnYBeDqAS0spP8kbImIFjuKLZYH8Gqp/lo9ExONLKZ892s2llKsi4huovll+Y564KcDYMuLaFtR8RRP+BIaXuAHA3nnes1BuBPCgRT7DtD0KwJ6OOI8JpZTLAfxELqm6D6ofojdExDdLKf92rN5jjDHGmGOHl0cZY4wxtx+0ilgp5z8MYBWA1aWUC0f8qdDmWPAdqEuyKLBYhbokquVZuO1zhWlUx7//gSq4ecgCnvkdAOdHxItGXYyI+0fE1txm/WIAT2sd9qbT4wehLssCgE8B2A/gnI78/dqt/7wBLgBwekQ8YZHPFABndKRt6lak4zCG61iPUspcKeWLAH4pT513K95hjDHGmNsBW9oYY4wxtx9fzfCFEfFW1J17vlRK+WhE/BOqT5s/AvD5vG8bqiPaX0oriVvLORFBC5D1AJ6Catnxp6UU7jz1YQB/ljsZfQjV/83PY7T1x6IopcxExNNQl199JCKeUEr51FHuf3NE3BfAn0TEQ1GXcF0P4FRUq51nADgfwDUAfh3A+wC8PyL+EsBa1B2wdqHukoVSyu6IeBmAP06HvB/K79qK6nPn30op77it34m609TzALwzIl4N4L8yPU8A8JpRS+tKKV/PPP/L3Lr7P1GFLmeg+rv5y1LKJxeZjq8CeHhEPBE133aiLrP6fdQdtC4HMIHqk2kGwMcW+6HGGGOMuX2w0MYYY4y5nSilXBQRr0T9Yf8CVCuWM1D9oPwY6nKV5wJ4OaoVzBT6OzjdFl6ef0Ddfvpy1G2f/6q55/WoQoznAPg5VIHDkzDscPhWkYKbp6NuFf6hiHhiKeU/j3L/iyLigkzL6wGcjCqI+RyAp5RSLsn7/jUiuJTqXagCj/8A8NJSyo4mvj+PiCsB/DKAZ6IKLa5BFZJ86Rh943REPBrVb8zPZLgLwCcB7D7Kcy+NiEvyW18EYBbVt8+/o5bVYnkZgDeiCrtWou4c9nLU7/1l1HI+BOB/UHe6uvhWvMMYY4wxtwNRyrFYFm+MMcYYY4wxxhhjjiX2aWOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGhjjDHGGGOMMcYYM4ZYaGOMMcYYY4wxxhgzhlhoY4wxxhhjjDHGGDOGWGgzhkTEmRGxLyImjtP790XE2cfj3cYYY8yxIiK2RUSJiKV5/PGIeN7xTpcxdwQi4hUR8dbb8PzrI+LXj2WajDHmjsgJL7TJCdzNEbH8OKZhKiIezeNSylWllJNKKbPHIz357isybW+OiFcdj3QY8+2M/lg0xtw2IuLHI+LCVCxcFxEfioiHHe90GXNH51vV9kopLyilvPIYpO8REXH1bY3HmDsKR1NQHIv5aUQ8JyI+detTaBbLCS20iYhtAL4bQAHw/cc1MXdQ/IPV3B6k4PNgTihvjogPRMQZxztdxphjQ0S8BMAfA/gdAKcCOBPAXwD4geOZLmPu6Hyr2t7xsiY3Zlxo5q57I2J3RHwmIl4QESf073MzmhO9UjwLwOcAvBnAs3kyIlZGxB9GxJURcUtEfCoiVua174+IS7JxfTwi7tE8VyLiLs1xz0olIjZFxL/mczdFxCcjYklEvAV1AHx//uB86Qhz7g0R8aaIuDZ/kL5nvg/LeK7LZ57Xpk2lryot5b0R8XwAzwDw0kzb+/P6r0TE5dnJfDUinipxfToiXhsRNwF4xWIKxJjbwJNLKScBuBOA6wG87jinp5OonOj9rzELIiJOBvBbAH6+lPIvpZT9pZSZUsr7Syn/X46lHJd2RcQ7I2LDAuJdEhEvz7H+hoj4+3yXMQbzt70R9/9TROzIufN/RsS9mmtvjoi/jIgPRsR+AI+UefIjIuLqiPilbI/XRcRzm+eXR8QfRMRVEXF91KVVKyNiNYAPATgt56r7IuK0b3nmGHNseHIpZQ2AswD8LoCXAfib45skM46c6D8angXgbfn3uIg4Nc//AYD7AXgIgA0AXgpgLiLuBuDtAH4RwGYAH0QVtkwu4F2/BODqfO5UAL8GoJRSfgLAVcgfnKWU14x49i0AVgG4F4BTALz2aC+KiMcDeAmARwO4C4CHLyB9Q5RS3oiaN6/JtD05L12OaqF0MoDfBPDWiLhT8+gDAVyRaf3tW/NuY24tpZRDAN4F4J4AEBFPjIgvRsSeiNgeEa/gvRGxIiLemj/0dkfEF9gPpADyihROfjMinnG090bERE4ob4yIKwA8Ua5/PCJ+OyI+DeAAgLNDlkZG4x+gEd4+N9N9c1QNzAMi4n8yvX92bHLNmLHmwQBWAHh3x/UXAXgK6lh3GoCbAfz5AuJ9Tv49EsDZAE4C4DZlTJ/52p7yIQB3RZ3//TfqHLLlx1HnhWsAjFpasQV1brkVwE8B+POIWJ/Xfg/A3QCcjzq33QrgN0op+wE8AcC1OVc9qZRy7QLTa8xYUEq5pZTyPgA/CuDZEXFeRJycyoSdqVx4ORV+If6kYvSSp3Mi4vMpRH1vlzIj3/M3KSi9JiJeFQuzhIuIeF3Gf2lEPKq58NyI+N+cQ18RET/TXBtpyJDXXpZp2BsRX2vjPNE5YYU2UdfingXgnaWUi1AFET+eleYnAfyfUso1pZTZUspnSimHURvSB0op/1ZKmUEV7qxEFe7MxwyqBcBZqaX4ZCmlLCCdd0IdjF5QSrk5n/3EPI89DcCbSimXlFIOoApWjhmllH8qpVxbSpkrpbwDwDcAfFdzy7WllNeVUo6UUg4ey3cbMx8RsQq1rX4uT+1HFdCuQxWk/GxEPCWvPRt1gngGgI0AXgDgYGru/hTAE1ID8hAAF8/z6p8G8CQA3wng/gB+eMQ9PwHg+agT1isX+EkPRJ0E/yiqifr/RRXI3gvA0yLiVglljfk2YiOAG0spRzqu/wyA/1tKuTrH6lcA+OGYf3nuMwD8USnlilLKPgC/CuDpC3jOmBOF+dreAKWUvy2l7G3a4X3Eeu29pZRP5/zx0IgoZgD8Vs51PwhgH4BzIyJQx9gXl1JuKqXsRV2u9fTb8G3GjB2llM+jKvm/G9Vi/GRUpcLDUeeyz+1+eohnof6mPQ3AEdR57Sj+Lq/fBXUO+1gAC3HYTyX9JgD/D8C/NIKhG1DnxGszza+NiPvmtZGGDBFxLoAXAnhAzr0fB2Bqgd96h+eEFdqg/li7oJRyYx7/Q57bhKpVuHzEM6eh+aFVSpkDsB1V2j8fvw/gMgAXpMTxVxaYzjMA3FRKuXmB9zOd25vj7V033hoi4lkRcXFKSHcDOA81374l7zNmgbwn6+MeAI9BbXMopXy8lPLlnCT+D6q1HAUdM6iT0rukgPaiUsqevDYH4LyIWFlKua6Ucsk8738agD8upWwvpdwE4NUj7nlzClOPpOB3IbyylHKolHIBqgDq7aWUG0op1wD4JOoAa8wdmV0ANh1FmHIWgHc3Y9L/AphFnQwejYExPf9fuoDnjDlRmK/t9Uhr09+NukxxD/o/thYzP9wlAqIDqBZwm1Etzi9q2vmH87wxdzSuRV3p8aMAfjUFoVMA/hBV+bdQ3lJK+Upao/06qqJvwIImrcufAOAXc/njDagrOhYiEL0Bdd47k0r8ryGtzEspHyilXF4qnwBwAaogCug2ZJgFsBzAPSNiWSllqpQy6vf4CckJKbSJ6p/maQAeHnXt7Q4ALwZwH9RKdAjAOSMevRZ1csh4AlWock2eOoA6qJAt/Ccb3C+VUs4G8GQAL2lMvo5mcbMdwIaIWLeIT7wOwOnNsTpk3d+VzhEMpC0izgLwV6iS0I2llHUAvgIgup4x5nbiKVkfl6PWz09ExJaIeGBEfCzNS29BtabhJPItAD4C4B+j+n96TQ4U+1EHyxcAuC6qY+O7z/N+FZaOsqS5NQLN65v/D444PulWxGnMtxOfRR2Xn9JxfTuqVdy65m9FCjaPxsCYjupf7ggG25gxJzLztb2WH0d1TvxoVOuAbXn+WMwPb0Qd7+7VtPGT04/dbYnXmHFkK6oCYRLDioWFGAoQnZMuw6AQFahj4DLUuS4Fom9AXeI4H9fIqpErUefCiIgnRMTncvnTbgDf17x7pCFDKeUyVBckrwBwQ0T8Y9g/VY8TUmiDOvjMovq8OD//7oGqtX4WgL8F8EcRcVpqDh4cdUvwdwJ4YkQ8KiKWoZp3HQbwmYz3YtQlVhNR/cr0li1ExJOiOvcNVEuA2fwD6gTx7FEJLaVch7pG+C8iYn1ELIuI75nn+94J4LkRcY9cKvIbcv1iAD8YEauiOif+qaPEpWlbjTo47szvei6qpY0xY0FazPwLavt6GKoV3fsAnFFKORnA65GTyJTw/2Yp5Z6oS6CehNoHoJTykVLKY1AFuZeiCiuPxnUYFJCeOSp5crwYAaoxJySllFtQx7E/j4in5Ni1LCeFr0Ft07+dSgVExOaIWMjONm8H8OKIuHNEnIS63OIdC10KYswdnQW0vZY1qHPiXajj2u8cw3TMoY7Br42IUwAgIrZGxOPylusBbAw7Ejff5kTEA1AFM+9BtUhRxQKVEQuZP+qcdAZVANqyHbXdbmoEomtLKffC/GzN37XtO67N38z/jOpG5NRUqH4Q/bl3pyFDKeUfSil0YVJQfVkZnLhCm2ej+ny5qpSyg3+oDgifAeBXAHwZwBcA3IRaYZaUUr4G4JmoawxvRK1oTy6lTGe8/yfP7c542l2e7grgo6jrcz8L4C9KKR/Pa68G8PKUcP7yiPT+BGpDuxTVFO0Xj/ZxpZQPoa5b/BiqJPOzeelwhq8FMI06yP0dhh3FtfwNqpna7oh4Tynlq6jmeZ/N5+8N4NNHS48xtydR+QEA61GXSaxBXWJ4KCK+C1UbyHsfGRH3TnPRPajtbDYiTo26U9xq1HazD30haxfvBPCiiDg9quPEhSyBvBjVh8ayiOjyg2PMCU8p5Y9QHey/HFVpsB3Vou49AP4EVTB7QUTsRfVn9cAFRPu3qNZ2/wngm6gWBb9wzBNvzLcx87S9lr9H1bRfA+Cr6PuVO1a8DHVO+7lcfvVRAOdmGi9FFcJekfNVa+fNtxURsTYingTgHwG8tZTyJdR55W9HxJpUSrwEAJ0PXwzgeyLizBRW/uqIaJ8ZEfdMBf5vAXhXKWVgLpvGARcA+MNMw5KIOCcW5i/xFNR577KI+BFUA4gPoloILUftL45ExBNQ/eTwW0caMkTEuRHxvSn0OYRqXTff3PuEIcr8vnDNtzlRtyX/CoDl1iCaOyIRMYXqh2IWVTJ/JYBXl1LeFhE/jCpo3ADgE6jr7NeVUp4ZET+GaoZ5Oqpg5h2og+Jm1IHz/IzvYgA/l0LLrjQsRTX5fBbqIPQHqILgZaWUIxHxcdSB+K+bZ85GnWjeK9N2OYANmbZtqD8kl7HdRsTVAJ5JgW/UnQMuLaW86tblnDHGGGOMub1p5q5HUP0ofhVVKPP6UspsKgBfh+qQ9xCqtdmr0vIMEfHnqEYCN6IaGLwRg3POzwJ4FIC7o84xn1tKuVHnlyn0+V1Uw4M1qM6Ff6+U8o9HSftzUJ2DfxHVuOB6AC9M/4uIiJ9HtdJbDuD9qEuwLiulvDwiXoxq6LAZdbfHN5RSXhkR3wHgr1GFPzOoK1meX7wbHAALbe6wRMRTAXwAdTnT3wGYK6UsZE2yMcYYY4wxxhhjxoATdXnUtz0R8WsRsW/E34fylp9BNUu7HNX64GePW2KNMcYYY4wxxhizaGxpY4wxCyQiXo/q10p5aynlBbd3eowxxhhjjDnWeM47XlhoY4wxxhhjjDHGGDOGeHmUMcYYY4wxxhhjzBiydDE3b9oYZdsZqHuptE/HKrmTN3Dr9oODx4fn+s+qoQ8f4R5HFCtxw685CXl+mcS3RI6VOTluNxRjGvQzNC6NQ8+HhPr8fMdHY6HPFglVTMe0zcp9GgYGGRWfxkWYH/OlcaIjbt3vSste4yFtHWPcGhefmZknrjlgaga4cbZoTowFmzatLNu2rQFwUp7hB09LuEKeZCa2n9XVKLUiz3QcK3z3odHxlrzODem1bziQIT8JGG7vpKt+R8d10lXvtV0c7bmuOLr2a+N5zdbZjpDZuz9DrdOTHfG03fMSCbXtzddn6fn58rPrufa69pdd+ahxN+HUAeDG6fFrm8sjymr0P21thjq8sYjaKt5e3wtgIw+ynA9mc2JTWMp/tF7lcwfz/MqVg9f3Zfs6Sc7vz/OrWa+ymbIaLmvrlbSTubx3yfI8z7j35m15f+QHz+bxBONkX0CyW5u+pYaT/LbVGbIO8fk9GR5Bv12wa8zvms1wgl0i6xPTfEjOr8mQ3Zl2d4yf5XCzPK/pALB3R0bNZ/g9rAjZ1o9kWpZOyn1MA/OL389vYD7o2MqKyPiuyZDltKL5DnJdhmvkXnKLvCPDi2ZwYyllM8aMyYjSjobMUmYNqxg/c0L7zHx4+mC/ya3akP909cmEL85yPbArn9dNqjn2sXwPDh4uPzn/2SeJZ93bCOCm/J9xs61c19wD4JZMw8mMQ6cQrFv5/N5dg69mAXP4ZnVgFWT+slpdD2BT/s/PZHZxiNNX6/DE6zrFXCLnGa8+x0/V5rME/SJkdb8hw62ZL/uzz1qdNxzKvm0FI+XPHrZR5ifbJsnEcF9XFt0GJprP8WNmgFvy/5M1Uw/KM1kYc1kISxhnhhftG8+2uWnTprJt25nod8K9Gp8hS/DGDLXVTjfHrJGMY5ncw1B/cGSB9jLxyOBlna8cGby9NyYukfM8nkG/nHSuF/KM9h+sU9on6W/SpXJeQ5UAtPHoHFt/b2m9hBzru/Udel1/62v8rWxA5zqa5zo35v3aFuc67tcOZGnHdZ0/zxzl2a5Ny/X+DC/6+ui2uSihzbY73xkXXvhKAOfmmU1yBxsYGxK77asz3CchMDw7OyThPjneneF+OX9E7p8nvunpwWjYPtuJmI4I++WYUfLZHMR6IxAH5iVyP+Fz7HgZv45c7YSO//MdmkaOMEQnXkzThFxnWrTzYFq64hv1Q3qv3DON0WiHNSnHGp8Ka7qEQ6RtDJpvmjaWe1fDmgDu/+aOa2PAtm1bcOGFr0C/Sf9Xhmx712f4lRrcnKP4+lNq+PWckpyNfhPblAPhNXnv1rNr+M0ranhG3vffGDz+TIYPyPDLGbKefyPDdRlyI7+MtleHWWaMdwp108L2nZwkfyJD1oHT5L67ZsjyPVuuPzzDv8/wgZI2thtN044mHVc3/7fXVkh4rdzHY9ZB5n/y5exOOT9nr7o5uzxOis85OPj4pTzPBxr01WRbzomuyW55a35vybSx+azO/L05I1h/al7YKS9gG2e3zDa+qrmfZcUqeqocr2nuBXr1puTs9isAno7xZCWAh6Kf9N/N8BEcOlmPtmTIb2c9busQh2+2G9aXVc09QL+Oqnx2Rs5z/qu/WPR+5r/Gz3ASwxMPHqsUSgUdXfepkqad6LbXFfYxHGsnRrxD4ybLO+5TNE1ap+UHeed75tAf40lXPuh15n2X8oplppNUTTPTooLxJU1cPKfzF80nLdsct+M8XIkxZAlq18OselKG350hm9u9l8kJdrDn1WD/5/syr7s9Nf9hg2ffpnlz7wy/WoPpN9Zw8hflvi9myDEzx9Je//zoPP+pDHn89gyfAuBd+f9LMmQ5/laGP1SDizMN5z8iz7Of2Z7hfTPMcv143s8xhPm3NuvUv2Uav5DnOXQz2j8D8ML8n0l8sBxzSvCDGb4jwydkqFNtznrYrJjNm+X8OzN8TYZfkfevQL+YWR/elOEvZ999aY5Pd39YDXflFiAbH5E3Ztn2MogVTeci2Tq4oTGnTw89J/9hhvFjp4B/yDH9x++X5ziOfEmeyXG4vK+Gcec8n38B/m8AACAASURBVPUyPjaebXPbtm248MILAbwtz2zNkAPnJRly0sUP3pYhS28Hhjvkr2Wov8SnMtwl5w8NXt+XM672hzrQL0++WsdN9rk9Ic6q/juK/EgKCqE0jRIe6fhxtTRfUuYG06bo+HA0usZRyHks8LoSHRrAogPoAp7VZ2LJ6PNd+aIsdE6w0PhGIeNobBjdNr08yhhjjDHGGGOMMWYMWZSlTdXxfgB9SSWln2oFQxUpLW5USrhuxDmiljXXyH07Bm/v2RovlbBDMqkSTZU0LsOwNQmlaBTXq2aJIaMetZyjfU6lcWJ+PkRruaJWPhr3ajlWbVmXFQylwZq2dXKfmm/vae5VoynCZxgX36GaYE2banonJKTpAfNEy62NT6Xhqnns0kySnRg2ax0rVgG4X3PMdvQ3eZiVknWTFiYTaWGzvTm/Lf//WhYu69r+KwbvZTO/OEPKhacyZLmwu6Cai93EarmfGimm7SEZZpPf8b/AltRkfvjdNXw8tZ2pKlt9ej6T6qqD+b0r+W6+IzVTBy/L65nWqfyGbaw7WiepTacGlfm5DEOWNSW7v8h6yqUdTMr6jOuqjKOriv5tho/LMBWcQwZJPGaS7p/hJwBQacfkaxGwKe7NNjyVx18VDTHTfk7m4+V5vC3rAqvGGTcOfgMVz2yyK9Jk/1oAZ3xz8J085jOrDwxe35jPUh/2IfSr4rixCrUc2BSY7xdn/mxhqOuktO+7O4CPyjmqkbtWH+ayhyHLmJ1y/awM2Ta4nOJcOe7qb9dg2OpH+1FWMB1HWIi0NFKLTz7HNDCtVMHzPRxbWEEZ33b0rb4YFwuB2mlqxHU6ow1Mre54ny5pIcwLfhPH+daC9J75PzXkTL9aqjGt7EtV3cbvZb6xjLdlyHzmN2kZMv/a6dVqDMK8Z35pHVXNMtM6pkyiFh0/XQ3JekbLLAvWf9bhLJvVy4F1XXMfNcPX+VWW4+SpODpS3moUNzQ3audCXdbRMgdao9e7npfTZ+lt+TzzdbNcZ7iq/+rePSwDGqNsbe4F+gaxtENgFWXaOUYy3i6jw9+Q86fL8YombsZ1F4mD1YI3bFRLBH35ssH7e+Rx5PWNC7B+0LweuiDvCM38sWcngDegn+v8Xcffg7S4WSfXdeUF0J+lcALPxsbONieBvTmz3se4szaexM40rXxW8nr+Fl3P93asEuFv0CMHhsuvd2vOvdU6lszK/WqMMj03+jzrBSeJrUUq0K8fh9Afc/mMpkGvE8alluY8z8bM8aE3dmdi2ei/IfczzXdFfwxix7Ejn+V4esU81/lbhR2Hznk4fq6QY1ZHWq8zvzin2IJ+nupKEf39S3g/36WrQQRb2hhjjDHGGGOMMcaMIYu0tJlDFQtRhHZhhifJfZQwqsfMVkVF3aha2lDspJYzZJOc57vVd436uMnjSHXXspR2qkYrWicutM6ZG/0K1UQpauWi6/7VMqdLI9Kq3nVNOtG4VOrf5fBKtX+ky+mpivlaDZIWs1okqVRXmS9tC41P42l92qgvgIVaR63CmFvaFNT6SpXrozLM44kUPdO/DJswJc1UHuzFsJZWrU1Uis28Y7lQCs7yo/kF49H1/jcNXr8ktZb3mqrhwW/2k7xF05Lf8R95+IBUfqjCf2VK1mez3CcyTVSen5PxTDFpNw0mnbm6jI5Qtc0uAQ5mVzOxbzDuU28ZPOYnHMg4KLRX91or5FgV/RTuM/tYdduiBGoRazegrq/EjU6vemgXR+UIFct8F4uaRat+8m6R63z/DgwbMkDuVddHM3L9YsyrnDhuzKGmTQ1MqPCZZEVlSAcKtKygdn8N+o4cWFiqDWJGqVNbwrjUdxgzlH6eWDj6vGrceN9aDFpctvdMyr1Tcl+XA15WLLXg0QzsNaYMl8t952JYs8VrjJPONngfGyL7Nx07WZk5/jDfe2Zkkia1gqUCt210TAvzgx2ONnr1k6cWourTR6+TWbnOeM9q7lHnzuo2gvBdaom1BWPNEdQiUEsbfm7P+IXjlOYlH9gCbL5SznWZeKgJCNvHaXJMlsv5jG/tYTnP+0ZZd6jFmA4Ck73PqKhvJq0j+f0b5fJK6R82Z/1nVyafgAn0qwrHWbqS47ScxoX8PDZ3NlGmgWOg+t1m2pgGbU68TuPec5rr7F7V0J75w3rTi+w0OVZfNJqvc3Kc1zlfGKpLy/vnV+s9XWXFUPumIVOtceMI6koNbZ38XcfOkw2PmaNusC9r7uU1/obks2oRs0Ku62oO9c2qjTzjKTdgJOw/dmG4ouqiFf0NxFepf1WtK/obSX//0FSNDUb9srVp0t91arHb1a+wselvUTZudbE7KdfV+rAdG0+Wa/eROLV+nyvXCfPvLLmu+UsLG3aS7HA4sWNHtAH9SXKXT8CpDHWM5tjN31cd2NLGGGOMMcYYY4wxZgxZnKVN2Q0ceTewlCo51c8yulyofyTFVEspOkvR0sEDwEpRKexLkZWuwaM0Ste4q7pZLUVU+z/fDkaUcu0ZcaP6rlE1su4mobtBqZaryxfOKMsaYFB6qvnRbAM4Mi6ly9Kkawt0/dauNbQTGPapQObzJ0NUYK3qc02Txqf3tZpirarzlcGod2ocY8UBABehr4ngPgqpVdgh4lvdKrbdyYySX/WGr2tLd0uofpN4nlpz3YXtaDu3AT1JPVM+AfSk++yBWOeoeD958HSfrKfT+b0rMuwp4XcO3q5JUsH7hrywbKZ/nrodViVaq7CaqyWJKk10mXLXroTMTrJBjvW9azBsLMU4qCDgdTZnKhJUkUPFDNPIqqAGD6qU1r3+2pA2l2qIJUXSy79Vcv1aDFedcWEfqk8h1gnq7no+hTLDzsvwTDZbWsSxcLegXwg8RyUkM5uFebKcp1ZNtfy6XWzXfuPouN6qzKkV03FYNYVUeWvc3O1iyMJ2kcbAQz7t2nOqrR1176h36nU9r2nV93Sk407Ne+7R8Y676TvUElnj7mKhaT3SnNd7WQEOd5yXAfkU9jL/M0/ajg+HUZWi5+cxmwuVrSt1hzf1B8R2ONPfjXbIR4JaUKnlGA0EzpDzRJ225PGEWl+ok5d1zfFmuTYr92TcqzcNHg9Z2knaqJxeqdZt+TytVXsu8ST6ZehnIT+ftZFdWbqs6ym42T2yzJgk1kB6L+E4RAW7dkt0l8HdophF7DpXNeeYxm18OPN6ko5wmI9aT1Srr5YIrEfi62L9hJxXa6s1wBoOmqv65wbeqe/Sj5lvlcBx5wjqzED7Pc6yLsowZztHvl7DpVk4/5kzlTMwPKFiOXUtBFmZcRzcM3i+t6MT0VmmHIeOaclkHm9ufNpwhQf946w7IHHID9/1+m5deaL9ufb3ydaucQHAneZZ9XLmPOPmmV1pzPDOutOz3He3Uf6JAGAFcLd9Hdfy2Xtm/ulvRObnXTt2keJ9usMb5Dp/gIzyVbZNnlGRAp/VCT9hG/1tjMSWNsYYY4wxxhhjjDFjyOLUWIdRRdSrU/fd88ycIb0+q1OFDSlyp5PuzQB2pPhJLWh0CSM1FnqfOl2gtIqaDIrWN8h5tVDhMUXvKzBs4aEu7rt2buJ5LtClVK4rPqoP1CKH8R2Q6+09fBel75T6M++7vJLrOnu9zue4hm+nnFfrojbtqnBT7apaZGhcV8+TNl3vr848GB/ziPVttnn2FrmXcbE+daVtJ7oticaCadQM5AdRbZaSaNZdbR/MI5oAnIbR5hBAP092y3mWg1ovMU/n5JjlqyYWu+X2w4OvmwR6mwcwuZtT4K6+UnRV8qrDg6+kRo3WG9vE7wyF4bqZjRqetRs9cF8DwmxRwzt1h6NO+NWihGlg02Y3Sxgv36NL629C3xCi9XPTPttl9KT5qtYwPFa3RaoN4Hk2r3bpti6R1u9WI8CbJJxB9eg0jtALHK3F2F3r5ke9ri0Lv6fFbbff0jGS19o18sCw2dQGCYlazKl2Vi09uywlZ9BXjatFpjaULXLcI0t5NucFmzPUPkjj1fFfx4oJDDuH6vIzor5odAwgakamnQPfvVI1rdkXc2ePyUl0WryU1PLGKXle/TKof4VtGU5lNLRynpT7t3Tcpw43NqE/IGsaG2cubVydfifGk1MAPAf9vp7TFFblXpaqFQzrQzvYqPWaWvvq3EF3VOk5TZN3aLGoZYW2WfU/tAzDvq7UzwmfYUboHJyhWGesvItcF18/k/nNZ+egq+PatuZV7O7YRdGK55Cc/0E5ZshaTovbLpcfXcZGZ8lx+6mRL9na+z0jH8K83ybXiZr58CXML71fLSjVJHdN4+5jtYRq3cNnOWlg5R57nzbA6J+n/CDuI5Z9zVIZAL5nd3OdTkZ2Dz6zsueVSN6X4cpTB+8f6nvVqqXLirHDYmTp0u5r0fWsvqPrR0nXLsoLtSJdzLP6g22+59tdpEeloWPn54Fv7rKSzfyIVZJk2T1a+1n2owtZcdE+p58+i+HVKzqP0NUy+rt5HrNxW9oYY4wxxhhjjDHGjCGLs7SZQVVVn9EctyHVraploBicUuB26xJVZav2T9fEMxTP90M7BqkVwP6O+zWeCQwvlOX36a4RRLV+k3JevfdzSXirpm/hfRvlvlGo1I5qdo1Tj1UaqPmmO0B07RrVWh9pOvkOVbNrXPxe3X1Cy4jnWUfUJ0OX3yM0aduIQfjMNjmv+bMCwzs7jBWTqPoq3cktC5Rtkzs70eSEecQ2PYVhj+k8Zj73HHIMvqJ3nuWj5hi63dE6Ob9z8DEqoNroHrB38B5a0nwpQ60C1O51GYGpTxa14mC2sVnp/gKtoF0NHNQl0JzcR8MjNf5SaxW+k0XG+FilaeGj2clmcz76XRrzi4aF6s6Ez+oGYVq0/DaWwxIJdWOB1mUS0G9erd+a/XKOz/D71ZfPNc31cbe0oc6Ou6P8QIZ3V5Ux+9tRGnPdfWFC7iVq8aHjl96nBhE6Vnb5tmnHcfUPQFTLrOO93qcWnBwru/yZqfYKcn4Ww/MURa8frZG31zWf1WfQ0PQq++bJ9gWqMczj0MFG+3UmTjWvm+TValbECpWd+9KuKeA6DO+aopY0bM0cKOh8Q3u+8fRpcxKAh6D/FT3XLGys50qo5hrtoMKOkgauaiKi81qNQ526sP7SjQbbmlrNMNws11s/Nvxf50XbJI10FMM+SHfLVGufh2SojsvEgmQynzsrBx8qwR94oG/hwqTw1ZoN6heHz3GsYHbqlFp3rmqN1tvrusvU5BJgDV/OwZ/fzZfr3EnLgPnK51Wzrv2Mzk21n292GOrdullCHQu0P2baxtpqHKiZNcpSj5aFXT7P2Ge1W/rdq4kTGLbc0N2jeMy4xEKnc+fiLh8vXRYjoyxttL9W3y3aiG+R6127aPE60zwxz/Wl6PmmHbpGFnpdt1nk7lo5y2aj5VaaJTtLZruaxe3F8KSavx1lJ9oefFatkbueV/N3tj3dBpWwrd6E/sRUrSg54ecknH03LRz5Y4OGYR3Y0sYYY4wxxhhjjDFmDLl1Pm2orefe6JQQqe8S1Uzw/Fnoq40VXSfatYOQWlmo1Fq1ZLqYVaGAcg7D6mSGXVo/ir5uketd3qEp3aM0bz6fAXxvG5euT6ZJQav9bFHfApBj9UWgKgz9Jn0e6Ocb85JxMW1aJmr+oHHzuzU+1jdV2+tzZEmTNtnIrO/0RM6TVlMx1kv0J1DFydoAZN0uVTSXjb4MYFiLTcmx5pHWY1WwqmWOxs/zKfWezfhUacQv+TL6uz91NYMDcqyvVuuNrlCrLONlVdMubgbD/mLU8FA36mJVVFc/6oKD8XAnDTZNTYO6VSBt9VfjC+0OeH1aQjU6VEWExqdGc2rEoFWsfQe7UX6f+vChsoTfuQ19y6Bxo6B+M8uMm0Kxft2dNzJDWOnvnSErx8PRN4/iuMvMY//IjLo0Q+6AoP5g2MB6Dp0y/O8M1e+MOjbi+VabRRX2Crm3a1syppn9DyuomoTpmKGVfLuc13XkGzHsTEP7L2rCGRfTpJWcfedUhudkeLlc78WfreeU9Euz54Yark29f9nTaBlT3XYwa3JvB5N8hmU3ebcaTuduKZP3zQsXS+Kp9aRfmodleGGGLGRCrej9MrxoAfdwLx9mRJfWdjwpqNWKVfUBtKh5Zobfn+F3UBVKOzma07Q+FqgRz17rBZoXqsXP+56Q5cs2xjrIenH/DLt2R9V5L61AXsbKfhKGp/n57odlJKxbP5nhJO1SWH4r5DjDnxbfRdNX1XAqT7Pd5XFImh+zF7029hiZU2/Je+7Ojj37wR/kfUwiB9GunfV0tySdVOjgOdEPV3MQY7tWqxZWnN6uQl3WH/P9zFJLti7fIf1QjXKG0WfkPK0cfnfeiI4Ty1D7HxYCJ6FTGWanO50VhBOVk1gx2EZXYMi/Y6/RiKUI84RjljpG0t8t+rtDxx6dXOnvm7kR1/Q30dF8p7TvmO950uWnTWnfp5b2OokjakE2NLnMDkAdJ/banljYMB71JXYT+mXD9s3JNftRbnPKOZFY8/fi5hDHSSW77T1ynXMBwurIpt9aA30h/1cfrNlv3PDZGrK1r73L4PWrPoujYksbY4wxxhhjjDHGmDFkcZY2GwE8G/21Z+qROTpkQNyhoFXHUlpNyZYuNiV7JSSUnOnad4WSOJVMdqmeW9SvCVHLGrUo0IW1akmiPlpU+qnxkxUj0kRBtG4DM986fn0n46VGgpLHSbmuEsfWRGHUrgrA8Bo/VbsrKjXW3QyojWI11LJUrcma5l41zdBdHPidmm+HMFweY8XVAF6CvjYstQh7RJOnWvIvy/Ec+nmldUl9CuladpanmpxoefM469r+tLpT6w7dlOqu6Db0UgM9VUBOd5xXYzhVItDQQY0PWF34qatGPMtsYhPS7qJrIzdtkuqmSg0o1CBPl+u2S2T5LhbZFjmvy4eJNntV/Gq1UqOGrnwclW9qcdRlRMnzp6LfJYwbJwP4PvTzg8PR91K78vwMqRGiUv9B7R4rQLVmoMZwnTzEvVfy+oM4KHRpflPbfy928tlXPEidU9EclqV3SYZpynNV1tAp9Cu3GvixYDgGcNxXjTjP08JE08o5hPrHUkdO2iEcwrCGfJIvF0uQUxiZar45KGb+niK+Cu6h/gYYL52jZLxrWX4ZxlJgkq2aO5ZIWekx75vUsu0qa9W4d9kWsvdofUZonMyHdRKqRQZDxtVl/nt8WYKaUraWnqX46XLc84nBUC2QWksbtRPssrTJtrc068Kdsk3NZD1XizLVNjM6DhI94xjWbXYwqzFcJ7Ixrs92fSR796XaLrp2y+nl2CCTGd+K6cE06+5S7Vxf/UGplbla7PHZLit2nfdykJ2QUNFBeBLDZaBNht/V81E1n98ppWu3ofna8NHo2olH6O1OdO3o68ebsgOYfvWw1QonItfIcc8sOeveafldmwFsuWIwDpb1VIYsXxoO0rpLtzZjF6mm1EQtUulokdZvak16LYb9mehWo12/T3XHR51bqzUL0zTbcZ35nN988DJgJZs535Fbs+361MCtmDht8PrNHx2M+hRaBmc+TL+vhsyurd8jaczn/y3z+zGPzfPZ9+3/KPCveepHn5D/ZNdzwxdr+N48/dOPzn/SEPVzNw6++8lpvr7nKzVkdZrK8BHZPV+Sz90ry+ML+XH8dH7rttOAD7OeZPjAXNWwfmbg83pF+HOsb1k2XYuQiC1tjDHGGGOMMcYYY8aQxVnaxDpg8pHoa/9Sshy8QT1hpyxpaYqplqaWYeVh9DQOm3YM3nswJaUUXakbed09SpU7vV0X5NPokbrL0337CbxGpQmlkhTPqY8PihwpUWUSetsRSBoVtXpRiXC7PpGaFUrz1K2+WjuovxFKTdUqpd0lCehrJVUD0mXqwG1S2nczTboNjvopUmsqla6rWYOq+XVdc5fFDdMJ9MtId1Dp2k3rAIbrylixAcAzMKQ2OPT+GlKBTX9UWo9aSTzzmUoY3UJInamoSYzuEKNrg8WHk1rDqAus1viJr1JLma6N1nT3It3IjPHpUlfex+yhiw1K1vn+dkcjxslnqERhGtThvG4Sx+u6EQ+LRp3pEzVk0u5mC4aVhLTWYRHznezKmBY1jOiCz7NL1KqgLsjaHcK0OasyWctks9x3APMv0T5eqN8MNsOrUvtyJrV7qaXqZeSu7CS3ZINd99V+v6i7jUyemf+skwvq0E13lCAd43YvzLGaYzPfz8awBcPjBP08fEfXrhdMi1prqFVHPr80w/V5ej2/TXfLOJrWuvVB0h6r5yu26iNyzIFfbb1oQaODJP3JMJ4tctxas9ACQ61UNF+64tLJBb+JdYFlrqa5fM86Od6Ifk92pDnXPqsmCGqRQWc/48l+VDdOVHJPpAr0HPozYOf4kBxDZzJklWv9KLCDZHt+XIafyZAdbrvbJtDvGOivik6u2Cl+JEP6oPuzDJ+XIV0asWp+MUe0+3++hhvQr5b0k6VbIjLNq/LZr2ZISyNqgukWSeeKvM541TfWVIYcRPPbb76p21BAXU3oxqs87mn7da7NfJ3Ph43ukNfOFXX+SMM52R2rN0PZmvmm/snY6fMjdXtEnS+x6TI/1bJ5Gv2myN8carGov0XUH0nXyoZxYQbVekLn52yTn8xwW4bMU+b5h5p4OIFkHtF31Scy5NjLuNX/iTqiy7wtF9Qwsh7syeJfm5Yj16RFytZsXxflt9wvh4sdNwJbMu6L8yfy+axTWT43Hx5M6pMlicwedjPaRL8h932nXKcxELPoIZmOKwDM5JDBavmgK/rX2jTcN/NlY7ZBjnp0rfcjHAayjbFaM56t4o/1hvxmWog/RlYJfKN5d6+DSPMU/rzpkc9O53fRo9vpcp1JoDSi9xP8xv47AWBLXtC5eM/SZme/2rDZ8nfA+l0Dr+x1i7uyMDbeNHi9C1vaGGOMMcYYY4wxxowhi7O0wUHUde275HzXOsodcr7xnD+d4iWK+LocPKh1hUqxVUk2IZ4x1GKiy8N3K+qnFJrvVk/9lF7r+tiu9ca6rhZyHXJ9Rq63aWRcqgzVnauY9WpZo1ZAumxfRYdq9aNb27SS+8PN/+29ojE4KOYQuqpei4zLU/npXc7ZtYgptD7QPMPPXJ0nKOXsWiK6qzk/3sqJQC1UNukU5/MD1JRE6yqvL8P8a39VoUztjlpYqZZEHaVkGiZSMbs+C3h1nmcV5munmlermyNqDKgc1OqrS5/VUkaVZ+pCS42G9Pws+tn0GAymn02P2URtAHXefI7fpGlW1JBMs5VpZ/zLm/+pBNWioWaTCkrGqQpI1dMzjVTaqhGWblyk7qeuR1/xxTSpQ35W1Z5WVdLautMaNwrqd+l3D7lW6PLF0KqAdEdFZjpy15aNVw2+hJV5KUtRrVAIS581VvzIqNWrFvIKNBauWht1J6FNcqx7na2Q+zQeHfAZzzq5r7VAUTU7dw1RSxlNA3sHtUbh4EnVe2s50z6v38x4SGtpw7hpUnG4uaeFOkK1zFE7P8bHiYFaIjHtJ8t97Q5BTLdaYvH7Cd/F/FKz3/FkE+qGSTr291S87KjZ7nqWNxkeau7jLk/MCs5P6c+BlhGMi01yUu7nIEFoBcAOjk2VnabuhvlAOX8a+lXkVLlG1JJWLWK/t+NdOndmuF2OqVLPajG7r/+4Gp2o6xn9BaHucXrT0Kz26zKclcFT3R9qzTxHLXWaOCZYVk/KkHEzUn4v84n5yP6ZqvYuS/o9cp2ZslHC7c394oOks2wI71eL+3FlP/oWYMCwCYTucsvrzEOanpyGYdNjxvuxDOkaLv2a9Cxr2KZ1Mnjl4Ks3Z31gNT9/++BjO2YG76fVx24AW/ImVila66jHIfo5mcpQf6bxPJs4q4zuqsnent0OP5XZyfnzNzC86OBB2b2zGjLLadS1Mb+FRn89Vy3Z3if2Dj7Xa9titsK82KXXm3zstV9xIcb86s0Hdw/GOZXhBrku6316z7Np0npIjeO0Czw407/GMuv9NN83+Czzp7ebbN443+9MW9oYY4wxxhhjjDHGjCGLtLQ5gqqlmmqOgb5cMI/VL41upwLMLy5S7R6fpfWJSl71OZU4UyquUnL1DTPdvEvV8yoCowSXUnpVE6hPGnXI0eXEQtUBrTULRYAUQ+Zxybi5gdfNeZ5aa0pH1fiHUT9I1lJedXjwOUpmqTSglFDjA/qSVyqFqLDi5/OdVPDwHSyq1roF6CswWORUVv1HhmokxGMqOm5q3knF1bLMH0pmKXGm4kKr7DIMC9zHi8Bgc85KxgrAdaUsOHUUwszt7ZiBvrie91CMf0DOq2WYbuEku0UNaXvEDGoyK4quH12HflM7Y/CR3tJ+bVrULLDZsNmzPquvFbXiYP2gYlMtdVqFqXY9+i7d14PoDk6ky1UT0TrKY+YN39vWW76LeUpXC2xzqzAaVRKqMlbdrJDNcl0N9m5p4tLqoEZ9uiyf3Ad9Tci4MY06WqpG60EZbqW2j+oY+n1Qc6o16GeuOn9iZd0gz/QMTGjSJlaovW3MqE8S1GJODShas7eZjHN57lanFgSr2ftfNZg2NlD1paYWsUvZkbW7GwGYFnPVyXyAVkJL12LYwiWtSY7kdy+VQVMrmDpm0n6O39rVr53U+yfD1tJJfdXcOJh+dVQVzFCxqBza0kZ2EeyhvnJOkvOtj53WK1Yb1zo51rSIL6QxZ8hfl5pxUGX60gzXc8uStHr6kXWYf2cthmrinOHWjl3ANmX4XXn6J7u+QmktztRSShybnDmVxyw3lqP6gNLd5XI3ucd/oIYX50j0yLzMQVg2hJvIZnfKtfUPwLDfSM4BdG5MNEldgwfbaPYr69UyZaMc8/oaYEL9ZqqJN/tPDqJ3UvMXMs8ufr2PYDtTq0G2M+b70uZehifLM13b6UpGPv9jo2873uwH8AX0x0X1VcNxYo2ELJt2Rx5mp/x++3RW14eKD5sPZ9f7eNZFrxvhuAAAIABJREFUtUqfGXwVuwf+jjk/6y7nVKwVTBLnqocAzB4eeHXvNxKrI+Pkbyg+q3Mh2meyNrCUd8l9nMKrOyqSmynhSgy7WmVap/KYRdP77Zf/aH4w29fmdTb1nmc92WZV3bHqBHcvmrlyfhhd1g5ZTR4aTIP6AiqHB9+l4gS+mj+PunaZbReeaC+p0ya+Qxc/dLl8VWxpY4wxxhhjjDHGGDOGLNLS5lQAP4chy5reca5mW7lvMKREeX0r99O151cP3lvEWofiKtVmqbpZF8SpBJ5aMXWkguaY76Q0l0JsFQGqm2e1uJlvpyp9nt+ivmHU4gfoFLfNpliU0lFKO/kq1eb3hJgiHeYrmRS1MNgu53ejn6UUbDMOet5OZ+q9+34gQ/ojofT4WrmP1j3MVkqHr5b7VMlCSeeVGFae0hqI+cJ3cjm7GmZtQLfuYjw4hJp65n4u3FVtlzoOoui9zTy1kGO9bv3etM+qmoAFtVpCaqhVMw05zvY2mZX4FF7fDezJc7r0n8fqZof1dM3g7b21qvwUVZ7RWqVr6Tff02o8TpNr6klD24caE/KYaWUbVvdRRH3aHJLz7La2NudYFNo18TzzTS3xmA9UTDL/WDVukmPer0oq/faTMdw3qQ8brT6jPGXEiHPjwBHUvGFfxHx6Q4ZL8sTZuXPNmaoKY0e1BsM+1a6Xe8+TY3WKNMrMCRgeS9S/jo5fWjk2YLiirJJj3fWRhcpKStS4o9cw90h8HT7rDskAuGLPsFpyZs/gu+hfT79Pd3Mhap6n57VfWzM3+A0r9vTvVzWbquMYsow2yy6YjEudTzFt6uuut1vkntHf0MI4114rcVw1+K7efXn+aA11jCioSdWxZDqzeJLqVfqlWc9BlLaSdIZxEoZ9K53cXBsVdu1ypv6mFjlF7zHK0kYtbmjBoVZW6+S4q5JK2ntWdRly4OKgoAPe6uZ/9fvYtQOoTvaI+odUVThRRx1du4W2KnPty0Y5VQOAgxnZytYipkXLWn2B3ho6LLQ6643+dhtT6NOGPw7Sj9RUTtC36VaSUhbXZFFs3Ynh32NZp/g74qHtjxj0rVoer6b1Mi5weNXfLbxPf5LSn+D3Na/b0/wPDFsVc250qdync8qpDPlbidmi1hzXy3XGu1buH/AbI+++ScLeT/MDo+/jN63dM3ie304rmVg2+Hxv2JXdZ3ej+SmdN6mr114vund0mnSFiG7gphsWaz7q1KiNR/2h6kIdXtedW7V37WKRI8IK1AFrPjM/3fpRO7Eb0f/1qANGwnU+nIR1/XJRh1T6C0DXLOiSDt7XbivWJdlQx8Asla7tolWwxOvsYNRhm9SIPYcHX98asav1JyuAbnHMV+pqMs1GdcTE7KCgpbclXIbsS7WCAv05DmH62RnqUiXdlo6OrNiRdDkJ5nl2viqne3iG29HPJ97D473NPUC/UfP6/ua4YNxpJ2gJ5460t9TenJnFzDyAYQ/ApF1v1sJMVP/kau+nEy6ViOjgKhOp/XP9en8lBlkjj3Rti83fu4yHvRCTfprcr/M1ZqMu6Zlo0qBzOmYjB1TtqlSwofHwdzwHXKZJB3id995XjoF+P6HCLV0WqHNm/e2oBuAqaOJ96vda5+QrMLzqp2sezd+fKmDahX65jhuB+q36u5+wHp7JoZLCCnUcfwaGHSoywzgwsBPTLXl1UFAn/qpM0PFMK4dK8CdG3KPvVof3LDz9oafCHU2bokKHUQJhHV+1kqo0nn2mSnL1HUvkukppJ+RYJcerMDxr1Fmgblms0lO+e7ccE+0YIce6BrH9Ya3bBau9vEqCWR+5HGxmXN2DVyYBnLkEvTydzW+f0O9kp/lP2dBmX1dDOi59MPp7yT41Q5YHJzkqsNCOcGVm9hFRVrJcuL7yTRk+V+IlPe+oGW5BfwBBc66Nm05bua8w1wKz/OncmP0L84cD0jsyZH4xHtEqlK8NvvYA+tVbHQ7z1TqnU8VG1z4ZZEXKpVTMpOMas2s1B/hpDGsN2C9sk0Rou9+dGbEuy5L5toVLSPN4yDWDOJTXfO5JBaaBs3LWe3aGLFNdwq4ZOPSrdoyZA2Zz0J/IAuZvg7MyL4JlIJMH1qethzHsEiO/vbc9dFZICg962SyK/TIz8Ioh2TSzmhutaBNWwcKB5hy7/S5l2NVyzKqogiHmz9lyfadcV5m+Ltm5BsP2DSLbGtoDR/fv2S9h2TcYH6t/b6gTR7y9IStvmG1EAbokS5dcsYyKCNDavB/1TXwnv73LboKh1oEDzTU1eNB3Qo417MLLo4wxxhhjjDHGGGPGkFthaXOv5jHquymnUtOTHR3np4CD4m5HxXcqOlMnwB3a+CGLHEqpKUFXmza1gtk7Ii1qLq2qcLWv5f26r66Ysdxw7eBtXdr9Voqn5llUBrw3QypJdsp93OVOrU2ZLbSOYfZQOUCTPr6Xy0a+IPEAfSsFtZRXaSbRVTXczFSXUqgvRn6Tbh2n8TPeAxi2DFDr2aZmAuh/J6Xxkxj35VFElhuquH+PhKoM3YV+Qer+2moKotsvqskIj9VUSgqKZpXUcHIJ1KgdRRkFk9/lvFq38tZPUWUxmzC7i/1yXbcg1Z1b5zCswL+bLP3YnX2Zbo7MoqHyXA31dKt7NaQgWkx87rsbbfJMZkjXqgg18FAL8a5dSzXf2VZ1+25dIdeWKeOklkkNstTvLpnBYD80TgRq2tRogfVMNUY9VZh6bj6EvnpNK4aqg9ipq/kR42ZF00bCwqXTcs14HWvJliZtVFPyHWopwlAdgvK+Lq/cahqpFjWqIkNzXucGXeo0og1TG5quKVTrIHVcqj5qW3M1Hai77OQZxyq5X00VNJ91L2XNV+3YWuuiriVsRMuyZwIo1tFjyiyq7+kJ+unO86tXNTcA/cGBkwJOlp7OhbubgCfqshQWpCxFoupXO1Ba2KgpJNs02ybNh3WpMp3h0rJnXXNd+xIN+X30r8yJji4rVKfArMdc78E6xPrCNGZ8kc+vZec3069id8u4uFJRX9m1jEGNgbXZaDaqUZwaCPZeuLG5yO9luhkZr7NeqEWT/l4g6mlU+yfC/onPPzjDFRgeNFnddCcBtezaJs+NK3MApoEJ2UmC5c0sW8kJheRHL4tn0Z90iIlCzztFRtbbepnns95Oi+UM4U/TrjG9Z0CVoS6DmR5xTn8LqnE67+ccSY3c1bOGGlB2zd/0ehunpkV/3uq79Cf4Yblffw7rsn7Gz+e46pBp249+ntL6SfOaqJFtl3Ng7Tf0eXXorItuWjGFGuLqu9hEWf+0vnjLb2OMMcYYY4wxxphvQ26Fpc3dm8d0ISUX5qvaR1+zBVg5Vf+9IeVnKr5TbZ46HFbxnlrkqHaBUGQmWoDe8RL0xW3qtFXF9WmOUkSxpMY7ysblg9GpWx1Kk0dZjujy8i63BZT60o/lPTvuJ7rml8oX+rbUtcSURrdGSOq8WDe3vHuGWkQKv02lmfvlOg1CmM/MPxYx378fw9WE39dloMX8GdoOdGyZRfUPRc3e7oGgv1A3UXFwa5HT7nMODIurqdXo8r8wK9fVrEkcpkzku7s0Gm20ulW3Rs2kqDUKy1F9jaohAO9j/GrBs1mOW18v6oB7f29Pw4pK+bt837BIVEmuaWX0qmzidSoAZ+eAJXOD19hzq+ULLZh092g1olL4TbpzKuNnn6AWSofQLwvtstXCCHK9NT4YV+3DHAZ9WpKpDD+Y4c7M4HNTId9zB5EGcyvQHzd6qBkZO3kawEqnPpuOyCa4o6+s9Z/ONefMX9YvtgHVSjP6bZf1/98p96qBjCqdJ1lh1OcWYSXgIn06QFPv3WqG1lY0dfCmXubVoSgbx1RH2q6QY370Rjmvnsn1/SvQN2lVyximRQeqLh9BauLG/GL86tmSdPndW9E8w45E06bWUZwG3iL3jykFg3O0XhvNdrBaJ3Ts5DiWnpbb26+8EcOzmYyNamKdxKhjDKKeL1k+LEe+m3mv1l06PwaGttweGpdZn9XnFdNAKx6+m9/C9qMmz5x80rIvB5dy9eBrl6Hx0zg3cGvvM7T6nyHHkGPNji6LHJ329ByN5kA1cy2wOb9Xx+u1m+SEtuEux3pTGTIfdZDlxzNf1bSB8bfWNF0TEzURUIsbTdu4MQdgL3Aw+5KV4oee5bZSTVPE8mJ2DphQyyb9YSbP0H8MfVx1GZjK40P36dCkFhXtnjfq30Wn3AckVOPXDtc+PVgN1M8Mmyy7cLbHazH8M1h9zai1u/6WYlmp3xe19tGhjee7njuM4XzRd2u/oW0Ycl77A8ixzt2ZFu1uZ5r/1TWg/lY5W461KncxrnNdY4wxxhhjjDHGmBOaRVraHEB1k09ZEt3nU6ZEzykUtafa8MhVg7ddhmEtvYojKQLUhXI3yf1U6am3dF0Ey/u57ZE6Y2g1G3otRYB0w7My11keFHEmpZ8Tag6j0u288ezDg6d15xpqFcghDEvl+AruFMPPoH8YpkmX26rjepWO8vxGjGZbhq0EU5VJimar+g1Rr9vqE4fSU5VEajy6XfPZGC4ClVzzO9X9QFt9xnVb4coSVHVKNunLU07Npqj7z6lzltaKRk2hVOOobVbFz7pAVk1ANP4lg7ep2wY0x1o+LHN+DpVVusuT7rikivqu3Yd0wx52YWpBMIG+ZZe65WAaqfDU3ZFUU6NuLIgaE/CY79Oi3EaNYKMEnr168FnNRzWWUum/Wubw/i6LND2v7pD2N/+rFSCrmSomSauhGde2uQLVzxiVscwvfiONYuiLjPmuxh2TJ6FX8PszY1iGK3UnGjWLZPuifwAW3pbB65Oy7+dkxrOF8bKCbxx8DmuBySyMtWqymR+yUZ1DMW1b5H7VAOvOS+fJdVUpqrpzDsOma1qpdTcXzXxe57vUcuH8DLXj0kGXtJ2K7uSjKlZ+d9f24moVQfjcaXL+bDnWQbZVfzIfzh5xrX1WdwCjZcaYW9pwxGT10J0Fh3y+8Hvo0K83n50DzshGOZXn7i0v08lcmwhg2ISAHS3rB3dwol8TdTrGMZVWTjub82vkGuulPtu1Gxrn3JxLsB/h83T8pxM/mUyqlWvrZ1DnoZotqrXXbkKbh3Y36sJvyOIvw7ZpTiwfvDZk1bItQ9Z37gTPMmO7UKtm9ZGp/faotggMzrPUJJ5lqiYYRDNYLa/HjCOHgF3/2zcCe0Cmmz42WX5r236+oc2yZdyJXZyr6C5R+hNSu2K1lOjaoFgtLXSu2U6n5/N7o8PptIS8ziqmw4g2aa0GHMq1+5nB8E9rtW7ReaxWazX+0+/Xnw+axtaypo33EIZ/v6p1k/rRUTdd2sR0cQHR/NXuWVeDzGB4eFRDTXbDrMOaP/P5Z7SljTHGGGOMMcYYY8wYskhLm4MALkFfr/21DC/JMGWLJeWjlPYzpGiTokxg0CU0MCzu5LNqCtK1kE41TurpvWvRGpkFdnEZcoZLZM3jllsGj3XNGn10dLnhWZFiP2aHapi71vq1LjKo7OBnU5OrfnCYtqkMuxQ0tNTRDbMo6SZHWxrfJdXdI8eqPdG1opReUsHJ+NTb+E45VkOPVpnAtKnyU9N8jVxvJbldPorGg4K+Pxv0NTCsKKxkWggqOl6G7oqtu6LoFkxaKablupp1iMv2Xr04PHjcuprQpfyqUdM2Azmv2gHd+EXrGj91lRxToaUWPe05VVieLtdVc0FU8a8aHn4ri7ZrY5kB9cPE4LPUsKhmh/A+tUDSfOpyjdS1wY5qYVo/RVqWDNlmmce6mc0G9PNs3ODuUVTGqpaE6Wbf3u54BzSuTfb1mw+bWc+XUWb6OfT3ohYQmbE350vWZ6Q3ZwXTMlRt3eqMf02Gk5k4jpNrMNz+ei4UWNm14NV0jbCCqXMcrRzqbImZoQ6fZjGsElUzSjT3tmniNIfvYGGpWo5p1YatFoW8v93l62p5RtOkHZmahai/Pe0gOQh2Wb2oyUG7EJ9x0RndlKSJZUHHeUTTNqYcRDUSUV9hHDrX6q5Bal5JNmPYeYpuR6IbqLJO6S5qh+Q+nZ92be+nu0Py+m4MO3hQZ4q6ZSIzgnWHk0O2B77jsgzZ7+j4n0zLfLdtZl272Kh1go5TuoGVdgvMPt0gTptu1yZ1kwCWZ7rVsnXz/9ZwPS98NMPHZsgFCA/JUHcEVP8y6lCPiWDiRvnt1MFxa4a6e5ROMjQjxpSlS4GN64BduVgDzVgDNONox3eo9QIArMiDyMLvWdRNDwS9ujHKigIYtpzQlQGQ+8hyOd9aGetvF6L1VX2pEB1iun4Tdbjz6T3fWqbrDsPq30WHplFzu/Y5tbDp+nb116rWSMswbHE3n7tNnR7MtwvqKJ+VLWoV01rudP2+1X5Eh0mmWd2cKba0McYYY4wxxhhjjBlDFmlpw1XAFPmK2/jrUpZOiTsl+KoN2o1hT/Oq3qO4SV+lOzaskOtENXQUD3ZpfxpRZc+Pi4rzU2xXMqTkjEoUJlXX16k2f7OEbbY0r+lJ3loFj1qZqIaZAneVeqoAXqXCJ8t9zAPVwFOpplLQ/Rhe66gSRXVwz6W/VOSQ+Xbf0qXzWtSqyNjbpGWz3MNn7y9pUc3ODICvd6RnPDgJwEPRa9Jr/72GE1m7mJksWPplUPVCe4+ibZMZzEpIxxyqodYFoKzQzPztg/dPinXQZGOyxrbHV1NrsiobGx/tWguvEnK2OSaF5a5WK7yu1gikdYWlWp5RG3oAwzuxaX1XqyFtV+paiNd71jHbMmwa/6mfH0ybalEU5hvbXJcXftVwML80zZDj1q+Baj1Ylpo/aiW1d0R6xoVlGHRnwW+ksloV7QxVI3Q9hndzUsVt59ZoHGP57lQN0p+OjlPMX10n31PMZ6LYds5oXqWuWNZrQ2HaVO3YtYC+q1EQrbg6MB1Cv7JRJaqWBtrA9F3q2Kq14mnvUxWkmpAxnnaLmzVyTi2T9N1darZbOu5Tk7quhsJy4vsnmziWyzXdmk+dzdGkosPyYlxYivpJ6jusB8t1KkO1XmWdbR36qWMxtYRR34xETe70nbTeYL3YlqHs0DTkZGxUeXdtz0LUap11R9PM62yz+S763JJNIof219qPfhXr2g2VSdXxWLX4RN+pTVD7Nh07WRcGLDQ64uzlX5evGrVy0bas/U+Xw0o1I5pFv69hGtTxI9/5Dbmuc68x5dAR4NIbG0PM/E5OLVn1ztQKsGTgdsxgOJtX5onetOjwQNBDp6/aher1rjrJ6+rTsL1Xm6LOIXUjQm0H7D60ubPYdedHPq8uztp5mX6Hju0sG50fqDU65LoamOk8V3cfHvXNaglD2DWrxZFamBO1alFfQNp0u6zjW59D2pcRtdjq8h/ZtUsZsaWNMcYYY4wxxhhjzBiySEubI6g7QnEx6+U1KKla0TWz6oab4tErm/+7pPd8JjUJ0/tq2NO6U3uYGoXZXPs4oVozitJSAr0/NRnqAbzd1ELXwem6wi6fKoq+Q6V+6odmnRy3e7/zWCWMqpHYLSGlfXwXJYYqxFdlGb9tu5zncxTgk0PNPYxLLWB4XvND10byuynBVesenme58Fv5bboJCND/Tj6jy7YZp767lRaPt08bWtqQdESw7jM1pEhdK7W6NG9Fz2qWomv6tdKpWZdqZPmcpuFsOe5aTLwGiCzUCRGxr1XxtbT/lXl9pYi16V+qpx2gpoY79Qy+Zkhb0krTu9bHR8bJXQy6FPsqQVeFnGoJtd2oVdBQB4Lhdt6luewqQrXw0/ak1nWE9+s65mUY1nZqP4nm3jatrcZG82JcoG2qug5h36QuMDisMf9ZlluaZ2i5o36Dhl7CDMpI1mVhHRo8PVTPqM1k/FvkfnUPt3o5htVmRJ1TqInVNkm7mqtNy/1ETbh0cX5rEqcmaWrVo2o1ybchUwEeM4M4z9G05PSoV0Da+DagX6icB+lA1MtkeQdRkwGacGnj0bqhFk264+Ukhjscdn5qtqtqSFbQMfdpUzCoqVXN7pC1DMv5yxm2zgap4lVfNbyHvkdULa0dMcudEy91IsbyUX8nhDs53TPDy9H3rcJr3ImKaaVrSlrt0IS5a7Ip31DEmLernx61MZy60dF7dc6t1VWN4YmOJfwEHZd0itNaU3S5nul8WE3I+RGcwKrpgbZxLcsuv0W3oF8XdWtFbYvszHWupr+7xow9qK6CaLzN9A/5ZmEdlMlUO/3TbJzIi73s3j8QVWcdmZNQ0azXYh212kGHLX2n7jYJOVZDVR1+R20OCwxbuI3yL9q1OkONQ/XZEW5iR6ZNUaujrn6jvabzV9L1O1fv62rCilqk60a47cac6lJQ4bNMo1pVde1kS2xpY4wxxhhjjDHGGDOGLNLS5hCqWJ4i+RTjcouhqQxphkEp8Gq5fhOGRefqW0OcI0xSlLh28DzDCV2cRyi2SjXKalUTjnBEsTq1Vavz3OTcYFK7PHOrRU7X+lxKytQQiag0sLX+0GXxaK6196oEUdcbKvptun6zy19HS5dSSK+rQqFLAqtaFpUuqyZHlVWtPw5VVmgadWcq1T6Pq8+MPitQrWvYpFOddkZa2qjjJRWbs51MY7gis9Kp+ktNxCiOVm0iNU+EmUxtomp9u0yw2gXKKo7u2gaJqOotC75XruxXsu1zh5zJDlXgkNuf1iRHtd/57NqunfJUQ0/yXWVm8BNoTUiroFldjE1apycZVywfTOIy2SFjQrdTE/XpBuZLHtPCic+toV8iafzUhNHqaDaPZ5tX0T9RkXzgM0X64VabFhhflmDYckY1X2wybKbqRmI3Bn3jtHGwGp2XZjrMvrVSBhyWWXfVBYvG12VooEPnPQ8DB2THN1otrD08GMdq7TvYB9AKRRMDOVbLhC5/EG173I5BdPco7fTZJzIjTpVj9Tej2w91bWXBtFH7vQ190zVmri6W5xxK+0JV/3d94y45P8rUrU0z2YB+J8G5Fad9dJzHZzn/U9Pjrh2rxoSCwc3FmCU9C12Wr1oacTxrJ3hd2+npZLBjHBpStd9bnmd5qhOGLXIfOwnW4VNHpFcnN+oIgufZYZyXIctX20cyZASWJw6KhWmr7VcDOnXRotbUqsXuckOl81/1O6LzOi2GdhcYLRqdn+/KRG5kIr80eP3ghTVceVKe0LmLOgFh/qrZe2bK9AwwybjUOaN22mpywOMxn9DOoHY3d2lPYNiVD+cE6u+unVJ1dXW9Odzs4LNd1l1ad/Q3UceUachahsNBW4/UqkstRHQVRtfuqevkuPW10r5TfTjp+WXo3hlU/Tvye7qMDLvc03WtuOB71SCWHMKwBRGnwHx2Rs6rr0U+35v3yjuYb8vlmKif2tYwmHnatRJH49b+ZD4DVVvaGGOMMcYYY4wxxowhi7S02QTgJwGck8dHanDOVA0vTb2gisZUFNc6G+H/XMyv25pQXMVnuT6UtOuKgWERunp4p9hLRXKtRkTMWCg5W53fsTG1X/vnBl/RtaaX2aFWHlSK6GYWRCWdEzj6+uA27JIQKl3WQPxmXcunfmla5aNKH1VxSYmz+ovRtZGqmKSikzBf1JWKFn27ppASV5VQMw2qsNL8aHegGk8mMKi3mqoBE03t6KjdVYBBUbsW5Ea5hwXEAmBl6xJb6/rpUWJ9YLjyjbq/azso0uWavmsbI21QulODatO73jeL4e/RxkXmc14j+Re0ZukQyU+oNo1pZJ/YarxFi0frlglNe4eTmJ6SMNM8IWXXuy7fGGKlMJHfOLECQ+rR0HfnMfNhxczw5XFtm0tRm49WS13XrE1O107PYNiakrBPVuUqNdx8N6sDDQY4tGrfroZy6paGzb7d2Uqbm/o+6l3PSLjb20p2zHyZJkLnErQoUT9ZYrI0zfq4BNgzN5j+dTdiJLszg9blXIRGKqfwg2UAm86097TeTDu35WJ3zOc44LeFz+/ZK9fUUkMtZHTrCe0DeF19X+g2cHrM/L5ixDtoeXG1PEMfKGrl1Nv6ZTyhT5uOKoS1aqVERjlG0EahphuqGtbdvk6W87pbqlqSst2o7xtV0U9juAF3OaFQdXTXtoXy/fQzx+cnxOxBX99q1Bml+n2bz8cE6dpgSVHL6i6/JK1BisY59I65wWe6HGxM6j8sK7XiJR1bX9ICdXbUvV3O6bTecC7WuWXaeLAENYm9vMvvUcssNVYmbfmqZQzL72S5WcdcnTpqs9GumPHq1FR9wLS+cdRwTtOvG/RtlPN8h1rh8luZNo7D+rz+tlrW3NdlzKo7UXUZF6r1k1ZNHdpIl2UTaeuAXuOz6k9Gy0LRaa9OO9SCifExX9vunXGomymiea5WVhtwdMZ1rmuMMcYYY4wxxhhzQrNIS5v9AC4C8C/1cM9/15AaCWqYVIWn21LMoFv7zGdVq687L0CO1TeO+nmgOItiQRVBtrvpqOOWDvG9+qTpWgMIOa9KfBoZqSRYaaV/qpDTd1JbpIpMjVuNJBiPKm6ILrFWTXF7rmu5tu5+o+uT9VtadyvAsIR3Pq3M9Ii08FmV1KvEtZWsjreEczeA96LfpHPrEmridJss3UWg1cioOFnF08xEVi612lGfDurzgfCdVBNo5fyKHB/CsJi/a5uILhf2XeoS7au6VHe6CJiMEuFrPhJVo3RVXE1Dl2WSutvX59pvmG/rqi4VZFe/q2qkrm2pVEXWqm+61CJD2yNVev5rMu7JvUB0qayOM8tQNSvsZ7XJqAGXWiG2xgq8l0Mki5lFthaDaHVRgxHt46YlnG8I3d+EamGjQyevnyZxnM5dQdJ6Y+PVg/GQLelr6ubcRVI3sGM1Yx70DGvn+vmgvgS0qqvim10mB4lTMtJrDg/Gsy7TtDY/6uaMeG32rbsy7FnsMNF3Rc96hX6pepZrOgB3tVeqTulXhvOk0zPMjT65ww+t2FpLpJbp9j30X8UxghmS31Hyu0MtBYkW4pgRGHRHw3rf645YSVnZ1EkBVfWrMWxC16WHqJbQAAAgAElEQVR21vGmy4xDnTLoJJENieWt5gGtul+3zlRTAH7f/8/eu8dplpX1vb9V1VVd1VV9v0zPvWaGgRlARrkICgQUPQiBqMS7YiBqNMmJejAejkYNGi+JHz0hQSMeouEiKAYjihIRjQflqqAgF4erPTPM0HPpnp7pe3VX7fyxn99+1/vb79Nv9dx6w/y+n099Vr37svZaa6/bXs+znofzd+ZbVcBVJUn7XNopEztn2ZB8CpUGdGXjrM4Gf+vwml2X2aHRKqpaAKQu/szrTdcP6s1RHtRwpMfKTgNSjXfoPEnHc6kztcLsonZ8qsbAOFTLeeC2bEhtBw7ASEMX42GmYVNrYGV2jropyVpyPFBbNHUagb4NFkKNCaaJXTXzVac9s5vEet/rmyRt2+W4mjpSjTS1scc01nZWOAfRrmpOrmUa2ZZVA0mrnH56axfI+FYiVBNQW5HbyWGZ62eCloeaCFPlQv7ms/dKqApsJ6rrGQfnItpdMk6mNRs+M4b9HWqMMcYYY4wxxhjzMOU+aNq8D/hoeKQ5EIc/HiGlPe+LkEtIlKRTUnEY/dV7eg4JSVvRTXhcntL7uMRFzwaKGkqhtEglItVe4bvPjJJZP0rNX3xGzhO12K1JpzOGD48eOQbvUw2e4xit4nHFj2nSLdUqUdBVYqaRr4SrqnymOvdgGnTrNfO+tUrblXIPNZIoLFK7O8y/atjoq84UNXT/oUqST2CUL5XY6Pb7zKzKcXQWnAbKCbRacCRylEhJexpqtccP3dyr2iaMQyWPKppiIapnmMyGzaT9+MCoD9iOvtoV0TRnm12JbjDOJFaZCG+SBFw3/2rfo+oVKoVVjyLTxIGZKEPLd5JmY6ZukKkJZjZ99JnK5uS4ahsB/fee2deZtCl6oI2zoM2W2rBRtAlos9yKUT/JUM2WPFrOa5+nxaiCdBXaQ84TvlJ2AyeqdKtZDB1XOG6oRqc2GXYtrArbQ6uDYy6rj9qJOy2/Z9DPpwq2OaZlXhx5/9Zj8jtCdq1b44SOc0wrNVOYt32HgYMy+B+PRO2PuPiOVVq8TcS8nLPsZGWIxN0rZgY3nxlPwxmxIVJr5PId7ouH3xHXUrOI+V6hBrXQJLaDhgJt2mT2DLapG0qWOStMLZ7le1TDU2oTjec/FiHtAemEjPaD1BaOemzkBI2Jp7bMoyI8WMVxk1yr2ux89uVyPFNPiTStHR5PYueMTbRn1FvdJLsjmWkWnRpoW828SGXKrDof5nPqYU41ukkXVzyEr3RnhKw/i1FvOg3HONFpux2T+DMVhVPj8a4BWKA9Ld6rE1udU6g6w0bF+heIObR2Jrsxa210HOhr3KjXqFpRcZLXMmA03qltImpAZDZVVKmOqLO5zCMRqvNqx0T7IqZJbaroWK7fmKxC2dif5aF+TmbbR+PW3R5i4qpD86rfvZkNPVVMW0B/vqQKqplCGc9zDiPOpXvlq1N27Xf0Xdeam2rLlWgc+s6nmZuypo0xxhhjjDHGGGPMADlPTZtVAJ8dSQlUes+VelVB0c34R9CJ3A7FctruWD6iMGBLLMPt4z26/EnpDveXh1RHhdSxFR47I403xvUXxbI1953VWhsH5diZ6lydBApDiK5qqlCaEjpuR1aJKNNO4YnusTxVpYHp5gqhSv94HYVCqmCROXZQaSTTyPjVaQepHS0wDXW6gf4Wd9XaUbMYmWcAVejIrI1PMj+idh7W5dps//IM8tXbYXACwAfRNenVm9uQDUrbKF8gC6De566FoKpM+oKIGtlQERvkOAv3FjnOeFR8sIb8JbAhTLFDlR7PbAxsVCI1N+Fa7QBU7KfloBI2LQ+NX8WLaqCq9gyTeb3K0OX+rNzUWFZmwEDLlcygnw8Vt2buCEjtgWpg0G5G5iBEs8JiZ3PcWh3n6+VQqCYRdLhV5Sh9BZlnwSW5jqgUq5YoqSaIvg7VViVqekH7dI7F9O7HsUKlV+yKjsjvmky5UBUO+Jvdnmr1HJLreR3HdXaxlOQekHg5Pdp370jblmWrXaU6d+qE75GovTEH45Ts8TFgL4p0Xp0M6dyGaau1uJjvfXEx86/7+hnJWrwc2uWhxtFQYdtUczOdEqeOZwx1DD2BvoYNG4faa9NKB/mtk03C+zjp5EugVvtjI2QFqtWUGRfn61TJY350IkrUY1ky/ujcUrvtbNiqh/PMNk1m0kmH0syZJLM+LS2qfTeL/vSDaDFN+61D4nwkilVmF21DaacVD6aX2uP9U9PfkdQntTc0VNQXKsm0YHQsrN+n1qWeqcY4wTrFZ6jdS0U1Ufg9o/Yz1+R8XXdViU3HRzZzpkHNQ+q0S1+/jpOTxm6gP92rf6vGiCp16XyCYzW/vVVrSG3XEFW+1vtqTRR932qLJsunauBpeWbxTiuD2gxuZgKUZUrvUdm3aDbVJgNvusYYY4wxxhhjjDEPT85P0+bMUeDWt49W9ym+kf233OPKw9fx/hAxfWJ9JDGj0OLLxEI6JWzvjyXEG8KTzKWxDHWQe79j2ekdklTdg/bMiP+v4je3EnP1i9Kz2erZumJOyRFXyph9rpBxJZV5UOEJ88pn3yjXXy6/CVcPT6C/Yqirxyqx5Pk6f3WoK9Yq+VCJnEo0awGSrtZq/jOPAJkQSq2uQ44rmRH+ScojKg1imetK7JEqHKiDmuAeAH84+hlmpzqxLm0+qbnzc2lc8BpWHooeuISulUzJ1Lp0Q6qKttWGQC1F0saVuQ6bJprTtGvlVQ8O0zR0Jj2DZG4oMpstJHPdpuIU3XRP6gqbqVVk7y4rP1XX0DxlHcy0Tdg1qjGkcZO6/hQMklm0kjtWW4aZNC7ba74ZfW8OKh3KPKaowoBKsNT7hdoQ43WZ1Pp49QyVdGmoymQaqsaj5km7DDXZoPbkFtCXdHPcOSq/idpHyMpV06ROz1T6WZsNg1yjY35mu4DwXVA6T/shXROZGU+LlqdqDbPca1MYnfZsHFRt3i7NEXlnTufM+LOHzDpypcBeRWCG/ibC2iif2ilTg0ZKZhuMZEYKRV258wrGA+ribQH99OukL8bzJia4JdMuTbQ4WA/qNldzevzyMXSYnabYqspBmSaOxpMpBWe/6zgyW1g8kL7KSNS0eWPn8Sj+KXJCnz8xPr0oOc+p23xWLwfCDNp61PPkFmydfLij1srITAKe0gNiJ0hNB2bKytrkVYtDFfXqbzj+v0vOcRzVPle1XbO6yTxkJgszzd9aM0ftzS1JqPnncXaLqmGiGjaqEK5eqTLtoy3oz0007mzeoe9ItYT03atWs+ZJbd4sYPS9mnkb4y4ZtZml5ZZhTRtjjDHGGGOMMcaYAVKaptn4xaXciZGVDGMeblzZNM3e6Zc99Lhtmoc5g2ybbpfGuG0aM1DcNo0ZJhPb5nkt2hhjjDHGGGOMMcaYhwZvjzLGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQxxhhjjDHGGGOMGSBetDHGGGOMMcYYY4wZIF60McYYY4wxxhhjjBkgXrQZCKWUlVJKU0rZdKHTYowZUUr5aCnlmck5t1tjPo8opRwopXzVhU6HMcYYY8xG8aLNBSAmjSdLKcf4B+CS87jfH4rGPEBM+ogrpbyolPJOAGia5jFN0/z/D9Kzm1LKIx6MuI0ZAqWUp5VS3l1KuaeUcriU8q5SypMudLqMMcOnlPLqUspPX+h0GPNgUEp5ZSnlxzd4bTdfPJ/7HgpKKT9dSrmrlHKwlHJFfNvOJte+rJTyG+eIq5uTT7v24YY/+i8cz2+a5k/4o5SycuGSYowxxjywlFK2AfgDAP8cwG8DmAfwdACnL2S6jHm4Ukp5GoCfB/AYAGsA/g7ADzZN81cXNGHGfAFSSnkbgPc1TfMTcvxrAfwqgMuapjl7vvE2TfN9D1AS7zellMsB/BCAK5umuSMOL1/AJH3BYk2bgaLSf1lt/PMIj8Rq5pfFNf+0lPJ3pZS7SylvK6Vc+VCn25gvNDa4neLbSyk3h6Th31T3fmkp5T2llCOllM+VUn6plDIf59iOPxTt+JsfrDwYc4F4JAA0TfObTdOsNU1zsmmaP26a5m9LKdeUUv5XKeVQtJvXl1J2AECcO1xKeXz8viSueWb1+/fjmk+VUr6HD4yx8k2llDeWUo6WUv66lHKDpOuLSyl/G9o/byylLFT3f0/EeTiecUl1rimlfF8p5ZMxzv5yKaVU5z0Gm8FSLaK+AsAuAJcC+Ek8wIuoD5UWuLXNzecBrwbwwnqcCF4I4PX3ZcHmQjClrV0J4FC1YGMeJLxo8/nJP4hwR9M0y03TvKeU8nUAfhTACwDsBfAXAH7zQiXQmIcZTwPwKADPAvATpZTr4/gagP8LwB4AXxbn/wUANE3DdnxDtOM3PrRJNuZB5xMA1koprymlPKeUsrM6VwD8HNqtwdcDuBzAywCgaZpPA3gpgNeXUrYA+G8AXl1tU/xNAJ+Ne78BwM+WUp5Vxf21AP472g/TNwB4cyllrjr/TQC+BsBVAB4H4EUAUEr5ykjTNwG4GMBNAH5L8vQ8AE8CcENc9+y412OwGTrnWkR9USnlnaWUX4hFx78vpTyHN5ZSXhwLkkdLKZ8ppXxvde6ZpZTPllJeWko5iLa9opTyvFLKB0No8e5SyuOmJbCU8iWx0Hq0lPJGAPWCau85pdrKXF1XbyN5dSnlv5RS/mcIR95VStlfSnl55PPGUsqX3M9yNSbjzWjHoafzQIyDzwPw2iLb/84lNKip76vaxQ+VUu4IAeGLpyWslLK9lPLaUsqdpZSbSik/VkqZiXMvirbyH0sphxFj84Q4vgrA2wFcEu3r1UVMeJRSriqlvCPa9NvRzofrOF4Yzz9UKqFn8rynRF9ypJTyoZLYm/xCxYs2F443R6U7Ukp58wMQ3/cC+Lmmaf4uVm5/Fq000ZI+Y6ZTt8cjAP7Led7/kzEB/hCAD6H9oEPTNB9omua9TdOcbZrmAFp12Gc8oCk3ZqA0TXMv2gXNBsCrANwZE9GLmqb5VNM0b2+a5nTTNHcC+H9RtY2maV4F4JMA3od2AeXfAJ0q9tMAvLRpmlNN03wQwH9FK7kkH2ia5k1N05yJeBcAPKU6/5+bprmtaZrDAN4C4Ivj+LcD+PWmaf66aZrTAH4EwJeV8e3L/75pmiNN09wM4M+qez0Gm6FzrkVUAHgygI+j/aj6eQC/VmkI3IH2Q3MbgBcD+I8lNOGC/Wg/Tq8E8M/i3K+jbRe70Y59v19K2ZwlrrRaqG8G8LqI678D+Mdy2dhzNpjvbwLwY5Gv0wDeA+Cv4/eb0PYRxjzgNE1zEu3W4O+sDn8TgBtjvtixQaFBxn4A29Fqz30XgF+e0L6VV8Q9V6Mde78TbdsmTwbwGQD7APzMpAjCzMdzANwWwscXTbjsDQA+gLa9/TsA/4QnSimPBvAraMfvS9D2FZdNelYp5VIAfwjgp9H2Af8awO+UUvZOyecXDF60uXB8XdM0O+Lv6x6A+K4E8J+qj87DaCWZlz4AcRvzhU7dHncgtGGUUhkPL6VcUZ06WP1/ArGft5TyyFLKH5TWONu9aD/kxqQMxnwhE4sYL2qa5jIAj0U7MXt5KWVfKeW3Sim3Rtv4DfTbxqvinlfEIgri/sNN0xytrrsJ42PdLdXz1zHSyiET22tcc1N17zEAhyTu7F6PwWbQnGsRNS65qWmaVzVNswbgNWg/HC+Ke/+waZpPNy3vAPDHqLQHAKwD+LexCHsSwPcA+NWmad4XWj2vQbtgUi+eKk8BMAfg5U3TnGma5k0A1NaOPmcj/G4IUE4B+F0Ap5qmeW3k840ArGljHkxeA+AbSymL8fs745iyEaFBxhkAPxXt5q0AjqHV/p5IaY0EfzOAH2ma5mgIFX8R48KP25qmeUUIHTfa1vQ5V6DVTP3xaLN/jlZQQr4BwB80TfPnkecfR9vGJ/EdAN7aNM1bm6ZZb5rm7QDeD+C59yVtn4940Wa4HAewpfq9v/q/mXD9LQC+t/7wbJpmsWmadz+oqTTmYURIEvh38wZu+RUANwK4tmmabWi3T+jeZmMeFjRNcyPaPf6PRStRbAA8LtrGd6BqG6WUZQAvB/BrAF5WStkVp24DsKuUsrWK+goAt1a/L6/imUErubttA0m8De3iC+9dQiv5uzW9Y4THYDN4skXUOH2wuu5E/EsBxHNKKe+NbRtH0H4o1Yusd8aiCLkSwA+JBuvlOLen1EsA3No0TT3HvUmu0edshNur/09O+G2jqeZBo2madwK4E8DXllKuRruI8YYJl25EaJBxSOzj1AKFSexB6xigbl+p8ON+cAmAu5umOS7Pqc/XQpbjaPM8iSvRLn7VfcrT0C4uPyzwos1w+SCAbymlzJVSnoh2NZLciXYl8urq2CsB/Egp5TFAt1fxGx+y1BpjJrEVwL0AjpVSrkPrRafmdoy3Y2O+YCilXBf77C+L35cD+FYA70XbNo6hNah/KYAfltv/E9ptTt+NViX6lQDQNM0tAN4N4OdKKQultZPxXQBeX937hFLKC2JP/Q+ilfC/dwNJfgOAF5dSvji2cfwsWs8fBzZwr8dg83mFLKKmRFv4HQC/AOCi0EZ9K8YFECpMvAXAz8gi5pamac5l5+lzAC6ttmQB7YLsWLLl95iAs5SyH8YMj9ei1bB5IYA/bprm9gnX3B+hwflyF1rtnHr7rgo/JikInC+fA7Az8lI/pz5fC1m2oM3zJG4B8DrpU5aapvn3D0A6Py/wos1w+XEA1wC4G611/25VNiQgPwPgXbHa+JSmaX4XwH8A8Fuhav4RtPsMjTEXjn8N4NsAHEWrjq7Ghl8G4DXRjr/pIU6bMQ82R9Hui39fKeU42oWTj6B1D/qTAB4P4B60izL/gzeV1h3q1wCgW9OXAHh8KeXb4/e3AlhBO8n9XbTbJd5ePff30Kp+3412kvyCsG9zTpqm+VO0Y+/voJ1MXgPgWzaSUY/BZuhMWUQ9F/MANqMVGJ4trYHi/2PKPa8C8H2llCeXlqVSyj8UDTnlPQDOAvj+UsqmUsoLAHzplOd8CMBjYqF1AYnBVGMuMK8F8FVotw1O2hoF3D+hwXkRWwN/G8DPlFK2hu21l6DdpvxAPucmtFuYfrKUMl9KeRqA51eXvAnA80opTwubVj+FfG3iNwA8v5Ty7FLKbAhtnsn+7OGA3eVdAJqmWZlw7AAqqUXTNJ9BO9nN4vgJAD8hx16H1oCbMWaDJO3x1WglkBPPV9cdgGx3aprmmdX/fw7gOrntJ6rzr0RoEBjzhUbTNLeiNao4iY8CeIIc+8W47/fQLrwwnmMAHlH9/ixao6gZp5qm+Y4kTSvy+2XyO22TTdNoW3+R/PYYbIYMF1FfUkrZAeAIWhfgP4zW69lEmqY5Wkr5frQfeZvR2qT4/XM9qGma95dSvgfALwG4Fu02pHcC+PNz3LMaCzWvQmts9K2oFnOTez5RSvkpAH8Sz/gRtMaPjRkMTdMcKKW8G62Tioltp2maPy2lUGiwE61G6YaEBveRf4XWGPFnAJxC2+5+/UF4zrehXag6jHZh9rUAdgBA0zQfLaX8S7QLVktojYJ/dlIkTdPcEgKdn0frmXENwF+ir8H+BUsZ3zpqjDHGGPP5SSnlZQAekS3aGGOMMcZ8vuHtUcYYY4wxxhhjjDEDxJo2xhhjjDHGmAeVcAH8seT0ozfoldEYswFKKR/FuLFh8r1N07x+wvEsnlei9fCo/EbTNN834bh5EPCijTHGGGOMMcYYY8wA8fYoY4wxxhhjjDHGmAFyXt6jlkppdqA1zw4AeyWShQhPRbjIG+ngb766YTb+Z2T8fTrCo+P33Lzahvvj8Fl5Nn9vifBuScPBCC+T67lqxXgaAHfE/xfPxT/rEdJzPB8SacKdbXA8HIouXSSJYL6XI1yTh2+OkAXHxDD+w1U8LOQj43GfimsXWI68jnngM1m+zXia+ejdkab1yPNxjLOV8fOdsizuxciHTqmOAaOXwHJYipDveCfGE7FVfvMZdNjKPGklYHkxr3dFuKdKA69l2fPdMu54l927ZjmeBQ4cBO66Z9x7yFDYM1OalU0Y5YPppyJdvLdDkb/d0XjPxO97qst2zsu9pToJ4GC02f0smyjDu6L890R9Xo+6pq+N1WKH5OFzEbL5zEQ61iPemc2ja8+cHk+a+vLVqjUXaT+xNpaVrhkx6m0Rsjw0PsI0sortw6hKsYlticQdacafyXLg9UwDy4N91fYImUdWb+ZVdSTZrFjF63fKfDFt+i6YFjYTtns2PcalXeJmuU7fLbtANlXmZWf1m0MAqxP7X+aHadkTIcucLMZzjjfDa5t75kuzsgjgWPt7NQqOTawbkLRg2fcdr47zHF9SVISPRty7+EyJsitIVgISFWr1UBuyDrB+8TF87AwvYCnXfUsz4Vgdan/L61hZWSDaOPgs3seKdFqu43PI8eo6nmM58B7GpQ1qs4SaJl7P+6WfXDs8fvjWCK9kHqOxnD0CbGLaWNh8pvbBt0fIjifeGRvNndFBHRk/3NWFGyV69i2sEltZeeryZhmzH+e4GjD7izvGr9N3+oFDuKtpmr0YGHs2l2ZlCaOM6FyJ74Yd7+L4+VPxnhf2Y5Rn3httsnt/fJ+MS+szO9C4v4n3WTiOa3ycI7HzhPy+orqPaWLItK7Lb6atmvMAwKnoxBc4+Wa58H4dLPVDQAewah7cxIBRWFHr/q6+9sT4I9YjnzOal3jWPZHX7TLuswmzKPjKGU097mk3xySwDa3KeX2lfOUcr9ht8Blfcqk8nOXGts7GyXrHScgc+t8KjLye8wKjAXm3XBfP+sDNw2ybpZRmBuOfjMCoOvA3m8W+CPkuWAzbMCrvvXIP+0o2PZnOdkXMrpHVnK+N81Wdh7F+MI36LVo/j3MdNudPR/ioCJn/2yQt7P4vj5B5ZBpZdW6K8IsiZPfA/YcsN9bZvdWKwMGz43ExDZyyLMR4em88nG2L5cE4d8ZgcyYSl33mLfBANLRD0Uh3Rxs+Fr+Xt6FrwHfGs/dGoR+PMWiJY1Jk+LY4zuGzm6NHgTbRlxdmlu0kKhy/k9hvLDCzUWmaSHOZw+hFnxq/hp3NPfHytvNlxks+GRP/xSiHDxyd3DbPa9HmDNoXw7kP/XGy47smMnJz1PorWHv/QYSs7bswakF/HSEL+UCEfxJh1Mpf/1Qbfm0cZqVlGbMDvSIS85Yo9Kvj+PsjpO9RroNw/GFyVgH8t/j/X1wS//AFfmeEj5e0/kobfPrv2/Ca747jb5XInx4hFwY4c1qJ8JMR8mWyxbEsLqquZbkRpoWdMzPOgfaIXBeV7C/iGcziV0oP9d44wddzHWv9V0R4Q4TvxKgisFCZH/YsrLxPjPAdEX5DhB+J8KvkfvY4/JpleTJPzPMtEXJwY/xfgZHTZaafvSEbFnukP5A0PDrCzwBP/JcYLCtzwPsvxqgMvjFC9uJRl2/8xTa87tvbcPXlbciiOgXg+dfEDx29otzfEI3p264fP//Sv2vD/3BtG67F++Rr5ED0ZxF+pXwM/XT0pD/GDq6GzKcAACAASURBVDEmniej7S9eja5u3R1xs6qxahA2GfoEviLa2ocPj2UF78V4PM+N8I0RspN+T4Ts0uhf8J3Vc9gv8hVcFwfeGLMENnd2g+xe3hQhq9yPR/jPImR3weJiVdV1RjYTbl7+zQiPAvh/4n/2g8w/72V/yG7jMxGyef/XCPkO/yZC9qfXyn38/bYIPxghm+qLI5zFaKLCpvZrkkbWH3arvxohm/AzAPwohsnKFuD9zwAOhINP1o2n03n1/x0h+2m2NWaa/fw6RoMeCzde3pdH3BxefjbCWU7cnxzhM3giQo4vdPDJAtVZLvsBjg2siPXs64xcq4v6vIfXSZ/ShSwH3s/7+MXECnsgQo4pHKDYYD8U4W1VGthAGDcrPccR3ssGyobEtPFZvI+rMbIqffyV40n/pQhf8sj4h/OH3wBwVfzPd8oGthIhJzZ/HCE7CXYaMbb+9O+2Idsp2wqnLJyCMU1fHeGXRPg97ChZjqsYfTyy0sbKz93Rn7GtP4EOaaOf7jq6eMflD7uaNihWrgPe/0cYvX9mSBchWOdYP1ifagEZ42D97VZMJQ6WBMtI6y3TwDrHQYWdPuNhvSCcCB+IkIPHo9EX9PEZnCety3mOv+wPui+VCFn/+fWmC6ZMI+sPy4vtrs6rCkJ1Dse0Mb+aT8bJcmK/wn5TV0pY3ixfpp196+HqesbFZzJf7BdYHswP320881CEvyqnOVf5PX5ocNBlneC7ZlmwTjFPK9U59snsHw9EyHf5xRHqnJmLgt81zLa5BOCxGBk+YpHToAqLnsPkN0fIqktDLV+C0XzqjyLknI3fr5zjcHhgEXEI4VyFr+sXom2/Lt6vDk3syslfRciqyG/YJ2I0R2O3z0+M6M675vGfI/xHETJPb4mQi/K/HCGb/7+N8Pdi8eFA9N0/HMc5PrBL+AF+q50BXhNOt78sDr0swvhkwL448eGYbLPLkyqGr352Gza/3Yacgz4pJtM3xrz/Og5SMbn8i2gHTw8J34djJe6LvhpdH/2uePZTo9A/Ed8Fj/yHEdfH2+C98dCnRAU5GP3Kfn57viHCZ0XIl8nMs2DZJ3Dyzpf94QgvxehlsnJeXZ0DsBovc/7r5fzPRBj3l/dPbpveHmWMMcYYY4wxxhgzQM5L02YN7QIXV3q26gWx/LmDS48qbZikyqxq1BIXV9C/Mn5yoVzV97kAxlVvLl5xQYzCxnk53mncRFoXzowEkh0Ur2sa5TefCVGd6qlXZ2hZMOQy81wVFzPA5UxqR6jep4YsgFj25UJhJ7ihlCnSykVDqpN18TBvTOMu9FXceY4vSdE4VHKRlXemeq95pYSi24tQMSOhlqu+qzmM9GUHzFqsIM9q2USZdk0yzs/HgWujPlCAU9+jv/UwofIA69ZsPHvr+tjhXltlonr9CdXQ4+didapTb0zS0utWZsavZzlQiMZ8a/NhP0OhOrs23fIFjKpvt1UrHr51/GdPC1+1hCgBorSE8YmGePc8So6+XM7rljGgn38KFJgGCu6Yb6aRTem0nKcgVPPEakfhIftvPq8uC8ZBFuT3KfnN5lyr12ocg6EAmANWQmKzQvEdJVrMBAtqTo5T62MNo4LhuXjBPxY/KYidpQSc0mcWmI5HjIfSWN1GwcFW+3HGwwo5g/4L0Iqm20NYOZmGHfKb9/M+pqHbxyvxa+fBfnyhSi8r91J1DhiV/axct1d+6zjCvNTlgNGQTKVOapB1aeRz91dxM9RyIDfIcaZty/htlDhzysDiouaNFgWly729AHPVxVJvlkLtsMsXy1M1EHT+NzROotXu1X0S7LwOy3FqQPAdcNB4NEb1+UCErCucO3Jexbp2Qo7zGWxHRyVkmlQTZ1WOM16mbQGj93C4OobqOJ/BfLGTZh6oMcPJIJ9JzSrVPNJt7fyte/fW0d8GyrrEfpIDD8uXnZxq6ulgxwahEwTepxo4pO5/snfAMmY+WNZxb3P7eNS8XJV9uvKgOolqI+r+kVqtmH00pfnZFjXCZzAvuzBotgF4DkZ9DJPL7xW+ClZV1Rxm978E4Hvjf7WEwG9CVjEWKYcW9o18f11/F216d0TEomb3x2bB70HGo9+sCxjli2n71gh1JzPjZvNgOfC7dUekhfHxGU+SeJhHalheK8frrY+copDnVOkG0JXDLjnOatxVsYizxIGL2A+tJ8+OxHfurubHHtcWQtRjTo94j8692dieIt/ke3WNYq/8ZmbYB7KguN2QL4KNmZVoO0btVk1sRAbmr5fjDFnB2M9SJUmwpo0xxhhjjDHGGGPMADkvTZvdaG0YcJHqUt2XGytM29RqEpcNa4mfLsupRI5xxuoUV/24ysSFscVIw7YT4yd23zYe3XVMq+zL3c3lu3heOQI8hpFTe4ViaF0ZYxj2UgrF0HyoSlNVzMU8Mu9MI5dJmTbGs1bFxaVkrrAz7jvld6btE/HsV00Txh+rfjvV+A+vU4ngCkasyblMgrAk5y+S46qxpOWokmT+5rI1Jc7b0ZfcqiRCV1xVGruAYS9x7gTwDcAs08v8su7EyvQ1ulz+2DZYife5cgSjBk7pLsssJEov5HsSjap/wrSItPxSWXF+LiVTYjPq+7mDk3Ur+o2dfN7WUT7YVBavGrsUTdiVWmHSadcj0nCN7JW/Op79aLn+ebF/lkniea7sazXZxzQCeCwlk5GPR0QbFTukXZOiZh+L7c0RqqRDhYqq1cIFer4Wmp2axeh1U2DAV6Lb5XmeUiJ2VUwji49SKs0L72P8tLPCvKnphzMYVQOWD6VAfKdRRTvJy3dV9/LZ2pwHwza0dkg4JrIA2Q5ZsfhyKVVV2wun0Fc5irieG1o8z+U4RZUrVgS+VBY0+0fVHMm0M4mOAbU1atW0UdWrTNNGVd62y/VqwHiHhGq4d0bOn0Jf9KcWJzXNrNQ6xqkmARsoK3WIUmmjaX/0CV9zRq7ne3hidYyVe0WunZF71HBApIW2Cah1x2qj0dB0B6vhP2V58z3R3s52jMYBzgGi355XTSx2POwM+U44FxkqoQXXa3s6x7lXjmsbPVPFwXauGjAcH7TDZBmpGgDLXDUi+CK1L1iS8HAVsu5oPjPHEIR5EM2+rvNmXk/Ibz5HNdhUTfVMlU7eo2q8VE9Q7R01z6maSixvtefD86oqqlrfaxgfYOo4VM0j8rV6bDypnOZsGb9spA3ACzho0tYj64xq29Ua5BywmW7mVzTltW/qqWIMlHm01VZNc7IIqDikcx4WA4fXJYyKgMV5tfxmtVflChYRq3G3kyLGqqvjfdOeDLsDzo10uNkix+d3AVdH/V+JYwfkmYvxHq9dH4+DczseuCTeO23+sLw6+zrRXq6JyveC+FblsNOZSK36tKfF5Fd9BG1jYS+NP4taP3RmcwdvYEFHxq9ggcu3us55rmD7ipd6uWo6AlhhBvj9whOqMs6XFy9jdk2uu1x+68vq1H4CnQOwvS1h1N9mmrvUbN4v5znRnbQzpGLIn6HGGGOMMcYYY4wxD1vOS9PmLNrtrZTW3B2rezu5nMclRbXMLitt2IW+xIwhV8TEo8Ms94HFcvUil1R1FZxWoXmeK21c/dLlVkonueq1gpEBC+aDcVFqz2VQ9SrAZd9JGjL1szMJpmrHUPpYaxFlNg8OynFdAdQVR907vVVCwnerXpdowKR+5yqhVYkOn8WyZlpqiVWdht3ym5IflRKotFBdqe+t4lDpj5Yn86V7ordX9wyRTWjfEd8ry4JlyvrPesB8ywo0LkFf9YHlfpncw7jiGfPUzFGPMGybjLfWnAG6TcCFKhaU/LG/4HvcPYpzUW1bxHsq8d7m2TZ1zynTHGlaUXFIpG0xnnMd41HtryibpdoIThwrYvvjkXyG2mqK3zewH43rnhzSl22R72tYTon2wRPUjWy0s73xXm7HqDug5tD+6Mv2xz1745mqEcPiYzejTVsduKlpjP300Rnld2k8Z62yQcA4WF3o6E0FvMyemjMBpgonLhx7dwDf9xUA/nH7+6fYSJblQpZCjK5XharXU+ig9C6MjEvQoSldQfAailn5FqTwe88kmyTMVEqz6+tphHaSrPRM09kk1GdvkvMsn2NyPEvT2XOc4zOy8lmW6zRkPMzTgQhbH3xPfX749GDfwcagtoF2zmAkdqNa74r8ZqfLWh8t8lnjadr2U+2v5058JxvxrjZJVy0p05eybLUXCHcjdNlBwyT//BVTn35BWEA7Z6vtvwC5H11qxakRjFmMOlatKisR9gy6BawLfL1qjIhw7kTvYerJSY2FfX11ndpe4TVqL0Y1SVSbhfdR4q1a3CqNPiOhajDV2oOMix8XVO1k02TaNJ+qxsJBg/Fo2tXfsNqrqQcdPpPw/au6WpTTfMTNseipoTHz2Ri49JV1boS0XDTNavNiK/ra+jrf+6T81m8R1aoaGOtoNTsyZ4NPkt8r7LLpPjkKeQGjrO6OMrshzrHK6PSU8Jn7om5cLhr810U9uDo0SvRTaj7mb3vjPF/zIuezFwGPp6vpqMfP1u/beL9Pji51Pr5fdrNPivda4qFXRhfMHSicW3ZtPfJwndhherZ4mQX6c6ovYtvjN1I8e/ZpmMg+Fiz7Bb40fj9EgezfLtepR8hI4yLbw+UYVQy22/hWXuJL5Xer2p7ROfhKhKpFSLRP432cc/P666trWClZITQNbLu75Xr93vr/MBFr2hhjjDHGGGOMMcYMkPPStDmFdr825Sg7KQTiqhZXvS+pbgD6q+I7MNJ40NVlLlNyhUulAlyF042IRD1ccAWN16snKJr2rqXhNP+tGgNMK1fOmFZKP07L9WI/o7fvWG20qN0Z1Uyol43Vg8GKpJHlwGeJdL9XzkflPKG2j3pBUCnNGkbieK4UqhTlEvn9qOS8ehBRzSO1iaP7vlXYux2jVU21o8M0XiLnyc54GafWh61pcxzAe6rftE3A1XG2N90XKvZqsBsjEQQFp6yPKoFkWVHLi2Wo74PvT/sDHufKu0qBWLeWqvO8h4JobihmftjW1FMF86er32q+n1AcpppnbOMsm9oOhvZJqsWjGjGRhp28T6Sra/Es7hXulYdoOt0b702FinsBlHj/C9F+j981niQmVT1UqaRLHQyxeFShj/HdHYoRs8fG4+dzd6Df7WVCZjVxtV4dV72L4XAGrYYMGwnVNbWjYcmdS5NkOblGNUiOJcchxyHnVZNkmqbNpA4xm1JsdKqh+c40aqbFu3COayZro/SfqaHWTD0fsFHQForOWXh8x3rlkVCfwXeo4n6ez7SdNlo+ChNZ16lp5aNpvUfOn9f08qFnbhNw8S5g6x3tb74fHSN1rqNelpbQ10pRrV/V8Dgu51VLWb0/EvV+pGMMn3t97X8mTu6+Y/zZqp2tGqHsolTbVMf3bFzS32RLFYrntZ5iHuPmvFa7Im1bByJU7X/GRy0ZdTvENB2tzuuzmIaL5Nrb5Tppsjrsd8V3jRpYjETesDo53trOhtYTPkTn0pzHqHZ/5gJ0IOybA/7PizCatxP1nkc7IKId3mliHweexDlbfMPQ/ilbiCpXsAy3iRb+on47xPunhtVuncfNSjxqm3MLUGTeealWlnhP89IfLKl3umgni+JF7TrVcuN7Z/xRp3arFkh9jXp9Fps2nZvTzLMw6+0kd6Z1mjJbc/r8xXlM1qitfy/L70zbdocc532b5Xemdatzpk3odxxE50uSlqfweIyjL/53E2Oxpo0xxhhjjDHGGGPMADkvUchWtFtNu8VPrmbTVDetn1Miz9VASpZoFf0oRqty1LbgyjeXkbg6R+GN2snR7dRqB0VWILvVO5Uq6CrgHEZaCnoP08p8c4/pgQg/JNczzZQmZB4vuHJPbQCuYKrtlhMYrUoyTqaB0gyWo3ohoKaFrlzzuovkN+PjO1OjFcxbrQFVrW4D6K+8qqYF86L7bZl/amAwbXxnuh+Z5bqTa+ciAT3G5WsAiyKaWgqx2nK8jN1xbbkirouV1r0fG7bgcAtG7Q/o25PRuqyr4KzTJ6p71FOJ7oNWKRjjVG8UfIZKKFXao/erN4+t1TGGrH/sNyhVYX3lM1gefP3qgkkX3jPTHFoGtcoJ72H9Z3Vk2vRe5ovSv0jjNpYP8xh5Wo00r90znoVtM+NZmKc0hunZjK5M994znqSlWuoJYCnOz0XkmiVVPGIS6eVgPeqZCmdV0KNmPgBgMdJw9YnxuNVxDru02jHRYJvm4ePAb70bePy7299viuMrEdINhnpFUa1DYNSGKSFXWwhqNEGlyyoA4hjCl6tjQ6bapNqqa9X/2m5Y51flPJ/JNOh4znas3qZUy5Ln1WvKtdX12nbVPYiWn3qRUoG4aml+OEK+22dHSM3H/xEhy5dj9lcB2Eq/HRHq+E54zxPlPJ/5q23wR+E972uo/Rvl/JZIi06jnvSt8c/LI/xfEd4C4Lvjf+bztyP8gwh57zdgPO0sZ7qyGirNWWD1jr4CFQuH7Yh1UbVn6v480y7W8Ydx7pDr1SaJqjLyerZ9amGoRg7r7B0x6Z4DsDX+F83Mrj2rx1GVxot9yS7fOr6rVy32O2rLkfGcxrjKZR0yTdR6UvT7QG3S8H6dg5J5Oa/2d5YmnON3DOuD7iw4ImHk5dp45yyeTpHgc5H5uWp+CvTVUdnXsTzX0a83ROuyKgQwbfdg2GxC22bYbkQzpPs24LeD7sSo26O+W9X4UNUFtcWq44NqgzHU8VQ9k6nd0Dnk80zVNMu8LGeoSnTmKZF1S70rz6Kv4aJ9jbYhNeaYapxks7VMi1Rt0G2acM1G4+LkRTVkNqpRwwLLbPCdS8NXj2ehNuJxrGljjDHGGGOMMcYYM0DOS0C5hnaBthMwUEjEVU5qilAjhauk2+T31Rit2tE2BSUIaiWe0IYEVw5pi0W1LwhXPVXLg8tUasGZ54+i781IrFijRIaOxNI7pQFchFOJpe6v5YKkrn7qc0htfVq1EI5X5+pncCVdNSt0XyLRVWi1JURpAiV+F6v48Rj6+wxlFXM1RA5UBbg2CoDleW+U57YoINrI6e1PjMzuVNGOek2JyrS8jJG6jlT5IoZ1ioog4mVuOguUmzBYNmHcPhT/rz0OAH3PaCqRAkZaANomGYdquTBOtjk1UkLU45O2Ta2T/E1tr73oS/cIXy/bx4EIVUKj9nIyAyoqwVITJOq17Qz6dg0ovVDL/OwnmT/2D6qBJvvR50XSvyjlPS/S2kPx3F1ngBLNdValgyodYlzMS7zDzhNAxNNE2pj9pShndsslTLccCts5KoPpuqPtwIlI57ZIvyrkqWBMzRCtYsDSh11bgW95CoDvan//qLqHYeVQMa16WzqNvmiPaL+r+7wziReZ5olJw/ti3IuVM7M+pHHr1KQuh3PdP4kpe8l70jLI8ewZ8a6eEOPCi2gMLzrEf8VJC9NOe0asA49AzytUL1QRqEgE6cnppW3wNT17M+3v56flyTA6gG+pbenINT8Qz/wBpi3pyHdGnf62A2347T+IQXIa7Tih2pZqH4SvQOdIPD+DflVSKTXHWVZflZzr2EdECaNns0RVIJmX90W4C31vV4yD96rGmXYvHPtU4061eIlqe6stx1rTR23Z6PxT86lj5C45r9oQO+S8atLyedRiqT2PqmcqatrwuGri8DfLO56xo/JkNAY10dSLKlF7krXGBtOpWlNENfV0UN2OQXPoJPC6vxmNjiwCFhGdi+1j/VC7inVdjnK79SPjl5RpNgdZRuL9Zy3e2yw/HbStH5icp57xnIMYff9qneIckXNA3qu7OPgNzrxoW+X1b5P7qKHEeTPns2+snscdJ2p/lt+7fDa9R+2ISrf3xHhe/meE/BbRcmcaqcGp2lPqKe3dGJX1o+Qcy5HP1PrA/DNtfxUhnTjqnF21mfmb5ca+rvZiSy3IXXIPy03TwM9KTgv47hMGO9c1xhhjjDHGGGOMeThzXpo282gXgzohtNqTOFVdCIxW6pa/Iv7hktyj0EmMdoYU59IQyeLTEcayKEUGn4slR3WmQLiyzJVJrpyrBIOrqLV9HWBco0R9uT+BS2YviTA2rV+8EqGuoatEdIMeMPZlEtM6vvh/GyVizGhI9a6hby+61UlM25+NZT/aVGCoHgJWInxEhMvfGP+E5Bg3REgp4jnS3+3DjHwWKZdt08pJ48+YJCGe5mVjGqcAPPU873kIUZs2XL1W72lsk3zP12Kc4xi1JUqA1MsZ27tKrSjNYhtknVLtGLZJ1YJRSdOk/dm6L18lbzzOshAr/J1ERr3L8Tybi3rAUAken1tr/FEyxqbA+q52OVi+LJdb5Lxez1DVVTRvLNdY9d9N8dRR9KWemRTxsBxnWmT1n9uXr2Ad0T3zkbfdtecvAItal84A+1knI/371M6J1gtKN0KhYenMyDvV8FhFK0phxdPMbJLjOgbUfT8zKYXaawSq6Zhpr0wj00DZSB+a9dHT+m59ZubJKfMKsRE2qmmz0bjV05MaNmH5U0uGk43dGHUWmYZNvY+/jls9iGm5nk6OZ/XryITjn5Z7LpVrpmkm7cGg2Yx2fqNa2GqTTbUY1LbNEvpaLOxvWayqXZ3ZsFFbFWrDkWyR84Rp4lR7rkqTempS7VN9Jvt+tW3F85w7qLaKaqWqnY76+TqOZ5pFWT51DsHrVKNWUbtUqh1/CH0tdRVxqzbLDjkuXrPUuWqnLqLzKtXkUjuS6xjle7Y6hirNatNPtXc5NxgoWwE8HaMsL8X7WqOtPaZfbaUxf2QdXX1UxYaVaJtrUXb00tnEM4p66Ip5B6dKZ+JTax/TEnOhteia+TpZHZbin+a2UTouCjuoi1fFRdH+7w7bZJ1D0tD82EcND7E3uXr72E/so2fnveN55Px2lhooLAzWF9afQxhpDLEesr1TO4X1/ePyWz26UcOEc8gnj6etK6BPRviOCGkbjp+Yx6vraD+W9nRVU4bfHkwrvUSrp+vfj5Dlw7lomCDstIM6lfII+X3MvK9EeGWVD34bMJ88zvzyHR3AOOptT7CmjTHGGGOMMcYYY8wAOS/R21m0i43dYmZtawLo25Pgytr1XI7i0tJmjKQwlNpQ00bM458VDRuVfuhy5hH5vV2uVwmHaiLUK/NczaQBh0IxPMPMSnZme0CZJsmbJG2lBE1tIDCkBO54dU8dxnUsH5Vqq80bSn5YPst8T3wef59FLh1VjaONatBk+/AzzmWLYZo0ddozT6Fv6GRArKFtmFzV5oq8rnoT3QNfC+vVGwTv5StXLzUz8lslekxLbYSkfjZRWy+Mr9Ya0vwwDqYts92UebzQNByX61j/2S+oViHzNId+H3O0OgeM8sP83yaherhif6rlqzCN+nxKUY5jVG5axuoBgKzK+S+S83zHlDKxW6K0hVpHLCeViNV2u1i27FaPyHFKcHWPM8vrFIAPYpisnwZOfgJYfFcc4Ethv/KBCN/fBh+MgmK5cX93XV4qalHJNlFbC0VuPLs++brMyx+ZNJZmXaM6XdC06zhOdOhkPZxnw83GmnPZ9xHR9bF4uHrb0jlEZveKx6nVcBXTxnkO5zgsSG6UZ0V/H0bjNcMYT2+NtLGOz1MEyM70sRHqpv5snMvGYN5HseByFWbaODRiRpHoa9rgb6MgJ9XZIVLmgfnLgHlRv1yOspm5Y/x69QZT1389xrqj3grV3ot6YlGvp3q9aqmqRyayk3VxP7p3vY02liSfs3eMx8G+XO2eqDaH5nWHHNe0q12IuercYblWNWk2y2+SadSrprGOyeyP9st1Ok8C+hquai9H4+Z1u8aTolMH7NsX/7DNEdGiW4z3dCze0zr6Wss619C+m+80mw8OjHkAKzMYdUvxnmbVXio1J7TPqb/vQjVmn45bwaxoxxWtg3zPkYadastIPPfOyifXEutapJlayisL6NtWimfujLTuhKAafQHNhLJGde87jves0Omnq9qZmcXIEGLvJqJjiLpg1euYCiZOJo8/ln0fSkf0w8voj/P8HWPUi7JvRUnbSxJt22/LvEKJitrjJtgLfKR+f0ZaroccD67X69n+J9uCs6aNMcYYY4wxxhhjzAA5b02b21Et0maS8gMRcqX9khAlX/e6+I2+9xZd+b1Fjqu3GKKSYsa7V0JKermif7mcJ3diJFDiCulfRHjNK9rwogg3xZrXyVgWZXkw7VzZ1WfoCm4m6VyOTJ89MbqOi5XcWKlaD1quKrVWdPu9alkclHD/n7XhkyPsVmP3YJShA9WxOhGx4rga+ZlX0+80nEOJUEggzoaEYRPF91yJXJHE7pfftfsHvhxqBqkNCb5srtCKByrcipGUfKDMot9O1IaIml0gtRRR66NqrehebpVA6l5shiod0jarUgc9vwMjqQbbkFr450K4atwwDdo+1OsEN56rRENFFWx/LIst6Hvf0D3x2l9yH/FKFUedRshv8R7Vxav7+XmefVwN+2T2q+wXKfxgmlUqqqhUkeh+XCoGaB5UAg307RpQMUFt9kxKy31xaPRQMDMDLC5gpH1BUaFKiKIif/GftuHJKITFx8X5KzHqT1X6o7+D+cymGm87O347Wc7uyzQnT1X/q+oe06y2WTINx7Pjl/fylhnMIJMam2rdxPhBrdFlar5wbIjx51g0crXVp33oVXxHL4iQBrWYVs1rrS3LZ1J7JTxQXRqaWas3x3F2TDQIcJmE6skps12j6Dg4ydNYZvuHBfGENrj27W24SBuGTNvrkmdfaNYwbiRRPHTtkfrSEfnnPGYVfVs0OnappxTV7FBNb4aXJ8dVI0c1zU/GgcUDGL1j5kfy2YnzebPU1zqfQD+vmX24q+U4qyDnqrVtlsvlmiyfk+KYlBaitty0e2Co2r9b0dfKUZszqv2v3jWj2NT0XyfrX4157fwxOZO0xWUOmnV/y2urbwRgVP+2jp/umOZQ8AJzDMC71oH9Ydtlb4TbuLuDRUGbn563AAAAIABJREFUI2qTpdZc0Xmozq/UI6/WPdXK0rbNusO5lXpXU+9HquVco5rLRIdV1TzLzNtN0gqsj6vXpbG6vjp+7awYnOrmY4fH4+JxxqU2GnUep3N0te+VabrVZPYjddhTJaBEc6k3zei+c/W7UOdkd2FUUepj9cMZh9o51O/nyVjTxhhjjDHGGGOMMWaAnJemTYN2YYrC026FTCXAtNFwk1xHRYn62qNyDSW1BzFOtkpHaSxXHrkgRkm4rsyqNFdX4mYxWn3jfln1btOtxscyZ7Z3W/cls5z47D2xZrZJlj2XRTq2KTK1aXl0bD2WztXeiO4RJsflOpaTSrF1hVIl2MwLy2YhMjN/GzAfK4pNHCsRydl4GZuiIPlu9oSEgfv3L418N5G3EuXRSVNYTio9VMnfpPOZ95HNcu1pCcldSCXWQ2DbDPDVCyOtrDuT67SdqTYDMCpmaohpW+W9fC9az1mkauNG2+C98ltt4eie4SW0Wnp1mtj2mBbWy0k2ZyaFqiXE42prQL1akFoIravzLC+mic/q3A9IqKv92d7p7DqWn3qbWseonFh+Kt1gyHeoGjMqsdQ95CpdIdrnTXrHeg/P3SPHVSuo7sPfh2Gyug7cfAK4gkZ3qDGhXoKYWdoxoPYGXSdchtHIu5yEqhamIik2zI0O+9ke83P1gxv1wLRRe27TyLSBJsWr48Jp+S12ZZapkXPP+PFt6rlpv4SKenKa4A2yl+6Q4HVSeNo+ovaKdgK1bbk6zOB5jpnUNjoQ4cera9Tlnmr7xPFFdvCM63y9lT3UbAPwLIzKju2I74RSVH3fUWbzfEdAz7vX/KR3XV8X7IvrjskAoxokOvbquKdalp220zJG+WI+dR7FSDWf8buzJ5XYSZqX3108qu0V7I1BYJLEXDWPNJ8cO/lMnZNnEnbVRGCWdZo3U13Hazhm6TyI1X3SeFSlmZ6PdpwZfwTm63dUh6rxxJATiWPo1UX2VZndke7bi95nWRe0og2D5UXgqdeh/41J0176Pmkv5JoIa+1jrRt8r7dPuLY+z/fOuQ41x1jn+CKPyvW8n9/B9BrE+zkH24G+1o2aTtG5seZb1S4yjeMZOc/nLKoGSa31sSw3KVpv1baNamZqPNm8QjOp85v63iyOrP/VZ2TXaUhNWJ1bqf4c2ygwUv9STU2OKzTYxDRo+b0bk7CmjTHGGGOMMcYYY8wAOS9RyAzaNaBuvWtXciGPqxYHTZZ86QxGUhraOYllSfpXVw2SdTlOdD+tHtc9f7q6TyESV/SX0F+NpPSZK64UqHWeLMKTw6bY2309l3uzffxceWPmDslxhpNsC0Si9sk1F386fsd+/M+tj6edoWoY6Co0V4ezlVndoLvMTaWPQreCWJjPyD9tJ1CqvEdWYil8ZvkUEZN00kYmNrO5oJKd2rMWy5gPm7apVyWfSwDelVw7BAqAhZHW1sVq54eINIxaULXAhZIC1hUW1U4xmLMqEjMqBbAu0baTxsc2rNIExrNNztf7/XX7p3puUE2cTAKnnqx0z/eaXKfVRu1PzU3IB/sUdnVaLqp1Qs0mPlPtUqmFf7WJdadcX9vOUiEH00hFD75atcPDOO6U45mHBfWsQdS22CRvHeppSu0ZaJy1Jwwx6j8YZiHp1pcqWhw9qRWlMrvRr/wqltPxJtO2OF/tlin2ZzZ07UaPn2+aMy8S59K4ya6ZFqqGgnrPYPnvluMqzatVyDi2Ud2McbBhMg7OKdRGkDYKZZrHRsbHydkzIjyI/jxEx8xs/M2uHxpzaDtnpnslQuaLtvXuwjgss1p7RqWpavNAtVBEG2VZRe2idaw2cYjai+uKfE8VqsRb5t5pPlmPVcUz0Tzq2WTR64LFOq+ST51vqkaoCvHVkxVRzSRF7cfp2H0C/bLNbO6phgXPM23RlOeieEeS8j0Ssvy0PAm1NZfQl86rdpOOM52hzAh5f+aScgDUc9JMA4XvS20aLlXn9Vtmms1GPkvnZ2r3U9OZ2R7Mfi9sIA06b1MNMr1fr1c7VIx3Xg+o1sx29Ouf9vc6BqlGjGr2ZuPBNK1QndcsIB/Ppn0bajthgWVzAbJZrtO86fEanTdMG5PPPZk9r0WbTWjn3l2nQ3Uv3T6kE391031yHVgUFUCdsBNdZCCqI5RtUdJ6oi5GOS7VWxFm5Vo1rNo1BG1B2bad7KVNc409SXVa41ZffvJTB0GiKp/6YZS5RNYPqTG0MrKBsNFpZNMm2ln5KtM+CDYhV/HLPhq0wBYwaMW09TXg2OFKs5udstYXMbQ8K8Y276n+18FqKTFIqO63VcVZ3T3rlkiiLkR1cDxR3cvFVo2Dac5cTrNNc4KlLr1VK1LcOfYmCfy2mkd/QSIzxKbusgm/5XTypwYe2XXqtku9nhxB32B75tZZjfFl51mOfEeqbq6LYiRzRQr01Y1VdVjTVi/mZS6nh8Aa0FdxZzuMheB7P9GG27jqeKWEl6G/GJAtKpCNbpXJjNRm53Vb0aTtp0Q/GDVt+jv50Js6VcmeX//W8ZTPOi7ns1DToq569aOX5/VDvR7f70nOcbF9JcLHyHGuIp/vFqSN1pntmPye65DHddKuCxRDZRZtmmkcvDYQDfTLSCeC7PzPor/HUx0a6AeOLoglhqNLdIqr4uyCj+O8l/1wJ3ygEG/PhDToYovW52mLbzroZnlVRxST8ir5PCP51MUZzSej1uvZjeo4pGOswni2oN/s9QMZ8luNw4pDgq3aPXR1gG2a/bvOn9WQ6TGMMsp7a4PawPg2jToO/bAe6KLNOtp3pO+d9Z7vd7+c59yAW5Jm0F9U4XtSIZgawn20XEcodKOAWwxPd/MYpvVp8rsWKKpQkTAu3Yqn2/uzhajMpTuv206zFhHuje+ALTePrqVZjrNxzSb9INA6qONBZgWYdVUXgfmb7WBNfncJQ98kRrYok7kjZztgZVCpbLbFS79R9brNyMfkaQIswjw9fWIsA/4KNcYYY4wxxhhjjHn4ct7bo7aiWmiutxQB/RXLrRLeGOEHgc6i2EocU8l55iYtk4hnbm8zISKlt0xbrUKn0mSeY5wfYRrjgoW/jGdFmGmxcLWfK7hcsVWXc0QFHFvQN571GblWpe8kU79TarVCoL+NiueZ9jtjP9vlH+u/dy7iXxpqD5+Ld35xFP7fR4FcFZn5RBQcNbi4Ve5aPitCtfnENHF1me+rdiepmgLqSl61BSdpR2Ru04fAzAywvAwsZ6qKDGVluiyPX758ZOSKkrDOUBpGF/eUVqlGDH9TGqIaEkwK35Ma0FVj43W7yPoDxkVhabYtir/Zv2TbJ1WTROPR67ZOSLe6n9QtiqoZw7i1P9W6OM2tY22AmL9VCKL3qIq3tmVVU1fDkOoyXFWJdftZ/U6ZP5VEafmoUelaWjpMe4pt2g8C2ElLyezA+SJiT+E2alJ8KMLfi/BtEa6g79aZiPHadBtPpnGjGiPT1HjPpUqski4NN2ogd5qmTWbAd1Las0mAahSohgiNDx5og3tPjF+274r4h1uKeN9HI/yUxKNlsYy+cWmmOzQlmphTFDaklQh5HwdB1g3dakE0j3wepaSMr95+pVJGjh3M1zva4Fi4+u4M1nIAZ1xDZRPGtx0SNRDJMrtJftcTXl57ndyrWi2Q3yzbzBgwt09xghz3dc4a9sX5SEvnxILb6TahX8eI5pOh5vNcbWvS8WyrGDldXSftfJvkk1L+EgN2l8+4bFeoO2Raqaqpz/GJSdDxjkmdxWj+QnTrL+9V7XOdQ8+P3zZSCtXBWDWUtP6h+s0+Rrf2EbZr/SgjLOePYZCsoq2GnKexTHWrOOcO+v23ozqv33HdFqEItY5oHdI5ojrByLaM6zxmErqrQzWGdU6pZJo3Wdo1rdl34CzQ1b9Ow2baliQ9n2nZaj+kv4luSarjybRdNUM6J9ouv1UDJ9NAzbRkJpHNcTIt5HNpB/expo0xxhhjjDHGGGPMALlPhog7ASelp2rfYZJrM2Bc80ZdmFGbInMdq5oSuo9Q3bDpXlY1bkrU9staFafafeDq7hV01fdYebi6yEykJlz9u15X+6bZujkC7KGkNqRdu2/rTo2lkdR2H4DpNoLUFbhqovD3xXy5XxvhlcA22RN9qbysi2UF8Sr+DrHHI3kiXtLjpHpeIddvE2nrPi2vCSu0i3FsZ+YKLsLOjWXU9p13AXOUQA2RJbSuWDMpzdnquvq3riifAuZX5F7u94x7FmNj+KKmIXumtodMCqyS70ndU2aDIe7p3M3Pj192Mo7rfnR1v50J5VVaM8keT2YMTg0Tqh0ttQUEOQ85rxo3mibVBjqFvhQwW66fZCyvvl5tqWYajkS1gUhtC0hhX6aac9vkN/N0GOdv2uOh4gSAvwGwFBVt19+24TL7T1YGjiVPjVClVHXFzKRAmapmpimzgf5y4n2T4ss0ZJL+tWcvZZp2jxrvV7L+vLa3kxlom2S/DOhpitDV9zbVbKL9ELrljv7u3lA1VffFDMu20bU9SV7YoGA/dldMSv4mJOOXRcjpACdl1G7lPEDHbbVxRyUM1QrcOT9Ky9kT43FrP0WtW1bpvaH+O/sZDJtNGLf5ou1Ixyu12VNrlvAFZBJZtfOgGhCMW8dnthMxQl4g16mWCw1L15pEmk+1q0M0bZkNqEyLTvsVja/W3NJ88vee8UuzfG6Kik1nFwsxzqu2hGriqN0RHbtPTbiW8Djb1rr85jOlbdH1d9NpXlwWIedXmXHxSbawniDXsF9UH+a8J7PiP3C0y+ZwSacwXZ8Toc5vziCf2+kcR12Cq0kVPoN98mrUNSo76tCk2vu9/n8GaMSGE8k0u3WHSKeBqZqa0k7OJqrImzipYl1kPalts0zTMpnkLry+XtV/lEyzRMfnOpxmN4aoFlumaaNzpY3an5lmZHkjacxs2kzGmjbGGGOMMcYYY4wxA+S85JOzaBf4OkdNXOTj4hVXOTPPpLX9BC4XZS4MdeVb7ToQfQYl57qvVDVwiNpLqO/RuLslrsw+gW6MzTRtdO/qRr0lHUEngTsZ0i+u8qrNDpXGq0aRWlJXexGE5bhFz1NCWEsXMy2IzIsEz6vkJnN5RXj9NI8hk1ZwM22mTLpU70kfslGbeYy7L82sneu7UKnYcYxe+jQJvrpDmObFK1vVVuS5lEaUao25EfsS2sfMituiTAtFzxPVTNuIjSzGqd6fVNqnC+kqVcm0efR6lQRmbszPYNR+s/RrWnWvf2YjSDVsVFqVedyo86D36t5xte2j+VwD0GCY7ALwrQDKV8eB/RI+K8JrMA61N1hZHoW+NCzTECFZ/zvNVo32gZkWS31fJi3L0kQyezqZxGya29BJ9jayPp/lQrUxljX7NY7vYmej55L3yRGujB+nJug27aRqTQPGzWd9NsJbx3/viTQ9kROcgNJfSmBVg6CTxKrEMSvH2rNHpHNTHAvzKdi3PH7tNZG/zsvIl8d5iqjfkjzrQrOAtl1ltnv43qi9cKn8PpdEVLVYdC5INQzVjND7GYq2axevTgBJ7SJePaNMy+dm+Z3lU9tR9pvPn+SyaVo+tY2qto7U6xLn56Ndqcv0bBxT23W1xr0me1aOZy7Bt2EK9FqmdqVUa0LrUq3Wy0SwH1FtKr67c82Jh8ftDfALZ0Zu0p/3zja8hsp7HAofHyG7nGxoBHLbgGpbkZqELDpq9fD1LIk2l3pJVQ+lqmnd2elZ79ua0Z0Q+j2mOyKY6LkIM40d1dRhPDtiPNkRmpudhno9Lmfzeh1Lai2d+nj2LXIu23j1/ZPC7Jsv+6bIvjlY8Fk/zLxou4L8rsNp2jjZd9G0tLRY08YYY4wxxhhjjDFmgNwn71Ed9IKkmjUq3OFvteVQX6PeW9TmDRehJtlAqOPUrZsqxWU8urJer5Lynovkng7VqFFpivqh15U1Xn8gQl1ZT55zr2gPAKPy0FV+9SBDdJmO51WYqpoFalOInrOW/nL8+jpOXSWmpgQ1J1RTgHHrO+azFyXxq7IflOFyRNDZN6n2jnL1W5V5isTNPaC1VH+oHmoAtJvcN6G/+q1SM55XCRfZXv3Paynl0hV0lXrxvC73qzR9WjuRNJZa0hfXFtnDTonypsTLzHxcvxYvkU1pt1zO/oMCba0napW/80QwP6pv2dbdzFuU9kEqmNc2mkkNmVZ20pTC13FoWvhM1YjJ9vFr/6Dxqk2yzLtB/XzV2lEpmfZpkxTehip+OIXWa+L11KTQ+vneCOmSUDUialcl1L7JNF8y2zSZd4ZpNil0PLovhoOm7RG/R47Pyu/zTcMkSfK0e9RdGzVgaRdEy1vjVdtdN0bIwUZVkOs+er+co4aEerAKT02zf92G6gllUW0bZJpJWr/UyB81HSZJDKnVwbQxv5GHTfSi9SiMM1RNmxm05aBerqZpperYuobpbU/HvExjRjvBaXbg9Pck7VjV7IZcm2lCMw4d1zWvWqeyvPK6Oq86l8hsr2i+pnleieuLuLacjQ8LjltqboPj1Az62uVszpxKqQaoju86XY9iHE011dOefkhpuakGU31vptGofVRWF4YFi59mtD4e4UKY8NwR4VKEnWdOzudU+6lGbeWpFjarLYcmDgO0u7pXrlcNHb532vpiXaOGDe+vX5na/tOdItrcdT41TaNZvf/yepYT54zbIvGbD/cVQJRMEWZetXU2ah+GaF82aUzLvqm1X53UZialQfsVTYv+1rlCbZNsmn2cTNMmm/OMM9SprjHGGGOMMcYYY8zDmvMSnW1CuwbcCZK5IslVOq7acaFYpdJkBv39gNnyka6E64q4kh3XbXd8HlfNa6k1z3GlVeOmtH7+tv69Y2mdoBkD9FdHF+5oQy0nldgfR9+LDR+hlutVU0k1jlTLRbfR6YKi2smYld+1Cla2KrwgGTwq51WCruV0an38eFK8nT2TLg/rubC00yyg5pBcV9fhQWva0BMGRQ0qicokVIfk9yR0T7V6JMi8oKkmGo9Tm0etzCuTpJeMM6S7BYKuVov4hB6vFhMJHTVy9mgesz3ilZSx0AZEoqmw6dh4GrbJ+bOigUYyOzyZ5o5KRubQ11iE/Nb+V+NSKaOi/ZDu79Z2x7FiM3JPgXqv2u6p2/RQxQ/H0ZpAWwivUVdRo4biO9pHYz2ipgW9SFGSUxdSppKUaYKoNkXmYUTZqFbLubxHaVyZdk/2zGyv+jSPFnr/pGOZZquGavNG06TaAbSJ81k5rt5idlRxsI9lf/ypCN/WBreKLRt6TWFboY27UyfGr8s0jXl8kQ2W9ZFaMivoS/hJaNjQe8qpm9twG+sypY4XYdiso33H2perpkOmiVJrlmT1UDVas/ah9gx0/GFdvEt+Ez6fY2st5c40Y+5LPutnqZT6vuRVNUA2mk/2hxyY1I5kYjeDNjs4zuukrtZ2Va3Q3nxUzmu3oRoYqt3Ts2mptrKyOdwp5FL6TOOLv1mu2bseBpvQzmSplHJlhJw2LLFrUa0XarfU9vB0d4V+s2yVe3ie3TXjplaPfn/ob33P7GJVk2cJ/e9b3qvfkkyTfnPvlt9sFnr/ahKyTFhH2f3Mof+tnH1T6vR/R0S+cHj8OoabOoM6PCBh5oWu7iu0L9N2wLgvSs6rFlD2zUIye4Ka9iXk2q4b1ayhBuurMImhTnWNMcYYY4wxxhhjHtbcl03qo7Vpbjjkap9uyVTJKBeQammveo/KNGV0nyhXL1WSlN2vGjVEJc9rE+LS1VAu7nPBTCXeipaD2vrR+zKvMEerNKhEW1dWNV8qOde8ZHZoMg0nlX4fQf+d6LtRzSWi5TJNk0bLQPd96vuo36milt2VbD/n4FgE8Jjqd7bHXfeQT7o+s5TOBswXqVKy7eOX9zw+qPRsmjcpXs/GO4tcwq7SPj2uJOXQ2UGiXaTD4+e1H1rm/XvQl0hG+unBImvXRNtapkmjUplp981g1BbVe4DmRzXpNE7tf4kqJWg/lPU3k9Dy0T57To6fwXC9RxW0ZcVyuTsytfCJNtRymg2NnPk/jQP1nmnWWbazaZ6Z9KVkWivTJOOJF5Om8liR1UX1ApnZeyJZ369jyzRvZvXzs/qUSTEpddR5gHZX2h7VPhbzwOJXj5m1whMVbFQDmXYUdsn5D8vvzMGP2mvgnIOebfZGIreH95B5hjPoMroaBaRKDTTTxPysRZ0+FeGgNVNrMrsghBPaaV5BgZFWm7a5aR7cMumrasWp9kWmUTHJFs4Dlc9pEvHzyev9zaeO75n9rsjTRrVZ19HXmMnmmdqPaJLUy1RX/JzfsNypT3IuWx5AW75a1pkmo2pukWFr2gBtd6lKLiypnbyo1loBRu+itkuj3yNqPyb7llLtFfZ3H0sSrO9dpo5d11DbldFxiyGHeHYjqsXDtHNcUFuC6S6ECJlHVUTZUZ1Xu2lZWjVfrOc6R+w8G0YmZg6Px6Np7HmEjXCu0jpVtZPMWzKv03LSvB2V3yzf5Uw7SAtuB3JNXrWFlmngnMsroTVtjDHGGGOMMcYYYwbJffIe1S1S0389t0PTm9TVES7KUtvJytYIV7K4mpltz1fJGaOcj/WmVRHnHB//mWrLMBNqTwHIpcmZlk+RC9WLzKxep/vxeF8s1XcW70VLYsvqxqVXms9MAymTiBKVUmp5zmtagVTLQz0yMe7eHkeVomT2DJLrWP7bGG8tpZaNx6pZQWh3hM9o1u+jXtpDxRxaWwmUrKgkJdNqmeRFKpOo6SozGxtXjnVfuq4g01MKoaQp27s6ad+odhS6l19Xq9UmgD4Dk383VV9Vh6ots0xNiGvQ17QJ1m4ev0fbmrZR1VBTLTfVRtB4VaJU9xmqUaYaNJndHJJJp2YkJEwLq4h6tTuDkZYBJZUaB6UfKjWptRIyTboLzUm0kjlWT1ZLljM1KXR8OhXSpEeyLu1BX0NNNeIyyXgmWVdpNjXD7h1PC9H6WPfjmVSasL6okKn2zldfl3kzo+uVWRlL9HrGP4PR+EIPgtqWNQ61j8A4KXVjG1qX3zqMMb7L5XrWgRMYdaHazzAupoFOpEhtFqdOGyWzB8cv72w/qHYv4z0l182tj2x0cYxfE887fGdsv3z2UTk+WGgHLrPJpjZ91F5CLVHlSz0t16q2hI4/Gmo8mdaKep3SeOu+QD2c3J981mnMvESeT17vbz6zcV3mNZx7av/EULXr6ignaW7X5xmnjqGMk8XR87iY2evJtK4maRlnYwDjPi7ns7nYsChoi4tFS6UVdofUemEuus8W1STejr5NGb5Hqu9kXpJ4vWpaah+qHmlZD1Rzk1ot1HJcwmjs0G9NNfuoyhezcl61YnSelXkNznZ/zFfHdP6p46V6oMo8h5Lsu1rLX+Op86jvOSPbxZL9zpwudmg7YiXhgHsX+h+K2byNL2+z/D73h6Y1bYwxxhhjjDHGGGMGyHnpDsyiXUzr/BNwCyaXO4/qHSvjF9Jjy+LHgbOxzMmVrk1cOoskLau9jMTS8rystM8lqihFlyJ1NbvyDDEjUjyyzDRmlqMjDT0vMtMsVdOyvW56lVW95bNIpReUInLVV/fwKdNWKlU7KNMeGpPWiESg0xyKh6jEs2h5KpkETCUPy+PHi76XuppL2ZZMGi31rADAnUk6hwClhippqc/XYXYeyDWdtB5P0XjqlspVSrbRtCQaaQBGYl1dpSbZPnv1ABOsyiZg1ebIVuTH9o7rPvK4aBNdvVC76/B40rRNZcdJlibVmqn7L8aVafuwKU6ytzEJbivmYKBp4XN0z7VqG9SvXqVDav9GvXhAzg8RigxZPemcZ0+nZhhh1MeTog0ytlda2wnPsV1mng826pGJaRZtlsx7GTmF0bvRIUylmHynOleYTY73ND3Xx9OinsQmeZc8JRVE6yrr8EH5ze4r006j+Fel9GxLqvwnjp3G7r1FrlFPnEyDtnFVemA57pXfLMejEp6QkF31PNA1crZ1tUmncweVLKtNh8GxjnZcUA1J1VjLxo667aoNG702szelz2A86uVH41GPZhofX2Q9J1B7L5rGjeSzfvYDkdf7m09Js9qsUZtXqh3Bes86Xo81vCazFaf2L1TzRu2t9OyM0EgKtypo3rU+1nOZTDOJaD3K7A8NE1rUqp0ZAX0zorPsg7TPrTUude7B98BpmWpY6hjEvlTnMqpAoeOjzqWYNn4vL6A/XulUV20MqtYWxwcdd7XO6hjFMuhsm0k4yZanlrV+UmdpUS3YbPfLJK+nQLUTo55UZBr38rs7HNcvTvHy1+2wUK1B/aY5l4eoad6hsu9TfsuwwrxlYkqtaWOMMcYYY4wxxhgzQM5L06ZgfOESH4+QC0O68rw3vAhcEmEtdVNJ7UIs/W1ZHV0DAGshrsk8BakET/fwdXYj4sScipYkvlpqSLp9fuLkPpM89lYMD5/7+jmJd/bEeDz13sps36WuoE5bxeyeLefVHoaKB3rlyzQf7pd5J/1MbNloeWZ7G3Hv+E/1hNOzLh6h7kGuUUltZ6sjEndyvX/9kCX6mEW7+pt5fiKZVyk9D/T3YE7zLqP7PNVgw0H5TWnRIfmte+vr52j6L4tQpX8qrUokTquiTaBaKpnnJkrRHpmtpgP98oi0sJ/U4sk0Z1SarmnT/fmTvC5RQEApD6VA2lbVQ4z26SfkeFY+jFc9Cmjaa9T7hvZpaoOkfhdZ1bzQzKO1aUK7Jp2HIbG/Ra3DxWhri7WtJF6vdVxdIFBSo4ZKMk1PlfSIxkGJ+xdVUq+SpNpIXabFE8epQUuva6vS92sf25lMi/I5Gxdq3ed1qlmyjr7NgQW5hlydHOf8RqXzatuGaVE7NHyearlsQd/zpkp71ZafaiTV9nGA3Muberghe+U849uK0TjK/LOMVbOA1XKSI41BswrgJvRF5jo+ZYaH6vaknhF575r8zrR49Hf2zMyGS7w4tqf5z1ZpvEzuuT/5BM4/r+eyO6N9msY2RZxCAAAKlElEQVSZ2NNZlTk4kz5NC0a1ZTTLrOur6I+/2sZ0XsnzjJOK2art3v3mfIjvig2GeT/Xe9KMEdV+ukvOn5bzw4Tfmqpcq+aCbo6+d398i87HELgW2ZytnOAxstUzYz97n0BqDZGfY7hJEqlzGNEiXYuq3Zlj44No22Zr9dDZ6lgdEq3PnSemCLXvVU3xTCuI97Mqcgzcgr59OUXTTPQbXTdUqI0anddBzm+NE/PxIuZOjLSBG9Gs03lENq/Qb1WWb+YpstP64SCYzYUmTUS1L5tiu/OsfO8mSTfGGGOMMcYYY4wxA+K8NW3GlCC4Z5mrUGrxWh257K+uV+lTttqmK4XzclxXKlVCRVQappo6qM5n3l0gxxXdR8glMd3LqsvGyiRJOVGNoszeQOYNKtufq9LHTKqdaajU5aZpVYGBSkPVEw1RzZzMU4gKG7ajj9arTFNrTrSC6riHKs0H0BbSMnLpunoXUImLSnOAkdcJnqPURjVj+ILp0oTPYuFSkkTRcyaBExtPk6T3nWYCRQIUVTMN3CfOZ9J7hHiDyva6a1vXdtVrkyyj3dUxlhPFF5EGtVeS7bvPJNna1jPPcNoOFzCShqgmHUP1AMNXoZJI1bTRV8ffK0naeL7WtNS4NX9aXlnfPkRqTQ+g2i+/Ov77COtnDKqXRLg/tFTX0Neu0HJRTZJpkq2N1i/Wjb33To5/HX0RqPbZPE/NDvXaqFqWDDsbBXEB835YrtO01xolmzGOSsy1nHbJca3j6nlStVQoYVcPH6rFtgP99qE2n7Q/OirXqYerTjoZIcubME/HJWQ66n5C51osB3axh+S8jqVD9ejWQQ0ZHa/WqvNAqtXScWzCtdqRTtM64TM5btVxT7hfNUQ1vOJP459nYzQePRD5nHT9A5HXJJ/q9Wma4pFK2FW7TTVssjHmFPqaM9ncoef5T65TLbqOP5QL9usFQq2hNGm+Vv/WDlE1joetaTODtnvVoT1T/uimPHFidtI31sz4tdmnEEN24xeFhk2hhozatElspHGK020wieuoMIJ19DUi+Vr0GUTt/dEuDx+ifbK2D9qwUU0T5o3U3+g6tugYrfbX+FttOWk5qZ02RdcR1qrftLenY7uiuy/UiyWPqy0frWBdV8ldMGKvddJSSpNoBWvFm012/SRY08YYY4wxxhhjjDFmgJy3ps3YwtbbI7w2Qi5N0tYNVwG5osaVsznkWhR8gC6HqhlxlbbqMmmmeZLdV6+Sq2Fq3buX2ZUhXGnUve+6b06vV40TlZwCfe0VlTiqNfKeRy+5fqNoHnXvZb0BVaWufO9cBeYKrGpgHZLr1T6GvmNKYXW/JpUeas0dCoPUvoFahNd3cGd1/CQ+D8hsSrCwWchq46W+X5e4VdR8o9z7hAipdULUtgalPSFha0IWobYiSE+ytTrqL67XffisLJGvk9Ew+P6yPe6ZpK7WjpiUNnI9bY7swKg8Pt0G3Jt6m8SpdVE1TNTmDX9nbTbr+/j7BuTe5Bj3pyL8ZIQH5fw02wC6p/jxEaoWA6X0LJM70S+PzNOBpoXQCcwQuQ3AywB8SI5r/81xjxIf2sBhX3kKozJTE1GsP/TmuBKhaoyoXSHGwzbytgipvcF39pkI+U5ZD9mVnMZorFf7S+qFjApy7Lsp+WP+VQOHaVCpN5/DcsrydBzj8w5gVOa89mMRrkTId8A0stz/JEKWs76jqKeHQoD+1jj8wn8U/9AmAt/b12M03kSX0dUT5pfl9cQI3xPhY9vg5OvbsHMCx3fM98E8qQ1BtVn1KLm+9nh2QK79SITxLj4R75h6lktU8mT5DJbTGGUOyL2sqfbCITl/CrlNFo6zqq6R2bKJ69ULkmpxZPa/GO6/ow3nP4vxPAL3L5+Tft+PvN7ffOrYcCI5TibZrqnvq6/TuPTeTFUj0wxVEfmxaJTL7BAYZl67yJHqIaomqe9G526qQjtMZtAOV6qcoEWpzr9YtbLpGtBXUFazYfq6yZbbx3/rM1Tpg5fzE6lTNo3xZxajt6GfnNsiskOnx+9V5dDdkYgmTqiimeaV9xXVyOQYz0SvVYlTb1Hs6Nk9qObtfrk+0whXm3DT7MmwEHZXxzItHb4M3RFCVBso8+KlnsfUdh41fuaqj81st4rmI7MHmX2zS/TGGGOMMcYYY4wxZkCcl6bNLEaCMQC4I1Y191FSxRUiSpR0j9sN1c13yjVcbeLKl2rgYMpxRZdJeV+2Sj5p352utqkGiK6UMU3/u707do0iCMM4/F2MURBFRCxsRBBJImIlKmJhaZfKQkSwFwSbIKRMI1jYiH9CWjGFIKKdjVFIIdppoU0CQSOSGJWz2O+93XtzYwyIruT3NJPb29zdzs7M7s58O6v7A9VrqVEs5ZP3RHokiW/jkUw/R51vo5m+tN+mUUSP7ik9Yal0X6b3PPr9uRrF1ajk7lgfMaByoO3XCJ22R6P72+19jS76b/KeSr32CJ7m6LQo6EP7RJ89nqnf06kBDK2/N9ZHabXKcFSRLh4dE/baJ4HwEZpP0RvG7Q01q9L4058UUncqU5/TRl312tE20qb95qO/pUi2L1HvtzHvjlfX+vd63Yi6Pui7Fi310TAfbilFlPS6uzWsvD/q7c6h+OF3/R+mMtWMAojY/P32padElZ4+NRR1e+CRDB5xplS/Sb9Z3+WRE6X7dJXvvpv0+c0gLOWH9pG3WR5l4XOSrMaG9wH/Kys/Il4tRRxT229RLNNvq/RKLn6a6QVbfTHqLL10Mf/wkZlnVdK9U6V3c/E1RWmoDCi/j2eaURnPH1TpZC6ezVRZe+NRlao5P5fpfEQcnO/7qDid9eNDlhsN5N3O9a7m6wkF553MVG36wyqZzn08dT6XZzmazvensvq9ySZl9Eyul/93fy5iQm17HrsWstk6MJbLPRpPkTQ6tuX6t7LcTWaduPy6SlU1bmaqOEQdzvrar4hYzmPKnsfRq39P8jsUcDOT6Wzu9F2Z6WuZfyN5LpXZ0DvFmsnfuC+b3OuZns33VWVUJOYyXdBxrtkWn7Bluc7aUv9m3ctU5WFc+6KldbK2ElXpVSPnw66lcEyPSGnOaeNzxZXmjLOnF3rEh89d6O2szy3m7a8O3YdfRB0B+ye2s/Hb/8S2lo5tpba/NPdcaV600qQofsyV5veU5k4bslSac240X4tHGiiC76jC63Ryrad9lSbLGTSnje+7r4X3/485bbZF/0OJ/EaMkf7Vf3mjgV/yqK30ouSfKTotWbb1fEpOFSnVrtIpY/Nyrzm9TZOuszcKytj5rX+5lKaUk5F8YyibhM4OW/Fj1EWo94TnTFVHdH2nDPU7Ubx+eLSLF0GPuvVIFX3eatSZbsfWdfPsqMnz61iPSH1v6/l5q3a+X1sqvwbdReRPW/SCI/qOQdetAxBpAwAAAAAA0EKdbrf7+yt3Ooux/mn1wFZxqNvt+vM4WoG6iS2ulXWTeglQN4GWom4C7TSwbm6q0wYAAAAAAAB/B7dHAQAAAAAAtBCdNgAAAAAAAC1Epw0AAAAAAEAL0WkDAAAAAADQQnTaAAAAAAAAtBCdNgAAAAAAAC1Epw0AAAAAAEAL0WkDAAAAAADQQnTaAAAAAAAAtNBPpF7TzVraxK8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAEUCAYAAACRe8tpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeZheRZX/vydLk6UTSEhCJCRpCEsgbCORXYEBVEQUFcVhFXUUlZ8LzoA6iKigDiroIIgICIKCKIsioIAaEAShUWTfEjqErGQjO5106vdHne9773u6O90dEnIh38/z9FP93qVu7VX3nHNPWUoJQgghhBBCCCGEEKJa9NrQCRBCCCGEEEIIIYQQ7ZHQRgghhBBCCCGEEKKCSGgjhBBCCCGEEEIIUUEktBFCCCGEEEIIIYSoIBLaCCGEEEIIIYQQQlQQCW2EEEIIIYQQQgghKoiENkIIIdYaM/uImSX/276D8weWzh+yFvFPMrNJ3bgudfJ3dU+fKdaMmY01swvN7DkzW2FmS8zsATP7spkN3oDpOtXMjtxQz18bLHO8mf3ZzOabWauZvWhm15jZAevxuVua2c1mtsD7ySl+/L1m9pjXazKzRjO7x8zu7GH8Z5vZqvWTesDMepnZWWZ24Pp6hhBCCFEV+mzoBAghhHhDsBjA8QC+Go6f4OcGvQZpuALAT8Kxl16D5240+EvybwHMBHA+gMcBbAJgbwCfBTAUwH9voOSdCuBOADdtoOf3CDPrA+A6AEcgt90fAlgAYAyADwGYZGaNKaWl6+HxZwHYH8BHAMwG8LyZNQD4BYC7AHwaQCuAZQA+ASD1MP6LAdy8jtLaEb0AfM3/n7QenyOEEEJscCS0EUIIsS64AcBxZnZmSikBgJn1B/ABANcjvxyub6anlO7v7sVmZgD6ppRa12Oa3jCY2TAAvwHwKIC3p5SWlU7/0czOA7DXBklcDzGzTVJKr2zgZJwB4EgA708pRUHT1WZ2GIC29fTsHQH8M6X0Wx4ws3EABgL4VUrp7tK1T/Q08pTSiwBefNWpFEIIIYQ+jxJCCLFOuArAWGTtPXkfgN7IQpt2mNkBZvYnM1tsZkvN7I9mtvP6SqB/dnKFmf2nmT2NbEnwDj/XaGbfNbMW/0Rlipl9yQU75Tj28M9FVnh8/2Nm55Q/BTGzbf3TkuPCvYf48f3D8aPM7O9mtszMFprZdWa2VSdpP9bMnvLyetDM9u0gnweZ2Z1mtsiv+5eZfcTP/cHMHuzgnu3MbLWZfWwNRfgJAJsDOCUIbAAAKaXFKaXaZzTdKdNSmRxpZj/3/C8ys6vMbGhI46lm9qSZLfdPiR40s/ewfACMAnCiFZ/GXernzvbfO5nZHWa2BMAvS+V6aXhOH7/+jNIxxrG9x7HMzKaa2Ql+/kQze9ryp2J/NrOt11COMLN+AL4A4HcdCGxYnrellFaU7jnRzB4xs1fM7CUzu9LMtugg7pP9uhV+3U/NbDM/t62ZJeR+elAoq+c8iiv92J1+T7vPo8xshJld7OX3iplN8/T0LZXXqnBPH+8vT/s90719bFK6hn3n4x7HTMufcP3WzLZkPABW+i1fK+XhDD+/t7f/+V5Pk83sgjXVhxBCCFFlZGkjhBBiXTAVwN3In0j91Y+dAOBGAEvixWZ2OPJnNrcAoHDjdAB/NbNdU0rT1iIN5i90NVJK0a/GoQD2QP604iXkz0L6ArgdwPYAvgngMQD7Avg6gCGeLpjZCAB/RrYgOAH5xfE0AFthLbHsS+T/AFyO/MnKpv7cSWa2e0qpXHYHIVtI/A+ywOlsAL83s6aU0iKP7wPIn9zcjSxkmQtgZ2SBGgBcBOC3ZvbmlNI/SnF/AvkztmvXkNxDAExLKT3cjXx1q0xLXADgjwCOBjAewDkA3uTPhJmdCOB//f57AfQHsBuyEAnInxj9EcCD/jwAmBOe8TsAlwH4FoDVXeWhE34D4KcAzgVwCoArzGw8gLcht4V+AH4A4GoA+60hnj0BDPY0dYmZfRrAhcjCptMBjEbOx55mtgeFaGb2PQCf8zT8F3LbPAfABMvCwmkA9gFwKfKnT5/1R8wAcAdy/Z+FXJYvd5KWoQDu8/SfjWx5NRLAewH0RSFQiVwD4DAA3wFwP4AJAL6B/DnY0eHaM5DHkZOQ28H3kQXDB6eUVnle7kGuTwrdppnZpgBu8/SdgDz2NCF/vieEEEK8Pkkp6U9/+tOf/vS3Vn/Inz0lANsC+CiyT45+yC9aq5CFJAf6NYeU7nsOwJ9CXIORhQw/KB2bBGBSN9KROvnbtnTNi8gvcSPCvSf5tfuG418D8AqAzf33//rvUaVrBgGYD2BV6di2Ht9xIb5D/Pj+pfwuBnBJuG4c8ovvKSHt8wBsWjq2t8f3If/dC/ml/H4AvTopp14AWgD8pHSsAVmA9aMuyvhZAH/tZrvobpmyTH4frjvRjx/gvy8G8EAXz3wRwBUdHD/b4/pMJ/dcGo718evP6CCOY0rHhiELf14CMKh0/FS/dtQa0nqsX3NwN8qyjz/jznD8QI/j06V20wbgK+G6A/y6d5eO3d9BfOM7abf3lK9FFhatArDrGtJ8dugTB8XyC/W8S+g7cWz4kh8fEerorHAd+8RO3Wmn+tOf/vSnP/29Hv70eZQQQoh1xa+RndIegfxSOgvAn+JFZrYd8gvmL/yTiT5uIbMMWUP+trV8/uUA3hL+osXO31JK0QLjnQAmA3ggpOd2ZIEG/bTsA+DelNJ03phSWoxsLbQ27AegEe3LYSqygCSWw70ppbL1w6MejvFwJ2TLiktTSh1akvjxSwAcY2Z0Dv0BZAFEdOL8auhumZLrwu9fIb987+O/HwSwh5n90MwONrMBa5GmG9finsht/CelNBdZyPg3bwfkKQ9Hr4PnAblehyFb79RIKU0CMB1ZKAMAb0cWysX2dC9y31rbfhV5O4D7U0qP9OCedwJYAeDGDtoDALw1XB/7VGzrnfE0gEUAfmr5U8K1toITQgghqoKENkIIIdYJ/uJ6E/InUicA+EUnwoMRHl6GbFFS/ns3ik9eesrMlFJz+IvOZmd2kh5at5T//ubnmZ43Ie+0E+noWHdgOUzq4Nk7on05zA+/mbd+IZ1dOYC9FFlwcqz/PhlZ8PBo57cAyAKwsV1cQ7pbpqSuDFP25bII2U8NkAVypyB/YnUHgHlmdr2ZdfUSX6ajuu8RKaUF4VArsnVZPAYU9dIRFCZ2pzzp26ej9M8qnWd7akH7ch+Ate9Xkc3RcyfDI5DLY1lI14xSnGW6ausd4vVzEHJ7uhj5k6lH7XW2FbwQQghRRj5thBBCrEt+jqwl7wXgPzq5Zp6HX0beojmyPndz6mjr4nnIn2t1lt7nPZwJoJ3j1w6O0XlsQzgeX0xZDsejsM4os7iDY2tiroej1nRRSmmOmV0P4JNmNgnZAuPEbsR/J7Lz2t1T135tulumpK4M3VHvYGRLEqSUEoAfA/ix+1R5B7Kfk2uwZt8xNTyOyAp0XU/rgweQhVJHIAuk1gQFGCM7ODcShQNhtqeDPe7I3A6OrQ1z0UUb64B5yAKbAzo5P6OT4z0mZV9N73dLnrcg+4D6jZntklJ6cl09RwghhHitkNBGCCHEuuQO5E9dFqaUHu/kmqeRrQEmpJS+81olbA38Afnl+eWU0rNruO4+AJ83s1H8RMo/MTo8XDcT2Yog7oQVr7sHwFIA41JKV+PV8ySyBcfHzezyToQU5CJkR68/QRYKxM+TOuISZH8tPzKzQ1NKy8snzWwggH1S3kGqu2VKPoQs8CNHAzDkMq8jpTQfwDVmtg/qhU2vIDso7glT0XU9rXNSSivM7HwAZ5rZe1Np621iZu8AcBfylttzAXwYwJWl8wcgC0/u8kO3IwslR6eUrsT643YAp5vZzimlx7p5zx8AfBHAwJTSXV1d3BUpOyNejTXUd8pOyO8zszOR63Q8ch8RQgghXldIaCOEEGKdkVJqQ+fWFbwmmdlnkHcxakAWGMxFtrbYF8ALKaXz1ntiC36O7FD5L777zqPI1hfbAngPsgPXV5AtO04GcLuZfR3ZIuh0ZMHLYEaWUmozs18D+ISZPYfsn+Y9CH47UkoLzex0AD8ws5HI/lL4SdBBAO5IKf2qu5lIKa02s88j+xa608x+glyuEwAMSSl9o3TtPWb2CLKVzfmptLX0GuKfa2ZHIe/69Q8z+xHyrlCbIO+G9Cnk3Y3uRPfLlOzm207/GsAOyM5u/8QXfDO7DPkzpPuQnfLuAOAYFD5RgCzcOMB3JpsN4KWU0tQusnUtgEs8jbcB2N3T/VpwNoBdka1Afgbg98h5HA3gKABHIjs4XmFmXwNwoZldiWxdtBVyGT0FF+SklJ7xfPzYzHZE3kHsFY/v7QB+nFL6K14930fu4382M+4eNRzA+wB8LHW8Hfyd3iduNLPzkC2NgLyz07sAfDGlNLmH6XgCwBFmdgeAhchWWXsiO0S/CVkw3Ajg88j96u89jF8IIYSoBBLaCCGEeM1JKd1qZm9D/nThUmSN+SzkXW26LahYR2lpNbNDkT/X+hTyi+QS5M9OboVvYeyfFR0M4IfIQom5yBYrA5B3tynz/5AtRb7p4bXIWzHXWVSklC40s6nI2zMfB6A38svn3QD+tRZ5ucEtNM4A8DNky4vnAJzfweW/QRYaXNKD+CeZ2W7I21ufiiw8WIn8Av1D5E+Yul2mJU5Bdoh8HXJ53YRiO2ogWyV9BNmyZhDy5zRXIm9PTU73vPwauT1dBuDjXWTpcmQh2Uc9nXcDeD+AZ7q471Xj1iJHIdf7R5Hz04gscLobwFtTSkv92ovMbCmytcqHkT+duwXAaWUhSUrpNDN7HMCnkcuvDdn66k/IjqHXRbrnu5XT2cj1O9TT/Gd0vt03kAU9n0XeWewM5E/TWpC3F39pLZLyGeQ2dwuyQPCrAK5HFlSdieyDahGyE+uDU0rr7BMsIYQQ4rXE1mw9LYQQQog14dYGX0opva4UIWZ2P4DlKaWDNmAaDkH+pO4g3w1JCCGEEEKUeF0tMIUQQgix9pjZJgDejOzIdy+8Bv5bhBBCCCHE2iOhjRBCCLHxMBp52+0FAL6ZUrp1A6dHCCGEEEKsAX0eJYQQQgghhBBCCFFBem3oBAghhBBCCCGEEEKI9khoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDZCCCGEEEIIIYQQFURCGyGEEEIIIYQQQogKIqGNEEIIIYQQQgghRAWR0EYIIYQQQgghhBCigkhoI4QQQgghhBBCCFFBJLQRQgghhBBCCCGEqCAS2gghhBBCCCGEEEJUEAlthBBCCCGEEEIIISqIhDYVxMzGmNkSM+u9gZ6/xMy22RDPFkIIIdYVZtZkZsnM+vjvSWb28Q2dLiHeCJjZWWZ29au4/2Iz++q6TJMQQrwR2eiFNr6AW2Bmm2zANLSY2SH8nVJ6IaXUmFJq2xDp8WdP8bRdYWZnb4h0CPF6Jr4sCiFeHWZ2jJk1u2JhppndZmb7b+h0CfFGZ331vZTSySmlb66D9B1oZi++2niEeKOwJgXFulifmtlHzOyetU+h6CkbtdDGzJoAvBVAAvCeDZqYNyh6YRWvBS74XO4LygVmdouZjd7Q6RJCrBvM7FQAPwDwLQBbABgD4CIA792Q6RLijc766nsbyppciKpQWrsuNrOFZvY3MzvZzDbq93PRMRt7ozgBwP0ArgBwIg+aWX8z+76ZTTWzl83sHjPr7+feY2aPe+eaZGY7lu5LZrZt6XfNSsXMhpnZ7/2++Wb2VzPrZWZXIU+AN/sL52kdmHMPNbOfmdkMfyG9qauMeTwz/Z6Pl9MWpa9RWsprzewTAI4FcJqn7WY//yUzm+yDzBNm9r4Q171mdr6ZzQdwVk8qRIhXwREppUYAbwIwG8AFGzg9nWKZjX38FaJbmNmmAL4B4DMppRtSSktTSitTSjenlP7b51LOS/PM7DozG9qNeHuZ2Rk+188xs5/7s4QQ6LrvdXD9r81slq+d7zazCaVzV5jZj83sVjNbCuCgsE4+0MxeNLMven+caWYnle7fxMy+Z2YvmNlsy59W9TezgQBuA7Clr1WXmNmW671whFg3HJFSGgRgLIDvADgdwGUbNkmiimzsLw0nAPiF/73DzLbw498DsAeAfQEMBXAagNVmtj2AawB8HsBwALciC1sauvGsLwJ40e/bAsBXAKSU0vEAXoC/cKaUzu3g3qsADAAwAcAIAOev6UFm9k4ApwI4BMC2AA7oRvrakVK6BLlszvW0HeGnJiNbKG0K4OsArjazN5Vu3QvAFE/rOWvzbCHWlpTSCgC/AbATAJjZ4Wb2TzNbZGbTzOwsXmtm/czsan/RW2hmD3IccAHkFBdOPm9mx67puWbW2xeUc81sCoDDw/lJZnaOmd0LYBmAbSx8Gmkl/wAl4e1Jnu4FljUwbzGzRzy9P1o3pSZEpdkHQD8AN3Zy/rMAjkSe67YEsADAhd2I9yP+dxCAbQA0AlCfEqKgq74XuQ3Adsjrv38gryHLHIO8LhwEoKNPK0Yiry1HAfgYgAvNbIif+18A2wPYHXltOwrAmSmlpQAOAzDD16qNKaUZ3UyvEJUgpfRySul3AI4GcKKZ7Wxmm7oy4SVXLpxBhZ8Ff1LW8SdP48zsARei/rYzZYY/5zIXlE43s7Ote5ZwZmYXePxPmdnBpRMnmdmTvoaeYmafLJ3r0JDBz53uaVhsZk+X49zY2WiFNpa/xR0L4LqU0kPIgohjvNF8FMDnUkrTU0ptKaW/pZReQe5It6SU7kgprUQW7vRHFu50xUpkC4CxrqX4a0opdSOdb0KejE5OKS3we+/q4rYPAfhZSunxlNIyZMHKOiOl9OuU0oyU0uqU0q8APAtgz9IlM1JKF6SUVqWUlq/LZwvRFWY2ALmv3u+HliILaDdDFqR8ysyO9HMnIi8QRwPYHMDJAJa75u7/ABzmGpB9ATzcxaP/E8C7AfwbgIkAjurgmuMBfAJ5wTq1m1naC3kRfDSyifr/IAtkJwD4kJmtlVBWiNcRmwOYm1Ja1cn5TwL4n5TSiz5XnwXgKOv689xjAZyXUpqSUloC4MsAPtyN+4TYWOiq79WRUro8pbS41A93C9Zrv00p3evrxxUdRLESwDd8rXsrgCUAdjAzQ55jv5BSmp9SWoz8udaHX0XehKgcKaUHkJX8b0W2GN8UWalwAPJa9qTO727HCcjvtFsCWIW8ru2IK/38tshr2LcD6I7DfirphwH4GoAbSoKhOchr4sGe5vPN7M1+rkNDBjPbAcApAN7ia+93AGjpZl7f8Gy0Qhvkl7XbU0pz/fcv/dgwZK3C5A7u2RKlF62U0moA05Cl/V3xXQDPAbjdJY5f6mY6RwOYn1Ja0M3rmc5ppd/TOrtwbTCzE8zsYZeQLgSwM3K5rZfnCdFNbvL2uAjAoch9DimlSSmlR32R+AiytRwFHSuRF6XbuoD2oZTSIj+3GsDOZtY/pTQzpfR4F8//EIAfpJSmpZTmA/h2B9dc4cLUVS747Q7fTCmtSCndjiyAuialNCelNB3AX5EnWCHeyMwDMGwNwpSxAG4szUlPAmhDXgyuibo53f/v0437hNhY6Krv1XBr0+9Y/kxxEYqXrZ6sD+cFAdEyZAu44cgW5w+V+vkf/LgQbzRmIH/pcTSAL7sgtAXA95GVf93lqpTSY26N9lVkRV+dBY1blx8G4PP++eMc5C86uiMQnYO87l3pSvyn4VbmKaVbUkqTU+YuALcjC6KAzg0Z2gBsAmAnM+ubUmpJKXX0Pr5RslEKbSz7p/kQgAMsf3s7C8AXAOyG3IhWABjXwa0zkBeHjMeQhSrT/dAy5EmFjOQ/3uG+mFLaBsARAE4tmXytyeJmGoChZrZZD7I4E8BWpd/RIevSztLZAXVpM7OxAH6KLAndPKW0GYDHAFhn9wjxGnGkt8dNkNvnXWY20sz2MrO/uHnpy8jWNFxEXgXgjwCutez/6VyfKJYiT5YnA5hp2bHx+C6eH4WlHVnSrI1Ac3bp/+Ud/G5ciziFeD1xH/K8fGQn56chW8VtVvrr54LNNVE3pyP7l1uF+j4mxMZMV32vzDHIzokPQbYOaPLj62J9OBd5vptQ6uObuh+7VxOvEFVkFLICoQHtFQvdMRQgcU3aF/VCVCDPgX2R17oUiP4E+RPHrpgevhqZirwWhpkdZmb3++dPCwG8q/TsDg0ZUkrPIbsgOQvAHDO71uSfqsZGKbRBnnzakH1e7O5/OyJrrU8AcDmA88xsS9cc7GN5S/DrABxuZgebWV9k865XAPzN430Y+ROr3pb9ytQ+WzCzd1t27mvIlgBt/gfkBeI2HSU0pTQT+Rvhi8xsiJn1NbO3dZG/6wCcZGY7+qciZ4bzDwN4v5kNsOyc+GNriCumbSDy5PiS5+skZEsbISqBW8zcgNy/9ke2ovsdgNEppU0BXAxfRLqE/+sppZ2QP4F6N/IYgJTSH1NKhyILcp9CFlauiZmoF5CO6Sh54XdPBKhCbJSklF5GnscuNLMjfe7q64vCc5H79DmuVICZDTez7uxscw2AL5jZ1mbWiPy5xa+6+ymIEG90utH3ygxCXhPPQ57XvrUO07EaeQ4+38xGAICZjTKzd/glswFsbnIkLl7nmNlbkAUzNyFbpETFApUR3Vk/xjXpSmQBaJlpyP12WEkgOjilNAFdM8rfa8vPmOHvzNcjuxHZwhWqt6JYe3dqyJBS+mVKiS5MErIvK4GNV2hzIrLPlxdSSrP4h+yA8FgAXwLwKIAHAcxHbjC9UkpPAzgO+RvDucgN7YiUUqvH+zk/ttDjKe/ytB2AO5G/z70PwEUppUl+7tsAznAJ5391kN7jkTvaU8imaJ9fU+ZSSrchf7f4F2RJ5n1+6hUPzwfQijzJXYn2juLKXIZsprbQzG5KKT2BbJ53n9+/C4B715QeIV5LLPNeAEOQP5MYhPyJ4Qoz2xNZG8hrDzKzXdxcdBFyP2szsy0s7xQ3ELnfLEEhZO2M6wB81sy2suw4sTufQD6M7EOjr5l15gdHiI2elNJ5yA72z0BWGkxDtqi7CcAPkQWzt5vZYmR/Vnt1I9rLka3t7gbwPLJFwf9b54kX4nVMF32vzM+RNe3TATyBwq/cuuJ05DXt/f751Z0AdvA0PoUshJ3i61Vp58XrCjMbbGbvBnAtgKtTSv9CXleeY2aDXClxKgA6H34YwNvMbIwLK7/cQbTHmdlOrsD/BoDfpJTq1rJuHHA7gO97GnqZ2Tjrnr/EEcjr3r5m9kFkA4hbkS2ENkEeL1aZ2WHIfnKY1w4NGcxsBzP7dxf6rEC2rutq7b3RYKlrX7jidY7lbckfA7CJNIjijYiZtSD7oWhDlsxPBfDtlNIvzOwoZEHjUAB3IX9nv1lK6Tgz+w9kM8ytkAUzv0KeFIcjT5y7e3wPA/i0Cy07S0MfZJPPE5Anoe8hC4L7ppRWmdkk5In40tI92yAvNCd42iYDGOppa0J+kezLfmtmLwI4jgJfyzsHPJVSOnvtSk4IIYQQQrzWlNauq5D9KD6BLJS5OKXU5grAC5Ad8q5AtjY72y3PYGYXIhsJzEU2MLgE9WvO+wAcDGA88hrzpJTS3Li+dKHPd5ANDwYhOxf+35TStWtI+0eQnYP/E9m4YDaAU9z/IszsM8hWepsAuBn5E6znUkpnmNkXkA0dhiPv9viTlNI3zWxXAJciC39WIn/J8omk3eAASGjzhsXM3gfgFuTPma4EsDql1J1vkoUQQgghhBBCCFEBNtbPo173mNlXzGxJB3+3+SWfRDZLm4xsffCpDZZYIYQQQgghhBBC9BhZ2gghRDcxs4uR/VpFrk4pnfxap0cIIYQQQoh1jda81UJCGyGEEEIIIYQQQogKos+jhBBCCCGEEEIIISpIn55cPKzBUlN5R/hopNPV746Od2Xos64MgXoSz6t9Ju+3Ls5XmddDGrtiHeehpQ2Yuzp1VqsblM3N0pjS79UetoXf67JJ9rS7d3Z9d8+X6am0uaeV1llarIvzPYmrq+t7Uh4d8VpK5GP5xjR2Vm5rQ0flshDA0lS9vjnULG2F9u2ndwhrJxj26uR4/L+za3pCd+bp7hxfmzR0dv26ajBrUyZdPXNd5fHVsK7j7CjPXT2jm2l4aAnmppSG9zRJ65thAy01bYb2/Yedslf4vaZ+1t36qNII1dWE0lUfjPevDr/jdR397u613e2TnY2NnV3fVXzdifPVjr+dPbs7Y9+rfOZDz1azbw41S6PXcH5drFdfTVwd3f96ft1bn3RWPlUol67W9RsCpuFpdNw3eyS0Gb0SuCWznfMAACAASURBVONlYMgH/MBeHjZ5+GYPx3G2G5mDJb5TV+OWfnxb5B3AAGCYhwtL5zpKWouHUz1sDPftFq7nztb9PPyXh+/w8MVOrusDYLNwrHfpXJmdQ1pWhDT1q7+8dl2zhwd46OWEJR7G58/ycKvSNUz/PA/3CM/ivXM9HB/SSJj/n4Q0Mk37hfiY9r09ZJmsKsV9i4csB8a1V7jnKQ+bQtqYBnKvh8w772f5NaEe5onl1q90z989bPFwKw/HhWcz7bxvCSZOPAFVZetGoHl35I36gLzpNACwy630cJmH0zzk9exWmyLvNwbkjfgA4B8e7uThFA/Z5bgJNptti4ccD/7o4XwPuXHfxBC/H3/huRyO2TGHS58skjz+8Pz/w97Edvdrpvs1ozicNOSg1eNsYFpZrVwR/M3Dd+fg0d/lcBcOQ0xrWVgNFE2O5boJgKf9/76eD+96o/zwIg9fZhQ+TE5eXR/VS/XR4NsevsvDKz1kj1zsIYt/Wjg/FsDm/v82HlKYx2cQjhLPesie2+ohi4NVy6YwNqSFeeZzmCcWI0fUWSh63mQPm0rngCJfTNOocP11yPtFVpFtNgGam1D0JW9nOMnDESyRJg/ZgJlL1uIqFOPffqVjQDFmPeQhx9E4j7zHQ7bAgz3kXEI4JjIejoGzwvHdPXy4dG+Th0tCyDhbwvHHwzMYN8uBeeMzYtpGht/l+YghWyfv5TO5BmEr3cJDrhU4p073kPmfEJ5J2CI5L/3JQ+aF5byDhzeU4uI17KlLPXwOHcN8Mm1sE0zj0+E4y4BpZlmwfHkf09GvdO2vQlxcc7Dncr6P66Mct9lxU1FBmvoCzRMBDPUDb/Fwfw85D8bBjwM1584pKOa294VrN/WQAyDj3MMnqAc88hv9+Mc9HOfjwp98wuZAzXhZvZ/x8D4P2fRYZUcD+Jn//zmPc7LHeY0f/6KHd3nIeX7M9p6GZ3J4sP9mH77b0865dGuu+328ecafEwdu5uU3AA7z/+8Jz54SQs7HbEns9nwk4+TQxi7NIZBdO06y/+4hy5VdcwDy5sUAMMHr6nnP79Z7+u8H/PcXcvjM+Tnc/vgcLrkqh41Up3EtzkR531v+TH2aOPxwuTxiRP31eBG43tPyAc7oPt499EIOOd+wDuf6M4ZxvmHfnFPJvrnNHruhuflOFGPmmR76Ag2XeXi5hxx7OKZ/zMNfoZgLOG6tKp0DsGprj+JQP366h8d4yMa2KoQc/zi/cr64PPxm2jh+lsdLFj87Lsd7ziW+4K2N32wc8f2Vgxa530Ou6OJ7TYuHnMMZD+NtQvv3La48KQDg/OBpSo/k0DgIslyuz8ECb7NDDqpP6oK/1Ef3Jg4C3k9e8EU6+/ib9izy8Yy3a7b3Ifv6P4/l4Elfde/ofbhWB/4eON3HqFF8UfJySHNyyD45wle8i/xlhd2oD+NlWucUzaVhcA6Xexpa/DjHy0YfvGaurn+W58W2RId9U59HCSGEEEIIIYQQQlSQHjkinmiWmnsBN7hgaGE4TyX+E+H4Ph5SGdGGQuFAgTjlxYyDgiwK0Ch76++C1OWv5JAaW+qlKMM2RtArnIhq6b4hbCglipFTeEvBIaX1LADGSaL6msI4xjs8/GamqbmhxJGFtEXpN/NFhRzjiBYV/M00U5tEmDem9b7wm9LAHcL11JrQSoLxNzagJpG9f1l92nbxcPAH/R8WPiW3lIoz45Qqe62+8N2O0zxi33A9tYSE8Y9HTcsx3VU3LX6K5UTtSU0dRDULpeXXY+LEl9Dc3FolA+caE7ew1PxhFG2VbZJt6q0esjMODhFQm9g4AEU5Bo1QrdG5mo8aIlbbkCP8H2qy2Xio1aUUn5J7qgujrQUl/E3h+k1QaCSoYaammhoIirmj5RTzwjwwj0zbY+FZzFS0WOP1hBrqVaX0XuThL8K9nwtpZtxRu85yYpoZD9vi/3lIS7+WcN7L5m7XBE5B0Q4+QG3pRz1k+fQJvzm4RWsNXkfTpVgu0WqDGhzmjeU1svQ79jk+i2lgvtg+mIYWDx/CxIm/Q3Pz3Mr1zYkTLTU390JRPl7urWfl8P1++PYcTPfxm6VEVcs0FFXIYZB6Q4TjK8NxToFUJo8O17En0dCAU4xPsbWUN4Tz5SmUcbGW+SymmTA/zN/q8Js1TxtMTo0cSbi24H2cCuI0x/sWls4xvRwiqZRnGllOTR5S8cU4o4UXz7PcOc0xjSwLjkyjw/HxyMYG5Wfw2f8WnsGewR4Ry5XWddt5yN7F6TparTHNsaexPAeW/mecNJhkPpg2tg+O5rF9Pgc8lFLiiqEyTBxgqXk8inUWF6EslEc99IwudSX478PlD6No1zSUYRvgupXTa5yW2QZpbEoDWerbNwm/SbRRZv2yDf7Vw91RGKtw5qTRCg1wjvbwax5+y0O2HT6DsF181UMuTxnPOHZWH1im+3Res4L1BrX0PmDgh/wYC4wmnOw0i8JxdgSuoVmwhJnl9M3GyA7mBd7mjbW3L/vafKrszfUggOSDmLk171NuzTue024wR53ljYDlwTHqZg85fvB2tgWOnaxDZvFdPiC1eUTlsfUG/5+zOIuDxcU4GReNqLhSbvJw16r2zc0sNe8PgMYvfJdgSqPVNvssJyd2hCkoBioWOOM61Sv7tBn19xzvjeUCfwgbPNsSB0tOmKyYw73CzvMKo1Ut07q3r49v8RYxGkXH595MHGQ5MBzi4Yjv5PDJL9XnhWPXBPbGc3LwsKdhd45A3vrm3pHDmhXZf/s/3kkn/ziH49jhgNqa8KK7c/hpxulr7EmeH1qtf4Uz6Xv9PjcjZH9xwzSM8co602drTtocE/b8jxz+l5sEMtovAxji1mefcouYJj93Oju65+dzPkC8zQ9/wMtp+Tdz6MZxNctnDszsQBzsj/d31zt+nUMuf9mWuIS/HMDJbIQ+4t5/Ww75kcfnWH4+0l5/ZA45yHv+bZuO+6YsbYQQQgghhBBCCCEqSM8sbSaOSM3NR6H41o+6Fep1+K1e0Jy/4NI7qmieQHvnBlQVUarJqCnFdCFfTS0YrS6YBKp3KIGMn+EHnx6tL9efHgTAhpV+AIVVQrSUYR4oyY1uZmpeJuvT2haeSSExb4sGNytLYb9wjtmnMDd60aHckUmMgkQmcaTnJS2rjz9qNilgpCKEUr+GUtxN/I47qHwfWlZcCwC7+HXPeHlQE8FyoPBy4Nalh5QeOu/J+jSyqUSPC/NQND2msT8Lxuv0UU8DmxermOW2C7JPkX9V0NkpAEwcaan5OBQNgKq28eFC5ptaBWqWyi4iYrvmudnhHhYSGyH7FqFkPar+eT0rg32f8dMaiKrMsoMUfodPlWT0pxPN/KhamhGuo6aCWkE26Hd65h73G1iebFzsaGykNEdYUYqL5XCoZ2CJq/+id2hqWVieUf3N8t/DK+0PQfMTzRWbPGT/a6RVTSNq2pKHfSClujX6Z4jlNC9cx3GWGk2qFdlGWK7MK9PCzkwt1dDS9az3aD7Aa6aG32QMB4S9MXHiP9DcvLhyfbOmMfTPttlGvv7PHEbvZhyn2HXYFaei0NpzSuO9rH4WD6sqdksqwtjcOK0xPnY3NgE2P9oz8r5oQDkW7Y1P2U2oJmKz4bTeFkIOJaxRPpvNi7BZsYt0NHwBRflNQXtrHOYvWiqx+bFbBQ8dtXLkUEBlaDRGpSsKDkXRHdYEX19Mn1vYirH8WA4cEl9GPSwvDmvBjVa7oZZpZ96YB3Z/Dq1sG2VXIBwC4jTA9sJ2ES2u54ffH6iqNn+speYvoxjDOaa5+6TkQ6WxY7FyOMbRxGhq6RjnJRZ07IS0DGFnZuHSFOJED9looskNFzX0WUNtPucvKshpwrVzKW76b2Fa/hzi+K2HtMolXBSV5zoAj7ofGvajA1lOXCTyuewYLL/yvM+Bj42KAyDnRnZGllc0NYuNk527rf5425L62xlyzOMUw35lZWt5f9ZN3rCP9EFpgc9bQ+gqjFp5mhxxEIoOrTlIcfBih+HAwoH97R421acD80vP4mBTniiA9gMr4xxbf9wuq2bfnGCWrkWxjHWbDdzpIT241OynaSDsE8hDXqasX6CYOwg911zgIavhEg/p6olFyebPsZmwLdGQgl5TV4SQbpvYXMrvTJwr+HvLcA/Ps7uwWhk3uzK7C73GcEiLSyh2M3ZRNh++LrSgmIv5DMbJoYZzDeuCzZvPZLPfKVzP8mJ9jA2/OURy7osfpixewz2sw3HeR9tm159n3W3P9uJj4RyPaATH2bBe5ccje7MAg6+y5T6+9N8aRSWwIHhP9BXKcRXhvDcCu0+WNkIIIYQQQgghhBCvG3q0exQWvgTc9GOg2S1nKJ6jyoUioKhxp2SZ2ohH0d7nCkWiU8I9wRVATQLP+1rCsyh5ZxoozWL8tIZx6VeDp6mB981Ce5Egf8edZChJj9/Nlr6LrcPFfL09Lf1c29rbpX4jXJTbFtRljH412mv/4u4s1PpRsjov/O7M6OEwLy9KKqnB47fTcZ8M7uVRlsZSgNjr5fp089NwKgeYhnf7dZQiR6sgNoH9n88hJd0Uht4e0sSqZtlQmvwYivyzGYycX/+sWz1kE2UV0ghgGQpFSBV5YTbw6e8XZfgJD2e7tvAtVK2yIqkmjyL2fVA0AoqlWRjxg3z2D0qIWQEs+M3CcYrco7kYtUVsGCOu8H8+6+FpHr4CbOHfovbZNYfL3GP9rv67zX+zATMvnVlzsE8zbylY2ESrI3ZAqqjLzrT4/6G8yVVujb7TwfI59fdwjIoft8dN4+jxfqV/O0xt6gjWdvRH4/qYK9xrQW8UAwXHaqoxWjxknXFAiOJ8pnF7dwIwz50AUIURTSBYXvPCecbPut8c7cuW17J8+KE+s8s6G0N/OW9H57vsbGA2Q/Zbw2/WvR1+jdrtozykZoeqRartWAaPor1Wmiovll/sdy0esn9yvmL7YTNlX6EmnnVGN0/s/9Fyjuquch2yblhnnBQ8beM42AfndXPcNdIIWrn6M5K3U3N13gJXPQ7hJMC8UfPlzxvv6RgPFBMJ8+trjFZfCzSUrb5K+aIPEw5fTR4yq3H3NlqY0no3alFZPTd7XncCcCGK/8tJpB8ZPisOxSzWaChILS83H5oU5nUWE4stUh72aOX0Fo/rZo+LhhRhs4va77iTXGXZDMARKNaUQR1rdCzEjLDPUvfJPrsIxZjF/mxlnxBlWDqckFiaNJ3hnMcBm2OcN8a57lPhGLYYdhj6SfMd5D7Kmu6DYrDnPBHt1/yevbxjHBkdQcYd4HID3uV57+S0ImSS2GFoHhH9jJRNoqOqnOMH42LjYnHGvsqxkA2c88rq+t+9vTg2b/LQT7PBN0Uzwn4oxjl/1pE0Z/C10hCO1RyXuY5hPsvvFOW8sPNx/RS/AmBa3tzJdTsAOBb19A7XsCPH+TZa1nITporRvzewSyPwsDddrs9pHcrxrmYx5U2U1U6/Y39HUewkWmW6x5HatMfm+SMPoyubuDyOG7DyFTa+j3CFMqsUchnJOWKLcA+bI/fMYpysRuaX5cMmyKbJns88x1dTWtqwp3Nom4b2ljbMb/Q396CH7FPPhpBzUlyWkPgxAOuBz6NbIw4RU1GUOefUFaVzALCFD69NIU5aLh22pD5NHHZ6+0vmFuE1gHnpR2N3D1kGrKdBz9fvjAoAW/pFNTe0vt6iYSO/W6rtVR194gZkaSOEEEIIIYQQQghRQXrm02akpeYTUIgoKWaK37BGK5qrPaT6qA3tPfU/EX5HZy0tHlJcRYUFRY7UIFOsSkUDRWkUf1J6HTWDvP4VFJqB8hYU5We5A+6amJSir/nhOuaFaaJ2kGnh/YR5Ln+8V07HpqVrKYbkM6M/jSjuGx7CuN0GPxaN32B/KBynBpie05nXFShE1KxvPoNKJX4kyrTzmWVP70BRTrPrr2/138zySFqPsC0xb9G/yfBS2ljvjIRlzPZDDQ/Fx00ePgtMbAaaF1XUp82bLTXfDaDRG+MSl8GzjKlFH+we2Wu7/rBC+SH2fihkwPd6SDl22Enoed89imLvYdSDNIVn0AKEuwB5h2p1HUds7yPcBA0f8JADzCrgIbc22eNsP/YnD6kjoA0YtYpe8Uvc5IjteoTrEZa7/J7teLDn4eFF9WnjGMB2Ei10eqGwTGBSWLQU/3MnAMYZHVFRHcC+RqvAwzykqRrjiVvusY1vPSaHl7+AGuxzHP+ooqCKJloW0XcCxzbmk2oR9g/C8SaOncwT5wyWM/vmDijKg83nqXAPmx/75j/C+SPeVl2fNhMsNV8HYAIrMe7Ixj7ByZPt2VVBM70gHwNwKAdr1763ehtt4M53s+rP1/DGu8Tjamyov+4BHys4prPOaMrI9sw+wPLnfA60n4dYv2wXbG9UFQb/ZLUxJDo243GqFKN1a/TNxLUHn/9K6RlUQ7IvsH9FzRbPsy0zrdFMhWNAXO8wzRxGa+adHu7hDX36ovbzM/00LfJxKVo3MS4+oyXcT3PUOJYwD1RX7shC8UTdO6M+jVugmEvu98Ln0Mp+2OQh51Q6xqmpLXNg51TTb8bEnSw1X4Vi3cG2G33XPIt6DudA5X155gvAm3zMbfUxt+HLOUzfzqGx4jiXcXHjD13kVpGD6TmiyUO3gilsQxxa2HD88G1nkpu9GMebpSjGg03rr63t2sldNv2ZL/i8HrcJG8E8cF73yWCOW12O8A4z2ceZOK/RGrbGbkDrVfnfBtenL/HFNfv7YHZCRsZOzEifCuc9D7W8Mu8cd7cNx9kBaS7zSw+XlOJcEu5xm4k53pnYfmL/j463LFrGMl5OcF6nk90iN5qIzCtdvqP7q+MaLL4r8P2I42TNmSMHgmw1ZTalkn1zW7N0Lorajq9p/M1pJxZVeYkVh+fg7qhWdNGPWDQA5jNZxBwWoj8xWsvQqoPDClsgmYFiKKXlULSB6+x1mCGrtS1cxzwwb9EdIO9nM2Fe20rXcJRjD+S0xx4XRyT2rPvCcTYu5p/TBMuLIxXjp5UQuxU3duKQ8EcUS5FTQvq5LJ0RzrOuoqssuo2iFVS0op0YjiP8jm1rSwD/DNduE0KOvtEHHuNi2j/SiS84WdoIIYQQQgghhBBCVJAeWdqMN0uXoVAo7xvO78JPXilCo+aXIjtXDD6+pL0BDZV8lH5GyR8lWZSwReE244vfhDM+Kg34/SKNOSih5f1l1xRltwvlZ1IXQukcpZhxs6gB4Txl3G9xUVmriw4bKKJkBGXtPVDvfyRuDRLFxPHbVoo348eSsUAp3mNBResexkuRJUW8LJxepWf+s3SsHHfQ5j/jCpuoyBxCJbRXziL3aUOlywJP2xAqrZiHuHVWufKZ3rizFxsaRd7RgoK0AhOnA82vVNPSprdZ6ofSDl4eftdDVsV+O/s/VDAx3/yU/vcolIBxJ6bor4QPYxuL4nxeFzXZUaseNbSnhePsSINRaOq5y0Z05c/fVG+wcfGZ8XN95p95jW77qXlmXmIeuSvDtihE6XE3Of7m+Mi0RGcQFP8zHlrqxG2DyrtplePZI1hQ1BJ/MJBco0kHU4T+TJhvDpBMa7SQoVqE/YdpiL7IWA9lnz/lkKqlAWhvxUR1SPxYnDqH2Df3fB8mTvwLmpsXVK5vTtzWUvP30H7XNpYX67a/T5ILfJIc4pr7Va65n4H2W/9FdQ/vmen3xMmNKixu7si6YV1Ei0W62WCdMZ5ofXUPijqMu+aE3dfm+ZjPYXh7j+uZ1fVJizsvsVlRS8X5ncVa2+jR57lZPoZtAmAIJxaqtDwfs7zvjqTvEs4XtErkGBDbJ/tQ3HGN8xH7MRMXd57j+S2Ax3+Q/53wNj/Gsm7ykJYx0cI17tDI8zQYYDujJR3naaaFFne8n1Z87Pf9UIwzzOePw71sB8w3fZuEXYLswopa2uxqqfn3KOqTzhMaPuj/sNVxMjkzB4u8IsuWxWwb53hIC2Vaq7Gf8x7WF8uOcx1h32ZbjFaHcZcljgHMC33r3IOiLfAZ7JP00UP1NNsO23McZ1ivVM+zvO73kJ2XsN38Lfyu7a7YC5i0uv7ZHItYXg1cbdPiiJZFnBRorULrlYNDYjjS0DqIBck58qH66xf5PLkYxRjWme/KJg/pQGVkuG4wKyVaB0X/a2xfjIBWl8xbXLT3Q83PHS204hZucWfPPj6STl9Wl2Y7oKJ9c5yl5nNR7BbKdvEuD92KsXVq/X0NHJNojVx2thkdvLAdc5znfOZzyFO+O210n1rzTRJCNuvoEpXNZbtwvNzE4saiDOOut+yaXF5xKmFLY3HEHSGje0BORRwaojvaFhTG1hyyGCeXtXxmXN4zf3GDPHaL+KoZrYTi9aw+lmtLKQ4OGySWDxs246KVEKuaPbPsOhAopmH2yOg7tm+4jvH1Q9HLeS7u9MW1Tdykj1M9X78623VRljZCCCGEEEIIIYQQFWTtfNpEvzIUM1FATPEUxVjU2PUrnY8fysWN6kkUx4XvpWuisyYPZ4XrqXym+ItpooY5ijCXohCR8RnRN03c/SVuEs800MKIokcXkdFyhJdHdzGUHlKyWPZSzmtZbCNd40Yv65RuRtc0TCKzwmLp7VLlObPrz0flP++Pbn7IcBRV1bBFuIhiZIoIwxZWyc9btAJhhCwAL/9Wl4CziqeGy5j2sogy6l0o9WQ5sPlF1x+8fjdkpdc/UzUtbSb2t9S8LYoyY5/8K3PIb+AP9zB+ResN6Kq7iz5BBRC/n44+M27x1sB+ETXOUTvC3RcQzvN6NtqDR+TwWv+2m+1nEAp1x/s9PMPDT3pIawKqNaJGkx2E5bOf5+0P/m04Gw2fSd83k70HUBQfVSTTUYjO6cuCboLi7j4sRmp4SK9wHfsJ+wXHV2rbOQ5RcbePh8wby/c/DwOWuAlNo+tebnFTD3Z4lg99IMVv4dlBYvlxPGVemNZoNchxelA4PhqFtpidjqacHHSo8adqpwX1af9wAyZOXInm5tWV65sT+1hqbgRmefcayTpimzgq3MDyp3qOWt4ZKDTjbPu/8TBavLGsOTB6XM/4x+bbUwvpg92DPhey6tik6emCTSMajvH68iYwNCAKU14NzidsuqxaVjXnvugejs3sXA/ZvbcK17MoOI5vhvbf7/Mc08puSy0kjSZoRMd8juF4yP7rmVnk415Nse7lPd3bMYfHBo4Z7ENtwE1+zZEcnpmxYEH7lLef8XwG08JJkOMc2wALkpY2HDOiJYOndbJvTzKO7a4vigJzaq5LdvQDTR6yktkw2Bi8P9slFdXmTxyQmpu3QzGAspWx8B73kKbQLBDu1ET2R9FaOCj9X7iGk4L3DPpSY72xz0bLx1fCb46RN3jItTg7KVXrZfNvthHWC8fyuFtf3EGpbH4OtPcztSOtYFg+0V8PTXBoirIwhIeXIqVpUnQE552s1X3dNIwJiWLd0dKGaeGKj89iwbKOWbeMh6ZrZT9+tDXwOk3uF8+Yb5r90krH59jBvmZY4HUcd7Tl4pN1FMuXfT9as7Juh41Brazn3lwfd/SJxXuH+JqK5bQqD1rWt6J9c5Cl5t1RlAlZHX5zMI+fVnDLoqEoBmBeGx29sAmxP7DJcMIbEI5zUop+RKO/TFpwEg4NvH5oKS3sU3GXU/ZJTpgvhvOsX7ahaHnOcuH9wTKptvyPW/0OLJ3jGMS4YxejpV78PGbvEGc0SeLEyvJnnji/cs6iLzW+T08vnaMVX6xj9hWWZ6xDLjxaPOSam+UTd1H1Z8+i67de4TofhyfPaL9JHC9l1NHyhlXH4mNVbStLGyGEEEIIIYQQQojXD326vqTgqdnA3t8tBGfv9ZDCwvd4SEEjBWtUtPO+l1FIlSj4otAyGtZEyw9qweh6gcJA6jl4H419KD9nvLPvrj/O65iHsk8bSsQo3I3uXaIlTPTwHb+D4zMo/IxuH3icmy/FMlhR+p9SvOGugWM5dOZG5LHwm+W+wiWRLFfqIyjgZrlSKkgBJxVDFAQ/jaJc9p9dn0beS0MLClSjIULfx+p/r/DPkKkU7D23Pj4q6FmuMc93lc6zDseGa6NSg78v95DC5Glob11UJVauyJrdUdFXxk9d43Kni4hH/zSHX/DzdO50X+k+KrvYwH/mVigUCbPSqYiKUm12NjYmqtFZsezsVHqxA7R42OQWNkeH41sfAZzpmqVRnoGPn5/DvY/3kKqIphwcSXsBQvE/e4TXam0HrH3rz69y/fs412Ct8MxQW8lO2wuFVQSPscFzQOAAyUbIOPhhcdw1jeW9o1fm1Cfq4x/sMvfBdI7lx/d0rVqDlyOmFg38AW8gtIpiJ+WAGhWPTMtO4TzzFPPIPLwYfjOPZbNBIHdMpo1tl+2B7YPnqWJgmtju0Ijig/VqsaoNmPdyoZN9yfsZLURmfyeHccORODe8COCo6/P/vX1iWnqjx4n6OKINXdykrO3O+mfQnQnnGzYvzo37eR0udY0bFWu0UOkFwJghtidmOH6UH3c58US1+VjRm2MLJ19ORB7vaX5dA33AcEJiITDTbM990f7jeC/UVl8LNND6aUX9dVy31MYxxk1No5cHFYC1+L1djpoRrud4yrLYBdidwxDzEd1XeFpHs3mzT8Qd95o8ZL9lpUdnCawP5mVQ/eGaJcdWKDSsL9UFGEEtZSjPBW6JU5sGuHioLH2QVaRuOTrTnfJM9ZBlxoUrrTnZcdhett8SeN4re+v/zOEjPs/uyr1P2Ah8YOzvvetAj+RAWqlQzUxfK9xBkasPt/LZ3TvG9AtyOIo7M4UdGjEbtcpOPmDs7WmsWZVwlcMV01c8Lxx9PM5xt/hv+oPxvEz2vLIRxe10Gjh5sAzY+KajeAW5yMOWHCzxeZY73XEcWO3+ukb5YvAZH0hYVyt9VbiQq8PAcL+fam8aVfWnKp6V2lj638vHaHHMh3Eh43kYXJuQMkPok8bn4Zq1VyLklgAAIABJREFUCy212Kn9/hEsFyaK5bUihLNQG+WHHeHHWCfuEHKw1+Vcf/ZMD+NYWFWWAfhH4YJnlM9Bj/uYNGFrvy46ROH4R+OuFWjvTIVdLFqYDQ3XcV5gNcWdRLmUbPGQzYHVxLE6OoEpb9zHdsh1EsftaDnEPPDZ8YsU3sc+GP2kMu1MC5sa2wHn4/1L8cStq7hepXUf740+4Zo8ZHlyjovzIYcFWhdzvGBX5ATMJTzXnm0ohA/0s8aux/UHrXgu8ZDLeo4jLCe+98RdJ+O2Xr7eGHmd/+Z6lua5TTkY99vSszh8er6aGJev/wc21F83kudZrvGl3ZGljRBCCCGEEEIIIUQF6ZGlzRgAF6NQiFIgRsULhU61XZJcQveoS5oo3NoGhaBqcNxhgVI8Svf4RVfwTXMKJYOu3f4gpZxx959+4TilfJRUUhJJ6esrpbSUN18vp61X/e+maN4TzTiiCQg18vRRQClpzfzFw9Xhd/kaSiX5Td9/eEipZdht4N9H1/+u5Td8b9vENLv09EiqESmZpSRyvIe0ohiI9uY5xNPyLpZD0KKOp0avFfWwzj2t81yFt7l/Uz/WfdsModSd5cU25VLsNL9QjlFoHn38sHnQ3QOLoSygZnKqSC94f2TbZBtmfVFbHH2MuC+DWrvaC4Uqne2d5Rl3qvi2h1QM0a8J2xStMNgmqUxkZbCdfNFDqu4H+zfjZ3I7EuezN5f6gmuW2A8ev6r+2ZTK0wKASsTV3mFqyisftWrf+vp5DnK8bmRrfdrZhh8uXUcVMxsR00IJehSRs9/HXSnKJmIAcJJXIsuzNlZ6g2e/o4S/dU5dVnDHE0U5RQ0jxyLGyX7NjhF3EGGauY0Pd5NieVBDxDwzPmpCGB/L4jkUYxHLgWMX2xstv6i5YlqY9gfnFxqkitGnL7D5FkC/kD4mnYqi4GKk9pk3m9+PUCj8Z11cfw2VSiwejnF3hLg5FESLGir5aOzR2yMcTU2Pz5UDvU0cyL5V3r0vmqxGbSOV+VwksO97u+lNyxzOM2wnXCh4JhoY76hw/YD66+p839F6hIO+10UD+yt36GGfZ4H48DPP+8zmHPfYBwjbNrW80Q9D9JnQuzhOlzOfdMug3lzHeBytblDArv8ON5ZocB84C7gpjsNu29/r8GGf1we4VRGXAf2D3zj+HMM+N7kUmdc/22xfH89jlTMOFk/VlfloWwws+ksxnvzEQ46RrCeuW1iPUYv9mxnFnPhHtzphvczw3X243mT7He8WH+wPox/JYaNbjNa2RyTsQDT38UlilO9ohfM89CX9gtJzOfdPYCdxk73JXlPj6FCJFU6HOS0eusXIcm9M0ZcaL2NjZsOo7RbqI0/cTuVpFGXLxsN1fc0aobU+TvbNWX4hB8XoL4aNkuMInxl9QLGxLuICGDwAtHidDH8kxOWWx9FqhcXLdRPrfIivHDkvN/jaJfnDjStLZpIWTVy8eJ0u8gFqIYp1yH4c3Pyhrb/OIfM5bGjHz1oVF9sVoy/y2ORt91F/R+Bwz0mO1p8DW/y4l/kC9xs6pC/Q6vUW7ZVGROuc6JuRIYuK9c+2FX12xu2iOK7w/YbPYzvZDEW7rVmShXsZJyd1ppH9o7OXkinh/KJwnn342XCcbXo+ijGNfYRpZNo4Z7Nfs7xiWuPnH2y7cWum6DOWYwLjZ7ktQ1EXPEcLG+abcgPWRbRY4rMZJ/PKeDnGx7Up1xec81k/zEMT2ptNR39DXHhxnIg7b0bfjgFZ2gghhBBCCCGEEEJUkJ7tHtXHUvOmKKRQlMBRmkXJEaVV1NrQh4Nrth6dUQjMKbSk4oxemZ9ZXf+I8sZTQCEcJf3jd4lxc3dKxqLWO1rF9EP77wcppYvOauIuWpT2Ra/whM+gdC9KMONWGpTYMdMLS8+ghoFQa+jSvKUe98CtwnmmNRYopZvxmZQOskyY9rjLAVCo8Zg2xsGyZxyU0NKQgs+MnszjDmFR2hmdObhUtM2l7L2pCe6Foj38pXSslOYW1xqxXQ3x8y+sLh79LgD/quruUX0tNW+OoswJv8uNO7qxHdChBetoOIp2+1i4h9ey/1Nbzs0UCOuJbSR6tB8dQlr2UEoe6533fxnApf4/P8fndjK0bmEcbBv89jX6UmF/YF6oXT3QO+/93oGiZVqU2E8tHWefYts6LqTpwXAPxxdavVACT8skPovx0HSiyUPWU4uHHHf4PNbPXqVnsVyoyOUYPSic57fN1Jqwn1ObQs0N80yta/CV0W43BKaVz2lAO41+O40M88N2yDGd4+bLwMQbgOaXqtc3Jw6x1HwwivGHefVvoyd7eY7jwBMdgflY94d7gHfSjwvnCVp5Raso9m2WMcdLjn3sExwfubEN2xnL1ZX1tZ04WA+sH/qcGo72u6mxre9UuqZ8b3Q5wbmQljVsR2xv+7nK8LzW+jRN4ANoNOyFs8BNV8rf/vfxDtLqD3N3WDWtXPymnm2aaQ+7KbXbKotjAvsKx0/WQ9w9cRcA/+3/v89Dmk3xXo6RrCP2AdYdx1gSnc9xN70438e8cCcyWsYdgvaWwj/3kGMD64CWgRy3ODb4+GS/qOgONeMsNZ+LIp/0bxDXhGwP7A+r64/f/zKwt5dnq4/tNT9JrHuWO9sjmy3HOK6ZuDMc4Zjvbe2XbsFDo8qmuGbiwpr9ZjsU2nRasnJ9yfwxP15vyddPRgOc6GeDeSJcD8f3APablvA8bsb0HGBxx8PoU41p6xvO8zfbNfsg++T88HtQ/XUPebx7MJ6o7e+NYs6PW7Z6WpevLC4FSrumss/GXSNbcjDvxfponw2Xs+tzuIib1y5GoZSnO5HR4Zr+0WdJ3EHMxwmbWs2+ubNZugHA9t4OnvF1yPaer+m+ruBQGj+OoCHwZmhv/NnZqyGH7XHehya7hQybUjRuiT5H2Vw4hbFJxl2ERnAX4dXt72U9Gsccv2AR3+f8cG+e90TULI4aO07kci+//uXdAcswM3zAShQFxfEiWrXweLSsYcbj2ESYWV7Przni2FXui0DRhx9EMZZxrcIxh+/3XFO3hLg4R3HuYloYN+dTzo/RgS3jYyXz+Yz/idK5uBMVGyLn+JdCyE7tjaCzXRdlaSOEEEIIIYQQQghRQXrk0wZbAPgMCuk1pVT83DY6CqEGnte7BGmXv6P97gcubl7qmoTtKUkcGq4LliGz6IyfEi+KoSgVZFqo2aOmKopBKeKch0KqNiNcS+keLUUI0xZ9LfA4tQYsJ0r1tgm/eT2hH4SyZoP/M90sJ8bloveBjCv6IYlie0oUZ4TzLHdqTClxjN8l8/kNqP+uDyjaB8uDUk6mJWo5+O0n44yqhriVGJlV/5M+GWrPWYiift9eSm/pWU3UfFGs7s8YU/r+tG+Fd8OYvwr45WxgrGsg9mMZRE1VtGahZLqhdJ7/U0vbEu5lm2Cc13hIFRHrKdZD3IosWr2xb7Lt8flsmytQ9H/uDhN3YGJfotSaKpi/h+t4nJrO73k4wBsAVTVMO/sRJfjMC9vHpii01PSNwLTwGfT5Qyk/YXkxLxwv2C8YzyvhepYj+yTjZ39rKF1HqT/Htmipx+NPhN/sW+wf5U1JgGL84HW0jorWlixH9l1aMXy2lI+2cA/HtLixCncto/+PhQBuRzUZhNxmqBqnVYKnfRw1zUd5GK2OvAzeeSOAUxvqL3rIVeNsgxyTh43J4Sr3m9HHL6BPiv7cxcQrs80n7g/68VXue4FzDP2lsQ2xHspqwmj9E314sN7ZvuJWiuyvbF9xhx4uLqJvrnlP1Me/7yP1v6egaHsj59ffy2/H2c7i3NgU0r6rl/8Lwc8G88q8jHHV4ZZeP9RE7s36Y4dtBJb6oEr/dm/yxC73QY99IlpIbn1oDlvvqE/jKB9MV/nAz/mOeWsMk+oCL3iWP8eeAwcArX6QdUq1/oBwLf1acY5lHbKd/ALVZDGy9RnnKVprsnrY9jhWcv1HSyIvnr3fjFp7baDlppdB8nFutYe9vfhn+fw1cmj99fiVh16fT3nboSEU3ch9y8OdfBzmFMnuVdsE5rGieQ9mPoKlOHdu42k2pW18LV5TiHPdGy2hGXIM4PjN/sVmHyzV/wVgd14b1+ts55zLOLfWdokK90VfFdGijPH6GLZHtLxlAZZ9YPD/iHfR/sECf6nXBa1Aaj6d/Jk0KGC07HJMKrNE1fpmISy/MsWdTKMx83BPwzQPo7HCiEZUmn698jtga9gUcpHnh8s5jmYz6i+rnd8S7d0ccQnH11UuZ9l823ydRcPyuKRkf2KZs3443PE5nKqCUT+G+9D8GApjFNYn41rmDxu+rP48287sZfW/a8O3u59iW4ruElfMrz/OvLFt9S75SOsbCpXL/bgZFo/H5e7mnVzHpSPzbsH6h/2I04ztyMT7+ecB+E6FA3mOY4yPF63+rtlAf6fe+Rb4O8cQjivR8RrfcZjoaAEY311I2fKP5+LXKdEPLcdDNihWQuzMAVnaCCGEEEIIIYQQQlSQnlnaLARwIwqpEzXhUatd9g5fPk7p1hQUmsewu8jAKNak+J+SLIpHXas1ktotSrOoDaS0Klpr3BaOx+/tFqO9JQyfEaXz1HyzPOKHpXFrIpYDxaZRqx09XdfEn6WwKVxLSwpKBrnNBLXR5Z2nylCCSIuB+FEoy515XR2OM4+Mf2npGp6jJNHrpM3Pr3BR7cDgt6DNj7NqjNoA5iX4Q2hzKXw08DJ+G9ni4TgU5VL7KNTD6F8oRsZ2+BI6L8sKsAo5iSyim93q5Qi2yWjFRdUd1TzlfLNd8l62e0Y+tHRtOY6V4TcrMqqUeB/7FSXPbIu874yQ1nIamDZqqKklfTCcpwSeqkeK+fks3k8fEMGXSC2ttDYIVoPt/MgAxZhGVQ3jepeH1Jpzkw4+k3HQsoSqCqpw6GOAVkCs023Cb8bDcenq0jGOuxwH9w/3sL/H8ZF1xPIg1KZSPRu/NWba2AYGhN97oahfliX7aNyVgONmdHTG8qwqq1GMP+7Lplbn00J4hIdsAyyL/YFiIHS1PdsF62DY9v6P6wz7BHXqfO/Yow72A66P3IaVP8Hv84a2nV/fxy1wnnILHM6xZf9mcVc11lncMZBtlPliO2Be2Aai5Wd0IMB2Gnew4ZqD7XtTtLeciVaHtNh6uXRPOW3sA4+21ueFGjWOY0zz390Ug+pepnmK37+bl+PwOYX1KcvlfTPqn8F8cFxjfxrtFjYcz1o83MUnWfZf+mlhXnv5+fGeOVqZ0AKMab1+WVG/zN/VHnKsjbtbMo1NHnLcqzJtKMYZzgX9mXFfHh/hA/pXaCrtDoae9zIcjfZz5pDcZ8wLp3ftIblvjaxtL0WnFb4jEdtm/9yXxyP34TPwHg9ZYS0essG7ir02SLIiV6HosLyG9470tOV7dgfHC5oLUafOztmn7r4ay71x9Wej40TluyTVGgjj7+fP2wztF1Vhsps7pT47jT6hz/S+xHEkrpXjuFFzesk00N6C5UcTUaa97JByYLiWA0b9Fq0D/fz2tTpwh5JLfPJspIXjBL++j4f5maNqu0Ux8ayvuJdgI4Bj/f+WcI51PdfTEusyONQzNtxqsWo1MG9JkTsuhWhMzBKiESCXedH9yiC0N+ZkF2VJ0MKG0GiXQzKvZxripmEIv+NGZpyeuSRivK2luGiFRdpK1wDtNztuq7+8nTuZmrWch1wyRf8+0QpmYek6GqUTxkGDO75mlQ26gWIaZVr5akk4FTFtm8+vj4/n+Tqx3ZP1aZyKoly2ebI+DRQxcBTZ9/n6uJi/qZ7I7V6uT3ttYzDvLuzpK4PFVxxlUfod6591t7lnYNHK+jT182FloE87iRF0gixthBBCCCGEEEIIISpIj3aPMrOXUAgohdjYGJtSigL2SqC+KTZyKtk31S+FUN8UoqKobwpRTTrsmz0S2gghhBBCCCGEEEKI1wZ9HiWEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUIIIYQQQgghhKggEtoIIYQQQgghhBBCVBAJbYQQQgghhBBCCCEqiIQ2QgghhBBCCCGEEBVEQhshhBBCCCGEEEKICiKhjRBCCCGEEEIIIUQFkdBGCCGEEEIIIYQQooJIaCOEEEIIIYQQQghRQSS0EUKI/9/emcfrWVX3/rczHBMCgZAQAhFyAGUeIomQVlR61etcrVNbrS3WWtp6O1jba22vXrRVe+1ta7WDLddWrUNxvmqxFrWKFqcTrogIDuABTIDMZuYkYd8/nvV9n+ddJ4ckCOQBft/P53z2eZ/3Gfa09t7vWutZ2xhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2xhhjjDHGGGOMMT3EShtjjDHGGGOMMcaYHmKljTHGGGOMMcYYY0wPsdLGGGOMMcYYY4wxpodYaWOMMcYYY4wxxhjTQ6y0McYYY4wxxhhjjOkhVtoYY4wxxhhjjDHG9BArbYwxxhhjjDHGGGN6iJU2PaGUMlpKqaWUGQc7L8aYllLKdaWUC6f4znJrzAOIUsp4KeWJBzsfxhhjjDH7i5U2B4FYNO4opWzlT9KxB3C9fygacy+xtx9xpZSLSilfkqRa6xm11s/fR8+upZRH3Bf3NqYPlFIuKKVcVUr5USllQynlP0spjz7Y+TLG9J9SyjtLKX9ysPNhzH1BKeXtpZTX7Oe5g/XigVx3f1BK+ZNSyrpSyu2llOPjt+30Kc69pJTynru512BNvq9zH2r4R//B45m11s/woZQyevCyYowxxty7lFLmSvqkpF+X9AFJI5IeK+nOg5kvYx6qlFIukPRmSWdI2iPpekm/U2v9+kHNmDEPQkopn5b01Vrra9PxZ0n6e0kPr7XuPtD71lp/7V7K4o9NKeU4Sa+UtKTWuiYOH3oQs/SgxZ42PSVb/5O28cpIN4U28yfinF8upVxfStlYSvl0KWXJ/Z1vYx5s7OfrFC8qpdwSloY/6lx7Xinly6WUTaWU20opf11KGYnvkONrQo5/9r4qgzEHiZMlqdb6/lrrnlrrjlrrv9dav1lKOamU8rlSyvqQm/eWUo6QpPhuQynl3Ph8bJxzYefzx+Oc75dSXsYDY678UCnlslLKllLK1aWUc1K+lpZSvhneP5eVUmZ1rn9Z3HNDPOPYzne1lPJrpZTvxTz7N6WU0vnec7DpLR0l6tskHSlpsaTX6V5Wot5fXuD2NjcPAN4p6cXdeSJ4saT33hOFzcFgH7K2RNL6jsLG3EdYafPA5HGRHlFrPbTW+uVSyrMl/aGk50g6StIXJb3/YGXQmIcYF0g6RdITJL22lHJaHN8j6RWSFkj6ifj+NySp1oocnxNyfNn9m2Vj7nO+K2lPKeVdpZSnllLmdb4rkt6k5tXg0yQdJ+kSSaq13ijpVZLeW0o5RNI/SXpn5zXF90v6YVz7PElvLKU8oXPvZ0n6oJofpu+T9LFSyszO9y+Q9BRJJ0g6W9JFklRK+S+RpxdIOkbSzZL+JZXpGZIeLemcOO/Jca3nYNN37k6JelEp5UullP8dSscflFKeyoWllJeEQnJLKeWmUsrFne8uLKX8sJTyqlLK7WrkVaWUZ5RSvhFGi6tKKWfvK4OllEeFonVLKeUySV2F6qTnlM6rzJ3zuq+RvLOU8rellE+FceQ/SymLSilviXLeUEp51I9Zr8ZMxcfUzEOP5UDMg8+Q9O6SXv+7O6NBl+51Hbl4ZSllTRgIX7KvjJVSDi+lvLuUsraUcnMp5X+UUqbFdxeFrPxlKWWDYm7eyz2eKOkKSceGfL2zpBAepZQTSilfCJm+Qs16uHuPF8fz15eO0XOK562IsWRTKeWaMkW8yQcrVtocPD4WnW5TKeVj98L9Lpb0plrr9aG5faMaa6Itfcbsm648bpL0twd4/etiAXyNpGvU/KBTrXVlrfUrtdbdtdZxNe6wj79Xc25MT6m1blaj0KySLpW0NhaiR9dav19rvaLWemetda2kv1BHNmqtl0r6nqSvqlGg/JE0cMW+QNKraq07a63fkPR/1FguYWWt9UO11l1x31mSVnS+f2utdXWtdYOkT0haGsdfJOkfa61X11rvlPRqST9Rhl9f/tNa66Za6y2S/qNzredg03fuTokqSedL+o6aH1VvlvSOjofAGjU/NOdKeomkvyzhCRcsUvPjdImkX43v/lGNXMxXM/d9vJTysKkyVxov1I9J+ue41wclPTedNvSc/Sz3CyT9jyjXnZK+LOnq+PwhNWOEMfc6tdYdal4N/sXO4RdIuiHWiwP202gwFYskHa7Ge+6lkv5mL/KdeVtcc6KaufcX1cg2nC/pJkkLJb1hbzeIMB9PlbQ6jI8X7eW090laqUbe/ljSL/FFKeV0SX+nZv4+Vs1Y8fC9PauUsljSv0r6EzVjwO9J+nAp5ah9lPNBg5U2B49n11qPiL9n3wv3WyLprzo/OjeosWQuvhfubcyDna48HqHwhsmUTvDwUsrxna9u7/y/XfE+bynl5FLKJ0sTnG2zmh9yQ1YGYx7MhBLjolrrwyWdqWZh9pZSysJSyr+UUlaFbLxHk2Xj0rjmbaFEUVy/oda6pXPezRqe627tPP8utV45sFd5jXNu7ly7VdL6dO+prvUcbHrN3SlR45Sba62X1lr3SHqXmh+OR8e1/1prvbE2fEHSv6vjPSDpLkn/M5SwOyS9TNLf11q/Gl4971KjMOkqTzMrJM2U9JZa665a64ck5Vg7+Tn7w0fDgLJT0kcl7ay1vjvKeZkke9qY+5J3SXp+KWV2fP7FOJbZH6PBVOyS9PqQm8slbVXj/b1XShMk+GclvbrWuiWMin+uYePH6lrr28LouL+ylp9zvBrP1NeEzF6pxlACz5P0yVrrlVHm16iR8b3xC5Iur7VeXmu9q9Z6haQxSU+7J3l7IGKlTX/ZJumQzudFnf/rXs6/VdLF3R+etdbZtdar7tNcGvMQIiwJ/N2yH5f8naQbJD2y1jpXzesT+d1mYx4S1FpvUPOO/5lqLIpV0tkhG7+gjmyUUg6V9BZJ75B0SSnlyPhqtaQjSymHdW59vKRVnc/Hde4zTY3lbvV+ZHG1GuUL185RY/lbNeUVLZ6DTe+ZSokaX9/eOW97/IsB4qmllK/Eaxub1PxQ6ipZ14ZSBJZIemXyYD1Od79T6rGSVtVau2vcm9M5+Tn7wx2d/3fs5bODppr7jFrrlyStlfSsUsqJapQY79vLqftjNJiK9Sk+TtegsDcWqNkYoCtfUxo/fgyOlbSx1rotPaf7fdfIsk1NmffGEjXKr+6YcoEa5fJDAitt+ss3JP1cKWVmKWW5Gm0krFWjiTyxc+ztkl5dSjlDGryr+Pz7LbfGmL1xmKTNkraWUk5Vs4u1GKG0AAAgAElEQVROlzs0LMfGPGgopZwa79k/PD4fJ+nnJX1FjWxsVRNQf7Gk30+X/5Wa15x+RY1L9NslqdZ6q6SrJL2plDKrNHEyXirpvZ1rl5VSnhPv1P+OGgv/V/Yjy++T9JJSytJ4jeONanb+GN+Paz0HmwcUSYk6JSELH5b0vyUdHd6ol2vYAJGNibdKekNSYh5Sa727OE+3SVrceSVLahSyQ9lOn4cMnKWURTKmf7xbjYfNiyX9e631jr2c8+MYDQ6UdWq8c7qv72bjx94cBA6U2yTNi7J0n9P9vmtkOURNmffGrZL+OY0pc2qtf3ov5PMBgZU2/eU1kk6StFFNdP+BVjYsIG+Q9J+hbVxRa/2opP8l6V/C1fxbat4zNMYcPH5P0gslbVHjjp6DDV8i6V0hxy+4n/NmzH3NFjXvxX+1lLJNjeLkW2q2B32dpHMl/UiNUuYjXFSa7VCfIoltTX9X0rmllBfF55+XNKpmkftRNa9LXNF57v9V4/q9Uc0i+TkR3+ZuqbV+Vs3c+2E1i8mTJP3c/hTUc7DpO/tQot4dI5IepsZguLs0AYr/6z6uuVTSr5VSzi8Nc0opT08ecpkvS9ot6bdKKTNKKc+RdN4+nnONpDNC0TpLUwRMNeYg825JT1Tz2uDeXo2SfjyjwQERrwZ+QNIbSimHRey131XzmvK9+Zyb1bzC9LpSykgp5QJJz+yc8iFJzyilXBAxrV6vqXUT75H0zFLKk0sp08NocyHj2UMBb5d3EKi1ju7l2Lg6Vota601qFrtT3eO1kl6bjv2zmgBuxpj9ZAp5fKcaC+Rev++cN670ulOt9cLO/1dKOjVd9trO929XeBAY82Cj1rpKTVDFvXGdpGXp2J/Hdf9XjeKF+2yV9IjO5x+qCYo6FTtrrb8wRZ5G0+dL0ucpZbLWmmX9ovTZc7DpMyhRf7eUcoSkTWq2AP99Nbue7ZVa65ZSym+p+ZH3MDUxKT5+dw+qtY6VUl4m6a8lPVLNa0hfknTl3VwzEYqaS9UEG71cHWXuFNd8t5TyekmfiWe8Wk3wY2N6Q611vJRylZpNKvYqO7XWz5ZSMBrMU+NRul9Gg3vIb6oJRnyTpJ1q5O4f74PnvFCNomqDGsXsuyUdIUm11utKKS9Xo7CaoyYo+A/3dpNa661h0Hmzmp0Z90j6miZ7sD9oKcOvjhpjjDHGPDAppVwi6RFTKW2MMcYYYx5o+PUoY4wxxhhjjDHGmB5iTxtjjDHGGGPMfUpsAfztKb4+fT93ZTTG7AellOs0HGwYLq61vncvx6e6z9vV7PCYeU+t9df2ctzcB1hpY4wxxhhjjDHGGNNDDigQ8YKZpY7O6hwYiZSXrMoBpl2y7qhOcfxgMi2lsLfySPufd64/kLJOVV/7+/meQl6navP7E8p0T559oNdUaXyDtG5bPRgl3ScLFkyro6NdcZ6qwfclWFX77tBTXZsF4669Xz7VbX8cppKhfd37x312loPuPe/rvBzI+fuS03ua5/197lT325/7TyXnnWvHV0vrNvZPNhfMLnX0MO3/ODlVffSuZA9C+rTWmIo+9oN91NvKNVpXaz3q/snM/rNgbqmj3Vztax12d+W8t8b6e2tdx1JgmqZerx5oOe/p/H0g1x3oPHRP6+ee5OlAr2X5c+cU59P38u+KH2fOPMDyrry5p7I5o9TRh3UOTPW7I39/X3JP5+79vf7eYH9/S96T+jvQ/PdxroI+9Jd9MNW8eUBKm9EqjU2Xdvyo+TybjfjYfZ0NNW+NFAXPienzUZKOjf+vjXR6pOOR/r9IZzbJF7c3KZu5T0zxaEr4vUiPjHR1pKek83ns/M7EdmMMticdPZwHPTnS0yO9OdJPR3pTpM9LmeDeSyPdFOkhkR4R6R3p+Np0n/lqCzgeKZsnci3PomK4N89cH2mUcU2UYWccPp7ro2LW7xp+zMgJ8c9PpvvfpLaeINpMDL7kKZeBvXW2RToa6e3p85ZID480+qEWRLohUuqNfnii2j64KOWFeqGD0B9pYzrMrdLyN6m33LW+6oT1uwbFeVakfEbcKALbF30oUrqPJF0QIz4yQkoVsqXLr0Q6Humbo1O9JD0bsadKvxXpT6UyfCnSJ0Y6GinNeGbn3I9GSr+la/AsrvkvkZ4b6Q2R0m3J+9xIL4j0q5HuSfcbSef9fqSnqB1LgHLQpeZHenT6/Ll0Pv6qbI2DSPJs8gR0XcqIeHw50lWSHhv/fzLlgWupN+oY0T0n0qsjXRwpbUubnhoyvurO4fux7Qf3Y4igbEep7XujMVh/PeSYPsuzzohNHW+JfQWoj0WHS8u3qpeMLpTGXiXpO3GAsYlGemSkWdg4b306LrWdnvSqSKn00Ujzxrp0ehoBoeFZdAqEgUmWimZeAvI0S5M7JZ+zYQchYaxPet1B3malNNcD4/fOdB555ofSzM455D8vGnjm9PSZe1KPzFvr0/ncP8/XPIfBBGFiDrpdbZuwsOEZtAVthJAwH/EMhIRnMAey8BlJ5+d6xWk+Lw13qi1X95jUthn3WB4p5adeI+/lDwYrpV4xbYt03hbpC/F5c6RUOcXMSyqq7JpIn6a227EkyUshulDurlQV26LRbblfXjKOR8pcTBdE3BhnfzbSb6sdHijnlpRCLiddkHIyZvMMRDgzP30/J33uDnmUk7mL7jseKUtDzqNNuBdic1j6Pq8ZaBfqnbIekVLq5GFqRYe2zOsg7vGj9DnXDz8PqEeE4Z3xEhhzK3l+d6QMVzyPdlyqtn4QW/J9czpOyj2oR9popfopm6PzpLFnqe08kBsDwTgqHacyj1Q799LJ1qY0/w6jk9CAVBZjKJ2K+/LMPMcxNrPIIu90rCPVNiTPppHPTcd5NsJzbTqPstDJTkmf+UHAbyoW4Qxm5JH7d5/BXEJ5uTeDE3MPnQsBoFOyWOZ65k/qlbxTr8x1/J6m845Hek5774nrm3SEa3npkjkphHMinj1CWWhbBhjqhWeRd9qQemQAp1+yjqMMs9QORtRDXndRr2d1rpHagSAG3jKFbDoQsTHGGGOMMcYYY0wPOaCYNstPLXXsH9RqFv8hUrRUaDuz+RvN0+pOGqaBVeuadDHeGKF1mggNGZ4dK3/QpMvivIkwSYyElnR9aLXmx+dr4zPWAhRw50+RxZHOcc59Wr53PHtHPBsF41s1/PmNkWLZIA8o8bAmoGDDWpCrkepCaXxE514o8bgHlpbRSFHALkKLHG22edfwdSj3+Lw01Hh7wmSBgpd6QllI/fHcz3SOoWhGoUie6DYYHPEwwCqEMvPxkY5HijU/GxFhZvoeuN85ahWmdMXsFYHCnvrgmbTNXWocra6p/XsFQ+rIJlpqKpFOhVb7tyP940jfEmk3LOB/j5S+Q2dDQ/476Twsx/8n3RPNOhpzwN0DDXx0rh3vaNLZz43jaMFxj3mkJnsHYCnAxIbQ4EKEwKOJRyhD4Ceik9Afpv90/POZJtm4fejjoK89m06I993PqFWBXxkpgky9UJ+0RXTGPZ+KZ/9Ek34kXGSec2h8H14k0+P+t0dZsQxjNCErc0L7f0WMocdJOpVyZXMh7U5bhTfLwNMxynDt6uEiIGsYXebG2HhdjI1nRFkmWefpj1y4Xdox1vw7OzzmPrdu+BTG1adG+oFIu4b+Z0u6toeyeU4p9XK11UyKyFDdGLiy8wais1Zt1TGWYeF9V6TZo42xGYPOcek4z/h+pKsiZQhZks6jCekDXc+vqTwLsgNRtr4fmc7PzkGIO8YqhiKGBOqRMnFfhqrVnWcgjpQjz2XZw+C4dDwbCJkbGXK4D0MPeSLvzHs890edPM1M55Jn2pL5ibyPR8ra4OOR5nrB4Ph+DcP9KQvekVw3TW1fpA0oP8+EFZHSdrQx1z9XWllrXa6e8ahS6hfUti/jKX11YTQKaybaaHb8szKOL1uitoGiE7BGzM7T2fuUPjMaKWsWpjemL+oeWaX98tSaDcbHqZ1Gcx5gXozd2+4cPq/kcuJl3XXLlbRt+/CzyRtloH6ZM/Aq+lbnHDoH8p095Rk38zTy6EiRNfocDguMq8gFecEpoBvtoZvn+Zrs3cM9GE/zMzek44zTv0uF/nqkMWC8L4SSeW1eDBCsSUYYiCgElXCi2gpKXoLX3jH8bPKyMO61Lb6fgzX/jn7K5rml1C+qHWvGI2XOo/1Zr7NWoP1iSaHj1MoUY9z3Upp/h1GldHPmaJaOOK2wLoHstcVPWu5D3pDNJZL+PT0DD/JXpLzgrcW1n0rnMQd9PVLmGuaFP0rnXRYp8wtdi/ttUTuP0ZcoP7/XWFKT57x2YR6g2yOTuI9Q3+OR/lL6jKc44wVt/Stqx+i8zOcZ/y3di/U78y3jzC9GSn3mN3EQPcqOPCHSeJ4zDh+utlyUM68/qC9+oh2bjlOvl0wxb9rTxhhjjDHGGGOMMaaHHJinzcJSx16gVpWENfXDkaKGQi2FWg+1VKgcJ3ZJI6FCrKHSKmjxUaWirgt11ESowkaIo4NaO5vmMCvg5oHaE1Xiz6S85pddJ9Sq+FDNfqHzXfeeqBZD5Xp75GkRVm3ygNoOswCmDtSomLtQH1NfoapbH6b0aZLmhfX9hq3Dp1IMNKfTUddl1SHqXsqPOpCyZAv5D9N11AH1H6rfie+3xSmRx20pjwXTbX4pHLcgyk8hUF+i7sxt3lVvSq23QJz39Sjzox/W5nPQdvmd2FDpr7xzOEsFNe92aflaaWyif9Z8SVq+pNSxV6s1JT0jnUCd4R33GxFR5mv/0aRf6pz3ZA2TY1ngWvb6sLXfFp3i5XH8TyNFpuhbi+NGa0LPvfBnhk9cGaanZS+O44+J9D8jXabWJvGCJtkadjDGmhzD6eQnxT/otel0o5ESoQd+NVLeLA+3j2+uHj7t7Fc36Z9FlKAna3KskPOifq6I+qHfn0zvwj7w2Uif3iQr/7JJlxExh8JEXgY2nghJdlu8HH/MM+N4CODGqM9r1JoyMUHRNjnIz7Np7N2R0qjvTScirNhdlkWKv0YMWl8L+wGyiin/wrPjn8VqbVHUx99HGq5YE+G6NPL2OE5Epiinnq7lyy/T2NgdvZPN5YeXOrZC2hEmNYbVecThim40MMNgdmFcpppnanIgDNK/jhQZp6tjBmLMzm4dTBpdC273vLXpfExGBN7oxhjDdEWectA5uhVl4N45bkp2wSEv1Me2dJyuwxywIaWHqBWf7MZC+YF754B33Jv6yaZCoMwMMfR1xlxi3XGfT6o1x54UKe3PvTEv/lOkUe41MdctjPnphu8PF2Fk+PRBN6KLDEK70Q+zmfiIzkW0UXL3mYg6HsEzMscAivPKP/TTmr98+dw6NrZcbW1QQGoRV4eVkXJejI1rvtakC1/WuSvj4I2RnjN8zaSAVMBCA18aOvbTIr08UgZwJmk64/x0Hm6wX1DbIRkQaNg70/HrIqUzRh42Rjnn/WYcJ4AY83PXp1lqx2XmK+A6FqfjnfxTTvyv8R99QsobHZR5mzycESn1j0sx9cQingGGHwrklfqjLE/Q5IGDdQjzFOWhrVks7x5Ofzt+vDDmMede/W/xzzciHY30XyOlTAgpzz9JbX1wDXll7sQfhLClL4qUwexCSVIppZeyeUYp9V/UlooQmtMJ/Md8kuOIMu7jcvJItWMo7ibZ7XU03ZN5jXuzXOP3HKKFxzjtyhyYf2vwHESe32RnqXUB4dm4RPIM5gGCA9Jt6f6sH6goloY84z2Rvi1ShhfWDAR9pGy4xezp5IU8cK+fj5Q6Z2lI+W5Nn/k9QFkRbYZXhoBXRkq943rC0MjQ93K17m+Ugw6CmPO6Cy6K5JGy0Ga8NYDLDhMmQyPz8Rcjza/m8Fu1G/8HVzxcuZg2KEcOWsk9EN0oS/lVe9oYY4wxxhhjjDHGPGC4Z542oXn87kubFAUaCrK/ixSFIwqliyMdPVyTg4uEdWtHGLRxmkAxhlITRSvPwmiG4g3FGIpWFGco91CajkeKgrJrHEJZx7umKOXyhkmkGNhgNppIFOhoR3MgmLw9AZ+zN0vX4wRFOdrb0PyxawtKveko55NVjFuRBZSBGB0x0qJQxCiAMpQdf2jbeRhNNqlty6jMiaj0ETSMfI9BBo1s1kzikYC2E8MX9YclNG/JkC2k3Ujs+R5YBekwaMnpOERG72wnsPxb0lhPt/xefnqpY+9T2y8G1vaQkN3RAf48jqNRR2Pf3X2E/ks7jEZK58HghuUCrf4l6Tj3RKByhHwMVmHJ/+6fNenJvGiKBrr78jHthSDTd9B0I9DXpO+xaFMGNOUMLAgEcXa+NHy8hrNHQa5eFykCcdqJGkjfxquGyjVw2qF/YlXheywItFk42gzaKEfdZ0DKBmIGKJ5D/Z+v1oFoNpKLB9Hm4WfQRlgWOD0bKscjfU6kDNQ42lyES2RYdTeGNxD1vCAad+u3J+02MzAWYwDOXpLECCKv50rLf0sa+27/ZHNpKfWzasdRhhmGruyMtip9v7bzPefQTRjSEGnEEIdOhrpHM7/koDZR7xvDoJ7DGzFM0yx56Oxu5JE3+WBezrvbMKVhZDuemzBR5zhaVABzSGSGHcSO724LKw36BLEbrlVb7Cwu5CnvoEZWstPe19NxrkNElkahVsWzKfsiykiFxg0nsHp2nkGx6QfzNUxe71A930if6T8YUjGSAnnm/BdGyvJiu9rykbe8ix155B70E+7NcHR0T2PaLCulflltP5hNAbuBfSSNR1/L8REZEl+oZgc7SQMhrOGcMpgvqLQYw9ekbaAXxrPWR8NSp6emHfXI6wrmwbSF09djIYe4zJsp7Qg57272JnV2UokDq6LBiS95beSRqYBlwTzKGnPrRMyVIzitpN1Q2YEUiDu5bXu7BKScK6OcyM7S7IEfFfD5Trw2qR1/FkUjfSKenZcQebepvLELy4YV09rYcbQ798APie6SfaaQzTn8gCDGHx4fMcBuuyTOYw3NeggPBwb00UiZRHaqFc4o+PqoN2Kf4AQx8H5n7CGzIY3lvf2UzeXHlTr2Ck3e0Y86oqEIzsJ6EBDOR2pyUBs6HR0779xHHfGjkU7EfcLJe1DZnI9MI3x5rQTcb3HnHtH/JyIIzQgeIAgr69Gul6bUrhHpnFcNn7c51q1zWZNTdtb9rI8ZzHFQ26bWQzTqZ3PkYS5OW5SDgDDZI5PJjLUnEyjxEnGapy//QqQMftw37wxF8BupXSsz2XwlUpQNOYgPb23gbEjwG+qT3zz0txgo6juHs4aMEzP29ijrHrXj5/o7h281N8bNT8TYxU8N3p75WDju0ZWXOKaNMcYYY4wxxhhjzAOHA/O0eXipY7+pVt2fty7COwF1FOreEWJUdH1UeO8TsCnxfih7YoQa6oNrmpRXVPM789lchlYbzSyaRcyUmBPRrna9Xb6YzkU7N+/k+Id3VzHJKB1HhYg6bzTSMB3XK5q0cD9UlOmdaexet0XckVmS5uHmFAUkZseOuOdsYnjgG0Od825rmPU3RwVijcdUx6vFmM3GI8VagrllxsL4J9SDN25v6xANK9A2qBbR9p4c6uDbwv3hmLDObw4z1dz4fk18T1vlLUhyGP/8TuqZkmagooYcmyMYmJtoGzrUDC1ffoPGxrb1zpovScvPLHXsI2otDFhp6Lu0AZr9P5zbpDeGpwUa+iMl0YXolpilqGe0/hfyQm30qUujD6IxRzNOVZ8U5sHdkZkZxDWJ99a/EWrzpZhEeCceeThf7Xv24c83L0yYX4v+TDPTB07A44N2REZjIJmI+4xgCg0zye7I/IzI83Vp+6QTwsTxZ3H9xZLmUnEUmGfyLnqOb4D5kAoN18VBjBsGO0zyyDRlQKZ5DgMWQSYQ7ss6eRpvkq0hpIyDyxBe7sGz4r36iU806UjyoBnElyEvvGsfL+5+Iuotb993YTcOBOYNXIny+Eqn5VkEVcLke2p/Y9ocWerYk9R6gtE/scoxJuZtY7B8YdY9Um0zM/7xme20mHbydlHcM1nWB24vzJVnpfPy1jTcj+d348ZkdxzmC5owx6ih+yACeT7nfOoLEaCbMq5hYaR7k6fuVk/Z/STFjBtYBvnMtbkMxHujvsgreckWc6x/fxPp4yJlqPkntfWQXa7IK9b1bGXk86+nz5SNOTZbqslz7kuc390S7NvpHK4ZTddQXsQUM2RYHMvXemrNP7bUsYvVtjPtNxop/R/ZzVsRMdf+ntqh/eSowM9Hh8ZNA+hjtBP9lj5KHfPsvF5lyDsv1l+rYl2MXJEn+uqn1Y4trMtYG2R3K9qbctLPWRv89/T92bGG+Ozm4bLQd5FNlvbINPI2orYuKSfl5h5nH9+k68JTMx6pT3TuIU3esumSSCkr3qynp5SphzxRB2dpslsb0ynXMk4whmUXPuSfnzK4QNKWTGOMWVxPXvHUOSEycuWG9nyeQX2QF+KAEB+E0EjcizY5rbmwlM39lM1S6tg0aSLqnqpZiDdX9OWvx/fZuYUqPl3t8DU3vN52xLKS5kR0845uTNF4bw3khHkyb5eWt8+N8fHrcSO62kK8Q4/oFCzm1jUxzy1Efrl3/ARE9mrIdHlUHGf+pS9l7xTkK8ow8Bzn+rxkndm5FhnK3j75DQkqn3pgzmG8GI8UeXpE+pzjrLIGQo66YyTlZWyjf9Mmc4avmYj6G6G8/B7KO1tT33cMf16Tdswb9MMYf3ZsaLNWUh/NMUGvjZ/MZ+GFGf3llnjG8fHMssGeNsYYY4wxxhhjjDEPGA7M0+aMUsc+oNbykDc3QQNNDBe0X2k3AW1Sq407vXOsey7WLTRnvLjPS9pY5rgnWj3uiwaO+/NSN54kPA8tYBc0jP81UjTkWDPI4+ywAmAZ/nxkBlUYGkNUrFgLuc/h6TOqXcqSo5mvVqvFHY8UKxH1RN1zD7SXWEm5Hq0l9UQciSen79FAUgYse2hmF4aqcc1Eew2qbd4J7ezAJKnVZqIVzi8U8332EuF4DgyRLcl5B7ET1dZTDupDvXAtbYbFpmPJXf5SaeyG/sXNkKTlJ5c69la1dfrCaJd1ISiU6zWRYjVDXrCqbVDr0ID3Fdeiheeda6w5j0neLueF+eeWsMDRrvQL2oC6z+/Gsvsa5hJkdVStRQmZRBuPJpx245n0EfpYtnRSbvra9nScIFp5Nx+0//SbU9Rq98njSLoG2SOPyDXjDeVMWv5Jng/ZqwHLB2MmeaYOlquta67JXhbIM23UibchaXJAD6zsmKl4Nm2GfYA2zTsUEQtouibHMcGymy032WuSejpFWn6FNLahf7K5fKTUsaM0qNfNYZVNYR40H8sYbUu8mRj7fqR2yjt5wfC5H4t5A8MXXZ4mPjVb9anPmKewPDJcI/aPHc7KpM0Nu5ZJmiq9Cj7JiMZQTnccxepI/0lz3o6YWmczh8QDNl/fpHOZl3gAc2nI0sYfdHbqwuJPHZNZ5DV7+RwxfP6eqKDpIb+3R2Eo62AnpmA86hVxH0Emuh5P5IG+nD1fkqfRmhTzI4fyQvxGI837sVEFdDce+0tR7ztCBrv9k/+ppryE4DNZnc+YQNyMd/TT0+ZRpdTPqROjJa8vaAv6Jl5xUclXxC6jTzpNbWwvLLmY8bkXMsd4iFcccwQgVNnzmcpn3qGfM1aybuO5zFeXS7cT7zALZw7GSAwxWirmj3+Lfv+U0+I4a3Cs92z4hFzRIVhTMrcio12rPl4lrLWpL8qZ52mezb2pB4g2+Up4BazI3j0EjCAPrD2oG7zFTlS7ARP1xA5uOXYcngg5UM6z4+Gf3zB8nLwTm43BEJnPsVGWpu+naXIQsaif70ZbncxvM5xWcV5mF6IYCMob+imbp5ZS36G2ys7gNxXyQZ3T5+hb1F0sPXVE5xomH+6Fl1KeQ6bwnNq8bvgwtx14XXAAyBuTIONMjAW3bG2HBRxqEXu6BOLArSg2ZCctxmS6NdcxlOU4bfxUmh597drOLoScQ/cbjzT/VELcmcrzT02GpBwyjPliYcj4v0Vhs8PSuenzN9TOW9yTYYHhgDi7lDs7nFGviBTOVNRHduBl+KUpmT/zT6PRmdKaGBcGaoJo923Rr1jGnxUP3RGZo3ueFGNR2WVPG2OMMcYYY4wxxpgHDAfmaXNaqWP/pFZ19tuowYnRELEp9PpIMT0R74ANyj+tVp2J+hFdGGpLTAyhy5oINfcIcSPQffFSbDJzDeJhhK7sY6HHQnte0POR502d8z8c/6M/W5DOOSMdH40UswFlQKc4no6jL/1IOo6tk+t4zspIz1Fbl5ib49kbQ39HjI8a5gHUlrOx9/FsVNKo7Kn/pw/nZXe8PExsj8FL9cTd4H67NewSIUn/Gin2PuqT8lEWdLSYbDD5YNtFr4nrAKpxXuBGT02fiJcGt0adHDqiVl/MucROos0iL3imLECfTNvs1vLlazU2NtE7a77U8bShirEKUjya4A2R/kGk2btBalXpqKvpIr8VKVavZc9v0jUfbFLU09kjLVsuyePJmDpi/NgcJ86lr+V+crTaDh397yt3Def55EPSvfgC02b0jUG/Jd5MtPNEjBN0pWNCr31b2tYDtwZ20uIxUlt+Yvugri/EgaI8oxomjR/XhR2FoQqzACp58vL8yOOqyCPDMmaYW9W2GSaYvGvawCQZbVHDVFXi+Na42aEpxgBmA8qYd7oiKj95wWxC9Z+l1sKFRRaxJo98j5vAeKRMIUdLy39DGvtODz1tiAOXTTUMlVjIs9UWWaK736W2HpgmGDap87yDBv0GLyeuTzvZDNoQ7zWGV67L5iXy2o15lWWcz8g65iHaFE8unp3jyCBD9FfWHDyTspJHxprxSLshqrLXGGY17sUwRP3MTGm2yuc4AUxTeFGwy1nIaY2dOwo74VC2XXu5N0Me/YBn5bhDHKcsTN95C6fsVcTYMNjaKpWhaxal3YH6wpTKs3HJok+nWDDlyn5a8zWTr8MAABdmSURBVJcvLnXs5ZrsgcbSCo8K6nI0UpacxCT5C7XLWPpd3r6UOZR4ifQ5hl36M2M83hhs60W7EOsCaEfme8YN2v29nTxkrxP6K/ccjTTLP9vB/lWkyDIyR7wN6pF+QQwMnk9e8aq5VW0MFuJfssTDWzT3X9qEe+MFQ5+j/phKXx4p8xB9l/syHjGnkp/lamUNmJfwJMvxQxjzuBcew8xrjIW0JfM39c18RhtS5hPT5+PUtg1LZdrkQ5FSn++IlLha1Fu0Xfmpnsrm0aWOvVCTd3TKXm/IFS6H9MmutzL1y886Pit9Zu7Zno7jfkHf4q0N2iPHisuxo4C+Rjtfq7ZvZPcV+jPlzrumUk7W7bNSmuNQXpnyTFn5Ccta9S2d44xR9D9kjfzj5U6eGPvy7qjIVF7WH5WOv3mK4+en4+/u5J9xl7ULef3L9Jk2+en0mZ+cqBUWR6EnYv07kly8alxYiNOLMKMDOUPtbwrW+VHgzd9sUtp2aYpLNnC7ap5Zyl32tDHGGGOMMcYYY4x5oDBj36d0uFPDe87/Umid0NSfGqr770UasS82dzY/khoFXEFDFpqwHbF3OwrwO9TsIISiECXnE9XsUMN7YjtC6zf74WH5RevHw7Y0edwRWZqNBv/MUHfdEWk3pg5WErTY32hU5+vDSL9azbPG42sMDGjAUPqhaCyhzazh/DMoe1TfttAatuFWNkdWviupGy/gloESczYOIIvjKiyc8ye4CZmN7+OfRZGitcQqMghQENrAsN6uH7zj2Fy3RW/qZl07o50oq9QaVDDePT7qiyzNCwvxxnD2mRdaZiJwU7Y9Ud/TD/kPHtZAJWAJnBVtnzTfe64nRxO6MfI5PVKKy63mHTox/MxDIzO7OmHBcdLoI9PU9F06y6BuIi1R0uXRcvR3FMVYkc6V9JToySfGTbB+cc0gkEJ42OAB8Rh2g+JAXLg76pBOE5tMaSy02VgFyOtR0UePjLS70wza/qdHUJRjo2/Q9hvjIVjabo1nHxUpDb4p5Ib6OjHlBU3+uqiDY+LCnXF/6uCvO95Ca+I7BqsUn0RHrBm+dkmUbwFm9lG+aJK1UVH5RWTKMNiZJF5I/nQzXgzqCyvDz50nXRgvt29ePZy3wXvYYQ24Pkx4WBG3xD8MTueGrK2IPvLDqJ/8jv1FMRA/I1wEsHxRF5Rlm9r6yrsSYoXi2Vd3rpGG3xXPXgF94Q61Vh9pMIZtjHnrk+8YPh3JYZrqGsYYV6ezgReWrVXpZDxvqNfRSPeklH6FXIal64Zoo1PT3LD5rUMfNRLjeL2zs2NCtvRtGU4nxddYks6nf8TQsSp2xlq8YPg81hRzySP9CescYvkBTY5bR71M9XI+8kWfJi4E1nqsvJc0yWAnDxYAUYb6qXT8hyk9Ra2cxQ4zNeYYDs8njggdg3Jif8NyTpviyUEZw7Pg2vCaxN9wEOcHq2l4Aw3GlO+r9f6B8ZQH6om5I2/ImOON9I1dauop7ySaAzQxduF5kbeZWd/5n3thwc3xTvD6yjvObEnn4YWBNx1rRuo+e+zRx7gPHinHqvXKgOx5k2N+0O7khT6yPp2fy4qcMR7xXLxbuI4+e4jaup1q3MhBKWA8nU9ect9DbnIsINYH5DnvFHuO2v5MPREXJnvi8QzqgbxQ7uxxtCV9n3d4o94Yy8jTHZ3zuRf9I/dJ2pLfMp9Mx8lDXzla0is0Od4l5RuNNHslMXB2d2FERqgrxq3V6TNyn+eiHLOJZ+ExkneXygHD6JM5hucmtWub8UiZG5gX81oS7/ej0vc5viH1xbjA/JA9cPLOaMjbJrV9CnmmvkYjpV54qYU4QoMFQqQE6mH8pMzZk4z6zrs7cj5y+B215V+VzsELjnvRBuORpnh+g/Pwrty0efi8LVFB07cP5/mof27S7g6aknTkTW1bDeaRWPdT53x/45rhzzzz23e/mLWnjTHGGGOMMcYYY0wPOXBPm5vUahSfESmWp/zufMSPmYsmDc3ZkWo1VnjAxPves0ebdCEarNCoLUXLhgkyFF+zUTvlnR/QToeWdTa7lRBmGi0pmkqsCJ1nDrTzoX2cH+8Pzg/Lw1lo+Xh2aFRreHjg3LAtNJFzsvY08jgntJ9noaHEm4DPaE1PVKv9511GIszn920pH/dAg4oFEgsQFju8itK7kvOjreejkeT9ZjSLoaHdfKc0l7AgYS18dLQx0bQXhkfWRET4nxcW41sa5xcdjwU5rCBENB9oUelHaCSpC/oS7RBlnY6Vcpd0stI1pPTluOd0+gHWE/rTrWot0n1kRI3lhvbmvXusDBSQdkdrDpT3dElrQtOb3/ueF+9gXhSfN4emmL53WHhpIf8nh6qdepsbne9Zoc3O29LQftkaNKeTIpvXh6k9W0lHI0XWkAf666EIAJ3oMZESywl4RxUT3IomOYEKfWOk8aL/jROt1Qeoh/PofSEgyzA9dGP1SK1Z4EVNciGFizwspqK5jjxGXp4XL7JTb4t/Pv65XYNKzlp95IDYXqed37mmmydMvell8qX/MHyjxZQt0gWPi1TD1w2ZzLD/Y3JMQrow4k+tYGsP8sIAIel/fki95GQ13h70z4XNgDJvopngXjwSMnJ9DPqM2/OY2Bqz3YhmaCDct3UDUKmttoV4uhH0JvrsxjgfOcTiOPCminRZk5dTmRS2xnUhp3PnMSHSds3EVrRAbV8c/q6NCTYjioe8EVMs+snWtHVEjEeLS/SfzfFS/h7ywoSeYlJtjEIxj804t33G7hjXZmTXTkyCDJ6HphR5Y/DELPdcSVKhrGtiTFr4/Dge8nvjN4fLBkvUjoHR3mVHk0eGY10WKWsA1i+sPV4RKXMj49wxw7sHnrWAMiKIuI2GjK1M3qqnqp37crylrheH1K61mEuB8n5Y/WSxpP+l1vOT5mdNhMcJ5VoRrhYrojG2hOvfCyWNxNzInMguUqyrGOKZI3gWwyteF9Qx7fDYdP55NDQTW8QNvDHGDzwr5kWjvepw6QfJ+5Q+wlCfPWQujFh1F0Y5fxQenMS9mBF5qLEww4LOMJ49TOhHeBnhiXC6Wks/3r2L4sBSFoNRgTUCY4zH4bxNGmMb6zeGwG+nNFvxWWszzXfjdX01nUMb0B+4J3lgPGXqZP7n3lzHEuKXmbOIWRnz27ToVzleEWEoF89Vu15hriTGZLTVeRF77nsh1y9mDRJj1ebILDEO+8Y6Nbtr5XhT9CV23mK+pI4XU07G7CWaPK5HHUzEj88R1oTBjlif8ruDMXeEgQ/BYR2CKxrrM2KRhmz+IOqaQX3wg/ikTp4Yj/mhxjOYL+lU1w3nNcduHZzPWonrEE4GGO7DdSFnTyA/Z3bylGOIxtjz2+Qhx65FOKmH7nZxUisArBlGm+S5eYJkLZndq7aqHUQYVFhPRMzS56pzrjRp27TBYJfrg2fG2mkw12+dIuW8qOfd323Hx0H5cJ+K/G+OjsW4QvXkXWOnwJ42xhhjjDHGGGOMMT3kwDxtZqlRTKEow8hKrAEsdmiKBuaiYLxJNn5m8v7mJ4YycgTNKZaKHHmeC9Bio+REQ5612dPT91isUKARGRwm1CoKgfLclT7nXSiCEoUbD+0/yv0tcXwRlk5UZnlXHaXPGFUOU6vd57tQfhJvZz6R/PP76NQX1jHyjNEWSwUxgcYjxQpDHrFC0bZhZZk7s83TCBaHuMfCpGAdwXIQmsbjUZrS1uzwRX+iLLQlecGiszN9T94p6+lq369MnjUDCyWW2fzednc3DnZb6CPT1HQ06j57fVwRnRcLHv3h6dE7z48OsOCnNNDKL0QQ6ICYnkKrjFWPPnFMWL8n6ISx09hchDE66YywEs0IgTgBq0BoyY8Mq9rAQyc65Y6rpdlhSVkY2v1Tk9cB7ZfLidzv2jx8fFbk9fxI8fKh78wY+GhxoEk+EYJI2Y/uXDM7OtUVoVH/Sli/xuP7gcNCCMBh8Ww07UvRzGNFGY2U42QeK0oMRHPD02Iuwzrttqy9+czIN/0dWWJ7iVuin+Q4M4/Ds4FCsOteMBGTAO8141AzG6Gk78QAvyrqZqbasRrZzGM9x4kFxI5LO69os7RR/WSVpD9UJ35ECChtvTb6AGMg1umboh12NV4adZdU6NOMn9QPlpqHh0cH773fHLLBGEdb5504BnEhmrxsjuvmkqdoj83XNMfJxuwYOia239LGbxu82x3pXVHeKOaqdTcNPXo6c2iOIxBtfuP2xsPmJIx5UdYd329kZvYgnkA8hzmBfNx0dSuXsCF542winlmUPzoxQynVtTYm33ZDqyamF1J2PEa789NuelyATDGsTtOgvNsiNtSmdOoKysE9GCqxLNPWyAT9anNUOPP0t+PzETHAUW/fCYFlHKPQUtu/kGUyh5GSMfUpTXL7uuFbl0HMrZ6yUc1uO6yp6MTUNX2ROrktdjBlfGIR+0VJx4aHTfYMYMzKMSToA9xjWkqZQpFdYpIcFePmEZHm+BDkjfH8w9snx4bIfYq80neu++BwXsYjxdB+atwIRwPmXKYjykiZs7cLY8PMzj3PjIsG5fzacLmQpRyHJ+8aRfnzZqm05ap0HuMFec7PkVpjOg4H5InfP6xTaCt2j6MvUEZ2dBr8voiAZls/NZxHvISOS59xvtBO6bYIGHpMeCRtjDUG9XFWeNjQpjvi+zzX9pVpasYdxrns9T0a6QgeWYzCeDeMR/ojtQJAA0bDjNBgEF4ms+P7M1h/Ze8K7p06/pqo44UMfJGnE3CR4vldT04al3Py1pCs+eg0lO+U9DkHngwvn4nonCPhPaePx/GQr8EOigg7LiofkSaGvVsHbbCQeov6mJgiZgtyMo8flXjFxHW3pN8kx4R3GGyMPsz4y3iz4FgNyl9joET+kbm56Zk/iHku70aGJ/juKCvr/+Px3Ik+MNg1KjognmpzwzOH3VbXSjomrtndOSZJx0S5qSccvGZEHhbT1ngoxc7NCXvaGGOMMcYYY4wxxvSQA/O0OUSNJwaWF7wXciRyPufdK97WJPPOkuah8eK9LrTVWAEAzRcacDTkmOqOTOeNR5ojdfM92my8g1BgojycpdYCwTFCJ2DN2tU5t5uiCYz6GR1Y+9J5lJ1n70nHyTt1g4LyEWoVsocNp8SeGWgaUfaSV6ysXE/bYP34YjqPsufdPfKOI9xnlloVINY9lJWjnXOk1oIwHumi9Jnr8eSgPXIUcfKQLfIXpO9P1+Sdp/icd7Ph2bTJIFq42leP+8idavpJjul0dhR4B0GgqMzxSMOcvoChYIU00ewQphEaNDTEO6KzzA6t/RNCm59N9/SpMy9t0hnxvn8NjXzB/JOtIuG9wTuhc7F0hAfO9Ks19O6oJM2IQWhHCAva65Gnxj/RoY/hhX6g0+BOEFaR42KQQqM+sOAg/HHdU+MFf8aV7Wr70uKoS5xTZvx6kxILYSCcxOMYbRKsiwMvltg6Z2BtAa5nIKYeo54mvQO8UtoYjUL/mBGWCAJRcS3GjuMxD1JPlJ9Bi+tigLg9hDN7yUyyhKTd7g7rZJMxhmLhOcT71k9CAH820hDaZeukN1GXPWOxpD9WW7YTol+tSUGl6BrhnJbnhLJLbf/CuYzxjjZFtDEyMQbQZFPtNMM4+StNMnjl/trh7+di6aXtwst15LBO3jA+MoelXWEWn5O+H095Y00Rc+lJeMIyF0TXnr00Xc+4nXfbeLgme3ClGHQcnx55nBdjPmFBJnmphig9E8v5aKTEEcNYSh64nvYgRsLRGsyFc8JjdU4M14vJI+seRJo8DOJbcOAPI31ppLjksHh4pYbJ8QN+OlIq/By1nZJJn8UAjfoXTfKiZjG1KMd8Y+48Rf1kp5o2oyrog9mLg2rIO7awPtuktl3o18jc6pTSF1l/5p1tOC/HZsHzhjzQh1jP0ETI17rfadI7NHmdifwia5Qzx9uhnHlHHsYH8np1+v7WKb7n+FGd73N8GDzHyAOeFjkWIeUcjxRZHo2U8RYPGsYynoNs53iIHP+q2nJyDetZ6iMcgidZ7ylv9vrjPtT3bZ8avh/nUyeIG32E+pyYkGK3XT0v1gyUN2/dyljPcEAfYM3dV/aoKXdehyOLOM88LMp/E2kc7+6YRpse9u3hex2Vvuc4YysxMan3DeH5MT08WmnnwY6kkbKLMu1JP9pz1fB1OzX5tzPl2hMCn3eyo48dl7aEQ6ZHvzb8DPK0NLznGLPy7x4E5ZFx3ha1dZ/PHYlKplx4r/HWS66PxZGZ7m9Fqe2zg/iKtwx/5vnUAXJx2GppTzQKc072NDyaClBbHqldG5HH+eFhw5J64Al5y/B5g3aI5yJXebepWZLWxLEcq/MH8fuHKZn+Ny3yMIjPSSfeO/a0McYYY4wxxhhjjOkhB+Zp87AinTBTOirUdXmPeIyzaOCIKo+2fBnW7/M1iDg9EhbbQ7EW/2OTrEs7XqBl4zOWjRybAY3a6nQcchyAm9P3i9Rq19CE8Uyse4drmEMxcb4g0osjjeo9mxfy8RwIVdsKIr5fN3z+IJPx/eMGL+Bp8nuR+Z3G8SaJ9/MHeade0H6imcweNCgosWQAmnmKSkCDgWXuaHVeFGySJ5EnLmYrhbj5SZiTokLPoB7iet4l5r5PoKybho9PCtYAXQ8Frsl1jBvV1nQeKRXzeGkOniU9ZM4x0oqL1Zqa/jbS5zTJ7HiXdSCMBHXCO4Nyzul4qVBHEeNmNu9ahoV10i4rv9wkS2lH+nu0Z6FTIUixrchEaKZHECz6C6b9uP/IIW2eZnBO5Hs25lzyTGAkPGxClb47LAk3h2CcRLT4aO9xshADyOo4/yTMCcvi+eFGczzBIGZp0o5UM5Bv6o3yvLVJNobmfR5lQqbooztTikCguqes3a3vuuevbM+bh1mV/D5m+JKBrLDLAHllUL880tSmjDuDrd9mpfOizY+n3402ydw/j8+flSbCvIHIYe2Ym3ckIsWrJkwZm1e3Vpm+sUfN2Mtcwnidra90fcbpbO3vDm1ZPPEywQSDtZqx/NGRYmUbWOsiJW/Z4k6T0XW4H3NHNz4a5WHuz3Mk1kvEjeHmJ9NnypBjc7FTJWXGAwGPA8rE7pJwg9rycS1zYo5VRzymvJkUeWJN8fQ44fNRobRh9tAlnccubpjSohLW3dW2d45NQn2eRiVHX7/xruF7T9oZBXmNXe0GY+kLI0WmosLrpcPPPyziRO1S6znEGoH13OwnDT+btjshKmrjXcPX9ZU9avoZFlGWJ3h10S8+FylNwThFcz5HrZWZa9kYKA/VtDfNQr+9Kx3nGYQCoz9Qp+QFbw/Wx/TVp0V6jdrlEedwLR575A1v60Gsp0izhwz3iV1AB2WlHzAeZYfPPL4f28kb03T2qGGMopxY/ZFVpimegQwSG4clB3LF+ECZcPpdn84/UW2dk1/kgbGMMY5xJMeqwImX+s0eBNnrh6U9/ZG+QJ+hTIdrssdW9hZDnt+fvsfTgCVYX9mgZue8wc6kkYbMbYzfbXSTwvBH3dPHj5x87aTfhKs750pt+9LH6PfcO//W5P60F32JNvr7SKlz2rfrzYIXJu1Ef52VriGPFByZzb97gb6Flxh9mb7GPEtfpz/t0uQ3P3g2S2Hqh/rKcUIZE5lvyUt+24E6YK7Pv1FHI2X9cqsmexnnmHgxxe5YN/yoeSFDe6IeEGkexa8hqptqziEeyRJNzTA/f1q7+e5CxmI2q4y8UB3zB/H4NMw+vODsaWOMMcYYY4wxxhjTQ0qtdf9PLmWtJvumGPNQYUmt9ah9n3b/Y9k0D3F6KZuWS2Msm8b0FMumMf1kr7J5QEobY4wxxhhjjDHGGHP/4NejjDHGGGOMMcYYY3qIlTbGGGOMMcYYY4wxPcRKG2OMMcYYY4wxxpgeYqWNMcYYY4wxxhhjTA+x0sYYY4wxxhhjjDGmh1hpY4wxxhhjjDHGGNNDrLQxxhhjjDHGGGOM6SFW2hhjjDHGGGOMMcb0ECttjDHGGGOMMcYYY3rI/weqHM56J9WL/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "eda.plot_signals(signals)\n", + "plt.show()\n", + "\n", + "eda.plot_fft(fft)\n", + "plt.show()\n", + "\n", + "eda.plot_fbank(fbank)\n", + "plt.show()\n", + "\n", + "eda.plot_mfccs(mfccs)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can see a lot of the dead space, such as the gaps in flute, has been removed. We can now apply this concept to all of our data and save it in our 'clean' folder." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████████████████████| 300/300 [02:10<00:00, 2.30it/s]\n" + ] + } + ], + "source": [ + "if len(os.listdir('data/clean')) == 0:\n", + " for f in tqdm(df.fname):\n", + " signal, rate = librosa.load('data/wavfiles/'+f, sr=16000) # Load in signal and rate\n", + " mask = envelope(signal, rate, 0.0005) # Create envelope\n", + " wavfile.write(filename='data/clean/'+f, rate=rate, data=signal[mask]) # Write in wav file with signal indexed by mask" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Audi_Classification_ML/data/clean/00353774.wav b/Audi_Classification_ML/data/clean/00353774.wav new file mode 100644 index 0000000..650c3ae Binary files /dev/null and b/Audi_Classification_ML/data/clean/00353774.wav differ diff --git a/Audi_Classification_ML/data/clean/0091fc7f.wav b/Audi_Classification_ML/data/clean/0091fc7f.wav new file mode 100644 index 0000000..70966ec Binary files /dev/null and b/Audi_Classification_ML/data/clean/0091fc7f.wav differ diff --git a/Audi_Classification_ML/data/clean/01c2f88b.wav b/Audi_Classification_ML/data/clean/01c2f88b.wav new file mode 100644 index 0000000..0392516 Binary files /dev/null and b/Audi_Classification_ML/data/clean/01c2f88b.wav differ diff --git a/Audi_Classification_ML/data/clean/0286fc27.wav b/Audi_Classification_ML/data/clean/0286fc27.wav new file mode 100644 index 0000000..4923918 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0286fc27.wav differ diff --git a/Audi_Classification_ML/data/clean/0356dec7.wav b/Audi_Classification_ML/data/clean/0356dec7.wav new file mode 100644 index 0000000..4a0ecd3 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0356dec7.wav differ diff --git a/Audi_Classification_ML/data/clean/03fc1f96.wav b/Audi_Classification_ML/data/clean/03fc1f96.wav new file mode 100644 index 0000000..46badd4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/03fc1f96.wav differ diff --git a/Audi_Classification_ML/data/clean/06c48eab.wav b/Audi_Classification_ML/data/clean/06c48eab.wav new file mode 100644 index 0000000..2579ac0 Binary files /dev/null and b/Audi_Classification_ML/data/clean/06c48eab.wav differ diff --git a/Audi_Classification_ML/data/clean/078f7ac0.wav b/Audi_Classification_ML/data/clean/078f7ac0.wav new file mode 100644 index 0000000..c6414bd Binary files /dev/null and b/Audi_Classification_ML/data/clean/078f7ac0.wav differ diff --git a/Audi_Classification_ML/data/clean/07db7f16.wav b/Audi_Classification_ML/data/clean/07db7f16.wav new file mode 100644 index 0000000..9d93d27 Binary files /dev/null and b/Audi_Classification_ML/data/clean/07db7f16.wav differ diff --git a/Audi_Classification_ML/data/clean/09a1cfd7.wav b/Audi_Classification_ML/data/clean/09a1cfd7.wav new file mode 100644 index 0000000..6df6189 Binary files /dev/null and b/Audi_Classification_ML/data/clean/09a1cfd7.wav differ diff --git a/Audi_Classification_ML/data/clean/0c67f402.wav b/Audi_Classification_ML/data/clean/0c67f402.wav new file mode 100644 index 0000000..c72b012 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0c67f402.wav differ diff --git a/Audi_Classification_ML/data/clean/0ddb4bdf.wav b/Audi_Classification_ML/data/clean/0ddb4bdf.wav new file mode 100644 index 0000000..5ef4735 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0ddb4bdf.wav differ diff --git a/Audi_Classification_ML/data/clean/0e7cd4eb.wav b/Audi_Classification_ML/data/clean/0e7cd4eb.wav new file mode 100644 index 0000000..77dd2c7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0e7cd4eb.wav differ diff --git a/Audi_Classification_ML/data/clean/0ed06544.wav b/Audi_Classification_ML/data/clean/0ed06544.wav new file mode 100644 index 0000000..2d21637 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0ed06544.wav differ diff --git a/Audi_Classification_ML/data/clean/0eeaebcb.wav b/Audi_Classification_ML/data/clean/0eeaebcb.wav new file mode 100644 index 0000000..06d6644 Binary files /dev/null and b/Audi_Classification_ML/data/clean/0eeaebcb.wav differ diff --git a/Audi_Classification_ML/data/clean/103f29e5.wav b/Audi_Classification_ML/data/clean/103f29e5.wav new file mode 100644 index 0000000..e561e1a Binary files /dev/null and b/Audi_Classification_ML/data/clean/103f29e5.wav differ diff --git a/Audi_Classification_ML/data/clean/10da16fb.wav b/Audi_Classification_ML/data/clean/10da16fb.wav new file mode 100644 index 0000000..c638130 Binary files /dev/null and b/Audi_Classification_ML/data/clean/10da16fb.wav differ diff --git a/Audi_Classification_ML/data/clean/1148986e.wav b/Audi_Classification_ML/data/clean/1148986e.wav new file mode 100644 index 0000000..11862c1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1148986e.wav differ diff --git a/Audi_Classification_ML/data/clean/125e6ccf.wav b/Audi_Classification_ML/data/clean/125e6ccf.wav new file mode 100644 index 0000000..4229abe Binary files /dev/null and b/Audi_Classification_ML/data/clean/125e6ccf.wav differ diff --git a/Audi_Classification_ML/data/clean/13da16ae.wav b/Audi_Classification_ML/data/clean/13da16ae.wav new file mode 100644 index 0000000..56cc444 Binary files /dev/null and b/Audi_Classification_ML/data/clean/13da16ae.wav differ diff --git a/Audi_Classification_ML/data/clean/160c92d7.wav b/Audi_Classification_ML/data/clean/160c92d7.wav new file mode 100644 index 0000000..6852ca9 Binary files /dev/null and b/Audi_Classification_ML/data/clean/160c92d7.wav differ diff --git a/Audi_Classification_ML/data/clean/16c9a838.wav b/Audi_Classification_ML/data/clean/16c9a838.wav new file mode 100644 index 0000000..a36d7a8 Binary files /dev/null and b/Audi_Classification_ML/data/clean/16c9a838.wav differ diff --git a/Audi_Classification_ML/data/clean/17f82c05.wav b/Audi_Classification_ML/data/clean/17f82c05.wav new file mode 100644 index 0000000..739cd55 Binary files /dev/null and b/Audi_Classification_ML/data/clean/17f82c05.wav differ diff --git a/Audi_Classification_ML/data/clean/18865530.wav b/Audi_Classification_ML/data/clean/18865530.wav new file mode 100644 index 0000000..7ad5556 Binary files /dev/null and b/Audi_Classification_ML/data/clean/18865530.wav differ diff --git a/Audi_Classification_ML/data/clean/19105b8a.wav b/Audi_Classification_ML/data/clean/19105b8a.wav new file mode 100644 index 0000000..9a73b38 Binary files /dev/null and b/Audi_Classification_ML/data/clean/19105b8a.wav differ diff --git a/Audi_Classification_ML/data/clean/195f544d.wav b/Audi_Classification_ML/data/clean/195f544d.wav new file mode 100644 index 0000000..3e59cdb Binary files /dev/null and b/Audi_Classification_ML/data/clean/195f544d.wav differ diff --git a/Audi_Classification_ML/data/clean/19893aa8.wav b/Audi_Classification_ML/data/clean/19893aa8.wav new file mode 100644 index 0000000..ade9021 Binary files /dev/null and b/Audi_Classification_ML/data/clean/19893aa8.wav differ diff --git a/Audi_Classification_ML/data/clean/1a7d3f2d.wav b/Audi_Classification_ML/data/clean/1a7d3f2d.wav new file mode 100644 index 0000000..3daee51 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1a7d3f2d.wav differ diff --git a/Audi_Classification_ML/data/clean/1b24c166.wav b/Audi_Classification_ML/data/clean/1b24c166.wav new file mode 100644 index 0000000..5d465b8 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1b24c166.wav differ diff --git a/Audi_Classification_ML/data/clean/1b93aeba.wav b/Audi_Classification_ML/data/clean/1b93aeba.wav new file mode 100644 index 0000000..ffc03b5 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1b93aeba.wav differ diff --git a/Audi_Classification_ML/data/clean/1bc8eae1.wav b/Audi_Classification_ML/data/clean/1bc8eae1.wav new file mode 100644 index 0000000..b8b1450 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1bc8eae1.wav differ diff --git a/Audi_Classification_ML/data/clean/1c9a423f.wav b/Audi_Classification_ML/data/clean/1c9a423f.wav new file mode 100644 index 0000000..d986850 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1c9a423f.wav differ diff --git a/Audi_Classification_ML/data/clean/1e3391d5.wav b/Audi_Classification_ML/data/clean/1e3391d5.wav new file mode 100644 index 0000000..59df7ec Binary files /dev/null and b/Audi_Classification_ML/data/clean/1e3391d5.wav differ diff --git a/Audi_Classification_ML/data/clean/1f81cc2b.wav b/Audi_Classification_ML/data/clean/1f81cc2b.wav new file mode 100644 index 0000000..25e5844 Binary files /dev/null and b/Audi_Classification_ML/data/clean/1f81cc2b.wav differ diff --git a/Audi_Classification_ML/data/clean/2016d256.wav b/Audi_Classification_ML/data/clean/2016d256.wav new file mode 100644 index 0000000..a5e02f2 Binary files /dev/null and b/Audi_Classification_ML/data/clean/2016d256.wav differ diff --git a/Audi_Classification_ML/data/clean/2032be87.wav b/Audi_Classification_ML/data/clean/2032be87.wav new file mode 100644 index 0000000..4844243 Binary files /dev/null and b/Audi_Classification_ML/data/clean/2032be87.wav differ diff --git a/Audi_Classification_ML/data/clean/21346775.wav b/Audi_Classification_ML/data/clean/21346775.wav new file mode 100644 index 0000000..2183f0b Binary files /dev/null and b/Audi_Classification_ML/data/clean/21346775.wav differ diff --git a/Audi_Classification_ML/data/clean/229be2be.wav b/Audi_Classification_ML/data/clean/229be2be.wav new file mode 100644 index 0000000..7f63292 Binary files /dev/null and b/Audi_Classification_ML/data/clean/229be2be.wav differ diff --git a/Audi_Classification_ML/data/clean/22bea889.wav b/Audi_Classification_ML/data/clean/22bea889.wav new file mode 100644 index 0000000..3ebd3cd Binary files /dev/null and b/Audi_Classification_ML/data/clean/22bea889.wav differ diff --git a/Audi_Classification_ML/data/clean/22e1c02c.wav b/Audi_Classification_ML/data/clean/22e1c02c.wav new file mode 100644 index 0000000..552e47b Binary files /dev/null and b/Audi_Classification_ML/data/clean/22e1c02c.wav differ diff --git a/Audi_Classification_ML/data/clean/236cbab1.wav b/Audi_Classification_ML/data/clean/236cbab1.wav new file mode 100644 index 0000000..37b6dbf Binary files /dev/null and b/Audi_Classification_ML/data/clean/236cbab1.wav differ diff --git a/Audi_Classification_ML/data/clean/238b16a5.wav b/Audi_Classification_ML/data/clean/238b16a5.wav new file mode 100644 index 0000000..b9a4c62 Binary files /dev/null and b/Audi_Classification_ML/data/clean/238b16a5.wav differ diff --git a/Audi_Classification_ML/data/clean/2424ad60.wav b/Audi_Classification_ML/data/clean/2424ad60.wav new file mode 100644 index 0000000..a9ad186 Binary files /dev/null and b/Audi_Classification_ML/data/clean/2424ad60.wav differ diff --git a/Audi_Classification_ML/data/clean/2503aaa1.wav b/Audi_Classification_ML/data/clean/2503aaa1.wav new file mode 100644 index 0000000..fc4236a Binary files /dev/null and b/Audi_Classification_ML/data/clean/2503aaa1.wav differ diff --git a/Audi_Classification_ML/data/clean/25f26095.wav b/Audi_Classification_ML/data/clean/25f26095.wav new file mode 100644 index 0000000..31fe730 Binary files /dev/null and b/Audi_Classification_ML/data/clean/25f26095.wav differ diff --git a/Audi_Classification_ML/data/clean/2ac8b94f.wav b/Audi_Classification_ML/data/clean/2ac8b94f.wav new file mode 100644 index 0000000..c46d082 Binary files /dev/null and b/Audi_Classification_ML/data/clean/2ac8b94f.wav differ diff --git a/Audi_Classification_ML/data/clean/2cc8683d.wav b/Audi_Classification_ML/data/clean/2cc8683d.wav new file mode 100644 index 0000000..1c8c04d Binary files /dev/null and b/Audi_Classification_ML/data/clean/2cc8683d.wav differ diff --git a/Audi_Classification_ML/data/clean/2da9e12a.wav b/Audi_Classification_ML/data/clean/2da9e12a.wav new file mode 100644 index 0000000..b6755ed Binary files /dev/null and b/Audi_Classification_ML/data/clean/2da9e12a.wav differ diff --git a/Audi_Classification_ML/data/clean/2e1cd085.wav b/Audi_Classification_ML/data/clean/2e1cd085.wav new file mode 100644 index 0000000..4ee00bb Binary files /dev/null and b/Audi_Classification_ML/data/clean/2e1cd085.wav differ diff --git a/Audi_Classification_ML/data/clean/2e4a9850.wav b/Audi_Classification_ML/data/clean/2e4a9850.wav new file mode 100644 index 0000000..e3e91b7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/2e4a9850.wav differ diff --git a/Audi_Classification_ML/data/clean/2f9c5f62.wav b/Audi_Classification_ML/data/clean/2f9c5f62.wav new file mode 100644 index 0000000..d44c7eb Binary files /dev/null and b/Audi_Classification_ML/data/clean/2f9c5f62.wav differ diff --git a/Audi_Classification_ML/data/clean/2fc00271.wav b/Audi_Classification_ML/data/clean/2fc00271.wav new file mode 100644 index 0000000..02661d3 Binary files /dev/null and b/Audi_Classification_ML/data/clean/2fc00271.wav differ diff --git a/Audi_Classification_ML/data/clean/31db8c5e.wav b/Audi_Classification_ML/data/clean/31db8c5e.wav new file mode 100644 index 0000000..a6d5eb7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/31db8c5e.wav differ diff --git a/Audi_Classification_ML/data/clean/31dbc5c0.wav b/Audi_Classification_ML/data/clean/31dbc5c0.wav new file mode 100644 index 0000000..cb6b28a Binary files /dev/null and b/Audi_Classification_ML/data/clean/31dbc5c0.wav differ diff --git a/Audi_Classification_ML/data/clean/32dee61b.wav b/Audi_Classification_ML/data/clean/32dee61b.wav new file mode 100644 index 0000000..c174acf Binary files /dev/null and b/Audi_Classification_ML/data/clean/32dee61b.wav differ diff --git a/Audi_Classification_ML/data/clean/34747922.wav b/Audi_Classification_ML/data/clean/34747922.wav new file mode 100644 index 0000000..e824b65 Binary files /dev/null and b/Audi_Classification_ML/data/clean/34747922.wav differ diff --git a/Audi_Classification_ML/data/clean/34a90030.wav b/Audi_Classification_ML/data/clean/34a90030.wav new file mode 100644 index 0000000..2054cf9 Binary files /dev/null and b/Audi_Classification_ML/data/clean/34a90030.wav differ diff --git a/Audi_Classification_ML/data/clean/34e4d187.wav b/Audi_Classification_ML/data/clean/34e4d187.wav new file mode 100644 index 0000000..66ffda1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/34e4d187.wav differ diff --git a/Audi_Classification_ML/data/clean/35039ae1.wav b/Audi_Classification_ML/data/clean/35039ae1.wav new file mode 100644 index 0000000..c0135e1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/35039ae1.wav differ diff --git a/Audi_Classification_ML/data/clean/35e97db3.wav b/Audi_Classification_ML/data/clean/35e97db3.wav new file mode 100644 index 0000000..8470a1b Binary files /dev/null and b/Audi_Classification_ML/data/clean/35e97db3.wav differ diff --git a/Audi_Classification_ML/data/clean/367ad7b1.wav b/Audi_Classification_ML/data/clean/367ad7b1.wav new file mode 100644 index 0000000..a94125c Binary files /dev/null and b/Audi_Classification_ML/data/clean/367ad7b1.wav differ diff --git a/Audi_Classification_ML/data/clean/36d06cc0.wav b/Audi_Classification_ML/data/clean/36d06cc0.wav new file mode 100644 index 0000000..bc59bfc Binary files /dev/null and b/Audi_Classification_ML/data/clean/36d06cc0.wav differ diff --git a/Audi_Classification_ML/data/clean/36d20ab5.wav b/Audi_Classification_ML/data/clean/36d20ab5.wav new file mode 100644 index 0000000..ef10bc5 Binary files /dev/null and b/Audi_Classification_ML/data/clean/36d20ab5.wav differ diff --git a/Audi_Classification_ML/data/clean/3707da71.wav b/Audi_Classification_ML/data/clean/3707da71.wav new file mode 100644 index 0000000..9142069 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3707da71.wav differ diff --git a/Audi_Classification_ML/data/clean/37cebbd4.wav b/Audi_Classification_ML/data/clean/37cebbd4.wav new file mode 100644 index 0000000..f166b43 Binary files /dev/null and b/Audi_Classification_ML/data/clean/37cebbd4.wav differ diff --git a/Audi_Classification_ML/data/clean/38216fad.wav b/Audi_Classification_ML/data/clean/38216fad.wav new file mode 100644 index 0000000..f379b5e Binary files /dev/null and b/Audi_Classification_ML/data/clean/38216fad.wav differ diff --git a/Audi_Classification_ML/data/clean/3a3d0279.wav b/Audi_Classification_ML/data/clean/3a3d0279.wav new file mode 100644 index 0000000..17819e4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3a3d0279.wav differ diff --git a/Audi_Classification_ML/data/clean/3a80061f.wav b/Audi_Classification_ML/data/clean/3a80061f.wav new file mode 100644 index 0000000..a1f0a89 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3a80061f.wav differ diff --git a/Audi_Classification_ML/data/clean/3a9085ca.wav b/Audi_Classification_ML/data/clean/3a9085ca.wav new file mode 100644 index 0000000..37ad0f0 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3a9085ca.wav differ diff --git a/Audi_Classification_ML/data/clean/3aafb6ad.wav b/Audi_Classification_ML/data/clean/3aafb6ad.wav new file mode 100644 index 0000000..929359d Binary files /dev/null and b/Audi_Classification_ML/data/clean/3aafb6ad.wav differ diff --git a/Audi_Classification_ML/data/clean/3c66098d.wav b/Audi_Classification_ML/data/clean/3c66098d.wav new file mode 100644 index 0000000..500be10 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3c66098d.wav differ diff --git a/Audi_Classification_ML/data/clean/3c713bcf.wav b/Audi_Classification_ML/data/clean/3c713bcf.wav new file mode 100644 index 0000000..0439b88 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3c713bcf.wav differ diff --git a/Audi_Classification_ML/data/clean/3cbe9902.wav b/Audi_Classification_ML/data/clean/3cbe9902.wav new file mode 100644 index 0000000..05d1d64 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3cbe9902.wav differ diff --git a/Audi_Classification_ML/data/clean/3d3439f1.wav b/Audi_Classification_ML/data/clean/3d3439f1.wav new file mode 100644 index 0000000..e2fcdd8 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3d3439f1.wav differ diff --git a/Audi_Classification_ML/data/clean/3e2bddda.wav b/Audi_Classification_ML/data/clean/3e2bddda.wav new file mode 100644 index 0000000..af0299b Binary files /dev/null and b/Audi_Classification_ML/data/clean/3e2bddda.wav differ diff --git a/Audi_Classification_ML/data/clean/3eaddda8.wav b/Audi_Classification_ML/data/clean/3eaddda8.wav new file mode 100644 index 0000000..a97bff7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/3eaddda8.wav differ diff --git a/Audi_Classification_ML/data/clean/3f7e6da8.wav b/Audi_Classification_ML/data/clean/3f7e6da8.wav new file mode 100644 index 0000000..30473ef Binary files /dev/null and b/Audi_Classification_ML/data/clean/3f7e6da8.wav differ diff --git a/Audi_Classification_ML/data/clean/41897c32.wav b/Audi_Classification_ML/data/clean/41897c32.wav new file mode 100644 index 0000000..9ad1181 Binary files /dev/null and b/Audi_Classification_ML/data/clean/41897c32.wav differ diff --git a/Audi_Classification_ML/data/clean/4345851e.wav b/Audi_Classification_ML/data/clean/4345851e.wav new file mode 100644 index 0000000..9cd28c1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/4345851e.wav differ diff --git a/Audi_Classification_ML/data/clean/444f9db5.wav b/Audi_Classification_ML/data/clean/444f9db5.wav new file mode 100644 index 0000000..4d5a7c2 Binary files /dev/null and b/Audi_Classification_ML/data/clean/444f9db5.wav differ diff --git a/Audi_Classification_ML/data/clean/44c5094c.wav b/Audi_Classification_ML/data/clean/44c5094c.wav new file mode 100644 index 0000000..dbc012c Binary files /dev/null and b/Audi_Classification_ML/data/clean/44c5094c.wav differ diff --git a/Audi_Classification_ML/data/clean/44fb3eeb.wav b/Audi_Classification_ML/data/clean/44fb3eeb.wav new file mode 100644 index 0000000..246bac7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/44fb3eeb.wav differ diff --git a/Audi_Classification_ML/data/clean/45de3233.wav b/Audi_Classification_ML/data/clean/45de3233.wav new file mode 100644 index 0000000..1d2ef92 Binary files /dev/null and b/Audi_Classification_ML/data/clean/45de3233.wav differ diff --git a/Audi_Classification_ML/data/clean/462b676f.wav b/Audi_Classification_ML/data/clean/462b676f.wav new file mode 100644 index 0000000..84420e0 Binary files /dev/null and b/Audi_Classification_ML/data/clean/462b676f.wav differ diff --git a/Audi_Classification_ML/data/clean/468f9c4c.wav b/Audi_Classification_ML/data/clean/468f9c4c.wav new file mode 100644 index 0000000..a1be486 Binary files /dev/null and b/Audi_Classification_ML/data/clean/468f9c4c.wav differ diff --git a/Audi_Classification_ML/data/clean/46b52f97.wav b/Audi_Classification_ML/data/clean/46b52f97.wav new file mode 100644 index 0000000..cbf93f3 Binary files /dev/null and b/Audi_Classification_ML/data/clean/46b52f97.wav differ diff --git a/Audi_Classification_ML/data/clean/493c247b.wav b/Audi_Classification_ML/data/clean/493c247b.wav new file mode 100644 index 0000000..754014e Binary files /dev/null and b/Audi_Classification_ML/data/clean/493c247b.wav differ diff --git a/Audi_Classification_ML/data/clean/4ba2b70e.wav b/Audi_Classification_ML/data/clean/4ba2b70e.wav new file mode 100644 index 0000000..ba0fb64 Binary files /dev/null and b/Audi_Classification_ML/data/clean/4ba2b70e.wav differ diff --git a/Audi_Classification_ML/data/clean/4bcc8a77.wav b/Audi_Classification_ML/data/clean/4bcc8a77.wav new file mode 100644 index 0000000..e5ce61c Binary files /dev/null and b/Audi_Classification_ML/data/clean/4bcc8a77.wav differ diff --git a/Audi_Classification_ML/data/clean/4bff8f32.wav b/Audi_Classification_ML/data/clean/4bff8f32.wav new file mode 100644 index 0000000..feb2f55 Binary files /dev/null and b/Audi_Classification_ML/data/clean/4bff8f32.wav differ diff --git a/Audi_Classification_ML/data/clean/4c4d4797.wav b/Audi_Classification_ML/data/clean/4c4d4797.wav new file mode 100644 index 0000000..3d39f41 Binary files /dev/null and b/Audi_Classification_ML/data/clean/4c4d4797.wav differ diff --git a/Audi_Classification_ML/data/clean/4c590f69.wav b/Audi_Classification_ML/data/clean/4c590f69.wav new file mode 100644 index 0000000..86f93bf Binary files /dev/null and b/Audi_Classification_ML/data/clean/4c590f69.wav differ diff --git a/Audi_Classification_ML/data/clean/4fb480bf.wav b/Audi_Classification_ML/data/clean/4fb480bf.wav new file mode 100644 index 0000000..8616022 Binary files /dev/null and b/Audi_Classification_ML/data/clean/4fb480bf.wav differ diff --git a/Audi_Classification_ML/data/clean/4fd883bb.wav b/Audi_Classification_ML/data/clean/4fd883bb.wav new file mode 100644 index 0000000..5d0c8a7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/4fd883bb.wav differ diff --git a/Audi_Classification_ML/data/clean/52300f9b.wav b/Audi_Classification_ML/data/clean/52300f9b.wav new file mode 100644 index 0000000..b9ac987 Binary files /dev/null and b/Audi_Classification_ML/data/clean/52300f9b.wav differ diff --git a/Audi_Classification_ML/data/clean/52e54bdd.wav b/Audi_Classification_ML/data/clean/52e54bdd.wav new file mode 100644 index 0000000..e9032df Binary files /dev/null and b/Audi_Classification_ML/data/clean/52e54bdd.wav differ diff --git a/Audi_Classification_ML/data/clean/5388d14d.wav b/Audi_Classification_ML/data/clean/5388d14d.wav new file mode 100644 index 0000000..d807cde Binary files /dev/null and b/Audi_Classification_ML/data/clean/5388d14d.wav differ diff --git a/Audi_Classification_ML/data/clean/5506629f.wav b/Audi_Classification_ML/data/clean/5506629f.wav new file mode 100644 index 0000000..31ee78e Binary files /dev/null and b/Audi_Classification_ML/data/clean/5506629f.wav differ diff --git a/Audi_Classification_ML/data/clean/55822aae.wav b/Audi_Classification_ML/data/clean/55822aae.wav new file mode 100644 index 0000000..7a8a636 Binary files /dev/null and b/Audi_Classification_ML/data/clean/55822aae.wav differ diff --git a/Audi_Classification_ML/data/clean/55d52a69.wav b/Audi_Classification_ML/data/clean/55d52a69.wav new file mode 100644 index 0000000..414e018 Binary files /dev/null and b/Audi_Classification_ML/data/clean/55d52a69.wav differ diff --git a/Audi_Classification_ML/data/clean/562d93f5.wav b/Audi_Classification_ML/data/clean/562d93f5.wav new file mode 100644 index 0000000..d82a78e Binary files /dev/null and b/Audi_Classification_ML/data/clean/562d93f5.wav differ diff --git a/Audi_Classification_ML/data/clean/565f3ee2.wav b/Audi_Classification_ML/data/clean/565f3ee2.wav new file mode 100644 index 0000000..4114446 Binary files /dev/null and b/Audi_Classification_ML/data/clean/565f3ee2.wav differ diff --git a/Audi_Classification_ML/data/clean/5689818f.wav b/Audi_Classification_ML/data/clean/5689818f.wav new file mode 100644 index 0000000..43ae89f Binary files /dev/null and b/Audi_Classification_ML/data/clean/5689818f.wav differ diff --git a/Audi_Classification_ML/data/clean/56e79c6f.wav b/Audi_Classification_ML/data/clean/56e79c6f.wav new file mode 100644 index 0000000..f7095ba Binary files /dev/null and b/Audi_Classification_ML/data/clean/56e79c6f.wav differ diff --git a/Audi_Classification_ML/data/clean/595c191d.wav b/Audi_Classification_ML/data/clean/595c191d.wav new file mode 100644 index 0000000..ffc5e5e Binary files /dev/null and b/Audi_Classification_ML/data/clean/595c191d.wav differ diff --git a/Audi_Classification_ML/data/clean/5c33d972.wav b/Audi_Classification_ML/data/clean/5c33d972.wav new file mode 100644 index 0000000..f9eb7ac Binary files /dev/null and b/Audi_Classification_ML/data/clean/5c33d972.wav differ diff --git a/Audi_Classification_ML/data/clean/5ce40b1b.wav b/Audi_Classification_ML/data/clean/5ce40b1b.wav new file mode 100644 index 0000000..969c18a Binary files /dev/null and b/Audi_Classification_ML/data/clean/5ce40b1b.wav differ diff --git a/Audi_Classification_ML/data/clean/5d040c3b.wav b/Audi_Classification_ML/data/clean/5d040c3b.wav new file mode 100644 index 0000000..b92c081 Binary files /dev/null and b/Audi_Classification_ML/data/clean/5d040c3b.wav differ diff --git a/Audi_Classification_ML/data/clean/5d4f8187.wav b/Audi_Classification_ML/data/clean/5d4f8187.wav new file mode 100644 index 0000000..7756fef Binary files /dev/null and b/Audi_Classification_ML/data/clean/5d4f8187.wav differ diff --git a/Audi_Classification_ML/data/clean/5d73ee6f.wav b/Audi_Classification_ML/data/clean/5d73ee6f.wav new file mode 100644 index 0000000..3e0beee Binary files /dev/null and b/Audi_Classification_ML/data/clean/5d73ee6f.wav differ diff --git a/Audi_Classification_ML/data/clean/5de123c3.wav b/Audi_Classification_ML/data/clean/5de123c3.wav new file mode 100644 index 0000000..af2c86e Binary files /dev/null and b/Audi_Classification_ML/data/clean/5de123c3.wav differ diff --git a/Audi_Classification_ML/data/clean/5e5bca7a.wav b/Audi_Classification_ML/data/clean/5e5bca7a.wav new file mode 100644 index 0000000..950ff4f Binary files /dev/null and b/Audi_Classification_ML/data/clean/5e5bca7a.wav differ diff --git a/Audi_Classification_ML/data/clean/5eadbc6d.wav b/Audi_Classification_ML/data/clean/5eadbc6d.wav new file mode 100644 index 0000000..eb757b4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/5eadbc6d.wav differ diff --git a/Audi_Classification_ML/data/clean/5ec7ad26.wav b/Audi_Classification_ML/data/clean/5ec7ad26.wav new file mode 100644 index 0000000..8a172de Binary files /dev/null and b/Audi_Classification_ML/data/clean/5ec7ad26.wav differ diff --git a/Audi_Classification_ML/data/clean/5f0dc8e4.wav b/Audi_Classification_ML/data/clean/5f0dc8e4.wav new file mode 100644 index 0000000..4f7bf49 Binary files /dev/null and b/Audi_Classification_ML/data/clean/5f0dc8e4.wav differ diff --git a/Audi_Classification_ML/data/clean/612702c3.wav b/Audi_Classification_ML/data/clean/612702c3.wav new file mode 100644 index 0000000..eee2706 Binary files /dev/null and b/Audi_Classification_ML/data/clean/612702c3.wav differ diff --git a/Audi_Classification_ML/data/clean/61c914b1.wav b/Audi_Classification_ML/data/clean/61c914b1.wav new file mode 100644 index 0000000..c191d19 Binary files /dev/null and b/Audi_Classification_ML/data/clean/61c914b1.wav differ diff --git a/Audi_Classification_ML/data/clean/63e0ab2c.wav b/Audi_Classification_ML/data/clean/63e0ab2c.wav new file mode 100644 index 0000000..a80c871 Binary files /dev/null and b/Audi_Classification_ML/data/clean/63e0ab2c.wav differ diff --git a/Audi_Classification_ML/data/clean/642aba58.wav b/Audi_Classification_ML/data/clean/642aba58.wav new file mode 100644 index 0000000..fdc238b Binary files /dev/null and b/Audi_Classification_ML/data/clean/642aba58.wav differ diff --git a/Audi_Classification_ML/data/clean/642ad7e4.wav b/Audi_Classification_ML/data/clean/642ad7e4.wav new file mode 100644 index 0000000..68c15aa Binary files /dev/null and b/Audi_Classification_ML/data/clean/642ad7e4.wav differ diff --git a/Audi_Classification_ML/data/clean/673defaf.wav b/Audi_Classification_ML/data/clean/673defaf.wav new file mode 100644 index 0000000..9d49dad Binary files /dev/null and b/Audi_Classification_ML/data/clean/673defaf.wav differ diff --git a/Audi_Classification_ML/data/clean/68589f79.wav b/Audi_Classification_ML/data/clean/68589f79.wav new file mode 100644 index 0000000..ed924a7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/68589f79.wav differ diff --git a/Audi_Classification_ML/data/clean/6a037ddf.wav b/Audi_Classification_ML/data/clean/6a037ddf.wav new file mode 100644 index 0000000..2cb3f7c Binary files /dev/null and b/Audi_Classification_ML/data/clean/6a037ddf.wav differ diff --git a/Audi_Classification_ML/data/clean/6a210ffa.wav b/Audi_Classification_ML/data/clean/6a210ffa.wav new file mode 100644 index 0000000..473eb81 Binary files /dev/null and b/Audi_Classification_ML/data/clean/6a210ffa.wav differ diff --git a/Audi_Classification_ML/data/clean/6a96272b.wav b/Audi_Classification_ML/data/clean/6a96272b.wav new file mode 100644 index 0000000..3e20867 Binary files /dev/null and b/Audi_Classification_ML/data/clean/6a96272b.wav differ diff --git a/Audi_Classification_ML/data/clean/6b27a847.wav b/Audi_Classification_ML/data/clean/6b27a847.wav new file mode 100644 index 0000000..319c698 Binary files /dev/null and b/Audi_Classification_ML/data/clean/6b27a847.wav differ diff --git a/Audi_Classification_ML/data/clean/6d21ad67.wav b/Audi_Classification_ML/data/clean/6d21ad67.wav new file mode 100644 index 0000000..49cefb8 Binary files /dev/null and b/Audi_Classification_ML/data/clean/6d21ad67.wav differ diff --git a/Audi_Classification_ML/data/clean/6eb59008.wav b/Audi_Classification_ML/data/clean/6eb59008.wav new file mode 100644 index 0000000..af48264 Binary files /dev/null and b/Audi_Classification_ML/data/clean/6eb59008.wav differ diff --git a/Audi_Classification_ML/data/clean/6ef82473.wav b/Audi_Classification_ML/data/clean/6ef82473.wav new file mode 100644 index 0000000..d8acc9f Binary files /dev/null and b/Audi_Classification_ML/data/clean/6ef82473.wav differ diff --git a/Audi_Classification_ML/data/clean/6efbaf90.wav b/Audi_Classification_ML/data/clean/6efbaf90.wav new file mode 100644 index 0000000..03b1f72 Binary files /dev/null and b/Audi_Classification_ML/data/clean/6efbaf90.wav differ diff --git a/Audi_Classification_ML/data/clean/6fca680b.wav b/Audi_Classification_ML/data/clean/6fca680b.wav new file mode 100644 index 0000000..baefeac Binary files /dev/null and b/Audi_Classification_ML/data/clean/6fca680b.wav differ diff --git a/Audi_Classification_ML/data/clean/70ca9c77.wav b/Audi_Classification_ML/data/clean/70ca9c77.wav new file mode 100644 index 0000000..80b3d74 Binary files /dev/null and b/Audi_Classification_ML/data/clean/70ca9c77.wav differ diff --git a/Audi_Classification_ML/data/clean/71c6451f.wav b/Audi_Classification_ML/data/clean/71c6451f.wav new file mode 100644 index 0000000..81edc37 Binary files /dev/null and b/Audi_Classification_ML/data/clean/71c6451f.wav differ diff --git a/Audi_Classification_ML/data/clean/7352e28f.wav b/Audi_Classification_ML/data/clean/7352e28f.wav new file mode 100644 index 0000000..953ed6e Binary files /dev/null and b/Audi_Classification_ML/data/clean/7352e28f.wav differ diff --git a/Audi_Classification_ML/data/clean/73677128.wav b/Audi_Classification_ML/data/clean/73677128.wav new file mode 100644 index 0000000..7c4dcc8 Binary files /dev/null and b/Audi_Classification_ML/data/clean/73677128.wav differ diff --git a/Audi_Classification_ML/data/clean/740e5bb7.wav b/Audi_Classification_ML/data/clean/740e5bb7.wav new file mode 100644 index 0000000..e14520d Binary files /dev/null and b/Audi_Classification_ML/data/clean/740e5bb7.wav differ diff --git a/Audi_Classification_ML/data/clean/743ae0f9.wav b/Audi_Classification_ML/data/clean/743ae0f9.wav new file mode 100644 index 0000000..8728238 Binary files /dev/null and b/Audi_Classification_ML/data/clean/743ae0f9.wav differ diff --git a/Audi_Classification_ML/data/clean/7506dcc4.wav b/Audi_Classification_ML/data/clean/7506dcc4.wav new file mode 100644 index 0000000..1c4428e Binary files /dev/null and b/Audi_Classification_ML/data/clean/7506dcc4.wav differ diff --git a/Audi_Classification_ML/data/clean/78a86075.wav b/Audi_Classification_ML/data/clean/78a86075.wav new file mode 100644 index 0000000..e91b175 Binary files /dev/null and b/Audi_Classification_ML/data/clean/78a86075.wav differ diff --git a/Audi_Classification_ML/data/clean/7b6a119e.wav b/Audi_Classification_ML/data/clean/7b6a119e.wav new file mode 100644 index 0000000..69680f6 Binary files /dev/null and b/Audi_Classification_ML/data/clean/7b6a119e.wav differ diff --git a/Audi_Classification_ML/data/clean/7d11b3b4.wav b/Audi_Classification_ML/data/clean/7d11b3b4.wav new file mode 100644 index 0000000..cf4071a Binary files /dev/null and b/Audi_Classification_ML/data/clean/7d11b3b4.wav differ diff --git a/Audi_Classification_ML/data/clean/7d896090.wav b/Audi_Classification_ML/data/clean/7d896090.wav new file mode 100644 index 0000000..713cfff Binary files /dev/null and b/Audi_Classification_ML/data/clean/7d896090.wav differ diff --git a/Audi_Classification_ML/data/clean/7dda9dc2.wav b/Audi_Classification_ML/data/clean/7dda9dc2.wav new file mode 100644 index 0000000..c260c32 Binary files /dev/null and b/Audi_Classification_ML/data/clean/7dda9dc2.wav differ diff --git a/Audi_Classification_ML/data/clean/7eb959ec.wav b/Audi_Classification_ML/data/clean/7eb959ec.wav new file mode 100644 index 0000000..91d6c7f Binary files /dev/null and b/Audi_Classification_ML/data/clean/7eb959ec.wav differ diff --git a/Audi_Classification_ML/data/clean/7eb9dac0.wav b/Audi_Classification_ML/data/clean/7eb9dac0.wav new file mode 100644 index 0000000..e6ba5c3 Binary files /dev/null and b/Audi_Classification_ML/data/clean/7eb9dac0.wav differ diff --git a/Audi_Classification_ML/data/clean/800b401e.wav b/Audi_Classification_ML/data/clean/800b401e.wav new file mode 100644 index 0000000..6d73510 Binary files /dev/null and b/Audi_Classification_ML/data/clean/800b401e.wav differ diff --git a/Audi_Classification_ML/data/clean/8073923c.wav b/Audi_Classification_ML/data/clean/8073923c.wav new file mode 100644 index 0000000..0e04048 Binary files /dev/null and b/Audi_Classification_ML/data/clean/8073923c.wav differ diff --git a/Audi_Classification_ML/data/clean/809ea09e.wav b/Audi_Classification_ML/data/clean/809ea09e.wav new file mode 100644 index 0000000..19cbd3d Binary files /dev/null and b/Audi_Classification_ML/data/clean/809ea09e.wav differ diff --git a/Audi_Classification_ML/data/clean/811bf309.wav b/Audi_Classification_ML/data/clean/811bf309.wav new file mode 100644 index 0000000..571ac49 Binary files /dev/null and b/Audi_Classification_ML/data/clean/811bf309.wav differ diff --git a/Audi_Classification_ML/data/clean/81d9f077.wav b/Audi_Classification_ML/data/clean/81d9f077.wav new file mode 100644 index 0000000..30c6a27 Binary files /dev/null and b/Audi_Classification_ML/data/clean/81d9f077.wav differ diff --git a/Audi_Classification_ML/data/clean/82d4fb44.wav b/Audi_Classification_ML/data/clean/82d4fb44.wav new file mode 100644 index 0000000..d8736ff Binary files /dev/null and b/Audi_Classification_ML/data/clean/82d4fb44.wav differ diff --git a/Audi_Classification_ML/data/clean/848faca3.wav b/Audi_Classification_ML/data/clean/848faca3.wav new file mode 100644 index 0000000..9835d9e Binary files /dev/null and b/Audi_Classification_ML/data/clean/848faca3.wav differ diff --git a/Audi_Classification_ML/data/clean/84f5b84b.wav b/Audi_Classification_ML/data/clean/84f5b84b.wav new file mode 100644 index 0000000..fe3a62b Binary files /dev/null and b/Audi_Classification_ML/data/clean/84f5b84b.wav differ diff --git a/Audi_Classification_ML/data/clean/85d6a7d2.wav b/Audi_Classification_ML/data/clean/85d6a7d2.wav new file mode 100644 index 0000000..14341ea Binary files /dev/null and b/Audi_Classification_ML/data/clean/85d6a7d2.wav differ diff --git a/Audi_Classification_ML/data/clean/88500b88.wav b/Audi_Classification_ML/data/clean/88500b88.wav new file mode 100644 index 0000000..547363f Binary files /dev/null and b/Audi_Classification_ML/data/clean/88500b88.wav differ diff --git a/Audi_Classification_ML/data/clean/88780eac.wav b/Audi_Classification_ML/data/clean/88780eac.wav new file mode 100644 index 0000000..7fe6cd9 Binary files /dev/null and b/Audi_Classification_ML/data/clean/88780eac.wav differ diff --git a/Audi_Classification_ML/data/clean/8916ffcd.wav b/Audi_Classification_ML/data/clean/8916ffcd.wav new file mode 100644 index 0000000..f648a67 Binary files /dev/null and b/Audi_Classification_ML/data/clean/8916ffcd.wav differ diff --git a/Audi_Classification_ML/data/clean/8986cced.wav b/Audi_Classification_ML/data/clean/8986cced.wav new file mode 100644 index 0000000..3f373bc Binary files /dev/null and b/Audi_Classification_ML/data/clean/8986cced.wav differ diff --git a/Audi_Classification_ML/data/clean/8b6a16de.wav b/Audi_Classification_ML/data/clean/8b6a16de.wav new file mode 100644 index 0000000..2e57aec Binary files /dev/null and b/Audi_Classification_ML/data/clean/8b6a16de.wav differ diff --git a/Audi_Classification_ML/data/clean/8cd809d3.wav b/Audi_Classification_ML/data/clean/8cd809d3.wav new file mode 100644 index 0000000..33fb566 Binary files /dev/null and b/Audi_Classification_ML/data/clean/8cd809d3.wav differ diff --git a/Audi_Classification_ML/data/clean/8ce2e863.wav b/Audi_Classification_ML/data/clean/8ce2e863.wav new file mode 100644 index 0000000..dcddf02 Binary files /dev/null and b/Audi_Classification_ML/data/clean/8ce2e863.wav differ diff --git a/Audi_Classification_ML/data/clean/8d7d7dba.wav b/Audi_Classification_ML/data/clean/8d7d7dba.wav new file mode 100644 index 0000000..c78d7de Binary files /dev/null and b/Audi_Classification_ML/data/clean/8d7d7dba.wav differ diff --git a/Audi_Classification_ML/data/clean/8da75280.wav b/Audi_Classification_ML/data/clean/8da75280.wav new file mode 100644 index 0000000..9b98499 Binary files /dev/null and b/Audi_Classification_ML/data/clean/8da75280.wav differ diff --git a/Audi_Classification_ML/data/clean/8ee44fb5.wav b/Audi_Classification_ML/data/clean/8ee44fb5.wav new file mode 100644 index 0000000..5cf91da Binary files /dev/null and b/Audi_Classification_ML/data/clean/8ee44fb5.wav differ diff --git a/Audi_Classification_ML/data/clean/8fa096bf.wav b/Audi_Classification_ML/data/clean/8fa096bf.wav new file mode 100644 index 0000000..798b20a Binary files /dev/null and b/Audi_Classification_ML/data/clean/8fa096bf.wav differ diff --git a/Audi_Classification_ML/data/clean/921eee9d.wav b/Audi_Classification_ML/data/clean/921eee9d.wav new file mode 100644 index 0000000..3fbdc7b Binary files /dev/null and b/Audi_Classification_ML/data/clean/921eee9d.wav differ diff --git a/Audi_Classification_ML/data/clean/9320c55f.wav b/Audi_Classification_ML/data/clean/9320c55f.wav new file mode 100644 index 0000000..81eca37 Binary files /dev/null and b/Audi_Classification_ML/data/clean/9320c55f.wav differ diff --git a/Audi_Classification_ML/data/clean/95e1d0ae.wav b/Audi_Classification_ML/data/clean/95e1d0ae.wav new file mode 100644 index 0000000..72d95ba Binary files /dev/null and b/Audi_Classification_ML/data/clean/95e1d0ae.wav differ diff --git a/Audi_Classification_ML/data/clean/96dad435.wav b/Audi_Classification_ML/data/clean/96dad435.wav new file mode 100644 index 0000000..fb8ebe0 Binary files /dev/null and b/Audi_Classification_ML/data/clean/96dad435.wav differ diff --git a/Audi_Classification_ML/data/clean/9923ddf8.wav b/Audi_Classification_ML/data/clean/9923ddf8.wav new file mode 100644 index 0000000..f32d44a Binary files /dev/null and b/Audi_Classification_ML/data/clean/9923ddf8.wav differ diff --git a/Audi_Classification_ML/data/clean/99c96a07.wav b/Audi_Classification_ML/data/clean/99c96a07.wav new file mode 100644 index 0000000..cd74542 Binary files /dev/null and b/Audi_Classification_ML/data/clean/99c96a07.wav differ diff --git a/Audi_Classification_ML/data/clean/9a4bfb69.wav b/Audi_Classification_ML/data/clean/9a4bfb69.wav new file mode 100644 index 0000000..04102aa Binary files /dev/null and b/Audi_Classification_ML/data/clean/9a4bfb69.wav differ diff --git a/Audi_Classification_ML/data/clean/9a722e53.wav b/Audi_Classification_ML/data/clean/9a722e53.wav new file mode 100644 index 0000000..ab90e84 Binary files /dev/null and b/Audi_Classification_ML/data/clean/9a722e53.wav differ diff --git a/Audi_Classification_ML/data/clean/9adffd44.wav b/Audi_Classification_ML/data/clean/9adffd44.wav new file mode 100644 index 0000000..422b70e Binary files /dev/null and b/Audi_Classification_ML/data/clean/9adffd44.wav differ diff --git a/Audi_Classification_ML/data/clean/9c0838c1.wav b/Audi_Classification_ML/data/clean/9c0838c1.wav new file mode 100644 index 0000000..338354a Binary files /dev/null and b/Audi_Classification_ML/data/clean/9c0838c1.wav differ diff --git a/Audi_Classification_ML/data/clean/9cd05a2b.wav b/Audi_Classification_ML/data/clean/9cd05a2b.wav new file mode 100644 index 0000000..4a17779 Binary files /dev/null and b/Audi_Classification_ML/data/clean/9cd05a2b.wav differ diff --git a/Audi_Classification_ML/data/clean/9d308738.wav b/Audi_Classification_ML/data/clean/9d308738.wav new file mode 100644 index 0000000..7d04279 Binary files /dev/null and b/Audi_Classification_ML/data/clean/9d308738.wav differ diff --git a/Audi_Classification_ML/data/clean/9dd0141c.wav b/Audi_Classification_ML/data/clean/9dd0141c.wav new file mode 100644 index 0000000..c788a02 Binary files /dev/null and b/Audi_Classification_ML/data/clean/9dd0141c.wav differ diff --git a/Audi_Classification_ML/data/clean/9e3bc1b6.wav b/Audi_Classification_ML/data/clean/9e3bc1b6.wav new file mode 100644 index 0000000..8e30b1a Binary files /dev/null and b/Audi_Classification_ML/data/clean/9e3bc1b6.wav differ diff --git a/Audi_Classification_ML/data/clean/9f522cda.wav b/Audi_Classification_ML/data/clean/9f522cda.wav new file mode 100644 index 0000000..913fbed Binary files /dev/null and b/Audi_Classification_ML/data/clean/9f522cda.wav differ diff --git a/Audi_Classification_ML/data/clean/9f6eac9c.wav b/Audi_Classification_ML/data/clean/9f6eac9c.wav new file mode 100644 index 0000000..fbe955a Binary files /dev/null and b/Audi_Classification_ML/data/clean/9f6eac9c.wav differ diff --git a/Audi_Classification_ML/data/clean/9f84ea5a.wav b/Audi_Classification_ML/data/clean/9f84ea5a.wav new file mode 100644 index 0000000..faf4ffe Binary files /dev/null and b/Audi_Classification_ML/data/clean/9f84ea5a.wav differ diff --git a/Audi_Classification_ML/data/clean/a053797b.wav b/Audi_Classification_ML/data/clean/a053797b.wav new file mode 100644 index 0000000..37c6651 Binary files /dev/null and b/Audi_Classification_ML/data/clean/a053797b.wav differ diff --git a/Audi_Classification_ML/data/clean/a090c45a.wav b/Audi_Classification_ML/data/clean/a090c45a.wav new file mode 100644 index 0000000..638e3f1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/a090c45a.wav differ diff --git a/Audi_Classification_ML/data/clean/a0cbe92e.wav b/Audi_Classification_ML/data/clean/a0cbe92e.wav new file mode 100644 index 0000000..17041b1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/a0cbe92e.wav differ diff --git a/Audi_Classification_ML/data/clean/a1b369d7.wav b/Audi_Classification_ML/data/clean/a1b369d7.wav new file mode 100644 index 0000000..249141a Binary files /dev/null and b/Audi_Classification_ML/data/clean/a1b369d7.wav differ diff --git a/Audi_Classification_ML/data/clean/a25423a8.wav b/Audi_Classification_ML/data/clean/a25423a8.wav new file mode 100644 index 0000000..78a9c72 Binary files /dev/null and b/Audi_Classification_ML/data/clean/a25423a8.wav differ diff --git a/Audi_Classification_ML/data/clean/a59b5a08.wav b/Audi_Classification_ML/data/clean/a59b5a08.wav new file mode 100644 index 0000000..b617ccd Binary files /dev/null and b/Audi_Classification_ML/data/clean/a59b5a08.wav differ diff --git a/Audi_Classification_ML/data/clean/a64a3740.wav b/Audi_Classification_ML/data/clean/a64a3740.wav new file mode 100644 index 0000000..ec5f73a Binary files /dev/null and b/Audi_Classification_ML/data/clean/a64a3740.wav differ diff --git a/Audi_Classification_ML/data/clean/a6728901.wav b/Audi_Classification_ML/data/clean/a6728901.wav new file mode 100644 index 0000000..478921f Binary files /dev/null and b/Audi_Classification_ML/data/clean/a6728901.wav differ diff --git a/Audi_Classification_ML/data/clean/a7964699.wav b/Audi_Classification_ML/data/clean/a7964699.wav new file mode 100644 index 0000000..c1e4498 Binary files /dev/null and b/Audi_Classification_ML/data/clean/a7964699.wav differ diff --git a/Audi_Classification_ML/data/clean/aa9ae956.wav b/Audi_Classification_ML/data/clean/aa9ae956.wav new file mode 100644 index 0000000..716248b Binary files /dev/null and b/Audi_Classification_ML/data/clean/aa9ae956.wav differ diff --git a/Audi_Classification_ML/data/clean/aab28420.wav b/Audi_Classification_ML/data/clean/aab28420.wav new file mode 100644 index 0000000..91125b7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/aab28420.wav differ diff --git a/Audi_Classification_ML/data/clean/ab465bf9.wav b/Audi_Classification_ML/data/clean/ab465bf9.wav new file mode 100644 index 0000000..0583f6a Binary files /dev/null and b/Audi_Classification_ML/data/clean/ab465bf9.wav differ diff --git a/Audi_Classification_ML/data/clean/ab8e8ae3.wav b/Audi_Classification_ML/data/clean/ab8e8ae3.wav new file mode 100644 index 0000000..2442643 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ab8e8ae3.wav differ diff --git a/Audi_Classification_ML/data/clean/ac097834.wav b/Audi_Classification_ML/data/clean/ac097834.wav new file mode 100644 index 0000000..78c8f9e Binary files /dev/null and b/Audi_Classification_ML/data/clean/ac097834.wav differ diff --git a/Audi_Classification_ML/data/clean/ad42e493.wav b/Audi_Classification_ML/data/clean/ad42e493.wav new file mode 100644 index 0000000..1febb62 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ad42e493.wav differ diff --git a/Audi_Classification_ML/data/clean/ad7ec8cb.wav b/Audi_Classification_ML/data/clean/ad7ec8cb.wav new file mode 100644 index 0000000..3a95a79 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ad7ec8cb.wav differ diff --git a/Audi_Classification_ML/data/clean/ae7d1c37.wav b/Audi_Classification_ML/data/clean/ae7d1c37.wav new file mode 100644 index 0000000..ef4cac2 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ae7d1c37.wav differ diff --git a/Audi_Classification_ML/data/clean/aed9d22f.wav b/Audi_Classification_ML/data/clean/aed9d22f.wav new file mode 100644 index 0000000..dd72af4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/aed9d22f.wav differ diff --git a/Audi_Classification_ML/data/clean/af227d6f.wav b/Audi_Classification_ML/data/clean/af227d6f.wav new file mode 100644 index 0000000..2dbf7ae Binary files /dev/null and b/Audi_Classification_ML/data/clean/af227d6f.wav differ diff --git a/Audi_Classification_ML/data/clean/b0c06255.wav b/Audi_Classification_ML/data/clean/b0c06255.wav new file mode 100644 index 0000000..78ec543 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b0c06255.wav differ diff --git a/Audi_Classification_ML/data/clean/b0d9849d.wav b/Audi_Classification_ML/data/clean/b0d9849d.wav new file mode 100644 index 0000000..4e0774d Binary files /dev/null and b/Audi_Classification_ML/data/clean/b0d9849d.wav differ diff --git a/Audi_Classification_ML/data/clean/b120dc90.wav b/Audi_Classification_ML/data/clean/b120dc90.wav new file mode 100644 index 0000000..22189c1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b120dc90.wav differ diff --git a/Audi_Classification_ML/data/clean/b218444c.wav b/Audi_Classification_ML/data/clean/b218444c.wav new file mode 100644 index 0000000..9ad74d6 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b218444c.wav differ diff --git a/Audi_Classification_ML/data/clean/b2261238.wav b/Audi_Classification_ML/data/clean/b2261238.wav new file mode 100644 index 0000000..b7ad29c Binary files /dev/null and b/Audi_Classification_ML/data/clean/b2261238.wav differ diff --git a/Audi_Classification_ML/data/clean/b31ed1fb.wav b/Audi_Classification_ML/data/clean/b31ed1fb.wav new file mode 100644 index 0000000..34a8360 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b31ed1fb.wav differ diff --git a/Audi_Classification_ML/data/clean/b38409bb.wav b/Audi_Classification_ML/data/clean/b38409bb.wav new file mode 100644 index 0000000..97f7a73 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b38409bb.wav differ diff --git a/Audi_Classification_ML/data/clean/b428466c.wav b/Audi_Classification_ML/data/clean/b428466c.wav new file mode 100644 index 0000000..d38f1cf Binary files /dev/null and b/Audi_Classification_ML/data/clean/b428466c.wav differ diff --git a/Audi_Classification_ML/data/clean/b4b2b68d.wav b/Audi_Classification_ML/data/clean/b4b2b68d.wav new file mode 100644 index 0000000..3f69c1b Binary files /dev/null and b/Audi_Classification_ML/data/clean/b4b2b68d.wav differ diff --git a/Audi_Classification_ML/data/clean/b68f10af.wav b/Audi_Classification_ML/data/clean/b68f10af.wav new file mode 100644 index 0000000..3bb2a6a Binary files /dev/null and b/Audi_Classification_ML/data/clean/b68f10af.wav differ diff --git a/Audi_Classification_ML/data/clean/b6cbc6a9.wav b/Audi_Classification_ML/data/clean/b6cbc6a9.wav new file mode 100644 index 0000000..bed1da6 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b6cbc6a9.wav differ diff --git a/Audi_Classification_ML/data/clean/b73c3595.wav b/Audi_Classification_ML/data/clean/b73c3595.wav new file mode 100644 index 0000000..12e1e4a Binary files /dev/null and b/Audi_Classification_ML/data/clean/b73c3595.wav differ diff --git a/Audi_Classification_ML/data/clean/b83049f4.wav b/Audi_Classification_ML/data/clean/b83049f4.wav new file mode 100644 index 0000000..22f94e7 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b83049f4.wav differ diff --git a/Audi_Classification_ML/data/clean/b86b5a96.wav b/Audi_Classification_ML/data/clean/b86b5a96.wav new file mode 100644 index 0000000..d49c531 Binary files /dev/null and b/Audi_Classification_ML/data/clean/b86b5a96.wav differ diff --git a/Audi_Classification_ML/data/clean/b88322f6.wav b/Audi_Classification_ML/data/clean/b88322f6.wav new file mode 100644 index 0000000..6a9871b Binary files /dev/null and b/Audi_Classification_ML/data/clean/b88322f6.wav differ diff --git a/Audi_Classification_ML/data/clean/b8c0a88a.wav b/Audi_Classification_ML/data/clean/b8c0a88a.wav new file mode 100644 index 0000000..0d0a46f Binary files /dev/null and b/Audi_Classification_ML/data/clean/b8c0a88a.wav differ diff --git a/Audi_Classification_ML/data/clean/ba648ac1.wav b/Audi_Classification_ML/data/clean/ba648ac1.wav new file mode 100644 index 0000000..1c6dee4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ba648ac1.wav differ diff --git a/Audi_Classification_ML/data/clean/bab98261.wav b/Audi_Classification_ML/data/clean/bab98261.wav new file mode 100644 index 0000000..1917e84 Binary files /dev/null and b/Audi_Classification_ML/data/clean/bab98261.wav differ diff --git a/Audi_Classification_ML/data/clean/bb1f5874.wav b/Audi_Classification_ML/data/clean/bb1f5874.wav new file mode 100644 index 0000000..1dd7dfe Binary files /dev/null and b/Audi_Classification_ML/data/clean/bb1f5874.wav differ diff --git a/Audi_Classification_ML/data/clean/bea51ca5.wav b/Audi_Classification_ML/data/clean/bea51ca5.wav new file mode 100644 index 0000000..01d9b79 Binary files /dev/null and b/Audi_Classification_ML/data/clean/bea51ca5.wav differ diff --git a/Audi_Classification_ML/data/clean/c0ddf010.wav b/Audi_Classification_ML/data/clean/c0ddf010.wav new file mode 100644 index 0000000..b8769cb Binary files /dev/null and b/Audi_Classification_ML/data/clean/c0ddf010.wav differ diff --git a/Audi_Classification_ML/data/clean/c11bacda.wav b/Audi_Classification_ML/data/clean/c11bacda.wav new file mode 100644 index 0000000..d029f1e Binary files /dev/null and b/Audi_Classification_ML/data/clean/c11bacda.wav differ diff --git a/Audi_Classification_ML/data/clean/c153f347.wav b/Audi_Classification_ML/data/clean/c153f347.wav new file mode 100644 index 0000000..a053645 Binary files /dev/null and b/Audi_Classification_ML/data/clean/c153f347.wav differ diff --git a/Audi_Classification_ML/data/clean/c1948f24.wav b/Audi_Classification_ML/data/clean/c1948f24.wav new file mode 100644 index 0000000..d75654a Binary files /dev/null and b/Audi_Classification_ML/data/clean/c1948f24.wav differ diff --git a/Audi_Classification_ML/data/clean/c1c3c8b9.wav b/Audi_Classification_ML/data/clean/c1c3c8b9.wav new file mode 100644 index 0000000..71588ac Binary files /dev/null and b/Audi_Classification_ML/data/clean/c1c3c8b9.wav differ diff --git a/Audi_Classification_ML/data/clean/c40632d7.wav b/Audi_Classification_ML/data/clean/c40632d7.wav new file mode 100644 index 0000000..115a43b Binary files /dev/null and b/Audi_Classification_ML/data/clean/c40632d7.wav differ diff --git a/Audi_Classification_ML/data/clean/c53a217e.wav b/Audi_Classification_ML/data/clean/c53a217e.wav new file mode 100644 index 0000000..00d9d1b Binary files /dev/null and b/Audi_Classification_ML/data/clean/c53a217e.wav differ diff --git a/Audi_Classification_ML/data/clean/c683f28f.wav b/Audi_Classification_ML/data/clean/c683f28f.wav new file mode 100644 index 0000000..9b96930 Binary files /dev/null and b/Audi_Classification_ML/data/clean/c683f28f.wav differ diff --git a/Audi_Classification_ML/data/clean/c685f05f.wav b/Audi_Classification_ML/data/clean/c685f05f.wav new file mode 100644 index 0000000..3f25143 Binary files /dev/null and b/Audi_Classification_ML/data/clean/c685f05f.wav differ diff --git a/Audi_Classification_ML/data/clean/c6865306.wav b/Audi_Classification_ML/data/clean/c6865306.wav new file mode 100644 index 0000000..ed0c6fe Binary files /dev/null and b/Audi_Classification_ML/data/clean/c6865306.wav differ diff --git a/Audi_Classification_ML/data/clean/c7846d27.wav b/Audi_Classification_ML/data/clean/c7846d27.wav new file mode 100644 index 0000000..2c56db5 Binary files /dev/null and b/Audi_Classification_ML/data/clean/c7846d27.wav differ diff --git a/Audi_Classification_ML/data/clean/c840804f.wav b/Audi_Classification_ML/data/clean/c840804f.wav new file mode 100644 index 0000000..dc3afbf Binary files /dev/null and b/Audi_Classification_ML/data/clean/c840804f.wav differ diff --git a/Audi_Classification_ML/data/clean/c8c117dc.wav b/Audi_Classification_ML/data/clean/c8c117dc.wav new file mode 100644 index 0000000..6cb83b1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/c8c117dc.wav differ diff --git a/Audi_Classification_ML/data/clean/c8ecbbfd.wav b/Audi_Classification_ML/data/clean/c8ecbbfd.wav new file mode 100644 index 0000000..85b273d Binary files /dev/null and b/Audi_Classification_ML/data/clean/c8ecbbfd.wav differ diff --git a/Audi_Classification_ML/data/clean/c9fb642d.wav b/Audi_Classification_ML/data/clean/c9fb642d.wav new file mode 100644 index 0000000..7e36c4f Binary files /dev/null and b/Audi_Classification_ML/data/clean/c9fb642d.wav differ diff --git a/Audi_Classification_ML/data/clean/ca348cbb.wav b/Audi_Classification_ML/data/clean/ca348cbb.wav new file mode 100644 index 0000000..283d1ec Binary files /dev/null and b/Audi_Classification_ML/data/clean/ca348cbb.wav differ diff --git a/Audi_Classification_ML/data/clean/ca3f3698.wav b/Audi_Classification_ML/data/clean/ca3f3698.wav new file mode 100644 index 0000000..810824c Binary files /dev/null and b/Audi_Classification_ML/data/clean/ca3f3698.wav differ diff --git a/Audi_Classification_ML/data/clean/ca8653d2.wav b/Audi_Classification_ML/data/clean/ca8653d2.wav new file mode 100644 index 0000000..14587d0 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ca8653d2.wav differ diff --git a/Audi_Classification_ML/data/clean/cae0d841.wav b/Audi_Classification_ML/data/clean/cae0d841.wav new file mode 100644 index 0000000..d78a0f9 Binary files /dev/null and b/Audi_Classification_ML/data/clean/cae0d841.wav differ diff --git a/Audi_Classification_ML/data/clean/cbc8d551.wav b/Audi_Classification_ML/data/clean/cbc8d551.wav new file mode 100644 index 0000000..f33537c Binary files /dev/null and b/Audi_Classification_ML/data/clean/cbc8d551.wav differ diff --git a/Audi_Classification_ML/data/clean/cdc5fe8e.wav b/Audi_Classification_ML/data/clean/cdc5fe8e.wav new file mode 100644 index 0000000..3eb0f7a Binary files /dev/null and b/Audi_Classification_ML/data/clean/cdc5fe8e.wav differ diff --git a/Audi_Classification_ML/data/clean/cdeece57.wav b/Audi_Classification_ML/data/clean/cdeece57.wav new file mode 100644 index 0000000..6d8e548 Binary files /dev/null and b/Audi_Classification_ML/data/clean/cdeece57.wav differ diff --git a/Audi_Classification_ML/data/clean/cdfc8967.wav b/Audi_Classification_ML/data/clean/cdfc8967.wav new file mode 100644 index 0000000..3be4579 Binary files /dev/null and b/Audi_Classification_ML/data/clean/cdfc8967.wav differ diff --git a/Audi_Classification_ML/data/clean/ce3f3400.wav b/Audi_Classification_ML/data/clean/ce3f3400.wav new file mode 100644 index 0000000..e30e032 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ce3f3400.wav differ diff --git a/Audi_Classification_ML/data/clean/ce65d6b5.wav b/Audi_Classification_ML/data/clean/ce65d6b5.wav new file mode 100644 index 0000000..103d475 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ce65d6b5.wav differ diff --git a/Audi_Classification_ML/data/clean/ce75b5ce.wav b/Audi_Classification_ML/data/clean/ce75b5ce.wav new file mode 100644 index 0000000..cbab546 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ce75b5ce.wav differ diff --git a/Audi_Classification_ML/data/clean/cfb9c5fd.wav b/Audi_Classification_ML/data/clean/cfb9c5fd.wav new file mode 100644 index 0000000..3ba12df Binary files /dev/null and b/Audi_Classification_ML/data/clean/cfb9c5fd.wav differ diff --git a/Audi_Classification_ML/data/clean/d14f5df1.wav b/Audi_Classification_ML/data/clean/d14f5df1.wav new file mode 100644 index 0000000..2b21fe2 Binary files /dev/null and b/Audi_Classification_ML/data/clean/d14f5df1.wav differ diff --git a/Audi_Classification_ML/data/clean/d328db67.wav b/Audi_Classification_ML/data/clean/d328db67.wav new file mode 100644 index 0000000..c158a28 Binary files /dev/null and b/Audi_Classification_ML/data/clean/d328db67.wav differ diff --git a/Audi_Classification_ML/data/clean/d6144e01.wav b/Audi_Classification_ML/data/clean/d6144e01.wav new file mode 100644 index 0000000..6045778 Binary files /dev/null and b/Audi_Classification_ML/data/clean/d6144e01.wav differ diff --git a/Audi_Classification_ML/data/clean/d6665734.wav b/Audi_Classification_ML/data/clean/d6665734.wav new file mode 100644 index 0000000..ea76c70 Binary files /dev/null and b/Audi_Classification_ML/data/clean/d6665734.wav differ diff --git a/Audi_Classification_ML/data/clean/d6854eb4.wav b/Audi_Classification_ML/data/clean/d6854eb4.wav new file mode 100644 index 0000000..67ba6e0 Binary files /dev/null and b/Audi_Classification_ML/data/clean/d6854eb4.wav differ diff --git a/Audi_Classification_ML/data/clean/d84c8c43.wav b/Audi_Classification_ML/data/clean/d84c8c43.wav new file mode 100644 index 0000000..553426b Binary files /dev/null and b/Audi_Classification_ML/data/clean/d84c8c43.wav differ diff --git a/Audi_Classification_ML/data/clean/d8a257e5.wav b/Audi_Classification_ML/data/clean/d8a257e5.wav new file mode 100644 index 0000000..66dd3ec Binary files /dev/null and b/Audi_Classification_ML/data/clean/d8a257e5.wav differ diff --git a/Audi_Classification_ML/data/clean/d914225a.wav b/Audi_Classification_ML/data/clean/d914225a.wav new file mode 100644 index 0000000..e91d68c Binary files /dev/null and b/Audi_Classification_ML/data/clean/d914225a.wav differ diff --git a/Audi_Classification_ML/data/clean/d94c94f0.wav b/Audi_Classification_ML/data/clean/d94c94f0.wav new file mode 100644 index 0000000..c1744b3 Binary files /dev/null and b/Audi_Classification_ML/data/clean/d94c94f0.wav differ diff --git a/Audi_Classification_ML/data/clean/da3f8050.wav b/Audi_Classification_ML/data/clean/da3f8050.wav new file mode 100644 index 0000000..a405f1c Binary files /dev/null and b/Audi_Classification_ML/data/clean/da3f8050.wav differ diff --git a/Audi_Classification_ML/data/clean/da4b0379.wav b/Audi_Classification_ML/data/clean/da4b0379.wav new file mode 100644 index 0000000..675bfd1 Binary files /dev/null and b/Audi_Classification_ML/data/clean/da4b0379.wav differ diff --git a/Audi_Classification_ML/data/clean/da8ea649.wav b/Audi_Classification_ML/data/clean/da8ea649.wav new file mode 100644 index 0000000..9cec356 Binary files /dev/null and b/Audi_Classification_ML/data/clean/da8ea649.wav differ diff --git a/Audi_Classification_ML/data/clean/dba6817d.wav b/Audi_Classification_ML/data/clean/dba6817d.wav new file mode 100644 index 0000000..ad37b7e Binary files /dev/null and b/Audi_Classification_ML/data/clean/dba6817d.wav differ diff --git a/Audi_Classification_ML/data/clean/dc5be9d7.wav b/Audi_Classification_ML/data/clean/dc5be9d7.wav new file mode 100644 index 0000000..763c1eb Binary files /dev/null and b/Audi_Classification_ML/data/clean/dc5be9d7.wav differ diff --git a/Audi_Classification_ML/data/clean/dc6676ff.wav b/Audi_Classification_ML/data/clean/dc6676ff.wav new file mode 100644 index 0000000..c6441ab Binary files /dev/null and b/Audi_Classification_ML/data/clean/dc6676ff.wav differ diff --git a/Audi_Classification_ML/data/clean/dc981a38.wav b/Audi_Classification_ML/data/clean/dc981a38.wav new file mode 100644 index 0000000..b76fe68 Binary files /dev/null and b/Audi_Classification_ML/data/clean/dc981a38.wav differ diff --git a/Audi_Classification_ML/data/clean/ddf23920.wav b/Audi_Classification_ML/data/clean/ddf23920.wav new file mode 100644 index 0000000..0861953 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ddf23920.wav differ diff --git a/Audi_Classification_ML/data/clean/deb87700.wav b/Audi_Classification_ML/data/clean/deb87700.wav new file mode 100644 index 0000000..8761ce4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/deb87700.wav differ diff --git a/Audi_Classification_ML/data/clean/e0ecd1a6.wav b/Audi_Classification_ML/data/clean/e0ecd1a6.wav new file mode 100644 index 0000000..1ea6462 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e0ecd1a6.wav differ diff --git a/Audi_Classification_ML/data/clean/e2d993ec.wav b/Audi_Classification_ML/data/clean/e2d993ec.wav new file mode 100644 index 0000000..8a982ec Binary files /dev/null and b/Audi_Classification_ML/data/clean/e2d993ec.wav differ diff --git a/Audi_Classification_ML/data/clean/e3f479f3.wav b/Audi_Classification_ML/data/clean/e3f479f3.wav new file mode 100644 index 0000000..f863370 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e3f479f3.wav differ diff --git a/Audi_Classification_ML/data/clean/e43f7db2.wav b/Audi_Classification_ML/data/clean/e43f7db2.wav new file mode 100644 index 0000000..2fc598a Binary files /dev/null and b/Audi_Classification_ML/data/clean/e43f7db2.wav differ diff --git a/Audi_Classification_ML/data/clean/e4958adc.wav b/Audi_Classification_ML/data/clean/e4958adc.wav new file mode 100644 index 0000000..2b68589 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e4958adc.wav differ diff --git a/Audi_Classification_ML/data/clean/e51e1770.wav b/Audi_Classification_ML/data/clean/e51e1770.wav new file mode 100644 index 0000000..ca32f6b Binary files /dev/null and b/Audi_Classification_ML/data/clean/e51e1770.wav differ diff --git a/Audi_Classification_ML/data/clean/e55c5160.wav b/Audi_Classification_ML/data/clean/e55c5160.wav new file mode 100644 index 0000000..7a72c1b Binary files /dev/null and b/Audi_Classification_ML/data/clean/e55c5160.wav differ diff --git a/Audi_Classification_ML/data/clean/e6597186.wav b/Audi_Classification_ML/data/clean/e6597186.wav new file mode 100644 index 0000000..ec8b577 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e6597186.wav differ diff --git a/Audi_Classification_ML/data/clean/e70c41d4.wav b/Audi_Classification_ML/data/clean/e70c41d4.wav new file mode 100644 index 0000000..d960c56 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e70c41d4.wav differ diff --git a/Audi_Classification_ML/data/clean/e897db78.wav b/Audi_Classification_ML/data/clean/e897db78.wav new file mode 100644 index 0000000..e2923ef Binary files /dev/null and b/Audi_Classification_ML/data/clean/e897db78.wav differ diff --git a/Audi_Classification_ML/data/clean/e8e00924.wav b/Audi_Classification_ML/data/clean/e8e00924.wav new file mode 100644 index 0000000..c362327 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e8e00924.wav differ diff --git a/Audi_Classification_ML/data/clean/e92bf0fa.wav b/Audi_Classification_ML/data/clean/e92bf0fa.wav new file mode 100644 index 0000000..16f7b65 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e92bf0fa.wav differ diff --git a/Audi_Classification_ML/data/clean/e97d9707.wav b/Audi_Classification_ML/data/clean/e97d9707.wav new file mode 100644 index 0000000..bb25e15 Binary files /dev/null and b/Audi_Classification_ML/data/clean/e97d9707.wav differ diff --git a/Audi_Classification_ML/data/clean/ec6afeb6.wav b/Audi_Classification_ML/data/clean/ec6afeb6.wav new file mode 100644 index 0000000..57f5f85 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ec6afeb6.wav differ diff --git a/Audi_Classification_ML/data/clean/f042282c.wav b/Audi_Classification_ML/data/clean/f042282c.wav new file mode 100644 index 0000000..66f75b9 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f042282c.wav differ diff --git a/Audi_Classification_ML/data/clean/f0727eac.wav b/Audi_Classification_ML/data/clean/f0727eac.wav new file mode 100644 index 0000000..2d96d3f Binary files /dev/null and b/Audi_Classification_ML/data/clean/f0727eac.wav differ diff --git a/Audi_Classification_ML/data/clean/f0d315bc.wav b/Audi_Classification_ML/data/clean/f0d315bc.wav new file mode 100644 index 0000000..6471b93 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f0d315bc.wav differ diff --git a/Audi_Classification_ML/data/clean/f0dfe343.wav b/Audi_Classification_ML/data/clean/f0dfe343.wav new file mode 100644 index 0000000..15d2231 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f0dfe343.wav differ diff --git a/Audi_Classification_ML/data/clean/f1754aea.wav b/Audi_Classification_ML/data/clean/f1754aea.wav new file mode 100644 index 0000000..753119a Binary files /dev/null and b/Audi_Classification_ML/data/clean/f1754aea.wav differ diff --git a/Audi_Classification_ML/data/clean/f2310f0d.wav b/Audi_Classification_ML/data/clean/f2310f0d.wav new file mode 100644 index 0000000..086394f Binary files /dev/null and b/Audi_Classification_ML/data/clean/f2310f0d.wav differ diff --git a/Audi_Classification_ML/data/clean/f26131d8.wav b/Audi_Classification_ML/data/clean/f26131d8.wav new file mode 100644 index 0000000..6421cfe Binary files /dev/null and b/Audi_Classification_ML/data/clean/f26131d8.wav differ diff --git a/Audi_Classification_ML/data/clean/f5e20dce.wav b/Audi_Classification_ML/data/clean/f5e20dce.wav new file mode 100644 index 0000000..a0776f2 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f5e20dce.wav differ diff --git a/Audi_Classification_ML/data/clean/f63f3703.wav b/Audi_Classification_ML/data/clean/f63f3703.wav new file mode 100644 index 0000000..f2e276e Binary files /dev/null and b/Audi_Classification_ML/data/clean/f63f3703.wav differ diff --git a/Audi_Classification_ML/data/clean/f8a99b37.wav b/Audi_Classification_ML/data/clean/f8a99b37.wav new file mode 100644 index 0000000..2e93934 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f8a99b37.wav differ diff --git a/Audi_Classification_ML/data/clean/f8d96888.wav b/Audi_Classification_ML/data/clean/f8d96888.wav new file mode 100644 index 0000000..f763a44 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f8d96888.wav differ diff --git a/Audi_Classification_ML/data/clean/f9653de8.wav b/Audi_Classification_ML/data/clean/f9653de8.wav new file mode 100644 index 0000000..dcefc12 Binary files /dev/null and b/Audi_Classification_ML/data/clean/f9653de8.wav differ diff --git a/Audi_Classification_ML/data/clean/fa32109e.wav b/Audi_Classification_ML/data/clean/fa32109e.wav new file mode 100644 index 0000000..e5aa96b Binary files /dev/null and b/Audi_Classification_ML/data/clean/fa32109e.wav differ diff --git a/Audi_Classification_ML/data/clean/fa4d4a92.wav b/Audi_Classification_ML/data/clean/fa4d4a92.wav new file mode 100644 index 0000000..bf54acb Binary files /dev/null and b/Audi_Classification_ML/data/clean/fa4d4a92.wav differ diff --git a/Audi_Classification_ML/data/clean/fc55d588.wav b/Audi_Classification_ML/data/clean/fc55d588.wav new file mode 100644 index 0000000..82b7e9a Binary files /dev/null and b/Audi_Classification_ML/data/clean/fc55d588.wav differ diff --git a/Audi_Classification_ML/data/clean/fcfafbc8.wav b/Audi_Classification_ML/data/clean/fcfafbc8.wav new file mode 100644 index 0000000..6b3962a Binary files /dev/null and b/Audi_Classification_ML/data/clean/fcfafbc8.wav differ diff --git a/Audi_Classification_ML/data/clean/fe76c972.wav b/Audi_Classification_ML/data/clean/fe76c972.wav new file mode 100644 index 0000000..a2e4ff6 Binary files /dev/null and b/Audi_Classification_ML/data/clean/fe76c972.wav differ diff --git a/Audi_Classification_ML/data/clean/fec00143.wav b/Audi_Classification_ML/data/clean/fec00143.wav new file mode 100644 index 0000000..3dac115 Binary files /dev/null and b/Audi_Classification_ML/data/clean/fec00143.wav differ diff --git a/Audi_Classification_ML/data/clean/ff11628d.wav b/Audi_Classification_ML/data/clean/ff11628d.wav new file mode 100644 index 0000000..a628a0b Binary files /dev/null and b/Audi_Classification_ML/data/clean/ff11628d.wav differ diff --git a/Audi_Classification_ML/data/clean/ff3f21e7.wav b/Audi_Classification_ML/data/clean/ff3f21e7.wav new file mode 100644 index 0000000..180afd4 Binary files /dev/null and b/Audi_Classification_ML/data/clean/ff3f21e7.wav differ diff --git a/Audi_Classification_ML/data/instruments.csv b/Audi_Classification_ML/data/instruments.csv new file mode 100644 index 0000000..d01bffb --- /dev/null +++ b/Audi_Classification_ML/data/instruments.csv @@ -0,0 +1,301 @@ +fname,label +5388d14d.wav,Saxophone +c685f05f.wav,Saxophone +36d20ab5.wav,Saxophone +d6665734.wav,Saxophone +7352e28f.wav,Saxophone +8fa096bf.wav,Saxophone +2f9c5f62.wav,Saxophone +9cd05a2b.wav,Saxophone +ab465bf9.wav,Saxophone +c40632d7.wav,Saxophone +3a80061f.wav,Saxophone +dba6817d.wav,Saxophone +25f26095.wav,Saxophone +37cebbd4.wav,Saxophone +f8d96888.wav,Saxophone +d94c94f0.wav,Saxophone +ec6afeb6.wav,Saxophone +5f0dc8e4.wav,Saxophone +b8c0a88a.wav,Saxophone +96dad435.wav,Saxophone +b120dc90.wav,Saxophone +c1948f24.wav,Saxophone +ac097834.wav,Saxophone +4345851e.wav,Saxophone +5d4f8187.wav,Saxophone +b83049f4.wav,Saxophone +c1c3c8b9.wav,Saxophone +78a86075.wav,Saxophone +f0d315bc.wav,Saxophone +9c0838c1.wav,Saxophone +d6144e01.wav,Violin_or_fiddle +cfb9c5fd.wav,Violin_or_fiddle +c6865306.wav,Violin_or_fiddle +642aba58.wav,Violin_or_fiddle +848faca3.wav,Violin_or_fiddle +7eb9dac0.wav,Violin_or_fiddle +8d7d7dba.wav,Violin_or_fiddle +2424ad60.wav,Violin_or_fiddle +ba648ac1.wav,Violin_or_fiddle +2e4a9850.wav,Violin_or_fiddle +2cc8683d.wav,Violin_or_fiddle +7b6a119e.wav,Violin_or_fiddle +68589f79.wav,Violin_or_fiddle +fec00143.wav,Violin_or_fiddle +1b24c166.wav,Violin_or_fiddle +6eb59008.wav,Violin_or_fiddle +0e7cd4eb.wav,Violin_or_fiddle +56e79c6f.wav,Violin_or_fiddle +cdc5fe8e.wav,Violin_or_fiddle +b38409bb.wav,Violin_or_fiddle +c8c117dc.wav,Violin_or_fiddle +b73c3595.wav,Violin_or_fiddle +d84c8c43.wav,Violin_or_fiddle +d914225a.wav,Violin_or_fiddle +1148986e.wav,Violin_or_fiddle +e3f479f3.wav,Violin_or_fiddle +aab28420.wav,Violin_or_fiddle +21346775.wav,Violin_or_fiddle +cdeece57.wav,Violin_or_fiddle +c9fb642d.wav,Violin_or_fiddle +078f7ac0.wav,Hi-hat +e897db78.wav,Hi-hat +b31ed1fb.wav,Hi-hat +06c48eab.wav,Hi-hat +2503aaa1.wav,Hi-hat +3d3439f1.wav,Hi-hat +34a90030.wav,Hi-hat +da4b0379.wav,Hi-hat +a090c45a.wav,Hi-hat +41897c32.wav,Hi-hat +2032be87.wav,Hi-hat +73677128.wav,Hi-hat +c53a217e.wav,Hi-hat +f0dfe343.wav,Hi-hat +0ed06544.wav,Hi-hat +99c96a07.wav,Hi-hat +3a3d0279.wav,Hi-hat +612702c3.wav,Hi-hat +d6854eb4.wav,Hi-hat +52300f9b.wav,Hi-hat +09a1cfd7.wav,Hi-hat +3aafb6ad.wav,Hi-hat +493c247b.wav,Hi-hat +5ec7ad26.wav,Hi-hat +a1b369d7.wav,Hi-hat +8cd809d3.wav,Hi-hat +aed9d22f.wav,Hi-hat +a7964699.wav,Hi-hat +da3f8050.wav,Hi-hat +468f9c4c.wav,Hi-hat +229be2be.wav,Snare_drum +b6cbc6a9.wav,Snare_drum +ae7d1c37.wav,Snare_drum +82d4fb44.wav,Snare_drum +4c590f69.wav,Snare_drum +1c9a423f.wav,Snare_drum +f0727eac.wav,Snare_drum +31db8c5e.wav,Snare_drum +b86b5a96.wav,Snare_drum +6fca680b.wav,Snare_drum +1bc8eae1.wav,Snare_drum +46b52f97.wav,Snare_drum +0c67f402.wav,Snare_drum +c8ecbbfd.wav,Snare_drum +9f84ea5a.wav,Snare_drum +e4958adc.wav,Snare_drum +5ce40b1b.wav,Snare_drum +9d308738.wav,Snare_drum +1e3391d5.wav,Snare_drum +ff3f21e7.wav,Snare_drum +b68f10af.wav,Snare_drum +e8e00924.wav,Snare_drum +22e1c02c.wav,Snare_drum +5c33d972.wav,Snare_drum +9320c55f.wav,Snare_drum +f1754aea.wav,Snare_drum +b218444c.wav,Snare_drum +36d06cc0.wav,Snare_drum +4c4d4797.wav,Snare_drum +cae0d841.wav,Snare_drum +17f82c05.wav,Acoustic_guitar +0eeaebcb.wav,Acoustic_guitar +e92bf0fa.wav,Acoustic_guitar +10da16fb.wav,Acoustic_guitar +a25423a8.wav,Acoustic_guitar +16c9a838.wav,Acoustic_guitar +70ca9c77.wav,Acoustic_guitar +38216fad.wav,Acoustic_guitar +d8a257e5.wav,Acoustic_guitar +7506dcc4.wav,Acoustic_guitar +a6728901.wav,Acoustic_guitar +b88322f6.wav,Acoustic_guitar +35039ae1.wav,Acoustic_guitar +236cbab1.wav,Acoustic_guitar +0356dec7.wav,Acoustic_guitar +bb1f5874.wav,Acoustic_guitar +34747922.wav,Acoustic_guitar +44fb3eeb.wav,Acoustic_guitar +367ad7b1.wav,Acoustic_guitar +160c92d7.wav,Acoustic_guitar +2016d256.wav,Acoustic_guitar +fc55d588.wav,Acoustic_guitar +c7846d27.wav,Acoustic_guitar +55822aae.wav,Acoustic_guitar +9923ddf8.wav,Acoustic_guitar +32dee61b.wav,Acoustic_guitar +fa4d4a92.wav,Acoustic_guitar +8da75280.wav,Acoustic_guitar +b2261238.wav,Acoustic_guitar +673defaf.wav,Acoustic_guitar +e6597186.wav,Double_bass +fcfafbc8.wav,Double_bass +444f9db5.wav,Double_bass +19893aa8.wav,Double_bass +f042282c.wav,Double_bass +95e1d0ae.wav,Double_bass +595c191d.wav,Double_bass +8073923c.wav,Double_bass +6efbaf90.wav,Double_bass +642ad7e4.wav,Double_bass +5eadbc6d.wav,Double_bass +1a7d3f2d.wav,Double_bass +13da16ae.wav,Double_bass +103f29e5.wav,Double_bass +da8ea649.wav,Double_bass +ca348cbb.wav,Double_bass +8ce2e863.wav,Double_bass +462b676f.wav,Double_bass +b428466c.wav,Double_bass +4fd883bb.wav,Double_bass +2ac8b94f.wav,Double_bass +c840804f.wav,Double_bass +f63f3703.wav,Double_bass +c0ddf010.wav,Double_bass +a0cbe92e.wav,Double_bass +4fb480bf.wav,Double_bass +9dd0141c.wav,Double_bass +deb87700.wav,Double_bass +e0ecd1a6.wav,Double_bass +0286fc27.wav,Double_bass +e2d993ec.wav,Cello +0091fc7f.wav,Cello +e55c5160.wav,Cello +a59b5a08.wav,Cello +88500b88.wav,Cello +743ae0f9.wav,Cello +9e3bc1b6.wav,Cello +3e2bddda.wav,Cello +d328db67.wav,Cello +7d896090.wav,Cello +4bff8f32.wav,Cello +5e5bca7a.wav,Cello +811bf309.wav,Cello +5689818f.wav,Cello +81d9f077.wav,Cello +00353774.wav,Cello +6a210ffa.wav,Cello +e97d9707.wav,Cello +238b16a5.wav,Cello +dc5be9d7.wav,Cello +f9653de8.wav,Cello +31dbc5c0.wav,Cello +cbc8d551.wav,Cello +195f544d.wav,Cello +22bea889.wav,Cello +ab8e8ae3.wav,Cello +e70c41d4.wav,Cello +125e6ccf.wav,Cello +2da9e12a.wav,Cello +34e4d187.wav,Cello +52e54bdd.wav,Bass_drum +6d21ad67.wav,Bass_drum +ca3f3698.wav,Bass_drum +aa9ae956.wav,Bass_drum +0ddb4bdf.wav,Bass_drum +921eee9d.wav,Bass_drum +c153f347.wav,Bass_drum +63e0ab2c.wav,Bass_drum +88780eac.wav,Bass_drum +bea51ca5.wav,Bass_drum +f26131d8.wav,Bass_drum +ce75b5ce.wav,Bass_drum +565f3ee2.wav,Bass_drum +ff11628d.wav,Bass_drum +cdfc8967.wav,Bass_drum +f8a99b37.wav,Bass_drum +809ea09e.wav,Bass_drum +03fc1f96.wav,Bass_drum +8b6a16de.wav,Bass_drum +7dda9dc2.wav,Bass_drum +3a9085ca.wav,Bass_drum +4ba2b70e.wav,Bass_drum +01c2f88b.wav,Bass_drum +ce3f3400.wav,Bass_drum +6a96272b.wav,Bass_drum +9adffd44.wav,Bass_drum +7d11b3b4.wav,Bass_drum +bab98261.wav,Bass_drum +c11bacda.wav,Bass_drum +9a4bfb69.wav,Bass_drum +18865530.wav,Flute +9f6eac9c.wav,Flute +07db7f16.wav,Flute +dc6676ff.wav,Flute +3eaddda8.wav,Flute +1b93aeba.wav,Flute +c683f28f.wav,Flute +55d52a69.wav,Flute +ca8653d2.wav,Flute +6b27a847.wav,Flute +4bcc8a77.wav,Flute +84f5b84b.wav,Flute +5d73ee6f.wav,Flute +5d040c3b.wav,Flute +6a037ddf.wav,Flute +35e97db3.wav,Flute +d14f5df1.wav,Flute +9f522cda.wav,Flute +fe76c972.wav,Flute +562d93f5.wav,Flute +fa32109e.wav,Flute +b4b2b68d.wav,Flute +af227d6f.wav,Flute +85d6a7d2.wav,Flute +3707da71.wav,Flute +61c914b1.wav,Flute +f5e20dce.wav,Flute +b0d9849d.wav,Flute +6ef82473.wav,Flute +8986cced.wav,Flute +a64a3740.wav,Clarinet +ad7ec8cb.wav,Clarinet +8ee44fb5.wav,Clarinet +7eb959ec.wav,Clarinet +e51e1770.wav,Clarinet +3f7e6da8.wav,Clarinet +3cbe9902.wav,Clarinet +9a722e53.wav,Clarinet +19105b8a.wav,Clarinet +1f81cc2b.wav,Clarinet +44c5094c.wav,Clarinet +5506629f.wav,Clarinet +ddf23920.wav,Clarinet +2e1cd085.wav,Clarinet +dc981a38.wav,Clarinet +a053797b.wav,Clarinet +f2310f0d.wav,Clarinet +ce65d6b5.wav,Clarinet +45de3233.wav,Clarinet +8916ffcd.wav,Clarinet +e43f7db2.wav,Clarinet +3c66098d.wav,Clarinet +ad42e493.wav,Clarinet +740e5bb7.wav,Clarinet +800b401e.wav,Clarinet +3c713bcf.wav,Clarinet +2fc00271.wav,Clarinet +b0c06255.wav,Clarinet +71c6451f.wav,Clarinet +5de123c3.wav,Clarinet diff --git a/Audi_Classification_ML/data/wavfiles/00353774.wav b/Audi_Classification_ML/data/wavfiles/00353774.wav new file mode 100644 index 0000000..18e5d10 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/00353774.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0091fc7f.wav b/Audi_Classification_ML/data/wavfiles/0091fc7f.wav new file mode 100644 index 0000000..7a7d714 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0091fc7f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/01c2f88b.wav b/Audi_Classification_ML/data/wavfiles/01c2f88b.wav new file mode 100644 index 0000000..358b412 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/01c2f88b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0286fc27.wav b/Audi_Classification_ML/data/wavfiles/0286fc27.wav new file mode 100644 index 0000000..6842776 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0286fc27.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0356dec7.wav b/Audi_Classification_ML/data/wavfiles/0356dec7.wav new file mode 100644 index 0000000..24f2937 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0356dec7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/03fc1f96.wav b/Audi_Classification_ML/data/wavfiles/03fc1f96.wav new file mode 100644 index 0000000..6edd517 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/03fc1f96.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/06c48eab.wav b/Audi_Classification_ML/data/wavfiles/06c48eab.wav new file mode 100644 index 0000000..193fe92 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/06c48eab.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/078f7ac0.wav b/Audi_Classification_ML/data/wavfiles/078f7ac0.wav new file mode 100644 index 0000000..4376271 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/078f7ac0.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/07db7f16.wav b/Audi_Classification_ML/data/wavfiles/07db7f16.wav new file mode 100644 index 0000000..ff9abd0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/07db7f16.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/09a1cfd7.wav b/Audi_Classification_ML/data/wavfiles/09a1cfd7.wav new file mode 100644 index 0000000..fa18821 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/09a1cfd7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0c67f402.wav b/Audi_Classification_ML/data/wavfiles/0c67f402.wav new file mode 100644 index 0000000..72180e2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0c67f402.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0ddb4bdf.wav b/Audi_Classification_ML/data/wavfiles/0ddb4bdf.wav new file mode 100644 index 0000000..c8326c9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0ddb4bdf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0e7cd4eb.wav b/Audi_Classification_ML/data/wavfiles/0e7cd4eb.wav new file mode 100644 index 0000000..9a5157b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0e7cd4eb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0ed06544.wav b/Audi_Classification_ML/data/wavfiles/0ed06544.wav new file mode 100644 index 0000000..6535e2f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0ed06544.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/0eeaebcb.wav b/Audi_Classification_ML/data/wavfiles/0eeaebcb.wav new file mode 100644 index 0000000..5735467 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/0eeaebcb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/103f29e5.wav b/Audi_Classification_ML/data/wavfiles/103f29e5.wav new file mode 100644 index 0000000..6450a1b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/103f29e5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/10da16fb.wav b/Audi_Classification_ML/data/wavfiles/10da16fb.wav new file mode 100644 index 0000000..fe27afd Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/10da16fb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1148986e.wav b/Audi_Classification_ML/data/wavfiles/1148986e.wav new file mode 100644 index 0000000..aee4ff5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1148986e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/125e6ccf.wav b/Audi_Classification_ML/data/wavfiles/125e6ccf.wav new file mode 100644 index 0000000..36f2fa8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/125e6ccf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/13da16ae.wav b/Audi_Classification_ML/data/wavfiles/13da16ae.wav new file mode 100644 index 0000000..c4d56ca Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/13da16ae.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/160c92d7.wav b/Audi_Classification_ML/data/wavfiles/160c92d7.wav new file mode 100644 index 0000000..f4dbf2d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/160c92d7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/16c9a838.wav b/Audi_Classification_ML/data/wavfiles/16c9a838.wav new file mode 100644 index 0000000..dada99e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/16c9a838.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/17f82c05.wav b/Audi_Classification_ML/data/wavfiles/17f82c05.wav new file mode 100644 index 0000000..724cf73 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/17f82c05.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/18865530.wav b/Audi_Classification_ML/data/wavfiles/18865530.wav new file mode 100644 index 0000000..ee36d0d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/18865530.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/19105b8a.wav b/Audi_Classification_ML/data/wavfiles/19105b8a.wav new file mode 100644 index 0000000..e3aca58 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/19105b8a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/195f544d.wav b/Audi_Classification_ML/data/wavfiles/195f544d.wav new file mode 100644 index 0000000..dac61bf Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/195f544d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/19893aa8.wav b/Audi_Classification_ML/data/wavfiles/19893aa8.wav new file mode 100644 index 0000000..43a95e5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/19893aa8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1a7d3f2d.wav b/Audi_Classification_ML/data/wavfiles/1a7d3f2d.wav new file mode 100644 index 0000000..92b4a18 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1a7d3f2d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1b24c166.wav b/Audi_Classification_ML/data/wavfiles/1b24c166.wav new file mode 100644 index 0000000..e905c77 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1b24c166.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1b93aeba.wav b/Audi_Classification_ML/data/wavfiles/1b93aeba.wav new file mode 100644 index 0000000..e6a2500 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1b93aeba.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1bc8eae1.wav b/Audi_Classification_ML/data/wavfiles/1bc8eae1.wav new file mode 100644 index 0000000..861d66d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1bc8eae1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1c9a423f.wav b/Audi_Classification_ML/data/wavfiles/1c9a423f.wav new file mode 100644 index 0000000..c558155 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1c9a423f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1e3391d5.wav b/Audi_Classification_ML/data/wavfiles/1e3391d5.wav new file mode 100644 index 0000000..cfadde1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1e3391d5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/1f81cc2b.wav b/Audi_Classification_ML/data/wavfiles/1f81cc2b.wav new file mode 100644 index 0000000..eaeeea4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/1f81cc2b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2016d256.wav b/Audi_Classification_ML/data/wavfiles/2016d256.wav new file mode 100644 index 0000000..75ed066 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2016d256.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2032be87.wav b/Audi_Classification_ML/data/wavfiles/2032be87.wav new file mode 100644 index 0000000..2755669 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2032be87.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/21346775.wav b/Audi_Classification_ML/data/wavfiles/21346775.wav new file mode 100644 index 0000000..9db7212 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/21346775.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/229be2be.wav b/Audi_Classification_ML/data/wavfiles/229be2be.wav new file mode 100644 index 0000000..349c991 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/229be2be.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/22bea889.wav b/Audi_Classification_ML/data/wavfiles/22bea889.wav new file mode 100644 index 0000000..20fdcbf Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/22bea889.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/22e1c02c.wav b/Audi_Classification_ML/data/wavfiles/22e1c02c.wav new file mode 100644 index 0000000..2991e13 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/22e1c02c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/236cbab1.wav b/Audi_Classification_ML/data/wavfiles/236cbab1.wav new file mode 100644 index 0000000..0944e5a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/236cbab1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/238b16a5.wav b/Audi_Classification_ML/data/wavfiles/238b16a5.wav new file mode 100644 index 0000000..796cb96 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/238b16a5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2424ad60.wav b/Audi_Classification_ML/data/wavfiles/2424ad60.wav new file mode 100644 index 0000000..4f6e159 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2424ad60.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2503aaa1.wav b/Audi_Classification_ML/data/wavfiles/2503aaa1.wav new file mode 100644 index 0000000..779890e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2503aaa1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/25f26095.wav b/Audi_Classification_ML/data/wavfiles/25f26095.wav new file mode 100644 index 0000000..d78fbe7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/25f26095.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2ac8b94f.wav b/Audi_Classification_ML/data/wavfiles/2ac8b94f.wav new file mode 100644 index 0000000..12bc0ab Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2ac8b94f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2cc8683d.wav b/Audi_Classification_ML/data/wavfiles/2cc8683d.wav new file mode 100644 index 0000000..0b2e427 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2cc8683d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2da9e12a.wav b/Audi_Classification_ML/data/wavfiles/2da9e12a.wav new file mode 100644 index 0000000..862c5fe Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2da9e12a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2e1cd085.wav b/Audi_Classification_ML/data/wavfiles/2e1cd085.wav new file mode 100644 index 0000000..3c62a60 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2e1cd085.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2e4a9850.wav b/Audi_Classification_ML/data/wavfiles/2e4a9850.wav new file mode 100644 index 0000000..a4fd36e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2e4a9850.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2f9c5f62.wav b/Audi_Classification_ML/data/wavfiles/2f9c5f62.wav new file mode 100644 index 0000000..f7761f5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2f9c5f62.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/2fc00271.wav b/Audi_Classification_ML/data/wavfiles/2fc00271.wav new file mode 100644 index 0000000..f3cb0ea Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/2fc00271.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/31db8c5e.wav b/Audi_Classification_ML/data/wavfiles/31db8c5e.wav new file mode 100644 index 0000000..43fdcf1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/31db8c5e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/31dbc5c0.wav b/Audi_Classification_ML/data/wavfiles/31dbc5c0.wav new file mode 100644 index 0000000..a5bebd0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/31dbc5c0.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/32dee61b.wav b/Audi_Classification_ML/data/wavfiles/32dee61b.wav new file mode 100644 index 0000000..949f61e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/32dee61b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/34747922.wav b/Audi_Classification_ML/data/wavfiles/34747922.wav new file mode 100644 index 0000000..3db7a56 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/34747922.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/34a90030.wav b/Audi_Classification_ML/data/wavfiles/34a90030.wav new file mode 100644 index 0000000..038636e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/34a90030.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/34e4d187.wav b/Audi_Classification_ML/data/wavfiles/34e4d187.wav new file mode 100644 index 0000000..300c11e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/34e4d187.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/35039ae1.wav b/Audi_Classification_ML/data/wavfiles/35039ae1.wav new file mode 100644 index 0000000..f1520b7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/35039ae1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/35e97db3.wav b/Audi_Classification_ML/data/wavfiles/35e97db3.wav new file mode 100644 index 0000000..14dfb61 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/35e97db3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/367ad7b1.wav b/Audi_Classification_ML/data/wavfiles/367ad7b1.wav new file mode 100644 index 0000000..9860f9c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/367ad7b1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/36d06cc0.wav b/Audi_Classification_ML/data/wavfiles/36d06cc0.wav new file mode 100644 index 0000000..a9b6ed2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/36d06cc0.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/36d20ab5.wav b/Audi_Classification_ML/data/wavfiles/36d20ab5.wav new file mode 100644 index 0000000..47f67be Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/36d20ab5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3707da71.wav b/Audi_Classification_ML/data/wavfiles/3707da71.wav new file mode 100644 index 0000000..3270cc1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3707da71.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/37cebbd4.wav b/Audi_Classification_ML/data/wavfiles/37cebbd4.wav new file mode 100644 index 0000000..8bfdb19 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/37cebbd4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/38216fad.wav b/Audi_Classification_ML/data/wavfiles/38216fad.wav new file mode 100644 index 0000000..bed48e6 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/38216fad.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3a3d0279.wav b/Audi_Classification_ML/data/wavfiles/3a3d0279.wav new file mode 100644 index 0000000..7f802a2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3a3d0279.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3a80061f.wav b/Audi_Classification_ML/data/wavfiles/3a80061f.wav new file mode 100644 index 0000000..6dfa8dc Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3a80061f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3a9085ca.wav b/Audi_Classification_ML/data/wavfiles/3a9085ca.wav new file mode 100644 index 0000000..a5c365b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3a9085ca.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3aafb6ad.wav b/Audi_Classification_ML/data/wavfiles/3aafb6ad.wav new file mode 100644 index 0000000..1d667ea Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3aafb6ad.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3c66098d.wav b/Audi_Classification_ML/data/wavfiles/3c66098d.wav new file mode 100644 index 0000000..ac931ab Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3c66098d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3c713bcf.wav b/Audi_Classification_ML/data/wavfiles/3c713bcf.wav new file mode 100644 index 0000000..11d336b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3c713bcf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3cbe9902.wav b/Audi_Classification_ML/data/wavfiles/3cbe9902.wav new file mode 100644 index 0000000..b36aa93 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3cbe9902.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3d3439f1.wav b/Audi_Classification_ML/data/wavfiles/3d3439f1.wav new file mode 100644 index 0000000..f73cd95 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3d3439f1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3e2bddda.wav b/Audi_Classification_ML/data/wavfiles/3e2bddda.wav new file mode 100644 index 0000000..baebd87 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3e2bddda.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3eaddda8.wav b/Audi_Classification_ML/data/wavfiles/3eaddda8.wav new file mode 100644 index 0000000..4fb16a7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3eaddda8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/3f7e6da8.wav b/Audi_Classification_ML/data/wavfiles/3f7e6da8.wav new file mode 100644 index 0000000..f69f09e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/3f7e6da8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/41897c32.wav b/Audi_Classification_ML/data/wavfiles/41897c32.wav new file mode 100644 index 0000000..6052198 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/41897c32.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4345851e.wav b/Audi_Classification_ML/data/wavfiles/4345851e.wav new file mode 100644 index 0000000..ebdcdb1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4345851e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/444f9db5.wav b/Audi_Classification_ML/data/wavfiles/444f9db5.wav new file mode 100644 index 0000000..47c9007 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/444f9db5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/44c5094c.wav b/Audi_Classification_ML/data/wavfiles/44c5094c.wav new file mode 100644 index 0000000..9d29cc9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/44c5094c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/44fb3eeb.wav b/Audi_Classification_ML/data/wavfiles/44fb3eeb.wav new file mode 100644 index 0000000..5e3e645 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/44fb3eeb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/45de3233.wav b/Audi_Classification_ML/data/wavfiles/45de3233.wav new file mode 100644 index 0000000..97909d1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/45de3233.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/462b676f.wav b/Audi_Classification_ML/data/wavfiles/462b676f.wav new file mode 100644 index 0000000..b51f44a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/462b676f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/468f9c4c.wav b/Audi_Classification_ML/data/wavfiles/468f9c4c.wav new file mode 100644 index 0000000..9c36612 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/468f9c4c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/46b52f97.wav b/Audi_Classification_ML/data/wavfiles/46b52f97.wav new file mode 100644 index 0000000..ee1fe60 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/46b52f97.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/493c247b.wav b/Audi_Classification_ML/data/wavfiles/493c247b.wav new file mode 100644 index 0000000..cf4f746 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/493c247b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4ba2b70e.wav b/Audi_Classification_ML/data/wavfiles/4ba2b70e.wav new file mode 100644 index 0000000..6ee5d5b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4ba2b70e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4bcc8a77.wav b/Audi_Classification_ML/data/wavfiles/4bcc8a77.wav new file mode 100644 index 0000000..ba0f4e4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4bcc8a77.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4bff8f32.wav b/Audi_Classification_ML/data/wavfiles/4bff8f32.wav new file mode 100644 index 0000000..8a0a47b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4bff8f32.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4c4d4797.wav b/Audi_Classification_ML/data/wavfiles/4c4d4797.wav new file mode 100644 index 0000000..5fb5513 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4c4d4797.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4c590f69.wav b/Audi_Classification_ML/data/wavfiles/4c590f69.wav new file mode 100644 index 0000000..3743e43 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4c590f69.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4fb480bf.wav b/Audi_Classification_ML/data/wavfiles/4fb480bf.wav new file mode 100644 index 0000000..6c04a96 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4fb480bf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/4fd883bb.wav b/Audi_Classification_ML/data/wavfiles/4fd883bb.wav new file mode 100644 index 0000000..17b73c3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/4fd883bb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/52300f9b.wav b/Audi_Classification_ML/data/wavfiles/52300f9b.wav new file mode 100644 index 0000000..2aa09b4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/52300f9b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/52e54bdd.wav b/Audi_Classification_ML/data/wavfiles/52e54bdd.wav new file mode 100644 index 0000000..9f1480c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/52e54bdd.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5388d14d.wav b/Audi_Classification_ML/data/wavfiles/5388d14d.wav new file mode 100644 index 0000000..5f614da Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5388d14d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5506629f.wav b/Audi_Classification_ML/data/wavfiles/5506629f.wav new file mode 100644 index 0000000..1fa912a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5506629f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/55822aae.wav b/Audi_Classification_ML/data/wavfiles/55822aae.wav new file mode 100644 index 0000000..b4cbbcd Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/55822aae.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/55d52a69.wav b/Audi_Classification_ML/data/wavfiles/55d52a69.wav new file mode 100644 index 0000000..4aae1e3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/55d52a69.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/562d93f5.wav b/Audi_Classification_ML/data/wavfiles/562d93f5.wav new file mode 100644 index 0000000..c2d5069 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/562d93f5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/565f3ee2.wav b/Audi_Classification_ML/data/wavfiles/565f3ee2.wav new file mode 100644 index 0000000..bd28284 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/565f3ee2.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5689818f.wav b/Audi_Classification_ML/data/wavfiles/5689818f.wav new file mode 100644 index 0000000..37fe8f0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5689818f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/56e79c6f.wav b/Audi_Classification_ML/data/wavfiles/56e79c6f.wav new file mode 100644 index 0000000..8c70d74 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/56e79c6f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/595c191d.wav b/Audi_Classification_ML/data/wavfiles/595c191d.wav new file mode 100644 index 0000000..57d86e3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/595c191d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5c33d972.wav b/Audi_Classification_ML/data/wavfiles/5c33d972.wav new file mode 100644 index 0000000..59a28fa Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5c33d972.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5ce40b1b.wav b/Audi_Classification_ML/data/wavfiles/5ce40b1b.wav new file mode 100644 index 0000000..e8fc894 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5ce40b1b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5d040c3b.wav b/Audi_Classification_ML/data/wavfiles/5d040c3b.wav new file mode 100644 index 0000000..7ada444 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5d040c3b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5d4f8187.wav b/Audi_Classification_ML/data/wavfiles/5d4f8187.wav new file mode 100644 index 0000000..2eb7a83 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5d4f8187.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5d73ee6f.wav b/Audi_Classification_ML/data/wavfiles/5d73ee6f.wav new file mode 100644 index 0000000..9687ecb Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5d73ee6f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5de123c3.wav b/Audi_Classification_ML/data/wavfiles/5de123c3.wav new file mode 100644 index 0000000..f1aa51d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5de123c3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5e5bca7a.wav b/Audi_Classification_ML/data/wavfiles/5e5bca7a.wav new file mode 100644 index 0000000..95621b6 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5e5bca7a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5eadbc6d.wav b/Audi_Classification_ML/data/wavfiles/5eadbc6d.wav new file mode 100644 index 0000000..584c0e6 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5eadbc6d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5ec7ad26.wav b/Audi_Classification_ML/data/wavfiles/5ec7ad26.wav new file mode 100644 index 0000000..8775467 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5ec7ad26.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/5f0dc8e4.wav b/Audi_Classification_ML/data/wavfiles/5f0dc8e4.wav new file mode 100644 index 0000000..ace6ca4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/5f0dc8e4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/612702c3.wav b/Audi_Classification_ML/data/wavfiles/612702c3.wav new file mode 100644 index 0000000..86e8f6a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/612702c3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/61c914b1.wav b/Audi_Classification_ML/data/wavfiles/61c914b1.wav new file mode 100644 index 0000000..258f4c8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/61c914b1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/63e0ab2c.wav b/Audi_Classification_ML/data/wavfiles/63e0ab2c.wav new file mode 100644 index 0000000..5d1f674 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/63e0ab2c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/642aba58.wav b/Audi_Classification_ML/data/wavfiles/642aba58.wav new file mode 100644 index 0000000..32a21d5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/642aba58.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/642ad7e4.wav b/Audi_Classification_ML/data/wavfiles/642ad7e4.wav new file mode 100644 index 0000000..3123a40 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/642ad7e4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/673defaf.wav b/Audi_Classification_ML/data/wavfiles/673defaf.wav new file mode 100644 index 0000000..c3d1aab Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/673defaf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/68589f79.wav b/Audi_Classification_ML/data/wavfiles/68589f79.wav new file mode 100644 index 0000000..ea7384c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/68589f79.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6a037ddf.wav b/Audi_Classification_ML/data/wavfiles/6a037ddf.wav new file mode 100644 index 0000000..939ccd7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6a037ddf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6a210ffa.wav b/Audi_Classification_ML/data/wavfiles/6a210ffa.wav new file mode 100644 index 0000000..b63d6ed Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6a210ffa.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6a96272b.wav b/Audi_Classification_ML/data/wavfiles/6a96272b.wav new file mode 100644 index 0000000..a6028b1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6a96272b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6b27a847.wav b/Audi_Classification_ML/data/wavfiles/6b27a847.wav new file mode 100644 index 0000000..367c2cf Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6b27a847.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6d21ad67.wav b/Audi_Classification_ML/data/wavfiles/6d21ad67.wav new file mode 100644 index 0000000..efbefed Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6d21ad67.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6eb59008.wav b/Audi_Classification_ML/data/wavfiles/6eb59008.wav new file mode 100644 index 0000000..f7be913 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6eb59008.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6ef82473.wav b/Audi_Classification_ML/data/wavfiles/6ef82473.wav new file mode 100644 index 0000000..8d7c7d1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6ef82473.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6efbaf90.wav b/Audi_Classification_ML/data/wavfiles/6efbaf90.wav new file mode 100644 index 0000000..e992c5f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6efbaf90.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/6fca680b.wav b/Audi_Classification_ML/data/wavfiles/6fca680b.wav new file mode 100644 index 0000000..427f7ef Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/6fca680b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/70ca9c77.wav b/Audi_Classification_ML/data/wavfiles/70ca9c77.wav new file mode 100644 index 0000000..5e5958e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/70ca9c77.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/71c6451f.wav b/Audi_Classification_ML/data/wavfiles/71c6451f.wav new file mode 100644 index 0000000..59ace3f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/71c6451f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7352e28f.wav b/Audi_Classification_ML/data/wavfiles/7352e28f.wav new file mode 100644 index 0000000..389720c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7352e28f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/73677128.wav b/Audi_Classification_ML/data/wavfiles/73677128.wav new file mode 100644 index 0000000..2b3ad51 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/73677128.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/740e5bb7.wav b/Audi_Classification_ML/data/wavfiles/740e5bb7.wav new file mode 100644 index 0000000..9c8a5de Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/740e5bb7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/743ae0f9.wav b/Audi_Classification_ML/data/wavfiles/743ae0f9.wav new file mode 100644 index 0000000..83ecb7b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/743ae0f9.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7506dcc4.wav b/Audi_Classification_ML/data/wavfiles/7506dcc4.wav new file mode 100644 index 0000000..770f915 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7506dcc4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/78a86075.wav b/Audi_Classification_ML/data/wavfiles/78a86075.wav new file mode 100644 index 0000000..171a2d4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/78a86075.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7b6a119e.wav b/Audi_Classification_ML/data/wavfiles/7b6a119e.wav new file mode 100644 index 0000000..1363e8d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7b6a119e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7d11b3b4.wav b/Audi_Classification_ML/data/wavfiles/7d11b3b4.wav new file mode 100644 index 0000000..fb93175 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7d11b3b4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7d896090.wav b/Audi_Classification_ML/data/wavfiles/7d896090.wav new file mode 100644 index 0000000..ed9205f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7d896090.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7dda9dc2.wav b/Audi_Classification_ML/data/wavfiles/7dda9dc2.wav new file mode 100644 index 0000000..02a556c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7dda9dc2.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7eb959ec.wav b/Audi_Classification_ML/data/wavfiles/7eb959ec.wav new file mode 100644 index 0000000..38840df Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7eb959ec.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/7eb9dac0.wav b/Audi_Classification_ML/data/wavfiles/7eb9dac0.wav new file mode 100644 index 0000000..1d52ad1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/7eb9dac0.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/800b401e.wav b/Audi_Classification_ML/data/wavfiles/800b401e.wav new file mode 100644 index 0000000..d244a23 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/800b401e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8073923c.wav b/Audi_Classification_ML/data/wavfiles/8073923c.wav new file mode 100644 index 0000000..89b2d5f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8073923c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/809ea09e.wav b/Audi_Classification_ML/data/wavfiles/809ea09e.wav new file mode 100644 index 0000000..fa61bab Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/809ea09e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/811bf309.wav b/Audi_Classification_ML/data/wavfiles/811bf309.wav new file mode 100644 index 0000000..83be48c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/811bf309.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/81d9f077.wav b/Audi_Classification_ML/data/wavfiles/81d9f077.wav new file mode 100644 index 0000000..a36c2a0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/81d9f077.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/82d4fb44.wav b/Audi_Classification_ML/data/wavfiles/82d4fb44.wav new file mode 100644 index 0000000..59048b5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/82d4fb44.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/848faca3.wav b/Audi_Classification_ML/data/wavfiles/848faca3.wav new file mode 100644 index 0000000..5c1ec91 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/848faca3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/84f5b84b.wav b/Audi_Classification_ML/data/wavfiles/84f5b84b.wav new file mode 100644 index 0000000..44f95d5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/84f5b84b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/85d6a7d2.wav b/Audi_Classification_ML/data/wavfiles/85d6a7d2.wav new file mode 100644 index 0000000..2532063 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/85d6a7d2.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/88500b88.wav b/Audi_Classification_ML/data/wavfiles/88500b88.wav new file mode 100644 index 0000000..ba32803 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/88500b88.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/88780eac.wav b/Audi_Classification_ML/data/wavfiles/88780eac.wav new file mode 100644 index 0000000..2d5866a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/88780eac.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8916ffcd.wav b/Audi_Classification_ML/data/wavfiles/8916ffcd.wav new file mode 100644 index 0000000..27dae71 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8916ffcd.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8986cced.wav b/Audi_Classification_ML/data/wavfiles/8986cced.wav new file mode 100644 index 0000000..892df4a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8986cced.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8b6a16de.wav b/Audi_Classification_ML/data/wavfiles/8b6a16de.wav new file mode 100644 index 0000000..ac563e9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8b6a16de.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8cd809d3.wav b/Audi_Classification_ML/data/wavfiles/8cd809d3.wav new file mode 100644 index 0000000..0690efe Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8cd809d3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8ce2e863.wav b/Audi_Classification_ML/data/wavfiles/8ce2e863.wav new file mode 100644 index 0000000..4633ad9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8ce2e863.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8d7d7dba.wav b/Audi_Classification_ML/data/wavfiles/8d7d7dba.wav new file mode 100644 index 0000000..6289b68 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8d7d7dba.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8da75280.wav b/Audi_Classification_ML/data/wavfiles/8da75280.wav new file mode 100644 index 0000000..b8ce3aa Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8da75280.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8ee44fb5.wav b/Audi_Classification_ML/data/wavfiles/8ee44fb5.wav new file mode 100644 index 0000000..99da2d1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8ee44fb5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/8fa096bf.wav b/Audi_Classification_ML/data/wavfiles/8fa096bf.wav new file mode 100644 index 0000000..d93acf0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/8fa096bf.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/921eee9d.wav b/Audi_Classification_ML/data/wavfiles/921eee9d.wav new file mode 100644 index 0000000..0ad53c1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/921eee9d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9320c55f.wav b/Audi_Classification_ML/data/wavfiles/9320c55f.wav new file mode 100644 index 0000000..ec0fdd4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9320c55f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/95e1d0ae.wav b/Audi_Classification_ML/data/wavfiles/95e1d0ae.wav new file mode 100644 index 0000000..b42e146 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/95e1d0ae.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/96dad435.wav b/Audi_Classification_ML/data/wavfiles/96dad435.wav new file mode 100644 index 0000000..624a059 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/96dad435.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9923ddf8.wav b/Audi_Classification_ML/data/wavfiles/9923ddf8.wav new file mode 100644 index 0000000..1849f96 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9923ddf8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/99c96a07.wav b/Audi_Classification_ML/data/wavfiles/99c96a07.wav new file mode 100644 index 0000000..bbe4c34 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/99c96a07.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9a4bfb69.wav b/Audi_Classification_ML/data/wavfiles/9a4bfb69.wav new file mode 100644 index 0000000..c97fb0c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9a4bfb69.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9a722e53.wav b/Audi_Classification_ML/data/wavfiles/9a722e53.wav new file mode 100644 index 0000000..f11c9e9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9a722e53.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9adffd44.wav b/Audi_Classification_ML/data/wavfiles/9adffd44.wav new file mode 100644 index 0000000..66aa23d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9adffd44.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9c0838c1.wav b/Audi_Classification_ML/data/wavfiles/9c0838c1.wav new file mode 100644 index 0000000..b9c2264 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9c0838c1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9cd05a2b.wav b/Audi_Classification_ML/data/wavfiles/9cd05a2b.wav new file mode 100644 index 0000000..720e115 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9cd05a2b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9d308738.wav b/Audi_Classification_ML/data/wavfiles/9d308738.wav new file mode 100644 index 0000000..57e3936 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9d308738.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9dd0141c.wav b/Audi_Classification_ML/data/wavfiles/9dd0141c.wav new file mode 100644 index 0000000..b2d5f7a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9dd0141c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9e3bc1b6.wav b/Audi_Classification_ML/data/wavfiles/9e3bc1b6.wav new file mode 100644 index 0000000..e770be7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9e3bc1b6.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9f522cda.wav b/Audi_Classification_ML/data/wavfiles/9f522cda.wav new file mode 100644 index 0000000..78e4f32 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9f522cda.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9f6eac9c.wav b/Audi_Classification_ML/data/wavfiles/9f6eac9c.wav new file mode 100644 index 0000000..ce11e8b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9f6eac9c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/9f84ea5a.wav b/Audi_Classification_ML/data/wavfiles/9f84ea5a.wav new file mode 100644 index 0000000..b03709b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/9f84ea5a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a053797b.wav b/Audi_Classification_ML/data/wavfiles/a053797b.wav new file mode 100644 index 0000000..dce83b9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a053797b.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a090c45a.wav b/Audi_Classification_ML/data/wavfiles/a090c45a.wav new file mode 100644 index 0000000..f9e63b9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a090c45a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a0cbe92e.wav b/Audi_Classification_ML/data/wavfiles/a0cbe92e.wav new file mode 100644 index 0000000..5d8df93 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a0cbe92e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a1b369d7.wav b/Audi_Classification_ML/data/wavfiles/a1b369d7.wav new file mode 100644 index 0000000..bd6d955 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a1b369d7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a25423a8.wav b/Audi_Classification_ML/data/wavfiles/a25423a8.wav new file mode 100644 index 0000000..cfbbfe3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a25423a8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a59b5a08.wav b/Audi_Classification_ML/data/wavfiles/a59b5a08.wav new file mode 100644 index 0000000..080213d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a59b5a08.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a64a3740.wav b/Audi_Classification_ML/data/wavfiles/a64a3740.wav new file mode 100644 index 0000000..fe4f694 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a64a3740.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a6728901.wav b/Audi_Classification_ML/data/wavfiles/a6728901.wav new file mode 100644 index 0000000..e898802 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a6728901.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/a7964699.wav b/Audi_Classification_ML/data/wavfiles/a7964699.wav new file mode 100644 index 0000000..1e36ab1 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/a7964699.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/aa9ae956.wav b/Audi_Classification_ML/data/wavfiles/aa9ae956.wav new file mode 100644 index 0000000..be4f8ca Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/aa9ae956.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/aab28420.wav b/Audi_Classification_ML/data/wavfiles/aab28420.wav new file mode 100644 index 0000000..1ece958 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/aab28420.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ab465bf9.wav b/Audi_Classification_ML/data/wavfiles/ab465bf9.wav new file mode 100644 index 0000000..4454919 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ab465bf9.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ab8e8ae3.wav b/Audi_Classification_ML/data/wavfiles/ab8e8ae3.wav new file mode 100644 index 0000000..c986fed Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ab8e8ae3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ac097834.wav b/Audi_Classification_ML/data/wavfiles/ac097834.wav new file mode 100644 index 0000000..b4982c8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ac097834.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ad42e493.wav b/Audi_Classification_ML/data/wavfiles/ad42e493.wav new file mode 100644 index 0000000..b8b2d52 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ad42e493.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ad7ec8cb.wav b/Audi_Classification_ML/data/wavfiles/ad7ec8cb.wav new file mode 100644 index 0000000..b65caed Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ad7ec8cb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ae7d1c37.wav b/Audi_Classification_ML/data/wavfiles/ae7d1c37.wav new file mode 100644 index 0000000..6de8e02 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ae7d1c37.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/aed9d22f.wav b/Audi_Classification_ML/data/wavfiles/aed9d22f.wav new file mode 100644 index 0000000..4959822 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/aed9d22f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/af227d6f.wav b/Audi_Classification_ML/data/wavfiles/af227d6f.wav new file mode 100644 index 0000000..2f5c352 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/af227d6f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b0c06255.wav b/Audi_Classification_ML/data/wavfiles/b0c06255.wav new file mode 100644 index 0000000..7ca5676 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b0c06255.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b0d9849d.wav b/Audi_Classification_ML/data/wavfiles/b0d9849d.wav new file mode 100644 index 0000000..45cc0ab Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b0d9849d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b120dc90.wav b/Audi_Classification_ML/data/wavfiles/b120dc90.wav new file mode 100644 index 0000000..1c73e30 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b120dc90.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b218444c.wav b/Audi_Classification_ML/data/wavfiles/b218444c.wav new file mode 100644 index 0000000..0984f98 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b218444c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b2261238.wav b/Audi_Classification_ML/data/wavfiles/b2261238.wav new file mode 100644 index 0000000..21eb5f8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b2261238.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b31ed1fb.wav b/Audi_Classification_ML/data/wavfiles/b31ed1fb.wav new file mode 100644 index 0000000..0457a4d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b31ed1fb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b38409bb.wav b/Audi_Classification_ML/data/wavfiles/b38409bb.wav new file mode 100644 index 0000000..aeadac8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b38409bb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b428466c.wav b/Audi_Classification_ML/data/wavfiles/b428466c.wav new file mode 100644 index 0000000..3229eb4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b428466c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b4b2b68d.wav b/Audi_Classification_ML/data/wavfiles/b4b2b68d.wav new file mode 100644 index 0000000..c71435a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b4b2b68d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b68f10af.wav b/Audi_Classification_ML/data/wavfiles/b68f10af.wav new file mode 100644 index 0000000..a19d44b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b68f10af.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b6cbc6a9.wav b/Audi_Classification_ML/data/wavfiles/b6cbc6a9.wav new file mode 100644 index 0000000..dc707c9 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b6cbc6a9.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b73c3595.wav b/Audi_Classification_ML/data/wavfiles/b73c3595.wav new file mode 100644 index 0000000..224d46d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b73c3595.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b83049f4.wav b/Audi_Classification_ML/data/wavfiles/b83049f4.wav new file mode 100644 index 0000000..5817179 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b83049f4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b86b5a96.wav b/Audi_Classification_ML/data/wavfiles/b86b5a96.wav new file mode 100644 index 0000000..1cc0d02 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b86b5a96.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b88322f6.wav b/Audi_Classification_ML/data/wavfiles/b88322f6.wav new file mode 100644 index 0000000..2e7c9dc Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b88322f6.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/b8c0a88a.wav b/Audi_Classification_ML/data/wavfiles/b8c0a88a.wav new file mode 100644 index 0000000..9dcb36a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/b8c0a88a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ba648ac1.wav b/Audi_Classification_ML/data/wavfiles/ba648ac1.wav new file mode 100644 index 0000000..a4319d5 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ba648ac1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/bab98261.wav b/Audi_Classification_ML/data/wavfiles/bab98261.wav new file mode 100644 index 0000000..3d3be61 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/bab98261.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/bb1f5874.wav b/Audi_Classification_ML/data/wavfiles/bb1f5874.wav new file mode 100644 index 0000000..4c87517 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/bb1f5874.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/bea51ca5.wav b/Audi_Classification_ML/data/wavfiles/bea51ca5.wav new file mode 100644 index 0000000..9719ba7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/bea51ca5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c0ddf010.wav b/Audi_Classification_ML/data/wavfiles/c0ddf010.wav new file mode 100644 index 0000000..a41bd96 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c0ddf010.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c11bacda.wav b/Audi_Classification_ML/data/wavfiles/c11bacda.wav new file mode 100644 index 0000000..53a911f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c11bacda.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c153f347.wav b/Audi_Classification_ML/data/wavfiles/c153f347.wav new file mode 100644 index 0000000..4024d58 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c153f347.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c1948f24.wav b/Audi_Classification_ML/data/wavfiles/c1948f24.wav new file mode 100644 index 0000000..4188fb6 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c1948f24.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c1c3c8b9.wav b/Audi_Classification_ML/data/wavfiles/c1c3c8b9.wav new file mode 100644 index 0000000..80a2e15 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c1c3c8b9.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c40632d7.wav b/Audi_Classification_ML/data/wavfiles/c40632d7.wav new file mode 100644 index 0000000..100426e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c40632d7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c53a217e.wav b/Audi_Classification_ML/data/wavfiles/c53a217e.wav new file mode 100644 index 0000000..abab708 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c53a217e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c683f28f.wav b/Audi_Classification_ML/data/wavfiles/c683f28f.wav new file mode 100644 index 0000000..cd450e0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c683f28f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c685f05f.wav b/Audi_Classification_ML/data/wavfiles/c685f05f.wav new file mode 100644 index 0000000..ba43511 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c685f05f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c6865306.wav b/Audi_Classification_ML/data/wavfiles/c6865306.wav new file mode 100644 index 0000000..c13d8a3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c6865306.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c7846d27.wav b/Audi_Classification_ML/data/wavfiles/c7846d27.wav new file mode 100644 index 0000000..1032883 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c7846d27.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c840804f.wav b/Audi_Classification_ML/data/wavfiles/c840804f.wav new file mode 100644 index 0000000..a974373 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c840804f.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c8c117dc.wav b/Audi_Classification_ML/data/wavfiles/c8c117dc.wav new file mode 100644 index 0000000..fe80f01 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c8c117dc.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c8ecbbfd.wav b/Audi_Classification_ML/data/wavfiles/c8ecbbfd.wav new file mode 100644 index 0000000..9f46688 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c8ecbbfd.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/c9fb642d.wav b/Audi_Classification_ML/data/wavfiles/c9fb642d.wav new file mode 100644 index 0000000..3717383 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/c9fb642d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ca348cbb.wav b/Audi_Classification_ML/data/wavfiles/ca348cbb.wav new file mode 100644 index 0000000..57502af Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ca348cbb.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ca3f3698.wav b/Audi_Classification_ML/data/wavfiles/ca3f3698.wav new file mode 100644 index 0000000..5ecc66a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ca3f3698.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ca8653d2.wav b/Audi_Classification_ML/data/wavfiles/ca8653d2.wav new file mode 100644 index 0000000..f60bdb2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ca8653d2.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/cae0d841.wav b/Audi_Classification_ML/data/wavfiles/cae0d841.wav new file mode 100644 index 0000000..3cbfd52 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/cae0d841.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/cbc8d551.wav b/Audi_Classification_ML/data/wavfiles/cbc8d551.wav new file mode 100644 index 0000000..4b43372 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/cbc8d551.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/cdc5fe8e.wav b/Audi_Classification_ML/data/wavfiles/cdc5fe8e.wav new file mode 100644 index 0000000..ad2b83c Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/cdc5fe8e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/cdeece57.wav b/Audi_Classification_ML/data/wavfiles/cdeece57.wav new file mode 100644 index 0000000..d5c5102 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/cdeece57.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/cdfc8967.wav b/Audi_Classification_ML/data/wavfiles/cdfc8967.wav new file mode 100644 index 0000000..5ac4334 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/cdfc8967.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ce3f3400.wav b/Audi_Classification_ML/data/wavfiles/ce3f3400.wav new file mode 100644 index 0000000..899bb43 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ce3f3400.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ce65d6b5.wav b/Audi_Classification_ML/data/wavfiles/ce65d6b5.wav new file mode 100644 index 0000000..41404da Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ce65d6b5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ce75b5ce.wav b/Audi_Classification_ML/data/wavfiles/ce75b5ce.wav new file mode 100644 index 0000000..13d74b4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ce75b5ce.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/cfb9c5fd.wav b/Audi_Classification_ML/data/wavfiles/cfb9c5fd.wav new file mode 100644 index 0000000..cc48539 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/cfb9c5fd.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d14f5df1.wav b/Audi_Classification_ML/data/wavfiles/d14f5df1.wav new file mode 100644 index 0000000..9a21958 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d14f5df1.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d328db67.wav b/Audi_Classification_ML/data/wavfiles/d328db67.wav new file mode 100644 index 0000000..da0f9c8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d328db67.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d6144e01.wav b/Audi_Classification_ML/data/wavfiles/d6144e01.wav new file mode 100644 index 0000000..c38ff6a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d6144e01.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d6665734.wav b/Audi_Classification_ML/data/wavfiles/d6665734.wav new file mode 100644 index 0000000..a94b9f8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d6665734.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d6854eb4.wav b/Audi_Classification_ML/data/wavfiles/d6854eb4.wav new file mode 100644 index 0000000..4b13a0e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d6854eb4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d84c8c43.wav b/Audi_Classification_ML/data/wavfiles/d84c8c43.wav new file mode 100644 index 0000000..b067f10 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d84c8c43.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d8a257e5.wav b/Audi_Classification_ML/data/wavfiles/d8a257e5.wav new file mode 100644 index 0000000..f3dd76d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d8a257e5.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d914225a.wav b/Audi_Classification_ML/data/wavfiles/d914225a.wav new file mode 100644 index 0000000..771217f Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d914225a.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/d94c94f0.wav b/Audi_Classification_ML/data/wavfiles/d94c94f0.wav new file mode 100644 index 0000000..f0eb9de Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/d94c94f0.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/da3f8050.wav b/Audi_Classification_ML/data/wavfiles/da3f8050.wav new file mode 100644 index 0000000..f0e49b7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/da3f8050.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/da4b0379.wav b/Audi_Classification_ML/data/wavfiles/da4b0379.wav new file mode 100644 index 0000000..47384d3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/da4b0379.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/da8ea649.wav b/Audi_Classification_ML/data/wavfiles/da8ea649.wav new file mode 100644 index 0000000..4ddaddb Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/da8ea649.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/dba6817d.wav b/Audi_Classification_ML/data/wavfiles/dba6817d.wav new file mode 100644 index 0000000..c29d8a2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/dba6817d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/dc5be9d7.wav b/Audi_Classification_ML/data/wavfiles/dc5be9d7.wav new file mode 100644 index 0000000..9672238 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/dc5be9d7.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/dc6676ff.wav b/Audi_Classification_ML/data/wavfiles/dc6676ff.wav new file mode 100644 index 0000000..bb4bd83 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/dc6676ff.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/dc981a38.wav b/Audi_Classification_ML/data/wavfiles/dc981a38.wav new file mode 100644 index 0000000..83f84a0 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/dc981a38.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ddf23920.wav b/Audi_Classification_ML/data/wavfiles/ddf23920.wav new file mode 100644 index 0000000..c386c7d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ddf23920.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/deb87700.wav b/Audi_Classification_ML/data/wavfiles/deb87700.wav new file mode 100644 index 0000000..9672a0e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/deb87700.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e0ecd1a6.wav b/Audi_Classification_ML/data/wavfiles/e0ecd1a6.wav new file mode 100644 index 0000000..62b67b2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e0ecd1a6.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e2d993ec.wav b/Audi_Classification_ML/data/wavfiles/e2d993ec.wav new file mode 100644 index 0000000..75273e7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e2d993ec.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e3f479f3.wav b/Audi_Classification_ML/data/wavfiles/e3f479f3.wav new file mode 100644 index 0000000..5f3beba Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e3f479f3.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e43f7db2.wav b/Audi_Classification_ML/data/wavfiles/e43f7db2.wav new file mode 100644 index 0000000..f82d67a Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e43f7db2.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e4958adc.wav b/Audi_Classification_ML/data/wavfiles/e4958adc.wav new file mode 100644 index 0000000..2268b2b Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e4958adc.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e51e1770.wav b/Audi_Classification_ML/data/wavfiles/e51e1770.wav new file mode 100644 index 0000000..9c0903d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e51e1770.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e55c5160.wav b/Audi_Classification_ML/data/wavfiles/e55c5160.wav new file mode 100644 index 0000000..e65e8d3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e55c5160.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e6597186.wav b/Audi_Classification_ML/data/wavfiles/e6597186.wav new file mode 100644 index 0000000..c047648 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e6597186.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e70c41d4.wav b/Audi_Classification_ML/data/wavfiles/e70c41d4.wav new file mode 100644 index 0000000..8d36333 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e70c41d4.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e897db78.wav b/Audi_Classification_ML/data/wavfiles/e897db78.wav new file mode 100644 index 0000000..7ee1c2d Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e897db78.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e8e00924.wav b/Audi_Classification_ML/data/wavfiles/e8e00924.wav new file mode 100644 index 0000000..b4d5a16 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e8e00924.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e92bf0fa.wav b/Audi_Classification_ML/data/wavfiles/e92bf0fa.wav new file mode 100644 index 0000000..1595864 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e92bf0fa.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/e97d9707.wav b/Audi_Classification_ML/data/wavfiles/e97d9707.wav new file mode 100644 index 0000000..657aceb Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/e97d9707.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ec6afeb6.wav b/Audi_Classification_ML/data/wavfiles/ec6afeb6.wav new file mode 100644 index 0000000..9203caf Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ec6afeb6.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f042282c.wav b/Audi_Classification_ML/data/wavfiles/f042282c.wav new file mode 100644 index 0000000..22d97ee Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f042282c.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f0727eac.wav b/Audi_Classification_ML/data/wavfiles/f0727eac.wav new file mode 100644 index 0000000..e5faff3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f0727eac.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f0d315bc.wav b/Audi_Classification_ML/data/wavfiles/f0d315bc.wav new file mode 100644 index 0000000..a6ad9a7 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f0d315bc.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f0dfe343.wav b/Audi_Classification_ML/data/wavfiles/f0dfe343.wav new file mode 100644 index 0000000..3d32bfc Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f0dfe343.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f1754aea.wav b/Audi_Classification_ML/data/wavfiles/f1754aea.wav new file mode 100644 index 0000000..642f3bf Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f1754aea.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f2310f0d.wav b/Audi_Classification_ML/data/wavfiles/f2310f0d.wav new file mode 100644 index 0000000..e1c16b4 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f2310f0d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f26131d8.wav b/Audi_Classification_ML/data/wavfiles/f26131d8.wav new file mode 100644 index 0000000..63602b2 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f26131d8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f5e20dce.wav b/Audi_Classification_ML/data/wavfiles/f5e20dce.wav new file mode 100644 index 0000000..fe552eb Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f5e20dce.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f63f3703.wav b/Audi_Classification_ML/data/wavfiles/f63f3703.wav new file mode 100644 index 0000000..4c26f38 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f63f3703.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f8a99b37.wav b/Audi_Classification_ML/data/wavfiles/f8a99b37.wav new file mode 100644 index 0000000..abe223e Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f8a99b37.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f8d96888.wav b/Audi_Classification_ML/data/wavfiles/f8d96888.wav new file mode 100644 index 0000000..d05b934 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f8d96888.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/f9653de8.wav b/Audi_Classification_ML/data/wavfiles/f9653de8.wav new file mode 100644 index 0000000..49760cc Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/f9653de8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/fa32109e.wav b/Audi_Classification_ML/data/wavfiles/fa32109e.wav new file mode 100644 index 0000000..883ac89 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/fa32109e.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/fa4d4a92.wav b/Audi_Classification_ML/data/wavfiles/fa4d4a92.wav new file mode 100644 index 0000000..6b03ff3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/fa4d4a92.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/fc55d588.wav b/Audi_Classification_ML/data/wavfiles/fc55d588.wav new file mode 100644 index 0000000..27bb920 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/fc55d588.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/fcfafbc8.wav b/Audi_Classification_ML/data/wavfiles/fcfafbc8.wav new file mode 100644 index 0000000..c5b84a8 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/fcfafbc8.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/fe76c972.wav b/Audi_Classification_ML/data/wavfiles/fe76c972.wav new file mode 100644 index 0000000..a3543d3 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/fe76c972.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/fec00143.wav b/Audi_Classification_ML/data/wavfiles/fec00143.wav new file mode 100644 index 0000000..af6fd82 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/fec00143.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ff11628d.wav b/Audi_Classification_ML/data/wavfiles/ff11628d.wav new file mode 100644 index 0000000..9443816 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ff11628d.wav differ diff --git a/Audi_Classification_ML/data/wavfiles/ff3f21e7.wav b/Audi_Classification_ML/data/wavfiles/ff3f21e7.wav new file mode 100644 index 0000000..0cf31c6 Binary files /dev/null and b/Audi_Classification_ML/data/wavfiles/ff3f21e7.wav differ diff --git a/Audi_Classification_ML/eda.py b/Audi_Classification_ML/eda.py new file mode 100644 index 0000000..b7ce559 --- /dev/null +++ b/Audi_Classification_ML/eda.py @@ -0,0 +1,64 @@ +import os +from tqdm import tqdm +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from scipy.io import wavfile +from python_speech_features import mfcc, logfbank + +def plot_signals(signals): + fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, + sharey=True, figsize=(20,5)) + fig.suptitle('Time Series', size=16) + i = 0 + for x in range(2): + for y in range(5): + axes[x,y].set_title(list(signals.keys())[i]) + axes[x,y].plot(list(signals.values())[i]) + axes[x,y].get_xaxis().set_visible(False) + axes[x,y].get_yaxis().set_visible(False) + i += 1 + +def plot_fft(fft): + fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, + sharey=True, figsize=(20,5)) + fig.suptitle('Fourier Transforms', size=16) + i = 0 + for x in range(2): + for y in range(5): + data = list(fft.values())[i] + Y, freq = data[0], data[1] + axes[x,y].set_title(list(fft.keys())[i]) + axes[x,y].plot(freq, Y) + axes[x,y].get_xaxis().set_visible(False) + axes[x,y].get_yaxis().set_visible(False) + i += 1 + +def plot_fbank(fbank): + fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, + sharey=True, figsize=(20,5)) + fig.suptitle('Filter Bank Coefficients', size=16) + i = 0 + for x in range(2): + for y in range(5): + axes[x,y].set_title(list(fbank.keys())[i]) + axes[x,y].imshow(list(fbank.values())[i], + cmap='hot', interpolation='nearest') + axes[x,y].get_xaxis().set_visible(False) + axes[x,y].get_yaxis().set_visible(False) + i += 1 + +def plot_mfccs(mfccs): + fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False, + sharey=True, figsize=(20,5)) + fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16) + i = 0 + for x in range(2): + for y in range(5): + axes[x,y].set_title(list(mfccs.keys())[i]) + axes[x,y].imshow(list(mfccs.values())[i], + cmap='hot', interpolation='nearest') + axes[x,y].get_xaxis().set_visible(False) + axes[x,y].get_yaxis().set_visible(False) + i += 1 + diff --git a/Audi_Classification_ML/figures/Signal_envelopes.png b/Audi_Classification_ML/figures/Signal_envelopes.png new file mode 100644 index 0000000..86f406d Binary files /dev/null and b/Audi_Classification_ML/figures/Signal_envelopes.png differ diff --git a/Audi_Classification_ML/model.ipynb b/Audi_Classification_ML/model.ipynb new file mode 100644 index 0000000..82d26ea --- /dev/null +++ b/Audi_Classification_ML/model.ipynb @@ -0,0 +1,917 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "from scipy.io import wavfile\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from keras.layers import Conv2D, MaxPool2D, Flatten, LSTM\n", + "from keras.layers import Dropout, Dense, TimeDistributed\n", + "from keras.models import Sequential\n", + "from keras.utils import to_categorical\n", + "from keras.callbacks import ModelCheckpoint\n", + "from sklearn.utils.class_weight import compute_class_weight\n", + "from tqdm import tqdm\n", + "from python_speech_features import mfcc\n", + "from cfg import config\n", + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('data/instruments.csv') # Read in our CSV file\n", + "df.set_index('fname', inplace=True) # Set the fname collumn as our index\n", + "\n", + "for f in df.index:\n", + " rate, signal = wavfile.read('data/clean/'+f) # Grab rate and signal from each file\n", + " df.at[f,'length'] = signal.shape[0] / rate # Set the length of each file based on signal and rate\n", + "\n", + "classes = list(np.unique(df.label)) # Grab classes\n", + "class_dist = df.groupby(['label'])['length'].mean() # create a distribution of the classes based on the mean number of each" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEJCAYAAAA3l/RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hc1fG/39ldadUlW5KL3OQKNggbXADbuGAgIbRACCWEUNIhtITiEAILpJNfwhcSCCQhOAQIHQwOBGLjbmMb996Nm2zLtrq0dX5/3Ct7LauttNpVOe/z7KPVveeeMyvtfnbunHNmRFUxGAwGQ2xwxNsAg8Fg6EwY0TUYDIYYYkTXYDAYYogRXYPBYIghRnQNBoMhhhjRNRgMhhhiRNcAgIh4RORf8bYjHBH5UERuilJf54nIprDfd4rIBdHo2+5vnYhMilZ/ho6LEd1OhIh8Q0SWiUi5iOy3RW18nGxREamwbTksIjNF5NrwNqp6sapOa2Jfgxpqo6rzVPWUltptj/eiiPyiVv+nqersaPRv6NgY0e0kiMiPgSeBXwHdgb7AM8AVcTRruKqmAacALwJ/EpFHoj2IiLii3afB0FyM6HYCRCQTeAy4XVXfVtUKVfWr6vuqel8917whIoUiUiIic0XktLBzXxGR9SJSJiJ7ReRe+3iOiHwgIsUickRE5olIo+8xVS1S1ZeAHwI/FZFsu7/ZIvId+/kgEZlj21MkIq/Zx+fa3ayyveZrRWSSiOwRkQdEpBD4R82xWkOPtl/HURH5h4gk2X3eLCLza/091Lbhe8ANwP32eO/b54+FK0TELSJPisg++/GkiLjtczW2/UREDtp3HLc09jcydByM6HYOzgWSgHciuOZDYDDQDVgOvBx27u/A91U1HTgdmGUf/wmwB8jF8qYfBCLZZ/4e4ALG1HHuceBjoAvQG3gaQFUn2OeHq2qaqr5m/94D6Ar0A75Xz3g3AF8CBgJDgIcaM1BVn8f6W/zOHu+yOpr9DDgHGAEMt19PeN89gEygF/Bt4M8i0qWxsQ0dAyO6nYNsoEhVA029QFVfUNUyVfUCHmC47TED+IFhIpKhqkdVdXnY8Z5AP9uTnqcRJPdQVT9QhCWWtfFjCWieqlar6vw62oQTAh5RVa+qVtXT5k+qultVjwC/BK5vqq2NcAPwmKoeVNVDwKPAjWHn/fZ5v6r+ByjHCrEYOgFGdDsHh4GcpsY2RcQpIr8RkW0iUgrstE/l2D+/BnwF2GXf8p9rH38C2Ap8LCLbRWRqJEaKSAKWl3ykjtP3AwIssVcK3NpId4dUtbqRNrvDnu8C8ppsbMPk2f3V1/fhWl+AlUBalMY2tHGM6HYOFgHVwFeb2P4bWBNsF2DdBufbxwVAVZeq6hVYoYd3gdft42Wq+hNVHQBcBvxYRKZEYOcVQABYUvuEqhaq6ndVNQ/4PvBMIysWmuJh9wl73hfYZz+vAFJqTohIjwj73oflldfVt6GTY0S3E6CqJcDDWLHDr4pIiogkiMjFIvK7Oi5JB7xYHnIK1ooHAEQkUURuEJFMOxxQCgTtc5fak00SdjzYmH0i0lVEbgD+DPxWVQ/X0ebrItLb/vUolvDV9H0AGNCEP0VtbheR3iLSFSv+XBMPXgWcJiIj7Mk1T63rGhvvVeAhEckVkRysv32bWgNtiB9GdDsJqvoH4MdYEzqHsG6tf4Tlqdbmn1i3xHuB9cDiWudvBHbaoYcfAN+0jw8G/ocVo1wEPNPI2tVVIlKOFZL4DnCPqj5cT9vRwGd2++nAXaq6wz7nAabZqyauaWC82ryCNTm33X78AkBVN2Ot9vgfsAWoHT/+O1ZMu1hE6vr7/QJYBqwG1mBNRP6ijnaGToiYJOYGg8EQO4ynazAYDDHEiK7BYDDEECO6BoPBEEOM6BoMBkMMMaJrMBgMMcSIrsFgMMQQI7oGg8EQQ4zoGgwGQwwxomswGAwxxIiuwWAwxBAjugaDwRBDjOgaDAZDDDGiazAYDDHEiK7BYDDEECO6BoPBEEOM6BoMBkMMMaJrMBgMMcSIrsFgMMQQI7oGg8EQQ4zoGgwGQwwxomswGAwxxIiuwWAwxBAjugaDwRBDjOgaDM1ERGaLyJdqHbtbRF4QkTcbuXaSiHxgP79cRKa2pq312HCniGwQkZcbskFEyus5/qKIXG0/ny0io1rT3o6CK94GGAztmFeB64D/hh27DrhPVec1tRNVnQ5Mj7JtAIiIU1WD9Zy+DbhYVXfYv7eKDYYTMZ6uwdB83gQuFRE3gIjkA3nAHhFZax9LEpF/iMgaEVkhIpNrdyIiN4vIn+znL4rIUyKyUES213iSdSEWT4jIWrv/a+3jk0TkUxF5BVhTz7V/AQYA00Xknlo29BeRRSKyVEQerzXen0RkvYjMALrV0/dF9vXLReQNEUlr9C/Zieg0oisiV4qIisipMRgrS0RuC/s9r7HbzSiOvdD+mS8i34jFmJ0VVT0MLAG+bB+6DngN0LBmt9ttC4DrgWkiktRI1z2B8cClwG8aaHcVMAIYDlwAPCEiPe1zY4Cfqeqwemz/AbAPmKyqf6x1+v+AZ1V1NFAYdvxK4BSgAPguMLZ2vyKSAzwEXKCqZwHLgB838Bo6HZ1GdLHe8POxPhitTRbWrRsAqrpPVev1WKKJqtZ8EPKBiERXRJxRN6jjUxNiwP75aq3z44GXAFR1I7ALGNJIn++qakhV1wPdG2g3HnhVVYOqegCYA4y2zy0JCxtEyjiOv46Xwo5PCBtvHzCrjmvPAYYBC0RkJXAT0K+ZdnRIOoXo2rc344BvEya6InK/fVu2SkR+Yx8bISKLRWS1iLwjIl3s48cmCkQkR0R22s9PE5ElIrLSvmYwlncy0D72hO111txuOkXk9/a4q0Xkjgbs/oqIbBSR+fYtZ83Ei0dE7g1rt9a+tQ2f9PgNcJ5twz22DfPsW77lIjLWbt/oraihQd4FpojIWUCyqi6vdV6a0ae3idc3dK6iGeOGoxEer0GAT1R1hP0YpqrfbqEtHYpOIbrAV4GPVHUzcEREzhKRi+3jZ6vqcOB3dtt/Ag+o6hlYIvRII33/APg/VR0BjAL2AFOBbfab7r5a7b8H9AfOtMd4ua5O7VvQ57AmOsYDuZG9ZKYC82wb/ggcBC60b/muBZ4Ka9vgraihflS1HJgNvMDJXi7AXOAGABEZAvQFNkVp+LnAtfYXeS6WJ7okCv0u4LhzckOt8a6zx+sJnBSfBhYD40RkEICIpNiv22DTWUT3euDf9vN/279fAPxDVSsBVPWIiGQCWao6x247DeuN3BCLgAdF5AGgn6pWNdL+AuAvqhqoGbeedqcC28NuEev6QEdCAvBXEVkDvIF1C1hDS25FDdb/ZjjH32PhPAM47b/7a8DNquqto11zeAdYDazCutW/X1ULG76kSdwF3C4iS4HMWuNtwXJGnsUKZ5yAqh4CbgZeFZHVWCLc6vMo7YkOv2RMRLKB84HTRUQBJ9Yt0ls0fqsUToDjX1LHJkJU9RUR+Qy4BPiviHwH2N6QSU0ct6Fbx3BbTrCnAe4BDmCJgwOoDjvX0lvRqJI/dYYbaxVAT/vRHes1JmC9Z12+4V1KQz1SMoCg/agEDtuPopqfhZNHlLa2var6DmH/L1XdCZxuP6/GEqHa18zG8pBR1ReBF+3nN9dqV+/Mv6oqcJ/9qLPvRuzOD3sebsMO4Nywpr8JG+9H9fQ1Kez5LI7Hlg216PCiC1wN/FNVv19zQETmAEeAW0XkFVWtFJGutrd7VETOs9dZ3sjxb/OdwEis27erw/oagOWRPmU/PwPL80ivx56PgR+IyGxVDdSMW0e7jcAAEcm3P8TXhp3biTWzjR1L7F/H9WW1bMgE9qhqSERuwvryiQv5U2ckYInSSGAwx8W1Rmi7NNaHup1zafwuhB6frvRhifB2rL/pprCf2wsnj6hvDavB0Cp0BtG9npOX3bwFDMVaDL5MRHzAf4AHsWZb/yIiKVgf1Fvsa34PvC4iN3LirO21wDdFxI+1vOYxW7wX2JNnHwJ/Dmv/N6zZ69X2NX8F/lTbaFWtspedfSQiRZwYq3sL+JY9O7wU2FzH614NBERkFZYH8wzwloh8HfiUGHm3YQI7CktkR2ItOXLHYnwgEUvM87Bm+8Px9fh05TZgBVYccwGwpnDyiFCMbGsSIlLAiasIALyqenYTrs0GZtZxaoq95M0QY8S6YzC0RUQkTVXLRUSwhHtLHWsq2xT5U2ckYcWtL8aaoGsVgfWOyZmrXdyNerrNoAQrTj8fS4Q/K5w8orE4vcHQZIzotmFE5B4szzsRyxv7bs3EX1sif+qMbljhjsuBC4GU1h6zFUW3NtVYdzbvA+8XTh6xNwZjGjowRnTbACLyDifHZR9Q1f/W1b4tkD91xjAskb0cOJsYr4SJoejWZinW9t83CiePMCs+DBFjRNfQZPKnzuiFtcHkRmBQPG2Jo+iGswwrRv9K4eQRZXG2xdBOMKJraJD8qTOcwFewNnVcTBxXPYTTRkS3hnLgFeC5wskjau9IMxhOwIiuoU7yp87ogiW0twN94mzOSbQx0Q1nGdZOwlcLJ49oU+ufDW0DI7qGE8ifOuNU4G6sEEKrT4g1lzYsujUUY2XrerJw8ojieBtjaDsY0TUAkD91xgDgcax1zc1J0hJT2oHo1lAKPA38oXDyiPq2fBs6EUZ0Ozn2cq+fA9/H2mbbLmhHoltDGdZa6/9XOHlEUbyNMcQPI7qdlPypM9KAe4GfAO0us387FN0ayoEngV8XTh7R5tZcG1ofI7qdjPypMxKxvNqHqKfcSnugHYtuDbuBnxROHvFGvA0xxJbOktrRAORPnXElsAErl267FdwOQh/g9R6frvxfj09XDo23MYbYYTzdTkD+1BnZWPHEaxtr217oAJ5uOH6syTaP2WTR8TGebgcnf+qMrwLr6ECC2wFJwCreuKnHpysvibcxhtbFeLodFHtzw9OcWG6lw9DBPN3avADcbbzejonxdDsg+VNnXIrl3XZIwe0E3JqrB96YOWtg7fy/hg6A8XQ7EPlTZ2Ri7YK6Kd62tDYd2tNVPfoU3/dmczgXeAz4xZTzt7WpxOqG5mM83Q5C/tQZQ7H2/Xd4we3o3MzfNmVzuAdWcqFHgVkzZw3sHWezDFHCiG4HIH/qjIuxqq7GNd2ioeX01Z3zL+Sjc2odngismjlr4MRojiUiPxORdSKyWkRWikij5X9aExHxiMi98bQhFhjRbefkT51xL/ABkBFvWwwtw6mB3Q/z0PB6TncFPp45a+A3ozGWiJyLVe3jLFU9A6vE0u4W9tkqNRdbq994YUS3nZI/dYY7f+qMF4EnMP/H9o9q6Mf85mgyVfVVkQarbNNLM2cNfCQKI/YEilTVaw2vRaq6T0R2isijIrJcRNaIyKkAIjJGRBaKyAr75yn28ZtF5A0ReR+r0jUicp+ILLU96EcbMsL2tjeJyP+AU8KOzxaRX9mVu+8SkRdFJLwKd7n9c5KIzBGR10Vks4j8RkRuEJEltv0Do/C3iirmw9oOyZ86oztWRV8Tv+0gnMmyeSNYcUYTm3tmzho4beasgS1JUPQx0McWqmdEJDx0UaSqZwHPYuXnAKts/QRVPRN4GPhVWPtzgZtU9XwRuQgYjFWUdAQwUkTqnPAUkZHAdcCZwFXA6FpNslR1oqr+v0Zey3DgLqwiqDcCQ1R1DFZVjzsauTbmtFnRFZGgHWdaZX/rjo3x+OWxHK+p5E+dcSZWna5z422LITq4tWrD3TwR6fv7W8B/Z84amNWcMVW1HBiJlaj+EPCaiNxsn37b/vk5kG8/zwTeEJG1wB+B08K6+0RVa9JWXmQ/VgDLgVOxRLguzgPeUdVKVS0Fptc6/1oTX85SVd1ve+3bsD1uYE2Y/W2GNiu6QJWqjlDV4cBPgV/H2yARiWupmvypM84H5tEGKzkYmolqlYefuV0Em+O1TgYWzZw1sHZR0yYOrUFVna2qjwA/Ar5mn/LaP4NATTz1ceBTVT0duAxICusqvEKGAL+2P7sjVHWQqv69ITMaOBfebwBbr0REsEItNXjDnofCfg+F2d9maMuiG04GcBRARNJEZGZYzOkK+3iqiMywPeO1InKtffw3IrLeji/9vr4BRKS/iCyyY1GPhx2fJCKfisgrwBoRybe/7WvO3ysiHvv5bBH5o4jMFZENIjJaRN4WkS0i8ouW/AHyp874EtaEWWpL+jG0LS7m/aV92TWgBV2cCiyeOWvgqEguEpFTRCTcAx0B7Grgkkygpvz8zQ20+y9wq4ik2eP0EpH6kivNBa4UkWQRSccS8/rYieWZA1xBO8r9XJs29y0QRrKIrMT6Ru0JnG8frwauVNVSEckBFovIdODLwD5VvQRARDJFpCtwJXCqqqqINHQr9n/As6r6TxG5vda5McDpqrpDRPIbsdunqhNE5C7gPaw3yhFgm4j8UVUPN/H1H8PeYfYm4I70WkPbpYseWfZNpkVjg0c34JOZswZeMOX8bZ838Zo04Gn7MxEAtmKFGi6tp/3vgGki8mNgVn2dqurHIjIUWGQ5pJQD3wQO1tF2uYi8BqzEEvx5Ddj7V+A9EVkCzOREL7hd0WZ3pIlIuarWfFueixUUPx3ri+KPwASs24dTgP5Y3vB/gdeBD1R1nr3U5HOsTQMz7OO+esY7DPRQVb+IZGAJeJqITAIeUdXJdrt8u5/T7d/vBdJU1SMis4GfqeoCETkf+KmqXmi3mwvcqaorI/k7rHr4zK9c7XvkNT8J7S7ReGvS3nekiYYOP833gl04Gs0Um0eAKVPO3xbRe8wQW9pFeEFVFwE5QC5WPoFcYKSqjgAOAEmquhnLq1wD/FpEHlbVAJaX+hbwVeCjxoaq53idsSWbpFptw+NJtWNNkd1ZeDIvGe7Y/s5c9z0bEvF7G7/A0F64lee3RllwwVrL+8nMWQNPj3K/hijSLkTXXivoBA5jxZYO2h7pZKCf3SYPqFTVfwG/B86y40qZqvofrAq3IxoYZgHW8hVoOFHMAaCbiGSLiJv6b8dahifzQqwvi8SecmT0XPfdq43wdgzyddu88/mktXZ/5QAzZ84a2GZ2J9qflZV1PLLjbVs8aA8xXbBmRG9S1aCIvAy8LyLLsGJBG+02BcATIhLCSgr9QyAdKw6UZPdxTwPj3QW8Ysdi36qvkS32jwGfATvCxo8enszRwLuExXB7yNHRc913L5vgfbLAR4KJ7bZTnBrY9RAPn9nKw3TD2r02bsr52/a38liNYs9jNOTwdCrabEy30+LJHAAsop5yOgc1a9l53idP95JYO6zRqWiXMV3V4E95dMPprInV7f8aYMKU87cVx2g8QxNoF+GFToMnMxv4kAbql3WT4lHz3Hetc+Orjp1hhmgwmsXzYii4YN39fTBz1sDkGI5paIROJ7r2Xu/asaWfxdsuPJkJWDuBhjTWtJuUjJzvvmtdEt6q1jfMEA2StXLdHfwhHknJx2Ft5zW0ETqd6KrqL8N2y9Q8fhlvu4C/YC2DaxK5lvBuMMLbDlCt8PDTVCeheM2h3DRz1sDvxmlsQy06nei2STyZ9wC3RnpZjpSeZYS37XM5by/vzZ78OJvx9MxZA0c23szQ2hjRjTeezLFYu32aRY6UnrXAfefGZLyVUbTKECWy9dCSa3nlvHjbgbUS5s2ZswZ2ibchnR0juvHEk5mDlUmpRbed2VJ25nz3nZuM8FpUvvUKRbdeTdEtX6PizZdPOl/x72kc/u61HP7utRTdejUHLhhJqLSEUPERjtx5C0W3Xk31/E+PtS9+6G6CRSftYm0U0dChx5jarGQ0rUQ+Vj5eibchnZm2vE63Q1MwrUC+2TXr0fuPFPeKxicgW8rOXOi+Y+U471ODK0mKalKcov88SdW2pThTMsn79jMAHP30BSq3LkGcLlxZPcj5yt04kk7eqbzn2VtxJCaDw4E4nPS86Unr+tn/oGr75yR260/OpT8BoHztLELVZWSMuqLZtgZ2bKVyxttkP/MSJCRQ/MDtuM8Zj6t3v2NtUq+7idTrrFTE3oVzqHjzZRwZmVS+/QpJF11G0vlfoviB20kaPxnvwjm4Bg/FmRP55rHv8syOLIrHNPvFtA6XAA8CbWEeo1NiPN34cee/MjNuu7BP3rIjDkfESXDqoouUj1jgvnNrCtVRTQaSVnAB3b5+YgGApPwR5H37z+Td+icSuvaiZPEb9V7f/fpfkXfL08cEN+StwLt3A3m3/gnVEL5DOwn5vVSs/R/pZ17SIlsDu3aQMKwASUpGnC4Sho/EG+a11qZ61kcknf9l6xenC3zV4PeBw4EGA1S+9Qqp134rYjsG6uZ5E/m0rQluDY/NnDXwgngb0VkxohsHCqYVnAH8FuCAyzV6ct9evtkpyVFJUtJFyocvdN+xNZWqqCVhT+pzOs7kE6vIJPc/C3FY6YXdeacQKCuKoEdBgwFUFQ34EIeT0iVvkz7ycsTZspsvV/+B+FcvJ1RSjFZX4ftsPsGDhXW21eoqvEsXkjRhCgBJUy7Gu3QRRx+4ndSbvk/Ve6+TdNElSFJky1xd6t/xMzxtedLKAbwyc9bAvHgb0hkxohtjCqYVJAGvErbFNyTS845uOQX35mbPDlmJcVpEllQMX+C+c3s0hbchyld/QvKAetK5inDw9YfZ/+JdlK208g053CmknDKW/S/eiSuzO+JOxbd/MymDaxfBjRxXvwGkXnczR+/7IUcfuB3XwCH1Crl30VwSThuBIyPTsistnS6/fprsv7xCwuCheBfNwz3hAkp//xjFnnvxrVvVuAGqgQd4vMqNN6XFL6Z1ycVapmiIMUZ0Y8/PgWEnHRVx/jctddLEvr1WFzqddbtmEZAlFWcsdN+xPZWqspb21RAlC18Dh5PUYZPqPN/jht/R8+b/o9vXH6Vs+QdU77byv2eefTV5tzxN1/O/Q8m8f5F13jcpW/VfDr37G4oX/rtFNiV/5Uqyn3+Vrv/3ApKeibN33zrbVc/6L0lTvlznuYp/Pk/qN79N9cyPcA0ZSsZ9Hsr//qdGxz6X+QuGse7k/2/b5LKZswZeG28jOhtGdGNIwbSCUzle6K9Oip3OERf1yXN9kJqyrKXjZUrlGQvdd+xsLeEtXzOTym1LyLnsXuyE1SfhSrcSSTlTs0gZci7efZtPOO87sM1q16UXFWtnkfvVqfgP7cJ/ZO9JfTWV0FGrXFfwwH6882Ydj9mGtykvw7f6c5LGTjrpXGDPLoKHD5E4fBR4q8HhABHwNZzkLUUr1tzGU/HYddYSnpo5a2DXeBvRmTCiG1ue4cTaTnWiIjk/zc0e+b3uuXP8Vsa0ZpMplQWL3HfsTKOytCX91KZq++eUfvYm3b72MI6EunPvhHzVhOxVbCFfNdU7VpCY2++ENsXz/kXm+BsgFAC1IyviQAPNz2JZ7LmXoluuovhnd5F+11Qc6RlUTn+DyunHJ/u88z8lcdQ5SPLJ8dryv/+ZtFtvAyDp/C9T/dF0jtz+LVKuaWBCTbX8MaZmOgjFtY5eM+gWCkmz14kbIsdkGYsRBdMKbgD+Fel1qaHQutf2Fmb0CwRaVIyyVJPXjvU+3beclIxIrz00/Xd4v1hDsKoUZ0oWmeNvoHTxG2jQj8OeYHPnnUL2l35EoOwwhz96iu5ffxR/cSGH3rZLw4VCpA6bSObY43ezlZsX4Tu4g6zx3wDg6Ky/U7VjOQnd8sm97L4GbWprWcau0tfmfY3X28ImiIioqkxftHr1hf19vtTrPB7PnHjb0xkwohsDCqYVZAKbgO7N6kC1ZOqRo+tvKC1vUdn1Mk1eN9b7VO8yUjNb0k9boC2Jbq4eWPwkt7V8FjCGhEKye/PmsQcOHTw2A7oGOMvj8QTiaVdnwIQXYsMvaa7gAohk/ia767nf6Nl9rldodkrHdKk6baH7zj3pVJQ02xbDCYiGDjzGA41mhmsrqBI4crjXnEULr8sJE1yw0kDWLshqaAWMp9vKFEwrGAksIUpfcO5QaMu/9h9wnOrzD2xuH+WatH6s96lepaS1W4+3rXi6t+mTy8YxL6Ly5/EiEEhYs2b1hUnl5dmD62lSAgzxeDyR73k2NBnj6bY+fySKf2evwzH463k9ej6blTG/uX2kSfWwhe4792ZQbjzeFjBEN8xtD4KrSvHuL06ft2jhtac3ILhg1R/8bazs6qwYT7cVKZhWMAX4X2v1P9DnX/CvfYVnpKmmN976ZCo0acNY71M9S0jLirZtrU28Pd0E9W17jpvy3PjadFWGiorMBWtWXzjE70/ObeIlCgzzeDzRr/1nAIyn29o80pqdb0tMGDehX+/Dy92JG5pzfapUD13ovmN/FmWmhlYkqPofxONvy4IbCjl2bVg/Yfnyzy8fF4HgglXAteGlI4YWYUS3lSiYVjAZaPUlRH6R/Jt6dh/4q+wuzVrukyreoQvddxZmUXY02rZ1VM5j9sK88vWnPuo5wC037+bWW3azfl3d85sbN1Zz0YXbmTvH2pG9e7ePH/5gD9/77p5j1wSDyn337ae6usU7wFHFV1TUZ87Chdd2Lyrqd1Yzu/mmx+Pp1WJjDHViRLf1aFUv9wREEl/NSJ94UZ+8JcUOR8TimSLeUxe67zzYhdIjrWFeRyJVy1Z9jz+f9+c/HWb06GT+8WIfnnu+N337JZzUNhhU/vbXI4waddwh/uD9Mr7zna48/Eh3Xn/DusGYPr2UCy9IIympZR9Hvz9x1Yrll+7ZsH7SRA25WlItOhG4u0XGGOrFiG4rUDCtYBIwMdbj7ne5xkzq26tqXnLS6t0lISZPq2Don8s57Zly/m/xyTu83tvo54xnyxnxl3Im/PXwKY/v/UF5F0qP+A/vYf+Ld7HvhR/h3WtFLjQU5MC/f0bI34mLEKuWPsbU7KqKoGPNmmou/ooVSk9IENLSTt6I9u67pZx3XipZWcfPuVzg9SlebwiXUygvD7J4USUXXnRyLuKmm8WRXTvPmL940TVnVFR0GdDsjk7k+x6Pp92ubmnLmCTmrYMnXgMHRfJu657bfZy3ZOETF+o5o/KcjjKvMvL5Ci4c6GJY7nEBmDLAxeWnuBARVh8Ics0b5X1X3H7n5s/iDB4AACAASURBVL7Lz0rJmnhzkiuzG8VzppF75VDKVvyH1NPOr3fLb2fgGl5Z04PCcVv3+8nMdPLE7w6xbbuPIYPd3HZ7NsnJx32YokMBFsyv4Inf92TTpkPHjl9+RSa//e1B/D7lnntyeOmfxXzjhqx6c1c0Rnl5l/lr11ww1O9PinbOh3Tgh8Bvotxvp8d4ulGmYFrBBOLg5Z6AiHNBv6yxPzmn78qDTufBdLcwNNfB3tITV6qkJcqxD3uFTxGBZPENudo5tyrVV1SqAS84nISqy6nauoTU08+Px6tpE3TX/Yuu4O1xAMEgbNni5bLLM3juud4kJQn//veJc5HPPHOY73y3K07niWLavbuLP/whj6f/1At3koPDhwP07ZPAb359kMcfP8Ce3b4m2RMKOXasWzdp5Yrll473+5Oyo/Qya3OXx+NxN97MEAnG040+d8bbgBqOOJ1nXdAn79Ad6w+sWbG/rODs3iffAr+zwc9PZ3o5WBFixjesFLA/HefqsvyNP1etDfYNZF58j6t4watknntNs72x9o5Dg/sf5aen1vyem+skN9fF0KGW1z9hQiqv1hLdzZu9/PIX1h6DkpIgS5ZU4nQK48Yfr6T0wgtHuOWWrrzzTinnT0mjRw8X/3ypmAcfrL80kCrVhw7lL968aexYVWdr11/rAdwEPN/K43QqjKcbRQqmFXQDLo+3HeEEvKHcO18vLxh4Wc7aFLectK/+yqEJbPxRGu9el8LPP7Xivn0zHXz2nZTkw98r2dnVWX0kWH6EhOzeFH3w/zj03m9blHax3aGqP+KP+9MpO1ZFt2tXF7m5LnbbXunyFVX063di8rh/vdyXl1+xHhMmpHLnnTknCO6qVVXkZLvo3TuBam8IhwMcDsHbwAoGny9p+fLPLyvctPG8SarORrPVRYl7PR6P0YkoYjzd6HIzcPI0dpzQgLL7T7vJOjeLogtzTj8vGFrz+r7CLn0Cgd61207o52Lb0SqKKkPkpFifsSTxD8qf+2C5TPjFkS8+f79r6rBJuDK7UbzglUazgHUUhrF27tksOilc9KM7svn1rw7i90PPni7uuz+X99+3smdedlnDidxUlZf/VczPH7Y82ksuyeDXvzpIMAh33Z1TR3sO7dxx5uY9e04fF43XFCGDgSuBt+IwdofE7EiLIgXTCjZjvUnjjqqy9697caY66XlDz2PHRbX4ocNHN15TVn7O1iMhBnax4rrL9we57NVK9tyTdiyMMGdngPc2Bfj1Renb+r4/oieDJ6a4MrtzdPY/6HbVQ/F6aUBsdqQlqHfL89zUJxF/XGYPVdHy8uz5a9dMKQgE3PHcNbjU4/G01SKb7Q4julHCXiZWf9nZGFOxuYIdv9qBu7f7mIh2v7o7/sNWTvQpY1PmDnl999hX1/hdCQ5IThCeuNDN+L7WzY+qctG/Knn96hS6JAvLCtk94e3MngGcrq4X3UZS7/hWpGl10VX1PcbUnQPZGpcMYsGgc8uG9ROrjh7tdUY8xq+DMzwez5p4G9ERaPfhBRHpATwJjAa8wE7gblXdXE/7clVNE5F84ANVPT1Kpnw3Sv1EhdQhqZz+Yv0vbQVM2PDNgZve23cgcZDff9KEjIjwyY3HY5CjetDn6A8rdkz0PplSSNfmp6lsJ0xi5qKBbI35KhRVqg4eGPDZli3njlN1tJlQFXAVVs5dQwtp1wFysVy4d4DZqjpQVYcBD9KS3LXNoGBaQVfga7EcMxpUOxynXNmrR+7zmU3LWOaWQP857rsre3DkQGvbFk/StWTFt/lLzKtAeL3Jy5Ytu6Jo8+Zxk9qY4EI7fH+3Vdq16AKTAb+qHislraorVXWeiNwnIktFZLWIPNpQJyKSJCL/EJE1IrJCRCZHaMcNhJVUb1eIpD3dNWv8Vb16zK8UqWisuVsC/ee6767syeEWVyxuk6iWPM4D3R1ozD4bqnJg29ZRi5Z8dvWo6qqMFpVlakUKPB7PoHgb0RFo76J7OvB57YMichHWhNYYYAQwUkQaiv/dDqCqBcD1wDQRiWTy5JoI2rZJtiQmjh/fr/fB1e7ETY21TZRA/znue6rzKNofC9tiyfX8c10uh/JiMZYqodKS3LmLFl6TtG/f0BaVYooRxtuNAu1ddOvjIvuxAlgOnErDqwrGAy8BqOpGYBfQpAmUgmkFucDYlhjbVvCL9L+hZ/f8J7pmzW2sbaIE8me77/H14lCHEd483bPwUqbH5H8ZDDo3rVl94YZVq748IRhMbC85Dq6KtwEdgfYuuuuAkXUcF+DXqjrCfgxS1b830E9LtlpdTvv/Ox5HxP3PzIwJF/fOW1zikAYrSyRKsN9s9499veXQvliZ11o4NLjPw4OntfY4qlTs3z94zsIF1w0sKenR6uNFmdEej6ethj/aDe1dLGYBbhE5tnJAREYDpcCtIpJmH+slIvXvrYS5WHFZRGQI0Berem9T+GpzDG/r7ElwnTOxb++yhUlJDc5YJ0iw36eJPw60a+FVDd3NEwdTqWhVj7O6OmXJsqVfLd665ZyJ4GiPK4cEa6OEoQW0a9FVa5HxlcCFIrJNRNZhZfh6xX4sEpE1wJtYWZPq4xnAabd9DbhZVU/OhViLgmkFSUCHzQITFOn9/R65Qx/K6TpHrTIudZIgwb6fJv440EcOtsv9wQWsmjeSpSNaq39V2b9ly9mLly752pjq6vT2nhzcxHVbiNkc0QIKphVcBPw33nbEgpxA8PM39u3vmxMM1Vv6xa/O3VN8v5cvtPtJ24yjTbQ2RySqd/Nf+Va+i0DUcxmoEiwp6b5g/brJZwWDCc1PmNu2CAE9TcXg5tOuPd02wJfjbUCsKHI5R07p00s/SUleXl+bBAn2mZl4L/2ksH14vKrVP+chaQ3BDQZdG1av+tLmNasvmtCBBBcszeiQIbVYYUS3ZXwp3gbEkpBItx93yxlxZ7ec2UEI1tUmQYK9Zybeq/2kcE+s7YuUC/joswFsj2quDFXK9u49Zc7CBdcOKS3tNjSafbchLo23Ae0ZI7rNxN6FFt8EBPFAxPFpasqkCX17rdvrctY5eeaSUO+ZifdKvuzfHWvzmkqGFi+/mb9FNXdDVVXa4qVLrirfvm3MRHCcnLy441DXiiFDEzGi23xGxduAeFLqdJ5xce+85LfTUpfUdd4loV7/S7zP0V/2fRFr2xpF9ejjPNBTWrZU8BihkOzZtOncJcuWXnmO15vas/Er2j15Ho+nodVAhgYwott8OrXoAqhIl0dys8fc0qPbHB+cVGfGJaFenyTe7xog+3bFw776+BYvbMyhqMXiqErg6JGecxYtvLbLwQODOlvqwzPjbUB7pT2uFWwrjG7tAfb8fQ9lK8twZbgY/Esr9FiypISD7x7Eu9/LwIcHktw/uc5ry1aXsf+V/RCCLhO6kHuptehg9192U72nmvQR6fS4ugcAB987SFKfJDLOajj5dn0sS06aOL5f7w3/3leYMsAf6Bd+ziWhvI8T79//Jd9vd23TXv3q6yNW9NZdC77Ef1qcDDwQSFi7Zs0FieVlOfGthxc/zqSTrNyJNsbTbT6t7ul2Gd+F/J/kn3DM3dtN3zv6kjIkpd7rNKTse2kf+T/OZ9CvBlHyWQnVe6up3m2VTx/8i8FUbq4kWBnEX+ynantVswW3hiqHY+gVvXp2fSEzfUHtcy4J9fw48YHEgbI3rh6vQwN7HuGhgpb0oUrJnt3D5i5aeO2w8rKcuOTabSMYT7eZGNFtBgXTCnoArb4WNfWUVJypJ87HJOUl4e7ZcEKzqu1VuLu7SeyWiMPlIPPsTMpWlIET1K9oSNGAggMOvn2QbldFKTwnkv7Hrl3GfT2vx/wqkcrwU04J9fw48X73YNmzMzqDRYhq6Mf89nAKlc3+dqmszFi45LOveXfsGDkBpLN/dozoNpPO/sZpLm06nus/6ieh6/F0rK4uLvxH/STlJZHQNYFtj2wjc3QmvgNWGDa5X90hiuay0Z04fnzf3vvXJiZuCT/uFO3xUeIDSUNk946oDtgEzuTzeWeyfHhzrg2F5IuNG8Yv+3zZFWN9vhQzgWQxyOPxNLTL01APRnSbR5sW3fo37ELPG3oy6PFB5FycY3m5V3bj4PSDfPHnLzgy+0jUTPA5ZOD1ed37/LFL5gkZy5yiPT5MnJpyinwRM+F1a9WGu/ldxNnDVPEfPtx7zqKF1+UeOtS/bf/PY48AzfoS6+wY0W0eLYoLtjYJXRPwH/Ef+z1wNEBClxMLEZQuLyW5fzIhbwjvXi99b+9L8cJiQt76S4BHjEjSC1mZEy7p3XNRaVjGMqdo9/8k/jTlVPlie/QGqwfVqkd4KNFFMKJKDH5/4uoVK76ya/26yRNDIVd0bwU6DibE0AyM6DaPuM/CN0Ry/2S8B7z4DvkIBUKUfFZC+pnH7wQ1oBz+5DA5F+cQ8oWOr1ZV61y0+SIh4dyJfXuXLklyr6s55hTtPiPxp2lDZde2qA8Yxpf5YGk/dg5santVjn6xq2D+4kXXFFSUZ5tKCQ1jRLcZGNFtHn1jMcjuZ3ez/Rfb8RZ62XjPRo7MOULp56VsvGcjVduq2PnHnez8/U7AiuPu/IP1XJxC3jfz2Pn7nWz56RYyRmeQ1Ot4IYzDMw+TNS4Lh9tBUp8kUNjy0BZSBqecNHEXLQIifb7do9sQT/bxjGVO0W4fJD6YMUx2torwZumRZTfyYpN3nVVUZC34bPHVwV27RowHicrGiQ6OEd1mYLKMRYidzrEq3na0Z7oFAkvf2Fs4oGsolA0QUjl0me8XJeu0f5M9y8ayjImGDj/F9wNdOdJokdJQyLFz48bxRw4X9TurqeMbAPB6PJ5IyloZMJ5uczCZ81vIQZdr9OS+vfyzUpJXAjhEc99PfCjzNNmxNVpj3MJftzQmuKp4Dx3qO3vhgut6GsFtFm6Px9NeSg21GYzoRk5MQgsdnZBIj7u65ZzxYztjmS28WQWyfUvjVzdMP90+fwofn9NQG7/fvXL555fu27hh4iRVZ/us5Nw2iGgJnYj8TETW2VW6V4rI2a1lWNiYL4rI1a09TlMxohs5RnSjhYjjk9SUSRP79lqz3+nc7xDNeS/x512Hy9bNze3SqYEvfs7P660CocrhnTuHL1i86JoRlZVd+jd3HMMxGg3f1CAi52KlhTxLVc8ALgDabCa61sKIbuSY8EKUKXE6R3ypT17ie2mpSx2i2e8kPpLdLOFVDd7HL0uSqT4pabgqWl7Wdd7iRV+X3V+c0eLcC4ZjROLp9gSKakphqWqRqu4TkYdFZKmIrBWR58XCZR+bBCAivxaRX9rPp4jIChFZIyIviIjbPr5TRH4rIkvsR/gcwQQRWSgi22u8XnucJ+xx14jItfbxSSIyW0TeFJGNIvKyiDWxKiIjRWSOiHwuIv8VkYgTJ5mEN5HT6tt/OyMqkv1QTteu76elznmm8ODYdxIfkat8j25aqYNOaWofo1gyv4DVJyWgCYUc2zasn1h+5Ejv86JrdWS89957bN68mdTUVG677TYAZs+ezfLly0lJsXJpTJkyhcGDT86rXl1dzfTp0zl48CAiwuWXX06fPn345JNP2Lp1Kz169ODKK62akatWraKqqopzzmkwwhItmuzpAh8DD4vIZuB/wGuqOgf4k6o+BiAiLwGXqur7InIz8KaI3IlVpeVsEUkCXgSmqOpmEfkn8EPgSXuMUlUdIyLfso/VJFzvCYwHTgWmY9VNvAoYgbXJIwdYKiI1m3nOBE4D9gELgHEi8hnwNHCFqh6yRfqXwK0R/A2M6DYDs/WxtRCRz5KTJp7Xr/f61/YWpr3Nw92+5nt00wod3KjwJmnl+jv5/QkerCrVhw72X7x587ljVZ1RL8kTKSNGjGDMmDG88847Jxw/55xzGDu24Q1zH330EYMGDeKaa64hGAzi9/uprq5mz549/PCHP+Ttt9/mwIEDdO3alVWrVnHDDTe05ksJJ7upDVW1XERGAucBk4HXRGQqUCYi9wMpQFdgHfC+qq6zRfh94FxV9YnIcGCHqtbcCU0Dbue46L4a9vOPYcO/q6ohYL2I1HxRjAdeVdUgcEBE5mBlDywFlqjqHgARWQnkA8XA6cAntuPrBPY39fXXYEQ3cswSmVam0uEYdlnvnqX3Hyle+1bJI0Ov9nk2Ltchp9Z7gWqlhweTnYSOvZ99vqTPV6+6KKeqKnNSLGxuCv369aO4uDji67xeL7t27eKKK64AwOl04nQ68Xq9BINBVBW/34/T6WThwoWMGTMGpzNmhSsiqv9mC9xsYLZdffv7wBnAKFXdLSIeTvyMFWCJXY1QNrZ+Wut5Hl7dW2r9rIvw9kEsrRRgnaqe24gNDWJiupFjZrpjgUjG77K7jP1Gr+5rX3I/ljFKNm2or+mlvPt5H3b3B1Dl0PbtZy38bPHXR1ZVZbbpnYM1LFmyhGeffZb33nuPqqqTl4AfPXqUlJQU3nvvPZ577jmmT5+Oz+fD7XYzdOhQnnvuObKysnC73ezbt49TT63/+6kVSG1qQxE5RUTCYycjgE328yIRSQOuDmt/FZYnPQF4SkSygI1Afli89kZgTlif14b9XNSISXOBa0XEKSK59jh1VkKx2QTk2hOCiEiCiJzWyBgnYTzdyDGebgxZ53afN7Ff3pa/7/ut7xfl929YqqeeUOyxqxYtuZ5/naeKlpXlzFu39vzhgYA74uQ28WLUqFFMmDABEWHWrFl8/PHHxzzaGkKhEPv37+fiiy+md+/efPjhh8yfP5/zzz+fcePGMW6cFVWZPn06kyZNYvny5Wzbto3u3bszYUJUy8DVRSSebhrwtC2eAWAr8D0sT3YNsBNYCiAiOcBvsGK3u0XkT8D/qepNInIL8IaIuOz2fwkbw23HXh3A9Y3Y8w5wLrAKyyu+X1ULRaTOby07vHE11hdAJpZ+PokVDmkyRnQjx3i6McbrcAz+Zq/cyhtL/rxICm/TJTp0GIBo6NDjPNA/GHRuWb9uUnVxcV6rK0y0SUs7rlkjR47klVdeOalNRkYGGRkZ9O5tzeEOGzaMBQtOzBW/f78VWszOzuajjz7illtu4c033+Tw4cNkZzc57Nocmiy6qvo5UNcX4kP2ozbHksSr6lNhz2dS/xbkP6vqo7XGvbnW72n2TwXusx/h52djhUBqfv9R2POVWB5xszHhhcgxohsPRFJeykqdUjLgH0dOcW5eB3CrPre5ujB73cIF1/UvLs5r05nf6qOsrOzY8w0bNtCt28krsNLS0sjMzKSoqAiAHTt2kJOTc0KbTz/9lMmTJxMKhajZ2i8i+P3+k/qLMhHFdA3G020OJrwQBxwhDaZUUxqqlvxuiS/svKiwanf65tSJW6rHtpslfG+99RY7d+6ksrKSP/zhD0yaNIldu3ZRWFgIQFZWFpdeaq1wKisrY/r06cdWIVx88cW8/fbbBINBunTpckIIYuPGjeTl5ZGebi2s6d27N88++yzdu3enR48erf2y2oyGqGp+vG1oCibhTYQUTCvYApiUfxHgCqovtZrStCoq0quozKjU6owKvJmVBDMqNZBehaZXImnV6kjx4krykej2k+QKkuQMkepQ0iVswuZo5qD1KwZklQ3pd1H5SveejAq8o5DolFM3RMzbHo/na/E2oj3RZr6l2hGd6sOd6NfKtCrK0qqpSK/UqowqqjMq8GVWaiCjklBGJZpehaRWqzPZZwlmYoAkV4AUp5IqSoZYIZkc+9EivAnph1YUfMdVXfbXUVt3f3jw2t7fDx11VOyYn7Bx7yEpHY2YO5EYUxpvA9obRnQjp7LxJm0AVU32UZ5aTXl6lSWYmZV4MyrxZVZoML2KYEYlpFWppHpxJXtJSPKTmBAg2RUk2REiTSBDrAXr9ZcejiEhcfg/G/PzfYHg1ipgSGWgtOfHe/+x40u9bs28wjd6QBW+ooUJmz7b4Th4GtJygTc0CSO6EWJEN3IqWnsAR0iDKV7KUqsswcyoUm9GJdUZlfgzKzSYUUkovQrSqqzb8WQfCW4/blswUxxKGpAu1u65DrODbsXwuxYFElInBEvXzas5VuIv6v9p4avrJ/e43p0siTlT/AUTAwSrV7h2zFvj/KJ3SNQktWldShpvYgjHiG7kNCi6dvyyLLWa8vRKO35ZiS/TFsz0KkivgtRqdaRUW4KZGCApIUCyHb9ME2tGOMt+GIAd/b48vyRr0AQADR48YdPDoerdwxYdmv75ubmXF4hIogtn0ujAoPNGBQbqZuf+pUtcWxO84q8385ihRRhPN0KM6EbIPW8H1/YoVneKF5fbR6I7QJIrSLIzRJpYEz5JWLtoWnVxZGfiaOag9TvyLx0FEAoe+QJCJ6XX3F2xcWSSM3XRmV2nnC0iDgBB5JRg3uhTgnkUSvGGeQkbjpZI5RjEvO+jiBHdCDFvvgg5d5OmYyXKMMQAb0L6oRUj7uyClV2KoHfdTurJabyl9PNzU10Zc0/JHHPS4vUemjX0675zKZWqvfNdG7bucxw9C+k4oZc4YsILEWI2R0ROUbwN6CzUTJwhzmM5S0P+zQ1mC1t55NMJuys2zq7vfIYm9/qK/6yJN3onhE4J5M0RjTxLlOEEjKcbIUZ0I+dwvA3oLNgTZ8NrflfVkIZKGs3msvDge5OKqvfMbaiNm4TM8wJDJ97inZw7xj9ogUud9SbUMTSIEd0IMaIbOUZ0Y0D4xFkNocDuDTRxcnHm/pfHl/mPNJZlCgcO1xnBfuNu9k4aeoGvYEWqupeimB1DTceEFyLEiG7kHIy3AR2d8ImzcILetYci6Mbx0Z6/j6wOVixv6gX5oW5nXu8dP/pK35jtOaH0eegJOVUNdWM83Qgxohs5La5Wa6if2hNn4YQCO7tE0leIUOKM3c8N8Ye86yO5LlvTB37VN+a8b3jHl+YHc2ej5u6mHkJAJF+EBozoNoetgC/eRnREQuII1J44q0HVV45WD4u0z4D602bsfr57UAM7Ir02BXfuBf4zJt3snZRyRqDfXIdKxH10cLZ5PJ6Ts64bGsSIboQM3bghgPF2W4WVw+9cED5xFk7It2UDkNCcfr2hyuwP9/wtMaShZq1UcOFMHhMYNOEW7+R+4/2nfuZW16rm9NMBWR1vA9ojRnSbR0S3q4bG2dHvy/OLswafVMm3hqBvXYtyXlQESnp9sm9apaoebW4fgjhODfY6+0bvxOGXeM9anxFKXoQSbIld7Rwjus3AiG7ziKg8h6Fh6ps4CycU2N/ivLnFvoMD5xS+tldVW5y0qKd2GXaNb+y5X/edu79nsMsclPKW9tkOMaLbDIzoNg/j6UaJhibOatBQ6X4IDozGeAeqd52++NAH61U1KiUVMjWl9yXWZovgkEDPzrbZwohuMzCi2zyM6EaBkDgCS8Y8tLeuibNwgt5126I57hcV60etOjp7iUYxg7+bhMwJgWETb/FOzhntH7jApY5NjV/VrikDzMRiMzCi2zw2Y1UzNbSAlcPvXOBPSGs0+1fQtynqieM3lSwZt6X08wZ3rTUHB46E4cH8cTd7J58yxVewIkUTl3XQzRZrPR5PR3xdrY4R3WYwdOMGP9bSMUMzaWzirAZVVQ0dGdJYu+aw4sjMiXsrtsxpjb4B+oe6nfkN73mjvuobvS274222MKGFZmJEt/msjbcB7ZWmTJzVoMHCzUBua9ky/+DbEw97989rvGXzydGMQVfamy36WZstjrTmeDHCiG4zMaLbfFr1g9pRacrEWThB75rC1rZp5r6Xxpb7ixe39jgpuHMv9J8x6SbvpKSCQN+5DpVdrT1mK2JEt5kY0W0+H8fbgPZGUyfOwgn6t6e1pk0Aijo/3PO3M6uDlStaeyyABJwpZwcGT7jFO7nPOP8pnyWqqz0KWHu0uU1gSrC3gA2nDt1FPQm1W4Of7d/PnIpyujqdTO8/AICnig4xq6wcEch2OvlVz550c524cWuv389de/cQBAKq3NClC9dldcEXCvGjvXspDPi5PqsL13exUhs8Urifa7O6MCwpuoV1l4+4e05T4rg1qAaqvcVPAbGp8OuSxLLL+96+J8GRODQW44Wzz3Fk3XzXxtJSqRqD4Iz1+BGy2uPx1Llz0NA4xtNtGTH1dq/MzOT53n1OOHZrl668278/7+T3Z2JaGs8UnZybJdfl4pW+/Xgnvz//7pfP3w4f5mDAz/zKCoYlJfFufn9eLykGYGN1NSGIuuA2deIsnJB/+3piJLgAAfWl/2fP8zlBDe6M1Zg15IW6nmZvttjXI5TV1jdbvBtvA9ozRnRbRkxFd1RKCpnOE/9lac7jTlFVSKlrbVWiCIkO6zq/KiH7uAvBq6ET1r49XVTEHTnRrV4eycRZOEHv2pinDawOVuR+tOdvLtXQgViPDZCpKX0u9Y2ceKN3QnCwtdmi1WPazeC9eBvQnjGi2zL+B8c0LG48eegQ52/bygelJfUK5n6/n6/u2MH527byna7ZdHMlMDY1laJAkOt27eTbXbsyq7yMYUlJJ4UnWoI9cZbV1ImzcEKBPU2O/UaT8kBx70/2vVSqqnFL0O0mIXOitdkie5R/wHynOjbHy5Za7PZ4PE3OUWw4GSO6LWDoxg1HgWXxtuPu3FxmDRzEpRmZvFxcdz6XngkJvNu/Px8NGMB7pSUUBQK4RHgiL4+38/vzpfQMXjp6lJu7duW3Bw9w9969zCova5FdYRNneZFeq6GKQxBolfW5TeGor3Dw3ANv7lLVuKYudOBIGBHsP/4W7+Qh5/tO/zxZE+P9fjNebgsxotty2swqhksyMvikrGGh7OZKYGCim8+rTsz58u/io1yRkcmqqioSRPh/eXk8d7hlububuuOsLoK+DVugzmhJzCis2n7GkqL/rFHVNrH7cECo+8gbvOeNusI7ekvXUNp8NC55nY3othAjui3nv/EcfKfv+Ofu0/IyBiS6T2pT6PdTHbKiICXBICuqKumfUv9fKwAAG1dJREFUeLyobkkwyOzycq7IyKAqFEIQBPCGmr+ypTkTZ+EEfRviHrYB2Fm+dsyao/MWRzNPQ0vJ1YzBV/nOHn+9d9zRvsGc2SjNTlcZIcVAq+3g6yy44m1AB2Ax1puxSQUTW8K9+/aypLKS4mCQydu28qPsHOZWlLPD58OBkJfg4pHuPQBYW13Fa8XFPN6jJ9t9Pn538CAioAq3dM1miPt4iPXZw0X8IDsHEWF8aiqvFh/lip07uDareS+puRNn4WiwKCpZxaLBhpJF41NdGXMGZoxo8EukpLqM+z/8HZuKdiDA778ylZG9Tj92ftEXK/j2Ww/SJ8sKVV88ZAJ3j7uZw5XFfPftn1HiLee+877Dl4ecB8Ctb/2UX130E3qk1x2nTyWp+0X+4d39BCo+d22fu965Jz8k2ppLGP/j8Xiikp2tM2PW6UaBDacOfRb4QbztaAt4E9IPLRj7S39z4rg1hAKHtvvKXhoQTbuiwYTuV8/umTJwUn3n75nxS8b0Hs71wy/FF/RT5a8mMyn92PlFX6zguSX/5sWrf3vCdS8se5Mkl5vLh07hxjfu5Z1vPsMnWxewtnAz94y/pcn2KRra4Ny7ZJlrW6pPAgWRv8JGudbj8bzeCv12Kkx4ITr8Pd4GtAVaMnEWTtC3dk+0bIomcw+8Oemot7DO7d9l3go+272K6864BIBEZ8IJgtsQLqeL6oAXX9CHiINAKMDfl73BD86+PiL7BHEMC/Y+51veiQVf9o1Ykx5KXoxGbXWND/gwSn11aoynGyU2nDp0BdCsSaOOQqQ7zuqjuvj5JWj5mGjYFG0ECV7S+/vLUhMyzw4/vu7AFh747xMMzs5nw8FtFPQYwqNT7iQlMflYm0VfrOB77/ycnum5dE/L4aHJt3FKbn9KveXcMf0xDlUe5cGJP2Bz0Q7S3al8veDiFttbLBW75iVs2HlASkYhpLagq488Hk/LDTIYTzeKdGpvt6UTZzWoBv1oecRVf2OFos7/7P3rcG+w6oTilIFQkLWFW/jWmV/lo1v+TkpCEn9e/PIJ157efQiLf/g6H9/6D24ZeRXfeedB/n97dx4fdX0mcPzzJIRDwqEcggSLIsdIFORqpQbQWq2U1traslutxWsbq627jbi2ay3VtUaKXbsaBPFs0ZrVYtWIojVyoygQBTITBDkSCCYQEhJI5nz2j99vYAJIrpn5zSTft695mfzmdzzhePjO93i+AD27pPP8D+ew5KcLyRwwnH9uX8O0EVO4+605/OzV37J+T+sL2vXW7l/5jm/8lOu9Wf7zggOWidLaRR+LWx2E0YhJutGzCGhwOggnRGPgLCwU2FUMxLzITVuENNj1zbIFQwIh/9HdIQb26MfAHv246Czr34tpI6ay+YvG6xl6dOlO986nAXDZ0IsJBINUHaludM6jq5/jFxffwGvF73HBgBHMnXYPD69Y2OaYu9K591T/qKkzvZeePtZabNGSHa1rgBfbHIQBmKQbNS6Puxr4u9NxxFtbVpydTNC7OV7Tn9rEH/L2erPsydNDGtwN0D+9DwN79mf7gd0ArN61nmF9hzS6pqLuAOHuvI17iwlpiNO79Tr6/o6qUr6o28/FZ4+hPtBAiliT97yB6E3HTSWl81hrscWwS32j1nfTzuubcdmzs2fPPhy1IDo4M2Usup4CrnM6iHiJGDiLWl92KLA7uoUfYqghWNf/7T3P7Lpq0M2VIin9Hrj8Tn5R8AD+oJ+ze5/FI9N+zV83WmsJfnLR1SwpWcZfN75GakoqXTt1Ie+7v0Pk2PqPOSue4u7JtwBwtetybln8G575+BVysm6KSfxDQwPGDfUOoEJqtq5M81QelLqJCMevAVcgLyYBdFBmIC2K3CNdgrV/2nlOxxIP0Ro4C9NQQ423Zl46JHxpw0b6dDmr5BsDrx8gIr2aPjtx1dGwb3Wax1OacuAihPDPsmT27NnfdjSwdsZ0L0SRy+NW4Bmn44iHaA2cRQr6S9wkWcIFOODdO2JVxeIdqprUffrpdB1wpX/M1J96p6SeH8hYLiqlwGNOx9XemKQbfU8DjhZJibVoDpxFCnqLnaglEBV7j2wb8/GBpZ+oatDpWNoqjU7pkwIjptzovbQah5e5t0cm6UaZy+OuABY4HUesRHvgLJIGv/hKtO8ZT5/XfvLV4uo1a5yOI1pSkLlmm/XoM0k3NubQDqePRWvF2UnvHTxYCqGkTroAm6tXZe2o3bTM6TiiYDdmmlhMmKQbAy6Puxx40uk4oq1o9C/XtLZUY1OCvi07Y3FfJ6zbv2TqvvqdyV6Na25GblZClLRsb0zSjZ2HaUetXXvgbHKs7h/ylURvu4oEsHxf/uRqX+Vqp+NopQo6+ArLWEqKpCsiA0TkJRHZLiLFIrJERIaLSIvXR4pIq/vcRGSmiDTro7XL494LzGvtsxJJrAbOwlQ1pKGakbG6v0PknT3PfvVI4NBHTgfSCvdm5GYdafo0ozUSPumKNXv8VWCZqg5V1fOB3wBntvA+qQCqOqkN4cwEWtKf+SDWEsqkFcuBs7BQoMxNHOoRx5uinZaULcz0BRs+dTqWFtiAaeXGVMInXeBSwK+q88MHVLUIKA1/LyJDRGSliGywX5Ps41NF5H0ReRHYZB+ri3hvmYi8IiIeEXnBTvCIyDgRWS4i60VkqYgMFJFrgfHACyJSJCLHykd9CZfHXYXVzZCUYjlwFino21QZy/s7KaiBbm+WLTg7EPK3pNaBk+7MyM1KiF072qtkWAacCTS1PrwC+KaqNojIMOBvWAkSYCKQqao7TnLdRcAoYC+wGvi6iHyINSH8alWtFJEZwIOqepOI3AHcpaot2RzwUeAOWtZCTgj2wNnkI946Xlw+l/KDOwHhuil3ce6AUUfP27q3iCeX3kefHtauFWPOuYSrxt1AbX01C9/5HfXeOqZPuJHR51wCwIK3f8uMrDvp3d1a8Rvy72x3rdxIvlBD7yVlCxumD/5ZWYqkZjgdzynkZ+RmrXI6iPYuGZJuc6QBj4vIGCAIRO4iu+5LEm74vTIAESkChmBtvZMJvGs3fFOB8tYG5vK4690jXb8BnmvtPZwQOXD2yprHOX/wBG65YjaBoB9fwHvC+UMHZHLbVX9odGz9tkK+OvwKxg29lHlL7mH0OZewaecaBvcddjThqvoOow0JW8oxWuqDtQOW7nl257cG3bxfRBKxvkQ9MMvpIDqCZOhe2AKMa+Kc/wC+AEZjtXA7R7x3qupIkdkjiPWPkABbVHWM/bpAVa9oedjHuDzu50mgXYObEjlwVu87zPbyTVw8choAnVLTOK1L8yovpqZ0wh/wEgj6ERGCoSDvb1rM5aN/dPSckO+zYhr/frVbh/wHhhSWv1ipqm3b2z425mTkZpU2fZrRVsmQdAuBLiJya/iAiEwAIifS9wLKVTUE/IS2rd8vAfqJyMX2s9JEJPxZuhZo3h4sJ7rVvj6hHT9wduBQOelde7Fo2RxyX/kZLyyfi9d/4irnHV8U89DLtzJvyT2UV+0EYPx5l+Eu+5i8JfcwbdxPWbnlNSYO/yad046NyQV9WzrUKPl+b5lrdcU/tqnqiR8XnFNKEo89JJuET7r21tfXAN+0p4xtAWZj9cOGzQN+KiIfYHUttLr2p6r6gGuBh0XkE6AICM94eA6Y39yBtEguj3s3cE9r44qHkw2cBTVI6f7PyDr/u9xz7QK6dOrKu0UvNbpucN9hPHDd3/j1DxcyJfManlx6HwDduqRz21V/4D9/8ASD+w1j8+4PuOjcyby4/BGeemc2n+/bQihQnsh9nDGx58jWizYceHej3UhIBHdn5Ga163ohicSUdowju/RjITDV4VBO6mSlGg8dqWLuq3dw/3XWitBt5Z/ybtFLJ/TfRrrvhR9z9/efID2iQPff18zjwiFfp6KmjJCGGH/eZTyx5G7fz6cMbVXXQv66TyguryC9S2dmfetYyKs+28HqbbtIEcE1sD/TR7tOuNZTXsFrRcWEVPnqOYO5zGVV4nzhg43sq6nFNbA/0y60pg2/u+UzBvbuQeagAa0J85QuPH3KClfvr8VswUkz/TMjN+ubDsfQoSR8S7c9sUs/3gIk3EfqLyvV2PO0Mzg9vR9fVFvdfSV7NjKgd+MSCYeOVB3dEWFnhQdF6d6159H3K2rKqDl8gGFnjcYXaEDs/+q9B1v9EXv8ORncOrnx3pXbKvazZc8X5FyRxaxvTWHKiBN3cQ+FlFc3bOGWrInMunIKG3fvZV9NLXurDwGQc+Vkduyvot7n51B9A7urqmOScAE+Pbh88q66YieXCx/EmntuxFF7mb2QNFwe93b3SNe9wJ+cjiWsqRVnP/z6L3juvT8QDPnp23Mg10+9m5XFbwCQdf532Pj5ClYWv06qpJLWqQs3fuPeRjsivLHuGb4z0dr9YPx5l/Hk0vtYtnkxk4efuwdo1Uq0of36UHW48b9da7bt5lLXeXRKtbr0e3TtcsJ1u6uq6ZN+Gn3Srb3Kxpx9Flv2fkHmoDPxB4OEVAmElBQRlm7eyrcyh59wj2j6oPKNKd1Seyzv321wVGsTN1N2Rm7WHgee26GZ7gUHuEe6UoCVHOsrdow3rUfl6kkP+mO9AOJ4qqre6kf3g/Zr7T2qDh/h6ZUfHe1e+NM7Kxl11pl49lWSlprC9NEuzj6j8RTgT0rLKdlXyY8mXAjA+p1l7Kqq5vtjM3lt4xa2V1Yx9iuDGNa/D6u37Tp6XozpVYNuWduzc594/nl4ISM36/o4Ps+wme4FB7g87hBwEw4XxInXirOT0eC+rW1JuCcTDIWo9/n55TcmMf1CF39du4HmNCrCbfKrLxrFr67IYuqIc3l781auzBzOP4s/4y9rNvDB9t3RDPWEEN7e88yE+kBdSxbdtMVO4PY4Pcs4jkm6DnF53CVYK9UcUzT6l6tjVaqxKUHv5n3Rvmfv07qRmTEAEeHsPr1JQTjsbbwZRa9uXak+cmygvrq+gZ7dGpeV2LxnH4PP6IUvEGRfTR03TBrL+l178AVitymEEkp7s+xJlz/k3RKzh1j8wIyM3KykrgmSzEzSdZDL434ah/agisUeZy0R9G9v3gqLFhh11plsq9gPQGVtHYFQiO5dGk+OGHxGL/bXHeZA3RECwRBFu/cy6qxjtZOCoRArP9vJ1BFD8QeDhLumFSUYiu0Mr6D6uxeULhgYDAW2x/Axd2fkZq1rzonhOiUR388Ukcftr7NF5IaTXDOkpdX/ROR7ItLuVyWGmaTrvF8B78XzgbEu1dgU1YAXPdKmv2SL1m7ksffWUFl7mAfeeI8PP9/NxHMGU1V3hD++vZxFazfyLxNHIyLU1Dfw1Aorz6SmpHDN2EwWrljHH99ezujBAxnQ69h6l9XbdjF+SAadO6UysFcPVGHu0hUM6XM63TrHvuSvL1R/xpI9C08LaWhv02e32D8ycrMejcaNVHW+qv4lGvcCvgd0mKRrBtISgHuk6wxgHTA01s/ypfXYv2rSgz4n+nHDgr6tG/yHC8Y69fxk0Cut3+dXDrqxt4icEaVblgBfy8jNqm7uBSJSp6rpEd/PBMar6h0iMhuoU9W5x10zBHgLWIU1ULwHq3hUvb2q9N+wln1vw1o9OgYowCqBWgP8QFVj2dJ3nGnpJgC7BOR3ifEy4ZCkBD6ceG+ZkwkXIOjdnPDLoZ1W4688d9m+l8pVta7ps5tUDlzZkoRr62avviyyC0Ld38zrhgF5qjoKq4DUD+zji1V1gqqOBtzAzaq6BngdmGXXOmnXCRdM0k0YLo+7GPgxELOOQycHziKFAntaVIC+o6po2D1qbeXrJfbS9NaqBaZl5GbtasW19RGFn8YA9zXzuh12zWuwyrIOsb/OtOtebwKuwyqr2uGYpJtAXB53AXBvLO7t9MBZmIYO7wf/CKfjSBalhz3jiqoKP25lnQY/8P2M3KyiJs9sJREZHNEazrYPn6x6H1i1S+5Q1QuA3wMx240kkZmkm2BcHvdDWEXYo8bpgbNIQZ9nK8emxhrNsPXQx5O2Hvp4ZQsvU+CmjNysf8YipqMPUS2NaA3Pb+L0HkC5iKRhtXTD2lK9L+mYpJuYbgTejMaNfGk99sd6j7OWCPrcsZvs2o4VVRVOKT1csqwFl/w6IzdrUaziaaXfAh8C7wKeiOMvAbNEZKOIxHww2Wlm9kKCco90dQZexhpga5WQpARWT3pocyL044Y1HPyfvaBJt3VRovjGwOtX9O06qKnKZI9l5Gb9Mi4BGS1mWroJyuVxh+v6/qO190iUgbOwUKByh0m4bfNe+aJLav1Va09xyivAv8crHqPlTNJNYC6P2w/8CFjc0msTZeAsUtC3OaYFDDqIlLfLnh7XEDy84STv5QM/Nrv5JjaTdBOcnXhnYHU1NEt1r6HuRBk4ixT0bWvRbhvGyYUIdX6zdMFwf8hXHHH4aayE63cqLqN5TNJNAi6PO4A1hze/qXN9aT32bxhzZ69EGTgLUw0F0NoTt3EwWiWg/vQ3SxecGdTADuBR4FbTwk0OZiAtibhHulKBv2Al4BMk4sBZWNC/41N/3atxKU7bkXTv1Ps/s19YNMfpOIzmMy3dJOLyuIPADcDjJ3s/0QbOIgW9m6ucjqGdCQK3moSbfEzSTTIujzvo8rh/AdwGBMLHE3HgLFIosKuv0zG0I4eAq3PyC55yOhCj5UzSTVIuj3s+cAVQlagDZ2EaaqhBfaY/NzpKgIk5+QVRWTxjxJ9JuknM5XG/D0wsuvD28kQbOIsU9Je4gVSn42gHCrASbonTgRitZ5JuknN53NtDqV2+AyTaks+jgt7itlTJMqw6Cv8NfDcnv+CQ08EYbWNmL7QjedmFt2FNH+rc1Lnx1HDw0V0Q+orTcSSpSuDmnPyCN5wOxIgO09JtR26ff9kTwCVYVfkTQih4sMwk3FZ7C7jAJNz2xbR026G87MJuwGwgB4f7Uv31q1YGG9ZlORlDEmoAZuXkF5x0aqCR3EzSbcfysgvHYi0PdWzurrfm6bUaqrnYqecnoY3A9Tn5BcVNnmkkJdO90I7dPv+yDcAE4B6s1lNcqWpIQzUj4/3cJFWH9clkgkm47Ztp6XYQedmFw4CFQNwWUIT8pcW+upc7zNbabbAYuDMnv6DM6UCM2DNJtwPJyy4U4FZgDtAr1s/zHX5rWcjnnhrr5ySxncAdZqFDx2KSbgeUl13YH2sDzJ8Rw+llDdXzitCGhKwF4bAqIBd4LCe/IO7dPoazTNLtwPKyC4cA92NtEhjV/n1V32Fv9eNpJNicYYcdAf4MPJyTX1DjdDCGM0zSNcjLLswE7gN+QJSSb9Bb/JH/yNsTonGvdsCPNYvk/pz8gnKngzGcZZKucVRedqEL+A3wr7Rxfq+v9uXloUBpwlY9i5NDwJPAn80gmRFmkq5xgrzswqHALKxi6T1ac4+Gg3/eBsHzohpY8ijD6kZ40tRKMI5nkq7xpfKyC7tjbYx5E9by4mbRUO0+b83CATELLHGtxGrZ5ufkF5i9yoyTMknXaJa87MLhWMn3BmDgqc4N1H+4KtCwutlJOsntwdpC6dmc/ILPnA7GSHwm6RotkpddmApcBdwMfBtIO/4cb83zazR0YFK8Y4ujWmAJ8DzwTk5+QdDheIwk0qGTrogEgU1YiSOA9ZfoUVVt1a6qIlKnquknOf4cUKCqr7TwfsuAu1T149bEE2v2fN+rgWnA5UC6qqq3+tH9oP2cjS7q9gGvA/8ACnPyC7wOx2MkqU5OB+CwelUdAyAi/YEXsVZq/c7RqJLE7fMvq8BaWrwwL7uwM5CloQOTQb8H9AXE0QDbJgB8DBRi7djwQU5+QcdtoRhR09Fbuo1apiJyLvARVsLoAjwBjMf6C/grVX1fRGYC41X1DvuaAmCuqi4TkTpgAXApcBD4F1WtjGzpisg44E9AOrAfmKmqJ527abd0i4CJQE/gJlVdJyITsYqVdwPqgRtVtURERgHPYi1ISMGad7sX+D8gA2sa2AOqmt/2X71Te2TG9L5Yvw4XY/0aXoT1MyeqI8A6YDWwCliVk19Q52xIRnvU0Vu6jajq5yKSAvQHrrePXSAiI4F3RGR4E7foDmxQ1RwRuQ+rxXxH+E0RSQMeA662k/EM4EGsAaovvaeqThKRycAzQCbgASarakBELgf+gJVgs4E/q+oLItIZK8lOA/aq6rftGGJecwEgJ79gP/Cy/eKRGdNTgJFYCXg84ALOAwYT35q/CnwOfIrVtbTJ/npbTn5Bq7qVDKMlTNI9Ufgj8SVYCRJV9YjILqCppBsCwq3IRVjVoyKNwEqa74oIWMmmqRVKf7NjWCEiPUWkN9bc2edFZBhWEgkPZq0F/ktEMoDFqvqZiGwC5orIw1it7ZVNPC8m7IRWbL/+Ej7+yIzpnYEhWAl4KDAI6GO/+kb8Px3rz2sqJyZpL9bgVi1WicRaoBprvmzpca+ynPyC+hj8iIbRLCbpRrC7F4JABV/eHxmg8VLZU+3Ce3zfjQBbVLUlRb2Pv4cCDwDvq+o1IjIEWAagqi+KyIdYswqWisgtqlpod2lMAx4SkXdU9f4WPD+mcvILfMBW+9Vsdsu5E6BmTqyRTEzStYlIP2A+8LiqqoiswCoEU2h3K5wNlGD1rf7c7oYYhNXfGpYCXAu8hLWaa9VxjykB+onIxaq61u5uGK6qW04R2gzgfRG5BKhR1Rq7i2CP/f7MiJ/hXOBzVf1f++sLRcQDVKnqIrvPeSbtgN1yNrsMG0mnoyfdbiJSxLEpY3/FGuQCmAfMtz+eB7AGvLwishrYgdUXuBnYEHG/w8AoEVkP1GAlzKNU1Sci1wL/ayfOTlgDYqdKugdFZA32QJp9bA5W98KvsEbXw2YA14uIH2uK0/1YO0f8UURCWIVXbmveL41hGLHQoWcvGEZzRMznDvseVj/0Xao6/RTX9QZ+rKrzYhuhkUzMHmmG0bR6VR0T8drZzOt6Az+PYVxGEjJJNwGISJ6IFB33utHpuIzmEZHZInJXxPeb7QHOXGCo/fv5R/u9WSLykYh8KiK/dyZiw0kdvU83Iajq7U7HYJxSuO8fYIeqXtPM6+4BMiNWPV4BDMMafBXgdRGZrKoroh6xkbBM0jWMph1dLt5GV9ivjfb36VhJ2CTdDsQkXcNou+bO3RbgIVVdEPuQjERl+nQNo+12AmMBRGQscI59vJbGO28sBW4SkXT73EF2oSWjAzEtXcNou78DN9j9vh9hr65T1QMislpENgNvqeosEXEBa+1l4HVYNT4qHIrbcICZp2sYhhFHpnvBMAwjjkzSNQzDiCOTdA3DMOLIJF3DMIw4MknXMAwjjkzSNQzDiCOTdA3DMOLo/wGyZJuQwxkZ0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot class distribution\n", + "fig, ax = plt.subplots()\n", + "ax.set_title('Class Distribution', y=1.08)\n", + "ax.pie(class_dist, labels=class_dist.index, autopct='%1.1f%%',\n", + " shadow=False, startangle=90)\n", + "ax.axis('equal')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "n_samples = 2 * int(df['length'].sum() / 0.1) # Set number of samples to be 20% of the length in time of all data\n", + "prob_dist = class_dist / class_dist.sum() # Convert to range of [0,1]\n", + "choices = np.random.choice(class_dist.index, p=prob_dist) # Choose a class" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "config = config(mode='conv')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def check_data():\n", + " # If there is data, load it in \n", + " if os.path.isfile(config.p_path):\n", + " print('Loading existing data for {} model'.format(config.mode))\n", + " with open(config.p_path, 'rb') as handle:\n", + " tmp = pickle.load(handle)\n", + " return tmp\n", + " else:\n", + " return None" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def build_rand_feat():\n", + " \"\"\"\n", + " This function creates a randomly generated and normalized 4-D feature vector\n", + " \"\"\"\n", + " tmp = check_data() # Load in old pickle data if it exists\n", + " if tmp:\n", + " print(config.mode)\n", + " print(config.p_path)\n", + " return tmp.data[0], tmp.data[1] # Returns our previously built randomized feature\n", + " X = []\n", + " y = []\n", + " _min, _max = float('inf'), -float('inf')\n", + " for _ in tqdm(range(n_samples)):\n", + " rand_class = np.random.choice(class_dist.index, p=prob_dist) # Pick a random class based on our prob_dist probabilities\n", + " file = np.random.choice(df[df.label==rand_class].index) # Choose a random file of class rand_class and get its index\n", + " rate, wav = wavfile.read('data/clean/'+file)\n", + " label = df.at[file,'label']\n", + " rand_index = np.random.randint(0, wav.shape[0] - config.step) # Go to random time point in audio file\n", + " sample = wav[rand_index:rand_index + config.step] # Grab a portion of our wav file at rand_index time point\n", + " X_sample = mfcc(sample, rate,\n", + " numcep=config.nfeat, nfilt=config.nfilt, nfft = config.nfft)\n", + " _min = min(np.amin(X_sample), _min) # Update min if our sample min is smaller\n", + " _max = max(np.amax(X_sample), _max) # Update max if our sample max is larger\n", + " X.append(X_sample) # Add our randomly selected sample to list X\n", + " y.append(classes.index(label)) # Add the index corrosponding to our sample's label to list y\n", + " config.min = _min # Save min\n", + " config.max = _max # Save max\n", + " X, y = np.array(X), np.array(y) \n", + " X = (X - _min) / (_max - _min) # Normalize our input matrix X based on min and range, possible to normalize based on mean and standard deviation as well\n", + " if config.mode == 'conv':\n", + " X = X.reshape(X.shape[0], X.shape[1], X.shape[2], 1)\n", + " elif config.mode=='time':\n", + " X = X.reshape(X.shape[0], X.shape[1], X.shape[2])\n", + " y = to_categorical(y, num_classes = 10)\n", + " config.data = (X, y) # Store the data\n", + " \n", + " with open(config.p_path, 'wb') as handle:\n", + " pickle.dump(config, handle, protocol=2)\n", + " \n", + " return X, y\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def get_conv_model():\n", + " model = Sequential()\n", + " # Note that we only use a tenth of a second of our data, so we don't want to pool too much\n", + " model.add(Conv2D(16, (3,3), activation='relu', strides=(1,1), # Strides only (1,1) due to small input space\n", + " padding='same', input_shape=input_shape))\n", + " model.add(Conv2D(32, (3,3), activation='relu', strides=(1,1), \n", + " padding='same'))\n", + " model.add(Conv2D(64, (3,3), activation='relu', strides=(1,1), \n", + " padding='same'))\n", + " model.add(Conv2D(128, (3,3), activation='relu', strides=(1,1), \n", + " padding='same'))\n", + " model.add(MaxPool2D((2,2), dim_ordering=\"th\"))\n", + " model.add(Dropout(0.5))\n", + " model.add(Flatten())\n", + " model.add(Dense(128, activation='relu'))\n", + " model.add(Dense(64, activation='relu'))\n", + " model.add(Dense(32, activation='relu'))\n", + " model.add(Dense(10, activation='softmax')) # Final layer activate with softmax due to our categorical cross-entropy method\n", + " model.summary()\n", + " model.compile(loss='categorical_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['acc'])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def get_recurrent_model():\n", + " # Shape of data for RNN is (n,time,feat)\n", + " model = Sequential()\n", + " model.add(LSTM(128, return_sequences=True, input_shape=input_shape))\n", + " model.add(LSTM(128, return_sequences=True))\n", + " model.add(Dropout(0.5))\n", + " model.add(TimeDistributed(Dense(64, activation='relu')))\n", + " model.add(TimeDistributed(Dense(32, activation='relu')))\n", + " model.add(TimeDistributed(Dense(16, activation='relu')))\n", + " model.add(TimeDistributed(Dense(8, activation='relu')))\n", + " model.add(Flatten())\n", + " model.add(Dense(10, activation='softmax'))\n", + " model.summary()\n", + " model.compile(loss='categorical_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['acc'])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading existing data for conv model\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\users\\tsb\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\ipykernel_launcher.py:12: UserWarning: Update your `MaxPooling2D` call to the Keras 2 API: `MaxPooling2D((2, 2), data_format=\"channels_first\")`\n", + " if sys.path[0] == '':\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_1 (Conv2D) (None, 9, 13, 16) 160 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 9, 13, 32) 4640 \n", + "_________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 9, 13, 64) 18496 \n", + "_________________________________________________________________\n", + "conv2d_4 (Conv2D) (None, 9, 13, 128) 73856 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 9, 6, 64) 0 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 9, 6, 64) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 3456) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 128) 442496 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 64) 8256 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 32) 2080 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 10) 330 \n", + "=================================================================\n", + "Total params: 550,314\n", + "Trainable params: 550,314\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 23769 samples, validate on 2641 samples\n", + "Epoch 1/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6816/23769 [=======>......................] - ETA: 7:34 - loss: 2.3062 - acc: 0.062 - ETA: 4:16 - loss: 2.3044 - acc: 0.156 - ETA: 3:08 - loss: 2.3021 - acc: 0.187 - ETA: 2:33 - loss: 2.3061 - acc: 0.148 - ETA: 2:13 - loss: 2.3005 - acc: 0.162 - ETA: 1:59 - loss: 2.2983 - acc: 0.156 - ETA: 1:49 - loss: 2.2950 - acc: 0.147 - ETA: 1:42 - loss: 2.2934 - acc: 0.144 - ETA: 1:36 - loss: 2.2928 - acc: 0.152 - ETA: 1:31 - loss: 2.2986 - acc: 0.143 - ETA: 1:27 - loss: 2.3020 - acc: 0.147 - ETA: 1:23 - loss: 2.3048 - acc: 0.143 - ETA: 1:21 - loss: 2.3042 - acc: 0.139 - ETA: 1:18 - loss: 2.3036 - acc: 0.136 - ETA: 1:16 - loss: 2.3026 - acc: 0.139 - ETA: 1:15 - loss: 2.3015 - acc: 0.138 - ETA: 1:13 - loss: 2.3014 - acc: 0.136 - ETA: 1:12 - loss: 2.3006 - acc: 0.135 - ETA: 1:10 - loss: 2.3003 - acc: 0.138 - ETA: 1:09 - loss: 2.3006 - acc: 0.137 - ETA: 1:08 - loss: 2.2998 - acc: 0.139 - ETA: 1:07 - loss: 2.2990 - acc: 0.142 - ETA: 1:06 - loss: 2.2987 - acc: 0.139 - ETA: 1:05 - loss: 2.2985 - acc: 0.140 - ETA: 1:04 - loss: 2.2980 - acc: 0.142 - ETA: 1:04 - loss: 2.2972 - acc: 0.145 - ETA: 1:03 - loss: 2.2969 - acc: 0.144 - ETA: 1:02 - loss: 2.2963 - acc: 0.147 - ETA: 1:02 - loss: 2.2953 - acc: 0.147 - ETA: 1:01 - loss: 2.2948 - acc: 0.146 - ETA: 1:01 - loss: 2.2936 - acc: 0.146 - ETA: 1:01 - loss: 2.2932 - acc: 0.146 - ETA: 1:00 - loss: 2.2919 - acc: 0.148 - ETA: 1:00 - loss: 2.2902 - acc: 0.151 - ETA: 1:00 - loss: 2.2875 - acc: 0.153 - ETA: 59s - loss: 2.2835 - acc: 0.157 - ETA: 59s - loss: 2.2839 - acc: 0.15 - ETA: 58s - loss: 2.2814 - acc: 0.15 - ETA: 58s - loss: 2.2803 - acc: 0.15 - ETA: 58s - loss: 2.2823 - acc: 0.15 - ETA: 57s - loss: 2.2818 - acc: 0.15 - ETA: 57s - loss: 2.2819 - acc: 0.15 - ETA: 57s - loss: 2.2808 - acc: 0.15 - ETA: 56s - loss: 2.2809 - acc: 0.15 - ETA: 56s - loss: 2.2806 - acc: 0.15 - ETA: 56s - loss: 2.2803 - acc: 0.16 - ETA: 55s - loss: 2.2801 - acc: 0.16 - ETA: 55s - loss: 2.2795 - acc: 0.16 - ETA: 55s - loss: 2.2791 - acc: 0.16 - ETA: 55s - loss: 2.2784 - acc: 0.16 - ETA: 55s - loss: 2.2774 - acc: 0.16 - ETA: 54s - loss: 2.2763 - acc: 0.16 - ETA: 54s - loss: 2.2748 - acc: 0.16 - ETA: 54s - loss: 2.2750 - acc: 0.16 - ETA: 54s - loss: 2.2752 - acc: 0.16 - ETA: 54s - loss: 2.2749 - acc: 0.16 - ETA: 53s - loss: 2.2747 - acc: 0.16 - ETA: 53s - loss: 2.2728 - acc: 0.16 - ETA: 53s - loss: 2.2730 - acc: 0.15 - ETA: 53s - loss: 2.2727 - acc: 0.15 - ETA: 53s - loss: 2.2730 - acc: 0.15 - ETA: 53s - loss: 2.2711 - acc: 0.15 - ETA: 52s - loss: 2.2703 - acc: 0.15 - ETA: 52s - loss: 2.2699 - acc: 0.15 - ETA: 52s - loss: 2.2674 - acc: 0.15 - ETA: 52s - loss: 2.2654 - acc: 0.15 - ETA: 52s - loss: 2.2629 - acc: 0.15 - ETA: 52s - loss: 2.2613 - acc: 0.15 - ETA: 51s - loss: 2.2586 - acc: 0.15 - ETA: 51s - loss: 2.2563 - acc: 0.16 - ETA: 51s - loss: 2.2547 - acc: 0.15 - ETA: 51s - loss: 2.2504 - acc: 0.16 - ETA: 51s - loss: 2.2464 - acc: 0.16 - ETA: 51s - loss: 2.2466 - acc: 0.16 - ETA: 51s - loss: 2.2421 - acc: 0.16 - ETA: 51s - loss: 2.2398 - acc: 0.16 - ETA: 51s - loss: 2.2370 - acc: 0.16 - ETA: 50s - loss: 2.2343 - acc: 0.16 - ETA: 50s - loss: 2.2335 - acc: 0.16 - ETA: 50s - loss: 2.2316 - acc: 0.16 - ETA: 50s - loss: 2.2278 - acc: 0.17 - ETA: 50s - loss: 2.2250 - acc: 0.17 - ETA: 50s - loss: 2.2192 - acc: 0.17 - ETA: 50s - loss: 2.2177 - acc: 0.17 - ETA: 50s - loss: 2.2114 - acc: 0.17 - ETA: 49s - loss: 2.2079 - acc: 0.17 - ETA: 49s - loss: 2.2037 - acc: 0.17 - ETA: 49s - loss: 2.1983 - acc: 0.18 - ETA: 49s - loss: 2.1918 - acc: 0.18 - ETA: 49s - loss: 2.1889 - acc: 0.18 - ETA: 49s - loss: 2.1885 - acc: 0.18 - ETA: 49s - loss: 2.1850 - acc: 0.18 - ETA: 49s - loss: 2.1814 - acc: 0.19 - ETA: 49s - loss: 2.1786 - acc: 0.19 - ETA: 49s - loss: 2.1750 - acc: 0.19 - ETA: 48s - loss: 2.1724 - acc: 0.19 - ETA: 48s - loss: 2.1695 - acc: 0.19 - ETA: 48s - loss: 2.1657 - acc: 0.19 - ETA: 48s - loss: 2.1623 - acc: 0.19 - ETA: 48s - loss: 2.1589 - acc: 0.20 - ETA: 48s - loss: 2.1550 - acc: 0.20 - ETA: 48s - loss: 2.1494 - acc: 0.20 - ETA: 48s - loss: 2.1446 - acc: 0.20 - ETA: 48s - loss: 2.1405 - acc: 0.21 - ETA: 47s - loss: 2.1392 - acc: 0.21 - ETA: 47s - loss: 2.1361 - acc: 0.21 - ETA: 47s - loss: 2.1311 - acc: 0.21 - ETA: 47s - loss: 2.1273 - acc: 0.21 - ETA: 47s - loss: 2.1238 - acc: 0.21 - ETA: 47s - loss: 2.1219 - acc: 0.21 - ETA: 47s - loss: 2.1169 - acc: 0.21 - ETA: 47s - loss: 2.1125 - acc: 0.22 - ETA: 47s - loss: 2.1106 - acc: 0.22 - ETA: 47s - loss: 2.1056 - acc: 0.22 - ETA: 46s - loss: 2.1019 - acc: 0.22 - ETA: 46s - loss: 2.0997 - acc: 0.22 - ETA: 46s - loss: 2.0980 - acc: 0.22 - ETA: 46s - loss: 2.0930 - acc: 0.22 - ETA: 46s - loss: 2.0861 - acc: 0.23 - ETA: 46s - loss: 2.0803 - acc: 0.23 - ETA: 46s - loss: 2.0783 - acc: 0.23 - ETA: 46s - loss: 2.0735 - acc: 0.23 - ETA: 46s - loss: 2.0683 - acc: 0.23 - ETA: 45s - loss: 2.0616 - acc: 0.24 - ETA: 45s - loss: 2.0591 - acc: 0.24 - ETA: 45s - loss: 2.0546 - acc: 0.24 - ETA: 45s - loss: 2.0515 - acc: 0.24 - ETA: 45s - loss: 2.0482 - acc: 0.24 - ETA: 45s - loss: 2.0459 - acc: 0.24 - ETA: 45s - loss: 2.0446 - acc: 0.25 - ETA: 45s - loss: 2.0407 - acc: 0.25 - ETA: 45s - loss: 2.0393 - acc: 0.25 - ETA: 44s - loss: 2.0355 - acc: 0.25 - ETA: 44s - loss: 2.0313 - acc: 0.25 - ETA: 44s - loss: 2.0282 - acc: 0.25 - ETA: 44s - loss: 2.0228 - acc: 0.25 - ETA: 44s - loss: 2.0200 - acc: 0.26 - ETA: 44s - loss: 2.0172 - acc: 0.26 - ETA: 44s - loss: 2.0128 - acc: 0.26 - ETA: 44s - loss: 2.0100 - acc: 0.26 - ETA: 44s - loss: 2.0053 - acc: 0.26 - ETA: 44s - loss: 2.0017 - acc: 0.26 - ETA: 43s - loss: 1.9979 - acc: 0.26 - ETA: 43s - loss: 1.9925 - acc: 0.27 - ETA: 43s - loss: 1.9905 - acc: 0.27 - ETA: 43s - loss: 1.9852 - acc: 0.27 - ETA: 43s - loss: 1.9811 - acc: 0.27 - ETA: 43s - loss: 1.9774 - acc: 0.27 - ETA: 43s - loss: 1.9721 - acc: 0.27 - ETA: 43s - loss: 1.9677 - acc: 0.27 - ETA: 43s - loss: 1.9667 - acc: 0.28 - ETA: 43s - loss: 1.9647 - acc: 0.28 - ETA: 43s - loss: 1.9601 - acc: 0.28 - ETA: 43s - loss: 1.9584 - acc: 0.28 - ETA: 43s - loss: 1.9554 - acc: 0.28 - ETA: 42s - loss: 1.9519 - acc: 0.28 - ETA: 42s - loss: 1.9474 - acc: 0.28 - ETA: 42s - loss: 1.9440 - acc: 0.28 - ETA: 42s - loss: 1.9392 - acc: 0.28 - ETA: 42s - loss: 1.9358 - acc: 0.29 - ETA: 42s - loss: 1.9329 - acc: 0.29 - ETA: 42s - loss: 1.9301 - acc: 0.29 - ETA: 42s - loss: 1.9284 - acc: 0.29 - ETA: 42s - loss: 1.9254 - acc: 0.29 - ETA: 42s - loss: 1.9231 - acc: 0.29 - ETA: 42s - loss: 1.9203 - acc: 0.29 - ETA: 42s - loss: 1.9163 - acc: 0.29 - ETA: 42s - loss: 1.9127 - acc: 0.30 - ETA: 42s - loss: 1.9077 - acc: 0.30 - ETA: 41s - loss: 1.9050 - acc: 0.30 - ETA: 41s - loss: 1.9023 - acc: 0.30 - ETA: 41s - loss: 1.8994 - acc: 0.30 - ETA: 41s - loss: 1.8975 - acc: 0.30 - ETA: 41s - loss: 1.8933 - acc: 0.30 - ETA: 41s - loss: 1.8879 - acc: 0.31 - ETA: 41s - loss: 1.8847 - acc: 0.31 - ETA: 41s - loss: 1.8835 - acc: 0.31 - ETA: 41s - loss: 1.8779 - acc: 0.31 - ETA: 41s - loss: 1.8759 - acc: 0.31 - ETA: 41s - loss: 1.8719 - acc: 0.31 - ETA: 41s - loss: 1.8686 - acc: 0.31 - ETA: 41s - loss: 1.8658 - acc: 0.31 - ETA: 41s - loss: 1.8623 - acc: 0.32 - ETA: 40s - loss: 1.8583 - acc: 0.32 - ETA: 40s - loss: 1.8547 - acc: 0.32 - ETA: 40s - loss: 1.8532 - acc: 0.32 - ETA: 40s - loss: 1.8486 - acc: 0.32 - ETA: 40s - loss: 1.8475 - acc: 0.32 - ETA: 40s - loss: 1.8452 - acc: 0.32 - ETA: 40s - loss: 1.8433 - acc: 0.32 - ETA: 40s - loss: 1.8409 - acc: 0.33 - ETA: 40s - loss: 1.8374 - acc: 0.33 - ETA: 40s - loss: 1.8356 - acc: 0.33 - ETA: 40s - loss: 1.8349 - acc: 0.33 - ETA: 40s - loss: 1.8330 - acc: 0.33 - ETA: 39s - loss: 1.8303 - acc: 0.33 - ETA: 39s - loss: 1.8274 - acc: 0.33 - ETA: 39s - loss: 1.8254 - acc: 0.33 - ETA: 39s - loss: 1.8225 - acc: 0.33 - ETA: 39s - loss: 1.8211 - acc: 0.33 - ETA: 39s - loss: 1.8181 - acc: 0.33 - ETA: 39s - loss: 1.8173 - acc: 0.34 - ETA: 39s - loss: 1.8143 - acc: 0.34 - ETA: 39s - loss: 1.8112 - acc: 0.34 - ETA: 39s - loss: 1.8079 - acc: 0.34 - ETA: 39s - loss: 1.8052 - acc: 0.34 - ETA: 39s - loss: 1.8038 - acc: 0.34 - ETA: 39s - loss: 1.8007 - acc: 0.34 - ETA: 39s - loss: 1.7978 - acc: 0.34 - ETA: 39s - loss: 1.7945 - acc: 0.35 - ETA: 39s - loss: 1.7925 - acc: 0.35 - ETA: 38s - loss: 1.7895 - acc: 0.35 - ETA: 38s - loss: 1.7870 - acc: 0.3531" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13696/23769 [================>.............] - ETA: 38s - loss: 1.7848 - acc: 0.35 - ETA: 38s - loss: 1.7831 - acc: 0.35 - ETA: 38s - loss: 1.7813 - acc: 0.35 - ETA: 38s - loss: 1.7782 - acc: 0.35 - ETA: 38s - loss: 1.7764 - acc: 0.35 - ETA: 38s - loss: 1.7732 - acc: 0.35 - ETA: 38s - loss: 1.7694 - acc: 0.36 - ETA: 38s - loss: 1.7674 - acc: 0.36 - ETA: 38s - loss: 1.7646 - acc: 0.36 - ETA: 38s - loss: 1.7635 - acc: 0.36 - ETA: 38s - loss: 1.7610 - acc: 0.36 - ETA: 38s - loss: 1.7575 - acc: 0.36 - ETA: 38s - loss: 1.7543 - acc: 0.36 - ETA: 38s - loss: 1.7517 - acc: 0.36 - ETA: 37s - loss: 1.7491 - acc: 0.36 - ETA: 37s - loss: 1.7455 - acc: 0.36 - ETA: 37s - loss: 1.7430 - acc: 0.36 - ETA: 37s - loss: 1.7430 - acc: 0.36 - ETA: 37s - loss: 1.7385 - acc: 0.37 - ETA: 37s - loss: 1.7355 - acc: 0.37 - ETA: 37s - loss: 1.7348 - acc: 0.37 - ETA: 37s - loss: 1.7334 - acc: 0.37 - ETA: 37s - loss: 1.7310 - acc: 0.37 - ETA: 37s - loss: 1.7290 - acc: 0.37 - ETA: 37s - loss: 1.7265 - acc: 0.37 - ETA: 37s - loss: 1.7242 - acc: 0.37 - ETA: 37s - loss: 1.7233 - acc: 0.37 - ETA: 37s - loss: 1.7209 - acc: 0.37 - ETA: 37s - loss: 1.7194 - acc: 0.37 - ETA: 37s - loss: 1.7158 - acc: 0.37 - ETA: 36s - loss: 1.7138 - acc: 0.37 - ETA: 36s - loss: 1.7118 - acc: 0.38 - ETA: 36s - loss: 1.7076 - acc: 0.38 - ETA: 36s - loss: 1.7050 - acc: 0.38 - ETA: 36s - loss: 1.7018 - acc: 0.38 - ETA: 36s - loss: 1.6997 - acc: 0.38 - ETA: 36s - loss: 1.6982 - acc: 0.38 - ETA: 36s - loss: 1.6963 - acc: 0.38 - ETA: 36s - loss: 1.6942 - acc: 0.38 - ETA: 36s - loss: 1.6912 - acc: 0.38 - ETA: 36s - loss: 1.6899 - acc: 0.38 - ETA: 36s - loss: 1.6886 - acc: 0.38 - ETA: 36s - loss: 1.6880 - acc: 0.39 - ETA: 36s - loss: 1.6872 - acc: 0.39 - ETA: 36s - loss: 1.6842 - acc: 0.39 - ETA: 36s - loss: 1.6814 - acc: 0.39 - ETA: 36s - loss: 1.6812 - acc: 0.39 - ETA: 36s - loss: 1.6805 - acc: 0.39 - ETA: 35s - loss: 1.6787 - acc: 0.39 - ETA: 35s - loss: 1.6770 - acc: 0.39 - ETA: 35s - loss: 1.6748 - acc: 0.39 - ETA: 35s - loss: 1.6741 - acc: 0.39 - ETA: 35s - loss: 1.6729 - acc: 0.39 - ETA: 35s - loss: 1.6708 - acc: 0.39 - ETA: 35s - loss: 1.6701 - acc: 0.39 - ETA: 35s - loss: 1.6684 - acc: 0.39 - ETA: 35s - loss: 1.6671 - acc: 0.39 - ETA: 35s - loss: 1.6657 - acc: 0.39 - ETA: 35s - loss: 1.6635 - acc: 0.40 - ETA: 35s - loss: 1.6620 - acc: 0.40 - ETA: 35s - loss: 1.6607 - acc: 0.40 - ETA: 35s - loss: 1.6585 - acc: 0.40 - ETA: 35s - loss: 1.6568 - acc: 0.40 - ETA: 35s - loss: 1.6545 - acc: 0.40 - ETA: 34s - loss: 1.6524 - acc: 0.40 - ETA: 34s - loss: 1.6498 - acc: 0.40 - ETA: 34s - loss: 1.6472 - acc: 0.40 - ETA: 34s - loss: 1.6449 - acc: 0.40 - ETA: 34s - loss: 1.6424 - acc: 0.40 - ETA: 34s - loss: 1.6415 - acc: 0.40 - ETA: 34s - loss: 1.6396 - acc: 0.40 - ETA: 34s - loss: 1.6376 - acc: 0.40 - ETA: 34s - loss: 1.6362 - acc: 0.41 - ETA: 34s - loss: 1.6357 - acc: 0.41 - ETA: 34s - loss: 1.6341 - acc: 0.41 - ETA: 34s - loss: 1.6316 - acc: 0.41 - ETA: 34s - loss: 1.6307 - acc: 0.41 - ETA: 34s - loss: 1.6284 - acc: 0.41 - ETA: 34s - loss: 1.6259 - acc: 0.41 - ETA: 33s - loss: 1.6248 - acc: 0.41 - ETA: 33s - loss: 1.6223 - acc: 0.41 - ETA: 33s - loss: 1.6209 - acc: 0.41 - ETA: 33s - loss: 1.6193 - acc: 0.41 - ETA: 33s - loss: 1.6186 - acc: 0.41 - ETA: 33s - loss: 1.6158 - acc: 0.41 - ETA: 33s - loss: 1.6141 - acc: 0.41 - ETA: 33s - loss: 1.6125 - acc: 0.41 - ETA: 33s - loss: 1.6098 - acc: 0.41 - ETA: 33s - loss: 1.6075 - acc: 0.42 - ETA: 33s - loss: 1.6050 - acc: 0.42 - ETA: 33s - loss: 1.6027 - acc: 0.42 - ETA: 33s - loss: 1.6013 - acc: 0.42 - ETA: 32s - loss: 1.6001 - acc: 0.42 - ETA: 32s - loss: 1.5992 - acc: 0.42 - ETA: 32s - loss: 1.5969 - acc: 0.42 - ETA: 32s - loss: 1.5952 - acc: 0.42 - ETA: 32s - loss: 1.5936 - acc: 0.42 - ETA: 32s - loss: 1.5915 - acc: 0.42 - ETA: 32s - loss: 1.5900 - acc: 0.42 - ETA: 32s - loss: 1.5873 - acc: 0.42 - ETA: 32s - loss: 1.5870 - acc: 0.42 - ETA: 32s - loss: 1.5858 - acc: 0.42 - ETA: 32s - loss: 1.5850 - acc: 0.42 - ETA: 32s - loss: 1.5838 - acc: 0.42 - ETA: 31s - loss: 1.5841 - acc: 0.42 - ETA: 31s - loss: 1.5833 - acc: 0.43 - ETA: 31s - loss: 1.5810 - acc: 0.43 - ETA: 31s - loss: 1.5789 - acc: 0.43 - ETA: 31s - loss: 1.5765 - acc: 0.43 - ETA: 31s - loss: 1.5768 - acc: 0.43 - ETA: 31s - loss: 1.5752 - acc: 0.43 - ETA: 31s - loss: 1.5742 - acc: 0.43 - ETA: 31s - loss: 1.5728 - acc: 0.43 - ETA: 31s - loss: 1.5710 - acc: 0.43 - ETA: 31s - loss: 1.5701 - acc: 0.43 - ETA: 31s - loss: 1.5683 - acc: 0.43 - ETA: 31s - loss: 1.5668 - acc: 0.43 - ETA: 31s - loss: 1.5654 - acc: 0.43 - ETA: 30s - loss: 1.5646 - acc: 0.43 - ETA: 30s - loss: 1.5629 - acc: 0.43 - ETA: 30s - loss: 1.5619 - acc: 0.43 - ETA: 30s - loss: 1.5605 - acc: 0.43 - ETA: 30s - loss: 1.5593 - acc: 0.43 - ETA: 30s - loss: 1.5581 - acc: 0.43 - ETA: 30s - loss: 1.5563 - acc: 0.44 - ETA: 30s - loss: 1.5555 - acc: 0.44 - ETA: 30s - loss: 1.5542 - acc: 0.44 - ETA: 30s - loss: 1.5524 - acc: 0.44 - ETA: 30s - loss: 1.5503 - acc: 0.44 - ETA: 30s - loss: 1.5491 - acc: 0.44 - ETA: 29s - loss: 1.5482 - acc: 0.44 - ETA: 29s - loss: 1.5483 - acc: 0.44 - ETA: 29s - loss: 1.5469 - acc: 0.44 - ETA: 29s - loss: 1.5461 - acc: 0.44 - ETA: 29s - loss: 1.5444 - acc: 0.44 - ETA: 29s - loss: 1.5430 - acc: 0.44 - ETA: 29s - loss: 1.5415 - acc: 0.44 - ETA: 29s - loss: 1.5409 - acc: 0.44 - ETA: 29s - loss: 1.5399 - acc: 0.44 - ETA: 29s - loss: 1.5387 - acc: 0.44 - ETA: 29s - loss: 1.5367 - acc: 0.44 - ETA: 29s - loss: 1.5361 - acc: 0.44 - ETA: 29s - loss: 1.5352 - acc: 0.44 - ETA: 29s - loss: 1.5330 - acc: 0.44 - ETA: 28s - loss: 1.5315 - acc: 0.45 - ETA: 28s - loss: 1.5297 - acc: 0.45 - ETA: 28s - loss: 1.5285 - acc: 0.45 - ETA: 28s - loss: 1.5267 - acc: 0.45 - ETA: 28s - loss: 1.5253 - acc: 0.45 - ETA: 28s - loss: 1.5241 - acc: 0.45 - ETA: 28s - loss: 1.5221 - acc: 0.45 - ETA: 28s - loss: 1.5208 - acc: 0.45 - ETA: 28s - loss: 1.5198 - acc: 0.45 - ETA: 28s - loss: 1.5180 - acc: 0.45 - ETA: 28s - loss: 1.5169 - acc: 0.45 - ETA: 28s - loss: 1.5156 - acc: 0.45 - ETA: 27s - loss: 1.5148 - acc: 0.45 - ETA: 27s - loss: 1.5129 - acc: 0.45 - ETA: 27s - loss: 1.5118 - acc: 0.45 - ETA: 27s - loss: 1.5112 - acc: 0.45 - ETA: 27s - loss: 1.5106 - acc: 0.45 - ETA: 27s - loss: 1.5095 - acc: 0.45 - ETA: 27s - loss: 1.5087 - acc: 0.45 - ETA: 27s - loss: 1.5073 - acc: 0.45 - ETA: 27s - loss: 1.5060 - acc: 0.45 - ETA: 27s - loss: 1.5047 - acc: 0.45 - ETA: 27s - loss: 1.5033 - acc: 0.45 - ETA: 27s - loss: 1.5020 - acc: 0.46 - ETA: 27s - loss: 1.5014 - acc: 0.46 - ETA: 26s - loss: 1.5008 - acc: 0.46 - ETA: 26s - loss: 1.4991 - acc: 0.46 - ETA: 26s - loss: 1.4983 - acc: 0.46 - ETA: 26s - loss: 1.4972 - acc: 0.46 - ETA: 26s - loss: 1.4957 - acc: 0.46 - ETA: 26s - loss: 1.4939 - acc: 0.46 - ETA: 26s - loss: 1.4927 - acc: 0.46 - ETA: 26s - loss: 1.4915 - acc: 0.46 - ETA: 26s - loss: 1.4900 - acc: 0.46 - ETA: 26s - loss: 1.4884 - acc: 0.46 - ETA: 26s - loss: 1.4864 - acc: 0.46 - ETA: 26s - loss: 1.4849 - acc: 0.46 - ETA: 26s - loss: 1.4836 - acc: 0.46 - ETA: 25s - loss: 1.4818 - acc: 0.46 - ETA: 25s - loss: 1.4795 - acc: 0.46 - ETA: 25s - loss: 1.4783 - acc: 0.46 - ETA: 25s - loss: 1.4765 - acc: 0.46 - ETA: 25s - loss: 1.4750 - acc: 0.46 - ETA: 25s - loss: 1.4735 - acc: 0.47 - ETA: 25s - loss: 1.4720 - acc: 0.47 - ETA: 25s - loss: 1.4702 - acc: 0.47 - ETA: 25s - loss: 1.4695 - acc: 0.47 - ETA: 25s - loss: 1.4678 - acc: 0.47 - ETA: 25s - loss: 1.4660 - acc: 0.47 - ETA: 25s - loss: 1.4646 - acc: 0.47 - ETA: 24s - loss: 1.4640 - acc: 0.47 - ETA: 24s - loss: 1.4634 - acc: 0.47 - ETA: 24s - loss: 1.4627 - acc: 0.47 - ETA: 24s - loss: 1.4618 - acc: 0.47 - ETA: 24s - loss: 1.4608 - acc: 0.47 - ETA: 24s - loss: 1.4592 - acc: 0.47 - ETA: 24s - loss: 1.4583 - acc: 0.47 - ETA: 24s - loss: 1.4583 - acc: 0.47 - ETA: 24s - loss: 1.4572 - acc: 0.47 - ETA: 24s - loss: 1.4559 - acc: 0.47 - ETA: 24s - loss: 1.4544 - acc: 0.47 - ETA: 24s - loss: 1.4540 - acc: 0.47 - ETA: 24s - loss: 1.4529 - acc: 0.47 - ETA: 23s - loss: 1.4511 - acc: 0.47 - ETA: 23s - loss: 1.4502 - acc: 0.48 - ETA: 23s - loss: 1.4489 - acc: 0.48 - ETA: 23s - loss: 1.4479 - acc: 0.48 - ETA: 23s - loss: 1.4472 - acc: 0.48 - ETA: 23s - loss: 1.4463 - acc: 0.48 - ETA: 23s - loss: 1.4452 - acc: 0.48 - ETA: 23s - loss: 1.4444 - acc: 0.4820" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20576/23769 [========================>.....] - ETA: 23s - loss: 1.4445 - acc: 0.48 - ETA: 23s - loss: 1.4435 - acc: 0.48 - ETA: 23s - loss: 1.4423 - acc: 0.48 - ETA: 23s - loss: 1.4414 - acc: 0.48 - ETA: 23s - loss: 1.4409 - acc: 0.48 - ETA: 22s - loss: 1.4401 - acc: 0.48 - ETA: 22s - loss: 1.4390 - acc: 0.48 - ETA: 22s - loss: 1.4371 - acc: 0.48 - ETA: 22s - loss: 1.4367 - acc: 0.48 - ETA: 22s - loss: 1.4348 - acc: 0.48 - ETA: 22s - loss: 1.4335 - acc: 0.48 - ETA: 22s - loss: 1.4331 - acc: 0.48 - ETA: 22s - loss: 1.4317 - acc: 0.48 - ETA: 22s - loss: 1.4309 - acc: 0.48 - ETA: 22s - loss: 1.4299 - acc: 0.48 - ETA: 22s - loss: 1.4288 - acc: 0.48 - ETA: 22s - loss: 1.4277 - acc: 0.48 - ETA: 22s - loss: 1.4258 - acc: 0.48 - ETA: 21s - loss: 1.4245 - acc: 0.48 - ETA: 21s - loss: 1.4241 - acc: 0.49 - ETA: 21s - loss: 1.4236 - acc: 0.48 - ETA: 21s - loss: 1.4222 - acc: 0.49 - ETA: 21s - loss: 1.4209 - acc: 0.49 - ETA: 21s - loss: 1.4202 - acc: 0.49 - ETA: 21s - loss: 1.4186 - acc: 0.49 - ETA: 21s - loss: 1.4182 - acc: 0.49 - ETA: 21s - loss: 1.4168 - acc: 0.49 - ETA: 21s - loss: 1.4155 - acc: 0.49 - ETA: 21s - loss: 1.4146 - acc: 0.49 - ETA: 21s - loss: 1.4137 - acc: 0.49 - ETA: 21s - loss: 1.4123 - acc: 0.49 - ETA: 20s - loss: 1.4111 - acc: 0.49 - ETA: 20s - loss: 1.4103 - acc: 0.49 - ETA: 20s - loss: 1.4084 - acc: 0.49 - ETA: 20s - loss: 1.4075 - acc: 0.49 - ETA: 20s - loss: 1.4065 - acc: 0.49 - ETA: 20s - loss: 1.4057 - acc: 0.49 - ETA: 20s - loss: 1.4043 - acc: 0.49 - ETA: 20s - loss: 1.4030 - acc: 0.49 - ETA: 20s - loss: 1.4019 - acc: 0.49 - ETA: 20s - loss: 1.4004 - acc: 0.49 - ETA: 20s - loss: 1.3989 - acc: 0.49 - ETA: 20s - loss: 1.3978 - acc: 0.49 - ETA: 20s - loss: 1.3975 - acc: 0.49 - ETA: 19s - loss: 1.3967 - acc: 0.49 - ETA: 19s - loss: 1.3962 - acc: 0.50 - ETA: 19s - loss: 1.3958 - acc: 0.50 - ETA: 19s - loss: 1.3954 - acc: 0.50 - ETA: 19s - loss: 1.3944 - acc: 0.50 - ETA: 19s - loss: 1.3935 - acc: 0.50 - ETA: 19s - loss: 1.3922 - acc: 0.50 - ETA: 19s - loss: 1.3916 - acc: 0.50 - ETA: 19s - loss: 1.3907 - acc: 0.50 - ETA: 19s - loss: 1.3895 - acc: 0.50 - ETA: 19s - loss: 1.3879 - acc: 0.50 - ETA: 19s - loss: 1.3868 - acc: 0.50 - ETA: 19s - loss: 1.3858 - acc: 0.50 - ETA: 18s - loss: 1.3854 - acc: 0.50 - ETA: 18s - loss: 1.3842 - acc: 0.50 - ETA: 18s - loss: 1.3832 - acc: 0.50 - ETA: 18s - loss: 1.3823 - acc: 0.50 - ETA: 18s - loss: 1.3812 - acc: 0.50 - ETA: 18s - loss: 1.3803 - acc: 0.50 - ETA: 18s - loss: 1.3797 - acc: 0.50 - ETA: 18s - loss: 1.3782 - acc: 0.50 - ETA: 18s - loss: 1.3772 - acc: 0.50 - ETA: 18s - loss: 1.3768 - acc: 0.50 - ETA: 18s - loss: 1.3757 - acc: 0.50 - ETA: 18s - loss: 1.3744 - acc: 0.50 - ETA: 18s - loss: 1.3735 - acc: 0.50 - ETA: 17s - loss: 1.3726 - acc: 0.50 - ETA: 17s - loss: 1.3710 - acc: 0.50 - ETA: 17s - loss: 1.3699 - acc: 0.50 - ETA: 17s - loss: 1.3688 - acc: 0.50 - ETA: 17s - loss: 1.3677 - acc: 0.50 - ETA: 17s - loss: 1.3669 - acc: 0.50 - ETA: 17s - loss: 1.3664 - acc: 0.51 - ETA: 17s - loss: 1.3652 - acc: 0.51 - ETA: 17s - loss: 1.3638 - acc: 0.51 - ETA: 17s - loss: 1.3627 - acc: 0.51 - ETA: 17s - loss: 1.3615 - acc: 0.51 - ETA: 17s - loss: 1.3604 - acc: 0.51 - ETA: 17s - loss: 1.3593 - acc: 0.51 - ETA: 17s - loss: 1.3592 - acc: 0.51 - ETA: 16s - loss: 1.3581 - acc: 0.51 - ETA: 16s - loss: 1.3569 - acc: 0.51 - ETA: 16s - loss: 1.3558 - acc: 0.51 - ETA: 16s - loss: 1.3550 - acc: 0.51 - ETA: 16s - loss: 1.3547 - acc: 0.51 - ETA: 16s - loss: 1.3540 - acc: 0.51 - ETA: 16s - loss: 1.3533 - acc: 0.51 - ETA: 16s - loss: 1.3523 - acc: 0.51 - ETA: 16s - loss: 1.3509 - acc: 0.51 - ETA: 16s - loss: 1.3499 - acc: 0.51 - ETA: 16s - loss: 1.3493 - acc: 0.51 - ETA: 16s - loss: 1.3488 - acc: 0.51 - ETA: 16s - loss: 1.3477 - acc: 0.51 - ETA: 15s - loss: 1.3466 - acc: 0.51 - ETA: 15s - loss: 1.3461 - acc: 0.51 - ETA: 15s - loss: 1.3453 - acc: 0.51 - ETA: 15s - loss: 1.3441 - acc: 0.51 - ETA: 15s - loss: 1.3427 - acc: 0.51 - ETA: 15s - loss: 1.3414 - acc: 0.51 - ETA: 15s - loss: 1.3407 - acc: 0.51 - ETA: 15s - loss: 1.3398 - acc: 0.52 - ETA: 15s - loss: 1.3386 - acc: 0.52 - ETA: 15s - loss: 1.3373 - acc: 0.52 - ETA: 15s - loss: 1.3361 - acc: 0.52 - ETA: 15s - loss: 1.3355 - acc: 0.52 - ETA: 15s - loss: 1.3343 - acc: 0.52 - ETA: 14s - loss: 1.3328 - acc: 0.52 - ETA: 14s - loss: 1.3321 - acc: 0.52 - ETA: 14s - loss: 1.3309 - acc: 0.52 - ETA: 14s - loss: 1.3302 - acc: 0.52 - ETA: 14s - loss: 1.3292 - acc: 0.52 - ETA: 14s - loss: 1.3282 - acc: 0.52 - ETA: 14s - loss: 1.3272 - acc: 0.52 - ETA: 14s - loss: 1.3262 - acc: 0.52 - ETA: 14s - loss: 1.3249 - acc: 0.52 - ETA: 14s - loss: 1.3233 - acc: 0.52 - ETA: 14s - loss: 1.3222 - acc: 0.52 - ETA: 14s - loss: 1.3214 - acc: 0.52 - ETA: 14s - loss: 1.3200 - acc: 0.52 - ETA: 14s - loss: 1.3191 - acc: 0.52 - ETA: 13s - loss: 1.3176 - acc: 0.52 - ETA: 13s - loss: 1.3165 - acc: 0.52 - ETA: 13s - loss: 1.3158 - acc: 0.52 - ETA: 13s - loss: 1.3149 - acc: 0.52 - ETA: 13s - loss: 1.3138 - acc: 0.53 - ETA: 13s - loss: 1.3136 - acc: 0.53 - ETA: 13s - loss: 1.3129 - acc: 0.53 - ETA: 13s - loss: 1.3119 - acc: 0.53 - ETA: 13s - loss: 1.3109 - acc: 0.53 - ETA: 13s - loss: 1.3100 - acc: 0.53 - ETA: 13s - loss: 1.3094 - acc: 0.53 - ETA: 13s - loss: 1.3087 - acc: 0.53 - ETA: 13s - loss: 1.3080 - acc: 0.53 - ETA: 12s - loss: 1.3073 - acc: 0.53 - ETA: 12s - loss: 1.3062 - acc: 0.53 - ETA: 12s - loss: 1.3054 - acc: 0.53 - ETA: 12s - loss: 1.3047 - acc: 0.53 - ETA: 12s - loss: 1.3035 - acc: 0.53 - ETA: 12s - loss: 1.3025 - acc: 0.53 - ETA: 12s - loss: 1.3014 - acc: 0.53 - ETA: 12s - loss: 1.3002 - acc: 0.53 - ETA: 12s - loss: 1.2995 - acc: 0.53 - ETA: 12s - loss: 1.2984 - acc: 0.53 - ETA: 12s - loss: 1.2978 - acc: 0.53 - ETA: 12s - loss: 1.2970 - acc: 0.53 - ETA: 12s - loss: 1.2960 - acc: 0.53 - ETA: 12s - loss: 1.2951 - acc: 0.53 - ETA: 11s - loss: 1.2944 - acc: 0.53 - ETA: 11s - loss: 1.2932 - acc: 0.53 - ETA: 11s - loss: 1.2925 - acc: 0.53 - ETA: 11s - loss: 1.2921 - acc: 0.53 - ETA: 11s - loss: 1.2908 - acc: 0.53 - ETA: 11s - loss: 1.2905 - acc: 0.53 - ETA: 11s - loss: 1.2898 - acc: 0.53 - ETA: 11s - loss: 1.2888 - acc: 0.53 - ETA: 11s - loss: 1.2876 - acc: 0.54 - ETA: 11s - loss: 1.2865 - acc: 0.54 - ETA: 11s - loss: 1.2852 - acc: 0.54 - ETA: 11s - loss: 1.2841 - acc: 0.54 - ETA: 11s - loss: 1.2831 - acc: 0.54 - ETA: 10s - loss: 1.2818 - acc: 0.54 - ETA: 10s - loss: 1.2810 - acc: 0.54 - ETA: 10s - loss: 1.2798 - acc: 0.54 - ETA: 10s - loss: 1.2788 - acc: 0.54 - ETA: 10s - loss: 1.2777 - acc: 0.54 - ETA: 10s - loss: 1.2768 - acc: 0.54 - ETA: 10s - loss: 1.2762 - acc: 0.54 - ETA: 10s - loss: 1.2751 - acc: 0.54 - ETA: 10s - loss: 1.2742 - acc: 0.54 - ETA: 10s - loss: 1.2730 - acc: 0.54 - ETA: 10s - loss: 1.2722 - acc: 0.54 - ETA: 10s - loss: 1.2712 - acc: 0.54 - ETA: 10s - loss: 1.2702 - acc: 0.54 - ETA: 10s - loss: 1.2696 - acc: 0.54 - ETA: 9s - loss: 1.2688 - acc: 0.5469 - ETA: 9s - loss: 1.2675 - acc: 0.547 - ETA: 9s - loss: 1.2672 - acc: 0.547 - ETA: 9s - loss: 1.2663 - acc: 0.547 - ETA: 9s - loss: 1.2659 - acc: 0.548 - ETA: 9s - loss: 1.2652 - acc: 0.548 - ETA: 9s - loss: 1.2644 - acc: 0.548 - ETA: 9s - loss: 1.2640 - acc: 0.548 - ETA: 9s - loss: 1.2628 - acc: 0.549 - ETA: 9s - loss: 1.2615 - acc: 0.549 - ETA: 9s - loss: 1.2615 - acc: 0.549 - ETA: 9s - loss: 1.2602 - acc: 0.550 - ETA: 9s - loss: 1.2601 - acc: 0.550 - ETA: 8s - loss: 1.2596 - acc: 0.550 - ETA: 8s - loss: 1.2587 - acc: 0.550 - ETA: 8s - loss: 1.2576 - acc: 0.551 - ETA: 8s - loss: 1.2568 - acc: 0.551 - ETA: 8s - loss: 1.2561 - acc: 0.551 - ETA: 8s - loss: 1.2551 - acc: 0.552 - ETA: 8s - loss: 1.2545 - acc: 0.552 - ETA: 8s - loss: 1.2540 - acc: 0.552 - ETA: 8s - loss: 1.2532 - acc: 0.552 - ETA: 8s - loss: 1.2526 - acc: 0.553 - ETA: 8s - loss: 1.2521 - acc: 0.553 - ETA: 8s - loss: 1.2520 - acc: 0.553 - ETA: 8s - loss: 1.2515 - acc: 0.553 - ETA: 8s - loss: 1.2504 - acc: 0.554 - ETA: 7s - loss: 1.2497 - acc: 0.554 - ETA: 7s - loss: 1.2487 - acc: 0.554 - ETA: 7s - loss: 1.2479 - acc: 0.555 - ETA: 7s - loss: 1.2467 - acc: 0.555 - ETA: 7s - loss: 1.2459 - acc: 0.555 - ETA: 7s - loss: 1.2452 - acc: 0.556 - ETA: 7s - loss: 1.2447 - acc: 0.556 - ETA: 7s - loss: 1.2438 - acc: 0.556 - ETA: 7s - loss: 1.2428 - acc: 0.556 - ETA: 7s - loss: 1.2419 - acc: 0.5571" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 7s - loss: 1.2413 - acc: 0.557 - ETA: 7s - loss: 1.2399 - acc: 0.557 - ETA: 7s - loss: 1.2400 - acc: 0.557 - ETA: 6s - loss: 1.2398 - acc: 0.558 - ETA: 6s - loss: 1.2391 - acc: 0.558 - ETA: 6s - loss: 1.2384 - acc: 0.558 - ETA: 6s - loss: 1.2378 - acc: 0.558 - ETA: 6s - loss: 1.2372 - acc: 0.558 - ETA: 6s - loss: 1.2365 - acc: 0.559 - ETA: 6s - loss: 1.2355 - acc: 0.559 - ETA: 6s - loss: 1.2346 - acc: 0.559 - ETA: 6s - loss: 1.2345 - acc: 0.559 - ETA: 6s - loss: 1.2335 - acc: 0.560 - ETA: 6s - loss: 1.2328 - acc: 0.560 - ETA: 6s - loss: 1.2321 - acc: 0.560 - ETA: 6s - loss: 1.2314 - acc: 0.560 - ETA: 6s - loss: 1.2311 - acc: 0.560 - ETA: 5s - loss: 1.2302 - acc: 0.561 - ETA: 5s - loss: 1.2301 - acc: 0.561 - ETA: 5s - loss: 1.2297 - acc: 0.561 - ETA: 5s - loss: 1.2291 - acc: 0.561 - ETA: 5s - loss: 1.2285 - acc: 0.561 - ETA: 5s - loss: 1.2276 - acc: 0.562 - ETA: 5s - loss: 1.2270 - acc: 0.562 - ETA: 5s - loss: 1.2261 - acc: 0.562 - ETA: 5s - loss: 1.2260 - acc: 0.562 - ETA: 5s - loss: 1.2255 - acc: 0.563 - ETA: 5s - loss: 1.2247 - acc: 0.563 - ETA: 5s - loss: 1.2233 - acc: 0.563 - ETA: 5s - loss: 1.2224 - acc: 0.564 - ETA: 5s - loss: 1.2213 - acc: 0.564 - ETA: 4s - loss: 1.2208 - acc: 0.564 - ETA: 4s - loss: 1.2198 - acc: 0.565 - ETA: 4s - loss: 1.2191 - acc: 0.565 - ETA: 4s - loss: 1.2186 - acc: 0.565 - ETA: 4s - loss: 1.2183 - acc: 0.565 - ETA: 4s - loss: 1.2178 - acc: 0.565 - ETA: 4s - loss: 1.2173 - acc: 0.565 - ETA: 4s - loss: 1.2165 - acc: 0.566 - ETA: 4s - loss: 1.2158 - acc: 0.566 - ETA: 4s - loss: 1.2151 - acc: 0.566 - ETA: 4s - loss: 1.2147 - acc: 0.567 - ETA: 4s - loss: 1.2135 - acc: 0.567 - ETA: 4s - loss: 1.2129 - acc: 0.567 - ETA: 3s - loss: 1.2123 - acc: 0.567 - ETA: 3s - loss: 1.2112 - acc: 0.568 - ETA: 3s - loss: 1.2107 - acc: 0.568 - ETA: 3s - loss: 1.2099 - acc: 0.568 - ETA: 3s - loss: 1.2098 - acc: 0.568 - ETA: 3s - loss: 1.2095 - acc: 0.568 - ETA: 3s - loss: 1.2087 - acc: 0.569 - ETA: 3s - loss: 1.2080 - acc: 0.569 - ETA: 3s - loss: 1.2077 - acc: 0.569 - ETA: 3s - loss: 1.2071 - acc: 0.569 - ETA: 3s - loss: 1.2064 - acc: 0.570 - ETA: 3s - loss: 1.2058 - acc: 0.570 - ETA: 3s - loss: 1.2053 - acc: 0.570 - ETA: 3s - loss: 1.2050 - acc: 0.570 - ETA: 2s - loss: 1.2044 - acc: 0.570 - ETA: 2s - loss: 1.2036 - acc: 0.571 - ETA: 2s - loss: 1.2028 - acc: 0.571 - ETA: 2s - loss: 1.2025 - acc: 0.571 - ETA: 2s - loss: 1.2019 - acc: 0.571 - ETA: 2s - loss: 1.2019 - acc: 0.571 - ETA: 2s - loss: 1.2010 - acc: 0.571 - ETA: 2s - loss: 1.2004 - acc: 0.571 - ETA: 2s - loss: 1.1997 - acc: 0.572 - ETA: 2s - loss: 1.1989 - acc: 0.572 - ETA: 2s - loss: 1.1984 - acc: 0.572 - ETA: 2s - loss: 1.1976 - acc: 0.572 - ETA: 2s - loss: 1.1969 - acc: 0.573 - ETA: 2s - loss: 1.1962 - acc: 0.573 - ETA: 1s - loss: 1.1959 - acc: 0.573 - ETA: 1s - loss: 1.1949 - acc: 0.574 - ETA: 1s - loss: 1.1941 - acc: 0.574 - ETA: 1s - loss: 1.1934 - acc: 0.574 - ETA: 1s - loss: 1.1929 - acc: 0.575 - ETA: 1s - loss: 1.1917 - acc: 0.575 - ETA: 1s - loss: 1.1911 - acc: 0.575 - ETA: 1s - loss: 1.1906 - acc: 0.575 - ETA: 1s - loss: 1.1908 - acc: 0.575 - ETA: 1s - loss: 1.1899 - acc: 0.576 - ETA: 1s - loss: 1.1894 - acc: 0.576 - ETA: 1s - loss: 1.1890 - acc: 0.576 - ETA: 1s - loss: 1.1881 - acc: 0.576 - ETA: 1s - loss: 1.1876 - acc: 0.577 - ETA: 0s - loss: 1.1867 - acc: 0.577 - ETA: 0s - loss: 1.1861 - acc: 0.577 - ETA: 0s - loss: 1.1853 - acc: 0.578 - ETA: 0s - loss: 1.1850 - acc: 0.578 - ETA: 0s - loss: 1.1839 - acc: 0.578 - ETA: 0s - loss: 1.1838 - acc: 0.578 - ETA: 0s - loss: 1.1830 - acc: 0.579 - ETA: 0s - loss: 1.1821 - acc: 0.579 - ETA: 0s - loss: 1.1817 - acc: 0.579 - ETA: 0s - loss: 1.1809 - acc: 0.579 - ETA: 0s - loss: 1.1801 - acc: 0.580 - ETA: 0s - loss: 1.1794 - acc: 0.580 - ETA: 0s - loss: 1.1787 - acc: 0.580 - 55s 2ms/step - loss: 1.1787 - acc: 0.5806 - val_loss: 0.7286 - val_acc: 0.7562\n", + "\n", + "Epoch 00001: val_acc improved from -inf to 0.75615, saving model to models\\conv.model\n", + "Epoch 2/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 54s - loss: 0.7151 - acc: 0.68 - ETA: 56s - loss: 0.7124 - acc: 0.68 - ETA: 55s - loss: 0.7980 - acc: 0.69 - ETA: 55s - loss: 0.7452 - acc: 0.71 - ETA: 54s - loss: 0.6816 - acc: 0.74 - ETA: 53s - loss: 0.6548 - acc: 0.75 - ETA: 53s - loss: 0.6893 - acc: 0.75 - ETA: 53s - loss: 0.6709 - acc: 0.75 - ETA: 53s - loss: 0.6544 - acc: 0.77 - ETA: 52s - loss: 0.6907 - acc: 0.75 - ETA: 52s - loss: 0.7004 - acc: 0.75 - ETA: 52s - loss: 0.7199 - acc: 0.75 - ETA: 52s - loss: 0.7466 - acc: 0.74 - ETA: 52s - loss: 0.7458 - acc: 0.74 - ETA: 52s - loss: 0.7409 - acc: 0.74 - ETA: 52s - loss: 0.7365 - acc: 0.74 - ETA: 52s - loss: 0.7262 - acc: 0.74 - ETA: 52s - loss: 0.7268 - acc: 0.74 - ETA: 52s - loss: 0.7236 - acc: 0.74 - ETA: 52s - loss: 0.7231 - acc: 0.74 - ETA: 52s - loss: 0.7129 - acc: 0.75 - ETA: 52s - loss: 0.7067 - acc: 0.75 - ETA: 51s - loss: 0.6976 - acc: 0.75 - ETA: 52s - loss: 0.7149 - acc: 0.75 - ETA: 52s - loss: 0.7024 - acc: 0.75 - ETA: 52s - loss: 0.6957 - acc: 0.76 - ETA: 52s - loss: 0.7008 - acc: 0.76 - ETA: 51s - loss: 0.6987 - acc: 0.76 - ETA: 51s - loss: 0.6995 - acc: 0.76 - ETA: 51s - loss: 0.7008 - acc: 0.75 - ETA: 51s - loss: 0.7001 - acc: 0.75 - ETA: 51s - loss: 0.6914 - acc: 0.75 - ETA: 50s - loss: 0.6856 - acc: 0.76 - ETA: 50s - loss: 0.6833 - acc: 0.76 - ETA: 50s - loss: 0.6808 - acc: 0.76 - ETA: 50s - loss: 0.6774 - acc: 0.76 - ETA: 50s - loss: 0.6762 - acc: 0.76 - ETA: 50s - loss: 0.6860 - acc: 0.76 - ETA: 50s - loss: 0.6838 - acc: 0.76 - ETA: 50s - loss: 0.6877 - acc: 0.76 - ETA: 49s - loss: 0.6893 - acc: 0.76 - ETA: 49s - loss: 0.6896 - acc: 0.76 - ETA: 49s - loss: 0.6898 - acc: 0.76 - ETA: 49s - loss: 0.6921 - acc: 0.75 - ETA: 49s - loss: 0.6899 - acc: 0.76 - ETA: 49s - loss: 0.6901 - acc: 0.76 - ETA: 49s - loss: 0.6900 - acc: 0.76 - ETA: 48s - loss: 0.6869 - acc: 0.76 - ETA: 48s - loss: 0.6885 - acc: 0.76 - ETA: 48s - loss: 0.6860 - acc: 0.76 - ETA: 48s - loss: 0.6875 - acc: 0.76 - ETA: 48s - loss: 0.6873 - acc: 0.76 - ETA: 48s - loss: 0.6851 - acc: 0.76 - ETA: 48s - loss: 0.6779 - acc: 0.76 - ETA: 48s - loss: 0.6717 - acc: 0.76 - ETA: 48s - loss: 0.6745 - acc: 0.76 - ETA: 48s - loss: 0.6735 - acc: 0.76 - ETA: 47s - loss: 0.6715 - acc: 0.76 - ETA: 47s - loss: 0.6708 - acc: 0.76 - ETA: 47s - loss: 0.6724 - acc: 0.76 - ETA: 47s - loss: 0.6737 - acc: 0.76 - ETA: 47s - loss: 0.6810 - acc: 0.76 - ETA: 47s - loss: 0.6771 - acc: 0.76 - ETA: 47s - loss: 0.6764 - acc: 0.76 - ETA: 47s - loss: 0.6745 - acc: 0.76 - ETA: 47s - loss: 0.6773 - acc: 0.76 - ETA: 47s - loss: 0.6801 - acc: 0.76 - ETA: 47s - loss: 0.6773 - acc: 0.76 - ETA: 47s - loss: 0.6755 - acc: 0.76 - ETA: 46s - loss: 0.6799 - acc: 0.76 - ETA: 46s - loss: 0.6778 - acc: 0.76 - ETA: 46s - loss: 0.6750 - acc: 0.76 - ETA: 46s - loss: 0.6749 - acc: 0.76 - ETA: 46s - loss: 0.6738 - acc: 0.76 - ETA: 46s - loss: 0.6717 - acc: 0.76 - ETA: 46s - loss: 0.6711 - acc: 0.76 - ETA: 47s - loss: 0.6688 - acc: 0.76 - ETA: 47s - loss: 0.6661 - acc: 0.76 - ETA: 47s - loss: 0.6645 - acc: 0.76 - ETA: 47s - loss: 0.6624 - acc: 0.76 - ETA: 47s - loss: 0.6653 - acc: 0.76 - ETA: 47s - loss: 0.6634 - acc: 0.76 - ETA: 47s - loss: 0.6622 - acc: 0.76 - ETA: 47s - loss: 0.6625 - acc: 0.77 - ETA: 47s - loss: 0.6607 - acc: 0.77 - ETA: 47s - loss: 0.6577 - acc: 0.77 - ETA: 46s - loss: 0.6573 - acc: 0.77 - ETA: 46s - loss: 0.6574 - acc: 0.77 - ETA: 46s - loss: 0.6576 - acc: 0.77 - ETA: 46s - loss: 0.6601 - acc: 0.77 - ETA: 46s - loss: 0.6607 - acc: 0.77 - ETA: 46s - loss: 0.6618 - acc: 0.77 - ETA: 46s - loss: 0.6620 - acc: 0.77 - ETA: 46s - loss: 0.6685 - acc: 0.76 - ETA: 46s - loss: 0.6720 - acc: 0.76 - ETA: 46s - loss: 0.6721 - acc: 0.76 - ETA: 46s - loss: 0.6706 - acc: 0.76 - ETA: 46s - loss: 0.6689 - acc: 0.76 - ETA: 46s - loss: 0.6702 - acc: 0.76 - ETA: 46s - loss: 0.6677 - acc: 0.77 - ETA: 45s - loss: 0.6679 - acc: 0.77 - ETA: 45s - loss: 0.6672 - acc: 0.77 - ETA: 45s - loss: 0.6683 - acc: 0.77 - ETA: 45s - loss: 0.6718 - acc: 0.76 - ETA: 45s - loss: 0.6759 - acc: 0.76 - ETA: 45s - loss: 0.6741 - acc: 0.76 - ETA: 45s - loss: 0.6727 - acc: 0.76 - ETA: 45s - loss: 0.6713 - acc: 0.77 - ETA: 45s - loss: 0.6715 - acc: 0.76 - ETA: 45s - loss: 0.6714 - acc: 0.76 - ETA: 45s - loss: 0.6716 - acc: 0.76 - ETA: 45s - loss: 0.6738 - acc: 0.76 - ETA: 45s - loss: 0.6710 - acc: 0.76 - ETA: 45s - loss: 0.6705 - acc: 0.76 - ETA: 45s - loss: 0.6706 - acc: 0.77 - ETA: 44s - loss: 0.6694 - acc: 0.77 - ETA: 44s - loss: 0.6708 - acc: 0.77 - ETA: 44s - loss: 0.6711 - acc: 0.76 - ETA: 44s - loss: 0.6714 - acc: 0.76 - ETA: 44s - loss: 0.6727 - acc: 0.76 - ETA: 44s - loss: 0.6713 - acc: 0.77 - ETA: 44s - loss: 0.6709 - acc: 0.77 - ETA: 44s - loss: 0.6712 - acc: 0.77 - ETA: 44s - loss: 0.6699 - acc: 0.76 - ETA: 44s - loss: 0.6698 - acc: 0.76 - ETA: 44s - loss: 0.6675 - acc: 0.77 - ETA: 44s - loss: 0.6664 - acc: 0.76 - ETA: 44s - loss: 0.6662 - acc: 0.77 - ETA: 44s - loss: 0.6662 - acc: 0.77 - ETA: 44s - loss: 0.6673 - acc: 0.76 - ETA: 44s - loss: 0.6674 - acc: 0.76 - ETA: 44s - loss: 0.6662 - acc: 0.76 - ETA: 44s - loss: 0.6677 - acc: 0.76 - ETA: 44s - loss: 0.6676 - acc: 0.76 - ETA: 44s - loss: 0.6659 - acc: 0.76 - ETA: 43s - loss: 0.6647 - acc: 0.76 - ETA: 43s - loss: 0.6645 - acc: 0.76 - ETA: 43s - loss: 0.6639 - acc: 0.76 - ETA: 43s - loss: 0.6635 - acc: 0.76 - ETA: 43s - loss: 0.6645 - acc: 0.76 - ETA: 43s - loss: 0.6655 - acc: 0.76 - ETA: 43s - loss: 0.6642 - acc: 0.76 - ETA: 43s - loss: 0.6632 - acc: 0.76 - ETA: 43s - loss: 0.6626 - acc: 0.76 - ETA: 43s - loss: 0.6622 - acc: 0.76 - ETA: 42s - loss: 0.6604 - acc: 0.77 - ETA: 42s - loss: 0.6585 - acc: 0.77 - ETA: 42s - loss: 0.6573 - acc: 0.77 - ETA: 42s - loss: 0.6571 - acc: 0.77 - ETA: 42s - loss: 0.6585 - acc: 0.77 - ETA: 42s - loss: 0.6583 - acc: 0.77 - ETA: 42s - loss: 0.6601 - acc: 0.77 - ETA: 42s - loss: 0.6589 - acc: 0.77 - ETA: 42s - loss: 0.6574 - acc: 0.77 - ETA: 42s - loss: 0.6574 - acc: 0.77 - ETA: 42s - loss: 0.6567 - acc: 0.77 - ETA: 42s - loss: 0.6573 - acc: 0.77 - ETA: 42s - loss: 0.6571 - acc: 0.77 - ETA: 42s - loss: 0.6554 - acc: 0.77 - ETA: 41s - loss: 0.6555 - acc: 0.77 - ETA: 41s - loss: 0.6548 - acc: 0.77 - ETA: 41s - loss: 0.6551 - acc: 0.77 - ETA: 41s - loss: 0.6531 - acc: 0.77 - ETA: 41s - loss: 0.6542 - acc: 0.77 - ETA: 41s - loss: 0.6532 - acc: 0.77 - ETA: 41s - loss: 0.6532 - acc: 0.77 - ETA: 41s - loss: 0.6532 - acc: 0.77 - ETA: 41s - loss: 0.6531 - acc: 0.77 - ETA: 41s - loss: 0.6536 - acc: 0.77 - ETA: 41s - loss: 0.6525 - acc: 0.77 - ETA: 41s - loss: 0.6556 - acc: 0.76 - ETA: 40s - loss: 0.6549 - acc: 0.76 - ETA: 40s - loss: 0.6543 - acc: 0.76 - ETA: 40s - loss: 0.6535 - acc: 0.76 - ETA: 40s - loss: 0.6562 - acc: 0.76 - ETA: 40s - loss: 0.6557 - acc: 0.76 - ETA: 40s - loss: 0.6536 - acc: 0.77 - ETA: 40s - loss: 0.6543 - acc: 0.77 - ETA: 40s - loss: 0.6531 - acc: 0.77 - ETA: 40s - loss: 0.6533 - acc: 0.77 - ETA: 40s - loss: 0.6531 - acc: 0.77 - ETA: 40s - loss: 0.6520 - acc: 0.77 - ETA: 40s - loss: 0.6515 - acc: 0.77 - ETA: 40s - loss: 0.6502 - acc: 0.77 - ETA: 40s - loss: 0.6492 - acc: 0.77 - ETA: 39s - loss: 0.6499 - acc: 0.77 - ETA: 39s - loss: 0.6512 - acc: 0.77 - ETA: 39s - loss: 0.6507 - acc: 0.77 - ETA: 39s - loss: 0.6507 - acc: 0.77 - ETA: 39s - loss: 0.6522 - acc: 0.77 - ETA: 39s - loss: 0.6528 - acc: 0.77 - ETA: 39s - loss: 0.6532 - acc: 0.77 - ETA: 39s - loss: 0.6533 - acc: 0.77 - ETA: 39s - loss: 0.6523 - acc: 0.77 - ETA: 39s - loss: 0.6528 - acc: 0.77 - ETA: 39s - loss: 0.6531 - acc: 0.77 - ETA: 39s - loss: 0.6533 - acc: 0.77 - ETA: 39s - loss: 0.6550 - acc: 0.76 - ETA: 39s - loss: 0.6564 - acc: 0.76 - ETA: 38s - loss: 0.6558 - acc: 0.76 - ETA: 38s - loss: 0.6553 - acc: 0.77 - ETA: 38s - loss: 0.6547 - acc: 0.77 - ETA: 38s - loss: 0.6541 - acc: 0.77 - ETA: 38s - loss: 0.6543 - acc: 0.77 - ETA: 38s - loss: 0.6539 - acc: 0.77 - ETA: 38s - loss: 0.6539 - acc: 0.77 - ETA: 38s - loss: 0.6527 - acc: 0.77 - ETA: 38s - loss: 0.6523 - acc: 0.77 - ETA: 38s - loss: 0.6548 - acc: 0.77 - ETA: 38s - loss: 0.6548 - acc: 0.77 - ETA: 38s - loss: 0.6562 - acc: 0.77 - ETA: 38s - loss: 0.6546 - acc: 0.77 - ETA: 38s - loss: 0.6551 - acc: 0.77 - ETA: 37s - loss: 0.6557 - acc: 0.77 - ETA: 37s - loss: 0.6566 - acc: 0.7708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.6571 - acc: 0.77 - ETA: 37s - loss: 0.6579 - acc: 0.77 - ETA: 37s - loss: 0.6581 - acc: 0.77 - ETA: 37s - loss: 0.6596 - acc: 0.77 - ETA: 37s - loss: 0.6584 - acc: 0.77 - ETA: 37s - loss: 0.6592 - acc: 0.76 - ETA: 37s - loss: 0.6589 - acc: 0.77 - ETA: 37s - loss: 0.6623 - acc: 0.76 - ETA: 37s - loss: 0.6615 - acc: 0.77 - ETA: 37s - loss: 0.6603 - acc: 0.77 - ETA: 37s - loss: 0.6609 - acc: 0.77 - ETA: 37s - loss: 0.6606 - acc: 0.77 - ETA: 37s - loss: 0.6621 - acc: 0.77 - ETA: 37s - loss: 0.6632 - acc: 0.76 - ETA: 36s - loss: 0.6636 - acc: 0.76 - ETA: 36s - loss: 0.6634 - acc: 0.76 - ETA: 36s - loss: 0.6634 - acc: 0.76 - ETA: 36s - loss: 0.6636 - acc: 0.76 - ETA: 36s - loss: 0.6646 - acc: 0.76 - ETA: 36s - loss: 0.6641 - acc: 0.76 - ETA: 36s - loss: 0.6631 - acc: 0.77 - ETA: 36s - loss: 0.6624 - acc: 0.77 - ETA: 36s - loss: 0.6628 - acc: 0.77 - ETA: 36s - loss: 0.6630 - acc: 0.77 - ETA: 36s - loss: 0.6625 - acc: 0.77 - ETA: 36s - loss: 0.6605 - acc: 0.77 - ETA: 36s - loss: 0.6601 - acc: 0.77 - ETA: 36s - loss: 0.6588 - acc: 0.77 - ETA: 35s - loss: 0.6591 - acc: 0.77 - ETA: 35s - loss: 0.6594 - acc: 0.77 - ETA: 35s - loss: 0.6586 - acc: 0.77 - ETA: 35s - loss: 0.6574 - acc: 0.77 - ETA: 35s - loss: 0.6573 - acc: 0.77 - ETA: 35s - loss: 0.6566 - acc: 0.77 - ETA: 35s - loss: 0.6563 - acc: 0.77 - ETA: 35s - loss: 0.6557 - acc: 0.77 - ETA: 35s - loss: 0.6562 - acc: 0.77 - ETA: 35s - loss: 0.6562 - acc: 0.77 - ETA: 35s - loss: 0.6554 - acc: 0.77 - ETA: 35s - loss: 0.6549 - acc: 0.77 - ETA: 35s - loss: 0.6546 - acc: 0.77 - ETA: 35s - loss: 0.6538 - acc: 0.77 - ETA: 34s - loss: 0.6538 - acc: 0.77 - ETA: 34s - loss: 0.6529 - acc: 0.77 - ETA: 34s - loss: 0.6528 - acc: 0.77 - ETA: 34s - loss: 0.6539 - acc: 0.77 - ETA: 34s - loss: 0.6533 - acc: 0.77 - ETA: 34s - loss: 0.6539 - acc: 0.77 - ETA: 34s - loss: 0.6547 - acc: 0.77 - ETA: 34s - loss: 0.6543 - acc: 0.77 - ETA: 34s - loss: 0.6540 - acc: 0.77 - ETA: 34s - loss: 0.6537 - acc: 0.77 - ETA: 34s - loss: 0.6541 - acc: 0.77 - ETA: 34s - loss: 0.6540 - acc: 0.77 - ETA: 34s - loss: 0.6538 - acc: 0.77 - ETA: 34s - loss: 0.6528 - acc: 0.77 - ETA: 33s - loss: 0.6522 - acc: 0.77 - ETA: 33s - loss: 0.6523 - acc: 0.77 - ETA: 33s - loss: 0.6516 - acc: 0.77 - ETA: 33s - loss: 0.6510 - acc: 0.77 - ETA: 33s - loss: 0.6504 - acc: 0.77 - ETA: 33s - loss: 0.6503 - acc: 0.77 - ETA: 33s - loss: 0.6518 - acc: 0.77 - ETA: 33s - loss: 0.6515 - acc: 0.77 - ETA: 33s - loss: 0.6513 - acc: 0.77 - ETA: 33s - loss: 0.6509 - acc: 0.77 - ETA: 33s - loss: 0.6515 - acc: 0.77 - ETA: 33s - loss: 0.6520 - acc: 0.77 - ETA: 33s - loss: 0.6524 - acc: 0.77 - ETA: 32s - loss: 0.6524 - acc: 0.77 - ETA: 32s - loss: 0.6517 - acc: 0.77 - ETA: 32s - loss: 0.6521 - acc: 0.77 - ETA: 32s - loss: 0.6516 - acc: 0.77 - ETA: 32s - loss: 0.6518 - acc: 0.77 - ETA: 32s - loss: 0.6508 - acc: 0.77 - ETA: 32s - loss: 0.6506 - acc: 0.77 - ETA: 32s - loss: 0.6507 - acc: 0.77 - ETA: 32s - loss: 0.6503 - acc: 0.77 - ETA: 32s - loss: 0.6496 - acc: 0.77 - ETA: 32s - loss: 0.6499 - acc: 0.77 - ETA: 32s - loss: 0.6495 - acc: 0.77 - ETA: 32s - loss: 0.6493 - acc: 0.77 - ETA: 32s - loss: 0.6488 - acc: 0.77 - ETA: 31s - loss: 0.6481 - acc: 0.77 - ETA: 31s - loss: 0.6475 - acc: 0.77 - ETA: 31s - loss: 0.6469 - acc: 0.77 - ETA: 31s - loss: 0.6462 - acc: 0.77 - ETA: 31s - loss: 0.6463 - acc: 0.77 - ETA: 31s - loss: 0.6458 - acc: 0.77 - ETA: 31s - loss: 0.6450 - acc: 0.77 - ETA: 31s - loss: 0.6441 - acc: 0.77 - ETA: 31s - loss: 0.6438 - acc: 0.77 - ETA: 31s - loss: 0.6447 - acc: 0.77 - ETA: 31s - loss: 0.6449 - acc: 0.77 - ETA: 31s - loss: 0.6450 - acc: 0.77 - ETA: 31s - loss: 0.6459 - acc: 0.77 - ETA: 31s - loss: 0.6449 - acc: 0.77 - ETA: 30s - loss: 0.6450 - acc: 0.77 - ETA: 30s - loss: 0.6442 - acc: 0.77 - ETA: 30s - loss: 0.6441 - acc: 0.77 - ETA: 30s - loss: 0.6438 - acc: 0.77 - ETA: 30s - loss: 0.6434 - acc: 0.77 - ETA: 30s - loss: 0.6439 - acc: 0.77 - ETA: 30s - loss: 0.6435 - acc: 0.77 - ETA: 30s - loss: 0.6437 - acc: 0.77 - ETA: 30s - loss: 0.6431 - acc: 0.77 - ETA: 30s - loss: 0.6425 - acc: 0.77 - ETA: 30s - loss: 0.6413 - acc: 0.77 - ETA: 30s - loss: 0.6412 - acc: 0.77 - ETA: 30s - loss: 0.6415 - acc: 0.77 - ETA: 30s - loss: 0.6410 - acc: 0.77 - ETA: 30s - loss: 0.6408 - acc: 0.77 - ETA: 29s - loss: 0.6406 - acc: 0.77 - ETA: 29s - loss: 0.6409 - acc: 0.77 - ETA: 29s - loss: 0.6402 - acc: 0.77 - ETA: 29s - loss: 0.6409 - acc: 0.77 - ETA: 29s - loss: 0.6406 - acc: 0.77 - ETA: 29s - loss: 0.6404 - acc: 0.77 - ETA: 29s - loss: 0.6402 - acc: 0.77 - ETA: 29s - loss: 0.6394 - acc: 0.77 - ETA: 29s - loss: 0.6386 - acc: 0.77 - ETA: 29s - loss: 0.6384 - acc: 0.77 - ETA: 29s - loss: 0.6376 - acc: 0.77 - ETA: 29s - loss: 0.6374 - acc: 0.77 - ETA: 29s - loss: 0.6373 - acc: 0.77 - ETA: 29s - loss: 0.6374 - acc: 0.77 - ETA: 28s - loss: 0.6373 - acc: 0.77 - ETA: 28s - loss: 0.6372 - acc: 0.77 - ETA: 28s - loss: 0.6368 - acc: 0.77 - ETA: 28s - loss: 0.6370 - acc: 0.77 - ETA: 28s - loss: 0.6364 - acc: 0.77 - ETA: 28s - loss: 0.6360 - acc: 0.77 - ETA: 28s - loss: 0.6354 - acc: 0.77 - ETA: 28s - loss: 0.6351 - acc: 0.77 - ETA: 28s - loss: 0.6349 - acc: 0.77 - ETA: 28s - loss: 0.6343 - acc: 0.77 - ETA: 28s - loss: 0.6346 - acc: 0.77 - ETA: 28s - loss: 0.6341 - acc: 0.77 - ETA: 28s - loss: 0.6335 - acc: 0.78 - ETA: 27s - loss: 0.6336 - acc: 0.78 - ETA: 27s - loss: 0.6330 - acc: 0.78 - ETA: 27s - loss: 0.6327 - acc: 0.78 - ETA: 27s - loss: 0.6330 - acc: 0.78 - ETA: 27s - loss: 0.6328 - acc: 0.78 - ETA: 27s - loss: 0.6320 - acc: 0.78 - ETA: 27s - loss: 0.6315 - acc: 0.78 - ETA: 27s - loss: 0.6314 - acc: 0.78 - ETA: 27s - loss: 0.6313 - acc: 0.78 - ETA: 27s - loss: 0.6305 - acc: 0.78 - ETA: 27s - loss: 0.6296 - acc: 0.78 - ETA: 27s - loss: 0.6287 - acc: 0.78 - ETA: 27s - loss: 0.6283 - acc: 0.78 - ETA: 27s - loss: 0.6276 - acc: 0.78 - ETA: 26s - loss: 0.6270 - acc: 0.78 - ETA: 26s - loss: 0.6270 - acc: 0.78 - ETA: 26s - loss: 0.6267 - acc: 0.78 - ETA: 26s - loss: 0.6266 - acc: 0.78 - ETA: 26s - loss: 0.6260 - acc: 0.78 - ETA: 26s - loss: 0.6251 - acc: 0.78 - ETA: 26s - loss: 0.6245 - acc: 0.78 - ETA: 26s - loss: 0.6238 - acc: 0.78 - ETA: 26s - loss: 0.6240 - acc: 0.78 - ETA: 26s - loss: 0.6244 - acc: 0.78 - ETA: 26s - loss: 0.6244 - acc: 0.78 - ETA: 26s - loss: 0.6238 - acc: 0.78 - ETA: 25s - loss: 0.6251 - acc: 0.78 - ETA: 25s - loss: 0.6254 - acc: 0.78 - ETA: 25s - loss: 0.6254 - acc: 0.78 - ETA: 25s - loss: 0.6253 - acc: 0.78 - ETA: 25s - loss: 0.6241 - acc: 0.78 - ETA: 25s - loss: 0.6236 - acc: 0.78 - ETA: 25s - loss: 0.6237 - acc: 0.78 - ETA: 25s - loss: 0.6230 - acc: 0.78 - ETA: 25s - loss: 0.6230 - acc: 0.78 - ETA: 25s - loss: 0.6224 - acc: 0.78 - ETA: 25s - loss: 0.6221 - acc: 0.78 - ETA: 25s - loss: 0.6222 - acc: 0.78 - ETA: 25s - loss: 0.6218 - acc: 0.78 - ETA: 24s - loss: 0.6217 - acc: 0.78 - ETA: 24s - loss: 0.6223 - acc: 0.78 - ETA: 24s - loss: 0.6216 - acc: 0.78 - ETA: 24s - loss: 0.6211 - acc: 0.78 - ETA: 24s - loss: 0.6208 - acc: 0.78 - ETA: 24s - loss: 0.6211 - acc: 0.78 - ETA: 24s - loss: 0.6214 - acc: 0.78 - ETA: 24s - loss: 0.6205 - acc: 0.78 - ETA: 24s - loss: 0.6212 - acc: 0.78 - ETA: 24s - loss: 0.6212 - acc: 0.78 - ETA: 24s - loss: 0.6210 - acc: 0.78 - ETA: 24s - loss: 0.6208 - acc: 0.78 - ETA: 24s - loss: 0.6205 - acc: 0.78 - ETA: 24s - loss: 0.6204 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6191 - acc: 0.78 - ETA: 23s - loss: 0.6190 - acc: 0.78 - ETA: 23s - loss: 0.6187 - acc: 0.78 - ETA: 23s - loss: 0.6186 - acc: 0.78 - ETA: 23s - loss: 0.6190 - acc: 0.78 - ETA: 23s - loss: 0.6186 - acc: 0.78 - ETA: 23s - loss: 0.6189 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6201 - acc: 0.78 - ETA: 23s - loss: 0.6197 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6198 - acc: 0.78 - ETA: 23s - loss: 0.6199 - acc: 0.78 - ETA: 22s - loss: 0.6192 - acc: 0.78 - ETA: 22s - loss: 0.6190 - acc: 0.78 - ETA: 22s - loss: 0.6198 - acc: 0.78 - ETA: 22s - loss: 0.6191 - acc: 0.78 - ETA: 22s - loss: 0.6194 - acc: 0.78 - ETA: 22s - loss: 0.6194 - acc: 0.78 - ETA: 22s - loss: 0.6196 - acc: 0.78 - ETA: 22s - loss: 0.6190 - acc: 0.78 - ETA: 22s - loss: 0.6182 - acc: 0.7855" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.6180 - acc: 0.78 - ETA: 22s - loss: 0.6180 - acc: 0.78 - ETA: 22s - loss: 0.6181 - acc: 0.78 - ETA: 22s - loss: 0.6182 - acc: 0.78 - ETA: 21s - loss: 0.6184 - acc: 0.78 - ETA: 21s - loss: 0.6186 - acc: 0.78 - ETA: 21s - loss: 0.6187 - acc: 0.78 - ETA: 21s - loss: 0.6188 - acc: 0.78 - ETA: 21s - loss: 0.6191 - acc: 0.78 - ETA: 21s - loss: 0.6189 - acc: 0.78 - ETA: 21s - loss: 0.6187 - acc: 0.78 - ETA: 21s - loss: 0.6192 - acc: 0.78 - ETA: 21s - loss: 0.6192 - acc: 0.78 - ETA: 21s - loss: 0.6187 - acc: 0.78 - ETA: 21s - loss: 0.6183 - acc: 0.78 - ETA: 21s - loss: 0.6180 - acc: 0.78 - ETA: 21s - loss: 0.6172 - acc: 0.78 - ETA: 20s - loss: 0.6170 - acc: 0.78 - ETA: 20s - loss: 0.6172 - acc: 0.78 - ETA: 20s - loss: 0.6171 - acc: 0.78 - ETA: 20s - loss: 0.6166 - acc: 0.78 - ETA: 20s - loss: 0.6163 - acc: 0.78 - ETA: 20s - loss: 0.6162 - acc: 0.78 - ETA: 20s - loss: 0.6158 - acc: 0.78 - ETA: 20s - loss: 0.6158 - acc: 0.78 - ETA: 20s - loss: 0.6156 - acc: 0.78 - ETA: 20s - loss: 0.6151 - acc: 0.78 - ETA: 20s - loss: 0.6154 - acc: 0.78 - ETA: 20s - loss: 0.6153 - acc: 0.78 - ETA: 20s - loss: 0.6150 - acc: 0.78 - ETA: 20s - loss: 0.6151 - acc: 0.78 - ETA: 19s - loss: 0.6148 - acc: 0.78 - ETA: 19s - loss: 0.6144 - acc: 0.78 - ETA: 19s - loss: 0.6141 - acc: 0.78 - ETA: 19s - loss: 0.6137 - acc: 0.78 - ETA: 19s - loss: 0.6136 - acc: 0.78 - ETA: 19s - loss: 0.6133 - acc: 0.78 - ETA: 19s - loss: 0.6135 - acc: 0.78 - ETA: 19s - loss: 0.6134 - acc: 0.78 - ETA: 19s - loss: 0.6132 - acc: 0.78 - ETA: 19s - loss: 0.6129 - acc: 0.78 - ETA: 19s - loss: 0.6124 - acc: 0.78 - ETA: 19s - loss: 0.6130 - acc: 0.78 - ETA: 19s - loss: 0.6127 - acc: 0.78 - ETA: 19s - loss: 0.6127 - acc: 0.78 - ETA: 18s - loss: 0.6122 - acc: 0.78 - ETA: 18s - loss: 0.6129 - acc: 0.78 - ETA: 18s - loss: 0.6125 - acc: 0.78 - ETA: 18s - loss: 0.6124 - acc: 0.78 - ETA: 18s - loss: 0.6123 - acc: 0.78 - ETA: 18s - loss: 0.6131 - acc: 0.78 - ETA: 18s - loss: 0.6128 - acc: 0.78 - ETA: 18s - loss: 0.6128 - acc: 0.78 - ETA: 18s - loss: 0.6127 - acc: 0.78 - ETA: 18s - loss: 0.6121 - acc: 0.78 - ETA: 18s - loss: 0.6116 - acc: 0.78 - ETA: 18s - loss: 0.6110 - acc: 0.78 - ETA: 18s - loss: 0.6106 - acc: 0.78 - ETA: 17s - loss: 0.6107 - acc: 0.78 - ETA: 17s - loss: 0.6104 - acc: 0.78 - ETA: 17s - loss: 0.6099 - acc: 0.78 - ETA: 17s - loss: 0.6097 - acc: 0.78 - ETA: 17s - loss: 0.6103 - acc: 0.78 - ETA: 17s - loss: 0.6107 - acc: 0.78 - ETA: 17s - loss: 0.6112 - acc: 0.78 - ETA: 17s - loss: 0.6110 - acc: 0.78 - ETA: 17s - loss: 0.6116 - acc: 0.78 - ETA: 17s - loss: 0.6127 - acc: 0.78 - ETA: 17s - loss: 0.6123 - acc: 0.78 - ETA: 17s - loss: 0.6125 - acc: 0.78 - ETA: 17s - loss: 0.6123 - acc: 0.78 - ETA: 17s - loss: 0.6123 - acc: 0.78 - ETA: 16s - loss: 0.6119 - acc: 0.78 - ETA: 16s - loss: 0.6117 - acc: 0.78 - ETA: 16s - loss: 0.6111 - acc: 0.78 - ETA: 16s - loss: 0.6113 - acc: 0.78 - ETA: 16s - loss: 0.6112 - acc: 0.78 - ETA: 16s - loss: 0.6111 - acc: 0.78 - ETA: 16s - loss: 0.6108 - acc: 0.78 - ETA: 16s - loss: 0.6109 - acc: 0.78 - ETA: 16s - loss: 0.6108 - acc: 0.78 - ETA: 16s - loss: 0.6107 - acc: 0.78 - ETA: 16s - loss: 0.6105 - acc: 0.78 - ETA: 16s - loss: 0.6106 - acc: 0.78 - ETA: 16s - loss: 0.6106 - acc: 0.78 - ETA: 16s - loss: 0.6104 - acc: 0.78 - ETA: 15s - loss: 0.6108 - acc: 0.78 - ETA: 15s - loss: 0.6105 - acc: 0.78 - ETA: 15s - loss: 0.6103 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6105 - acc: 0.78 - ETA: 15s - loss: 0.6106 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 15s - loss: 0.6100 - acc: 0.78 - ETA: 15s - loss: 0.6097 - acc: 0.78 - ETA: 15s - loss: 0.6091 - acc: 0.78 - ETA: 15s - loss: 0.6087 - acc: 0.78 - ETA: 15s - loss: 0.6101 - acc: 0.78 - ETA: 14s - loss: 0.6094 - acc: 0.78 - ETA: 14s - loss: 0.6086 - acc: 0.78 - ETA: 14s - loss: 0.6082 - acc: 0.78 - ETA: 14s - loss: 0.6081 - acc: 0.78 - ETA: 14s - loss: 0.6076 - acc: 0.78 - ETA: 14s - loss: 0.6072 - acc: 0.78 - ETA: 14s - loss: 0.6072 - acc: 0.78 - ETA: 14s - loss: 0.6071 - acc: 0.78 - ETA: 14s - loss: 0.6067 - acc: 0.78 - ETA: 14s - loss: 0.6068 - acc: 0.78 - ETA: 14s - loss: 0.6063 - acc: 0.78 - ETA: 14s - loss: 0.6063 - acc: 0.78 - ETA: 14s - loss: 0.6063 - acc: 0.78 - ETA: 14s - loss: 0.6057 - acc: 0.78 - ETA: 13s - loss: 0.6059 - acc: 0.78 - ETA: 13s - loss: 0.6053 - acc: 0.78 - ETA: 13s - loss: 0.6050 - acc: 0.79 - ETA: 13s - loss: 0.6053 - acc: 0.78 - ETA: 13s - loss: 0.6056 - acc: 0.78 - ETA: 13s - loss: 0.6055 - acc: 0.78 - ETA: 13s - loss: 0.6051 - acc: 0.79 - ETA: 13s - loss: 0.6047 - acc: 0.79 - ETA: 13s - loss: 0.6050 - acc: 0.79 - ETA: 13s - loss: 0.6045 - acc: 0.79 - ETA: 13s - loss: 0.6040 - acc: 0.79 - ETA: 13s - loss: 0.6039 - acc: 0.79 - ETA: 13s - loss: 0.6036 - acc: 0.79 - ETA: 13s - loss: 0.6037 - acc: 0.79 - ETA: 13s - loss: 0.6030 - acc: 0.79 - ETA: 12s - loss: 0.6027 - acc: 0.79 - ETA: 12s - loss: 0.6029 - acc: 0.79 - ETA: 12s - loss: 0.6024 - acc: 0.79 - ETA: 12s - loss: 0.6018 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6010 - acc: 0.79 - ETA: 12s - loss: 0.6005 - acc: 0.79 - ETA: 12s - loss: 0.6003 - acc: 0.79 - ETA: 12s - loss: 0.5999 - acc: 0.79 - ETA: 12s - loss: 0.5994 - acc: 0.79 - ETA: 12s - loss: 0.5989 - acc: 0.79 - ETA: 12s - loss: 0.5994 - acc: 0.79 - ETA: 11s - loss: 0.5993 - acc: 0.79 - ETA: 11s - loss: 0.5989 - acc: 0.79 - ETA: 11s - loss: 0.5986 - acc: 0.79 - ETA: 11s - loss: 0.5981 - acc: 0.79 - ETA: 11s - loss: 0.5977 - acc: 0.79 - ETA: 11s - loss: 0.5973 - acc: 0.79 - ETA: 11s - loss: 0.5967 - acc: 0.79 - ETA: 11s - loss: 0.5963 - acc: 0.79 - ETA: 11s - loss: 0.5958 - acc: 0.79 - ETA: 11s - loss: 0.5958 - acc: 0.79 - ETA: 11s - loss: 0.5960 - acc: 0.79 - ETA: 11s - loss: 0.5955 - acc: 0.79 - ETA: 11s - loss: 0.5951 - acc: 0.79 - ETA: 11s - loss: 0.5951 - acc: 0.79 - ETA: 10s - loss: 0.5949 - acc: 0.79 - ETA: 10s - loss: 0.5947 - acc: 0.79 - ETA: 10s - loss: 0.5947 - acc: 0.79 - ETA: 10s - loss: 0.5943 - acc: 0.79 - ETA: 10s - loss: 0.5939 - acc: 0.79 - ETA: 10s - loss: 0.5938 - acc: 0.79 - ETA: 10s - loss: 0.5935 - acc: 0.79 - ETA: 10s - loss: 0.5937 - acc: 0.79 - ETA: 10s - loss: 0.5932 - acc: 0.79 - ETA: 10s - loss: 0.5929 - acc: 0.79 - ETA: 10s - loss: 0.5928 - acc: 0.79 - ETA: 10s - loss: 0.5928 - acc: 0.79 - ETA: 10s - loss: 0.5926 - acc: 0.79 - ETA: 9s - loss: 0.5921 - acc: 0.7948 - ETA: 9s - loss: 0.5918 - acc: 0.794 - ETA: 9s - loss: 0.5913 - acc: 0.795 - ETA: 9s - loss: 0.5909 - acc: 0.795 - ETA: 9s - loss: 0.5907 - acc: 0.795 - ETA: 9s - loss: 0.5904 - acc: 0.795 - ETA: 9s - loss: 0.5902 - acc: 0.795 - ETA: 9s - loss: 0.5900 - acc: 0.795 - ETA: 9s - loss: 0.5898 - acc: 0.795 - ETA: 9s - loss: 0.5896 - acc: 0.795 - ETA: 9s - loss: 0.5896 - acc: 0.795 - ETA: 9s - loss: 0.5892 - acc: 0.795 - ETA: 9s - loss: 0.5892 - acc: 0.795 - ETA: 9s - loss: 0.5896 - acc: 0.795 - ETA: 9s - loss: 0.5894 - acc: 0.795 - ETA: 8s - loss: 0.5893 - acc: 0.795 - ETA: 8s - loss: 0.5891 - acc: 0.795 - ETA: 8s - loss: 0.5890 - acc: 0.795 - ETA: 8s - loss: 0.5890 - acc: 0.795 - ETA: 8s - loss: 0.5888 - acc: 0.795 - ETA: 8s - loss: 0.5882 - acc: 0.796 - ETA: 8s - loss: 0.5879 - acc: 0.796 - ETA: 8s - loss: 0.5876 - acc: 0.796 - ETA: 8s - loss: 0.5875 - acc: 0.796 - ETA: 8s - loss: 0.5874 - acc: 0.796 - ETA: 8s - loss: 0.5873 - acc: 0.796 - ETA: 8s - loss: 0.5870 - acc: 0.796 - ETA: 8s - loss: 0.5870 - acc: 0.796 - ETA: 8s - loss: 0.5870 - acc: 0.796 - ETA: 7s - loss: 0.5870 - acc: 0.796 - ETA: 7s - loss: 0.5870 - acc: 0.796 - ETA: 7s - loss: 0.5867 - acc: 0.796 - ETA: 7s - loss: 0.5865 - acc: 0.796 - ETA: 7s - loss: 0.5864 - acc: 0.796 - ETA: 7s - loss: 0.5860 - acc: 0.796 - ETA: 7s - loss: 0.5858 - acc: 0.796 - ETA: 7s - loss: 0.5857 - acc: 0.796 - ETA: 7s - loss: 0.5864 - acc: 0.796 - ETA: 7s - loss: 0.5863 - acc: 0.796 - ETA: 7s - loss: 0.5858 - acc: 0.796 - ETA: 7s - loss: 0.5857 - acc: 0.796 - ETA: 7s - loss: 0.5857 - acc: 0.796 - ETA: 7s - loss: 0.5855 - acc: 0.797 - ETA: 7s - loss: 0.5852 - acc: 0.797 - ETA: 6s - loss: 0.5855 - acc: 0.7971" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.5853 - acc: 0.797 - ETA: 6s - loss: 0.5848 - acc: 0.797 - ETA: 6s - loss: 0.5848 - acc: 0.797 - ETA: 6s - loss: 0.5844 - acc: 0.797 - ETA: 6s - loss: 0.5845 - acc: 0.797 - ETA: 6s - loss: 0.5841 - acc: 0.797 - ETA: 6s - loss: 0.5841 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5839 - acc: 0.797 - ETA: 6s - loss: 0.5837 - acc: 0.797 - ETA: 6s - loss: 0.5833 - acc: 0.798 - ETA: 5s - loss: 0.5835 - acc: 0.797 - ETA: 5s - loss: 0.5833 - acc: 0.797 - ETA: 5s - loss: 0.5828 - acc: 0.798 - ETA: 5s - loss: 0.5829 - acc: 0.798 - ETA: 5s - loss: 0.5831 - acc: 0.797 - ETA: 5s - loss: 0.5831 - acc: 0.797 - ETA: 5s - loss: 0.5829 - acc: 0.797 - ETA: 5s - loss: 0.5827 - acc: 0.798 - ETA: 5s - loss: 0.5825 - acc: 0.798 - ETA: 5s - loss: 0.5819 - acc: 0.798 - ETA: 5s - loss: 0.5814 - acc: 0.798 - ETA: 5s - loss: 0.5813 - acc: 0.798 - ETA: 5s - loss: 0.5810 - acc: 0.798 - ETA: 5s - loss: 0.5806 - acc: 0.798 - ETA: 4s - loss: 0.5806 - acc: 0.798 - ETA: 4s - loss: 0.5804 - acc: 0.798 - ETA: 4s - loss: 0.5805 - acc: 0.798 - ETA: 4s - loss: 0.5802 - acc: 0.798 - ETA: 4s - loss: 0.5797 - acc: 0.798 - ETA: 4s - loss: 0.5798 - acc: 0.798 - ETA: 4s - loss: 0.5800 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5796 - acc: 0.798 - ETA: 4s - loss: 0.5797 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5799 - acc: 0.798 - ETA: 4s - loss: 0.5801 - acc: 0.798 - ETA: 3s - loss: 0.5799 - acc: 0.798 - ETA: 3s - loss: 0.5795 - acc: 0.798 - ETA: 3s - loss: 0.5797 - acc: 0.798 - ETA: 3s - loss: 0.5798 - acc: 0.798 - ETA: 3s - loss: 0.5801 - acc: 0.798 - ETA: 3s - loss: 0.5800 - acc: 0.798 - ETA: 3s - loss: 0.5800 - acc: 0.798 - ETA: 3s - loss: 0.5798 - acc: 0.798 - ETA: 3s - loss: 0.5797 - acc: 0.798 - ETA: 3s - loss: 0.5797 - acc: 0.798 - ETA: 3s - loss: 0.5795 - acc: 0.799 - ETA: 3s - loss: 0.5796 - acc: 0.798 - ETA: 3s - loss: 0.5795 - acc: 0.798 - ETA: 3s - loss: 0.5793 - acc: 0.799 - ETA: 2s - loss: 0.5791 - acc: 0.799 - ETA: 2s - loss: 0.5788 - acc: 0.799 - ETA: 2s - loss: 0.5789 - acc: 0.798 - ETA: 2s - loss: 0.5787 - acc: 0.799 - ETA: 2s - loss: 0.5785 - acc: 0.799 - ETA: 2s - loss: 0.5782 - acc: 0.799 - ETA: 2s - loss: 0.5778 - acc: 0.799 - ETA: 2s - loss: 0.5775 - acc: 0.799 - ETA: 2s - loss: 0.5771 - acc: 0.799 - ETA: 2s - loss: 0.5767 - acc: 0.799 - ETA: 2s - loss: 0.5763 - acc: 0.800 - ETA: 2s - loss: 0.5763 - acc: 0.800 - ETA: 2s - loss: 0.5761 - acc: 0.800 - ETA: 2s - loss: 0.5758 - acc: 0.800 - ETA: 1s - loss: 0.5755 - acc: 0.800 - ETA: 1s - loss: 0.5756 - acc: 0.800 - ETA: 1s - loss: 0.5754 - acc: 0.800 - ETA: 1s - loss: 0.5753 - acc: 0.800 - ETA: 1s - loss: 0.5752 - acc: 0.800 - ETA: 1s - loss: 0.5752 - acc: 0.800 - ETA: 1s - loss: 0.5750 - acc: 0.800 - ETA: 1s - loss: 0.5748 - acc: 0.800 - ETA: 1s - loss: 0.5744 - acc: 0.801 - ETA: 1s - loss: 0.5748 - acc: 0.800 - ETA: 1s - loss: 0.5744 - acc: 0.801 - ETA: 1s - loss: 0.5745 - acc: 0.801 - ETA: 1s - loss: 0.5746 - acc: 0.801 - ETA: 1s - loss: 0.5745 - acc: 0.801 - ETA: 0s - loss: 0.5742 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5738 - acc: 0.801 - ETA: 0s - loss: 0.5739 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5743 - acc: 0.801 - ETA: 0s - loss: 0.5738 - acc: 0.801 - ETA: 0s - loss: 0.5736 - acc: 0.801 - ETA: 0s - loss: 0.5740 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5739 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5741 - acc: 0.801 - ETA: 0s - loss: 0.5742 - acc: 0.801 - 54s 2ms/step - loss: 0.5744 - acc: 0.8012 - val_loss: 0.4836 - val_acc: 0.8364\n", + "\n", + "Epoch 00002: val_acc improved from 0.75615 to 0.83643, saving model to models\\conv.model\n", + "Epoch 3/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 55s - loss: 0.7714 - acc: 0.68 - ETA: 55s - loss: 0.6365 - acc: 0.73 - ETA: 53s - loss: 0.5790 - acc: 0.79 - ETA: 52s - loss: 0.5772 - acc: 0.78 - ETA: 52s - loss: 0.5913 - acc: 0.78 - ETA: 51s - loss: 0.5974 - acc: 0.78 - ETA: 51s - loss: 0.5758 - acc: 0.78 - ETA: 51s - loss: 0.5670 - acc: 0.78 - ETA: 50s - loss: 0.5647 - acc: 0.79 - ETA: 50s - loss: 0.5483 - acc: 0.80 - ETA: 50s - loss: 0.5320 - acc: 0.81 - ETA: 50s - loss: 0.5351 - acc: 0.81 - ETA: 49s - loss: 0.5470 - acc: 0.81 - ETA: 49s - loss: 0.5389 - acc: 0.81 - ETA: 49s - loss: 0.5505 - acc: 0.81 - ETA: 49s - loss: 0.5456 - acc: 0.81 - ETA: 49s - loss: 0.5291 - acc: 0.81 - ETA: 49s - loss: 0.5160 - acc: 0.82 - ETA: 49s - loss: 0.5177 - acc: 0.82 - ETA: 49s - loss: 0.5222 - acc: 0.82 - ETA: 49s - loss: 0.5094 - acc: 0.82 - ETA: 49s - loss: 0.5005 - acc: 0.82 - ETA: 49s - loss: 0.5080 - acc: 0.82 - ETA: 49s - loss: 0.5011 - acc: 0.82 - ETA: 49s - loss: 0.4952 - acc: 0.83 - ETA: 49s - loss: 0.4939 - acc: 0.82 - ETA: 49s - loss: 0.4906 - acc: 0.83 - ETA: 48s - loss: 0.4892 - acc: 0.83 - ETA: 49s - loss: 0.4798 - acc: 0.83 - ETA: 49s - loss: 0.4732 - acc: 0.83 - ETA: 48s - loss: 0.4632 - acc: 0.84 - ETA: 48s - loss: 0.4657 - acc: 0.83 - ETA: 48s - loss: 0.4637 - acc: 0.83 - ETA: 48s - loss: 0.4582 - acc: 0.84 - ETA: 48s - loss: 0.4548 - acc: 0.84 - ETA: 48s - loss: 0.4509 - acc: 0.84 - ETA: 48s - loss: 0.4662 - acc: 0.83 - ETA: 47s - loss: 0.4614 - acc: 0.84 - ETA: 47s - loss: 0.4598 - acc: 0.84 - ETA: 47s - loss: 0.4564 - acc: 0.84 - ETA: 47s - loss: 0.4554 - acc: 0.84 - ETA: 47s - loss: 0.4564 - acc: 0.84 - ETA: 47s - loss: 0.4583 - acc: 0.84 - ETA: 47s - loss: 0.4603 - acc: 0.84 - ETA: 47s - loss: 0.4561 - acc: 0.84 - ETA: 47s - loss: 0.4571 - acc: 0.84 - ETA: 47s - loss: 0.4561 - acc: 0.84 - ETA: 47s - loss: 0.4587 - acc: 0.84 - ETA: 46s - loss: 0.4628 - acc: 0.84 - ETA: 46s - loss: 0.4662 - acc: 0.83 - ETA: 46s - loss: 0.4656 - acc: 0.84 - ETA: 46s - loss: 0.4662 - acc: 0.83 - ETA: 46s - loss: 0.4667 - acc: 0.83 - ETA: 46s - loss: 0.4647 - acc: 0.84 - ETA: 46s - loss: 0.4657 - acc: 0.83 - ETA: 46s - loss: 0.4677 - acc: 0.83 - ETA: 46s - loss: 0.4707 - acc: 0.83 - ETA: 46s - loss: 0.4711 - acc: 0.83 - ETA: 46s - loss: 0.4720 - acc: 0.83 - ETA: 46s - loss: 0.4709 - acc: 0.83 - ETA: 46s - loss: 0.4665 - acc: 0.83 - ETA: 46s - loss: 0.4649 - acc: 0.83 - ETA: 46s - loss: 0.4641 - acc: 0.84 - ETA: 46s - loss: 0.4628 - acc: 0.84 - ETA: 46s - loss: 0.4581 - acc: 0.84 - ETA: 45s - loss: 0.4563 - acc: 0.84 - ETA: 45s - loss: 0.4530 - acc: 0.84 - ETA: 45s - loss: 0.4534 - acc: 0.84 - ETA: 45s - loss: 0.4574 - acc: 0.84 - ETA: 45s - loss: 0.4555 - acc: 0.84 - ETA: 45s - loss: 0.4567 - acc: 0.84 - ETA: 45s - loss: 0.4558 - acc: 0.84 - ETA: 45s - loss: 0.4533 - acc: 0.84 - ETA: 45s - loss: 0.4541 - acc: 0.84 - ETA: 45s - loss: 0.4514 - acc: 0.84 - ETA: 45s - loss: 0.4517 - acc: 0.84 - ETA: 45s - loss: 0.4492 - acc: 0.84 - ETA: 45s - loss: 0.4501 - acc: 0.84 - ETA: 45s - loss: 0.4486 - acc: 0.84 - ETA: 45s - loss: 0.4486 - acc: 0.84 - ETA: 45s - loss: 0.4490 - acc: 0.84 - ETA: 45s - loss: 0.4469 - acc: 0.84 - ETA: 45s - loss: 0.4439 - acc: 0.84 - ETA: 45s - loss: 0.4420 - acc: 0.84 - ETA: 45s - loss: 0.4421 - acc: 0.84 - ETA: 44s - loss: 0.4410 - acc: 0.84 - ETA: 45s - loss: 0.4402 - acc: 0.84 - ETA: 44s - loss: 0.4414 - acc: 0.84 - ETA: 44s - loss: 0.4429 - acc: 0.84 - ETA: 44s - loss: 0.4442 - acc: 0.84 - ETA: 44s - loss: 0.4427 - acc: 0.84 - ETA: 44s - loss: 0.4416 - acc: 0.84 - ETA: 44s - loss: 0.4419 - acc: 0.84 - ETA: 44s - loss: 0.4431 - acc: 0.84 - ETA: 44s - loss: 0.4454 - acc: 0.84 - ETA: 44s - loss: 0.4492 - acc: 0.84 - ETA: 44s - loss: 0.4499 - acc: 0.84 - ETA: 44s - loss: 0.4504 - acc: 0.84 - ETA: 44s - loss: 0.4528 - acc: 0.84 - ETA: 44s - loss: 0.4527 - acc: 0.84 - ETA: 44s - loss: 0.4513 - acc: 0.84 - ETA: 44s - loss: 0.4511 - acc: 0.84 - ETA: 44s - loss: 0.4494 - acc: 0.84 - ETA: 44s - loss: 0.4496 - acc: 0.84 - ETA: 44s - loss: 0.4530 - acc: 0.84 - ETA: 44s - loss: 0.4522 - acc: 0.84 - ETA: 44s - loss: 0.4515 - acc: 0.84 - ETA: 43s - loss: 0.4504 - acc: 0.84 - ETA: 43s - loss: 0.4495 - acc: 0.84 - ETA: 43s - loss: 0.4500 - acc: 0.84 - ETA: 43s - loss: 0.4494 - acc: 0.84 - ETA: 43s - loss: 0.4502 - acc: 0.84 - ETA: 43s - loss: 0.4512 - acc: 0.84 - ETA: 43s - loss: 0.4505 - acc: 0.84 - ETA: 43s - loss: 0.4520 - acc: 0.84 - ETA: 43s - loss: 0.4498 - acc: 0.84 - ETA: 43s - loss: 0.4504 - acc: 0.84 - ETA: 43s - loss: 0.4496 - acc: 0.84 - ETA: 43s - loss: 0.4520 - acc: 0.84 - ETA: 43s - loss: 0.4526 - acc: 0.84 - ETA: 43s - loss: 0.4515 - acc: 0.84 - ETA: 43s - loss: 0.4524 - acc: 0.84 - ETA: 43s - loss: 0.4517 - acc: 0.84 - ETA: 43s - loss: 0.4498 - acc: 0.84 - ETA: 43s - loss: 0.4519 - acc: 0.84 - ETA: 42s - loss: 0.4525 - acc: 0.84 - ETA: 42s - loss: 0.4536 - acc: 0.84 - ETA: 42s - loss: 0.4532 - acc: 0.84 - ETA: 42s - loss: 0.4522 - acc: 0.84 - ETA: 42s - loss: 0.4527 - acc: 0.84 - ETA: 42s - loss: 0.4516 - acc: 0.84 - ETA: 42s - loss: 0.4503 - acc: 0.84 - ETA: 42s - loss: 0.4489 - acc: 0.84 - ETA: 42s - loss: 0.4490 - acc: 0.84 - ETA: 42s - loss: 0.4490 - acc: 0.84 - ETA: 42s - loss: 0.4488 - acc: 0.84 - ETA: 42s - loss: 0.4488 - acc: 0.84 - ETA: 42s - loss: 0.4477 - acc: 0.84 - ETA: 41s - loss: 0.4466 - acc: 0.84 - ETA: 41s - loss: 0.4458 - acc: 0.84 - ETA: 41s - loss: 0.4461 - acc: 0.84 - ETA: 41s - loss: 0.4459 - acc: 0.84 - ETA: 41s - loss: 0.4447 - acc: 0.84 - ETA: 41s - loss: 0.4461 - acc: 0.84 - ETA: 41s - loss: 0.4468 - acc: 0.84 - ETA: 41s - loss: 0.4470 - acc: 0.84 - ETA: 41s - loss: 0.4478 - acc: 0.84 - ETA: 41s - loss: 0.4481 - acc: 0.84 - ETA: 41s - loss: 0.4486 - acc: 0.84 - ETA: 41s - loss: 0.4495 - acc: 0.84 - ETA: 41s - loss: 0.4492 - acc: 0.84 - ETA: 40s - loss: 0.4491 - acc: 0.84 - ETA: 40s - loss: 0.4482 - acc: 0.84 - ETA: 40s - loss: 0.4499 - acc: 0.84 - ETA: 40s - loss: 0.4501 - acc: 0.84 - ETA: 40s - loss: 0.4501 - acc: 0.84 - ETA: 40s - loss: 0.4504 - acc: 0.84 - ETA: 40s - loss: 0.4491 - acc: 0.84 - ETA: 40s - loss: 0.4482 - acc: 0.84 - ETA: 40s - loss: 0.4493 - acc: 0.84 - ETA: 40s - loss: 0.4502 - acc: 0.84 - ETA: 40s - loss: 0.4510 - acc: 0.84 - ETA: 40s - loss: 0.4530 - acc: 0.84 - ETA: 40s - loss: 0.4532 - acc: 0.84 - ETA: 39s - loss: 0.4545 - acc: 0.84 - ETA: 39s - loss: 0.4536 - acc: 0.84 - ETA: 39s - loss: 0.4536 - acc: 0.84 - ETA: 39s - loss: 0.4532 - acc: 0.84 - ETA: 39s - loss: 0.4520 - acc: 0.84 - ETA: 39s - loss: 0.4517 - acc: 0.84 - ETA: 39s - loss: 0.4517 - acc: 0.84 - ETA: 39s - loss: 0.4518 - acc: 0.84 - ETA: 39s - loss: 0.4520 - acc: 0.84 - ETA: 39s - loss: 0.4519 - acc: 0.84 - ETA: 39s - loss: 0.4521 - acc: 0.84 - ETA: 39s - loss: 0.4503 - acc: 0.84 - ETA: 39s - loss: 0.4499 - acc: 0.84 - ETA: 39s - loss: 0.4503 - acc: 0.84 - ETA: 38s - loss: 0.4503 - acc: 0.84 - ETA: 38s - loss: 0.4492 - acc: 0.84 - ETA: 38s - loss: 0.4488 - acc: 0.84 - ETA: 38s - loss: 0.4492 - acc: 0.84 - ETA: 38s - loss: 0.4488 - acc: 0.84 - ETA: 38s - loss: 0.4501 - acc: 0.84 - ETA: 38s - loss: 0.4501 - acc: 0.84 - ETA: 38s - loss: 0.4508 - acc: 0.84 - ETA: 38s - loss: 0.4494 - acc: 0.84 - ETA: 38s - loss: 0.4486 - acc: 0.84 - ETA: 38s - loss: 0.4472 - acc: 0.84 - ETA: 38s - loss: 0.4482 - acc: 0.84 - ETA: 38s - loss: 0.4477 - acc: 0.84 - ETA: 38s - loss: 0.4466 - acc: 0.84 - ETA: 38s - loss: 0.4469 - acc: 0.84 - ETA: 38s - loss: 0.4463 - acc: 0.84 - ETA: 37s - loss: 0.4458 - acc: 0.84 - ETA: 37s - loss: 0.4457 - acc: 0.84 - ETA: 37s - loss: 0.4463 - acc: 0.84 - ETA: 37s - loss: 0.4464 - acc: 0.84 - ETA: 37s - loss: 0.4458 - acc: 0.84 - ETA: 37s - loss: 0.4477 - acc: 0.84 - ETA: 37s - loss: 0.4492 - acc: 0.84 - ETA: 37s - loss: 0.4487 - acc: 0.84 - ETA: 37s - loss: 0.4489 - acc: 0.84 - ETA: 37s - loss: 0.4487 - acc: 0.84 - ETA: 37s - loss: 0.4483 - acc: 0.84 - ETA: 37s - loss: 0.4487 - acc: 0.84 - ETA: 37s - loss: 0.4485 - acc: 0.84 - ETA: 36s - loss: 0.4483 - acc: 0.84 - ETA: 36s - loss: 0.4480 - acc: 0.84 - ETA: 36s - loss: 0.4483 - acc: 0.84 - ETA: 36s - loss: 0.4475 - acc: 0.84 - ETA: 36s - loss: 0.4474 - acc: 0.84 - ETA: 36s - loss: 0.4482 - acc: 0.84 - ETA: 36s - loss: 0.4475 - acc: 0.84 - ETA: 36s - loss: 0.4482 - acc: 0.8426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.4487 - acc: 0.84 - ETA: 36s - loss: 0.4487 - acc: 0.84 - ETA: 36s - loss: 0.4487 - acc: 0.84 - ETA: 36s - loss: 0.4485 - acc: 0.84 - ETA: 36s - loss: 0.4483 - acc: 0.84 - ETA: 36s - loss: 0.4475 - acc: 0.84 - ETA: 36s - loss: 0.4468 - acc: 0.84 - ETA: 35s - loss: 0.4480 - acc: 0.84 - ETA: 35s - loss: 0.4491 - acc: 0.84 - ETA: 35s - loss: 0.4517 - acc: 0.84 - ETA: 35s - loss: 0.4517 - acc: 0.84 - ETA: 35s - loss: 0.4506 - acc: 0.84 - ETA: 35s - loss: 0.4506 - acc: 0.84 - ETA: 35s - loss: 0.4493 - acc: 0.84 - ETA: 35s - loss: 0.4484 - acc: 0.84 - ETA: 35s - loss: 0.4477 - acc: 0.84 - ETA: 35s - loss: 0.4482 - acc: 0.84 - ETA: 35s - loss: 0.4470 - acc: 0.84 - ETA: 35s - loss: 0.4462 - acc: 0.84 - ETA: 35s - loss: 0.4463 - acc: 0.84 - ETA: 35s - loss: 0.4464 - acc: 0.84 - ETA: 34s - loss: 0.4459 - acc: 0.84 - ETA: 34s - loss: 0.4464 - acc: 0.84 - ETA: 34s - loss: 0.4459 - acc: 0.84 - ETA: 34s - loss: 0.4463 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4463 - acc: 0.84 - ETA: 34s - loss: 0.4469 - acc: 0.84 - ETA: 34s - loss: 0.4467 - acc: 0.84 - ETA: 34s - loss: 0.4462 - acc: 0.84 - ETA: 34s - loss: 0.4455 - acc: 0.84 - ETA: 34s - loss: 0.4445 - acc: 0.84 - ETA: 34s - loss: 0.4448 - acc: 0.84 - ETA: 34s - loss: 0.4451 - acc: 0.84 - ETA: 33s - loss: 0.4452 - acc: 0.84 - ETA: 33s - loss: 0.4456 - acc: 0.84 - ETA: 33s - loss: 0.4453 - acc: 0.84 - ETA: 33s - loss: 0.4451 - acc: 0.84 - ETA: 33s - loss: 0.4453 - acc: 0.84 - ETA: 33s - loss: 0.4452 - acc: 0.84 - ETA: 33s - loss: 0.4457 - acc: 0.84 - ETA: 33s - loss: 0.4470 - acc: 0.84 - ETA: 33s - loss: 0.4468 - acc: 0.84 - ETA: 33s - loss: 0.4467 - acc: 0.84 - ETA: 33s - loss: 0.4457 - acc: 0.84 - ETA: 33s - loss: 0.4449 - acc: 0.84 - ETA: 33s - loss: 0.4451 - acc: 0.84 - ETA: 33s - loss: 0.4455 - acc: 0.84 - ETA: 32s - loss: 0.4455 - acc: 0.84 - ETA: 32s - loss: 0.4445 - acc: 0.84 - ETA: 32s - loss: 0.4444 - acc: 0.84 - ETA: 32s - loss: 0.4437 - acc: 0.84 - ETA: 32s - loss: 0.4436 - acc: 0.84 - ETA: 32s - loss: 0.4432 - acc: 0.84 - ETA: 32s - loss: 0.4434 - acc: 0.84 - ETA: 32s - loss: 0.4435 - acc: 0.84 - ETA: 32s - loss: 0.4446 - acc: 0.84 - ETA: 32s - loss: 0.4445 - acc: 0.84 - ETA: 32s - loss: 0.4447 - acc: 0.84 - ETA: 32s - loss: 0.4449 - acc: 0.84 - ETA: 32s - loss: 0.4448 - acc: 0.84 - ETA: 32s - loss: 0.4441 - acc: 0.84 - ETA: 32s - loss: 0.4447 - acc: 0.84 - ETA: 31s - loss: 0.4444 - acc: 0.84 - ETA: 31s - loss: 0.4438 - acc: 0.84 - ETA: 31s - loss: 0.4434 - acc: 0.84 - ETA: 31s - loss: 0.4437 - acc: 0.84 - ETA: 31s - loss: 0.4436 - acc: 0.84 - ETA: 31s - loss: 0.4436 - acc: 0.84 - ETA: 31s - loss: 0.4432 - acc: 0.84 - ETA: 31s - loss: 0.4427 - acc: 0.84 - ETA: 31s - loss: 0.4421 - acc: 0.84 - ETA: 31s - loss: 0.4430 - acc: 0.84 - ETA: 31s - loss: 0.4427 - acc: 0.84 - ETA: 31s - loss: 0.4425 - acc: 0.84 - ETA: 31s - loss: 0.4423 - acc: 0.84 - ETA: 31s - loss: 0.4421 - acc: 0.84 - ETA: 31s - loss: 0.4417 - acc: 0.84 - ETA: 30s - loss: 0.4410 - acc: 0.84 - ETA: 30s - loss: 0.4410 - acc: 0.84 - ETA: 30s - loss: 0.4407 - acc: 0.84 - ETA: 30s - loss: 0.4405 - acc: 0.84 - ETA: 30s - loss: 0.4398 - acc: 0.84 - ETA: 30s - loss: 0.4401 - acc: 0.84 - ETA: 30s - loss: 0.4396 - acc: 0.84 - ETA: 30s - loss: 0.4394 - acc: 0.84 - ETA: 30s - loss: 0.4385 - acc: 0.84 - ETA: 30s - loss: 0.4385 - acc: 0.84 - ETA: 30s - loss: 0.4397 - acc: 0.84 - ETA: 30s - loss: 0.4394 - acc: 0.84 - ETA: 30s - loss: 0.4394 - acc: 0.84 - ETA: 30s - loss: 0.4392 - acc: 0.84 - ETA: 30s - loss: 0.4387 - acc: 0.84 - ETA: 29s - loss: 0.4388 - acc: 0.84 - ETA: 29s - loss: 0.4398 - acc: 0.84 - ETA: 29s - loss: 0.4396 - acc: 0.84 - ETA: 29s - loss: 0.4390 - acc: 0.84 - ETA: 29s - loss: 0.4399 - acc: 0.84 - ETA: 29s - loss: 0.4403 - acc: 0.84 - ETA: 29s - loss: 0.4402 - acc: 0.84 - ETA: 29s - loss: 0.4399 - acc: 0.84 - ETA: 29s - loss: 0.4395 - acc: 0.84 - ETA: 29s - loss: 0.4388 - acc: 0.84 - ETA: 29s - loss: 0.4392 - acc: 0.84 - ETA: 29s - loss: 0.4388 - acc: 0.84 - ETA: 29s - loss: 0.4389 - acc: 0.84 - ETA: 29s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4381 - acc: 0.84 - ETA: 28s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4389 - acc: 0.84 - ETA: 28s - loss: 0.4384 - acc: 0.84 - ETA: 28s - loss: 0.4382 - acc: 0.84 - ETA: 28s - loss: 0.4381 - acc: 0.84 - ETA: 28s - loss: 0.4387 - acc: 0.84 - ETA: 28s - loss: 0.4386 - acc: 0.84 - ETA: 28s - loss: 0.4393 - acc: 0.84 - ETA: 28s - loss: 0.4395 - acc: 0.84 - ETA: 28s - loss: 0.4398 - acc: 0.84 - ETA: 28s - loss: 0.4405 - acc: 0.84 - ETA: 28s - loss: 0.4401 - acc: 0.84 - ETA: 28s - loss: 0.4396 - acc: 0.84 - ETA: 27s - loss: 0.4401 - acc: 0.84 - ETA: 27s - loss: 0.4400 - acc: 0.84 - ETA: 27s - loss: 0.4401 - acc: 0.84 - ETA: 27s - loss: 0.4395 - acc: 0.84 - ETA: 27s - loss: 0.4391 - acc: 0.84 - ETA: 27s - loss: 0.4388 - acc: 0.84 - ETA: 27s - loss: 0.4387 - acc: 0.84 - ETA: 27s - loss: 0.4385 - acc: 0.84 - ETA: 27s - loss: 0.4382 - acc: 0.84 - ETA: 27s - loss: 0.4375 - acc: 0.84 - ETA: 27s - loss: 0.4374 - acc: 0.84 - ETA: 27s - loss: 0.4376 - acc: 0.84 - ETA: 27s - loss: 0.4383 - acc: 0.84 - ETA: 27s - loss: 0.4386 - acc: 0.84 - ETA: 26s - loss: 0.4384 - acc: 0.84 - ETA: 26s - loss: 0.4381 - acc: 0.84 - ETA: 26s - loss: 0.4385 - acc: 0.84 - ETA: 26s - loss: 0.4384 - acc: 0.84 - ETA: 26s - loss: 0.4392 - acc: 0.84 - ETA: 26s - loss: 0.4391 - acc: 0.84 - ETA: 26s - loss: 0.4390 - acc: 0.84 - ETA: 26s - loss: 0.4387 - acc: 0.84 - ETA: 26s - loss: 0.4386 - acc: 0.84 - ETA: 26s - loss: 0.4384 - acc: 0.84 - ETA: 26s - loss: 0.4385 - acc: 0.84 - ETA: 26s - loss: 0.4391 - acc: 0.84 - ETA: 26s - loss: 0.4397 - acc: 0.84 - ETA: 26s - loss: 0.4399 - acc: 0.84 - ETA: 25s - loss: 0.4394 - acc: 0.84 - ETA: 25s - loss: 0.4393 - acc: 0.84 - ETA: 25s - loss: 0.4388 - acc: 0.84 - ETA: 25s - loss: 0.4385 - acc: 0.84 - ETA: 25s - loss: 0.4383 - acc: 0.84 - ETA: 25s - loss: 0.4378 - acc: 0.84 - ETA: 25s - loss: 0.4369 - acc: 0.84 - ETA: 25s - loss: 0.4366 - acc: 0.84 - ETA: 25s - loss: 0.4360 - acc: 0.84 - ETA: 25s - loss: 0.4353 - acc: 0.84 - ETA: 25s - loss: 0.4359 - acc: 0.84 - ETA: 25s - loss: 0.4360 - acc: 0.84 - ETA: 25s - loss: 0.4360 - acc: 0.84 - ETA: 25s - loss: 0.4362 - acc: 0.84 - ETA: 25s - loss: 0.4361 - acc: 0.84 - ETA: 25s - loss: 0.4358 - acc: 0.84 - ETA: 24s - loss: 0.4353 - acc: 0.84 - ETA: 24s - loss: 0.4354 - acc: 0.84 - ETA: 24s - loss: 0.4349 - acc: 0.84 - ETA: 24s - loss: 0.4346 - acc: 0.84 - ETA: 24s - loss: 0.4345 - acc: 0.84 - ETA: 24s - loss: 0.4348 - acc: 0.84 - ETA: 24s - loss: 0.4340 - acc: 0.84 - ETA: 24s - loss: 0.4338 - acc: 0.84 - ETA: 24s - loss: 0.4338 - acc: 0.84 - ETA: 24s - loss: 0.4336 - acc: 0.84 - ETA: 24s - loss: 0.4341 - acc: 0.84 - ETA: 24s - loss: 0.4335 - acc: 0.84 - ETA: 24s - loss: 0.4335 - acc: 0.84 - ETA: 24s - loss: 0.4338 - acc: 0.84 - ETA: 24s - loss: 0.4345 - acc: 0.84 - ETA: 23s - loss: 0.4343 - acc: 0.84 - ETA: 23s - loss: 0.4343 - acc: 0.84 - ETA: 23s - loss: 0.4337 - acc: 0.84 - ETA: 23s - loss: 0.4335 - acc: 0.84 - ETA: 23s - loss: 0.4330 - acc: 0.84 - ETA: 23s - loss: 0.4327 - acc: 0.84 - ETA: 23s - loss: 0.4321 - acc: 0.84 - ETA: 23s - loss: 0.4321 - acc: 0.84 - ETA: 23s - loss: 0.4325 - acc: 0.84 - ETA: 23s - loss: 0.4322 - acc: 0.84 - ETA: 23s - loss: 0.4316 - acc: 0.84 - ETA: 23s - loss: 0.4317 - acc: 0.84 - ETA: 23s - loss: 0.4319 - acc: 0.84 - ETA: 23s - loss: 0.4321 - acc: 0.84 - ETA: 23s - loss: 0.4324 - acc: 0.84 - ETA: 22s - loss: 0.4328 - acc: 0.84 - ETA: 22s - loss: 0.4332 - acc: 0.84 - ETA: 22s - loss: 0.4343 - acc: 0.84 - ETA: 22s - loss: 0.4341 - acc: 0.84 - ETA: 22s - loss: 0.4345 - acc: 0.84 - ETA: 22s - loss: 0.4343 - acc: 0.84 - ETA: 22s - loss: 0.4337 - acc: 0.84 - ETA: 22s - loss: 0.4343 - acc: 0.84 - ETA: 22s - loss: 0.4348 - acc: 0.84 - ETA: 22s - loss: 0.4361 - acc: 0.84 - ETA: 22s - loss: 0.4370 - acc: 0.84 - ETA: 22s - loss: 0.4368 - acc: 0.84 - ETA: 22s - loss: 0.4366 - acc: 0.84 - ETA: 22s - loss: 0.4370 - acc: 0.84 - ETA: 22s - loss: 0.4367 - acc: 0.84 - ETA: 21s - loss: 0.4368 - acc: 0.84 - ETA: 21s - loss: 0.4372 - acc: 0.8480" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 21s - loss: 0.4368 - acc: 0.84 - ETA: 21s - loss: 0.4366 - acc: 0.84 - ETA: 21s - loss: 0.4367 - acc: 0.84 - ETA: 21s - loss: 0.4369 - acc: 0.84 - ETA: 21s - loss: 0.4369 - acc: 0.84 - ETA: 21s - loss: 0.4367 - acc: 0.84 - ETA: 21s - loss: 0.4369 - acc: 0.84 - ETA: 21s - loss: 0.4375 - acc: 0.84 - ETA: 21s - loss: 0.4375 - acc: 0.84 - ETA: 21s - loss: 0.4368 - acc: 0.84 - ETA: 21s - loss: 0.4371 - acc: 0.84 - ETA: 21s - loss: 0.4366 - acc: 0.84 - ETA: 21s - loss: 0.4361 - acc: 0.84 - ETA: 20s - loss: 0.4361 - acc: 0.84 - ETA: 20s - loss: 0.4360 - acc: 0.84 - ETA: 20s - loss: 0.4358 - acc: 0.84 - ETA: 20s - loss: 0.4358 - acc: 0.84 - ETA: 20s - loss: 0.4360 - acc: 0.84 - ETA: 20s - loss: 0.4364 - acc: 0.84 - ETA: 20s - loss: 0.4368 - acc: 0.84 - ETA: 20s - loss: 0.4368 - acc: 0.84 - ETA: 20s - loss: 0.4369 - acc: 0.84 - ETA: 20s - loss: 0.4368 - acc: 0.84 - ETA: 20s - loss: 0.4373 - acc: 0.84 - ETA: 20s - loss: 0.4375 - acc: 0.84 - ETA: 20s - loss: 0.4381 - acc: 0.84 - ETA: 20s - loss: 0.4375 - acc: 0.84 - ETA: 20s - loss: 0.4376 - acc: 0.84 - ETA: 19s - loss: 0.4373 - acc: 0.84 - ETA: 19s - loss: 0.4375 - acc: 0.84 - ETA: 19s - loss: 0.4378 - acc: 0.84 - ETA: 19s - loss: 0.4373 - acc: 0.84 - ETA: 19s - loss: 0.4372 - acc: 0.84 - ETA: 19s - loss: 0.4369 - acc: 0.84 - ETA: 19s - loss: 0.4363 - acc: 0.84 - ETA: 19s - loss: 0.4363 - acc: 0.84 - ETA: 19s - loss: 0.4361 - acc: 0.84 - ETA: 19s - loss: 0.4357 - acc: 0.84 - ETA: 19s - loss: 0.4355 - acc: 0.84 - ETA: 19s - loss: 0.4352 - acc: 0.84 - ETA: 19s - loss: 0.4350 - acc: 0.84 - ETA: 19s - loss: 0.4356 - acc: 0.84 - ETA: 18s - loss: 0.4363 - acc: 0.84 - ETA: 18s - loss: 0.4363 - acc: 0.84 - ETA: 18s - loss: 0.4362 - acc: 0.84 - ETA: 18s - loss: 0.4361 - acc: 0.84 - ETA: 18s - loss: 0.4359 - acc: 0.84 - ETA: 18s - loss: 0.4361 - acc: 0.84 - ETA: 18s - loss: 0.4357 - acc: 0.84 - ETA: 18s - loss: 0.4354 - acc: 0.84 - ETA: 18s - loss: 0.4356 - acc: 0.84 - ETA: 18s - loss: 0.4358 - acc: 0.84 - ETA: 18s - loss: 0.4358 - acc: 0.84 - ETA: 18s - loss: 0.4355 - acc: 0.84 - ETA: 18s - loss: 0.4352 - acc: 0.84 - ETA: 18s - loss: 0.4351 - acc: 0.84 - ETA: 18s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4350 - acc: 0.84 - ETA: 17s - loss: 0.4350 - acc: 0.84 - ETA: 17s - loss: 0.4347 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4350 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4348 - acc: 0.84 - ETA: 17s - loss: 0.4347 - acc: 0.84 - ETA: 17s - loss: 0.4343 - acc: 0.84 - ETA: 17s - loss: 0.4343 - acc: 0.84 - ETA: 17s - loss: 0.4344 - acc: 0.84 - ETA: 17s - loss: 0.4346 - acc: 0.84 - ETA: 17s - loss: 0.4343 - acc: 0.84 - ETA: 16s - loss: 0.4344 - acc: 0.84 - ETA: 16s - loss: 0.4341 - acc: 0.84 - ETA: 16s - loss: 0.4344 - acc: 0.84 - ETA: 16s - loss: 0.4341 - acc: 0.84 - ETA: 16s - loss: 0.4344 - acc: 0.84 - ETA: 16s - loss: 0.4345 - acc: 0.84 - ETA: 16s - loss: 0.4343 - acc: 0.84 - ETA: 16s - loss: 0.4343 - acc: 0.84 - ETA: 16s - loss: 0.4342 - acc: 0.84 - ETA: 16s - loss: 0.4340 - acc: 0.84 - ETA: 16s - loss: 0.4338 - acc: 0.84 - ETA: 16s - loss: 0.4335 - acc: 0.84 - ETA: 16s - loss: 0.4332 - acc: 0.84 - ETA: 16s - loss: 0.4334 - acc: 0.84 - ETA: 16s - loss: 0.4331 - acc: 0.84 - ETA: 15s - loss: 0.4328 - acc: 0.84 - ETA: 15s - loss: 0.4323 - acc: 0.84 - ETA: 15s - loss: 0.4320 - acc: 0.84 - ETA: 15s - loss: 0.4316 - acc: 0.84 - ETA: 15s - loss: 0.4314 - acc: 0.84 - ETA: 15s - loss: 0.4314 - acc: 0.84 - ETA: 15s - loss: 0.4312 - acc: 0.84 - ETA: 15s - loss: 0.4312 - acc: 0.84 - ETA: 15s - loss: 0.4309 - acc: 0.84 - ETA: 15s - loss: 0.4305 - acc: 0.85 - ETA: 15s - loss: 0.4302 - acc: 0.85 - ETA: 15s - loss: 0.4304 - acc: 0.85 - ETA: 15s - loss: 0.4299 - acc: 0.85 - ETA: 15s - loss: 0.4299 - acc: 0.85 - ETA: 14s - loss: 0.4305 - acc: 0.85 - ETA: 14s - loss: 0.4301 - acc: 0.85 - ETA: 14s - loss: 0.4301 - acc: 0.85 - ETA: 14s - loss: 0.4301 - acc: 0.85 - ETA: 14s - loss: 0.4298 - acc: 0.85 - ETA: 14s - loss: 0.4295 - acc: 0.85 - ETA: 14s - loss: 0.4296 - acc: 0.85 - ETA: 14s - loss: 0.4295 - acc: 0.85 - ETA: 14s - loss: 0.4298 - acc: 0.85 - ETA: 14s - loss: 0.4295 - acc: 0.85 - ETA: 14s - loss: 0.4293 - acc: 0.85 - ETA: 14s - loss: 0.4294 - acc: 0.85 - ETA: 14s - loss: 0.4294 - acc: 0.85 - ETA: 14s - loss: 0.4297 - acc: 0.85 - ETA: 13s - loss: 0.4294 - acc: 0.85 - ETA: 13s - loss: 0.4295 - acc: 0.85 - ETA: 13s - loss: 0.4293 - acc: 0.85 - ETA: 13s - loss: 0.4292 - acc: 0.85 - ETA: 13s - loss: 0.4287 - acc: 0.85 - ETA: 13s - loss: 0.4284 - acc: 0.85 - ETA: 13s - loss: 0.4285 - acc: 0.85 - ETA: 13s - loss: 0.4287 - acc: 0.85 - ETA: 13s - loss: 0.4293 - acc: 0.85 - ETA: 13s - loss: 0.4291 - acc: 0.85 - ETA: 13s - loss: 0.4290 - acc: 0.85 - ETA: 13s - loss: 0.4295 - acc: 0.85 - ETA: 13s - loss: 0.4294 - acc: 0.85 - ETA: 13s - loss: 0.4291 - acc: 0.85 - ETA: 12s - loss: 0.4289 - acc: 0.85 - ETA: 12s - loss: 0.4287 - acc: 0.85 - ETA: 12s - loss: 0.4285 - acc: 0.85 - ETA: 12s - loss: 0.4285 - acc: 0.85 - ETA: 12s - loss: 0.4283 - acc: 0.85 - ETA: 12s - loss: 0.4279 - acc: 0.85 - ETA: 12s - loss: 0.4277 - acc: 0.85 - ETA: 12s - loss: 0.4278 - acc: 0.85 - ETA: 12s - loss: 0.4276 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 12s - loss: 0.4280 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 12s - loss: 0.4276 - acc: 0.85 - ETA: 12s - loss: 0.4273 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 11s - loss: 0.4274 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4274 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4274 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4272 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4272 - acc: 0.85 - ETA: 10s - loss: 0.4269 - acc: 0.85 - ETA: 10s - loss: 0.4266 - acc: 0.85 - ETA: 10s - loss: 0.4265 - acc: 0.85 - ETA: 10s - loss: 0.4266 - acc: 0.85 - ETA: 10s - loss: 0.4261 - acc: 0.85 - ETA: 10s - loss: 0.4256 - acc: 0.85 - ETA: 10s - loss: 0.4257 - acc: 0.85 - ETA: 10s - loss: 0.4254 - acc: 0.85 - ETA: 10s - loss: 0.4257 - acc: 0.85 - ETA: 10s - loss: 0.4253 - acc: 0.85 - ETA: 10s - loss: 0.4252 - acc: 0.85 - ETA: 10s - loss: 0.4252 - acc: 0.85 - ETA: 10s - loss: 0.4249 - acc: 0.85 - ETA: 10s - loss: 0.4252 - acc: 0.85 - ETA: 9s - loss: 0.4252 - acc: 0.8527 - ETA: 9s - loss: 0.4251 - acc: 0.852 - ETA: 9s - loss: 0.4250 - acc: 0.852 - ETA: 9s - loss: 0.4250 - acc: 0.852 - ETA: 9s - loss: 0.4247 - acc: 0.852 - ETA: 9s - loss: 0.4247 - acc: 0.853 - ETA: 9s - loss: 0.4251 - acc: 0.853 - ETA: 9s - loss: 0.4251 - acc: 0.852 - ETA: 9s - loss: 0.4249 - acc: 0.853 - ETA: 9s - loss: 0.4245 - acc: 0.853 - ETA: 9s - loss: 0.4243 - acc: 0.853 - ETA: 9s - loss: 0.4240 - acc: 0.853 - ETA: 9s - loss: 0.4237 - acc: 0.853 - ETA: 9s - loss: 0.4239 - acc: 0.853 - ETA: 8s - loss: 0.4238 - acc: 0.853 - ETA: 8s - loss: 0.4235 - acc: 0.853 - ETA: 8s - loss: 0.4235 - acc: 0.853 - ETA: 8s - loss: 0.4237 - acc: 0.853 - ETA: 8s - loss: 0.4236 - acc: 0.853 - ETA: 8s - loss: 0.4234 - acc: 0.853 - ETA: 8s - loss: 0.4232 - acc: 0.853 - ETA: 8s - loss: 0.4232 - acc: 0.853 - ETA: 8s - loss: 0.4232 - acc: 0.853 - ETA: 8s - loss: 0.4231 - acc: 0.853 - ETA: 8s - loss: 0.4234 - acc: 0.853 - ETA: 8s - loss: 0.4236 - acc: 0.853 - ETA: 8s - loss: 0.4233 - acc: 0.853 - ETA: 8s - loss: 0.4235 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4240 - acc: 0.853 - ETA: 7s - loss: 0.4240 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4233 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4237 - acc: 0.853 - ETA: 7s - loss: 0.4238 - acc: 0.853 - ETA: 7s - loss: 0.4234 - acc: 0.853 - ETA: 7s - loss: 0.4232 - acc: 0.853 - ETA: 7s - loss: 0.4232 - acc: 0.853 - ETA: 6s - loss: 0.4233 - acc: 0.853 - ETA: 6s - loss: 0.4232 - acc: 0.8539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.4230 - acc: 0.854 - ETA: 6s - loss: 0.4228 - acc: 0.854 - ETA: 6s - loss: 0.4226 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 6s - loss: 0.4223 - acc: 0.854 - ETA: 6s - loss: 0.4222 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 6s - loss: 0.4222 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 6s - loss: 0.4225 - acc: 0.854 - ETA: 6s - loss: 0.4222 - acc: 0.854 - ETA: 6s - loss: 0.4224 - acc: 0.854 - ETA: 5s - loss: 0.4221 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4217 - acc: 0.854 - ETA: 5s - loss: 0.4214 - acc: 0.854 - ETA: 5s - loss: 0.4213 - acc: 0.854 - ETA: 5s - loss: 0.4214 - acc: 0.854 - ETA: 5s - loss: 0.4213 - acc: 0.854 - ETA: 5s - loss: 0.4211 - acc: 0.854 - ETA: 5s - loss: 0.4208 - acc: 0.854 - ETA: 5s - loss: 0.4209 - acc: 0.854 - ETA: 5s - loss: 0.4209 - acc: 0.854 - ETA: 5s - loss: 0.4211 - acc: 0.854 - ETA: 4s - loss: 0.4212 - acc: 0.854 - ETA: 4s - loss: 0.4211 - acc: 0.854 - ETA: 4s - loss: 0.4212 - acc: 0.854 - ETA: 4s - loss: 0.4210 - acc: 0.854 - ETA: 4s - loss: 0.4207 - acc: 0.854 - ETA: 4s - loss: 0.4202 - acc: 0.855 - ETA: 4s - loss: 0.4198 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4193 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4196 - acc: 0.855 - ETA: 4s - loss: 0.4195 - acc: 0.855 - ETA: 4s - loss: 0.4191 - acc: 0.855 - ETA: 3s - loss: 0.4192 - acc: 0.855 - ETA: 3s - loss: 0.4191 - acc: 0.855 - ETA: 3s - loss: 0.4187 - acc: 0.855 - ETA: 3s - loss: 0.4186 - acc: 0.855 - ETA: 3s - loss: 0.4187 - acc: 0.855 - ETA: 3s - loss: 0.4187 - acc: 0.855 - ETA: 3s - loss: 0.4189 - acc: 0.855 - ETA: 3s - loss: 0.4188 - acc: 0.855 - ETA: 3s - loss: 0.4189 - acc: 0.855 - ETA: 3s - loss: 0.4188 - acc: 0.855 - ETA: 3s - loss: 0.4186 - acc: 0.855 - ETA: 3s - loss: 0.4184 - acc: 0.855 - ETA: 3s - loss: 0.4185 - acc: 0.855 - ETA: 3s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4182 - acc: 0.855 - ETA: 2s - loss: 0.4178 - acc: 0.855 - ETA: 2s - loss: 0.4174 - acc: 0.855 - ETA: 2s - loss: 0.4176 - acc: 0.855 - ETA: 2s - loss: 0.4176 - acc: 0.855 - ETA: 2s - loss: 0.4174 - acc: 0.855 - ETA: 2s - loss: 0.4174 - acc: 0.855 - ETA: 2s - loss: 0.4171 - acc: 0.855 - ETA: 2s - loss: 0.4169 - acc: 0.855 - ETA: 2s - loss: 0.4165 - acc: 0.856 - ETA: 2s - loss: 0.4163 - acc: 0.856 - ETA: 2s - loss: 0.4162 - acc: 0.856 - ETA: 1s - loss: 0.4160 - acc: 0.856 - ETA: 1s - loss: 0.4161 - acc: 0.856 - ETA: 1s - loss: 0.4158 - acc: 0.856 - ETA: 1s - loss: 0.4157 - acc: 0.856 - ETA: 1s - loss: 0.4156 - acc: 0.856 - ETA: 1s - loss: 0.4155 - acc: 0.856 - ETA: 1s - loss: 0.4156 - acc: 0.856 - ETA: 1s - loss: 0.4157 - acc: 0.856 - ETA: 1s - loss: 0.4154 - acc: 0.856 - ETA: 1s - loss: 0.4151 - acc: 0.856 - ETA: 1s - loss: 0.4150 - acc: 0.856 - ETA: 1s - loss: 0.4149 - acc: 0.856 - ETA: 1s - loss: 0.4145 - acc: 0.856 - ETA: 1s - loss: 0.4145 - acc: 0.856 - ETA: 0s - loss: 0.4142 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4143 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4144 - acc: 0.856 - ETA: 0s - loss: 0.4143 - acc: 0.856 - ETA: 0s - loss: 0.4141 - acc: 0.856 - ETA: 0s - loss: 0.4138 - acc: 0.856 - ETA: 0s - loss: 0.4135 - acc: 0.856 - ETA: 0s - loss: 0.4133 - acc: 0.857 - ETA: 0s - loss: 0.4130 - acc: 0.857 - ETA: 0s - loss: 0.4130 - acc: 0.857 - ETA: 0s - loss: 0.4127 - acc: 0.857 - 54s 2ms/step - loss: 0.4130 - acc: 0.8570 - val_loss: 0.2938 - val_acc: 0.8966\n", + "\n", + "Epoch 00003: val_acc improved from 0.83643 to 0.89663, saving model to models\\conv.model\n", + "Epoch 4/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 49s - loss: 0.4030 - acc: 0.90 - ETA: 49s - loss: 0.3162 - acc: 0.90 - ETA: 51s - loss: 0.3480 - acc: 0.88 - ETA: 52s - loss: 0.3180 - acc: 0.89 - ETA: 53s - loss: 0.3293 - acc: 0.88 - ETA: 53s - loss: 0.3486 - acc: 0.87 - ETA: 53s - loss: 0.3431 - acc: 0.87 - ETA: 53s - loss: 0.3232 - acc: 0.87 - ETA: 53s - loss: 0.3094 - acc: 0.88 - ETA: 53s - loss: 0.3080 - acc: 0.88 - ETA: 53s - loss: 0.3339 - acc: 0.87 - ETA: 53s - loss: 0.3441 - acc: 0.87 - ETA: 52s - loss: 0.3283 - acc: 0.87 - ETA: 52s - loss: 0.3265 - acc: 0.88 - ETA: 52s - loss: 0.3271 - acc: 0.87 - ETA: 52s - loss: 0.3180 - acc: 0.88 - ETA: 52s - loss: 0.3069 - acc: 0.88 - ETA: 52s - loss: 0.3057 - acc: 0.88 - ETA: 52s - loss: 0.3157 - acc: 0.88 - ETA: 52s - loss: 0.3065 - acc: 0.88 - ETA: 51s - loss: 0.3015 - acc: 0.88 - ETA: 51s - loss: 0.2985 - acc: 0.89 - ETA: 51s - loss: 0.3127 - acc: 0.88 - ETA: 51s - loss: 0.3054 - acc: 0.89 - ETA: 51s - loss: 0.3056 - acc: 0.89 - ETA: 51s - loss: 0.3206 - acc: 0.88 - ETA: 51s - loss: 0.3184 - acc: 0.88 - ETA: 51s - loss: 0.3295 - acc: 0.88 - ETA: 51s - loss: 0.3303 - acc: 0.87 - ETA: 51s - loss: 0.3265 - acc: 0.88 - ETA: 51s - loss: 0.3273 - acc: 0.87 - ETA: 50s - loss: 0.3296 - acc: 0.87 - ETA: 50s - loss: 0.3302 - acc: 0.87 - ETA: 50s - loss: 0.3328 - acc: 0.87 - ETA: 50s - loss: 0.3318 - acc: 0.87 - ETA: 50s - loss: 0.3299 - acc: 0.87 - ETA: 50s - loss: 0.3301 - acc: 0.87 - ETA: 50s - loss: 0.3294 - acc: 0.87 - ETA: 50s - loss: 0.3303 - acc: 0.87 - ETA: 49s - loss: 0.3308 - acc: 0.87 - ETA: 49s - loss: 0.3314 - acc: 0.87 - ETA: 49s - loss: 0.3347 - acc: 0.87 - ETA: 49s - loss: 0.3359 - acc: 0.87 - ETA: 49s - loss: 0.3376 - acc: 0.87 - ETA: 49s - loss: 0.3423 - acc: 0.87 - ETA: 49s - loss: 0.3408 - acc: 0.87 - ETA: 49s - loss: 0.3407 - acc: 0.87 - ETA: 49s - loss: 0.3375 - acc: 0.87 - ETA: 49s - loss: 0.3376 - acc: 0.87 - ETA: 49s - loss: 0.3352 - acc: 0.87 - ETA: 48s - loss: 0.3382 - acc: 0.87 - ETA: 48s - loss: 0.3344 - acc: 0.87 - ETA: 48s - loss: 0.3404 - acc: 0.87 - ETA: 48s - loss: 0.3417 - acc: 0.87 - ETA: 48s - loss: 0.3419 - acc: 0.87 - ETA: 48s - loss: 0.3417 - acc: 0.88 - ETA: 48s - loss: 0.3394 - acc: 0.88 - ETA: 48s - loss: 0.3375 - acc: 0.88 - ETA: 48s - loss: 0.3419 - acc: 0.88 - ETA: 48s - loss: 0.3393 - acc: 0.88 - ETA: 47s - loss: 0.3396 - acc: 0.88 - ETA: 47s - loss: 0.3395 - acc: 0.88 - ETA: 47s - loss: 0.3385 - acc: 0.88 - ETA: 47s - loss: 0.3403 - acc: 0.88 - ETA: 47s - loss: 0.3412 - acc: 0.88 - ETA: 47s - loss: 0.3422 - acc: 0.88 - ETA: 47s - loss: 0.3419 - acc: 0.88 - ETA: 47s - loss: 0.3434 - acc: 0.88 - ETA: 47s - loss: 0.3416 - acc: 0.88 - ETA: 47s - loss: 0.3401 - acc: 0.88 - ETA: 47s - loss: 0.3388 - acc: 0.88 - ETA: 47s - loss: 0.3378 - acc: 0.88 - ETA: 46s - loss: 0.3402 - acc: 0.88 - ETA: 46s - loss: 0.3395 - acc: 0.88 - ETA: 46s - loss: 0.3401 - acc: 0.87 - ETA: 46s - loss: 0.3417 - acc: 0.87 - ETA: 46s - loss: 0.3384 - acc: 0.88 - ETA: 46s - loss: 0.3371 - acc: 0.88 - ETA: 46s - loss: 0.3374 - acc: 0.88 - ETA: 46s - loss: 0.3353 - acc: 0.88 - ETA: 46s - loss: 0.3390 - acc: 0.88 - ETA: 45s - loss: 0.3360 - acc: 0.88 - ETA: 45s - loss: 0.3357 - acc: 0.88 - ETA: 45s - loss: 0.3338 - acc: 0.88 - ETA: 45s - loss: 0.3345 - acc: 0.88 - ETA: 45s - loss: 0.3334 - acc: 0.88 - ETA: 45s - loss: 0.3382 - acc: 0.88 - ETA: 45s - loss: 0.3410 - acc: 0.88 - ETA: 45s - loss: 0.3399 - acc: 0.88 - ETA: 45s - loss: 0.3402 - acc: 0.88 - ETA: 45s - loss: 0.3399 - acc: 0.88 - ETA: 45s - loss: 0.3392 - acc: 0.88 - ETA: 44s - loss: 0.3394 - acc: 0.88 - ETA: 44s - loss: 0.3411 - acc: 0.88 - ETA: 44s - loss: 0.3407 - acc: 0.88 - ETA: 44s - loss: 0.3402 - acc: 0.88 - ETA: 44s - loss: 0.3429 - acc: 0.88 - ETA: 44s - loss: 0.3424 - acc: 0.88 - ETA: 44s - loss: 0.3422 - acc: 0.88 - ETA: 44s - loss: 0.3408 - acc: 0.88 - ETA: 44s - loss: 0.3381 - acc: 0.88 - ETA: 44s - loss: 0.3364 - acc: 0.88 - ETA: 44s - loss: 0.3362 - acc: 0.88 - ETA: 44s - loss: 0.3359 - acc: 0.88 - ETA: 44s - loss: 0.3346 - acc: 0.88 - ETA: 44s - loss: 0.3368 - acc: 0.88 - ETA: 44s - loss: 0.3377 - acc: 0.88 - ETA: 43s - loss: 0.3394 - acc: 0.88 - ETA: 43s - loss: 0.3400 - acc: 0.88 - ETA: 43s - loss: 0.3404 - acc: 0.88 - ETA: 43s - loss: 0.3415 - acc: 0.88 - ETA: 43s - loss: 0.3398 - acc: 0.88 - ETA: 43s - loss: 0.3399 - acc: 0.88 - ETA: 43s - loss: 0.3404 - acc: 0.88 - ETA: 43s - loss: 0.3404 - acc: 0.88 - ETA: 43s - loss: 0.3401 - acc: 0.88 - ETA: 43s - loss: 0.3424 - acc: 0.88 - ETA: 43s - loss: 0.3457 - acc: 0.87 - ETA: 43s - loss: 0.3456 - acc: 0.87 - ETA: 43s - loss: 0.3448 - acc: 0.87 - ETA: 43s - loss: 0.3440 - acc: 0.87 - ETA: 42s - loss: 0.3446 - acc: 0.87 - ETA: 42s - loss: 0.3448 - acc: 0.87 - ETA: 42s - loss: 0.3447 - acc: 0.87 - ETA: 42s - loss: 0.3456 - acc: 0.87 - ETA: 42s - loss: 0.3463 - acc: 0.87 - ETA: 42s - loss: 0.3476 - acc: 0.87 - ETA: 42s - loss: 0.3467 - acc: 0.87 - ETA: 42s - loss: 0.3465 - acc: 0.87 - ETA: 42s - loss: 0.3450 - acc: 0.87 - ETA: 42s - loss: 0.3442 - acc: 0.87 - ETA: 42s - loss: 0.3432 - acc: 0.88 - ETA: 42s - loss: 0.3422 - acc: 0.88 - ETA: 42s - loss: 0.3429 - acc: 0.88 - ETA: 42s - loss: 0.3430 - acc: 0.88 - ETA: 42s - loss: 0.3411 - acc: 0.88 - ETA: 42s - loss: 0.3397 - acc: 0.88 - ETA: 42s - loss: 0.3403 - acc: 0.88 - ETA: 42s - loss: 0.3404 - acc: 0.88 - ETA: 42s - loss: 0.3408 - acc: 0.88 - ETA: 42s - loss: 0.3412 - acc: 0.88 - ETA: 41s - loss: 0.3423 - acc: 0.88 - ETA: 41s - loss: 0.3418 - acc: 0.88 - ETA: 41s - loss: 0.3414 - acc: 0.88 - ETA: 41s - loss: 0.3419 - acc: 0.88 - ETA: 41s - loss: 0.3419 - acc: 0.88 - ETA: 41s - loss: 0.3417 - acc: 0.88 - ETA: 41s - loss: 0.3435 - acc: 0.88 - ETA: 41s - loss: 0.3434 - acc: 0.87 - ETA: 41s - loss: 0.3427 - acc: 0.87 - ETA: 41s - loss: 0.3435 - acc: 0.87 - ETA: 41s - loss: 0.3420 - acc: 0.87 - ETA: 41s - loss: 0.3421 - acc: 0.87 - ETA: 41s - loss: 0.3416 - acc: 0.87 - ETA: 41s - loss: 0.3403 - acc: 0.88 - ETA: 41s - loss: 0.3397 - acc: 0.88 - ETA: 40s - loss: 0.3394 - acc: 0.88 - ETA: 40s - loss: 0.3386 - acc: 0.88 - ETA: 40s - loss: 0.3387 - acc: 0.88 - ETA: 40s - loss: 0.3391 - acc: 0.88 - ETA: 40s - loss: 0.3402 - acc: 0.88 - ETA: 40s - loss: 0.3399 - acc: 0.88 - ETA: 40s - loss: 0.3388 - acc: 0.88 - ETA: 40s - loss: 0.3391 - acc: 0.88 - ETA: 40s - loss: 0.3390 - acc: 0.88 - ETA: 40s - loss: 0.3389 - acc: 0.88 - ETA: 40s - loss: 0.3380 - acc: 0.88 - ETA: 40s - loss: 0.3374 - acc: 0.88 - ETA: 40s - loss: 0.3367 - acc: 0.88 - ETA: 40s - loss: 0.3358 - acc: 0.88 - ETA: 40s - loss: 0.3357 - acc: 0.88 - ETA: 40s - loss: 0.3358 - acc: 0.88 - ETA: 40s - loss: 0.3354 - acc: 0.88 - ETA: 40s - loss: 0.3352 - acc: 0.88 - ETA: 39s - loss: 0.3347 - acc: 0.88 - ETA: 40s - loss: 0.3353 - acc: 0.88 - ETA: 40s - loss: 0.3343 - acc: 0.88 - ETA: 40s - loss: 0.3347 - acc: 0.88 - ETA: 40s - loss: 0.3352 - acc: 0.88 - ETA: 39s - loss: 0.3369 - acc: 0.88 - ETA: 39s - loss: 0.3363 - acc: 0.88 - ETA: 39s - loss: 0.3360 - acc: 0.88 - ETA: 39s - loss: 0.3370 - acc: 0.88 - ETA: 39s - loss: 0.3373 - acc: 0.88 - ETA: 39s - loss: 0.3370 - acc: 0.88 - ETA: 39s - loss: 0.3362 - acc: 0.88 - ETA: 39s - loss: 0.3358 - acc: 0.88 - ETA: 39s - loss: 0.3351 - acc: 0.88 - ETA: 39s - loss: 0.3349 - acc: 0.88 - ETA: 39s - loss: 0.3338 - acc: 0.88 - ETA: 39s - loss: 0.3330 - acc: 0.88 - ETA: 39s - loss: 0.3325 - acc: 0.88 - ETA: 39s - loss: 0.3319 - acc: 0.88 - ETA: 39s - loss: 0.3334 - acc: 0.88 - ETA: 39s - loss: 0.3338 - acc: 0.88 - ETA: 39s - loss: 0.3335 - acc: 0.88 - ETA: 39s - loss: 0.3348 - acc: 0.88 - ETA: 39s - loss: 0.3358 - acc: 0.88 - ETA: 38s - loss: 0.3345 - acc: 0.88 - ETA: 38s - loss: 0.3351 - acc: 0.88 - ETA: 38s - loss: 0.3359 - acc: 0.88 - ETA: 38s - loss: 0.3357 - acc: 0.88 - ETA: 38s - loss: 0.3391 - acc: 0.87 - ETA: 38s - loss: 0.3388 - acc: 0.87 - ETA: 38s - loss: 0.3381 - acc: 0.87 - ETA: 38s - loss: 0.3380 - acc: 0.87 - ETA: 38s - loss: 0.3384 - acc: 0.87 - ETA: 38s - loss: 0.3383 - acc: 0.87 - ETA: 38s - loss: 0.3385 - acc: 0.87 - ETA: 38s - loss: 0.3390 - acc: 0.87 - ETA: 38s - loss: 0.3396 - acc: 0.87 - ETA: 38s - loss: 0.3385 - acc: 0.87 - ETA: 38s - loss: 0.3381 - acc: 0.87 - ETA: 38s - loss: 0.3378 - acc: 0.87 - ETA: 37s - loss: 0.3371 - acc: 0.8795" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.3366 - acc: 0.87 - ETA: 37s - loss: 0.3357 - acc: 0.88 - ETA: 37s - loss: 0.3364 - acc: 0.87 - ETA: 37s - loss: 0.3367 - acc: 0.87 - ETA: 37s - loss: 0.3362 - acc: 0.88 - ETA: 37s - loss: 0.3362 - acc: 0.87 - ETA: 37s - loss: 0.3365 - acc: 0.88 - ETA: 37s - loss: 0.3368 - acc: 0.88 - ETA: 37s - loss: 0.3362 - acc: 0.88 - ETA: 37s - loss: 0.3354 - acc: 0.88 - ETA: 37s - loss: 0.3353 - acc: 0.88 - ETA: 37s - loss: 0.3361 - acc: 0.88 - ETA: 37s - loss: 0.3367 - acc: 0.88 - ETA: 37s - loss: 0.3362 - acc: 0.88 - ETA: 37s - loss: 0.3355 - acc: 0.88 - ETA: 36s - loss: 0.3352 - acc: 0.88 - ETA: 36s - loss: 0.3356 - acc: 0.88 - ETA: 36s - loss: 0.3350 - acc: 0.88 - ETA: 36s - loss: 0.3353 - acc: 0.88 - ETA: 36s - loss: 0.3351 - acc: 0.88 - ETA: 36s - loss: 0.3352 - acc: 0.88 - ETA: 36s - loss: 0.3351 - acc: 0.88 - ETA: 36s - loss: 0.3355 - acc: 0.88 - ETA: 36s - loss: 0.3353 - acc: 0.88 - ETA: 36s - loss: 0.3357 - acc: 0.88 - ETA: 36s - loss: 0.3351 - acc: 0.88 - ETA: 36s - loss: 0.3342 - acc: 0.88 - ETA: 36s - loss: 0.3347 - acc: 0.88 - ETA: 36s - loss: 0.3338 - acc: 0.88 - ETA: 36s - loss: 0.3331 - acc: 0.88 - ETA: 35s - loss: 0.3338 - acc: 0.88 - ETA: 35s - loss: 0.3335 - acc: 0.88 - ETA: 35s - loss: 0.3337 - acc: 0.88 - ETA: 35s - loss: 0.3335 - acc: 0.88 - ETA: 35s - loss: 0.3337 - acc: 0.88 - ETA: 35s - loss: 0.3332 - acc: 0.88 - ETA: 35s - loss: 0.3333 - acc: 0.88 - ETA: 35s - loss: 0.3332 - acc: 0.88 - ETA: 35s - loss: 0.3340 - acc: 0.88 - ETA: 35s - loss: 0.3331 - acc: 0.88 - ETA: 35s - loss: 0.3330 - acc: 0.88 - ETA: 35s - loss: 0.3322 - acc: 0.88 - ETA: 35s - loss: 0.3326 - acc: 0.88 - ETA: 35s - loss: 0.3331 - acc: 0.88 - ETA: 35s - loss: 0.3328 - acc: 0.88 - ETA: 34s - loss: 0.3334 - acc: 0.88 - ETA: 34s - loss: 0.3329 - acc: 0.88 - ETA: 34s - loss: 0.3333 - acc: 0.88 - ETA: 34s - loss: 0.3331 - acc: 0.88 - ETA: 34s - loss: 0.3331 - acc: 0.88 - ETA: 34s - loss: 0.3339 - acc: 0.88 - ETA: 34s - loss: 0.3338 - acc: 0.88 - ETA: 34s - loss: 0.3336 - acc: 0.88 - ETA: 34s - loss: 0.3333 - acc: 0.88 - ETA: 34s - loss: 0.3338 - acc: 0.88 - ETA: 34s - loss: 0.3346 - acc: 0.88 - ETA: 34s - loss: 0.3344 - acc: 0.88 - ETA: 34s - loss: 0.3354 - acc: 0.88 - ETA: 34s - loss: 0.3350 - acc: 0.88 - ETA: 33s - loss: 0.3349 - acc: 0.88 - ETA: 33s - loss: 0.3343 - acc: 0.88 - ETA: 33s - loss: 0.3341 - acc: 0.88 - ETA: 33s - loss: 0.3352 - acc: 0.88 - ETA: 33s - loss: 0.3359 - acc: 0.88 - ETA: 33s - loss: 0.3359 - acc: 0.88 - ETA: 33s - loss: 0.3355 - acc: 0.88 - ETA: 33s - loss: 0.3360 - acc: 0.88 - ETA: 33s - loss: 0.3366 - acc: 0.88 - ETA: 33s - loss: 0.3361 - acc: 0.88 - ETA: 33s - loss: 0.3356 - acc: 0.88 - ETA: 33s - loss: 0.3350 - acc: 0.88 - ETA: 33s - loss: 0.3345 - acc: 0.88 - ETA: 33s - loss: 0.3339 - acc: 0.88 - ETA: 33s - loss: 0.3333 - acc: 0.88 - ETA: 32s - loss: 0.3327 - acc: 0.88 - ETA: 32s - loss: 0.3326 - acc: 0.88 - ETA: 32s - loss: 0.3320 - acc: 0.88 - ETA: 32s - loss: 0.3316 - acc: 0.88 - ETA: 32s - loss: 0.3314 - acc: 0.88 - ETA: 32s - loss: 0.3312 - acc: 0.88 - ETA: 32s - loss: 0.3318 - acc: 0.88 - ETA: 32s - loss: 0.3321 - acc: 0.88 - ETA: 32s - loss: 0.3319 - acc: 0.88 - ETA: 32s - loss: 0.3315 - acc: 0.88 - ETA: 32s - loss: 0.3319 - acc: 0.88 - ETA: 32s - loss: 0.3323 - acc: 0.88 - ETA: 32s - loss: 0.3314 - acc: 0.88 - ETA: 32s - loss: 0.3311 - acc: 0.88 - ETA: 32s - loss: 0.3310 - acc: 0.88 - ETA: 31s - loss: 0.3307 - acc: 0.88 - ETA: 31s - loss: 0.3306 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3299 - acc: 0.88 - ETA: 31s - loss: 0.3298 - acc: 0.88 - ETA: 31s - loss: 0.3298 - acc: 0.88 - ETA: 31s - loss: 0.3296 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3300 - acc: 0.88 - ETA: 31s - loss: 0.3303 - acc: 0.88 - ETA: 31s - loss: 0.3301 - acc: 0.88 - ETA: 31s - loss: 0.3298 - acc: 0.88 - ETA: 31s - loss: 0.3295 - acc: 0.88 - ETA: 30s - loss: 0.3292 - acc: 0.88 - ETA: 30s - loss: 0.3288 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3287 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3283 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3288 - acc: 0.88 - ETA: 30s - loss: 0.3284 - acc: 0.88 - ETA: 30s - loss: 0.3285 - acc: 0.88 - ETA: 30s - loss: 0.3289 - acc: 0.88 - ETA: 30s - loss: 0.3287 - acc: 0.88 - ETA: 30s - loss: 0.3299 - acc: 0.88 - ETA: 30s - loss: 0.3299 - acc: 0.88 - ETA: 29s - loss: 0.3300 - acc: 0.88 - ETA: 29s - loss: 0.3300 - acc: 0.88 - ETA: 29s - loss: 0.3299 - acc: 0.88 - ETA: 29s - loss: 0.3303 - acc: 0.88 - ETA: 29s - loss: 0.3304 - acc: 0.88 - ETA: 29s - loss: 0.3303 - acc: 0.88 - ETA: 29s - loss: 0.3298 - acc: 0.88 - ETA: 29s - loss: 0.3308 - acc: 0.88 - ETA: 29s - loss: 0.3304 - acc: 0.88 - ETA: 29s - loss: 0.3305 - acc: 0.88 - ETA: 29s - loss: 0.3304 - acc: 0.88 - ETA: 29s - loss: 0.3302 - acc: 0.88 - ETA: 29s - loss: 0.3303 - acc: 0.88 - ETA: 29s - loss: 0.3297 - acc: 0.88 - ETA: 28s - loss: 0.3295 - acc: 0.88 - ETA: 28s - loss: 0.3289 - acc: 0.88 - ETA: 28s - loss: 0.3291 - acc: 0.88 - ETA: 28s - loss: 0.3290 - acc: 0.88 - ETA: 28s - loss: 0.3289 - acc: 0.88 - ETA: 28s - loss: 0.3294 - acc: 0.88 - ETA: 28s - loss: 0.3290 - acc: 0.88 - ETA: 28s - loss: 0.3285 - acc: 0.88 - ETA: 28s - loss: 0.3285 - acc: 0.88 - ETA: 28s - loss: 0.3284 - acc: 0.88 - ETA: 28s - loss: 0.3281 - acc: 0.88 - ETA: 28s - loss: 0.3284 - acc: 0.88 - ETA: 28s - loss: 0.3283 - acc: 0.88 - ETA: 28s - loss: 0.3291 - acc: 0.88 - ETA: 28s - loss: 0.3290 - acc: 0.88 - ETA: 27s - loss: 0.3287 - acc: 0.88 - ETA: 27s - loss: 0.3282 - acc: 0.88 - ETA: 27s - loss: 0.3284 - acc: 0.88 - ETA: 27s - loss: 0.3285 - acc: 0.88 - ETA: 27s - loss: 0.3279 - acc: 0.88 - ETA: 27s - loss: 0.3279 - acc: 0.88 - ETA: 27s - loss: 0.3274 - acc: 0.88 - ETA: 27s - loss: 0.3270 - acc: 0.88 - ETA: 27s - loss: 0.3273 - acc: 0.88 - ETA: 27s - loss: 0.3277 - acc: 0.88 - ETA: 27s - loss: 0.3278 - acc: 0.88 - ETA: 27s - loss: 0.3274 - acc: 0.88 - ETA: 27s - loss: 0.3281 - acc: 0.88 - ETA: 27s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3286 - acc: 0.88 - ETA: 26s - loss: 0.3284 - acc: 0.88 - ETA: 26s - loss: 0.3284 - acc: 0.88 - ETA: 26s - loss: 0.3287 - acc: 0.88 - ETA: 26s - loss: 0.3285 - acc: 0.88 - ETA: 26s - loss: 0.3278 - acc: 0.88 - ETA: 26s - loss: 0.3286 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3279 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 26s - loss: 0.3286 - acc: 0.88 - ETA: 26s - loss: 0.3282 - acc: 0.88 - ETA: 25s - loss: 0.3281 - acc: 0.88 - ETA: 25s - loss: 0.3289 - acc: 0.88 - ETA: 25s - loss: 0.3285 - acc: 0.88 - ETA: 25s - loss: 0.3291 - acc: 0.88 - ETA: 25s - loss: 0.3294 - acc: 0.88 - ETA: 25s - loss: 0.3297 - acc: 0.88 - ETA: 25s - loss: 0.3298 - acc: 0.88 - ETA: 25s - loss: 0.3297 - acc: 0.88 - ETA: 25s - loss: 0.3297 - acc: 0.88 - ETA: 25s - loss: 0.3300 - acc: 0.88 - ETA: 25s - loss: 0.3294 - acc: 0.88 - ETA: 25s - loss: 0.3289 - acc: 0.88 - ETA: 25s - loss: 0.3294 - acc: 0.88 - ETA: 25s - loss: 0.3292 - acc: 0.88 - ETA: 25s - loss: 0.3293 - acc: 0.88 - ETA: 24s - loss: 0.3291 - acc: 0.88 - ETA: 24s - loss: 0.3290 - acc: 0.88 - ETA: 24s - loss: 0.3288 - acc: 0.88 - ETA: 24s - loss: 0.3290 - acc: 0.88 - ETA: 24s - loss: 0.3286 - acc: 0.88 - ETA: 24s - loss: 0.3287 - acc: 0.88 - ETA: 24s - loss: 0.3286 - acc: 0.88 - ETA: 24s - loss: 0.3287 - acc: 0.88 - ETA: 24s - loss: 0.3286 - acc: 0.88 - ETA: 24s - loss: 0.3285 - acc: 0.88 - ETA: 24s - loss: 0.3280 - acc: 0.88 - ETA: 24s - loss: 0.3283 - acc: 0.88 - ETA: 24s - loss: 0.3279 - acc: 0.88 - ETA: 24s - loss: 0.3274 - acc: 0.88 - ETA: 23s - loss: 0.3278 - acc: 0.88 - ETA: 23s - loss: 0.3281 - acc: 0.88 - ETA: 23s - loss: 0.3282 - acc: 0.88 - ETA: 23s - loss: 0.3280 - acc: 0.88 - ETA: 23s - loss: 0.3279 - acc: 0.88 - ETA: 23s - loss: 0.3276 - acc: 0.88 - ETA: 23s - loss: 0.3272 - acc: 0.88 - ETA: 23s - loss: 0.3274 - acc: 0.88 - ETA: 23s - loss: 0.3272 - acc: 0.88 - ETA: 23s - loss: 0.3270 - acc: 0.88 - ETA: 23s - loss: 0.3272 - acc: 0.8849" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 23s - loss: 0.3269 - acc: 0.88 - ETA: 23s - loss: 0.3270 - acc: 0.88 - ETA: 23s - loss: 0.3268 - acc: 0.88 - ETA: 22s - loss: 0.3268 - acc: 0.88 - ETA: 22s - loss: 0.3262 - acc: 0.88 - ETA: 22s - loss: 0.3261 - acc: 0.88 - ETA: 22s - loss: 0.3261 - acc: 0.88 - ETA: 22s - loss: 0.3257 - acc: 0.88 - ETA: 22s - loss: 0.3251 - acc: 0.88 - ETA: 22s - loss: 0.3252 - acc: 0.88 - ETA: 22s - loss: 0.3250 - acc: 0.88 - ETA: 22s - loss: 0.3247 - acc: 0.88 - ETA: 22s - loss: 0.3245 - acc: 0.88 - ETA: 22s - loss: 0.3246 - acc: 0.88 - ETA: 22s - loss: 0.3242 - acc: 0.88 - ETA: 22s - loss: 0.3244 - acc: 0.88 - ETA: 22s - loss: 0.3247 - acc: 0.88 - ETA: 21s - loss: 0.3246 - acc: 0.88 - ETA: 21s - loss: 0.3245 - acc: 0.88 - ETA: 21s - loss: 0.3246 - acc: 0.88 - ETA: 21s - loss: 0.3244 - acc: 0.88 - ETA: 21s - loss: 0.3243 - acc: 0.88 - ETA: 21s - loss: 0.3239 - acc: 0.88 - ETA: 21s - loss: 0.3236 - acc: 0.88 - ETA: 21s - loss: 0.3231 - acc: 0.88 - ETA: 21s - loss: 0.3229 - acc: 0.88 - ETA: 21s - loss: 0.3228 - acc: 0.88 - ETA: 21s - loss: 0.3227 - acc: 0.88 - ETA: 21s - loss: 0.3229 - acc: 0.88 - ETA: 21s - loss: 0.3232 - acc: 0.88 - ETA: 21s - loss: 0.3232 - acc: 0.88 - ETA: 20s - loss: 0.3230 - acc: 0.88 - ETA: 20s - loss: 0.3226 - acc: 0.88 - ETA: 20s - loss: 0.3221 - acc: 0.88 - ETA: 20s - loss: 0.3217 - acc: 0.88 - ETA: 20s - loss: 0.3216 - acc: 0.88 - ETA: 20s - loss: 0.3217 - acc: 0.88 - ETA: 20s - loss: 0.3218 - acc: 0.88 - ETA: 20s - loss: 0.3217 - acc: 0.88 - ETA: 20s - loss: 0.3220 - acc: 0.88 - ETA: 20s - loss: 0.3220 - acc: 0.88 - ETA: 20s - loss: 0.3216 - acc: 0.88 - ETA: 20s - loss: 0.3212 - acc: 0.88 - ETA: 20s - loss: 0.3211 - acc: 0.88 - ETA: 20s - loss: 0.3213 - acc: 0.88 - ETA: 19s - loss: 0.3211 - acc: 0.88 - ETA: 19s - loss: 0.3211 - acc: 0.88 - ETA: 19s - loss: 0.3211 - acc: 0.88 - ETA: 19s - loss: 0.3209 - acc: 0.88 - ETA: 19s - loss: 0.3210 - acc: 0.88 - ETA: 19s - loss: 0.3210 - acc: 0.88 - ETA: 19s - loss: 0.3208 - acc: 0.88 - ETA: 19s - loss: 0.3206 - acc: 0.88 - ETA: 19s - loss: 0.3203 - acc: 0.88 - ETA: 19s - loss: 0.3198 - acc: 0.88 - ETA: 19s - loss: 0.3195 - acc: 0.88 - ETA: 19s - loss: 0.3192 - acc: 0.88 - ETA: 19s - loss: 0.3190 - acc: 0.88 - ETA: 18s - loss: 0.3189 - acc: 0.88 - ETA: 18s - loss: 0.3183 - acc: 0.88 - ETA: 18s - loss: 0.3178 - acc: 0.88 - ETA: 18s - loss: 0.3178 - acc: 0.88 - ETA: 18s - loss: 0.3175 - acc: 0.88 - ETA: 18s - loss: 0.3172 - acc: 0.88 - ETA: 18s - loss: 0.3171 - acc: 0.88 - ETA: 18s - loss: 0.3169 - acc: 0.88 - ETA: 18s - loss: 0.3165 - acc: 0.88 - ETA: 18s - loss: 0.3168 - acc: 0.88 - ETA: 18s - loss: 0.3167 - acc: 0.88 - ETA: 18s - loss: 0.3169 - acc: 0.88 - ETA: 18s - loss: 0.3167 - acc: 0.88 - ETA: 17s - loss: 0.3167 - acc: 0.88 - ETA: 17s - loss: 0.3163 - acc: 0.88 - ETA: 17s - loss: 0.3171 - acc: 0.88 - ETA: 17s - loss: 0.3168 - acc: 0.88 - ETA: 17s - loss: 0.3171 - acc: 0.88 - ETA: 17s - loss: 0.3169 - acc: 0.88 - ETA: 17s - loss: 0.3173 - acc: 0.88 - ETA: 17s - loss: 0.3175 - acc: 0.88 - ETA: 17s - loss: 0.3174 - acc: 0.88 - ETA: 17s - loss: 0.3172 - acc: 0.88 - ETA: 17s - loss: 0.3171 - acc: 0.88 - ETA: 17s - loss: 0.3170 - acc: 0.88 - ETA: 17s - loss: 0.3168 - acc: 0.88 - ETA: 17s - loss: 0.3169 - acc: 0.88 - ETA: 16s - loss: 0.3170 - acc: 0.88 - ETA: 16s - loss: 0.3171 - acc: 0.88 - ETA: 16s - loss: 0.3171 - acc: 0.88 - ETA: 16s - loss: 0.3166 - acc: 0.88 - ETA: 16s - loss: 0.3162 - acc: 0.88 - ETA: 16s - loss: 0.3159 - acc: 0.88 - ETA: 16s - loss: 0.3162 - acc: 0.88 - ETA: 16s - loss: 0.3162 - acc: 0.88 - ETA: 16s - loss: 0.3157 - acc: 0.88 - ETA: 16s - loss: 0.3156 - acc: 0.88 - ETA: 16s - loss: 0.3153 - acc: 0.88 - ETA: 16s - loss: 0.3156 - acc: 0.88 - ETA: 16s - loss: 0.3157 - acc: 0.88 - ETA: 15s - loss: 0.3156 - acc: 0.88 - ETA: 15s - loss: 0.3162 - acc: 0.88 - ETA: 15s - loss: 0.3166 - acc: 0.88 - ETA: 15s - loss: 0.3165 - acc: 0.88 - ETA: 15s - loss: 0.3168 - acc: 0.88 - ETA: 15s - loss: 0.3167 - acc: 0.88 - ETA: 15s - loss: 0.3166 - acc: 0.88 - ETA: 15s - loss: 0.3163 - acc: 0.88 - ETA: 15s - loss: 0.3170 - acc: 0.88 - ETA: 15s - loss: 0.3168 - acc: 0.88 - ETA: 15s - loss: 0.3169 - acc: 0.88 - ETA: 15s - loss: 0.3172 - acc: 0.88 - ETA: 15s - loss: 0.3172 - acc: 0.88 - ETA: 14s - loss: 0.3169 - acc: 0.88 - ETA: 14s - loss: 0.3167 - acc: 0.88 - ETA: 14s - loss: 0.3167 - acc: 0.88 - ETA: 14s - loss: 0.3167 - acc: 0.88 - ETA: 14s - loss: 0.3163 - acc: 0.88 - ETA: 14s - loss: 0.3161 - acc: 0.88 - ETA: 14s - loss: 0.3157 - acc: 0.88 - ETA: 14s - loss: 0.3157 - acc: 0.88 - ETA: 14s - loss: 0.3157 - acc: 0.88 - ETA: 14s - loss: 0.3156 - acc: 0.88 - ETA: 14s - loss: 0.3158 - acc: 0.88 - ETA: 14s - loss: 0.3156 - acc: 0.88 - ETA: 14s - loss: 0.3153 - acc: 0.88 - ETA: 14s - loss: 0.3152 - acc: 0.88 - ETA: 13s - loss: 0.3149 - acc: 0.88 - ETA: 13s - loss: 0.3146 - acc: 0.89 - ETA: 13s - loss: 0.3147 - acc: 0.89 - ETA: 13s - loss: 0.3144 - acc: 0.89 - ETA: 13s - loss: 0.3148 - acc: 0.89 - ETA: 13s - loss: 0.3153 - acc: 0.88 - ETA: 13s - loss: 0.3152 - acc: 0.88 - ETA: 13s - loss: 0.3149 - acc: 0.89 - ETA: 13s - loss: 0.3147 - acc: 0.89 - ETA: 13s - loss: 0.3150 - acc: 0.89 - ETA: 13s - loss: 0.3151 - acc: 0.89 - ETA: 13s - loss: 0.3150 - acc: 0.89 - ETA: 13s - loss: 0.3151 - acc: 0.89 - ETA: 12s - loss: 0.3149 - acc: 0.89 - ETA: 12s - loss: 0.3146 - acc: 0.89 - ETA: 12s - loss: 0.3144 - acc: 0.89 - ETA: 12s - loss: 0.3146 - acc: 0.89 - ETA: 12s - loss: 0.3143 - acc: 0.89 - ETA: 12s - loss: 0.3144 - acc: 0.89 - ETA: 12s - loss: 0.3141 - acc: 0.89 - ETA: 12s - loss: 0.3148 - acc: 0.89 - ETA: 12s - loss: 0.3148 - acc: 0.89 - ETA: 12s - loss: 0.3154 - acc: 0.89 - ETA: 12s - loss: 0.3153 - acc: 0.89 - ETA: 12s - loss: 0.3150 - acc: 0.89 - ETA: 12s - loss: 0.3153 - acc: 0.89 - ETA: 11s - loss: 0.3151 - acc: 0.89 - ETA: 11s - loss: 0.3154 - acc: 0.89 - ETA: 11s - loss: 0.3154 - acc: 0.89 - ETA: 11s - loss: 0.3158 - acc: 0.89 - ETA: 11s - loss: 0.3155 - acc: 0.89 - ETA: 11s - loss: 0.3152 - acc: 0.89 - ETA: 11s - loss: 0.3161 - acc: 0.88 - ETA: 11s - loss: 0.3167 - acc: 0.88 - ETA: 11s - loss: 0.3165 - acc: 0.88 - ETA: 11s - loss: 0.3163 - acc: 0.89 - ETA: 11s - loss: 0.3161 - acc: 0.89 - ETA: 11s - loss: 0.3162 - acc: 0.89 - ETA: 11s - loss: 0.3163 - acc: 0.89 - ETA: 10s - loss: 0.3163 - acc: 0.89 - ETA: 10s - loss: 0.3163 - acc: 0.89 - ETA: 10s - loss: 0.3162 - acc: 0.89 - ETA: 10s - loss: 0.3163 - acc: 0.88 - ETA: 10s - loss: 0.3163 - acc: 0.88 - ETA: 10s - loss: 0.3160 - acc: 0.89 - ETA: 10s - loss: 0.3158 - acc: 0.89 - ETA: 10s - loss: 0.3157 - acc: 0.89 - ETA: 10s - loss: 0.3160 - acc: 0.88 - ETA: 10s - loss: 0.3156 - acc: 0.89 - ETA: 10s - loss: 0.3158 - acc: 0.89 - ETA: 10s - loss: 0.3158 - acc: 0.89 - ETA: 10s - loss: 0.3160 - acc: 0.89 - ETA: 10s - loss: 0.3157 - acc: 0.89 - ETA: 9s - loss: 0.3158 - acc: 0.8901 - ETA: 9s - loss: 0.3159 - acc: 0.890 - ETA: 9s - loss: 0.3163 - acc: 0.890 - ETA: 9s - loss: 0.3163 - acc: 0.889 - ETA: 9s - loss: 0.3161 - acc: 0.889 - ETA: 9s - loss: 0.3157 - acc: 0.890 - ETA: 9s - loss: 0.3157 - acc: 0.890 - ETA: 9s - loss: 0.3155 - acc: 0.890 - ETA: 9s - loss: 0.3153 - acc: 0.890 - ETA: 9s - loss: 0.3155 - acc: 0.890 - ETA: 9s - loss: 0.3156 - acc: 0.890 - ETA: 9s - loss: 0.3155 - acc: 0.890 - ETA: 9s - loss: 0.3152 - acc: 0.890 - ETA: 8s - loss: 0.3150 - acc: 0.890 - ETA: 8s - loss: 0.3149 - acc: 0.890 - ETA: 8s - loss: 0.3146 - acc: 0.890 - ETA: 8s - loss: 0.3148 - acc: 0.890 - ETA: 8s - loss: 0.3147 - acc: 0.890 - ETA: 8s - loss: 0.3147 - acc: 0.890 - ETA: 8s - loss: 0.3145 - acc: 0.890 - ETA: 8s - loss: 0.3148 - acc: 0.890 - ETA: 8s - loss: 0.3146 - acc: 0.890 - ETA: 8s - loss: 0.3144 - acc: 0.890 - ETA: 8s - loss: 0.3143 - acc: 0.890 - ETA: 8s - loss: 0.3144 - acc: 0.890 - ETA: 8s - loss: 0.3144 - acc: 0.890 - ETA: 8s - loss: 0.3143 - acc: 0.890 - ETA: 7s - loss: 0.3141 - acc: 0.890 - ETA: 7s - loss: 0.3146 - acc: 0.890 - ETA: 7s - loss: 0.3146 - acc: 0.890 - ETA: 7s - loss: 0.3143 - acc: 0.890 - ETA: 7s - loss: 0.3142 - acc: 0.890 - ETA: 7s - loss: 0.3140 - acc: 0.890 - ETA: 7s - loss: 0.3137 - acc: 0.891 - ETA: 7s - loss: 0.3134 - acc: 0.891 - ETA: 7s - loss: 0.3134 - acc: 0.891 - ETA: 7s - loss: 0.3133 - acc: 0.8911" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 7s - loss: 0.3130 - acc: 0.891 - ETA: 7s - loss: 0.3129 - acc: 0.891 - ETA: 7s - loss: 0.3132 - acc: 0.891 - ETA: 6s - loss: 0.3129 - acc: 0.891 - ETA: 6s - loss: 0.3131 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3131 - acc: 0.891 - ETA: 6s - loss: 0.3129 - acc: 0.891 - ETA: 6s - loss: 0.3131 - acc: 0.891 - ETA: 6s - loss: 0.3129 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3130 - acc: 0.891 - ETA: 6s - loss: 0.3128 - acc: 0.891 - ETA: 6s - loss: 0.3127 - acc: 0.891 - ETA: 6s - loss: 0.3125 - acc: 0.891 - ETA: 5s - loss: 0.3125 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3121 - acc: 0.891 - ETA: 5s - loss: 0.3118 - acc: 0.891 - ETA: 5s - loss: 0.3118 - acc: 0.891 - ETA: 5s - loss: 0.3118 - acc: 0.891 - ETA: 5s - loss: 0.3122 - acc: 0.891 - ETA: 5s - loss: 0.3125 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3122 - acc: 0.891 - ETA: 5s - loss: 0.3124 - acc: 0.891 - ETA: 5s - loss: 0.3125 - acc: 0.891 - ETA: 4s - loss: 0.3123 - acc: 0.891 - ETA: 4s - loss: 0.3122 - acc: 0.891 - ETA: 4s - loss: 0.3122 - acc: 0.891 - ETA: 4s - loss: 0.3119 - acc: 0.891 - ETA: 4s - loss: 0.3119 - acc: 0.891 - ETA: 4s - loss: 0.3123 - acc: 0.891 - ETA: 4s - loss: 0.3127 - acc: 0.891 - ETA: 4s - loss: 0.3127 - acc: 0.891 - ETA: 4s - loss: 0.3126 - acc: 0.891 - ETA: 4s - loss: 0.3126 - acc: 0.891 - ETA: 4s - loss: 0.3125 - acc: 0.891 - ETA: 4s - loss: 0.3123 - acc: 0.891 - ETA: 4s - loss: 0.3121 - acc: 0.891 - ETA: 3s - loss: 0.3122 - acc: 0.891 - ETA: 3s - loss: 0.3126 - acc: 0.891 - ETA: 3s - loss: 0.3128 - acc: 0.891 - ETA: 3s - loss: 0.3127 - acc: 0.891 - ETA: 3s - loss: 0.3127 - acc: 0.891 - ETA: 3s - loss: 0.3130 - acc: 0.891 - ETA: 3s - loss: 0.3129 - acc: 0.891 - ETA: 3s - loss: 0.3126 - acc: 0.891 - ETA: 3s - loss: 0.3124 - acc: 0.891 - ETA: 3s - loss: 0.3124 - acc: 0.891 - ETA: 3s - loss: 0.3125 - acc: 0.891 - ETA: 3s - loss: 0.3124 - acc: 0.891 - ETA: 3s - loss: 0.3122 - acc: 0.891 - ETA: 3s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3121 - acc: 0.891 - ETA: 2s - loss: 0.3119 - acc: 0.891 - ETA: 2s - loss: 0.3120 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3125 - acc: 0.891 - ETA: 2s - loss: 0.3122 - acc: 0.891 - ETA: 2s - loss: 0.3120 - acc: 0.891 - ETA: 2s - loss: 0.3118 - acc: 0.891 - ETA: 1s - loss: 0.3117 - acc: 0.891 - ETA: 1s - loss: 0.3115 - acc: 0.891 - ETA: 1s - loss: 0.3112 - acc: 0.891 - ETA: 1s - loss: 0.3111 - acc: 0.891 - ETA: 1s - loss: 0.3113 - acc: 0.891 - ETA: 1s - loss: 0.3111 - acc: 0.891 - ETA: 1s - loss: 0.3109 - acc: 0.891 - ETA: 1s - loss: 0.3109 - acc: 0.891 - ETA: 1s - loss: 0.3113 - acc: 0.891 - ETA: 1s - loss: 0.3113 - acc: 0.891 - ETA: 1s - loss: 0.3112 - acc: 0.891 - ETA: 1s - loss: 0.3110 - acc: 0.891 - ETA: 1s - loss: 0.3108 - acc: 0.891 - ETA: 1s - loss: 0.3106 - acc: 0.892 - ETA: 0s - loss: 0.3107 - acc: 0.891 - ETA: 0s - loss: 0.3104 - acc: 0.892 - ETA: 0s - loss: 0.3104 - acc: 0.891 - ETA: 0s - loss: 0.3103 - acc: 0.891 - ETA: 0s - loss: 0.3101 - acc: 0.892 - ETA: 0s - loss: 0.3099 - acc: 0.892 - ETA: 0s - loss: 0.3097 - acc: 0.892 - ETA: 0s - loss: 0.3095 - acc: 0.892 - ETA: 0s - loss: 0.3093 - acc: 0.892 - ETA: 0s - loss: 0.3092 - acc: 0.892 - ETA: 0s - loss: 0.3090 - acc: 0.892 - ETA: 0s - loss: 0.3087 - acc: 0.892 - ETA: 0s - loss: 0.3087 - acc: 0.892 - 56s 2ms/step - loss: 0.3084 - acc: 0.8925 - val_loss: 0.2319 - val_acc: 0.9239\n", + "\n", + "Epoch 00004: val_acc improved from 0.89663 to 0.92389, saving model to models\\conv.model\n", + "Epoch 5/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 44s - loss: 0.0644 - acc: 0.96 - ETA: 50s - loss: 0.0973 - acc: 0.96 - ETA: 49s - loss: 0.1196 - acc: 0.95 - ETA: 48s - loss: 0.1406 - acc: 0.95 - ETA: 46s - loss: 0.1619 - acc: 0.95 - ETA: 47s - loss: 0.1692 - acc: 0.94 - ETA: 47s - loss: 0.1967 - acc: 0.93 - ETA: 46s - loss: 0.1934 - acc: 0.93 - ETA: 46s - loss: 0.2052 - acc: 0.92 - ETA: 46s - loss: 0.1951 - acc: 0.92 - ETA: 45s - loss: 0.2112 - acc: 0.91 - ETA: 46s - loss: 0.2002 - acc: 0.92 - ETA: 46s - loss: 0.2036 - acc: 0.92 - ETA: 46s - loss: 0.2061 - acc: 0.92 - ETA: 48s - loss: 0.2051 - acc: 0.92 - ETA: 48s - loss: 0.2078 - acc: 0.92 - ETA: 48s - loss: 0.2049 - acc: 0.92 - ETA: 48s - loss: 0.2001 - acc: 0.92 - ETA: 48s - loss: 0.2084 - acc: 0.92 - ETA: 48s - loss: 0.2106 - acc: 0.92 - ETA: 48s - loss: 0.2204 - acc: 0.91 - ETA: 49s - loss: 0.2136 - acc: 0.91 - ETA: 48s - loss: 0.2243 - acc: 0.91 - ETA: 48s - loss: 0.2257 - acc: 0.91 - ETA: 48s - loss: 0.2373 - acc: 0.91 - ETA: 48s - loss: 0.2429 - acc: 0.91 - ETA: 48s - loss: 0.2361 - acc: 0.91 - ETA: 48s - loss: 0.2330 - acc: 0.91 - ETA: 48s - loss: 0.2381 - acc: 0.91 - ETA: 48s - loss: 0.2426 - acc: 0.91 - ETA: 48s - loss: 0.2485 - acc: 0.90 - ETA: 48s - loss: 0.2473 - acc: 0.90 - ETA: 48s - loss: 0.2460 - acc: 0.90 - ETA: 48s - loss: 0.2448 - acc: 0.90 - ETA: 48s - loss: 0.2469 - acc: 0.90 - ETA: 48s - loss: 0.2480 - acc: 0.90 - ETA: 48s - loss: 0.2451 - acc: 0.90 - ETA: 48s - loss: 0.2416 - acc: 0.90 - ETA: 48s - loss: 0.2478 - acc: 0.90 - ETA: 47s - loss: 0.2441 - acc: 0.90 - ETA: 47s - loss: 0.2479 - acc: 0.90 - ETA: 47s - loss: 0.2508 - acc: 0.90 - ETA: 47s - loss: 0.2514 - acc: 0.90 - ETA: 47s - loss: 0.2538 - acc: 0.89 - ETA: 47s - loss: 0.2526 - acc: 0.90 - ETA: 47s - loss: 0.2526 - acc: 0.90 - ETA: 47s - loss: 0.2586 - acc: 0.90 - ETA: 47s - loss: 0.2580 - acc: 0.89 - ETA: 47s - loss: 0.2601 - acc: 0.89 - ETA: 47s - loss: 0.2606 - acc: 0.89 - ETA: 47s - loss: 0.2579 - acc: 0.90 - ETA: 47s - loss: 0.2570 - acc: 0.90 - ETA: 47s - loss: 0.2570 - acc: 0.90 - ETA: 47s - loss: 0.2549 - acc: 0.90 - ETA: 46s - loss: 0.2539 - acc: 0.90 - ETA: 46s - loss: 0.2513 - acc: 0.90 - ETA: 46s - loss: 0.2513 - acc: 0.90 - ETA: 46s - loss: 0.2504 - acc: 0.90 - ETA: 46s - loss: 0.2513 - acc: 0.90 - ETA: 46s - loss: 0.2544 - acc: 0.90 - ETA: 46s - loss: 0.2527 - acc: 0.90 - ETA: 46s - loss: 0.2591 - acc: 0.90 - ETA: 46s - loss: 0.2623 - acc: 0.90 - ETA: 46s - loss: 0.2652 - acc: 0.89 - ETA: 46s - loss: 0.2636 - acc: 0.90 - ETA: 46s - loss: 0.2703 - acc: 0.89 - ETA: 46s - loss: 0.2708 - acc: 0.89 - ETA: 46s - loss: 0.2698 - acc: 0.89 - ETA: 46s - loss: 0.2670 - acc: 0.89 - ETA: 45s - loss: 0.2661 - acc: 0.89 - ETA: 45s - loss: 0.2689 - acc: 0.89 - ETA: 45s - loss: 0.2739 - acc: 0.89 - ETA: 45s - loss: 0.2722 - acc: 0.89 - ETA: 45s - loss: 0.2724 - acc: 0.89 - ETA: 45s - loss: 0.2735 - acc: 0.89 - ETA: 45s - loss: 0.2746 - acc: 0.89 - ETA: 45s - loss: 0.2725 - acc: 0.89 - ETA: 45s - loss: 0.2709 - acc: 0.89 - ETA: 45s - loss: 0.2718 - acc: 0.89 - ETA: 45s - loss: 0.2711 - acc: 0.89 - ETA: 45s - loss: 0.2695 - acc: 0.89 - ETA: 45s - loss: 0.2701 - acc: 0.89 - ETA: 45s - loss: 0.2677 - acc: 0.89 - ETA: 45s - loss: 0.2678 - acc: 0.89 - ETA: 44s - loss: 0.2659 - acc: 0.89 - ETA: 44s - loss: 0.2644 - acc: 0.89 - ETA: 44s - loss: 0.2627 - acc: 0.89 - ETA: 44s - loss: 0.2654 - acc: 0.89 - ETA: 44s - loss: 0.2655 - acc: 0.89 - ETA: 44s - loss: 0.2645 - acc: 0.89 - ETA: 44s - loss: 0.2639 - acc: 0.89 - ETA: 44s - loss: 0.2651 - acc: 0.89 - ETA: 44s - loss: 0.2651 - acc: 0.89 - ETA: 44s - loss: 0.2646 - acc: 0.89 - ETA: 44s - loss: 0.2642 - acc: 0.89 - ETA: 44s - loss: 0.2660 - acc: 0.89 - ETA: 44s - loss: 0.2639 - acc: 0.89 - ETA: 44s - loss: 0.2644 - acc: 0.89 - ETA: 44s - loss: 0.2655 - acc: 0.89 - ETA: 44s - loss: 0.2646 - acc: 0.89 - ETA: 44s - loss: 0.2633 - acc: 0.90 - ETA: 44s - loss: 0.2625 - acc: 0.90 - ETA: 43s - loss: 0.2638 - acc: 0.90 - ETA: 43s - loss: 0.2627 - acc: 0.89 - ETA: 43s - loss: 0.2639 - acc: 0.89 - ETA: 43s - loss: 0.2627 - acc: 0.90 - ETA: 43s - loss: 0.2629 - acc: 0.89 - ETA: 43s - loss: 0.2629 - acc: 0.89 - ETA: 43s - loss: 0.2624 - acc: 0.89 - ETA: 43s - loss: 0.2609 - acc: 0.90 - ETA: 43s - loss: 0.2599 - acc: 0.90 - ETA: 43s - loss: 0.2594 - acc: 0.90 - ETA: 43s - loss: 0.2612 - acc: 0.90 - ETA: 43s - loss: 0.2601 - acc: 0.90 - ETA: 43s - loss: 0.2591 - acc: 0.90 - ETA: 43s - loss: 0.2577 - acc: 0.90 - ETA: 43s - loss: 0.2568 - acc: 0.90 - ETA: 43s - loss: 0.2566 - acc: 0.90 - ETA: 43s - loss: 0.2588 - acc: 0.90 - ETA: 43s - loss: 0.2574 - acc: 0.90 - ETA: 43s - loss: 0.2566 - acc: 0.90 - ETA: 43s - loss: 0.2562 - acc: 0.90 - ETA: 43s - loss: 0.2586 - acc: 0.90 - ETA: 43s - loss: 0.2574 - acc: 0.90 - ETA: 43s - loss: 0.2574 - acc: 0.90 - ETA: 43s - loss: 0.2580 - acc: 0.90 - ETA: 43s - loss: 0.2576 - acc: 0.90 - ETA: 42s - loss: 0.2586 - acc: 0.90 - ETA: 42s - loss: 0.2592 - acc: 0.90 - ETA: 42s - loss: 0.2595 - acc: 0.90 - ETA: 42s - loss: 0.2605 - acc: 0.90 - ETA: 42s - loss: 0.2593 - acc: 0.90 - ETA: 42s - loss: 0.2604 - acc: 0.90 - ETA: 42s - loss: 0.2611 - acc: 0.90 - ETA: 42s - loss: 0.2612 - acc: 0.90 - ETA: 42s - loss: 0.2610 - acc: 0.90 - ETA: 42s - loss: 0.2605 - acc: 0.90 - ETA: 42s - loss: 0.2613 - acc: 0.90 - ETA: 42s - loss: 0.2626 - acc: 0.90 - ETA: 42s - loss: 0.2631 - acc: 0.90 - ETA: 42s - loss: 0.2638 - acc: 0.90 - ETA: 42s - loss: 0.2644 - acc: 0.90 - ETA: 42s - loss: 0.2630 - acc: 0.90 - ETA: 42s - loss: 0.2618 - acc: 0.90 - ETA: 42s - loss: 0.2629 - acc: 0.90 - ETA: 42s - loss: 0.2637 - acc: 0.90 - ETA: 42s - loss: 0.2638 - acc: 0.90 - ETA: 42s - loss: 0.2640 - acc: 0.90 - ETA: 42s - loss: 0.2640 - acc: 0.90 - ETA: 42s - loss: 0.2653 - acc: 0.90 - ETA: 41s - loss: 0.2651 - acc: 0.90 - ETA: 41s - loss: 0.2643 - acc: 0.90 - ETA: 41s - loss: 0.2663 - acc: 0.90 - ETA: 41s - loss: 0.2662 - acc: 0.90 - ETA: 41s - loss: 0.2655 - acc: 0.90 - ETA: 41s - loss: 0.2647 - acc: 0.90 - ETA: 41s - loss: 0.2642 - acc: 0.90 - ETA: 41s - loss: 0.2644 - acc: 0.90 - ETA: 41s - loss: 0.2653 - acc: 0.90 - ETA: 41s - loss: 0.2643 - acc: 0.90 - ETA: 41s - loss: 0.2643 - acc: 0.90 - ETA: 41s - loss: 0.2638 - acc: 0.90 - ETA: 41s - loss: 0.2645 - acc: 0.90 - ETA: 41s - loss: 0.2647 - acc: 0.90 - ETA: 41s - loss: 0.2665 - acc: 0.90 - ETA: 41s - loss: 0.2664 - acc: 0.90 - ETA: 41s - loss: 0.2666 - acc: 0.90 - ETA: 40s - loss: 0.2669 - acc: 0.90 - ETA: 40s - loss: 0.2659 - acc: 0.90 - ETA: 40s - loss: 0.2668 - acc: 0.90 - ETA: 40s - loss: 0.2679 - acc: 0.90 - ETA: 40s - loss: 0.2673 - acc: 0.90 - ETA: 40s - loss: 0.2685 - acc: 0.90 - ETA: 40s - loss: 0.2691 - acc: 0.90 - ETA: 40s - loss: 0.2694 - acc: 0.90 - ETA: 40s - loss: 0.2693 - acc: 0.90 - ETA: 40s - loss: 0.2703 - acc: 0.90 - ETA: 40s - loss: 0.2703 - acc: 0.90 - ETA: 40s - loss: 0.2712 - acc: 0.90 - ETA: 40s - loss: 0.2710 - acc: 0.90 - ETA: 40s - loss: 0.2712 - acc: 0.90 - ETA: 39s - loss: 0.2704 - acc: 0.90 - ETA: 39s - loss: 0.2701 - acc: 0.90 - ETA: 39s - loss: 0.2698 - acc: 0.90 - ETA: 39s - loss: 0.2694 - acc: 0.90 - ETA: 39s - loss: 0.2694 - acc: 0.90 - ETA: 39s - loss: 0.2698 - acc: 0.90 - ETA: 39s - loss: 0.2690 - acc: 0.90 - ETA: 39s - loss: 0.2683 - acc: 0.90 - ETA: 39s - loss: 0.2672 - acc: 0.90 - ETA: 39s - loss: 0.2671 - acc: 0.90 - ETA: 39s - loss: 0.2659 - acc: 0.90 - ETA: 39s - loss: 0.2650 - acc: 0.90 - ETA: 39s - loss: 0.2647 - acc: 0.90 - ETA: 39s - loss: 0.2651 - acc: 0.90 - ETA: 39s - loss: 0.2645 - acc: 0.90 - ETA: 38s - loss: 0.2658 - acc: 0.90 - ETA: 38s - loss: 0.2669 - acc: 0.90 - ETA: 38s - loss: 0.2670 - acc: 0.90 - ETA: 38s - loss: 0.2675 - acc: 0.90 - ETA: 38s - loss: 0.2668 - acc: 0.90 - ETA: 38s - loss: 0.2668 - acc: 0.90 - ETA: 38s - loss: 0.2676 - acc: 0.90 - ETA: 38s - loss: 0.2670 - acc: 0.90 - ETA: 38s - loss: 0.2663 - acc: 0.90 - ETA: 38s - loss: 0.2669 - acc: 0.90 - ETA: 38s - loss: 0.2684 - acc: 0.90 - ETA: 38s - loss: 0.2689 - acc: 0.90 - ETA: 38s - loss: 0.2686 - acc: 0.90 - ETA: 37s - loss: 0.2688 - acc: 0.90 - ETA: 37s - loss: 0.2686 - acc: 0.90 - ETA: 37s - loss: 0.2693 - acc: 0.90 - ETA: 37s - loss: 0.2703 - acc: 0.90 - ETA: 37s - loss: 0.2703 - acc: 0.90 - ETA: 37s - loss: 0.2700 - acc: 0.9019" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.2693 - acc: 0.90 - ETA: 37s - loss: 0.2699 - acc: 0.90 - ETA: 37s - loss: 0.2700 - acc: 0.90 - ETA: 37s - loss: 0.2713 - acc: 0.90 - ETA: 37s - loss: 0.2709 - acc: 0.90 - ETA: 37s - loss: 0.2703 - acc: 0.90 - ETA: 37s - loss: 0.2711 - acc: 0.90 - ETA: 37s - loss: 0.2717 - acc: 0.90 - ETA: 36s - loss: 0.2723 - acc: 0.90 - ETA: 36s - loss: 0.2719 - acc: 0.90 - ETA: 36s - loss: 0.2718 - acc: 0.90 - ETA: 36s - loss: 0.2716 - acc: 0.90 - ETA: 36s - loss: 0.2715 - acc: 0.90 - ETA: 36s - loss: 0.2712 - acc: 0.90 - ETA: 36s - loss: 0.2715 - acc: 0.90 - ETA: 36s - loss: 0.2715 - acc: 0.90 - ETA: 36s - loss: 0.2706 - acc: 0.90 - ETA: 36s - loss: 0.2707 - acc: 0.90 - ETA: 36s - loss: 0.2703 - acc: 0.90 - ETA: 36s - loss: 0.2705 - acc: 0.90 - ETA: 36s - loss: 0.2697 - acc: 0.90 - ETA: 36s - loss: 0.2711 - acc: 0.90 - ETA: 36s - loss: 0.2716 - acc: 0.90 - ETA: 35s - loss: 0.2728 - acc: 0.90 - ETA: 35s - loss: 0.2725 - acc: 0.90 - ETA: 35s - loss: 0.2740 - acc: 0.90 - ETA: 35s - loss: 0.2732 - acc: 0.90 - ETA: 35s - loss: 0.2735 - acc: 0.90 - ETA: 35s - loss: 0.2736 - acc: 0.90 - ETA: 35s - loss: 0.2738 - acc: 0.90 - ETA: 35s - loss: 0.2739 - acc: 0.90 - ETA: 35s - loss: 0.2754 - acc: 0.90 - ETA: 35s - loss: 0.2745 - acc: 0.90 - ETA: 35s - loss: 0.2737 - acc: 0.90 - ETA: 35s - loss: 0.2746 - acc: 0.90 - ETA: 35s - loss: 0.2739 - acc: 0.90 - ETA: 35s - loss: 0.2737 - acc: 0.90 - ETA: 35s - loss: 0.2746 - acc: 0.90 - ETA: 34s - loss: 0.2755 - acc: 0.90 - ETA: 34s - loss: 0.2751 - acc: 0.90 - ETA: 34s - loss: 0.2752 - acc: 0.90 - ETA: 34s - loss: 0.2748 - acc: 0.90 - ETA: 34s - loss: 0.2746 - acc: 0.90 - ETA: 34s - loss: 0.2749 - acc: 0.90 - ETA: 34s - loss: 0.2761 - acc: 0.90 - ETA: 34s - loss: 0.2764 - acc: 0.90 - ETA: 34s - loss: 0.2761 - acc: 0.90 - ETA: 34s - loss: 0.2757 - acc: 0.90 - ETA: 34s - loss: 0.2757 - acc: 0.90 - ETA: 34s - loss: 0.2758 - acc: 0.90 - ETA: 34s - loss: 0.2759 - acc: 0.90 - ETA: 33s - loss: 0.2763 - acc: 0.90 - ETA: 33s - loss: 0.2758 - acc: 0.90 - ETA: 33s - loss: 0.2758 - acc: 0.90 - ETA: 33s - loss: 0.2751 - acc: 0.90 - ETA: 33s - loss: 0.2752 - acc: 0.90 - ETA: 33s - loss: 0.2757 - acc: 0.90 - ETA: 33s - loss: 0.2752 - acc: 0.90 - ETA: 33s - loss: 0.2751 - acc: 0.90 - ETA: 33s - loss: 0.2754 - acc: 0.90 - ETA: 33s - loss: 0.2752 - acc: 0.90 - ETA: 33s - loss: 0.2751 - acc: 0.90 - ETA: 33s - loss: 0.2753 - acc: 0.90 - ETA: 33s - loss: 0.2759 - acc: 0.90 - ETA: 33s - loss: 0.2755 - acc: 0.90 - ETA: 32s - loss: 0.2755 - acc: 0.90 - ETA: 32s - loss: 0.2750 - acc: 0.90 - ETA: 32s - loss: 0.2754 - acc: 0.90 - ETA: 32s - loss: 0.2756 - acc: 0.90 - ETA: 32s - loss: 0.2761 - acc: 0.90 - ETA: 32s - loss: 0.2755 - acc: 0.90 - ETA: 32s - loss: 0.2752 - acc: 0.90 - ETA: 32s - loss: 0.2747 - acc: 0.90 - ETA: 32s - loss: 0.2743 - acc: 0.90 - ETA: 32s - loss: 0.2744 - acc: 0.90 - ETA: 32s - loss: 0.2740 - acc: 0.90 - ETA: 32s - loss: 0.2734 - acc: 0.90 - ETA: 32s - loss: 0.2731 - acc: 0.90 - ETA: 32s - loss: 0.2727 - acc: 0.90 - ETA: 31s - loss: 0.2727 - acc: 0.90 - ETA: 31s - loss: 0.2726 - acc: 0.90 - ETA: 31s - loss: 0.2740 - acc: 0.90 - ETA: 31s - loss: 0.2741 - acc: 0.90 - ETA: 31s - loss: 0.2738 - acc: 0.90 - ETA: 31s - loss: 0.2736 - acc: 0.90 - ETA: 31s - loss: 0.2740 - acc: 0.90 - ETA: 31s - loss: 0.2734 - acc: 0.90 - ETA: 31s - loss: 0.2735 - acc: 0.90 - ETA: 31s - loss: 0.2742 - acc: 0.90 - ETA: 31s - loss: 0.2747 - acc: 0.90 - ETA: 31s - loss: 0.2743 - acc: 0.90 - ETA: 31s - loss: 0.2738 - acc: 0.90 - ETA: 31s - loss: 0.2749 - acc: 0.90 - ETA: 30s - loss: 0.2749 - acc: 0.90 - ETA: 30s - loss: 0.2749 - acc: 0.90 - ETA: 30s - loss: 0.2746 - acc: 0.90 - ETA: 30s - loss: 0.2742 - acc: 0.90 - ETA: 30s - loss: 0.2748 - acc: 0.90 - ETA: 30s - loss: 0.2745 - acc: 0.90 - ETA: 30s - loss: 0.2747 - acc: 0.90 - ETA: 30s - loss: 0.2747 - acc: 0.90 - ETA: 30s - loss: 0.2744 - acc: 0.90 - ETA: 30s - loss: 0.2739 - acc: 0.90 - ETA: 30s - loss: 0.2734 - acc: 0.90 - ETA: 30s - loss: 0.2730 - acc: 0.90 - ETA: 30s - loss: 0.2729 - acc: 0.90 - ETA: 30s - loss: 0.2736 - acc: 0.90 - ETA: 29s - loss: 0.2743 - acc: 0.90 - ETA: 29s - loss: 0.2748 - acc: 0.90 - ETA: 29s - loss: 0.2747 - acc: 0.90 - ETA: 29s - loss: 0.2744 - acc: 0.90 - ETA: 29s - loss: 0.2744 - acc: 0.90 - ETA: 29s - loss: 0.2747 - acc: 0.90 - ETA: 29s - loss: 0.2744 - acc: 0.90 - ETA: 29s - loss: 0.2740 - acc: 0.90 - ETA: 29s - loss: 0.2735 - acc: 0.90 - ETA: 29s - loss: 0.2730 - acc: 0.90 - ETA: 29s - loss: 0.2730 - acc: 0.90 - ETA: 29s - loss: 0.2731 - acc: 0.90 - ETA: 29s - loss: 0.2734 - acc: 0.90 - ETA: 29s - loss: 0.2736 - acc: 0.90 - ETA: 28s - loss: 0.2732 - acc: 0.90 - ETA: 28s - loss: 0.2731 - acc: 0.90 - ETA: 28s - loss: 0.2733 - acc: 0.90 - ETA: 28s - loss: 0.2728 - acc: 0.90 - ETA: 28s - loss: 0.2724 - acc: 0.90 - ETA: 28s - loss: 0.2722 - acc: 0.90 - ETA: 28s - loss: 0.2725 - acc: 0.90 - ETA: 28s - loss: 0.2727 - acc: 0.90 - ETA: 28s - loss: 0.2727 - acc: 0.90 - ETA: 28s - loss: 0.2727 - acc: 0.90 - ETA: 28s - loss: 0.2729 - acc: 0.90 - ETA: 28s - loss: 0.2728 - acc: 0.90 - ETA: 28s - loss: 0.2729 - acc: 0.90 - ETA: 28s - loss: 0.2728 - acc: 0.90 - ETA: 27s - loss: 0.2728 - acc: 0.90 - ETA: 27s - loss: 0.2727 - acc: 0.90 - ETA: 27s - loss: 0.2725 - acc: 0.90 - ETA: 27s - loss: 0.2729 - acc: 0.90 - ETA: 27s - loss: 0.2731 - acc: 0.90 - ETA: 27s - loss: 0.2741 - acc: 0.90 - ETA: 27s - loss: 0.2744 - acc: 0.90 - ETA: 27s - loss: 0.2741 - acc: 0.90 - ETA: 27s - loss: 0.2742 - acc: 0.90 - ETA: 27s - loss: 0.2745 - acc: 0.90 - ETA: 27s - loss: 0.2740 - acc: 0.90 - ETA: 27s - loss: 0.2741 - acc: 0.90 - ETA: 27s - loss: 0.2735 - acc: 0.90 - ETA: 26s - loss: 0.2730 - acc: 0.90 - ETA: 26s - loss: 0.2740 - acc: 0.90 - ETA: 26s - loss: 0.2740 - acc: 0.90 - ETA: 26s - loss: 0.2739 - acc: 0.90 - ETA: 26s - loss: 0.2740 - acc: 0.90 - ETA: 26s - loss: 0.2735 - acc: 0.90 - ETA: 26s - loss: 0.2732 - acc: 0.90 - ETA: 26s - loss: 0.2735 - acc: 0.90 - ETA: 26s - loss: 0.2736 - acc: 0.90 - ETA: 26s - loss: 0.2731 - acc: 0.90 - ETA: 26s - loss: 0.2727 - acc: 0.90 - ETA: 26s - loss: 0.2724 - acc: 0.90 - ETA: 26s - loss: 0.2721 - acc: 0.90 - ETA: 26s - loss: 0.2722 - acc: 0.90 - ETA: 25s - loss: 0.2730 - acc: 0.90 - ETA: 25s - loss: 0.2734 - acc: 0.90 - ETA: 25s - loss: 0.2739 - acc: 0.90 - ETA: 25s - loss: 0.2737 - acc: 0.90 - ETA: 25s - loss: 0.2736 - acc: 0.90 - ETA: 25s - loss: 0.2736 - acc: 0.90 - ETA: 25s - loss: 0.2731 - acc: 0.90 - ETA: 25s - loss: 0.2725 - acc: 0.90 - ETA: 25s - loss: 0.2729 - acc: 0.90 - ETA: 25s - loss: 0.2727 - acc: 0.90 - ETA: 25s - loss: 0.2726 - acc: 0.90 - ETA: 25s - loss: 0.2723 - acc: 0.90 - ETA: 25s - loss: 0.2720 - acc: 0.90 - ETA: 25s - loss: 0.2719 - acc: 0.90 - ETA: 24s - loss: 0.2720 - acc: 0.90 - ETA: 24s - loss: 0.2718 - acc: 0.90 - ETA: 24s - loss: 0.2715 - acc: 0.90 - ETA: 24s - loss: 0.2718 - acc: 0.90 - ETA: 24s - loss: 0.2719 - acc: 0.90 - ETA: 24s - loss: 0.2716 - acc: 0.90 - ETA: 24s - loss: 0.2714 - acc: 0.90 - ETA: 24s - loss: 0.2721 - acc: 0.90 - ETA: 24s - loss: 0.2719 - acc: 0.90 - ETA: 24s - loss: 0.2720 - acc: 0.90 - ETA: 24s - loss: 0.2718 - acc: 0.90 - ETA: 24s - loss: 0.2715 - acc: 0.90 - ETA: 24s - loss: 0.2709 - acc: 0.90 - ETA: 24s - loss: 0.2707 - acc: 0.90 - ETA: 23s - loss: 0.2708 - acc: 0.90 - ETA: 23s - loss: 0.2711 - acc: 0.90 - ETA: 23s - loss: 0.2706 - acc: 0.90 - ETA: 23s - loss: 0.2707 - acc: 0.90 - ETA: 23s - loss: 0.2709 - acc: 0.90 - ETA: 23s - loss: 0.2709 - acc: 0.90 - ETA: 23s - loss: 0.2710 - acc: 0.90 - ETA: 23s - loss: 0.2710 - acc: 0.90 - ETA: 23s - loss: 0.2712 - acc: 0.90 - ETA: 23s - loss: 0.2716 - acc: 0.90 - ETA: 23s - loss: 0.2717 - acc: 0.90 - ETA: 23s - loss: 0.2721 - acc: 0.90 - ETA: 23s - loss: 0.2721 - acc: 0.90 - ETA: 23s - loss: 0.2722 - acc: 0.90 - ETA: 22s - loss: 0.2727 - acc: 0.90 - ETA: 22s - loss: 0.2722 - acc: 0.90 - ETA: 22s - loss: 0.2721 - acc: 0.90 - ETA: 22s - loss: 0.2719 - acc: 0.90 - ETA: 22s - loss: 0.2720 - acc: 0.90 - ETA: 22s - loss: 0.2718 - acc: 0.90 - ETA: 22s - loss: 0.2716 - acc: 0.90 - ETA: 22s - loss: 0.2716 - acc: 0.90 - ETA: 22s - loss: 0.2721 - acc: 0.90 - ETA: 22s - loss: 0.2717 - acc: 0.90 - ETA: 22s - loss: 0.2717 - acc: 0.9026" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.2715 - acc: 0.90 - ETA: 22s - loss: 0.2714 - acc: 0.90 - ETA: 22s - loss: 0.2711 - acc: 0.90 - ETA: 21s - loss: 0.2715 - acc: 0.90 - ETA: 21s - loss: 0.2713 - acc: 0.90 - ETA: 21s - loss: 0.2710 - acc: 0.90 - ETA: 21s - loss: 0.2709 - acc: 0.90 - ETA: 21s - loss: 0.2707 - acc: 0.90 - ETA: 21s - loss: 0.2704 - acc: 0.90 - ETA: 21s - loss: 0.2708 - acc: 0.90 - ETA: 21s - loss: 0.2704 - acc: 0.90 - ETA: 21s - loss: 0.2708 - acc: 0.90 - ETA: 21s - loss: 0.2713 - acc: 0.90 - ETA: 21s - loss: 0.2715 - acc: 0.90 - ETA: 21s - loss: 0.2713 - acc: 0.90 - ETA: 21s - loss: 0.2712 - acc: 0.90 - ETA: 21s - loss: 0.2708 - acc: 0.90 - ETA: 20s - loss: 0.2709 - acc: 0.90 - ETA: 20s - loss: 0.2709 - acc: 0.90 - ETA: 20s - loss: 0.2706 - acc: 0.90 - ETA: 20s - loss: 0.2705 - acc: 0.90 - ETA: 20s - loss: 0.2705 - acc: 0.90 - ETA: 20s - loss: 0.2709 - acc: 0.90 - ETA: 20s - loss: 0.2707 - acc: 0.90 - ETA: 20s - loss: 0.2715 - acc: 0.90 - ETA: 20s - loss: 0.2711 - acc: 0.90 - ETA: 20s - loss: 0.2710 - acc: 0.90 - ETA: 20s - loss: 0.2708 - acc: 0.90 - ETA: 20s - loss: 0.2708 - acc: 0.90 - ETA: 20s - loss: 0.2705 - acc: 0.90 - ETA: 20s - loss: 0.2704 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2706 - acc: 0.90 - ETA: 19s - loss: 0.2705 - acc: 0.90 - ETA: 19s - loss: 0.2708 - acc: 0.90 - ETA: 19s - loss: 0.2711 - acc: 0.90 - ETA: 19s - loss: 0.2709 - acc: 0.90 - ETA: 19s - loss: 0.2711 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2709 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2704 - acc: 0.90 - ETA: 19s - loss: 0.2707 - acc: 0.90 - ETA: 19s - loss: 0.2706 - acc: 0.90 - ETA: 19s - loss: 0.2702 - acc: 0.90 - ETA: 18s - loss: 0.2700 - acc: 0.90 - ETA: 18s - loss: 0.2701 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2700 - acc: 0.90 - ETA: 18s - loss: 0.2698 - acc: 0.90 - ETA: 18s - loss: 0.2699 - acc: 0.90 - ETA: 18s - loss: 0.2702 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2702 - acc: 0.90 - ETA: 18s - loss: 0.2703 - acc: 0.90 - ETA: 18s - loss: 0.2699 - acc: 0.90 - ETA: 18s - loss: 0.2698 - acc: 0.90 - ETA: 18s - loss: 0.2701 - acc: 0.90 - ETA: 17s - loss: 0.2702 - acc: 0.90 - ETA: 17s - loss: 0.2702 - acc: 0.90 - ETA: 17s - loss: 0.2701 - acc: 0.90 - ETA: 17s - loss: 0.2703 - acc: 0.90 - ETA: 17s - loss: 0.2703 - acc: 0.90 - ETA: 17s - loss: 0.2703 - acc: 0.90 - ETA: 17s - loss: 0.2702 - acc: 0.90 - ETA: 17s - loss: 0.2700 - acc: 0.90 - ETA: 17s - loss: 0.2698 - acc: 0.90 - ETA: 17s - loss: 0.2696 - acc: 0.90 - ETA: 17s - loss: 0.2693 - acc: 0.90 - ETA: 17s - loss: 0.2692 - acc: 0.90 - ETA: 17s - loss: 0.2695 - acc: 0.90 - ETA: 17s - loss: 0.2696 - acc: 0.90 - ETA: 17s - loss: 0.2697 - acc: 0.90 - ETA: 16s - loss: 0.2695 - acc: 0.90 - ETA: 16s - loss: 0.2695 - acc: 0.90 - ETA: 16s - loss: 0.2692 - acc: 0.90 - ETA: 16s - loss: 0.2690 - acc: 0.90 - ETA: 16s - loss: 0.2692 - acc: 0.90 - ETA: 16s - loss: 0.2691 - acc: 0.90 - ETA: 16s - loss: 0.2689 - acc: 0.90 - ETA: 16s - loss: 0.2684 - acc: 0.90 - ETA: 16s - loss: 0.2686 - acc: 0.90 - ETA: 16s - loss: 0.2688 - acc: 0.90 - ETA: 16s - loss: 0.2688 - acc: 0.90 - ETA: 16s - loss: 0.2684 - acc: 0.90 - ETA: 16s - loss: 0.2688 - acc: 0.90 - ETA: 16s - loss: 0.2687 - acc: 0.90 - ETA: 15s - loss: 0.2689 - acc: 0.90 - ETA: 15s - loss: 0.2689 - acc: 0.90 - ETA: 15s - loss: 0.2686 - acc: 0.90 - ETA: 15s - loss: 0.2684 - acc: 0.90 - ETA: 15s - loss: 0.2685 - acc: 0.90 - ETA: 15s - loss: 0.2685 - acc: 0.90 - ETA: 15s - loss: 0.2682 - acc: 0.90 - ETA: 15s - loss: 0.2679 - acc: 0.90 - ETA: 15s - loss: 0.2677 - acc: 0.90 - ETA: 15s - loss: 0.2677 - acc: 0.90 - ETA: 15s - loss: 0.2678 - acc: 0.90 - ETA: 15s - loss: 0.2680 - acc: 0.90 - ETA: 15s - loss: 0.2682 - acc: 0.90 - ETA: 15s - loss: 0.2682 - acc: 0.90 - ETA: 14s - loss: 0.2683 - acc: 0.90 - ETA: 14s - loss: 0.2681 - acc: 0.90 - ETA: 14s - loss: 0.2681 - acc: 0.90 - ETA: 14s - loss: 0.2682 - acc: 0.90 - ETA: 14s - loss: 0.2683 - acc: 0.90 - ETA: 14s - loss: 0.2685 - acc: 0.90 - ETA: 14s - loss: 0.2683 - acc: 0.90 - ETA: 14s - loss: 0.2680 - acc: 0.90 - ETA: 14s - loss: 0.2678 - acc: 0.90 - ETA: 14s - loss: 0.2676 - acc: 0.90 - ETA: 14s - loss: 0.2675 - acc: 0.90 - ETA: 14s - loss: 0.2676 - acc: 0.90 - ETA: 14s - loss: 0.2675 - acc: 0.90 - ETA: 14s - loss: 0.2677 - acc: 0.90 - ETA: 13s - loss: 0.2676 - acc: 0.90 - ETA: 13s - loss: 0.2673 - acc: 0.90 - ETA: 13s - loss: 0.2671 - acc: 0.90 - ETA: 13s - loss: 0.2675 - acc: 0.90 - ETA: 13s - loss: 0.2676 - acc: 0.90 - ETA: 13s - loss: 0.2676 - acc: 0.90 - ETA: 13s - loss: 0.2679 - acc: 0.90 - ETA: 13s - loss: 0.2683 - acc: 0.90 - ETA: 13s - loss: 0.2683 - acc: 0.90 - ETA: 13s - loss: 0.2684 - acc: 0.90 - ETA: 13s - loss: 0.2685 - acc: 0.90 - ETA: 13s - loss: 0.2688 - acc: 0.90 - ETA: 13s - loss: 0.2685 - acc: 0.90 - ETA: 13s - loss: 0.2687 - acc: 0.90 - ETA: 12s - loss: 0.2686 - acc: 0.90 - ETA: 12s - loss: 0.2683 - acc: 0.90 - ETA: 12s - loss: 0.2682 - acc: 0.90 - ETA: 12s - loss: 0.2683 - acc: 0.90 - ETA: 12s - loss: 0.2684 - acc: 0.90 - ETA: 12s - loss: 0.2684 - acc: 0.90 - ETA: 12s - loss: 0.2683 - acc: 0.90 - ETA: 12s - loss: 0.2682 - acc: 0.90 - ETA: 12s - loss: 0.2681 - acc: 0.90 - ETA: 12s - loss: 0.2678 - acc: 0.90 - ETA: 12s - loss: 0.2679 - acc: 0.90 - ETA: 12s - loss: 0.2678 - acc: 0.90 - ETA: 12s - loss: 0.2676 - acc: 0.90 - ETA: 12s - loss: 0.2680 - acc: 0.90 - ETA: 12s - loss: 0.2680 - acc: 0.90 - ETA: 11s - loss: 0.2685 - acc: 0.90 - ETA: 11s - loss: 0.2685 - acc: 0.90 - ETA: 11s - loss: 0.2683 - acc: 0.90 - ETA: 11s - loss: 0.2683 - acc: 0.90 - ETA: 11s - loss: 0.2688 - acc: 0.90 - ETA: 11s - loss: 0.2690 - acc: 0.90 - ETA: 11s - loss: 0.2687 - acc: 0.90 - ETA: 11s - loss: 0.2687 - acc: 0.90 - ETA: 11s - loss: 0.2688 - acc: 0.90 - ETA: 11s - loss: 0.2686 - acc: 0.90 - ETA: 11s - loss: 0.2686 - acc: 0.90 - ETA: 11s - loss: 0.2689 - acc: 0.90 - ETA: 11s - loss: 0.2690 - acc: 0.90 - ETA: 11s - loss: 0.2692 - acc: 0.90 - ETA: 10s - loss: 0.2693 - acc: 0.90 - ETA: 10s - loss: 0.2695 - acc: 0.90 - ETA: 10s - loss: 0.2696 - acc: 0.90 - ETA: 10s - loss: 0.2698 - acc: 0.90 - ETA: 10s - loss: 0.2699 - acc: 0.90 - ETA: 10s - loss: 0.2700 - acc: 0.90 - ETA: 10s - loss: 0.2699 - acc: 0.90 - ETA: 10s - loss: 0.2695 - acc: 0.90 - ETA: 10s - loss: 0.2694 - acc: 0.90 - ETA: 10s - loss: 0.2693 - acc: 0.90 - ETA: 10s - loss: 0.2692 - acc: 0.90 - ETA: 10s - loss: 0.2697 - acc: 0.90 - ETA: 10s - loss: 0.2698 - acc: 0.90 - ETA: 9s - loss: 0.2698 - acc: 0.9042 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2702 - acc: 0.904 - ETA: 9s - loss: 0.2701 - acc: 0.904 - ETA: 9s - loss: 0.2700 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2700 - acc: 0.904 - ETA: 9s - loss: 0.2702 - acc: 0.904 - ETA: 9s - loss: 0.2703 - acc: 0.904 - ETA: 9s - loss: 0.2701 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2699 - acc: 0.904 - ETA: 9s - loss: 0.2697 - acc: 0.904 - ETA: 8s - loss: 0.2698 - acc: 0.904 - ETA: 8s - loss: 0.2701 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.904 - ETA: 8s - loss: 0.2703 - acc: 0.904 - ETA: 8s - loss: 0.2701 - acc: 0.904 - ETA: 8s - loss: 0.2703 - acc: 0.904 - ETA: 8s - loss: 0.2701 - acc: 0.904 - ETA: 8s - loss: 0.2704 - acc: 0.903 - ETA: 8s - loss: 0.2705 - acc: 0.903 - ETA: 8s - loss: 0.2706 - acc: 0.903 - ETA: 8s - loss: 0.2708 - acc: 0.903 - ETA: 7s - loss: 0.2705 - acc: 0.904 - ETA: 7s - loss: 0.2704 - acc: 0.904 - ETA: 7s - loss: 0.2706 - acc: 0.904 - ETA: 7s - loss: 0.2703 - acc: 0.904 - ETA: 7s - loss: 0.2706 - acc: 0.904 - ETA: 7s - loss: 0.2703 - acc: 0.904 - ETA: 7s - loss: 0.2701 - acc: 0.904 - ETA: 7s - loss: 0.2700 - acc: 0.904 - ETA: 7s - loss: 0.2697 - acc: 0.904 - ETA: 7s - loss: 0.2699 - acc: 0.904 - ETA: 7s - loss: 0.2697 - acc: 0.904 - ETA: 7s - loss: 0.2697 - acc: 0.904 - ETA: 7s - loss: 0.2698 - acc: 0.904 - ETA: 7s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2695 - acc: 0.9046" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.2700 - acc: 0.904 - ETA: 6s - loss: 0.2700 - acc: 0.904 - ETA: 6s - loss: 0.2698 - acc: 0.904 - ETA: 6s - loss: 0.2697 - acc: 0.904 - ETA: 6s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2699 - acc: 0.904 - ETA: 6s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2695 - acc: 0.904 - ETA: 6s - loss: 0.2696 - acc: 0.904 - ETA: 6s - loss: 0.2702 - acc: 0.904 - ETA: 6s - loss: 0.2705 - acc: 0.904 - ETA: 6s - loss: 0.2704 - acc: 0.904 - ETA: 6s - loss: 0.2703 - acc: 0.904 - ETA: 5s - loss: 0.2703 - acc: 0.904 - ETA: 5s - loss: 0.2702 - acc: 0.904 - ETA: 5s - loss: 0.2704 - acc: 0.904 - ETA: 5s - loss: 0.2703 - acc: 0.904 - ETA: 5s - loss: 0.2701 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2699 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2696 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2699 - acc: 0.904 - ETA: 5s - loss: 0.2697 - acc: 0.904 - ETA: 5s - loss: 0.2698 - acc: 0.904 - ETA: 5s - loss: 0.2697 - acc: 0.904 - ETA: 4s - loss: 0.2697 - acc: 0.904 - ETA: 4s - loss: 0.2699 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2699 - acc: 0.904 - ETA: 4s - loss: 0.2700 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2701 - acc: 0.904 - ETA: 4s - loss: 0.2705 - acc: 0.904 - ETA: 4s - loss: 0.2707 - acc: 0.904 - ETA: 4s - loss: 0.2707 - acc: 0.904 - ETA: 4s - loss: 0.2706 - acc: 0.904 - ETA: 4s - loss: 0.2707 - acc: 0.904 - ETA: 4s - loss: 0.2706 - acc: 0.904 - ETA: 3s - loss: 0.2710 - acc: 0.904 - ETA: 3s - loss: 0.2711 - acc: 0.904 - ETA: 3s - loss: 0.2708 - acc: 0.904 - ETA: 3s - loss: 0.2709 - acc: 0.904 - ETA: 3s - loss: 0.2709 - acc: 0.904 - ETA: 3s - loss: 0.2714 - acc: 0.904 - ETA: 3s - loss: 0.2711 - acc: 0.904 - ETA: 3s - loss: 0.2713 - acc: 0.904 - ETA: 3s - loss: 0.2711 - acc: 0.904 - ETA: 3s - loss: 0.2714 - acc: 0.904 - ETA: 3s - loss: 0.2717 - acc: 0.904 - ETA: 3s - loss: 0.2717 - acc: 0.903 - ETA: 3s - loss: 0.2717 - acc: 0.903 - ETA: 3s - loss: 0.2720 - acc: 0.903 - ETA: 2s - loss: 0.2719 - acc: 0.903 - ETA: 2s - loss: 0.2719 - acc: 0.903 - ETA: 2s - loss: 0.2717 - acc: 0.903 - ETA: 2s - loss: 0.2721 - acc: 0.903 - ETA: 2s - loss: 0.2718 - acc: 0.903 - ETA: 2s - loss: 0.2715 - acc: 0.904 - ETA: 2s - loss: 0.2713 - acc: 0.904 - ETA: 2s - loss: 0.2710 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2713 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2712 - acc: 0.904 - ETA: 2s - loss: 0.2711 - acc: 0.904 - ETA: 1s - loss: 0.2711 - acc: 0.904 - ETA: 1s - loss: 0.2709 - acc: 0.904 - ETA: 1s - loss: 0.2712 - acc: 0.904 - ETA: 1s - loss: 0.2710 - acc: 0.904 - ETA: 1s - loss: 0.2709 - acc: 0.904 - ETA: 1s - loss: 0.2708 - acc: 0.904 - ETA: 1s - loss: 0.2706 - acc: 0.904 - ETA: 1s - loss: 0.2708 - acc: 0.904 - ETA: 1s - loss: 0.2709 - acc: 0.904 - ETA: 1s - loss: 0.2711 - acc: 0.904 - ETA: 1s - loss: 0.2708 - acc: 0.904 - ETA: 1s - loss: 0.2707 - acc: 0.904 - ETA: 1s - loss: 0.2703 - acc: 0.904 - ETA: 1s - loss: 0.2702 - acc: 0.904 - ETA: 0s - loss: 0.2703 - acc: 0.904 - ETA: 0s - loss: 0.2703 - acc: 0.904 - ETA: 0s - loss: 0.2701 - acc: 0.904 - ETA: 0s - loss: 0.2702 - acc: 0.904 - ETA: 0s - loss: 0.2702 - acc: 0.904 - ETA: 0s - loss: 0.2700 - acc: 0.904 - ETA: 0s - loss: 0.2701 - acc: 0.904 - ETA: 0s - loss: 0.2700 - acc: 0.904 - ETA: 0s - loss: 0.2697 - acc: 0.904 - ETA: 0s - loss: 0.2694 - acc: 0.904 - ETA: 0s - loss: 0.2693 - acc: 0.904 - ETA: 0s - loss: 0.2692 - acc: 0.904 - ETA: 0s - loss: 0.2690 - acc: 0.904 - ETA: 0s - loss: 0.2690 - acc: 0.904 - 55s 2ms/step - loss: 0.2690 - acc: 0.9050 - val_loss: 0.2048 - val_acc: 0.9262\n", + "\n", + "Epoch 00005: val_acc improved from 0.92389 to 0.92616, saving model to models\\conv.model\n", + "Epoch 6/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 53s - loss: 0.1972 - acc: 0.93 - ETA: 53s - loss: 0.1666 - acc: 0.93 - ETA: 52s - loss: 0.1769 - acc: 0.91 - ETA: 51s - loss: 0.1983 - acc: 0.90 - ETA: 52s - loss: 0.2210 - acc: 0.90 - ETA: 52s - loss: 0.2472 - acc: 0.88 - ETA: 52s - loss: 0.2195 - acc: 0.89 - ETA: 51s - loss: 0.2162 - acc: 0.89 - ETA: 51s - loss: 0.2157 - acc: 0.90 - ETA: 51s - loss: 0.2126 - acc: 0.90 - ETA: 51s - loss: 0.2043 - acc: 0.91 - ETA: 51s - loss: 0.2049 - acc: 0.91 - ETA: 52s - loss: 0.2002 - acc: 0.92 - ETA: 53s - loss: 0.2193 - acc: 0.91 - ETA: 52s - loss: 0.2292 - acc: 0.91 - ETA: 52s - loss: 0.2262 - acc: 0.91 - ETA: 52s - loss: 0.2154 - acc: 0.91 - ETA: 52s - loss: 0.2078 - acc: 0.92 - ETA: 51s - loss: 0.2100 - acc: 0.92 - ETA: 51s - loss: 0.2125 - acc: 0.92 - ETA: 51s - loss: 0.2107 - acc: 0.92 - ETA: 51s - loss: 0.2080 - acc: 0.92 - ETA: 51s - loss: 0.2068 - acc: 0.92 - ETA: 51s - loss: 0.2078 - acc: 0.92 - ETA: 51s - loss: 0.2027 - acc: 0.92 - ETA: 51s - loss: 0.2030 - acc: 0.92 - ETA: 51s - loss: 0.2202 - acc: 0.91 - ETA: 51s - loss: 0.2287 - acc: 0.91 - ETA: 51s - loss: 0.2250 - acc: 0.91 - ETA: 51s - loss: 0.2276 - acc: 0.91 - ETA: 51s - loss: 0.2250 - acc: 0.91 - ETA: 50s - loss: 0.2234 - acc: 0.91 - ETA: 50s - loss: 0.2218 - acc: 0.91 - ETA: 50s - loss: 0.2195 - acc: 0.91 - ETA: 50s - loss: 0.2221 - acc: 0.91 - ETA: 50s - loss: 0.2194 - acc: 0.91 - ETA: 50s - loss: 0.2173 - acc: 0.91 - ETA: 50s - loss: 0.2181 - acc: 0.91 - ETA: 49s - loss: 0.2174 - acc: 0.91 - ETA: 49s - loss: 0.2155 - acc: 0.92 - ETA: 49s - loss: 0.2142 - acc: 0.92 - ETA: 49s - loss: 0.2128 - acc: 0.92 - ETA: 49s - loss: 0.2114 - acc: 0.92 - ETA: 49s - loss: 0.2098 - acc: 0.92 - ETA: 49s - loss: 0.2086 - acc: 0.92 - ETA: 48s - loss: 0.2074 - acc: 0.92 - ETA: 48s - loss: 0.2056 - acc: 0.92 - ETA: 48s - loss: 0.2032 - acc: 0.92 - ETA: 48s - loss: 0.2012 - acc: 0.92 - ETA: 48s - loss: 0.2013 - acc: 0.92 - ETA: 48s - loss: 0.2000 - acc: 0.92 - ETA: 48s - loss: 0.1981 - acc: 0.92 - ETA: 48s - loss: 0.2047 - acc: 0.92 - ETA: 47s - loss: 0.2035 - acc: 0.92 - ETA: 47s - loss: 0.2016 - acc: 0.92 - ETA: 47s - loss: 0.2019 - acc: 0.92 - ETA: 47s - loss: 0.2011 - acc: 0.92 - ETA: 47s - loss: 0.2026 - acc: 0.92 - ETA: 47s - loss: 0.2013 - acc: 0.92 - ETA: 47s - loss: 0.2020 - acc: 0.92 - ETA: 47s - loss: 0.2052 - acc: 0.92 - ETA: 47s - loss: 0.2051 - acc: 0.92 - ETA: 47s - loss: 0.2058 - acc: 0.92 - ETA: 47s - loss: 0.2063 - acc: 0.92 - ETA: 47s - loss: 0.2044 - acc: 0.92 - ETA: 47s - loss: 0.2030 - acc: 0.92 - ETA: 47s - loss: 0.2013 - acc: 0.92 - ETA: 46s - loss: 0.2005 - acc: 0.92 - ETA: 46s - loss: 0.2015 - acc: 0.92 - ETA: 46s - loss: 0.1994 - acc: 0.92 - ETA: 46s - loss: 0.1992 - acc: 0.92 - ETA: 46s - loss: 0.1976 - acc: 0.92 - ETA: 46s - loss: 0.1996 - acc: 0.92 - ETA: 46s - loss: 0.2022 - acc: 0.92 - ETA: 46s - loss: 0.2032 - acc: 0.92 - ETA: 46s - loss: 0.2040 - acc: 0.92 - ETA: 46s - loss: 0.2031 - acc: 0.92 - ETA: 46s - loss: 0.2039 - acc: 0.92 - ETA: 46s - loss: 0.2043 - acc: 0.92 - ETA: 46s - loss: 0.2038 - acc: 0.92 - ETA: 46s - loss: 0.2017 - acc: 0.92 - ETA: 46s - loss: 0.2010 - acc: 0.92 - ETA: 46s - loss: 0.2017 - acc: 0.92 - ETA: 46s - loss: 0.2038 - acc: 0.92 - ETA: 46s - loss: 0.2015 - acc: 0.92 - ETA: 46s - loss: 0.2011 - acc: 0.92 - ETA: 46s - loss: 0.2009 - acc: 0.92 - ETA: 45s - loss: 0.2051 - acc: 0.92 - ETA: 45s - loss: 0.2047 - acc: 0.92 - ETA: 45s - loss: 0.2047 - acc: 0.92 - ETA: 45s - loss: 0.2052 - acc: 0.92 - ETA: 45s - loss: 0.2047 - acc: 0.92 - ETA: 45s - loss: 0.2037 - acc: 0.92 - ETA: 45s - loss: 0.2025 - acc: 0.92 - ETA: 45s - loss: 0.2031 - acc: 0.92 - ETA: 45s - loss: 0.2016 - acc: 0.92 - ETA: 45s - loss: 0.2006 - acc: 0.92 - ETA: 45s - loss: 0.2013 - acc: 0.92 - ETA: 45s - loss: 0.2006 - acc: 0.92 - ETA: 44s - loss: 0.2000 - acc: 0.92 - ETA: 44s - loss: 0.2000 - acc: 0.92 - ETA: 44s - loss: 0.2011 - acc: 0.92 - ETA: 44s - loss: 0.2013 - acc: 0.92 - ETA: 44s - loss: 0.2004 - acc: 0.92 - ETA: 44s - loss: 0.2021 - acc: 0.92 - ETA: 44s - loss: 0.2030 - acc: 0.92 - ETA: 44s - loss: 0.2024 - acc: 0.92 - ETA: 44s - loss: 0.2020 - acc: 0.92 - ETA: 44s - loss: 0.2019 - acc: 0.92 - ETA: 44s - loss: 0.2011 - acc: 0.92 - ETA: 44s - loss: 0.2004 - acc: 0.92 - ETA: 44s - loss: 0.2007 - acc: 0.92 - ETA: 44s - loss: 0.2016 - acc: 0.92 - ETA: 44s - loss: 0.2028 - acc: 0.92 - ETA: 44s - loss: 0.2048 - acc: 0.92 - ETA: 44s - loss: 0.2042 - acc: 0.92 - ETA: 43s - loss: 0.2032 - acc: 0.92 - ETA: 43s - loss: 0.2018 - acc: 0.92 - ETA: 43s - loss: 0.2025 - acc: 0.92 - ETA: 43s - loss: 0.2015 - acc: 0.92 - ETA: 43s - loss: 0.2003 - acc: 0.92 - ETA: 43s - loss: 0.2021 - acc: 0.92 - ETA: 43s - loss: 0.2009 - acc: 0.92 - ETA: 43s - loss: 0.2018 - acc: 0.92 - ETA: 43s - loss: 0.2010 - acc: 0.92 - ETA: 43s - loss: 0.2009 - acc: 0.92 - ETA: 43s - loss: 0.2012 - acc: 0.92 - ETA: 43s - loss: 0.2007 - acc: 0.92 - ETA: 43s - loss: 0.2005 - acc: 0.92 - ETA: 43s - loss: 0.1995 - acc: 0.92 - ETA: 43s - loss: 0.1985 - acc: 0.92 - ETA: 43s - loss: 0.1987 - acc: 0.92 - ETA: 42s - loss: 0.1984 - acc: 0.92 - ETA: 42s - loss: 0.1996 - acc: 0.92 - ETA: 42s - loss: 0.1990 - acc: 0.92 - ETA: 42s - loss: 0.1981 - acc: 0.92 - ETA: 42s - loss: 0.1981 - acc: 0.92 - ETA: 42s - loss: 0.1979 - acc: 0.92 - ETA: 42s - loss: 0.1967 - acc: 0.92 - ETA: 42s - loss: 0.1968 - acc: 0.92 - ETA: 42s - loss: 0.1976 - acc: 0.92 - ETA: 42s - loss: 0.2022 - acc: 0.92 - ETA: 42s - loss: 0.2038 - acc: 0.92 - ETA: 42s - loss: 0.2035 - acc: 0.92 - ETA: 42s - loss: 0.2036 - acc: 0.92 - ETA: 42s - loss: 0.2036 - acc: 0.92 - ETA: 42s - loss: 0.2031 - acc: 0.92 - ETA: 41s - loss: 0.2038 - acc: 0.92 - ETA: 41s - loss: 0.2032 - acc: 0.92 - ETA: 41s - loss: 0.2069 - acc: 0.92 - ETA: 41s - loss: 0.2069 - acc: 0.92 - ETA: 41s - loss: 0.2078 - acc: 0.92 - ETA: 41s - loss: 0.2071 - acc: 0.92 - ETA: 41s - loss: 0.2080 - acc: 0.92 - ETA: 41s - loss: 0.2090 - acc: 0.92 - ETA: 41s - loss: 0.2099 - acc: 0.92 - ETA: 41s - loss: 0.2109 - acc: 0.92 - ETA: 41s - loss: 0.2142 - acc: 0.92 - ETA: 41s - loss: 0.2135 - acc: 0.92 - ETA: 41s - loss: 0.2135 - acc: 0.92 - ETA: 41s - loss: 0.2145 - acc: 0.92 - ETA: 41s - loss: 0.2148 - acc: 0.92 - ETA: 41s - loss: 0.2149 - acc: 0.92 - ETA: 40s - loss: 0.2153 - acc: 0.92 - ETA: 40s - loss: 0.2154 - acc: 0.92 - ETA: 40s - loss: 0.2157 - acc: 0.92 - ETA: 40s - loss: 0.2165 - acc: 0.92 - ETA: 40s - loss: 0.2170 - acc: 0.92 - ETA: 40s - loss: 0.2172 - acc: 0.92 - ETA: 40s - loss: 0.2178 - acc: 0.92 - ETA: 40s - loss: 0.2186 - acc: 0.92 - ETA: 40s - loss: 0.2183 - acc: 0.92 - ETA: 40s - loss: 0.2205 - acc: 0.92 - ETA: 40s - loss: 0.2215 - acc: 0.92 - ETA: 40s - loss: 0.2210 - acc: 0.92 - ETA: 39s - loss: 0.2205 - acc: 0.92 - ETA: 39s - loss: 0.2204 - acc: 0.92 - ETA: 39s - loss: 0.2206 - acc: 0.92 - ETA: 39s - loss: 0.2212 - acc: 0.92 - ETA: 39s - loss: 0.2206 - acc: 0.92 - ETA: 39s - loss: 0.2202 - acc: 0.92 - ETA: 39s - loss: 0.2197 - acc: 0.92 - ETA: 39s - loss: 0.2197 - acc: 0.92 - ETA: 39s - loss: 0.2192 - acc: 0.92 - ETA: 39s - loss: 0.2195 - acc: 0.92 - ETA: 39s - loss: 0.2200 - acc: 0.92 - ETA: 39s - loss: 0.2208 - acc: 0.92 - ETA: 39s - loss: 0.2206 - acc: 0.92 - ETA: 39s - loss: 0.2209 - acc: 0.92 - ETA: 39s - loss: 0.2203 - acc: 0.92 - ETA: 39s - loss: 0.2202 - acc: 0.92 - ETA: 39s - loss: 0.2200 - acc: 0.92 - ETA: 39s - loss: 0.2210 - acc: 0.92 - ETA: 39s - loss: 0.2203 - acc: 0.92 - ETA: 39s - loss: 0.2196 - acc: 0.92 - ETA: 38s - loss: 0.2193 - acc: 0.92 - ETA: 38s - loss: 0.2195 - acc: 0.92 - ETA: 38s - loss: 0.2191 - acc: 0.92 - ETA: 38s - loss: 0.2200 - acc: 0.92 - ETA: 38s - loss: 0.2206 - acc: 0.92 - ETA: 38s - loss: 0.2202 - acc: 0.92 - ETA: 38s - loss: 0.2199 - acc: 0.92 - ETA: 38s - loss: 0.2195 - acc: 0.92 - ETA: 38s - loss: 0.2193 - acc: 0.92 - ETA: 38s - loss: 0.2188 - acc: 0.92 - ETA: 38s - loss: 0.2204 - acc: 0.92 - ETA: 38s - loss: 0.2215 - acc: 0.92 - ETA: 38s - loss: 0.2212 - acc: 0.92 - ETA: 38s - loss: 0.2205 - acc: 0.92 - ETA: 38s - loss: 0.2199 - acc: 0.92 - ETA: 38s - loss: 0.2205 - acc: 0.92 - ETA: 37s - loss: 0.2207 - acc: 0.92 - ETA: 37s - loss: 0.2206 - acc: 0.92 - ETA: 37s - loss: 0.2203 - acc: 0.92 - ETA: 37s - loss: 0.2202 - acc: 0.9219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 37s - loss: 0.2201 - acc: 0.92 - ETA: 37s - loss: 0.2205 - acc: 0.92 - ETA: 37s - loss: 0.2209 - acc: 0.92 - ETA: 37s - loss: 0.2215 - acc: 0.92 - ETA: 37s - loss: 0.2226 - acc: 0.92 - ETA: 37s - loss: 0.2226 - acc: 0.92 - ETA: 37s - loss: 0.2218 - acc: 0.92 - ETA: 37s - loss: 0.2224 - acc: 0.92 - ETA: 37s - loss: 0.2242 - acc: 0.92 - ETA: 37s - loss: 0.2256 - acc: 0.92 - ETA: 37s - loss: 0.2261 - acc: 0.92 - ETA: 37s - loss: 0.2260 - acc: 0.92 - ETA: 37s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2259 - acc: 0.92 - ETA: 36s - loss: 0.2257 - acc: 0.92 - ETA: 36s - loss: 0.2252 - acc: 0.92 - ETA: 36s - loss: 0.2248 - acc: 0.92 - ETA: 36s - loss: 0.2263 - acc: 0.92 - ETA: 36s - loss: 0.2272 - acc: 0.91 - ETA: 36s - loss: 0.2268 - acc: 0.91 - ETA: 36s - loss: 0.2274 - acc: 0.91 - ETA: 36s - loss: 0.2275 - acc: 0.91 - ETA: 36s - loss: 0.2276 - acc: 0.91 - ETA: 36s - loss: 0.2271 - acc: 0.91 - ETA: 35s - loss: 0.2264 - acc: 0.92 - ETA: 35s - loss: 0.2262 - acc: 0.92 - ETA: 35s - loss: 0.2261 - acc: 0.92 - ETA: 35s - loss: 0.2265 - acc: 0.91 - ETA: 35s - loss: 0.2272 - acc: 0.91 - ETA: 35s - loss: 0.2271 - acc: 0.91 - ETA: 35s - loss: 0.2280 - acc: 0.91 - ETA: 35s - loss: 0.2275 - acc: 0.91 - ETA: 35s - loss: 0.2278 - acc: 0.91 - ETA: 35s - loss: 0.2285 - acc: 0.91 - ETA: 35s - loss: 0.2283 - acc: 0.91 - ETA: 35s - loss: 0.2288 - acc: 0.91 - ETA: 35s - loss: 0.2283 - acc: 0.91 - ETA: 35s - loss: 0.2277 - acc: 0.91 - ETA: 34s - loss: 0.2276 - acc: 0.91 - ETA: 34s - loss: 0.2275 - acc: 0.91 - ETA: 34s - loss: 0.2279 - acc: 0.91 - ETA: 34s - loss: 0.2280 - acc: 0.91 - ETA: 34s - loss: 0.2276 - acc: 0.91 - ETA: 34s - loss: 0.2278 - acc: 0.91 - ETA: 34s - loss: 0.2277 - acc: 0.91 - ETA: 34s - loss: 0.2283 - acc: 0.91 - ETA: 34s - loss: 0.2280 - acc: 0.91 - ETA: 34s - loss: 0.2277 - acc: 0.91 - ETA: 34s - loss: 0.2272 - acc: 0.91 - ETA: 34s - loss: 0.2266 - acc: 0.91 - ETA: 34s - loss: 0.2262 - acc: 0.91 - ETA: 33s - loss: 0.2263 - acc: 0.91 - ETA: 33s - loss: 0.2276 - acc: 0.91 - ETA: 33s - loss: 0.2275 - acc: 0.91 - ETA: 33s - loss: 0.2278 - acc: 0.91 - ETA: 33s - loss: 0.2280 - acc: 0.91 - ETA: 33s - loss: 0.2279 - acc: 0.91 - ETA: 33s - loss: 0.2273 - acc: 0.91 - ETA: 33s - loss: 0.2279 - acc: 0.91 - ETA: 33s - loss: 0.2277 - acc: 0.91 - ETA: 33s - loss: 0.2274 - acc: 0.91 - ETA: 33s - loss: 0.2273 - acc: 0.91 - ETA: 33s - loss: 0.2279 - acc: 0.91 - ETA: 33s - loss: 0.2274 - acc: 0.91 - ETA: 32s - loss: 0.2276 - acc: 0.91 - ETA: 32s - loss: 0.2276 - acc: 0.91 - ETA: 32s - loss: 0.2272 - acc: 0.91 - ETA: 32s - loss: 0.2268 - acc: 0.91 - ETA: 32s - loss: 0.2272 - acc: 0.91 - ETA: 32s - loss: 0.2268 - acc: 0.91 - ETA: 32s - loss: 0.2265 - acc: 0.91 - ETA: 32s - loss: 0.2270 - acc: 0.91 - ETA: 32s - loss: 0.2266 - acc: 0.91 - ETA: 32s - loss: 0.2270 - acc: 0.91 - ETA: 32s - loss: 0.2263 - acc: 0.92 - ETA: 32s - loss: 0.2262 - acc: 0.92 - ETA: 32s - loss: 0.2258 - acc: 0.92 - ETA: 31s - loss: 0.2260 - acc: 0.92 - ETA: 31s - loss: 0.2259 - acc: 0.92 - ETA: 31s - loss: 0.2255 - acc: 0.92 - ETA: 31s - loss: 0.2254 - acc: 0.92 - ETA: 31s - loss: 0.2255 - acc: 0.92 - ETA: 31s - loss: 0.2254 - acc: 0.92 - ETA: 31s - loss: 0.2254 - acc: 0.92 - ETA: 31s - loss: 0.2251 - acc: 0.92 - ETA: 31s - loss: 0.2253 - acc: 0.91 - ETA: 31s - loss: 0.2249 - acc: 0.92 - ETA: 31s - loss: 0.2249 - acc: 0.92 - ETA: 31s - loss: 0.2247 - acc: 0.92 - ETA: 31s - loss: 0.2245 - acc: 0.92 - ETA: 31s - loss: 0.2245 - acc: 0.92 - ETA: 31s - loss: 0.2242 - acc: 0.92 - ETA: 30s - loss: 0.2240 - acc: 0.92 - ETA: 30s - loss: 0.2244 - acc: 0.92 - ETA: 30s - loss: 0.2247 - acc: 0.92 - ETA: 30s - loss: 0.2247 - acc: 0.92 - ETA: 30s - loss: 0.2246 - acc: 0.92 - ETA: 30s - loss: 0.2243 - acc: 0.92 - ETA: 30s - loss: 0.2243 - acc: 0.92 - ETA: 30s - loss: 0.2240 - acc: 0.92 - ETA: 30s - loss: 0.2242 - acc: 0.92 - ETA: 30s - loss: 0.2237 - acc: 0.92 - ETA: 30s - loss: 0.2243 - acc: 0.92 - ETA: 30s - loss: 0.2239 - acc: 0.92 - ETA: 30s - loss: 0.2238 - acc: 0.92 - ETA: 30s - loss: 0.2237 - acc: 0.92 - ETA: 30s - loss: 0.2231 - acc: 0.92 - ETA: 30s - loss: 0.2229 - acc: 0.92 - ETA: 29s - loss: 0.2230 - acc: 0.92 - ETA: 29s - loss: 0.2230 - acc: 0.92 - ETA: 29s - loss: 0.2230 - acc: 0.92 - ETA: 29s - loss: 0.2226 - acc: 0.92 - ETA: 29s - loss: 0.2224 - acc: 0.92 - ETA: 29s - loss: 0.2222 - acc: 0.92 - ETA: 29s - loss: 0.2222 - acc: 0.92 - ETA: 29s - loss: 0.2224 - acc: 0.92 - ETA: 29s - loss: 0.2221 - acc: 0.92 - ETA: 29s - loss: 0.2225 - acc: 0.92 - ETA: 29s - loss: 0.2241 - acc: 0.92 - ETA: 29s - loss: 0.2238 - acc: 0.92 - ETA: 29s - loss: 0.2235 - acc: 0.92 - ETA: 29s - loss: 0.2248 - acc: 0.92 - ETA: 29s - loss: 0.2250 - acc: 0.92 - ETA: 29s - loss: 0.2250 - acc: 0.92 - ETA: 29s - loss: 0.2245 - acc: 0.92 - ETA: 29s - loss: 0.2245 - acc: 0.92 - ETA: 28s - loss: 0.2244 - acc: 0.92 - ETA: 28s - loss: 0.2243 - acc: 0.92 - ETA: 28s - loss: 0.2243 - acc: 0.92 - ETA: 28s - loss: 0.2248 - acc: 0.92 - ETA: 28s - loss: 0.2247 - acc: 0.92 - ETA: 28s - loss: 0.2244 - acc: 0.92 - ETA: 28s - loss: 0.2245 - acc: 0.92 - ETA: 28s - loss: 0.2256 - acc: 0.92 - ETA: 28s - loss: 0.2258 - acc: 0.92 - ETA: 28s - loss: 0.2256 - acc: 0.92 - ETA: 28s - loss: 0.2252 - acc: 0.92 - ETA: 28s - loss: 0.2249 - acc: 0.92 - ETA: 28s - loss: 0.2249 - acc: 0.92 - ETA: 27s - loss: 0.2247 - acc: 0.92 - ETA: 27s - loss: 0.2242 - acc: 0.92 - ETA: 27s - loss: 0.2237 - acc: 0.92 - ETA: 27s - loss: 0.2241 - acc: 0.92 - ETA: 27s - loss: 0.2240 - acc: 0.92 - ETA: 27s - loss: 0.2241 - acc: 0.92 - ETA: 27s - loss: 0.2247 - acc: 0.92 - ETA: 27s - loss: 0.2246 - acc: 0.92 - ETA: 27s - loss: 0.2244 - acc: 0.92 - ETA: 27s - loss: 0.2260 - acc: 0.92 - ETA: 27s - loss: 0.2266 - acc: 0.92 - ETA: 27s - loss: 0.2262 - acc: 0.92 - ETA: 27s - loss: 0.2259 - acc: 0.92 - ETA: 27s - loss: 0.2260 - acc: 0.92 - ETA: 26s - loss: 0.2258 - acc: 0.92 - ETA: 26s - loss: 0.2261 - acc: 0.92 - ETA: 26s - loss: 0.2267 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2261 - acc: 0.92 - ETA: 26s - loss: 0.2264 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2268 - acc: 0.92 - ETA: 26s - loss: 0.2266 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 26s - loss: 0.2269 - acc: 0.92 - ETA: 26s - loss: 0.2267 - acc: 0.92 - ETA: 26s - loss: 0.2265 - acc: 0.92 - ETA: 25s - loss: 0.2265 - acc: 0.92 - ETA: 25s - loss: 0.2264 - acc: 0.92 - ETA: 25s - loss: 0.2267 - acc: 0.92 - ETA: 25s - loss: 0.2268 - acc: 0.92 - ETA: 25s - loss: 0.2270 - acc: 0.92 - ETA: 25s - loss: 0.2269 - acc: 0.92 - ETA: 25s - loss: 0.2267 - acc: 0.92 - ETA: 25s - loss: 0.2272 - acc: 0.92 - ETA: 25s - loss: 0.2277 - acc: 0.91 - ETA: 25s - loss: 0.2275 - acc: 0.91 - ETA: 25s - loss: 0.2277 - acc: 0.91 - ETA: 25s - loss: 0.2283 - acc: 0.91 - ETA: 25s - loss: 0.2283 - acc: 0.91 - ETA: 24s - loss: 0.2284 - acc: 0.91 - ETA: 24s - loss: 0.2286 - acc: 0.91 - ETA: 24s - loss: 0.2287 - acc: 0.91 - ETA: 24s - loss: 0.2285 - acc: 0.91 - ETA: 24s - loss: 0.2283 - acc: 0.91 - ETA: 24s - loss: 0.2281 - acc: 0.91 - ETA: 24s - loss: 0.2279 - acc: 0.92 - ETA: 24s - loss: 0.2284 - acc: 0.91 - ETA: 24s - loss: 0.2283 - acc: 0.91 - ETA: 24s - loss: 0.2282 - acc: 0.91 - ETA: 24s - loss: 0.2279 - acc: 0.92 - ETA: 24s - loss: 0.2276 - acc: 0.92 - ETA: 24s - loss: 0.2276 - acc: 0.92 - ETA: 24s - loss: 0.2273 - acc: 0.92 - ETA: 23s - loss: 0.2269 - acc: 0.92 - ETA: 23s - loss: 0.2271 - acc: 0.92 - ETA: 23s - loss: 0.2272 - acc: 0.92 - ETA: 23s - loss: 0.2274 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2278 - acc: 0.92 - ETA: 23s - loss: 0.2273 - acc: 0.92 - ETA: 23s - loss: 0.2271 - acc: 0.92 - ETA: 23s - loss: 0.2270 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2281 - acc: 0.92 - ETA: 23s - loss: 0.2283 - acc: 0.91 - ETA: 22s - loss: 0.2282 - acc: 0.91 - ETA: 22s - loss: 0.2280 - acc: 0.91 - ETA: 22s - loss: 0.2277 - acc: 0.92 - ETA: 22s - loss: 0.2279 - acc: 0.91 - ETA: 22s - loss: 0.2277 - acc: 0.92 - ETA: 22s - loss: 0.2279 - acc: 0.9200" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.2276 - acc: 0.92 - ETA: 22s - loss: 0.2281 - acc: 0.92 - ETA: 22s - loss: 0.2280 - acc: 0.92 - ETA: 22s - loss: 0.2286 - acc: 0.91 - ETA: 22s - loss: 0.2286 - acc: 0.92 - ETA: 22s - loss: 0.2282 - acc: 0.92 - ETA: 22s - loss: 0.2288 - acc: 0.91 - ETA: 22s - loss: 0.2287 - acc: 0.91 - ETA: 21s - loss: 0.2286 - acc: 0.91 - ETA: 21s - loss: 0.2285 - acc: 0.92 - ETA: 21s - loss: 0.2289 - acc: 0.92 - ETA: 21s - loss: 0.2289 - acc: 0.91 - ETA: 21s - loss: 0.2287 - acc: 0.92 - ETA: 21s - loss: 0.2288 - acc: 0.91 - ETA: 21s - loss: 0.2290 - acc: 0.91 - ETA: 21s - loss: 0.2291 - acc: 0.91 - ETA: 21s - loss: 0.2293 - acc: 0.91 - ETA: 21s - loss: 0.2294 - acc: 0.91 - ETA: 21s - loss: 0.2292 - acc: 0.91 - ETA: 21s - loss: 0.2289 - acc: 0.92 - ETA: 21s - loss: 0.2288 - acc: 0.92 - ETA: 21s - loss: 0.2290 - acc: 0.92 - ETA: 21s - loss: 0.2289 - acc: 0.92 - ETA: 20s - loss: 0.2287 - acc: 0.92 - ETA: 20s - loss: 0.2287 - acc: 0.92 - ETA: 20s - loss: 0.2284 - acc: 0.92 - ETA: 20s - loss: 0.2283 - acc: 0.92 - ETA: 20s - loss: 0.2283 - acc: 0.92 - ETA: 20s - loss: 0.2282 - acc: 0.92 - ETA: 20s - loss: 0.2286 - acc: 0.92 - ETA: 20s - loss: 0.2286 - acc: 0.91 - ETA: 20s - loss: 0.2286 - acc: 0.91 - ETA: 20s - loss: 0.2285 - acc: 0.91 - ETA: 20s - loss: 0.2284 - acc: 0.91 - ETA: 20s - loss: 0.2282 - acc: 0.91 - ETA: 20s - loss: 0.2280 - acc: 0.91 - ETA: 20s - loss: 0.2277 - acc: 0.92 - ETA: 19s - loss: 0.2275 - acc: 0.92 - ETA: 19s - loss: 0.2272 - acc: 0.92 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2274 - acc: 0.91 - ETA: 19s - loss: 0.2271 - acc: 0.92 - ETA: 19s - loss: 0.2268 - acc: 0.92 - ETA: 19s - loss: 0.2271 - acc: 0.92 - ETA: 19s - loss: 0.2268 - acc: 0.92 - ETA: 19s - loss: 0.2269 - acc: 0.92 - ETA: 19s - loss: 0.2269 - acc: 0.92 - ETA: 18s - loss: 0.2273 - acc: 0.92 - ETA: 18s - loss: 0.2269 - acc: 0.92 - ETA: 18s - loss: 0.2266 - acc: 0.92 - ETA: 18s - loss: 0.2264 - acc: 0.92 - ETA: 18s - loss: 0.2265 - acc: 0.92 - ETA: 18s - loss: 0.2262 - acc: 0.92 - ETA: 18s - loss: 0.2262 - acc: 0.92 - ETA: 18s - loss: 0.2260 - acc: 0.92 - ETA: 18s - loss: 0.2259 - acc: 0.92 - ETA: 18s - loss: 0.2258 - acc: 0.92 - ETA: 18s - loss: 0.2260 - acc: 0.92 - ETA: 18s - loss: 0.2258 - acc: 0.92 - ETA: 18s - loss: 0.2261 - acc: 0.92 - ETA: 18s - loss: 0.2264 - acc: 0.92 - ETA: 18s - loss: 0.2265 - acc: 0.92 - ETA: 17s - loss: 0.2267 - acc: 0.92 - ETA: 17s - loss: 0.2267 - acc: 0.92 - ETA: 17s - loss: 0.2266 - acc: 0.92 - ETA: 17s - loss: 0.2269 - acc: 0.92 - ETA: 17s - loss: 0.2269 - acc: 0.91 - ETA: 17s - loss: 0.2266 - acc: 0.92 - ETA: 17s - loss: 0.2268 - acc: 0.92 - ETA: 17s - loss: 0.2267 - acc: 0.92 - ETA: 17s - loss: 0.2269 - acc: 0.92 - ETA: 17s - loss: 0.2266 - acc: 0.92 - ETA: 17s - loss: 0.2265 - acc: 0.92 - ETA: 17s - loss: 0.2263 - acc: 0.92 - ETA: 17s - loss: 0.2259 - acc: 0.92 - ETA: 17s - loss: 0.2257 - acc: 0.92 - ETA: 16s - loss: 0.2261 - acc: 0.92 - ETA: 16s - loss: 0.2261 - acc: 0.92 - ETA: 16s - loss: 0.2260 - acc: 0.92 - ETA: 16s - loss: 0.2259 - acc: 0.92 - ETA: 16s - loss: 0.2258 - acc: 0.92 - ETA: 16s - loss: 0.2259 - acc: 0.92 - ETA: 16s - loss: 0.2256 - acc: 0.92 - ETA: 16s - loss: 0.2259 - acc: 0.92 - ETA: 16s - loss: 0.2261 - acc: 0.92 - ETA: 16s - loss: 0.2260 - acc: 0.92 - ETA: 16s - loss: 0.2257 - acc: 0.92 - ETA: 16s - loss: 0.2255 - acc: 0.92 - ETA: 16s - loss: 0.2255 - acc: 0.92 - ETA: 16s - loss: 0.2255 - acc: 0.92 - ETA: 15s - loss: 0.2254 - acc: 0.92 - ETA: 15s - loss: 0.2253 - acc: 0.92 - ETA: 15s - loss: 0.2251 - acc: 0.92 - ETA: 15s - loss: 0.2258 - acc: 0.92 - ETA: 15s - loss: 0.2257 - acc: 0.92 - ETA: 15s - loss: 0.2254 - acc: 0.92 - ETA: 15s - loss: 0.2253 - acc: 0.92 - ETA: 15s - loss: 0.2254 - acc: 0.92 - ETA: 15s - loss: 0.2251 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 15s - loss: 0.2249 - acc: 0.92 - ETA: 14s - loss: 0.2248 - acc: 0.92 - ETA: 14s - loss: 0.2253 - acc: 0.92 - ETA: 14s - loss: 0.2254 - acc: 0.92 - ETA: 14s - loss: 0.2254 - acc: 0.92 - ETA: 14s - loss: 0.2251 - acc: 0.92 - ETA: 14s - loss: 0.2248 - acc: 0.92 - ETA: 14s - loss: 0.2246 - acc: 0.92 - ETA: 14s - loss: 0.2245 - acc: 0.92 - ETA: 14s - loss: 0.2248 - acc: 0.92 - ETA: 14s - loss: 0.2250 - acc: 0.92 - ETA: 14s - loss: 0.2246 - acc: 0.92 - ETA: 14s - loss: 0.2243 - acc: 0.92 - ETA: 14s - loss: 0.2245 - acc: 0.92 - ETA: 14s - loss: 0.2242 - acc: 0.92 - ETA: 13s - loss: 0.2240 - acc: 0.92 - ETA: 13s - loss: 0.2239 - acc: 0.92 - ETA: 13s - loss: 0.2236 - acc: 0.92 - ETA: 13s - loss: 0.2236 - acc: 0.92 - ETA: 13s - loss: 0.2234 - acc: 0.92 - ETA: 13s - loss: 0.2235 - acc: 0.92 - ETA: 13s - loss: 0.2241 - acc: 0.92 - ETA: 13s - loss: 0.2243 - acc: 0.92 - ETA: 13s - loss: 0.2243 - acc: 0.92 - ETA: 13s - loss: 0.2242 - acc: 0.92 - ETA: 13s - loss: 0.2240 - acc: 0.92 - ETA: 13s - loss: 0.2240 - acc: 0.92 - ETA: 13s - loss: 0.2242 - acc: 0.92 - ETA: 12s - loss: 0.2241 - acc: 0.92 - ETA: 12s - loss: 0.2240 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2241 - acc: 0.92 - ETA: 12s - loss: 0.2246 - acc: 0.92 - ETA: 12s - loss: 0.2247 - acc: 0.92 - ETA: 12s - loss: 0.2246 - acc: 0.92 - ETA: 12s - loss: 0.2246 - acc: 0.92 - ETA: 12s - loss: 0.2244 - acc: 0.92 - ETA: 12s - loss: 0.2245 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2243 - acc: 0.92 - ETA: 12s - loss: 0.2245 - acc: 0.92 - ETA: 11s - loss: 0.2244 - acc: 0.92 - ETA: 11s - loss: 0.2241 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2243 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2245 - acc: 0.92 - ETA: 11s - loss: 0.2243 - acc: 0.92 - ETA: 11s - loss: 0.2241 - acc: 0.92 - ETA: 11s - loss: 0.2242 - acc: 0.92 - ETA: 11s - loss: 0.2241 - acc: 0.92 - ETA: 11s - loss: 0.2240 - acc: 0.92 - ETA: 11s - loss: 0.2239 - acc: 0.92 - ETA: 10s - loss: 0.2239 - acc: 0.92 - ETA: 10s - loss: 0.2239 - acc: 0.92 - ETA: 10s - loss: 0.2237 - acc: 0.92 - ETA: 10s - loss: 0.2237 - acc: 0.92 - ETA: 10s - loss: 0.2235 - acc: 0.92 - ETA: 10s - loss: 0.2232 - acc: 0.92 - ETA: 10s - loss: 0.2232 - acc: 0.92 - ETA: 10s - loss: 0.2234 - acc: 0.92 - ETA: 10s - loss: 0.2235 - acc: 0.92 - ETA: 10s - loss: 0.2233 - acc: 0.92 - ETA: 10s - loss: 0.2231 - acc: 0.92 - ETA: 10s - loss: 0.2237 - acc: 0.92 - ETA: 10s - loss: 0.2241 - acc: 0.92 - ETA: 10s - loss: 0.2239 - acc: 0.92 - ETA: 9s - loss: 0.2240 - acc: 0.9208 - ETA: 9s - loss: 0.2239 - acc: 0.920 - ETA: 9s - loss: 0.2239 - acc: 0.920 - ETA: 9s - loss: 0.2240 - acc: 0.920 - ETA: 9s - loss: 0.2239 - acc: 0.920 - ETA: 9s - loss: 0.2238 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2241 - acc: 0.920 - ETA: 9s - loss: 0.2240 - acc: 0.920 - ETA: 9s - loss: 0.2244 - acc: 0.920 - ETA: 9s - loss: 0.2246 - acc: 0.920 - ETA: 9s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2244 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2247 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2244 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2247 - acc: 0.920 - ETA: 8s - loss: 0.2246 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2245 - acc: 0.920 - ETA: 8s - loss: 0.2248 - acc: 0.920 - ETA: 7s - loss: 0.2248 - acc: 0.920 - ETA: 7s - loss: 0.2247 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2245 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2244 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2246 - acc: 0.920 - ETA: 7s - loss: 0.2244 - acc: 0.920 - ETA: 7s - loss: 0.2243 - acc: 0.920 - ETA: 7s - loss: 0.2245 - acc: 0.920 - ETA: 7s - loss: 0.2245 - acc: 0.920 - ETA: 7s - loss: 0.2247 - acc: 0.9204" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.2246 - acc: 0.920 - ETA: 6s - loss: 0.2244 - acc: 0.920 - ETA: 6s - loss: 0.2243 - acc: 0.920 - ETA: 6s - loss: 0.2242 - acc: 0.920 - ETA: 6s - loss: 0.2241 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 6s - loss: 0.2237 - acc: 0.920 - ETA: 6s - loss: 0.2238 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 6s - loss: 0.2240 - acc: 0.920 - ETA: 6s - loss: 0.2237 - acc: 0.920 - ETA: 6s - loss: 0.2238 - acc: 0.920 - ETA: 6s - loss: 0.2239 - acc: 0.920 - ETA: 5s - loss: 0.2240 - acc: 0.920 - ETA: 5s - loss: 0.2239 - acc: 0.920 - ETA: 5s - loss: 0.2238 - acc: 0.920 - ETA: 5s - loss: 0.2239 - acc: 0.920 - ETA: 5s - loss: 0.2237 - acc: 0.920 - ETA: 5s - loss: 0.2236 - acc: 0.920 - ETA: 5s - loss: 0.2234 - acc: 0.920 - ETA: 5s - loss: 0.2232 - acc: 0.921 - ETA: 5s - loss: 0.2230 - acc: 0.921 - ETA: 5s - loss: 0.2228 - acc: 0.921 - ETA: 5s - loss: 0.2227 - acc: 0.921 - ETA: 5s - loss: 0.2226 - acc: 0.921 - ETA: 5s - loss: 0.2230 - acc: 0.921 - ETA: 5s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2224 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2224 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2226 - acc: 0.921 - ETA: 4s - loss: 0.2229 - acc: 0.921 - ETA: 4s - loss: 0.2228 - acc: 0.921 - ETA: 4s - loss: 0.2227 - acc: 0.921 - ETA: 4s - loss: 0.2225 - acc: 0.921 - ETA: 4s - loss: 0.2222 - acc: 0.921 - ETA: 3s - loss: 0.2222 - acc: 0.921 - ETA: 3s - loss: 0.2226 - acc: 0.921 - ETA: 3s - loss: 0.2225 - acc: 0.921 - ETA: 3s - loss: 0.2223 - acc: 0.921 - ETA: 3s - loss: 0.2221 - acc: 0.921 - ETA: 3s - loss: 0.2223 - acc: 0.921 - ETA: 3s - loss: 0.2224 - acc: 0.921 - ETA: 3s - loss: 0.2223 - acc: 0.921 - ETA: 3s - loss: 0.2226 - acc: 0.921 - ETA: 3s - loss: 0.2229 - acc: 0.921 - ETA: 3s - loss: 0.2230 - acc: 0.921 - ETA: 3s - loss: 0.2228 - acc: 0.921 - ETA: 3s - loss: 0.2231 - acc: 0.921 - ETA: 3s - loss: 0.2231 - acc: 0.921 - ETA: 2s - loss: 0.2230 - acc: 0.921 - ETA: 2s - loss: 0.2229 - acc: 0.921 - ETA: 2s - loss: 0.2227 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2228 - acc: 0.921 - ETA: 2s - loss: 0.2227 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2224 - acc: 0.921 - ETA: 2s - loss: 0.2226 - acc: 0.921 - ETA: 2s - loss: 0.2224 - acc: 0.921 - ETA: 2s - loss: 0.2224 - acc: 0.921 - ETA: 2s - loss: 0.2223 - acc: 0.921 - ETA: 2s - loss: 0.2222 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2219 - acc: 0.921 - ETA: 1s - loss: 0.2218 - acc: 0.921 - ETA: 1s - loss: 0.2217 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 1s - loss: 0.2221 - acc: 0.921 - ETA: 1s - loss: 0.2222 - acc: 0.921 - ETA: 1s - loss: 0.2220 - acc: 0.921 - ETA: 0s - loss: 0.2218 - acc: 0.921 - ETA: 0s - loss: 0.2219 - acc: 0.921 - ETA: 0s - loss: 0.2225 - acc: 0.921 - ETA: 0s - loss: 0.2224 - acc: 0.921 - ETA: 0s - loss: 0.2226 - acc: 0.921 - ETA: 0s - loss: 0.2225 - acc: 0.921 - ETA: 0s - loss: 0.2224 - acc: 0.921 - ETA: 0s - loss: 0.2224 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - ETA: 0s - loss: 0.2221 - acc: 0.921 - ETA: 0s - loss: 0.2222 - acc: 0.921 - ETA: 0s - loss: 0.2223 - acc: 0.921 - 55s 2ms/step - loss: 0.2222 - acc: 0.9217 - val_loss: 0.2044 - val_acc: 0.9288\n", + "\n", + "Epoch 00006: val_acc improved from 0.92616 to 0.92881, saving model to models\\conv.model\n", + "Epoch 7/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 39s - loss: 0.3483 - acc: 0.93 - ETA: 43s - loss: 0.3026 - acc: 0.90 - ETA: 46s - loss: 0.2582 - acc: 0.90 - ETA: 47s - loss: 0.2163 - acc: 0.92 - ETA: 48s - loss: 0.2109 - acc: 0.91 - ETA: 47s - loss: 0.1914 - acc: 0.92 - ETA: 48s - loss: 0.1951 - acc: 0.91 - ETA: 48s - loss: 0.2262 - acc: 0.91 - ETA: 48s - loss: 0.2158 - acc: 0.92 - ETA: 48s - loss: 0.2196 - acc: 0.92 - ETA: 48s - loss: 0.2105 - acc: 0.92 - ETA: 48s - loss: 0.2009 - acc: 0.92 - ETA: 48s - loss: 0.1966 - acc: 0.93 - ETA: 48s - loss: 0.1998 - acc: 0.92 - ETA: 48s - loss: 0.1909 - acc: 0.93 - ETA: 48s - loss: 0.1854 - acc: 0.93 - ETA: 48s - loss: 0.1918 - acc: 0.93 - ETA: 48s - loss: 0.1894 - acc: 0.93 - ETA: 48s - loss: 0.1911 - acc: 0.93 - ETA: 48s - loss: 0.1951 - acc: 0.92 - ETA: 48s - loss: 0.2030 - acc: 0.92 - ETA: 48s - loss: 0.2038 - acc: 0.92 - ETA: 48s - loss: 0.2028 - acc: 0.92 - ETA: 48s - loss: 0.2058 - acc: 0.92 - ETA: 48s - loss: 0.2038 - acc: 0.92 - ETA: 48s - loss: 0.1988 - acc: 0.92 - ETA: 47s - loss: 0.2037 - acc: 0.92 - ETA: 47s - loss: 0.2005 - acc: 0.92 - ETA: 47s - loss: 0.1966 - acc: 0.93 - ETA: 47s - loss: 0.1930 - acc: 0.93 - ETA: 47s - loss: 0.1916 - acc: 0.93 - ETA: 47s - loss: 0.1887 - acc: 0.93 - ETA: 47s - loss: 0.1923 - acc: 0.93 - ETA: 47s - loss: 0.1917 - acc: 0.93 - ETA: 47s - loss: 0.1945 - acc: 0.93 - ETA: 47s - loss: 0.1929 - acc: 0.93 - ETA: 47s - loss: 0.1994 - acc: 0.92 - ETA: 47s - loss: 0.1947 - acc: 0.92 - ETA: 47s - loss: 0.1942 - acc: 0.92 - ETA: 47s - loss: 0.1959 - acc: 0.92 - ETA: 47s - loss: 0.1935 - acc: 0.92 - ETA: 47s - loss: 0.1909 - acc: 0.93 - ETA: 47s - loss: 0.1870 - acc: 0.93 - ETA: 47s - loss: 0.1860 - acc: 0.93 - ETA: 47s - loss: 0.1865 - acc: 0.93 - ETA: 47s - loss: 0.1865 - acc: 0.93 - ETA: 46s - loss: 0.1832 - acc: 0.93 - ETA: 46s - loss: 0.1807 - acc: 0.93 - ETA: 46s - loss: 0.1782 - acc: 0.93 - ETA: 46s - loss: 0.1791 - acc: 0.93 - ETA: 46s - loss: 0.1809 - acc: 0.93 - ETA: 46s - loss: 0.1813 - acc: 0.93 - ETA: 46s - loss: 0.1830 - acc: 0.93 - ETA: 46s - loss: 0.1806 - acc: 0.93 - ETA: 46s - loss: 0.1782 - acc: 0.93 - ETA: 46s - loss: 0.1795 - acc: 0.93 - ETA: 46s - loss: 0.1847 - acc: 0.93 - ETA: 46s - loss: 0.1860 - acc: 0.93 - ETA: 46s - loss: 0.1855 - acc: 0.93 - ETA: 46s - loss: 0.1867 - acc: 0.93 - ETA: 46s - loss: 0.1860 - acc: 0.93 - ETA: 45s - loss: 0.1843 - acc: 0.93 - ETA: 45s - loss: 0.1819 - acc: 0.93 - ETA: 45s - loss: 0.1847 - acc: 0.93 - ETA: 45s - loss: 0.1844 - acc: 0.93 - ETA: 45s - loss: 0.1832 - acc: 0.93 - ETA: 45s - loss: 0.1840 - acc: 0.93 - ETA: 45s - loss: 0.1844 - acc: 0.93 - ETA: 45s - loss: 0.1851 - acc: 0.93 - ETA: 45s - loss: 0.1859 - acc: 0.93 - ETA: 45s - loss: 0.1842 - acc: 0.93 - ETA: 45s - loss: 0.1856 - acc: 0.93 - ETA: 45s - loss: 0.1837 - acc: 0.93 - ETA: 45s - loss: 0.1836 - acc: 0.93 - ETA: 45s - loss: 0.1845 - acc: 0.93 - ETA: 45s - loss: 0.1827 - acc: 0.93 - ETA: 45s - loss: 0.1814 - acc: 0.93 - ETA: 45s - loss: 0.1809 - acc: 0.93 - ETA: 45s - loss: 0.1820 - acc: 0.93 - ETA: 45s - loss: 0.1804 - acc: 0.93 - ETA: 45s - loss: 0.1796 - acc: 0.93 - ETA: 45s - loss: 0.1792 - acc: 0.93 - ETA: 45s - loss: 0.1779 - acc: 0.93 - ETA: 45s - loss: 0.1783 - acc: 0.93 - ETA: 45s - loss: 0.1772 - acc: 0.93 - ETA: 45s - loss: 0.1759 - acc: 0.93 - ETA: 44s - loss: 0.1761 - acc: 0.93 - ETA: 44s - loss: 0.1754 - acc: 0.93 - ETA: 44s - loss: 0.1765 - acc: 0.93 - ETA: 44s - loss: 0.1769 - acc: 0.93 - ETA: 44s - loss: 0.1784 - acc: 0.93 - ETA: 44s - loss: 0.1781 - acc: 0.93 - ETA: 44s - loss: 0.1780 - acc: 0.93 - ETA: 44s - loss: 0.1765 - acc: 0.93 - ETA: 44s - loss: 0.1788 - acc: 0.93 - ETA: 44s - loss: 0.1790 - acc: 0.93 - ETA: 44s - loss: 0.1783 - acc: 0.93 - ETA: 44s - loss: 0.1773 - acc: 0.93 - ETA: 44s - loss: 0.1770 - acc: 0.93 - ETA: 44s - loss: 0.1780 - acc: 0.93 - ETA: 44s - loss: 0.1802 - acc: 0.93 - ETA: 43s - loss: 0.1796 - acc: 0.93 - ETA: 43s - loss: 0.1788 - acc: 0.93 - ETA: 43s - loss: 0.1781 - acc: 0.93 - ETA: 43s - loss: 0.1772 - acc: 0.93 - ETA: 43s - loss: 0.1788 - acc: 0.93 - ETA: 43s - loss: 0.1785 - acc: 0.93 - ETA: 43s - loss: 0.1793 - acc: 0.93 - ETA: 43s - loss: 0.1819 - acc: 0.93 - ETA: 43s - loss: 0.1815 - acc: 0.93 - ETA: 43s - loss: 0.1842 - acc: 0.93 - ETA: 43s - loss: 0.1835 - acc: 0.93 - ETA: 43s - loss: 0.1848 - acc: 0.93 - ETA: 43s - loss: 0.1844 - acc: 0.93 - ETA: 43s - loss: 0.1836 - acc: 0.93 - ETA: 43s - loss: 0.1867 - acc: 0.93 - ETA: 42s - loss: 0.1863 - acc: 0.93 - ETA: 42s - loss: 0.1880 - acc: 0.93 - ETA: 42s - loss: 0.1887 - acc: 0.93 - ETA: 42s - loss: 0.1893 - acc: 0.93 - ETA: 42s - loss: 0.1882 - acc: 0.93 - ETA: 42s - loss: 0.1879 - acc: 0.93 - ETA: 42s - loss: 0.1895 - acc: 0.93 - ETA: 42s - loss: 0.1921 - acc: 0.93 - ETA: 42s - loss: 0.1932 - acc: 0.92 - ETA: 42s - loss: 0.1923 - acc: 0.92 - ETA: 42s - loss: 0.1933 - acc: 0.92 - ETA: 42s - loss: 0.1935 - acc: 0.92 - ETA: 42s - loss: 0.1958 - acc: 0.92 - ETA: 42s - loss: 0.1963 - acc: 0.92 - ETA: 42s - loss: 0.1973 - acc: 0.92 - ETA: 42s - loss: 0.1971 - acc: 0.92 - ETA: 42s - loss: 0.1983 - acc: 0.92 - ETA: 41s - loss: 0.1984 - acc: 0.92 - ETA: 41s - loss: 0.1988 - acc: 0.92 - ETA: 41s - loss: 0.1988 - acc: 0.92 - ETA: 41s - loss: 0.1986 - acc: 0.92 - ETA: 41s - loss: 0.1987 - acc: 0.92 - ETA: 41s - loss: 0.1984 - acc: 0.92 - ETA: 41s - loss: 0.1997 - acc: 0.92 - ETA: 41s - loss: 0.1995 - acc: 0.92 - ETA: 41s - loss: 0.1995 - acc: 0.92 - ETA: 41s - loss: 0.2005 - acc: 0.92 - ETA: 41s - loss: 0.2004 - acc: 0.92 - ETA: 41s - loss: 0.2012 - acc: 0.92 - ETA: 41s - loss: 0.2012 - acc: 0.92 - ETA: 41s - loss: 0.2000 - acc: 0.92 - ETA: 41s - loss: 0.1989 - acc: 0.92 - ETA: 41s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1986 - acc: 0.92 - ETA: 40s - loss: 0.1980 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1972 - acc: 0.92 - ETA: 40s - loss: 0.1976 - acc: 0.92 - ETA: 40s - loss: 0.1976 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1990 - acc: 0.92 - ETA: 40s - loss: 0.1989 - acc: 0.92 - ETA: 40s - loss: 0.1989 - acc: 0.92 - ETA: 40s - loss: 0.1985 - acc: 0.92 - ETA: 40s - loss: 0.1980 - acc: 0.92 - ETA: 40s - loss: 0.1981 - acc: 0.92 - ETA: 40s - loss: 0.1975 - acc: 0.92 - ETA: 39s - loss: 0.1980 - acc: 0.92 - ETA: 39s - loss: 0.1974 - acc: 0.92 - ETA: 39s - loss: 0.1985 - acc: 0.92 - ETA: 39s - loss: 0.1981 - acc: 0.92 - ETA: 39s - loss: 0.1980 - acc: 0.92 - ETA: 39s - loss: 0.1975 - acc: 0.92 - ETA: 39s - loss: 0.1968 - acc: 0.93 - ETA: 39s - loss: 0.1965 - acc: 0.93 - ETA: 39s - loss: 0.1959 - acc: 0.93 - ETA: 39s - loss: 0.1953 - acc: 0.93 - ETA: 39s - loss: 0.1965 - acc: 0.93 - ETA: 39s - loss: 0.1964 - acc: 0.93 - ETA: 39s - loss: 0.1960 - acc: 0.93 - ETA: 39s - loss: 0.1960 - acc: 0.93 - ETA: 38s - loss: 0.1953 - acc: 0.93 - ETA: 38s - loss: 0.1956 - acc: 0.93 - ETA: 38s - loss: 0.1952 - acc: 0.93 - ETA: 38s - loss: 0.1955 - acc: 0.93 - ETA: 38s - loss: 0.1950 - acc: 0.93 - ETA: 38s - loss: 0.1951 - acc: 0.93 - ETA: 38s - loss: 0.1953 - acc: 0.93 - ETA: 38s - loss: 0.1958 - acc: 0.93 - ETA: 38s - loss: 0.1956 - acc: 0.93 - ETA: 38s - loss: 0.1956 - acc: 0.93 - ETA: 38s - loss: 0.1952 - acc: 0.93 - ETA: 38s - loss: 0.1946 - acc: 0.93 - ETA: 38s - loss: 0.1943 - acc: 0.93 - ETA: 38s - loss: 0.1938 - acc: 0.93 - ETA: 38s - loss: 0.1950 - acc: 0.93 - ETA: 38s - loss: 0.1950 - acc: 0.93 - ETA: 37s - loss: 0.1953 - acc: 0.93 - ETA: 37s - loss: 0.1947 - acc: 0.93 - ETA: 37s - loss: 0.1942 - acc: 0.93 - ETA: 37s - loss: 0.1944 - acc: 0.93 - ETA: 37s - loss: 0.1951 - acc: 0.93 - ETA: 37s - loss: 0.1949 - acc: 0.93 - ETA: 37s - loss: 0.1942 - acc: 0.93 - ETA: 37s - loss: 0.1946 - acc: 0.93 - ETA: 37s - loss: 0.1939 - acc: 0.93 - ETA: 37s - loss: 0.1937 - acc: 0.93 - ETA: 37s - loss: 0.1936 - acc: 0.93 - ETA: 37s - loss: 0.1937 - acc: 0.93 - ETA: 37s - loss: 0.1944 - acc: 0.93 - ETA: 37s - loss: 0.1948 - acc: 0.93 - ETA: 36s - loss: 0.1942 - acc: 0.93 - ETA: 36s - loss: 0.1940 - acc: 0.93 - ETA: 36s - loss: 0.1941 - acc: 0.93 - ETA: 36s - loss: 0.1945 - acc: 0.93 - ETA: 36s - loss: 0.1949 - acc: 0.93 - ETA: 36s - loss: 0.1952 - acc: 0.93 - ETA: 36s - loss: 0.1950 - acc: 0.9312" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.1944 - acc: 0.93 - ETA: 36s - loss: 0.1943 - acc: 0.93 - ETA: 36s - loss: 0.1944 - acc: 0.93 - ETA: 36s - loss: 0.1956 - acc: 0.93 - ETA: 36s - loss: 0.1962 - acc: 0.93 - ETA: 36s - loss: 0.1956 - acc: 0.93 - ETA: 36s - loss: 0.1959 - acc: 0.93 - ETA: 36s - loss: 0.1970 - acc: 0.93 - ETA: 36s - loss: 0.1963 - acc: 0.93 - ETA: 35s - loss: 0.1956 - acc: 0.93 - ETA: 35s - loss: 0.1959 - acc: 0.93 - ETA: 35s - loss: 0.1960 - acc: 0.93 - ETA: 35s - loss: 0.1959 - acc: 0.93 - ETA: 35s - loss: 0.1960 - acc: 0.93 - ETA: 35s - loss: 0.1964 - acc: 0.93 - ETA: 35s - loss: 0.1973 - acc: 0.93 - ETA: 35s - loss: 0.1974 - acc: 0.93 - ETA: 35s - loss: 0.1984 - acc: 0.92 - ETA: 35s - loss: 0.1979 - acc: 0.93 - ETA: 35s - loss: 0.1976 - acc: 0.93 - ETA: 35s - loss: 0.1973 - acc: 0.93 - ETA: 35s - loss: 0.1970 - acc: 0.93 - ETA: 35s - loss: 0.1972 - acc: 0.93 - ETA: 35s - loss: 0.1974 - acc: 0.93 - ETA: 34s - loss: 0.1987 - acc: 0.93 - ETA: 34s - loss: 0.1996 - acc: 0.92 - ETA: 34s - loss: 0.1992 - acc: 0.93 - ETA: 34s - loss: 0.1992 - acc: 0.92 - ETA: 34s - loss: 0.1994 - acc: 0.93 - ETA: 34s - loss: 0.1994 - acc: 0.93 - ETA: 34s - loss: 0.2006 - acc: 0.92 - ETA: 34s - loss: 0.2001 - acc: 0.92 - ETA: 34s - loss: 0.1998 - acc: 0.92 - ETA: 34s - loss: 0.1998 - acc: 0.92 - ETA: 34s - loss: 0.2003 - acc: 0.92 - ETA: 34s - loss: 0.2004 - acc: 0.92 - ETA: 34s - loss: 0.2010 - acc: 0.92 - ETA: 34s - loss: 0.2015 - acc: 0.92 - ETA: 34s - loss: 0.2018 - acc: 0.92 - ETA: 33s - loss: 0.2017 - acc: 0.92 - ETA: 33s - loss: 0.2025 - acc: 0.92 - ETA: 33s - loss: 0.2019 - acc: 0.92 - ETA: 33s - loss: 0.2020 - acc: 0.92 - ETA: 33s - loss: 0.2017 - acc: 0.92 - ETA: 33s - loss: 0.2017 - acc: 0.92 - ETA: 33s - loss: 0.2023 - acc: 0.92 - ETA: 33s - loss: 0.2026 - acc: 0.92 - ETA: 33s - loss: 0.2028 - acc: 0.92 - ETA: 33s - loss: 0.2025 - acc: 0.92 - ETA: 33s - loss: 0.2032 - acc: 0.92 - ETA: 33s - loss: 0.2035 - acc: 0.92 - ETA: 33s - loss: 0.2031 - acc: 0.92 - ETA: 33s - loss: 0.2025 - acc: 0.92 - ETA: 33s - loss: 0.2022 - acc: 0.92 - ETA: 33s - loss: 0.2023 - acc: 0.93 - ETA: 33s - loss: 0.2023 - acc: 0.92 - ETA: 32s - loss: 0.2018 - acc: 0.92 - ETA: 32s - loss: 0.2017 - acc: 0.92 - ETA: 32s - loss: 0.2018 - acc: 0.92 - ETA: 32s - loss: 0.2015 - acc: 0.93 - ETA: 32s - loss: 0.2012 - acc: 0.93 - ETA: 32s - loss: 0.2009 - acc: 0.93 - ETA: 32s - loss: 0.2014 - acc: 0.93 - ETA: 32s - loss: 0.2016 - acc: 0.93 - ETA: 32s - loss: 0.2021 - acc: 0.92 - ETA: 32s - loss: 0.2025 - acc: 0.92 - ETA: 32s - loss: 0.2025 - acc: 0.92 - ETA: 32s - loss: 0.2031 - acc: 0.92 - ETA: 32s - loss: 0.2038 - acc: 0.92 - ETA: 32s - loss: 0.2034 - acc: 0.92 - ETA: 32s - loss: 0.2037 - acc: 0.92 - ETA: 32s - loss: 0.2040 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2042 - acc: 0.92 - ETA: 31s - loss: 0.2040 - acc: 0.92 - ETA: 31s - loss: 0.2036 - acc: 0.92 - ETA: 31s - loss: 0.2043 - acc: 0.92 - ETA: 31s - loss: 0.2045 - acc: 0.92 - ETA: 31s - loss: 0.2043 - acc: 0.92 - ETA: 31s - loss: 0.2042 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2042 - acc: 0.92 - ETA: 31s - loss: 0.2041 - acc: 0.92 - ETA: 31s - loss: 0.2045 - acc: 0.92 - ETA: 31s - loss: 0.2051 - acc: 0.92 - ETA: 31s - loss: 0.2056 - acc: 0.92 - ETA: 31s - loss: 0.2058 - acc: 0.92 - ETA: 30s - loss: 0.2057 - acc: 0.92 - ETA: 30s - loss: 0.2064 - acc: 0.92 - ETA: 30s - loss: 0.2059 - acc: 0.92 - ETA: 30s - loss: 0.2060 - acc: 0.92 - ETA: 30s - loss: 0.2062 - acc: 0.92 - ETA: 30s - loss: 0.2059 - acc: 0.92 - ETA: 30s - loss: 0.2058 - acc: 0.92 - ETA: 30s - loss: 0.2057 - acc: 0.92 - ETA: 30s - loss: 0.2053 - acc: 0.92 - ETA: 30s - loss: 0.2053 - acc: 0.92 - ETA: 30s - loss: 0.2048 - acc: 0.92 - ETA: 30s - loss: 0.2066 - acc: 0.92 - ETA: 30s - loss: 0.2061 - acc: 0.92 - ETA: 30s - loss: 0.2059 - acc: 0.92 - ETA: 30s - loss: 0.2056 - acc: 0.92 - ETA: 30s - loss: 0.2055 - acc: 0.92 - ETA: 30s - loss: 0.2060 - acc: 0.92 - ETA: 29s - loss: 0.2059 - acc: 0.92 - ETA: 29s - loss: 0.2066 - acc: 0.92 - ETA: 29s - loss: 0.2074 - acc: 0.92 - ETA: 29s - loss: 0.2073 - acc: 0.92 - ETA: 29s - loss: 0.2079 - acc: 0.92 - ETA: 29s - loss: 0.2077 - acc: 0.92 - ETA: 29s - loss: 0.2079 - acc: 0.92 - ETA: 29s - loss: 0.2081 - acc: 0.92 - ETA: 29s - loss: 0.2082 - acc: 0.92 - ETA: 29s - loss: 0.2088 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2093 - acc: 0.92 - ETA: 29s - loss: 0.2088 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2089 - acc: 0.92 - ETA: 29s - loss: 0.2092 - acc: 0.92 - ETA: 28s - loss: 0.2096 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2101 - acc: 0.92 - ETA: 28s - loss: 0.2101 - acc: 0.92 - ETA: 28s - loss: 0.2100 - acc: 0.92 - ETA: 28s - loss: 0.2100 - acc: 0.92 - ETA: 28s - loss: 0.2098 - acc: 0.92 - ETA: 28s - loss: 0.2097 - acc: 0.92 - ETA: 28s - loss: 0.2100 - acc: 0.92 - ETA: 28s - loss: 0.2097 - acc: 0.92 - ETA: 28s - loss: 0.2097 - acc: 0.92 - ETA: 27s - loss: 0.2093 - acc: 0.92 - ETA: 27s - loss: 0.2093 - acc: 0.92 - ETA: 27s - loss: 0.2090 - acc: 0.92 - ETA: 27s - loss: 0.2089 - acc: 0.92 - ETA: 27s - loss: 0.2090 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2091 - acc: 0.92 - ETA: 27s - loss: 0.2087 - acc: 0.92 - ETA: 27s - loss: 0.2084 - acc: 0.92 - ETA: 27s - loss: 0.2080 - acc: 0.92 - ETA: 27s - loss: 0.2078 - acc: 0.92 - ETA: 27s - loss: 0.2077 - acc: 0.92 - ETA: 26s - loss: 0.2076 - acc: 0.92 - ETA: 26s - loss: 0.2073 - acc: 0.92 - ETA: 26s - loss: 0.2075 - acc: 0.92 - ETA: 26s - loss: 0.2078 - acc: 0.92 - ETA: 26s - loss: 0.2077 - acc: 0.92 - ETA: 26s - loss: 0.2074 - acc: 0.92 - ETA: 26s - loss: 0.2074 - acc: 0.92 - ETA: 26s - loss: 0.2080 - acc: 0.92 - ETA: 26s - loss: 0.2083 - acc: 0.92 - ETA: 26s - loss: 0.2083 - acc: 0.92 - ETA: 26s - loss: 0.2090 - acc: 0.92 - ETA: 26s - loss: 0.2090 - acc: 0.92 - ETA: 26s - loss: 0.2089 - acc: 0.92 - ETA: 26s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2081 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2087 - acc: 0.92 - ETA: 25s - loss: 0.2086 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2087 - acc: 0.92 - ETA: 25s - loss: 0.2087 - acc: 0.92 - ETA: 25s - loss: 0.2085 - acc: 0.92 - ETA: 25s - loss: 0.2084 - acc: 0.92 - ETA: 25s - loss: 0.2082 - acc: 0.92 - ETA: 25s - loss: 0.2083 - acc: 0.92 - ETA: 25s - loss: 0.2081 - acc: 0.92 - ETA: 24s - loss: 0.2078 - acc: 0.92 - ETA: 24s - loss: 0.2077 - acc: 0.92 - ETA: 24s - loss: 0.2076 - acc: 0.92 - ETA: 24s - loss: 0.2080 - acc: 0.92 - ETA: 24s - loss: 0.2086 - acc: 0.92 - ETA: 24s - loss: 0.2084 - acc: 0.92 - ETA: 24s - loss: 0.2083 - acc: 0.92 - ETA: 24s - loss: 0.2080 - acc: 0.92 - ETA: 24s - loss: 0.2080 - acc: 0.92 - ETA: 24s - loss: 0.2078 - acc: 0.92 - ETA: 24s - loss: 0.2074 - acc: 0.92 - ETA: 24s - loss: 0.2072 - acc: 0.92 - ETA: 24s - loss: 0.2073 - acc: 0.92 - ETA: 23s - loss: 0.2069 - acc: 0.92 - ETA: 23s - loss: 0.2069 - acc: 0.92 - ETA: 23s - loss: 0.2066 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2064 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2070 - acc: 0.92 - ETA: 23s - loss: 0.2069 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2065 - acc: 0.92 - ETA: 23s - loss: 0.2062 - acc: 0.92 - ETA: 23s - loss: 0.2060 - acc: 0.92 - ETA: 23s - loss: 0.2060 - acc: 0.92 - ETA: 22s - loss: 0.2057 - acc: 0.92 - ETA: 22s - loss: 0.2055 - acc: 0.92 - ETA: 22s - loss: 0.2054 - acc: 0.92 - ETA: 22s - loss: 0.2052 - acc: 0.92 - ETA: 22s - loss: 0.2058 - acc: 0.92 - ETA: 22s - loss: 0.2063 - acc: 0.92 - ETA: 22s - loss: 0.2062 - acc: 0.92 - ETA: 22s - loss: 0.2060 - acc: 0.92 - ETA: 22s - loss: 0.2056 - acc: 0.92 - ETA: 22s - loss: 0.2058 - acc: 0.92 - ETA: 22s - loss: 0.2055 - acc: 0.9265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.2052 - acc: 0.92 - ETA: 22s - loss: 0.2051 - acc: 0.92 - ETA: 22s - loss: 0.2048 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2042 - acc: 0.92 - ETA: 21s - loss: 0.2040 - acc: 0.92 - ETA: 21s - loss: 0.2037 - acc: 0.92 - ETA: 21s - loss: 0.2046 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2044 - acc: 0.92 - ETA: 21s - loss: 0.2041 - acc: 0.92 - ETA: 21s - loss: 0.2040 - acc: 0.92 - ETA: 21s - loss: 0.2045 - acc: 0.92 - ETA: 21s - loss: 0.2049 - acc: 0.92 - ETA: 21s - loss: 0.2049 - acc: 0.92 - ETA: 21s - loss: 0.2052 - acc: 0.92 - ETA: 20s - loss: 0.2055 - acc: 0.92 - ETA: 20s - loss: 0.2053 - acc: 0.92 - ETA: 20s - loss: 0.2050 - acc: 0.92 - ETA: 20s - loss: 0.2049 - acc: 0.92 - ETA: 20s - loss: 0.2046 - acc: 0.92 - ETA: 20s - loss: 0.2052 - acc: 0.92 - ETA: 20s - loss: 0.2053 - acc: 0.92 - ETA: 20s - loss: 0.2052 - acc: 0.92 - ETA: 20s - loss: 0.2053 - acc: 0.92 - ETA: 20s - loss: 0.2054 - acc: 0.92 - ETA: 20s - loss: 0.2051 - acc: 0.92 - ETA: 20s - loss: 0.2051 - acc: 0.92 - ETA: 20s - loss: 0.2051 - acc: 0.92 - ETA: 20s - loss: 0.2049 - acc: 0.92 - ETA: 20s - loss: 0.2048 - acc: 0.92 - ETA: 20s - loss: 0.2049 - acc: 0.92 - ETA: 19s - loss: 0.2046 - acc: 0.92 - ETA: 19s - loss: 0.2047 - acc: 0.92 - ETA: 19s - loss: 0.2047 - acc: 0.92 - ETA: 19s - loss: 0.2045 - acc: 0.92 - ETA: 19s - loss: 0.2041 - acc: 0.92 - ETA: 19s - loss: 0.2040 - acc: 0.92 - ETA: 19s - loss: 0.2041 - acc: 0.92 - ETA: 19s - loss: 0.2041 - acc: 0.92 - ETA: 19s - loss: 0.2040 - acc: 0.92 - ETA: 19s - loss: 0.2042 - acc: 0.92 - ETA: 19s - loss: 0.2042 - acc: 0.92 - ETA: 19s - loss: 0.2039 - acc: 0.92 - ETA: 19s - loss: 0.2037 - acc: 0.92 - ETA: 18s - loss: 0.2034 - acc: 0.92 - ETA: 18s - loss: 0.2037 - acc: 0.92 - ETA: 18s - loss: 0.2040 - acc: 0.92 - ETA: 18s - loss: 0.2040 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2040 - acc: 0.92 - ETA: 18s - loss: 0.2044 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2045 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2045 - acc: 0.92 - ETA: 18s - loss: 0.2042 - acc: 0.92 - ETA: 18s - loss: 0.2041 - acc: 0.92 - ETA: 18s - loss: 0.2041 - acc: 0.92 - ETA: 17s - loss: 0.2039 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2040 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2038 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2035 - acc: 0.92 - ETA: 17s - loss: 0.2036 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2037 - acc: 0.92 - ETA: 17s - loss: 0.2039 - acc: 0.92 - ETA: 17s - loss: 0.2040 - acc: 0.92 - ETA: 17s - loss: 0.2040 - acc: 0.92 - ETA: 16s - loss: 0.2038 - acc: 0.92 - ETA: 16s - loss: 0.2038 - acc: 0.92 - ETA: 16s - loss: 0.2036 - acc: 0.92 - ETA: 16s - loss: 0.2037 - acc: 0.92 - ETA: 16s - loss: 0.2035 - acc: 0.92 - ETA: 16s - loss: 0.2032 - acc: 0.92 - ETA: 16s - loss: 0.2039 - acc: 0.92 - ETA: 16s - loss: 0.2038 - acc: 0.92 - ETA: 16s - loss: 0.2036 - acc: 0.92 - ETA: 16s - loss: 0.2034 - acc: 0.92 - ETA: 16s - loss: 0.2032 - acc: 0.92 - ETA: 16s - loss: 0.2033 - acc: 0.92 - ETA: 16s - loss: 0.2031 - acc: 0.92 - ETA: 16s - loss: 0.2029 - acc: 0.92 - ETA: 15s - loss: 0.2029 - acc: 0.92 - ETA: 15s - loss: 0.2026 - acc: 0.92 - ETA: 15s - loss: 0.2023 - acc: 0.92 - ETA: 15s - loss: 0.2021 - acc: 0.92 - ETA: 15s - loss: 0.2021 - acc: 0.92 - ETA: 15s - loss: 0.2018 - acc: 0.92 - ETA: 15s - loss: 0.2018 - acc: 0.92 - ETA: 15s - loss: 0.2019 - acc: 0.92 - ETA: 15s - loss: 0.2017 - acc: 0.92 - ETA: 15s - loss: 0.2016 - acc: 0.92 - ETA: 15s - loss: 0.2013 - acc: 0.92 - ETA: 15s - loss: 0.2014 - acc: 0.92 - ETA: 15s - loss: 0.2012 - acc: 0.92 - ETA: 15s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2017 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2014 - acc: 0.92 - ETA: 14s - loss: 0.2017 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2014 - acc: 0.92 - ETA: 14s - loss: 0.2015 - acc: 0.92 - ETA: 14s - loss: 0.2016 - acc: 0.92 - ETA: 14s - loss: 0.2017 - acc: 0.92 - ETA: 14s - loss: 0.2019 - acc: 0.92 - ETA: 13s - loss: 0.2017 - acc: 0.92 - ETA: 13s - loss: 0.2014 - acc: 0.92 - ETA: 13s - loss: 0.2013 - acc: 0.92 - ETA: 13s - loss: 0.2010 - acc: 0.92 - ETA: 13s - loss: 0.2009 - acc: 0.92 - ETA: 13s - loss: 0.2008 - acc: 0.92 - ETA: 13s - loss: 0.2013 - acc: 0.92 - ETA: 13s - loss: 0.2011 - acc: 0.92 - ETA: 13s - loss: 0.2011 - acc: 0.92 - ETA: 13s - loss: 0.2011 - acc: 0.92 - ETA: 13s - loss: 0.2013 - acc: 0.92 - ETA: 13s - loss: 0.2015 - acc: 0.92 - ETA: 13s - loss: 0.2016 - acc: 0.92 - ETA: 12s - loss: 0.2015 - acc: 0.92 - ETA: 12s - loss: 0.2013 - acc: 0.92 - ETA: 12s - loss: 0.2013 - acc: 0.92 - ETA: 12s - loss: 0.2010 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2010 - acc: 0.92 - ETA: 12s - loss: 0.2011 - acc: 0.92 - ETA: 12s - loss: 0.2009 - acc: 0.92 - ETA: 12s - loss: 0.2009 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2008 - acc: 0.92 - ETA: 12s - loss: 0.2014 - acc: 0.92 - ETA: 12s - loss: 0.2013 - acc: 0.92 - ETA: 11s - loss: 0.2011 - acc: 0.92 - ETA: 11s - loss: 0.2012 - acc: 0.92 - ETA: 11s - loss: 0.2012 - acc: 0.92 - ETA: 11s - loss: 0.2012 - acc: 0.92 - ETA: 11s - loss: 0.2010 - acc: 0.92 - ETA: 11s - loss: 0.2008 - acc: 0.92 - ETA: 11s - loss: 0.2013 - acc: 0.92 - ETA: 11s - loss: 0.2013 - acc: 0.92 - ETA: 11s - loss: 0.2010 - acc: 0.92 - ETA: 11s - loss: 0.2008 - acc: 0.92 - ETA: 11s - loss: 0.2009 - acc: 0.92 - ETA: 11s - loss: 0.2009 - acc: 0.92 - ETA: 11s - loss: 0.2008 - acc: 0.92 - ETA: 11s - loss: 0.2005 - acc: 0.92 - ETA: 11s - loss: 0.2003 - acc: 0.92 - ETA: 10s - loss: 0.2001 - acc: 0.92 - ETA: 10s - loss: 0.1999 - acc: 0.92 - ETA: 10s - loss: 0.1998 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1995 - acc: 0.92 - ETA: 10s - loss: 0.1993 - acc: 0.92 - ETA: 10s - loss: 0.1993 - acc: 0.92 - ETA: 10s - loss: 0.1995 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1997 - acc: 0.92 - ETA: 10s - loss: 0.1996 - acc: 0.92 - ETA: 10s - loss: 0.1993 - acc: 0.92 - ETA: 10s - loss: 0.1992 - acc: 0.92 - ETA: 9s - loss: 0.1996 - acc: 0.9285 - ETA: 9s - loss: 0.2000 - acc: 0.928 - ETA: 9s - loss: 0.1999 - acc: 0.928 - ETA: 9s - loss: 0.1997 - acc: 0.928 - ETA: 9s - loss: 0.1996 - acc: 0.928 - ETA: 9s - loss: 0.2002 - acc: 0.928 - ETA: 9s - loss: 0.2002 - acc: 0.928 - ETA: 9s - loss: 0.2001 - acc: 0.928 - ETA: 9s - loss: 0.1999 - acc: 0.928 - ETA: 9s - loss: 0.2000 - acc: 0.928 - ETA: 9s - loss: 0.1998 - acc: 0.928 - ETA: 9s - loss: 0.1997 - acc: 0.928 - ETA: 9s - loss: 0.1996 - acc: 0.928 - ETA: 9s - loss: 0.2000 - acc: 0.928 - ETA: 8s - loss: 0.2002 - acc: 0.928 - ETA: 8s - loss: 0.2002 - acc: 0.928 - ETA: 8s - loss: 0.2000 - acc: 0.928 - ETA: 8s - loss: 0.1998 - acc: 0.928 - ETA: 8s - loss: 0.1998 - acc: 0.928 - ETA: 8s - loss: 0.1999 - acc: 0.928 - ETA: 8s - loss: 0.1996 - acc: 0.928 - ETA: 8s - loss: 0.1998 - acc: 0.928 - ETA: 8s - loss: 0.1997 - acc: 0.928 - ETA: 8s - loss: 0.1997 - acc: 0.928 - ETA: 8s - loss: 0.1997 - acc: 0.928 - ETA: 8s - loss: 0.1995 - acc: 0.928 - ETA: 8s - loss: 0.1993 - acc: 0.928 - ETA: 8s - loss: 0.1993 - acc: 0.928 - ETA: 7s - loss: 0.1996 - acc: 0.928 - ETA: 7s - loss: 0.1994 - acc: 0.928 - ETA: 7s - loss: 0.1995 - acc: 0.928 - ETA: 7s - loss: 0.1994 - acc: 0.928 - ETA: 7s - loss: 0.1992 - acc: 0.928 - ETA: 7s - loss: 0.1990 - acc: 0.928 - ETA: 7s - loss: 0.1988 - acc: 0.928 - ETA: 7s - loss: 0.1991 - acc: 0.928 - ETA: 7s - loss: 0.1989 - acc: 0.928 - ETA: 7s - loss: 0.1988 - acc: 0.928 - ETA: 7s - loss: 0.1992 - acc: 0.928 - ETA: 7s - loss: 0.1993 - acc: 0.928 - ETA: 7s - loss: 0.1996 - acc: 0.928 - ETA: 7s - loss: 0.1993 - acc: 0.928 - ETA: 6s - loss: 0.1994 - acc: 0.9286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1994 - acc: 0.928 - ETA: 6s - loss: 0.1996 - acc: 0.928 - ETA: 6s - loss: 0.1995 - acc: 0.928 - ETA: 6s - loss: 0.1996 - acc: 0.928 - ETA: 6s - loss: 0.1995 - acc: 0.928 - ETA: 6s - loss: 0.1993 - acc: 0.928 - ETA: 6s - loss: 0.1991 - acc: 0.928 - ETA: 6s - loss: 0.1993 - acc: 0.928 - ETA: 6s - loss: 0.1995 - acc: 0.928 - ETA: 6s - loss: 0.1992 - acc: 0.928 - ETA: 6s - loss: 0.1992 - acc: 0.928 - ETA: 6s - loss: 0.1991 - acc: 0.928 - ETA: 6s - loss: 0.1988 - acc: 0.928 - ETA: 5s - loss: 0.1989 - acc: 0.928 - ETA: 5s - loss: 0.1990 - acc: 0.928 - ETA: 5s - loss: 0.1991 - acc: 0.928 - ETA: 5s - loss: 0.1988 - acc: 0.928 - ETA: 5s - loss: 0.1987 - acc: 0.928 - ETA: 5s - loss: 0.1986 - acc: 0.928 - ETA: 5s - loss: 0.1984 - acc: 0.928 - ETA: 5s - loss: 0.1982 - acc: 0.929 - ETA: 5s - loss: 0.1983 - acc: 0.929 - ETA: 5s - loss: 0.1981 - acc: 0.929 - ETA: 5s - loss: 0.1979 - acc: 0.929 - ETA: 5s - loss: 0.1977 - acc: 0.929 - ETA: 5s - loss: 0.1980 - acc: 0.929 - ETA: 5s - loss: 0.1978 - acc: 0.929 - ETA: 4s - loss: 0.1977 - acc: 0.929 - ETA: 4s - loss: 0.1977 - acc: 0.929 - ETA: 4s - loss: 0.1975 - acc: 0.929 - ETA: 4s - loss: 0.1973 - acc: 0.929 - ETA: 4s - loss: 0.1973 - acc: 0.929 - ETA: 4s - loss: 0.1973 - acc: 0.929 - ETA: 4s - loss: 0.1972 - acc: 0.929 - ETA: 4s - loss: 0.1971 - acc: 0.929 - ETA: 4s - loss: 0.1969 - acc: 0.929 - ETA: 4s - loss: 0.1968 - acc: 0.929 - ETA: 4s - loss: 0.1967 - acc: 0.929 - ETA: 4s - loss: 0.1966 - acc: 0.929 - ETA: 4s - loss: 0.1966 - acc: 0.929 - ETA: 4s - loss: 0.1967 - acc: 0.929 - ETA: 3s - loss: 0.1966 - acc: 0.929 - ETA: 3s - loss: 0.1964 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1964 - acc: 0.929 - ETA: 3s - loss: 0.1964 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1961 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1962 - acc: 0.929 - ETA: 3s - loss: 0.1960 - acc: 0.930 - ETA: 3s - loss: 0.1961 - acc: 0.930 - ETA: 3s - loss: 0.1964 - acc: 0.930 - ETA: 3s - loss: 0.1965 - acc: 0.930 - ETA: 2s - loss: 0.1966 - acc: 0.929 - ETA: 2s - loss: 0.1966 - acc: 0.929 - ETA: 2s - loss: 0.1967 - acc: 0.929 - ETA: 2s - loss: 0.1967 - acc: 0.929 - ETA: 2s - loss: 0.1965 - acc: 0.929 - ETA: 2s - loss: 0.1963 - acc: 0.929 - ETA: 2s - loss: 0.1963 - acc: 0.929 - ETA: 2s - loss: 0.1963 - acc: 0.930 - ETA: 2s - loss: 0.1968 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 2s - loss: 0.1969 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 2s - loss: 0.1970 - acc: 0.929 - ETA: 1s - loss: 0.1971 - acc: 0.929 - ETA: 1s - loss: 0.1974 - acc: 0.929 - ETA: 1s - loss: 0.1976 - acc: 0.929 - ETA: 1s - loss: 0.1978 - acc: 0.929 - ETA: 1s - loss: 0.1977 - acc: 0.929 - ETA: 1s - loss: 0.1979 - acc: 0.929 - ETA: 1s - loss: 0.1979 - acc: 0.929 - ETA: 1s - loss: 0.1979 - acc: 0.929 - ETA: 1s - loss: 0.1982 - acc: 0.929 - ETA: 1s - loss: 0.1982 - acc: 0.929 - ETA: 1s - loss: 0.1983 - acc: 0.929 - ETA: 1s - loss: 0.1981 - acc: 0.929 - ETA: 1s - loss: 0.1985 - acc: 0.929 - ETA: 1s - loss: 0.1985 - acc: 0.929 - ETA: 0s - loss: 0.1989 - acc: 0.929 - ETA: 0s - loss: 0.1991 - acc: 0.929 - ETA: 0s - loss: 0.1994 - acc: 0.929 - ETA: 0s - loss: 0.1994 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1993 - acc: 0.929 - ETA: 0s - loss: 0.1995 - acc: 0.929 - ETA: 0s - loss: 0.1994 - acc: 0.929 - ETA: 0s - loss: 0.1996 - acc: 0.929 - ETA: 0s - loss: 0.1997 - acc: 0.929 - ETA: 0s - loss: 0.1997 - acc: 0.929 - ETA: 0s - loss: 0.1996 - acc: 0.929 - 54s 2ms/step - loss: 0.1995 - acc: 0.9293 - val_loss: 0.1844 - val_acc: 0.9349\n", + "\n", + "Epoch 00007: val_acc improved from 0.92881 to 0.93487, saving model to models\\conv.model\n", + "Epoch 8/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 55s - loss: 0.3950 - acc: 0.87 - ETA: 56s - loss: 0.2479 - acc: 0.92 - ETA: 56s - loss: 0.2380 - acc: 0.92 - ETA: 54s - loss: 0.2058 - acc: 0.93 - ETA: 53s - loss: 0.2219 - acc: 0.92 - ETA: 53s - loss: 0.2931 - acc: 0.90 - ETA: 52s - loss: 0.2876 - acc: 0.91 - ETA: 52s - loss: 0.2761 - acc: 0.90 - ETA: 52s - loss: 0.2639 - acc: 0.90 - ETA: 51s - loss: 0.2577 - acc: 0.90 - ETA: 51s - loss: 0.2613 - acc: 0.90 - ETA: 50s - loss: 0.2530 - acc: 0.91 - ETA: 50s - loss: 0.2408 - acc: 0.91 - ETA: 50s - loss: 0.2410 - acc: 0.91 - ETA: 50s - loss: 0.2524 - acc: 0.90 - ETA: 50s - loss: 0.2436 - acc: 0.90 - ETA: 49s - loss: 0.2350 - acc: 0.90 - ETA: 50s - loss: 0.2334 - acc: 0.90 - ETA: 50s - loss: 0.2408 - acc: 0.90 - ETA: 49s - loss: 0.2369 - acc: 0.90 - ETA: 49s - loss: 0.2421 - acc: 0.90 - ETA: 49s - loss: 0.2437 - acc: 0.90 - ETA: 49s - loss: 0.2370 - acc: 0.90 - ETA: 49s - loss: 0.2306 - acc: 0.90 - ETA: 49s - loss: 0.2328 - acc: 0.90 - ETA: 49s - loss: 0.2292 - acc: 0.91 - ETA: 49s - loss: 0.2272 - acc: 0.91 - ETA: 49s - loss: 0.2232 - acc: 0.91 - ETA: 49s - loss: 0.2190 - acc: 0.91 - ETA: 49s - loss: 0.2196 - acc: 0.91 - ETA: 49s - loss: 0.2176 - acc: 0.91 - ETA: 49s - loss: 0.2181 - acc: 0.91 - ETA: 49s - loss: 0.2135 - acc: 0.91 - ETA: 49s - loss: 0.2117 - acc: 0.92 - ETA: 48s - loss: 0.2109 - acc: 0.91 - ETA: 48s - loss: 0.2082 - acc: 0.92 - ETA: 48s - loss: 0.2096 - acc: 0.91 - ETA: 48s - loss: 0.2100 - acc: 0.92 - ETA: 48s - loss: 0.2124 - acc: 0.91 - ETA: 48s - loss: 0.2128 - acc: 0.91 - ETA: 48s - loss: 0.2136 - acc: 0.91 - ETA: 48s - loss: 0.2099 - acc: 0.91 - ETA: 48s - loss: 0.2067 - acc: 0.91 - ETA: 48s - loss: 0.2069 - acc: 0.91 - ETA: 48s - loss: 0.2072 - acc: 0.91 - ETA: 48s - loss: 0.2054 - acc: 0.91 - ETA: 48s - loss: 0.2031 - acc: 0.92 - ETA: 47s - loss: 0.2007 - acc: 0.92 - ETA: 47s - loss: 0.1998 - acc: 0.92 - ETA: 47s - loss: 0.1992 - acc: 0.92 - ETA: 47s - loss: 0.2029 - acc: 0.92 - ETA: 47s - loss: 0.2029 - acc: 0.92 - ETA: 47s - loss: 0.2023 - acc: 0.92 - ETA: 47s - loss: 0.1994 - acc: 0.92 - ETA: 47s - loss: 0.1971 - acc: 0.92 - ETA: 47s - loss: 0.1948 - acc: 0.92 - ETA: 47s - loss: 0.1953 - acc: 0.92 - ETA: 47s - loss: 0.1931 - acc: 0.92 - ETA: 47s - loss: 0.1925 - acc: 0.92 - ETA: 47s - loss: 0.1927 - acc: 0.92 - ETA: 47s - loss: 0.1897 - acc: 0.92 - ETA: 47s - loss: 0.1892 - acc: 0.92 - ETA: 46s - loss: 0.1893 - acc: 0.92 - ETA: 47s - loss: 0.1947 - acc: 0.92 - ETA: 46s - loss: 0.1941 - acc: 0.92 - ETA: 46s - loss: 0.1946 - acc: 0.92 - ETA: 46s - loss: 0.1941 - acc: 0.92 - ETA: 46s - loss: 0.1925 - acc: 0.92 - ETA: 46s - loss: 0.1913 - acc: 0.92 - ETA: 46s - loss: 0.1899 - acc: 0.92 - ETA: 46s - loss: 0.1883 - acc: 0.92 - ETA: 46s - loss: 0.1870 - acc: 0.92 - ETA: 46s - loss: 0.1863 - acc: 0.92 - ETA: 46s - loss: 0.1905 - acc: 0.92 - ETA: 46s - loss: 0.1911 - acc: 0.92 - ETA: 45s - loss: 0.1909 - acc: 0.92 - ETA: 45s - loss: 0.1896 - acc: 0.92 - ETA: 45s - loss: 0.1892 - acc: 0.92 - ETA: 45s - loss: 0.1884 - acc: 0.92 - ETA: 45s - loss: 0.1879 - acc: 0.92 - ETA: 45s - loss: 0.1875 - acc: 0.92 - ETA: 45s - loss: 0.1873 - acc: 0.92 - ETA: 45s - loss: 0.1884 - acc: 0.92 - ETA: 45s - loss: 0.1881 - acc: 0.92 - ETA: 45s - loss: 0.1871 - acc: 0.92 - ETA: 45s - loss: 0.1876 - acc: 0.92 - ETA: 45s - loss: 0.1887 - acc: 0.92 - ETA: 45s - loss: 0.1875 - acc: 0.92 - ETA: 45s - loss: 0.1868 - acc: 0.92 - ETA: 45s - loss: 0.1864 - acc: 0.92 - ETA: 45s - loss: 0.1860 - acc: 0.92 - ETA: 45s - loss: 0.1869 - acc: 0.92 - ETA: 45s - loss: 0.1867 - acc: 0.92 - ETA: 44s - loss: 0.1865 - acc: 0.92 - ETA: 44s - loss: 0.1877 - acc: 0.92 - ETA: 44s - loss: 0.1868 - acc: 0.92 - ETA: 44s - loss: 0.1864 - acc: 0.92 - ETA: 44s - loss: 0.1865 - acc: 0.92 - ETA: 44s - loss: 0.1887 - acc: 0.92 - ETA: 44s - loss: 0.1887 - acc: 0.92 - ETA: 44s - loss: 0.1882 - acc: 0.92 - ETA: 44s - loss: 0.1874 - acc: 0.92 - ETA: 44s - loss: 0.1867 - acc: 0.92 - ETA: 44s - loss: 0.1854 - acc: 0.92 - ETA: 44s - loss: 0.1865 - acc: 0.92 - ETA: 44s - loss: 0.1858 - acc: 0.92 - ETA: 44s - loss: 0.1890 - acc: 0.92 - ETA: 44s - loss: 0.1875 - acc: 0.92 - ETA: 43s - loss: 0.1877 - acc: 0.92 - ETA: 43s - loss: 0.1869 - acc: 0.92 - ETA: 43s - loss: 0.1877 - acc: 0.92 - ETA: 43s - loss: 0.1872 - acc: 0.92 - ETA: 43s - loss: 0.1924 - acc: 0.92 - ETA: 43s - loss: 0.1925 - acc: 0.92 - ETA: 43s - loss: 0.1933 - acc: 0.92 - ETA: 43s - loss: 0.1920 - acc: 0.92 - ETA: 43s - loss: 0.1923 - acc: 0.92 - ETA: 43s - loss: 0.1920 - acc: 0.92 - ETA: 43s - loss: 0.1921 - acc: 0.92 - ETA: 43s - loss: 0.1921 - acc: 0.92 - ETA: 42s - loss: 0.1933 - acc: 0.92 - ETA: 42s - loss: 0.1936 - acc: 0.92 - ETA: 42s - loss: 0.1928 - acc: 0.92 - ETA: 42s - loss: 0.1939 - acc: 0.92 - ETA: 42s - loss: 0.1928 - acc: 0.92 - ETA: 42s - loss: 0.1929 - acc: 0.92 - ETA: 42s - loss: 0.1930 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1915 - acc: 0.92 - ETA: 42s - loss: 0.1910 - acc: 0.92 - ETA: 42s - loss: 0.1908 - acc: 0.92 - ETA: 42s - loss: 0.1919 - acc: 0.92 - ETA: 42s - loss: 0.1925 - acc: 0.92 - ETA: 42s - loss: 0.1920 - acc: 0.92 - ETA: 41s - loss: 0.1912 - acc: 0.92 - ETA: 41s - loss: 0.1912 - acc: 0.92 - ETA: 41s - loss: 0.1909 - acc: 0.92 - ETA: 41s - loss: 0.1910 - acc: 0.92 - ETA: 41s - loss: 0.1912 - acc: 0.92 - ETA: 41s - loss: 0.1901 - acc: 0.92 - ETA: 41s - loss: 0.1895 - acc: 0.92 - ETA: 41s - loss: 0.1894 - acc: 0.92 - ETA: 41s - loss: 0.1888 - acc: 0.92 - ETA: 41s - loss: 0.1897 - acc: 0.92 - ETA: 41s - loss: 0.1906 - acc: 0.92 - ETA: 41s - loss: 0.1907 - acc: 0.92 - ETA: 41s - loss: 0.1901 - acc: 0.92 - ETA: 41s - loss: 0.1900 - acc: 0.92 - ETA: 40s - loss: 0.1891 - acc: 0.92 - ETA: 40s - loss: 0.1892 - acc: 0.92 - ETA: 40s - loss: 0.1887 - acc: 0.92 - ETA: 40s - loss: 0.1893 - acc: 0.92 - ETA: 40s - loss: 0.1889 - acc: 0.92 - ETA: 40s - loss: 0.1886 - acc: 0.92 - ETA: 40s - loss: 0.1886 - acc: 0.92 - ETA: 40s - loss: 0.1875 - acc: 0.92 - ETA: 40s - loss: 0.1886 - acc: 0.92 - ETA: 40s - loss: 0.1905 - acc: 0.92 - ETA: 40s - loss: 0.1897 - acc: 0.92 - ETA: 40s - loss: 0.1903 - acc: 0.92 - ETA: 40s - loss: 0.1903 - acc: 0.92 - ETA: 40s - loss: 0.1905 - acc: 0.92 - ETA: 39s - loss: 0.1902 - acc: 0.92 - ETA: 39s - loss: 0.1903 - acc: 0.92 - ETA: 39s - loss: 0.1897 - acc: 0.92 - ETA: 39s - loss: 0.1913 - acc: 0.92 - ETA: 39s - loss: 0.1908 - acc: 0.92 - ETA: 39s - loss: 0.1905 - acc: 0.92 - ETA: 39s - loss: 0.1907 - acc: 0.92 - ETA: 39s - loss: 0.1910 - acc: 0.92 - ETA: 39s - loss: 0.1902 - acc: 0.92 - ETA: 39s - loss: 0.1897 - acc: 0.92 - ETA: 39s - loss: 0.1890 - acc: 0.92 - ETA: 39s - loss: 0.1902 - acc: 0.92 - ETA: 39s - loss: 0.1896 - acc: 0.92 - ETA: 39s - loss: 0.1893 - acc: 0.92 - ETA: 39s - loss: 0.1887 - acc: 0.92 - ETA: 38s - loss: 0.1886 - acc: 0.92 - ETA: 38s - loss: 0.1879 - acc: 0.92 - ETA: 38s - loss: 0.1879 - acc: 0.92 - ETA: 38s - loss: 0.1881 - acc: 0.92 - ETA: 38s - loss: 0.1878 - acc: 0.92 - ETA: 38s - loss: 0.1879 - acc: 0.92 - ETA: 38s - loss: 0.1874 - acc: 0.92 - ETA: 38s - loss: 0.1872 - acc: 0.92 - ETA: 38s - loss: 0.1866 - acc: 0.92 - ETA: 38s - loss: 0.1860 - acc: 0.92 - ETA: 38s - loss: 0.1865 - acc: 0.92 - ETA: 38s - loss: 0.1859 - acc: 0.92 - ETA: 38s - loss: 0.1858 - acc: 0.92 - ETA: 38s - loss: 0.1857 - acc: 0.92 - ETA: 37s - loss: 0.1853 - acc: 0.92 - ETA: 37s - loss: 0.1851 - acc: 0.92 - ETA: 37s - loss: 0.1861 - acc: 0.92 - ETA: 37s - loss: 0.1854 - acc: 0.92 - ETA: 37s - loss: 0.1852 - acc: 0.92 - ETA: 37s - loss: 0.1845 - acc: 0.92 - ETA: 37s - loss: 0.1843 - acc: 0.92 - ETA: 37s - loss: 0.1847 - acc: 0.92 - ETA: 37s - loss: 0.1847 - acc: 0.92 - ETA: 37s - loss: 0.1862 - acc: 0.92 - ETA: 37s - loss: 0.1859 - acc: 0.92 - ETA: 37s - loss: 0.1853 - acc: 0.92 - ETA: 37s - loss: 0.1851 - acc: 0.92 - ETA: 37s - loss: 0.1856 - acc: 0.92 - ETA: 37s - loss: 0.1858 - acc: 0.92 - ETA: 36s - loss: 0.1852 - acc: 0.92 - ETA: 36s - loss: 0.1861 - acc: 0.92 - ETA: 36s - loss: 0.1861 - acc: 0.92 - ETA: 36s - loss: 0.1860 - acc: 0.92 - ETA: 36s - loss: 0.1854 - acc: 0.92 - ETA: 36s - loss: 0.1851 - acc: 0.92 - ETA: 36s - loss: 0.1855 - acc: 0.9297" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.1856 - acc: 0.92 - ETA: 36s - loss: 0.1849 - acc: 0.92 - ETA: 36s - loss: 0.1847 - acc: 0.92 - ETA: 36s - loss: 0.1846 - acc: 0.92 - ETA: 36s - loss: 0.1846 - acc: 0.93 - ETA: 36s - loss: 0.1843 - acc: 0.93 - ETA: 36s - loss: 0.1846 - acc: 0.92 - ETA: 36s - loss: 0.1842 - acc: 0.93 - ETA: 35s - loss: 0.1846 - acc: 0.93 - ETA: 35s - loss: 0.1840 - acc: 0.93 - ETA: 35s - loss: 0.1856 - acc: 0.92 - ETA: 35s - loss: 0.1857 - acc: 0.92 - ETA: 35s - loss: 0.1857 - acc: 0.92 - ETA: 35s - loss: 0.1858 - acc: 0.92 - ETA: 35s - loss: 0.1851 - acc: 0.92 - ETA: 35s - loss: 0.1849 - acc: 0.92 - ETA: 35s - loss: 0.1848 - acc: 0.93 - ETA: 35s - loss: 0.1843 - acc: 0.93 - ETA: 35s - loss: 0.1844 - acc: 0.93 - ETA: 35s - loss: 0.1847 - acc: 0.92 - ETA: 35s - loss: 0.1850 - acc: 0.92 - ETA: 35s - loss: 0.1851 - acc: 0.92 - ETA: 34s - loss: 0.1853 - acc: 0.92 - ETA: 34s - loss: 0.1848 - acc: 0.92 - ETA: 34s - loss: 0.1846 - acc: 0.92 - ETA: 34s - loss: 0.1856 - acc: 0.92 - ETA: 34s - loss: 0.1855 - acc: 0.92 - ETA: 34s - loss: 0.1854 - acc: 0.92 - ETA: 34s - loss: 0.1854 - acc: 0.92 - ETA: 34s - loss: 0.1857 - acc: 0.92 - ETA: 34s - loss: 0.1859 - acc: 0.92 - ETA: 34s - loss: 0.1855 - acc: 0.92 - ETA: 34s - loss: 0.1857 - acc: 0.92 - ETA: 34s - loss: 0.1853 - acc: 0.93 - ETA: 34s - loss: 0.1850 - acc: 0.93 - ETA: 34s - loss: 0.1852 - acc: 0.93 - ETA: 34s - loss: 0.1855 - acc: 0.92 - ETA: 34s - loss: 0.1854 - acc: 0.93 - ETA: 33s - loss: 0.1856 - acc: 0.93 - ETA: 33s - loss: 0.1850 - acc: 0.93 - ETA: 33s - loss: 0.1845 - acc: 0.93 - ETA: 33s - loss: 0.1839 - acc: 0.93 - ETA: 33s - loss: 0.1842 - acc: 0.93 - ETA: 33s - loss: 0.1842 - acc: 0.93 - ETA: 33s - loss: 0.1839 - acc: 0.93 - ETA: 33s - loss: 0.1835 - acc: 0.93 - ETA: 33s - loss: 0.1837 - acc: 0.93 - ETA: 33s - loss: 0.1837 - acc: 0.93 - ETA: 33s - loss: 0.1836 - acc: 0.93 - ETA: 33s - loss: 0.1831 - acc: 0.93 - ETA: 33s - loss: 0.1833 - acc: 0.93 - ETA: 33s - loss: 0.1833 - acc: 0.93 - ETA: 33s - loss: 0.1830 - acc: 0.93 - ETA: 32s - loss: 0.1833 - acc: 0.93 - ETA: 32s - loss: 0.1832 - acc: 0.93 - ETA: 32s - loss: 0.1832 - acc: 0.93 - ETA: 32s - loss: 0.1827 - acc: 0.93 - ETA: 32s - loss: 0.1827 - acc: 0.93 - ETA: 32s - loss: 0.1835 - acc: 0.93 - ETA: 32s - loss: 0.1837 - acc: 0.93 - ETA: 32s - loss: 0.1839 - acc: 0.93 - ETA: 32s - loss: 0.1844 - acc: 0.93 - ETA: 32s - loss: 0.1847 - acc: 0.93 - ETA: 32s - loss: 0.1854 - acc: 0.93 - ETA: 32s - loss: 0.1851 - acc: 0.93 - ETA: 32s - loss: 0.1850 - acc: 0.93 - ETA: 32s - loss: 0.1850 - acc: 0.93 - ETA: 31s - loss: 0.1846 - acc: 0.93 - ETA: 31s - loss: 0.1842 - acc: 0.93 - ETA: 31s - loss: 0.1843 - acc: 0.93 - ETA: 31s - loss: 0.1845 - acc: 0.93 - ETA: 31s - loss: 0.1859 - acc: 0.93 - ETA: 31s - loss: 0.1867 - acc: 0.93 - ETA: 31s - loss: 0.1863 - acc: 0.93 - ETA: 31s - loss: 0.1867 - acc: 0.93 - ETA: 31s - loss: 0.1871 - acc: 0.93 - ETA: 31s - loss: 0.1873 - acc: 0.93 - ETA: 31s - loss: 0.1869 - acc: 0.93 - ETA: 31s - loss: 0.1865 - acc: 0.93 - ETA: 31s - loss: 0.1865 - acc: 0.93 - ETA: 31s - loss: 0.1867 - acc: 0.93 - ETA: 31s - loss: 0.1863 - acc: 0.93 - ETA: 30s - loss: 0.1864 - acc: 0.93 - ETA: 30s - loss: 0.1864 - acc: 0.93 - ETA: 30s - loss: 0.1866 - acc: 0.93 - ETA: 30s - loss: 0.1871 - acc: 0.93 - ETA: 30s - loss: 0.1869 - acc: 0.93 - ETA: 30s - loss: 0.1867 - acc: 0.93 - ETA: 30s - loss: 0.1864 - acc: 0.93 - ETA: 30s - loss: 0.1861 - acc: 0.93 - ETA: 30s - loss: 0.1861 - acc: 0.93 - ETA: 30s - loss: 0.1856 - acc: 0.93 - ETA: 30s - loss: 0.1853 - acc: 0.93 - ETA: 30s - loss: 0.1853 - acc: 0.93 - ETA: 30s - loss: 0.1851 - acc: 0.93 - ETA: 30s - loss: 0.1855 - acc: 0.93 - ETA: 29s - loss: 0.1851 - acc: 0.93 - ETA: 29s - loss: 0.1852 - acc: 0.93 - ETA: 29s - loss: 0.1851 - acc: 0.93 - ETA: 29s - loss: 0.1852 - acc: 0.93 - ETA: 29s - loss: 0.1851 - acc: 0.93 - ETA: 29s - loss: 0.1847 - acc: 0.93 - ETA: 29s - loss: 0.1843 - acc: 0.93 - ETA: 29s - loss: 0.1845 - acc: 0.93 - ETA: 29s - loss: 0.1844 - acc: 0.93 - ETA: 29s - loss: 0.1841 - acc: 0.93 - ETA: 29s - loss: 0.1837 - acc: 0.93 - ETA: 29s - loss: 0.1834 - acc: 0.93 - ETA: 29s - loss: 0.1841 - acc: 0.93 - ETA: 29s - loss: 0.1842 - acc: 0.93 - ETA: 29s - loss: 0.1838 - acc: 0.93 - ETA: 28s - loss: 0.1835 - acc: 0.93 - ETA: 28s - loss: 0.1835 - acc: 0.93 - ETA: 28s - loss: 0.1832 - acc: 0.93 - ETA: 28s - loss: 0.1830 - acc: 0.93 - ETA: 28s - loss: 0.1825 - acc: 0.93 - ETA: 28s - loss: 0.1824 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1820 - acc: 0.93 - ETA: 28s - loss: 0.1818 - acc: 0.93 - ETA: 28s - loss: 0.1818 - acc: 0.93 - ETA: 28s - loss: 0.1819 - acc: 0.93 - ETA: 28s - loss: 0.1816 - acc: 0.93 - ETA: 27s - loss: 0.1815 - acc: 0.93 - ETA: 27s - loss: 0.1811 - acc: 0.93 - ETA: 27s - loss: 0.1814 - acc: 0.93 - ETA: 27s - loss: 0.1812 - acc: 0.93 - ETA: 27s - loss: 0.1815 - acc: 0.93 - ETA: 27s - loss: 0.1819 - acc: 0.93 - ETA: 27s - loss: 0.1820 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1816 - acc: 0.93 - ETA: 27s - loss: 0.1820 - acc: 0.93 - ETA: 27s - loss: 0.1818 - acc: 0.93 - ETA: 27s - loss: 0.1819 - acc: 0.93 - ETA: 27s - loss: 0.1817 - acc: 0.93 - ETA: 27s - loss: 0.1818 - acc: 0.93 - ETA: 26s - loss: 0.1819 - acc: 0.93 - ETA: 26s - loss: 0.1819 - acc: 0.93 - ETA: 26s - loss: 0.1827 - acc: 0.93 - ETA: 26s - loss: 0.1827 - acc: 0.93 - ETA: 26s - loss: 0.1825 - acc: 0.93 - ETA: 26s - loss: 0.1822 - acc: 0.93 - ETA: 26s - loss: 0.1819 - acc: 0.93 - ETA: 26s - loss: 0.1824 - acc: 0.93 - ETA: 26s - loss: 0.1823 - acc: 0.93 - ETA: 26s - loss: 0.1827 - acc: 0.93 - ETA: 26s - loss: 0.1832 - acc: 0.93 - ETA: 26s - loss: 0.1833 - acc: 0.93 - ETA: 26s - loss: 0.1833 - acc: 0.93 - ETA: 26s - loss: 0.1834 - acc: 0.93 - ETA: 26s - loss: 0.1832 - acc: 0.93 - ETA: 25s - loss: 0.1834 - acc: 0.93 - ETA: 25s - loss: 0.1835 - acc: 0.93 - ETA: 25s - loss: 0.1834 - acc: 0.93 - ETA: 25s - loss: 0.1836 - acc: 0.93 - ETA: 25s - loss: 0.1841 - acc: 0.93 - ETA: 25s - loss: 0.1837 - acc: 0.93 - ETA: 25s - loss: 0.1837 - acc: 0.93 - ETA: 25s - loss: 0.1836 - acc: 0.93 - ETA: 25s - loss: 0.1834 - acc: 0.93 - ETA: 25s - loss: 0.1835 - acc: 0.93 - ETA: 25s - loss: 0.1832 - acc: 0.93 - ETA: 25s - loss: 0.1828 - acc: 0.93 - ETA: 25s - loss: 0.1828 - acc: 0.93 - ETA: 25s - loss: 0.1826 - acc: 0.93 - ETA: 25s - loss: 0.1822 - acc: 0.93 - ETA: 24s - loss: 0.1819 - acc: 0.93 - ETA: 24s - loss: 0.1821 - acc: 0.93 - ETA: 24s - loss: 0.1819 - acc: 0.93 - ETA: 24s - loss: 0.1822 - acc: 0.93 - ETA: 24s - loss: 0.1823 - acc: 0.93 - ETA: 24s - loss: 0.1823 - acc: 0.93 - ETA: 24s - loss: 0.1820 - acc: 0.93 - ETA: 24s - loss: 0.1820 - acc: 0.93 - ETA: 24s - loss: 0.1818 - acc: 0.93 - ETA: 24s - loss: 0.1817 - acc: 0.93 - ETA: 24s - loss: 0.1817 - acc: 0.93 - ETA: 24s - loss: 0.1816 - acc: 0.93 - ETA: 24s - loss: 0.1812 - acc: 0.93 - ETA: 24s - loss: 0.1813 - acc: 0.93 - ETA: 24s - loss: 0.1811 - acc: 0.93 - ETA: 23s - loss: 0.1810 - acc: 0.93 - ETA: 23s - loss: 0.1811 - acc: 0.93 - ETA: 23s - loss: 0.1810 - acc: 0.93 - ETA: 23s - loss: 0.1810 - acc: 0.93 - ETA: 23s - loss: 0.1807 - acc: 0.93 - ETA: 23s - loss: 0.1806 - acc: 0.93 - ETA: 23s - loss: 0.1802 - acc: 0.93 - ETA: 23s - loss: 0.1803 - acc: 0.93 - ETA: 23s - loss: 0.1802 - acc: 0.93 - ETA: 23s - loss: 0.1802 - acc: 0.93 - ETA: 23s - loss: 0.1807 - acc: 0.93 - ETA: 23s - loss: 0.1805 - acc: 0.93 - ETA: 23s - loss: 0.1807 - acc: 0.93 - ETA: 23s - loss: 0.1806 - acc: 0.93 - ETA: 22s - loss: 0.1803 - acc: 0.93 - ETA: 22s - loss: 0.1801 - acc: 0.93 - ETA: 22s - loss: 0.1801 - acc: 0.93 - ETA: 22s - loss: 0.1798 - acc: 0.93 - ETA: 22s - loss: 0.1800 - acc: 0.93 - ETA: 22s - loss: 0.1798 - acc: 0.93 - ETA: 22s - loss: 0.1801 - acc: 0.93 - ETA: 22s - loss: 0.1798 - acc: 0.93 - ETA: 22s - loss: 0.1794 - acc: 0.93 - ETA: 22s - loss: 0.1797 - acc: 0.93 - ETA: 22s - loss: 0.1797 - acc: 0.93 - ETA: 22s - loss: 0.1794 - acc: 0.93 - ETA: 22s - loss: 0.1799 - acc: 0.93 - ETA: 22s - loss: 0.1795 - acc: 0.9344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.1794 - acc: 0.93 - ETA: 21s - loss: 0.1792 - acc: 0.93 - ETA: 21s - loss: 0.1792 - acc: 0.93 - ETA: 21s - loss: 0.1790 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1794 - acc: 0.93 - ETA: 21s - loss: 0.1791 - acc: 0.93 - ETA: 21s - loss: 0.1792 - acc: 0.93 - ETA: 21s - loss: 0.1790 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1788 - acc: 0.93 - ETA: 21s - loss: 0.1785 - acc: 0.93 - ETA: 21s - loss: 0.1784 - acc: 0.93 - ETA: 21s - loss: 0.1785 - acc: 0.93 - ETA: 20s - loss: 0.1782 - acc: 0.93 - ETA: 20s - loss: 0.1783 - acc: 0.93 - ETA: 20s - loss: 0.1786 - acc: 0.93 - ETA: 20s - loss: 0.1787 - acc: 0.93 - ETA: 20s - loss: 0.1788 - acc: 0.93 - ETA: 20s - loss: 0.1785 - acc: 0.93 - ETA: 20s - loss: 0.1782 - acc: 0.93 - ETA: 20s - loss: 0.1782 - acc: 0.93 - ETA: 20s - loss: 0.1781 - acc: 0.93 - ETA: 20s - loss: 0.1779 - acc: 0.93 - ETA: 20s - loss: 0.1778 - acc: 0.93 - ETA: 20s - loss: 0.1776 - acc: 0.93 - ETA: 20s - loss: 0.1781 - acc: 0.93 - ETA: 20s - loss: 0.1781 - acc: 0.93 - ETA: 19s - loss: 0.1779 - acc: 0.93 - ETA: 19s - loss: 0.1775 - acc: 0.93 - ETA: 19s - loss: 0.1774 - acc: 0.93 - ETA: 19s - loss: 0.1776 - acc: 0.93 - ETA: 19s - loss: 0.1776 - acc: 0.93 - ETA: 19s - loss: 0.1779 - acc: 0.93 - ETA: 19s - loss: 0.1778 - acc: 0.93 - ETA: 19s - loss: 0.1776 - acc: 0.93 - ETA: 19s - loss: 0.1777 - acc: 0.93 - ETA: 19s - loss: 0.1775 - acc: 0.93 - ETA: 19s - loss: 0.1773 - acc: 0.93 - ETA: 19s - loss: 0.1775 - acc: 0.93 - ETA: 19s - loss: 0.1773 - acc: 0.93 - ETA: 19s - loss: 0.1777 - acc: 0.93 - ETA: 19s - loss: 0.1782 - acc: 0.93 - ETA: 18s - loss: 0.1781 - acc: 0.93 - ETA: 18s - loss: 0.1779 - acc: 0.93 - ETA: 18s - loss: 0.1776 - acc: 0.93 - ETA: 18s - loss: 0.1775 - acc: 0.93 - ETA: 18s - loss: 0.1774 - acc: 0.93 - ETA: 18s - loss: 0.1776 - acc: 0.93 - ETA: 18s - loss: 0.1774 - acc: 0.93 - ETA: 18s - loss: 0.1772 - acc: 0.93 - ETA: 18s - loss: 0.1771 - acc: 0.93 - ETA: 18s - loss: 0.1769 - acc: 0.93 - ETA: 18s - loss: 0.1767 - acc: 0.93 - ETA: 18s - loss: 0.1769 - acc: 0.93 - ETA: 18s - loss: 0.1769 - acc: 0.93 - ETA: 18s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1770 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1764 - acc: 0.93 - ETA: 17s - loss: 0.1765 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1768 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1768 - acc: 0.93 - ETA: 17s - loss: 0.1767 - acc: 0.93 - ETA: 17s - loss: 0.1766 - acc: 0.93 - ETA: 17s - loss: 0.1764 - acc: 0.93 - ETA: 17s - loss: 0.1765 - acc: 0.93 - ETA: 17s - loss: 0.1766 - acc: 0.93 - ETA: 17s - loss: 0.1770 - acc: 0.93 - ETA: 17s - loss: 0.1774 - acc: 0.93 - ETA: 16s - loss: 0.1772 - acc: 0.93 - ETA: 16s - loss: 0.1775 - acc: 0.93 - ETA: 16s - loss: 0.1777 - acc: 0.93 - ETA: 16s - loss: 0.1778 - acc: 0.93 - ETA: 16s - loss: 0.1778 - acc: 0.93 - ETA: 16s - loss: 0.1777 - acc: 0.93 - ETA: 16s - loss: 0.1778 - acc: 0.93 - ETA: 16s - loss: 0.1776 - acc: 0.93 - ETA: 16s - loss: 0.1783 - acc: 0.93 - ETA: 16s - loss: 0.1780 - acc: 0.93 - ETA: 16s - loss: 0.1781 - acc: 0.93 - ETA: 16s - loss: 0.1782 - acc: 0.93 - ETA: 16s - loss: 0.1780 - acc: 0.93 - ETA: 16s - loss: 0.1777 - acc: 0.93 - ETA: 15s - loss: 0.1780 - acc: 0.93 - ETA: 15s - loss: 0.1778 - acc: 0.93 - ETA: 15s - loss: 0.1780 - acc: 0.93 - ETA: 15s - loss: 0.1784 - acc: 0.93 - ETA: 15s - loss: 0.1783 - acc: 0.93 - ETA: 15s - loss: 0.1781 - acc: 0.93 - ETA: 15s - loss: 0.1785 - acc: 0.93 - ETA: 15s - loss: 0.1789 - acc: 0.93 - ETA: 15s - loss: 0.1788 - acc: 0.93 - ETA: 15s - loss: 0.1786 - acc: 0.93 - ETA: 15s - loss: 0.1785 - acc: 0.93 - ETA: 15s - loss: 0.1784 - acc: 0.93 - ETA: 15s - loss: 0.1786 - acc: 0.93 - ETA: 15s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1786 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1789 - acc: 0.93 - ETA: 14s - loss: 0.1787 - acc: 0.93 - ETA: 14s - loss: 0.1786 - acc: 0.93 - ETA: 14s - loss: 0.1784 - acc: 0.93 - ETA: 14s - loss: 0.1783 - acc: 0.93 - ETA: 14s - loss: 0.1789 - acc: 0.93 - ETA: 14s - loss: 0.1790 - acc: 0.93 - ETA: 14s - loss: 0.1789 - acc: 0.93 - ETA: 14s - loss: 0.1786 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 14s - loss: 0.1785 - acc: 0.93 - ETA: 13s - loss: 0.1789 - acc: 0.93 - ETA: 13s - loss: 0.1788 - acc: 0.93 - ETA: 13s - loss: 0.1787 - acc: 0.93 - ETA: 13s - loss: 0.1784 - acc: 0.93 - ETA: 13s - loss: 0.1781 - acc: 0.93 - ETA: 13s - loss: 0.1783 - acc: 0.93 - ETA: 13s - loss: 0.1781 - acc: 0.93 - ETA: 13s - loss: 0.1783 - acc: 0.93 - ETA: 13s - loss: 0.1782 - acc: 0.93 - ETA: 13s - loss: 0.1783 - acc: 0.93 - ETA: 13s - loss: 0.1784 - acc: 0.93 - ETA: 13s - loss: 0.1785 - acc: 0.93 - ETA: 13s - loss: 0.1784 - acc: 0.93 - ETA: 13s - loss: 0.1788 - acc: 0.93 - ETA: 12s - loss: 0.1786 - acc: 0.93 - ETA: 12s - loss: 0.1785 - acc: 0.93 - ETA: 12s - loss: 0.1783 - acc: 0.93 - ETA: 12s - loss: 0.1781 - acc: 0.93 - ETA: 12s - loss: 0.1779 - acc: 0.93 - ETA: 12s - loss: 0.1784 - acc: 0.93 - ETA: 12s - loss: 0.1791 - acc: 0.93 - ETA: 12s - loss: 0.1792 - acc: 0.93 - ETA: 12s - loss: 0.1792 - acc: 0.93 - ETA: 12s - loss: 0.1790 - acc: 0.93 - ETA: 12s - loss: 0.1787 - acc: 0.93 - ETA: 12s - loss: 0.1785 - acc: 0.93 - ETA: 12s - loss: 0.1785 - acc: 0.93 - ETA: 12s - loss: 0.1788 - acc: 0.93 - ETA: 11s - loss: 0.1791 - acc: 0.93 - ETA: 11s - loss: 0.1789 - acc: 0.93 - ETA: 11s - loss: 0.1788 - acc: 0.93 - ETA: 11s - loss: 0.1789 - acc: 0.93 - ETA: 11s - loss: 0.1788 - acc: 0.93 - ETA: 11s - loss: 0.1790 - acc: 0.93 - ETA: 11s - loss: 0.1792 - acc: 0.93 - ETA: 11s - loss: 0.1792 - acc: 0.93 - ETA: 11s - loss: 0.1793 - acc: 0.93 - ETA: 11s - loss: 0.1797 - acc: 0.93 - ETA: 11s - loss: 0.1797 - acc: 0.93 - ETA: 11s - loss: 0.1796 - acc: 0.93 - ETA: 11s - loss: 0.1794 - acc: 0.93 - ETA: 11s - loss: 0.1795 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1796 - acc: 0.93 - ETA: 10s - loss: 0.1798 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1796 - acc: 0.93 - ETA: 10s - loss: 0.1795 - acc: 0.93 - ETA: 10s - loss: 0.1794 - acc: 0.93 - ETA: 10s - loss: 0.1794 - acc: 0.93 - ETA: 10s - loss: 0.1793 - acc: 0.93 - ETA: 10s - loss: 0.1796 - acc: 0.93 - ETA: 10s - loss: 0.1797 - acc: 0.93 - ETA: 10s - loss: 0.1795 - acc: 0.93 - ETA: 9s - loss: 0.1793 - acc: 0.9350 - ETA: 9s - loss: 0.1791 - acc: 0.935 - ETA: 9s - loss: 0.1790 - acc: 0.935 - ETA: 9s - loss: 0.1788 - acc: 0.935 - ETA: 9s - loss: 0.1790 - acc: 0.935 - ETA: 9s - loss: 0.1789 - acc: 0.935 - ETA: 9s - loss: 0.1789 - acc: 0.934 - ETA: 9s - loss: 0.1791 - acc: 0.934 - ETA: 9s - loss: 0.1793 - acc: 0.934 - ETA: 9s - loss: 0.1793 - acc: 0.934 - ETA: 9s - loss: 0.1793 - acc: 0.934 - ETA: 9s - loss: 0.1792 - acc: 0.934 - ETA: 9s - loss: 0.1790 - acc: 0.934 - ETA: 9s - loss: 0.1789 - acc: 0.934 - ETA: 8s - loss: 0.1790 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1792 - acc: 0.934 - ETA: 8s - loss: 0.1791 - acc: 0.934 - ETA: 8s - loss: 0.1791 - acc: 0.934 - ETA: 8s - loss: 0.1792 - acc: 0.934 - ETA: 8s - loss: 0.1795 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 8s - loss: 0.1794 - acc: 0.934 - ETA: 7s - loss: 0.1791 - acc: 0.934 - ETA: 7s - loss: 0.1790 - acc: 0.934 - ETA: 7s - loss: 0.1788 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1791 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1793 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1792 - acc: 0.935 - ETA: 7s - loss: 0.1794 - acc: 0.935 - ETA: 7s - loss: 0.1795 - acc: 0.935 - ETA: 7s - loss: 0.1794 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.9352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1799 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1794 - acc: 0.935 - ETA: 6s - loss: 0.1795 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1797 - acc: 0.935 - ETA: 6s - loss: 0.1795 - acc: 0.935 - ETA: 6s - loss: 0.1796 - acc: 0.935 - ETA: 6s - loss: 0.1796 - acc: 0.935 - ETA: 6s - loss: 0.1798 - acc: 0.935 - ETA: 5s - loss: 0.1799 - acc: 0.934 - ETA: 5s - loss: 0.1799 - acc: 0.934 - ETA: 5s - loss: 0.1798 - acc: 0.934 - ETA: 5s - loss: 0.1797 - acc: 0.935 - ETA: 5s - loss: 0.1798 - acc: 0.935 - ETA: 5s - loss: 0.1795 - acc: 0.935 - ETA: 5s - loss: 0.1794 - acc: 0.935 - ETA: 5s - loss: 0.1795 - acc: 0.935 - ETA: 5s - loss: 0.1795 - acc: 0.935 - ETA: 5s - loss: 0.1793 - acc: 0.935 - ETA: 5s - loss: 0.1793 - acc: 0.935 - ETA: 5s - loss: 0.1793 - acc: 0.935 - ETA: 5s - loss: 0.1792 - acc: 0.935 - ETA: 5s - loss: 0.1794 - acc: 0.935 - ETA: 4s - loss: 0.1797 - acc: 0.935 - ETA: 4s - loss: 0.1795 - acc: 0.935 - ETA: 4s - loss: 0.1795 - acc: 0.935 - ETA: 4s - loss: 0.1793 - acc: 0.935 - ETA: 4s - loss: 0.1791 - acc: 0.935 - ETA: 4s - loss: 0.1790 - acc: 0.935 - ETA: 4s - loss: 0.1789 - acc: 0.935 - ETA: 4s - loss: 0.1791 - acc: 0.935 - ETA: 4s - loss: 0.1792 - acc: 0.935 - ETA: 4s - loss: 0.1793 - acc: 0.935 - ETA: 4s - loss: 0.1794 - acc: 0.935 - ETA: 4s - loss: 0.1793 - acc: 0.935 - ETA: 4s - loss: 0.1791 - acc: 0.935 - ETA: 4s - loss: 0.1795 - acc: 0.935 - ETA: 3s - loss: 0.1795 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1794 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1794 - acc: 0.935 - ETA: 3s - loss: 0.1799 - acc: 0.935 - ETA: 3s - loss: 0.1798 - acc: 0.935 - ETA: 3s - loss: 0.1797 - acc: 0.935 - ETA: 3s - loss: 0.1796 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 3s - loss: 0.1791 - acc: 0.935 - ETA: 3s - loss: 0.1789 - acc: 0.935 - ETA: 3s - loss: 0.1793 - acc: 0.935 - ETA: 2s - loss: 0.1794 - acc: 0.935 - ETA: 2s - loss: 0.1794 - acc: 0.935 - ETA: 2s - loss: 0.1791 - acc: 0.935 - ETA: 2s - loss: 0.1796 - acc: 0.935 - ETA: 2s - loss: 0.1797 - acc: 0.935 - ETA: 2s - loss: 0.1795 - acc: 0.935 - ETA: 2s - loss: 0.1795 - acc: 0.935 - ETA: 2s - loss: 0.1795 - acc: 0.935 - ETA: 2s - loss: 0.1796 - acc: 0.935 - ETA: 2s - loss: 0.1794 - acc: 0.935 - ETA: 2s - loss: 0.1792 - acc: 0.935 - ETA: 2s - loss: 0.1791 - acc: 0.935 - ETA: 2s - loss: 0.1790 - acc: 0.935 - ETA: 2s - loss: 0.1791 - acc: 0.935 - ETA: 1s - loss: 0.1790 - acc: 0.935 - ETA: 1s - loss: 0.1788 - acc: 0.935 - ETA: 1s - loss: 0.1789 - acc: 0.935 - ETA: 1s - loss: 0.1792 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1797 - acc: 0.935 - ETA: 1s - loss: 0.1795 - acc: 0.935 - ETA: 1s - loss: 0.1794 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1797 - acc: 0.935 - ETA: 1s - loss: 0.1796 - acc: 0.935 - ETA: 1s - loss: 0.1799 - acc: 0.935 - ETA: 0s - loss: 0.1796 - acc: 0.935 - ETA: 0s - loss: 0.1796 - acc: 0.935 - ETA: 0s - loss: 0.1795 - acc: 0.935 - ETA: 0s - loss: 0.1793 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1792 - acc: 0.935 - ETA: 0s - loss: 0.1793 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1793 - acc: 0.935 - ETA: 0s - loss: 0.1794 - acc: 0.935 - ETA: 0s - loss: 0.1798 - acc: 0.935 - ETA: 0s - loss: 0.1798 - acc: 0.935 - 54s 2ms/step - loss: 0.1797 - acc: 0.9357 - val_loss: 0.1647 - val_acc: 0.9432\n", + "\n", + "Epoch 00008: val_acc improved from 0.93487 to 0.94320, saving model to models\\conv.model\n", + "Epoch 9/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 1:00 - loss: 0.0242 - acc: 1.000 - ETA: 1:00 - loss: 0.0351 - acc: 1.000 - ETA: 1:01 - loss: 0.0862 - acc: 0.979 - ETA: 1:00 - loss: 0.0825 - acc: 0.976 - ETA: 58s - loss: 0.1175 - acc: 0.962 - ETA: 58s - loss: 0.1339 - acc: 0.95 - ETA: 57s - loss: 0.1590 - acc: 0.94 - ETA: 57s - loss: 0.1773 - acc: 0.93 - ETA: 56s - loss: 0.2020 - acc: 0.93 - ETA: 55s - loss: 0.2024 - acc: 0.93 - ETA: 55s - loss: 0.1880 - acc: 0.93 - ETA: 54s - loss: 0.1874 - acc: 0.93 - ETA: 54s - loss: 0.1978 - acc: 0.93 - ETA: 53s - loss: 0.2021 - acc: 0.93 - ETA: 53s - loss: 0.2156 - acc: 0.92 - ETA: 53s - loss: 0.2113 - acc: 0.92 - ETA: 53s - loss: 0.2003 - acc: 0.93 - ETA: 53s - loss: 0.1954 - acc: 0.93 - ETA: 52s - loss: 0.2007 - acc: 0.92 - ETA: 52s - loss: 0.1961 - acc: 0.92 - ETA: 52s - loss: 0.1992 - acc: 0.92 - ETA: 52s - loss: 0.1934 - acc: 0.92 - ETA: 51s - loss: 0.1949 - acc: 0.92 - ETA: 51s - loss: 0.2049 - acc: 0.92 - ETA: 51s - loss: 0.2019 - acc: 0.92 - ETA: 51s - loss: 0.1983 - acc: 0.92 - ETA: 51s - loss: 0.1948 - acc: 0.92 - ETA: 51s - loss: 0.1965 - acc: 0.92 - ETA: 51s - loss: 0.1977 - acc: 0.92 - ETA: 50s - loss: 0.2050 - acc: 0.92 - ETA: 50s - loss: 0.2033 - acc: 0.92 - ETA: 50s - loss: 0.2078 - acc: 0.92 - ETA: 50s - loss: 0.2097 - acc: 0.92 - ETA: 50s - loss: 0.2045 - acc: 0.92 - ETA: 49s - loss: 0.2055 - acc: 0.92 - ETA: 49s - loss: 0.2051 - acc: 0.92 - ETA: 49s - loss: 0.2045 - acc: 0.92 - ETA: 49s - loss: 0.2002 - acc: 0.92 - ETA: 49s - loss: 0.1969 - acc: 0.93 - ETA: 49s - loss: 0.1941 - acc: 0.93 - ETA: 49s - loss: 0.1916 - acc: 0.93 - ETA: 49s - loss: 0.1935 - acc: 0.93 - ETA: 49s - loss: 0.1932 - acc: 0.93 - ETA: 49s - loss: 0.1904 - acc: 0.93 - ETA: 49s - loss: 0.1892 - acc: 0.93 - ETA: 48s - loss: 0.1876 - acc: 0.93 - ETA: 48s - loss: 0.1879 - acc: 0.93 - ETA: 48s - loss: 0.1886 - acc: 0.93 - ETA: 48s - loss: 0.1890 - acc: 0.93 - ETA: 48s - loss: 0.1873 - acc: 0.93 - ETA: 48s - loss: 0.1861 - acc: 0.93 - ETA: 48s - loss: 0.1840 - acc: 0.93 - ETA: 48s - loss: 0.1845 - acc: 0.93 - ETA: 48s - loss: 0.1821 - acc: 0.93 - ETA: 48s - loss: 0.1837 - acc: 0.93 - ETA: 48s - loss: 0.1828 - acc: 0.93 - ETA: 47s - loss: 0.1807 - acc: 0.93 - ETA: 47s - loss: 0.1791 - acc: 0.93 - ETA: 47s - loss: 0.1769 - acc: 0.93 - ETA: 47s - loss: 0.1773 - acc: 0.93 - ETA: 47s - loss: 0.1777 - acc: 0.93 - ETA: 47s - loss: 0.1771 - acc: 0.93 - ETA: 47s - loss: 0.1753 - acc: 0.93 - ETA: 47s - loss: 0.1755 - acc: 0.93 - ETA: 47s - loss: 0.1760 - acc: 0.93 - ETA: 47s - loss: 0.1771 - acc: 0.93 - ETA: 46s - loss: 0.1791 - acc: 0.93 - ETA: 46s - loss: 0.1773 - acc: 0.93 - ETA: 46s - loss: 0.1762 - acc: 0.93 - ETA: 46s - loss: 0.1766 - acc: 0.93 - ETA: 46s - loss: 0.1785 - acc: 0.93 - ETA: 46s - loss: 0.1789 - acc: 0.93 - ETA: 46s - loss: 0.1774 - acc: 0.93 - ETA: 46s - loss: 0.1755 - acc: 0.93 - ETA: 46s - loss: 0.1771 - acc: 0.93 - ETA: 46s - loss: 0.1764 - acc: 0.93 - ETA: 46s - loss: 0.1767 - acc: 0.93 - ETA: 46s - loss: 0.1779 - acc: 0.93 - ETA: 46s - loss: 0.1774 - acc: 0.93 - ETA: 45s - loss: 0.1773 - acc: 0.93 - ETA: 45s - loss: 0.1779 - acc: 0.93 - ETA: 45s - loss: 0.1769 - acc: 0.93 - ETA: 45s - loss: 0.1755 - acc: 0.93 - ETA: 45s - loss: 0.1745 - acc: 0.93 - ETA: 45s - loss: 0.1732 - acc: 0.93 - ETA: 45s - loss: 0.1724 - acc: 0.93 - ETA: 45s - loss: 0.1757 - acc: 0.93 - ETA: 45s - loss: 0.1747 - acc: 0.93 - ETA: 45s - loss: 0.1738 - acc: 0.93 - ETA: 45s - loss: 0.1748 - acc: 0.93 - ETA: 45s - loss: 0.1772 - acc: 0.93 - ETA: 45s - loss: 0.1775 - acc: 0.93 - ETA: 44s - loss: 0.1758 - acc: 0.93 - ETA: 44s - loss: 0.1744 - acc: 0.93 - ETA: 44s - loss: 0.1742 - acc: 0.93 - ETA: 44s - loss: 0.1770 - acc: 0.93 - ETA: 44s - loss: 0.1783 - acc: 0.93 - ETA: 44s - loss: 0.1780 - acc: 0.93 - ETA: 44s - loss: 0.1769 - acc: 0.93 - ETA: 44s - loss: 0.1765 - acc: 0.93 - ETA: 44s - loss: 0.1767 - acc: 0.93 - ETA: 44s - loss: 0.1767 - acc: 0.93 - ETA: 44s - loss: 0.1756 - acc: 0.93 - ETA: 44s - loss: 0.1764 - acc: 0.93 - ETA: 44s - loss: 0.1766 - acc: 0.93 - ETA: 44s - loss: 0.1758 - acc: 0.93 - ETA: 44s - loss: 0.1761 - acc: 0.93 - ETA: 43s - loss: 0.1754 - acc: 0.93 - ETA: 43s - loss: 0.1744 - acc: 0.93 - ETA: 43s - loss: 0.1744 - acc: 0.93 - ETA: 43s - loss: 0.1764 - acc: 0.93 - ETA: 43s - loss: 0.1761 - acc: 0.93 - ETA: 43s - loss: 0.1757 - acc: 0.93 - ETA: 43s - loss: 0.1775 - acc: 0.93 - ETA: 43s - loss: 0.1770 - acc: 0.93 - ETA: 43s - loss: 0.1776 - acc: 0.93 - ETA: 43s - loss: 0.1782 - acc: 0.93 - ETA: 43s - loss: 0.1789 - acc: 0.93 - ETA: 43s - loss: 0.1784 - acc: 0.93 - ETA: 42s - loss: 0.1795 - acc: 0.93 - ETA: 42s - loss: 0.1798 - acc: 0.93 - ETA: 42s - loss: 0.1797 - acc: 0.93 - ETA: 42s - loss: 0.1798 - acc: 0.93 - ETA: 42s - loss: 0.1796 - acc: 0.93 - ETA: 42s - loss: 0.1794 - acc: 0.93 - ETA: 42s - loss: 0.1791 - acc: 0.93 - ETA: 42s - loss: 0.1787 - acc: 0.93 - ETA: 42s - loss: 0.1797 - acc: 0.93 - ETA: 42s - loss: 0.1788 - acc: 0.93 - ETA: 42s - loss: 0.1781 - acc: 0.93 - ETA: 42s - loss: 0.1772 - acc: 0.93 - ETA: 42s - loss: 0.1776 - acc: 0.93 - ETA: 42s - loss: 0.1789 - acc: 0.93 - ETA: 42s - loss: 0.1782 - acc: 0.93 - ETA: 41s - loss: 0.1780 - acc: 0.93 - ETA: 41s - loss: 0.1788 - acc: 0.93 - ETA: 41s - loss: 0.1794 - acc: 0.93 - ETA: 41s - loss: 0.1785 - acc: 0.93 - ETA: 41s - loss: 0.1780 - acc: 0.93 - ETA: 41s - loss: 0.1772 - acc: 0.93 - ETA: 41s - loss: 0.1769 - acc: 0.93 - ETA: 41s - loss: 0.1764 - acc: 0.93 - ETA: 41s - loss: 0.1755 - acc: 0.93 - ETA: 41s - loss: 0.1760 - acc: 0.93 - ETA: 41s - loss: 0.1764 - acc: 0.93 - ETA: 41s - loss: 0.1757 - acc: 0.93 - ETA: 41s - loss: 0.1752 - acc: 0.93 - ETA: 41s - loss: 0.1753 - acc: 0.93 - ETA: 41s - loss: 0.1747 - acc: 0.93 - ETA: 40s - loss: 0.1744 - acc: 0.93 - ETA: 40s - loss: 0.1749 - acc: 0.93 - ETA: 40s - loss: 0.1752 - acc: 0.93 - ETA: 40s - loss: 0.1750 - acc: 0.93 - ETA: 40s - loss: 0.1746 - acc: 0.93 - ETA: 40s - loss: 0.1742 - acc: 0.93 - ETA: 40s - loss: 0.1735 - acc: 0.93 - ETA: 40s - loss: 0.1732 - acc: 0.93 - ETA: 40s - loss: 0.1730 - acc: 0.93 - ETA: 40s - loss: 0.1738 - acc: 0.93 - ETA: 40s - loss: 0.1742 - acc: 0.93 - ETA: 40s - loss: 0.1742 - acc: 0.93 - ETA: 40s - loss: 0.1739 - acc: 0.93 - ETA: 40s - loss: 0.1744 - acc: 0.93 - ETA: 39s - loss: 0.1740 - acc: 0.93 - ETA: 39s - loss: 0.1735 - acc: 0.93 - ETA: 39s - loss: 0.1731 - acc: 0.93 - ETA: 39s - loss: 0.1722 - acc: 0.93 - ETA: 39s - loss: 0.1726 - acc: 0.93 - ETA: 39s - loss: 0.1725 - acc: 0.93 - ETA: 39s - loss: 0.1719 - acc: 0.93 - ETA: 39s - loss: 0.1710 - acc: 0.93 - ETA: 39s - loss: 0.1711 - acc: 0.93 - ETA: 39s - loss: 0.1703 - acc: 0.93 - ETA: 39s - loss: 0.1695 - acc: 0.94 - ETA: 39s - loss: 0.1693 - acc: 0.94 - ETA: 39s - loss: 0.1697 - acc: 0.94 - ETA: 39s - loss: 0.1700 - acc: 0.94 - ETA: 39s - loss: 0.1695 - acc: 0.94 - ETA: 39s - loss: 0.1698 - acc: 0.94 - ETA: 39s - loss: 0.1699 - acc: 0.94 - ETA: 39s - loss: 0.1695 - acc: 0.94 - ETA: 39s - loss: 0.1690 - acc: 0.94 - ETA: 38s - loss: 0.1699 - acc: 0.94 - ETA: 38s - loss: 0.1703 - acc: 0.94 - ETA: 38s - loss: 0.1706 - acc: 0.94 - ETA: 38s - loss: 0.1705 - acc: 0.94 - ETA: 38s - loss: 0.1699 - acc: 0.94 - ETA: 38s - loss: 0.1699 - acc: 0.94 - ETA: 38s - loss: 0.1694 - acc: 0.94 - ETA: 38s - loss: 0.1689 - acc: 0.94 - ETA: 38s - loss: 0.1686 - acc: 0.94 - ETA: 38s - loss: 0.1683 - acc: 0.94 - ETA: 38s - loss: 0.1687 - acc: 0.94 - ETA: 38s - loss: 0.1683 - acc: 0.94 - ETA: 38s - loss: 0.1676 - acc: 0.94 - ETA: 38s - loss: 0.1674 - acc: 0.94 - ETA: 38s - loss: 0.1677 - acc: 0.94 - ETA: 38s - loss: 0.1679 - acc: 0.94 - ETA: 37s - loss: 0.1677 - acc: 0.94 - ETA: 37s - loss: 0.1681 - acc: 0.94 - ETA: 37s - loss: 0.1693 - acc: 0.94 - ETA: 37s - loss: 0.1696 - acc: 0.94 - ETA: 37s - loss: 0.1701 - acc: 0.94 - ETA: 37s - loss: 0.1695 - acc: 0.94 - ETA: 37s - loss: 0.1692 - acc: 0.94 - ETA: 37s - loss: 0.1691 - acc: 0.94 - ETA: 37s - loss: 0.1690 - acc: 0.94 - ETA: 37s - loss: 0.1690 - acc: 0.94 - ETA: 37s - loss: 0.1689 - acc: 0.94 - ETA: 37s - loss: 0.1686 - acc: 0.94 - ETA: 37s - loss: 0.1683 - acc: 0.94 - ETA: 37s - loss: 0.1682 - acc: 0.94 - ETA: 37s - loss: 0.1679 - acc: 0.94 - ETA: 36s - loss: 0.1678 - acc: 0.94 - ETA: 36s - loss: 0.1672 - acc: 0.9420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 36s - loss: 0.1670 - acc: 0.94 - ETA: 36s - loss: 0.1676 - acc: 0.94 - ETA: 36s - loss: 0.1672 - acc: 0.94 - ETA: 36s - loss: 0.1671 - acc: 0.94 - ETA: 36s - loss: 0.1670 - acc: 0.94 - ETA: 36s - loss: 0.1667 - acc: 0.94 - ETA: 36s - loss: 0.1669 - acc: 0.94 - ETA: 36s - loss: 0.1682 - acc: 0.94 - ETA: 36s - loss: 0.1676 - acc: 0.94 - ETA: 36s - loss: 0.1673 - acc: 0.94 - ETA: 36s - loss: 0.1666 - acc: 0.94 - ETA: 36s - loss: 0.1668 - acc: 0.94 - ETA: 36s - loss: 0.1670 - acc: 0.94 - ETA: 35s - loss: 0.1669 - acc: 0.94 - ETA: 35s - loss: 0.1667 - acc: 0.94 - ETA: 35s - loss: 0.1668 - acc: 0.94 - ETA: 35s - loss: 0.1666 - acc: 0.94 - ETA: 35s - loss: 0.1663 - acc: 0.94 - ETA: 35s - loss: 0.1661 - acc: 0.94 - ETA: 35s - loss: 0.1656 - acc: 0.94 - ETA: 35s - loss: 0.1655 - acc: 0.94 - ETA: 35s - loss: 0.1654 - acc: 0.94 - ETA: 35s - loss: 0.1657 - acc: 0.94 - ETA: 35s - loss: 0.1653 - acc: 0.94 - ETA: 35s - loss: 0.1648 - acc: 0.94 - ETA: 35s - loss: 0.1646 - acc: 0.94 - ETA: 35s - loss: 0.1641 - acc: 0.94 - ETA: 35s - loss: 0.1635 - acc: 0.94 - ETA: 35s - loss: 0.1632 - acc: 0.94 - ETA: 34s - loss: 0.1632 - acc: 0.94 - ETA: 34s - loss: 0.1633 - acc: 0.94 - ETA: 34s - loss: 0.1629 - acc: 0.94 - ETA: 34s - loss: 0.1630 - acc: 0.94 - ETA: 34s - loss: 0.1626 - acc: 0.94 - ETA: 34s - loss: 0.1623 - acc: 0.94 - ETA: 34s - loss: 0.1628 - acc: 0.94 - ETA: 34s - loss: 0.1626 - acc: 0.94 - ETA: 34s - loss: 0.1621 - acc: 0.94 - ETA: 34s - loss: 0.1617 - acc: 0.94 - ETA: 34s - loss: 0.1623 - acc: 0.94 - ETA: 34s - loss: 0.1638 - acc: 0.94 - ETA: 34s - loss: 0.1635 - acc: 0.94 - ETA: 34s - loss: 0.1632 - acc: 0.94 - ETA: 34s - loss: 0.1629 - acc: 0.94 - ETA: 34s - loss: 0.1633 - acc: 0.94 - ETA: 33s - loss: 0.1627 - acc: 0.94 - ETA: 33s - loss: 0.1625 - acc: 0.94 - ETA: 33s - loss: 0.1625 - acc: 0.94 - ETA: 33s - loss: 0.1622 - acc: 0.94 - ETA: 33s - loss: 0.1621 - acc: 0.94 - ETA: 33s - loss: 0.1618 - acc: 0.94 - ETA: 33s - loss: 0.1620 - acc: 0.94 - ETA: 33s - loss: 0.1619 - acc: 0.94 - ETA: 33s - loss: 0.1615 - acc: 0.94 - ETA: 33s - loss: 0.1616 - acc: 0.94 - ETA: 33s - loss: 0.1622 - acc: 0.94 - ETA: 33s - loss: 0.1631 - acc: 0.94 - ETA: 33s - loss: 0.1632 - acc: 0.94 - ETA: 33s - loss: 0.1629 - acc: 0.94 - ETA: 33s - loss: 0.1626 - acc: 0.94 - ETA: 33s - loss: 0.1621 - acc: 0.94 - ETA: 33s - loss: 0.1619 - acc: 0.94 - ETA: 32s - loss: 0.1626 - acc: 0.94 - ETA: 32s - loss: 0.1622 - acc: 0.94 - ETA: 32s - loss: 0.1618 - acc: 0.94 - ETA: 32s - loss: 0.1620 - acc: 0.94 - ETA: 32s - loss: 0.1626 - acc: 0.94 - ETA: 32s - loss: 0.1626 - acc: 0.94 - ETA: 32s - loss: 0.1623 - acc: 0.94 - ETA: 32s - loss: 0.1624 - acc: 0.94 - ETA: 32s - loss: 0.1623 - acc: 0.94 - ETA: 32s - loss: 0.1622 - acc: 0.94 - ETA: 32s - loss: 0.1618 - acc: 0.94 - ETA: 32s - loss: 0.1615 - acc: 0.94 - ETA: 32s - loss: 0.1615 - acc: 0.94 - ETA: 31s - loss: 0.1616 - acc: 0.94 - ETA: 31s - loss: 0.1613 - acc: 0.94 - ETA: 31s - loss: 0.1622 - acc: 0.94 - ETA: 31s - loss: 0.1634 - acc: 0.94 - ETA: 31s - loss: 0.1639 - acc: 0.94 - ETA: 31s - loss: 0.1634 - acc: 0.94 - ETA: 31s - loss: 0.1634 - acc: 0.94 - ETA: 31s - loss: 0.1631 - acc: 0.94 - ETA: 31s - loss: 0.1627 - acc: 0.94 - ETA: 31s - loss: 0.1627 - acc: 0.94 - ETA: 31s - loss: 0.1623 - acc: 0.94 - ETA: 31s - loss: 0.1629 - acc: 0.94 - ETA: 31s - loss: 0.1627 - acc: 0.94 - ETA: 31s - loss: 0.1626 - acc: 0.94 - ETA: 30s - loss: 0.1629 - acc: 0.94 - ETA: 30s - loss: 0.1628 - acc: 0.94 - ETA: 30s - loss: 0.1642 - acc: 0.94 - ETA: 30s - loss: 0.1639 - acc: 0.94 - ETA: 30s - loss: 0.1638 - acc: 0.94 - ETA: 30s - loss: 0.1635 - acc: 0.94 - ETA: 30s - loss: 0.1632 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1631 - acc: 0.94 - ETA: 30s - loss: 0.1636 - acc: 0.94 - ETA: 30s - loss: 0.1639 - acc: 0.94 - ETA: 30s - loss: 0.1643 - acc: 0.94 - ETA: 29s - loss: 0.1644 - acc: 0.94 - ETA: 29s - loss: 0.1639 - acc: 0.94 - ETA: 29s - loss: 0.1639 - acc: 0.94 - ETA: 29s - loss: 0.1639 - acc: 0.94 - ETA: 29s - loss: 0.1650 - acc: 0.94 - ETA: 29s - loss: 0.1646 - acc: 0.94 - ETA: 29s - loss: 0.1642 - acc: 0.94 - ETA: 29s - loss: 0.1638 - acc: 0.94 - ETA: 29s - loss: 0.1637 - acc: 0.94 - ETA: 29s - loss: 0.1643 - acc: 0.94 - ETA: 29s - loss: 0.1642 - acc: 0.94 - ETA: 29s - loss: 0.1642 - acc: 0.94 - ETA: 29s - loss: 0.1646 - acc: 0.94 - ETA: 28s - loss: 0.1646 - acc: 0.94 - ETA: 28s - loss: 0.1648 - acc: 0.94 - ETA: 28s - loss: 0.1645 - acc: 0.94 - ETA: 28s - loss: 0.1644 - acc: 0.94 - ETA: 28s - loss: 0.1649 - acc: 0.94 - ETA: 28s - loss: 0.1648 - acc: 0.94 - ETA: 28s - loss: 0.1654 - acc: 0.94 - ETA: 28s - loss: 0.1654 - acc: 0.94 - ETA: 28s - loss: 0.1657 - acc: 0.94 - ETA: 28s - loss: 0.1657 - acc: 0.94 - ETA: 28s - loss: 0.1656 - acc: 0.94 - ETA: 28s - loss: 0.1656 - acc: 0.94 - ETA: 28s - loss: 0.1655 - acc: 0.94 - ETA: 28s - loss: 0.1655 - acc: 0.94 - ETA: 27s - loss: 0.1655 - acc: 0.94 - ETA: 27s - loss: 0.1656 - acc: 0.94 - ETA: 27s - loss: 0.1654 - acc: 0.94 - ETA: 27s - loss: 0.1657 - acc: 0.94 - ETA: 27s - loss: 0.1654 - acc: 0.94 - ETA: 27s - loss: 0.1659 - acc: 0.94 - ETA: 27s - loss: 0.1663 - acc: 0.94 - ETA: 27s - loss: 0.1663 - acc: 0.94 - ETA: 27s - loss: 0.1668 - acc: 0.94 - ETA: 27s - loss: 0.1668 - acc: 0.94 - ETA: 27s - loss: 0.1671 - acc: 0.94 - ETA: 27s - loss: 0.1674 - acc: 0.94 - ETA: 27s - loss: 0.1679 - acc: 0.94 - ETA: 27s - loss: 0.1679 - acc: 0.94 - ETA: 27s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1672 - acc: 0.94 - ETA: 26s - loss: 0.1674 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1680 - acc: 0.94 - ETA: 26s - loss: 0.1682 - acc: 0.94 - ETA: 26s - loss: 0.1683 - acc: 0.94 - ETA: 26s - loss: 0.1681 - acc: 0.94 - ETA: 26s - loss: 0.1679 - acc: 0.94 - ETA: 26s - loss: 0.1676 - acc: 0.94 - ETA: 26s - loss: 0.1672 - acc: 0.94 - ETA: 26s - loss: 0.1669 - acc: 0.94 - ETA: 26s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1665 - acc: 0.94 - ETA: 25s - loss: 0.1665 - acc: 0.94 - ETA: 25s - loss: 0.1675 - acc: 0.94 - ETA: 25s - loss: 0.1672 - acc: 0.94 - ETA: 25s - loss: 0.1669 - acc: 0.94 - ETA: 25s - loss: 0.1666 - acc: 0.94 - ETA: 25s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1666 - acc: 0.94 - ETA: 25s - loss: 0.1669 - acc: 0.94 - ETA: 25s - loss: 0.1668 - acc: 0.94 - ETA: 25s - loss: 0.1666 - acc: 0.94 - ETA: 25s - loss: 0.1664 - acc: 0.94 - ETA: 25s - loss: 0.1664 - acc: 0.94 - ETA: 24s - loss: 0.1666 - acc: 0.94 - ETA: 24s - loss: 0.1662 - acc: 0.94 - ETA: 24s - loss: 0.1660 - acc: 0.94 - ETA: 24s - loss: 0.1658 - acc: 0.94 - ETA: 24s - loss: 0.1658 - acc: 0.94 - ETA: 24s - loss: 0.1664 - acc: 0.94 - ETA: 24s - loss: 0.1661 - acc: 0.94 - ETA: 24s - loss: 0.1657 - acc: 0.94 - ETA: 24s - loss: 0.1657 - acc: 0.94 - ETA: 24s - loss: 0.1667 - acc: 0.94 - ETA: 24s - loss: 0.1667 - acc: 0.94 - ETA: 24s - loss: 0.1665 - acc: 0.94 - ETA: 24s - loss: 0.1665 - acc: 0.94 - ETA: 24s - loss: 0.1663 - acc: 0.94 - ETA: 23s - loss: 0.1663 - acc: 0.94 - ETA: 23s - loss: 0.1664 - acc: 0.94 - ETA: 23s - loss: 0.1662 - acc: 0.94 - ETA: 23s - loss: 0.1659 - acc: 0.94 - ETA: 23s - loss: 0.1656 - acc: 0.94 - ETA: 23s - loss: 0.1656 - acc: 0.94 - ETA: 23s - loss: 0.1654 - acc: 0.94 - ETA: 23s - loss: 0.1654 - acc: 0.94 - ETA: 23s - loss: 0.1651 - acc: 0.94 - ETA: 23s - loss: 0.1649 - acc: 0.94 - ETA: 23s - loss: 0.1647 - acc: 0.94 - ETA: 23s - loss: 0.1649 - acc: 0.94 - ETA: 23s - loss: 0.1646 - acc: 0.94 - ETA: 23s - loss: 0.1644 - acc: 0.94 - ETA: 22s - loss: 0.1645 - acc: 0.94 - ETA: 22s - loss: 0.1644 - acc: 0.94 - ETA: 22s - loss: 0.1641 - acc: 0.94 - ETA: 22s - loss: 0.1645 - acc: 0.94 - ETA: 22s - loss: 0.1645 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1641 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1640 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1643 - acc: 0.94 - ETA: 22s - loss: 0.1641 - acc: 0.94 - ETA: 22s - loss: 0.1640 - acc: 0.94 - ETA: 22s - loss: 0.1637 - acc: 0.9432" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 21s - loss: 0.1643 - acc: 0.94 - ETA: 21s - loss: 0.1646 - acc: 0.94 - ETA: 21s - loss: 0.1644 - acc: 0.94 - ETA: 21s - loss: 0.1641 - acc: 0.94 - ETA: 21s - loss: 0.1640 - acc: 0.94 - ETA: 21s - loss: 0.1639 - acc: 0.94 - ETA: 21s - loss: 0.1637 - acc: 0.94 - ETA: 21s - loss: 0.1634 - acc: 0.94 - ETA: 21s - loss: 0.1634 - acc: 0.94 - ETA: 21s - loss: 0.1638 - acc: 0.94 - ETA: 21s - loss: 0.1640 - acc: 0.94 - ETA: 21s - loss: 0.1641 - acc: 0.94 - ETA: 21s - loss: 0.1641 - acc: 0.94 - ETA: 21s - loss: 0.1638 - acc: 0.94 - ETA: 21s - loss: 0.1639 - acc: 0.94 - ETA: 20s - loss: 0.1637 - acc: 0.94 - ETA: 20s - loss: 0.1637 - acc: 0.94 - ETA: 20s - loss: 0.1637 - acc: 0.94 - ETA: 20s - loss: 0.1635 - acc: 0.94 - ETA: 20s - loss: 0.1634 - acc: 0.94 - ETA: 20s - loss: 0.1633 - acc: 0.94 - ETA: 20s - loss: 0.1633 - acc: 0.94 - ETA: 20s - loss: 0.1633 - acc: 0.94 - ETA: 20s - loss: 0.1630 - acc: 0.94 - ETA: 20s - loss: 0.1629 - acc: 0.94 - ETA: 20s - loss: 0.1631 - acc: 0.94 - ETA: 20s - loss: 0.1630 - acc: 0.94 - ETA: 20s - loss: 0.1629 - acc: 0.94 - ETA: 20s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1637 - acc: 0.94 - ETA: 19s - loss: 0.1635 - acc: 0.94 - ETA: 19s - loss: 0.1638 - acc: 0.94 - ETA: 19s - loss: 0.1639 - acc: 0.94 - ETA: 19s - loss: 0.1636 - acc: 0.94 - ETA: 19s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1634 - acc: 0.94 - ETA: 19s - loss: 0.1636 - acc: 0.94 - ETA: 19s - loss: 0.1633 - acc: 0.94 - ETA: 19s - loss: 0.1633 - acc: 0.94 - ETA: 19s - loss: 0.1633 - acc: 0.94 - ETA: 19s - loss: 0.1631 - acc: 0.94 - ETA: 19s - loss: 0.1631 - acc: 0.94 - ETA: 19s - loss: 0.1630 - acc: 0.94 - ETA: 18s - loss: 0.1631 - acc: 0.94 - ETA: 18s - loss: 0.1630 - acc: 0.94 - ETA: 18s - loss: 0.1632 - acc: 0.94 - ETA: 18s - loss: 0.1630 - acc: 0.94 - ETA: 18s - loss: 0.1629 - acc: 0.94 - ETA: 18s - loss: 0.1627 - acc: 0.94 - ETA: 18s - loss: 0.1627 - acc: 0.94 - ETA: 18s - loss: 0.1626 - acc: 0.94 - ETA: 18s - loss: 0.1625 - acc: 0.94 - ETA: 18s - loss: 0.1623 - acc: 0.94 - ETA: 18s - loss: 0.1620 - acc: 0.94 - ETA: 18s - loss: 0.1622 - acc: 0.94 - ETA: 18s - loss: 0.1620 - acc: 0.94 - ETA: 18s - loss: 0.1620 - acc: 0.94 - ETA: 17s - loss: 0.1620 - acc: 0.94 - ETA: 17s - loss: 0.1618 - acc: 0.94 - ETA: 17s - loss: 0.1615 - acc: 0.94 - ETA: 17s - loss: 0.1614 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1612 - acc: 0.94 - ETA: 17s - loss: 0.1610 - acc: 0.94 - ETA: 17s - loss: 0.1609 - acc: 0.94 - ETA: 17s - loss: 0.1609 - acc: 0.94 - ETA: 17s - loss: 0.1610 - acc: 0.94 - ETA: 17s - loss: 0.1611 - acc: 0.94 - ETA: 17s - loss: 0.1610 - acc: 0.94 - ETA: 16s - loss: 0.1609 - acc: 0.94 - ETA: 16s - loss: 0.1608 - acc: 0.94 - ETA: 16s - loss: 0.1606 - acc: 0.94 - ETA: 16s - loss: 0.1605 - acc: 0.94 - ETA: 16s - loss: 0.1606 - acc: 0.94 - ETA: 16s - loss: 0.1607 - acc: 0.94 - ETA: 16s - loss: 0.1611 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1611 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1610 - acc: 0.94 - ETA: 16s - loss: 0.1612 - acc: 0.94 - ETA: 16s - loss: 0.1610 - acc: 0.94 - ETA: 15s - loss: 0.1608 - acc: 0.94 - ETA: 15s - loss: 0.1609 - acc: 0.94 - ETA: 15s - loss: 0.1609 - acc: 0.94 - ETA: 15s - loss: 0.1609 - acc: 0.94 - ETA: 15s - loss: 0.1614 - acc: 0.94 - ETA: 15s - loss: 0.1617 - acc: 0.94 - ETA: 15s - loss: 0.1621 - acc: 0.94 - ETA: 15s - loss: 0.1625 - acc: 0.94 - ETA: 15s - loss: 0.1626 - acc: 0.94 - ETA: 15s - loss: 0.1623 - acc: 0.94 - ETA: 15s - loss: 0.1626 - acc: 0.94 - ETA: 15s - loss: 0.1626 - acc: 0.94 - ETA: 15s - loss: 0.1631 - acc: 0.94 - ETA: 15s - loss: 0.1631 - acc: 0.94 - ETA: 15s - loss: 0.1631 - acc: 0.94 - ETA: 14s - loss: 0.1630 - acc: 0.94 - ETA: 14s - loss: 0.1631 - acc: 0.94 - ETA: 14s - loss: 0.1634 - acc: 0.94 - ETA: 14s - loss: 0.1634 - acc: 0.94 - ETA: 14s - loss: 0.1632 - acc: 0.94 - ETA: 14s - loss: 0.1630 - acc: 0.94 - ETA: 14s - loss: 0.1630 - acc: 0.94 - ETA: 14s - loss: 0.1628 - acc: 0.94 - ETA: 14s - loss: 0.1628 - acc: 0.94 - ETA: 14s - loss: 0.1628 - acc: 0.94 - ETA: 14s - loss: 0.1627 - acc: 0.94 - ETA: 14s - loss: 0.1629 - acc: 0.94 - ETA: 14s - loss: 0.1629 - acc: 0.94 - ETA: 14s - loss: 0.1627 - acc: 0.94 - ETA: 13s - loss: 0.1628 - acc: 0.94 - ETA: 13s - loss: 0.1633 - acc: 0.94 - ETA: 13s - loss: 0.1631 - acc: 0.94 - ETA: 13s - loss: 0.1632 - acc: 0.94 - ETA: 13s - loss: 0.1637 - acc: 0.94 - ETA: 13s - loss: 0.1638 - acc: 0.94 - ETA: 13s - loss: 0.1636 - acc: 0.94 - ETA: 13s - loss: 0.1637 - acc: 0.94 - ETA: 13s - loss: 0.1638 - acc: 0.94 - ETA: 13s - loss: 0.1643 - acc: 0.94 - ETA: 13s - loss: 0.1645 - acc: 0.94 - ETA: 13s - loss: 0.1643 - acc: 0.94 - ETA: 13s - loss: 0.1645 - acc: 0.94 - ETA: 13s - loss: 0.1646 - acc: 0.94 - ETA: 12s - loss: 0.1648 - acc: 0.94 - ETA: 12s - loss: 0.1648 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1651 - acc: 0.94 - ETA: 12s - loss: 0.1650 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1652 - acc: 0.94 - ETA: 12s - loss: 0.1655 - acc: 0.94 - ETA: 12s - loss: 0.1657 - acc: 0.94 - ETA: 12s - loss: 0.1658 - acc: 0.94 - ETA: 12s - loss: 0.1659 - acc: 0.94 - ETA: 12s - loss: 0.1660 - acc: 0.94 - ETA: 12s - loss: 0.1659 - acc: 0.94 - ETA: 11s - loss: 0.1659 - acc: 0.94 - ETA: 11s - loss: 0.1657 - acc: 0.94 - ETA: 11s - loss: 0.1660 - acc: 0.94 - ETA: 11s - loss: 0.1663 - acc: 0.94 - ETA: 11s - loss: 0.1661 - acc: 0.94 - ETA: 11s - loss: 0.1663 - acc: 0.94 - ETA: 11s - loss: 0.1665 - acc: 0.94 - ETA: 11s - loss: 0.1666 - acc: 0.94 - ETA: 11s - loss: 0.1665 - acc: 0.94 - ETA: 11s - loss: 0.1664 - acc: 0.94 - ETA: 11s - loss: 0.1662 - acc: 0.94 - ETA: 11s - loss: 0.1660 - acc: 0.94 - ETA: 11s - loss: 0.1661 - acc: 0.94 - ETA: 11s - loss: 0.1660 - acc: 0.94 - ETA: 10s - loss: 0.1659 - acc: 0.94 - ETA: 10s - loss: 0.1659 - acc: 0.94 - ETA: 10s - loss: 0.1658 - acc: 0.94 - ETA: 10s - loss: 0.1657 - acc: 0.94 - ETA: 10s - loss: 0.1655 - acc: 0.94 - ETA: 10s - loss: 0.1654 - acc: 0.94 - ETA: 10s - loss: 0.1656 - acc: 0.94 - ETA: 10s - loss: 0.1657 - acc: 0.94 - ETA: 10s - loss: 0.1657 - acc: 0.94 - ETA: 10s - loss: 0.1655 - acc: 0.94 - ETA: 10s - loss: 0.1653 - acc: 0.94 - ETA: 10s - loss: 0.1653 - acc: 0.94 - ETA: 10s - loss: 0.1652 - acc: 0.94 - ETA: 10s - loss: 0.1653 - acc: 0.94 - ETA: 9s - loss: 0.1654 - acc: 0.9428 - ETA: 9s - loss: 0.1653 - acc: 0.942 - ETA: 9s - loss: 0.1652 - acc: 0.942 - ETA: 9s - loss: 0.1651 - acc: 0.942 - ETA: 9s - loss: 0.1649 - acc: 0.943 - ETA: 9s - loss: 0.1647 - acc: 0.942 - ETA: 9s - loss: 0.1649 - acc: 0.942 - ETA: 9s - loss: 0.1648 - acc: 0.942 - ETA: 9s - loss: 0.1647 - acc: 0.942 - ETA: 9s - loss: 0.1647 - acc: 0.943 - ETA: 9s - loss: 0.1647 - acc: 0.942 - ETA: 9s - loss: 0.1649 - acc: 0.942 - ETA: 9s - loss: 0.1652 - acc: 0.942 - ETA: 9s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1656 - acc: 0.942 - ETA: 8s - loss: 0.1653 - acc: 0.942 - ETA: 8s - loss: 0.1653 - acc: 0.942 - ETA: 8s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1649 - acc: 0.942 - ETA: 8s - loss: 0.1649 - acc: 0.942 - ETA: 8s - loss: 0.1650 - acc: 0.942 - ETA: 8s - loss: 0.1649 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 8s - loss: 0.1651 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 8s - loss: 0.1648 - acc: 0.942 - ETA: 7s - loss: 0.1648 - acc: 0.942 - ETA: 7s - loss: 0.1646 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1647 - acc: 0.942 - ETA: 7s - loss: 0.1647 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1648 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1650 - acc: 0.942 - ETA: 7s - loss: 0.1651 - acc: 0.942 - ETA: 7s - loss: 0.1649 - acc: 0.942 - ETA: 7s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1649 - acc: 0.9424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1651 - acc: 0.942 - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1650 - acc: 0.942 - ETA: 6s - loss: 0.1648 - acc: 0.942 - ETA: 6s - loss: 0.1647 - acc: 0.942 - ETA: 6s - loss: 0.1646 - acc: 0.942 - ETA: 6s - loss: 0.1646 - acc: 0.942 - ETA: 6s - loss: 0.1645 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1640 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1640 - acc: 0.942 - ETA: 5s - loss: 0.1642 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 5s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1643 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1640 - acc: 0.942 - ETA: 4s - loss: 0.1639 - acc: 0.942 - ETA: 4s - loss: 0.1640 - acc: 0.942 - ETA: 4s - loss: 0.1644 - acc: 0.942 - ETA: 4s - loss: 0.1642 - acc: 0.942 - ETA: 4s - loss: 0.1641 - acc: 0.942 - ETA: 4s - loss: 0.1639 - acc: 0.942 - ETA: 3s - loss: 0.1637 - acc: 0.942 - ETA: 3s - loss: 0.1637 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1634 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1635 - acc: 0.942 - ETA: 3s - loss: 0.1633 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1632 - acc: 0.942 - ETA: 3s - loss: 0.1633 - acc: 0.942 - ETA: 3s - loss: 0.1638 - acc: 0.942 - ETA: 2s - loss: 0.1637 - acc: 0.942 - ETA: 2s - loss: 0.1637 - acc: 0.942 - ETA: 2s - loss: 0.1637 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1634 - acc: 0.942 - ETA: 2s - loss: 0.1633 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1636 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1635 - acc: 0.942 - ETA: 2s - loss: 0.1634 - acc: 0.942 - ETA: 2s - loss: 0.1633 - acc: 0.942 - ETA: 2s - loss: 0.1632 - acc: 0.942 - ETA: 2s - loss: 0.1632 - acc: 0.942 - ETA: 1s - loss: 0.1632 - acc: 0.942 - ETA: 1s - loss: 0.1632 - acc: 0.942 - ETA: 1s - loss: 0.1631 - acc: 0.942 - ETA: 1s - loss: 0.1629 - acc: 0.942 - ETA: 1s - loss: 0.1630 - acc: 0.942 - ETA: 1s - loss: 0.1628 - acc: 0.942 - ETA: 1s - loss: 0.1626 - acc: 0.942 - ETA: 1s - loss: 0.1624 - acc: 0.942 - ETA: 1s - loss: 0.1623 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1621 - acc: 0.942 - ETA: 1s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1616 - acc: 0.942 - ETA: 0s - loss: 0.1616 - acc: 0.942 - ETA: 0s - loss: 0.1617 - acc: 0.942 - ETA: 0s - loss: 0.1617 - acc: 0.942 - ETA: 0s - loss: 0.1619 - acc: 0.942 - ETA: 0s - loss: 0.1618 - acc: 0.942 - ETA: 0s - loss: 0.1620 - acc: 0.942 - ETA: 0s - loss: 0.1621 - acc: 0.942 - 54s 2ms/step - loss: 0.1619 - acc: 0.9427 - val_loss: 0.1445 - val_acc: 0.9523\n", + "\n", + "Epoch 00009: val_acc improved from 0.94320 to 0.95229, saving model to models\\conv.model\n", + "Epoch 10/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6880/23769 [=======>......................] - ETA: 45s - loss: 0.1031 - acc: 0.96 - ETA: 47s - loss: 0.1601 - acc: 0.93 - ETA: 47s - loss: 0.1483 - acc: 0.94 - ETA: 51s - loss: 0.1533 - acc: 0.94 - ETA: 52s - loss: 0.1496 - acc: 0.95 - ETA: 52s - loss: 0.1425 - acc: 0.94 - ETA: 52s - loss: 0.1234 - acc: 0.95 - ETA: 52s - loss: 0.1372 - acc: 0.94 - ETA: 51s - loss: 0.1336 - acc: 0.95 - ETA: 51s - loss: 0.1293 - acc: 0.95 - ETA: 50s - loss: 0.1418 - acc: 0.94 - ETA: 50s - loss: 0.1337 - acc: 0.95 - ETA: 50s - loss: 0.1499 - acc: 0.94 - ETA: 50s - loss: 0.1541 - acc: 0.93 - ETA: 50s - loss: 0.1539 - acc: 0.94 - ETA: 50s - loss: 0.1466 - acc: 0.94 - ETA: 50s - loss: 0.1560 - acc: 0.94 - ETA: 50s - loss: 0.1503 - acc: 0.94 - ETA: 50s - loss: 0.1485 - acc: 0.95 - ETA: 50s - loss: 0.1471 - acc: 0.95 - ETA: 49s - loss: 0.1469 - acc: 0.95 - ETA: 49s - loss: 0.1426 - acc: 0.95 - ETA: 49s - loss: 0.1379 - acc: 0.95 - ETA: 49s - loss: 0.1467 - acc: 0.95 - ETA: 49s - loss: 0.1457 - acc: 0.95 - ETA: 49s - loss: 0.1471 - acc: 0.95 - ETA: 49s - loss: 0.1436 - acc: 0.95 - ETA: 49s - loss: 0.1642 - acc: 0.95 - ETA: 49s - loss: 0.1635 - acc: 0.95 - ETA: 49s - loss: 0.1662 - acc: 0.94 - ETA: 48s - loss: 0.1621 - acc: 0.95 - ETA: 48s - loss: 0.1601 - acc: 0.95 - ETA: 48s - loss: 0.1567 - acc: 0.95 - ETA: 48s - loss: 0.1575 - acc: 0.95 - ETA: 48s - loss: 0.1621 - acc: 0.95 - ETA: 48s - loss: 0.1627 - acc: 0.94 - ETA: 48s - loss: 0.1619 - acc: 0.94 - ETA: 48s - loss: 0.1631 - acc: 0.94 - ETA: 48s - loss: 0.1676 - acc: 0.94 - ETA: 48s - loss: 0.1655 - acc: 0.94 - ETA: 48s - loss: 0.1627 - acc: 0.94 - ETA: 48s - loss: 0.1622 - acc: 0.94 - ETA: 48s - loss: 0.1613 - acc: 0.94 - ETA: 47s - loss: 0.1597 - acc: 0.94 - ETA: 48s - loss: 0.1679 - acc: 0.94 - ETA: 48s - loss: 0.1664 - acc: 0.94 - ETA: 47s - loss: 0.1684 - acc: 0.94 - ETA: 47s - loss: 0.1673 - acc: 0.94 - ETA: 47s - loss: 0.1651 - acc: 0.94 - ETA: 47s - loss: 0.1667 - acc: 0.94 - ETA: 47s - loss: 0.1647 - acc: 0.94 - ETA: 47s - loss: 0.1640 - acc: 0.94 - ETA: 47s - loss: 0.1612 - acc: 0.94 - ETA: 47s - loss: 0.1605 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1596 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1616 - acc: 0.94 - ETA: 47s - loss: 0.1620 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1608 - acc: 0.94 - ETA: 47s - loss: 0.1646 - acc: 0.94 - ETA: 47s - loss: 0.1640 - acc: 0.94 - ETA: 47s - loss: 0.1639 - acc: 0.94 - ETA: 46s - loss: 0.1650 - acc: 0.94 - ETA: 46s - loss: 0.1638 - acc: 0.94 - ETA: 46s - loss: 0.1658 - acc: 0.94 - ETA: 46s - loss: 0.1651 - acc: 0.94 - ETA: 46s - loss: 0.1642 - acc: 0.94 - ETA: 46s - loss: 0.1625 - acc: 0.94 - ETA: 46s - loss: 0.1619 - acc: 0.94 - ETA: 46s - loss: 0.1652 - acc: 0.94 - ETA: 46s - loss: 0.1658 - acc: 0.94 - ETA: 47s - loss: 0.1644 - acc: 0.94 - ETA: 47s - loss: 0.1642 - acc: 0.94 - ETA: 47s - loss: 0.1621 - acc: 0.94 - ETA: 47s - loss: 0.1646 - acc: 0.94 - ETA: 47s - loss: 0.1631 - acc: 0.94 - ETA: 47s - loss: 0.1628 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 46s - loss: 0.1614 - acc: 0.94 - ETA: 46s - loss: 0.1609 - acc: 0.94 - ETA: 46s - loss: 0.1609 - acc: 0.94 - ETA: 46s - loss: 0.1615 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1593 - acc: 0.94 - ETA: 46s - loss: 0.1598 - acc: 0.94 - ETA: 47s - loss: 0.1596 - acc: 0.94 - ETA: 47s - loss: 0.1597 - acc: 0.94 - ETA: 47s - loss: 0.1591 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 46s - loss: 0.1619 - acc: 0.94 - ETA: 46s - loss: 0.1617 - acc: 0.94 - ETA: 46s - loss: 0.1611 - acc: 0.94 - ETA: 46s - loss: 0.1616 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 46s - loss: 0.1603 - acc: 0.94 - ETA: 47s - loss: 0.1609 - acc: 0.94 - ETA: 47s - loss: 0.1602 - acc: 0.94 - ETA: 46s - loss: 0.1594 - acc: 0.94 - ETA: 46s - loss: 0.1596 - acc: 0.94 - ETA: 46s - loss: 0.1611 - acc: 0.94 - ETA: 46s - loss: 0.1603 - acc: 0.94 - ETA: 47s - loss: 0.1594 - acc: 0.94 - ETA: 47s - loss: 0.1598 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 47s - loss: 0.1618 - acc: 0.94 - ETA: 47s - loss: 0.1611 - acc: 0.94 - ETA: 47s - loss: 0.1622 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1622 - acc: 0.94 - ETA: 47s - loss: 0.1613 - acc: 0.94 - ETA: 47s - loss: 0.1634 - acc: 0.94 - ETA: 47s - loss: 0.1624 - acc: 0.94 - ETA: 47s - loss: 0.1628 - acc: 0.94 - ETA: 47s - loss: 0.1623 - acc: 0.94 - ETA: 47s - loss: 0.1613 - acc: 0.94 - ETA: 47s - loss: 0.1601 - acc: 0.94 - ETA: 47s - loss: 0.1605 - acc: 0.94 - ETA: 47s - loss: 0.1616 - acc: 0.94 - ETA: 47s - loss: 0.1610 - acc: 0.94 - ETA: 47s - loss: 0.1607 - acc: 0.94 - ETA: 47s - loss: 0.1603 - acc: 0.94 - ETA: 47s - loss: 0.1617 - acc: 0.94 - ETA: 47s - loss: 0.1620 - acc: 0.94 - ETA: 47s - loss: 0.1619 - acc: 0.94 - ETA: 47s - loss: 0.1614 - acc: 0.94 - ETA: 47s - loss: 0.1609 - acc: 0.94 - ETA: 47s - loss: 0.1605 - acc: 0.94 - ETA: 47s - loss: 0.1601 - acc: 0.94 - ETA: 47s - loss: 0.1594 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1601 - acc: 0.94 - ETA: 47s - loss: 0.1602 - acc: 0.94 - ETA: 47s - loss: 0.1608 - acc: 0.94 - ETA: 47s - loss: 0.1599 - acc: 0.94 - ETA: 47s - loss: 0.1597 - acc: 0.94 - ETA: 47s - loss: 0.1594 - acc: 0.94 - ETA: 47s - loss: 0.1606 - acc: 0.94 - ETA: 46s - loss: 0.1615 - acc: 0.94 - ETA: 46s - loss: 0.1617 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1606 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1615 - acc: 0.94 - ETA: 46s - loss: 0.1610 - acc: 0.94 - ETA: 46s - loss: 0.1606 - acc: 0.94 - ETA: 46s - loss: 0.1603 - acc: 0.94 - ETA: 45s - loss: 0.1598 - acc: 0.94 - ETA: 45s - loss: 0.1592 - acc: 0.94 - ETA: 45s - loss: 0.1594 - acc: 0.94 - ETA: 45s - loss: 0.1599 - acc: 0.94 - ETA: 45s - loss: 0.1596 - acc: 0.94 - ETA: 45s - loss: 0.1590 - acc: 0.94 - ETA: 45s - loss: 0.1592 - acc: 0.94 - ETA: 45s - loss: 0.1597 - acc: 0.94 - ETA: 45s - loss: 0.1600 - acc: 0.94 - ETA: 45s - loss: 0.1596 - acc: 0.94 - ETA: 44s - loss: 0.1592 - acc: 0.94 - ETA: 44s - loss: 0.1596 - acc: 0.94 - ETA: 44s - loss: 0.1613 - acc: 0.94 - ETA: 44s - loss: 0.1618 - acc: 0.94 - ETA: 44s - loss: 0.1613 - acc: 0.94 - ETA: 44s - loss: 0.1605 - acc: 0.94 - ETA: 44s - loss: 0.1607 - acc: 0.94 - ETA: 44s - loss: 0.1607 - acc: 0.94 - ETA: 44s - loss: 0.1601 - acc: 0.94 - ETA: 44s - loss: 0.1602 - acc: 0.94 - ETA: 44s - loss: 0.1606 - acc: 0.94 - ETA: 43s - loss: 0.1601 - acc: 0.94 - ETA: 43s - loss: 0.1596 - acc: 0.94 - ETA: 43s - loss: 0.1590 - acc: 0.94 - ETA: 43s - loss: 0.1588 - acc: 0.94 - ETA: 43s - loss: 0.1598 - acc: 0.94 - ETA: 43s - loss: 0.1594 - acc: 0.94 - ETA: 43s - loss: 0.1592 - acc: 0.94 - ETA: 43s - loss: 0.1606 - acc: 0.94 - ETA: 43s - loss: 0.1617 - acc: 0.94 - ETA: 43s - loss: 0.1614 - acc: 0.94 - ETA: 42s - loss: 0.1608 - acc: 0.94 - ETA: 42s - loss: 0.1603 - acc: 0.94 - ETA: 42s - loss: 0.1603 - acc: 0.94 - ETA: 42s - loss: 0.1602 - acc: 0.94 - ETA: 42s - loss: 0.1595 - acc: 0.94 - ETA: 42s - loss: 0.1590 - acc: 0.94 - ETA: 42s - loss: 0.1587 - acc: 0.94 - ETA: 42s - loss: 0.1584 - acc: 0.94 - ETA: 42s - loss: 0.1591 - acc: 0.94 - ETA: 42s - loss: 0.1593 - acc: 0.94 - ETA: 41s - loss: 0.1604 - acc: 0.94 - ETA: 41s - loss: 0.1607 - acc: 0.94 - ETA: 41s - loss: 0.1619 - acc: 0.94 - ETA: 41s - loss: 0.1616 - acc: 0.94 - ETA: 41s - loss: 0.1624 - acc: 0.94 - ETA: 41s - loss: 0.1620 - acc: 0.94 - ETA: 41s - loss: 0.1628 - acc: 0.94 - ETA: 41s - loss: 0.1628 - acc: 0.94 - ETA: 41s - loss: 0.1622 - acc: 0.94 - ETA: 41s - loss: 0.1622 - acc: 0.94 - ETA: 41s - loss: 0.1632 - acc: 0.94 - ETA: 40s - loss: 0.1631 - acc: 0.94 - ETA: 40s - loss: 0.1639 - acc: 0.94 - ETA: 40s - loss: 0.1641 - acc: 0.94 - ETA: 40s - loss: 0.1642 - acc: 0.94 - ETA: 40s - loss: 0.1637 - acc: 0.94 - ETA: 40s - loss: 0.1638 - acc: 0.94 - ETA: 40s - loss: 0.1634 - acc: 0.94 - ETA: 40s - loss: 0.1645 - acc: 0.94 - ETA: 40s - loss: 0.1642 - acc: 0.94 - ETA: 40s - loss: 0.1642 - acc: 0.94 - ETA: 39s - loss: 0.1647 - acc: 0.94 - ETA: 39s - loss: 0.1648 - acc: 0.94 - ETA: 39s - loss: 0.1645 - acc: 0.94 - ETA: 39s - loss: 0.1643 - acc: 0.9439" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 39s - loss: 0.1650 - acc: 0.94 - ETA: 39s - loss: 0.1653 - acc: 0.94 - ETA: 39s - loss: 0.1654 - acc: 0.94 - ETA: 39s - loss: 0.1656 - acc: 0.94 - ETA: 39s - loss: 0.1652 - acc: 0.94 - ETA: 39s - loss: 0.1653 - acc: 0.94 - ETA: 39s - loss: 0.1654 - acc: 0.94 - ETA: 39s - loss: 0.1655 - acc: 0.94 - ETA: 38s - loss: 0.1653 - acc: 0.94 - ETA: 38s - loss: 0.1649 - acc: 0.94 - ETA: 38s - loss: 0.1651 - acc: 0.94 - ETA: 38s - loss: 0.1651 - acc: 0.94 - ETA: 38s - loss: 0.1653 - acc: 0.94 - ETA: 38s - loss: 0.1647 - acc: 0.94 - ETA: 38s - loss: 0.1643 - acc: 0.94 - ETA: 38s - loss: 0.1645 - acc: 0.94 - ETA: 38s - loss: 0.1641 - acc: 0.94 - ETA: 38s - loss: 0.1638 - acc: 0.94 - ETA: 38s - loss: 0.1633 - acc: 0.94 - ETA: 38s - loss: 0.1633 - acc: 0.94 - ETA: 37s - loss: 0.1633 - acc: 0.94 - ETA: 37s - loss: 0.1637 - acc: 0.94 - ETA: 37s - loss: 0.1639 - acc: 0.94 - ETA: 37s - loss: 0.1651 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1654 - acc: 0.94 - ETA: 37s - loss: 0.1650 - acc: 0.94 - ETA: 37s - loss: 0.1649 - acc: 0.94 - ETA: 37s - loss: 0.1648 - acc: 0.94 - ETA: 37s - loss: 0.1646 - acc: 0.94 - ETA: 36s - loss: 0.1647 - acc: 0.94 - ETA: 36s - loss: 0.1647 - acc: 0.94 - ETA: 36s - loss: 0.1652 - acc: 0.94 - ETA: 36s - loss: 0.1662 - acc: 0.94 - ETA: 36s - loss: 0.1658 - acc: 0.94 - ETA: 36s - loss: 0.1661 - acc: 0.94 - ETA: 36s - loss: 0.1660 - acc: 0.94 - ETA: 36s - loss: 0.1657 - acc: 0.94 - ETA: 36s - loss: 0.1658 - acc: 0.94 - ETA: 36s - loss: 0.1656 - acc: 0.94 - ETA: 36s - loss: 0.1656 - acc: 0.94 - ETA: 36s - loss: 0.1659 - acc: 0.94 - ETA: 35s - loss: 0.1669 - acc: 0.94 - ETA: 35s - loss: 0.1669 - acc: 0.94 - ETA: 35s - loss: 0.1666 - acc: 0.94 - ETA: 35s - loss: 0.1663 - acc: 0.94 - ETA: 35s - loss: 0.1657 - acc: 0.94 - ETA: 35s - loss: 0.1657 - acc: 0.94 - ETA: 35s - loss: 0.1654 - acc: 0.94 - ETA: 35s - loss: 0.1653 - acc: 0.94 - ETA: 35s - loss: 0.1649 - acc: 0.94 - ETA: 35s - loss: 0.1652 - acc: 0.94 - ETA: 35s - loss: 0.1646 - acc: 0.94 - ETA: 35s - loss: 0.1647 - acc: 0.94 - ETA: 34s - loss: 0.1646 - acc: 0.94 - ETA: 34s - loss: 0.1645 - acc: 0.94 - ETA: 34s - loss: 0.1641 - acc: 0.94 - ETA: 34s - loss: 0.1637 - acc: 0.94 - ETA: 34s - loss: 0.1637 - acc: 0.94 - ETA: 34s - loss: 0.1640 - acc: 0.94 - ETA: 34s - loss: 0.1639 - acc: 0.94 - ETA: 34s - loss: 0.1638 - acc: 0.94 - ETA: 34s - loss: 0.1647 - acc: 0.94 - ETA: 34s - loss: 0.1653 - acc: 0.94 - ETA: 34s - loss: 0.1649 - acc: 0.94 - ETA: 34s - loss: 0.1650 - acc: 0.94 - ETA: 33s - loss: 0.1653 - acc: 0.94 - ETA: 33s - loss: 0.1647 - acc: 0.94 - ETA: 33s - loss: 0.1652 - acc: 0.94 - ETA: 33s - loss: 0.1660 - acc: 0.94 - ETA: 33s - loss: 0.1656 - acc: 0.94 - ETA: 33s - loss: 0.1656 - acc: 0.94 - ETA: 33s - loss: 0.1654 - acc: 0.94 - ETA: 33s - loss: 0.1654 - acc: 0.94 - ETA: 33s - loss: 0.1658 - acc: 0.94 - ETA: 33s - loss: 0.1655 - acc: 0.94 - ETA: 33s - loss: 0.1659 - acc: 0.94 - ETA: 33s - loss: 0.1658 - acc: 0.94 - ETA: 33s - loss: 0.1659 - acc: 0.94 - ETA: 32s - loss: 0.1659 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1657 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1667 - acc: 0.94 - ETA: 32s - loss: 0.1665 - acc: 0.94 - ETA: 32s - loss: 0.1664 - acc: 0.94 - ETA: 32s - loss: 0.1663 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1660 - acc: 0.94 - ETA: 32s - loss: 0.1657 - acc: 0.94 - ETA: 32s - loss: 0.1654 - acc: 0.94 - ETA: 31s - loss: 0.1650 - acc: 0.94 - ETA: 31s - loss: 0.1653 - acc: 0.94 - ETA: 31s - loss: 0.1652 - acc: 0.94 - ETA: 31s - loss: 0.1650 - acc: 0.94 - ETA: 31s - loss: 0.1646 - acc: 0.94 - ETA: 31s - loss: 0.1646 - acc: 0.94 - ETA: 31s - loss: 0.1644 - acc: 0.94 - ETA: 31s - loss: 0.1642 - acc: 0.94 - ETA: 31s - loss: 0.1643 - acc: 0.94 - ETA: 31s - loss: 0.1642 - acc: 0.94 - ETA: 31s - loss: 0.1640 - acc: 0.94 - ETA: 31s - loss: 0.1641 - acc: 0.94 - ETA: 31s - loss: 0.1642 - acc: 0.94 - ETA: 30s - loss: 0.1641 - acc: 0.94 - ETA: 30s - loss: 0.1641 - acc: 0.94 - ETA: 30s - loss: 0.1640 - acc: 0.94 - ETA: 30s - loss: 0.1636 - acc: 0.94 - ETA: 30s - loss: 0.1643 - acc: 0.94 - ETA: 30s - loss: 0.1641 - acc: 0.94 - ETA: 30s - loss: 0.1638 - acc: 0.94 - ETA: 30s - loss: 0.1635 - acc: 0.94 - ETA: 30s - loss: 0.1635 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1633 - acc: 0.94 - ETA: 30s - loss: 0.1631 - acc: 0.94 - ETA: 29s - loss: 0.1628 - acc: 0.94 - ETA: 29s - loss: 0.1624 - acc: 0.94 - ETA: 29s - loss: 0.1621 - acc: 0.94 - ETA: 29s - loss: 0.1622 - acc: 0.94 - ETA: 29s - loss: 0.1619 - acc: 0.94 - ETA: 29s - loss: 0.1615 - acc: 0.94 - ETA: 29s - loss: 0.1614 - acc: 0.94 - ETA: 29s - loss: 0.1611 - acc: 0.94 - ETA: 29s - loss: 0.1606 - acc: 0.94 - ETA: 29s - loss: 0.1609 - acc: 0.94 - ETA: 29s - loss: 0.1610 - acc: 0.94 - ETA: 29s - loss: 0.1607 - acc: 0.94 - ETA: 29s - loss: 0.1607 - acc: 0.94 - ETA: 28s - loss: 0.1614 - acc: 0.94 - ETA: 28s - loss: 0.1612 - acc: 0.94 - ETA: 28s - loss: 0.1609 - acc: 0.94 - ETA: 28s - loss: 0.1609 - acc: 0.94 - ETA: 28s - loss: 0.1606 - acc: 0.94 - ETA: 28s - loss: 0.1603 - acc: 0.94 - ETA: 28s - loss: 0.1601 - acc: 0.94 - ETA: 28s - loss: 0.1602 - acc: 0.94 - ETA: 28s - loss: 0.1598 - acc: 0.94 - ETA: 28s - loss: 0.1597 - acc: 0.94 - ETA: 28s - loss: 0.1598 - acc: 0.94 - ETA: 28s - loss: 0.1595 - acc: 0.94 - ETA: 28s - loss: 0.1595 - acc: 0.94 - ETA: 27s - loss: 0.1591 - acc: 0.94 - ETA: 27s - loss: 0.1590 - acc: 0.94 - ETA: 27s - loss: 0.1586 - acc: 0.94 - ETA: 27s - loss: 0.1585 - acc: 0.94 - ETA: 27s - loss: 0.1587 - acc: 0.94 - ETA: 27s - loss: 0.1586 - acc: 0.94 - ETA: 27s - loss: 0.1584 - acc: 0.94 - ETA: 27s - loss: 0.1583 - acc: 0.94 - ETA: 27s - loss: 0.1581 - acc: 0.94 - ETA: 27s - loss: 0.1578 - acc: 0.94 - ETA: 27s - loss: 0.1579 - acc: 0.94 - ETA: 27s - loss: 0.1577 - acc: 0.94 - ETA: 27s - loss: 0.1575 - acc: 0.94 - ETA: 26s - loss: 0.1574 - acc: 0.94 - ETA: 26s - loss: 0.1572 - acc: 0.94 - ETA: 26s - loss: 0.1572 - acc: 0.94 - ETA: 26s - loss: 0.1570 - acc: 0.94 - ETA: 26s - loss: 0.1573 - acc: 0.94 - ETA: 26s - loss: 0.1571 - acc: 0.94 - ETA: 26s - loss: 0.1574 - acc: 0.94 - ETA: 26s - loss: 0.1585 - acc: 0.94 - ETA: 26s - loss: 0.1582 - acc: 0.94 - ETA: 26s - loss: 0.1579 - acc: 0.94 - ETA: 26s - loss: 0.1576 - acc: 0.94 - ETA: 26s - loss: 0.1576 - acc: 0.94 - ETA: 26s - loss: 0.1574 - acc: 0.94 - ETA: 25s - loss: 0.1573 - acc: 0.94 - ETA: 25s - loss: 0.1570 - acc: 0.94 - ETA: 25s - loss: 0.1575 - acc: 0.94 - ETA: 25s - loss: 0.1573 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1575 - acc: 0.94 - ETA: 25s - loss: 0.1575 - acc: 0.94 - ETA: 25s - loss: 0.1574 - acc: 0.94 - ETA: 25s - loss: 0.1572 - acc: 0.94 - ETA: 25s - loss: 0.1570 - acc: 0.94 - ETA: 25s - loss: 0.1570 - acc: 0.94 - ETA: 25s - loss: 0.1567 - acc: 0.94 - ETA: 24s - loss: 0.1566 - acc: 0.94 - ETA: 24s - loss: 0.1564 - acc: 0.94 - ETA: 24s - loss: 0.1563 - acc: 0.94 - ETA: 24s - loss: 0.1563 - acc: 0.94 - ETA: 24s - loss: 0.1560 - acc: 0.94 - ETA: 24s - loss: 0.1559 - acc: 0.94 - ETA: 24s - loss: 0.1555 - acc: 0.94 - ETA: 24s - loss: 0.1552 - acc: 0.94 - ETA: 24s - loss: 0.1552 - acc: 0.94 - ETA: 24s - loss: 0.1548 - acc: 0.94 - ETA: 24s - loss: 0.1545 - acc: 0.94 - ETA: 24s - loss: 0.1542 - acc: 0.94 - ETA: 24s - loss: 0.1540 - acc: 0.94 - ETA: 23s - loss: 0.1540 - acc: 0.94 - ETA: 23s - loss: 0.1538 - acc: 0.94 - ETA: 23s - loss: 0.1536 - acc: 0.94 - ETA: 23s - loss: 0.1534 - acc: 0.94 - ETA: 23s - loss: 0.1541 - acc: 0.94 - ETA: 23s - loss: 0.1539 - acc: 0.94 - ETA: 23s - loss: 0.1539 - acc: 0.94 - ETA: 23s - loss: 0.1540 - acc: 0.94 - ETA: 23s - loss: 0.1538 - acc: 0.94 - ETA: 23s - loss: 0.1536 - acc: 0.94 - ETA: 23s - loss: 0.1539 - acc: 0.94 - ETA: 23s - loss: 0.1538 - acc: 0.94 - ETA: 23s - loss: 0.1536 - acc: 0.94 - ETA: 22s - loss: 0.1534 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1538 - acc: 0.94 - ETA: 22s - loss: 0.1536 - acc: 0.9466" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20640/23769 [=========================>....] - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1535 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1532 - acc: 0.94 - ETA: 22s - loss: 0.1529 - acc: 0.94 - ETA: 22s - loss: 0.1533 - acc: 0.94 - ETA: 21s - loss: 0.1531 - acc: 0.94 - ETA: 21s - loss: 0.1536 - acc: 0.94 - ETA: 21s - loss: 0.1533 - acc: 0.94 - ETA: 21s - loss: 0.1531 - acc: 0.94 - ETA: 21s - loss: 0.1535 - acc: 0.94 - ETA: 21s - loss: 0.1535 - acc: 0.94 - ETA: 21s - loss: 0.1537 - acc: 0.94 - ETA: 21s - loss: 0.1536 - acc: 0.94 - ETA: 21s - loss: 0.1533 - acc: 0.94 - ETA: 21s - loss: 0.1531 - acc: 0.94 - ETA: 21s - loss: 0.1532 - acc: 0.94 - ETA: 21s - loss: 0.1530 - acc: 0.94 - ETA: 21s - loss: 0.1529 - acc: 0.94 - ETA: 21s - loss: 0.1528 - acc: 0.94 - ETA: 20s - loss: 0.1528 - acc: 0.94 - ETA: 20s - loss: 0.1529 - acc: 0.94 - ETA: 20s - loss: 0.1527 - acc: 0.94 - ETA: 20s - loss: 0.1525 - acc: 0.94 - ETA: 20s - loss: 0.1523 - acc: 0.94 - ETA: 20s - loss: 0.1521 - acc: 0.94 - ETA: 20s - loss: 0.1523 - acc: 0.94 - ETA: 20s - loss: 0.1525 - acc: 0.94 - ETA: 20s - loss: 0.1530 - acc: 0.94 - ETA: 20s - loss: 0.1529 - acc: 0.94 - ETA: 20s - loss: 0.1530 - acc: 0.94 - ETA: 20s - loss: 0.1532 - acc: 0.94 - ETA: 20s - loss: 0.1534 - acc: 0.94 - ETA: 19s - loss: 0.1535 - acc: 0.94 - ETA: 19s - loss: 0.1539 - acc: 0.94 - ETA: 19s - loss: 0.1537 - acc: 0.94 - ETA: 19s - loss: 0.1543 - acc: 0.94 - ETA: 19s - loss: 0.1541 - acc: 0.94 - ETA: 19s - loss: 0.1547 - acc: 0.94 - ETA: 19s - loss: 0.1549 - acc: 0.94 - ETA: 19s - loss: 0.1548 - acc: 0.94 - ETA: 19s - loss: 0.1546 - acc: 0.94 - ETA: 19s - loss: 0.1547 - acc: 0.94 - ETA: 19s - loss: 0.1550 - acc: 0.94 - ETA: 19s - loss: 0.1549 - acc: 0.94 - ETA: 19s - loss: 0.1551 - acc: 0.94 - ETA: 19s - loss: 0.1549 - acc: 0.94 - ETA: 18s - loss: 0.1548 - acc: 0.94 - ETA: 18s - loss: 0.1546 - acc: 0.94 - ETA: 18s - loss: 0.1546 - acc: 0.94 - ETA: 18s - loss: 0.1544 - acc: 0.94 - ETA: 18s - loss: 0.1545 - acc: 0.94 - ETA: 18s - loss: 0.1543 - acc: 0.94 - ETA: 18s - loss: 0.1547 - acc: 0.94 - ETA: 18s - loss: 0.1545 - acc: 0.94 - ETA: 18s - loss: 0.1542 - acc: 0.94 - ETA: 18s - loss: 0.1543 - acc: 0.94 - ETA: 18s - loss: 0.1543 - acc: 0.94 - ETA: 18s - loss: 0.1545 - acc: 0.94 - ETA: 18s - loss: 0.1542 - acc: 0.94 - ETA: 17s - loss: 0.1545 - acc: 0.94 - ETA: 17s - loss: 0.1547 - acc: 0.94 - ETA: 17s - loss: 0.1548 - acc: 0.94 - ETA: 17s - loss: 0.1547 - acc: 0.94 - ETA: 17s - loss: 0.1545 - acc: 0.94 - ETA: 17s - loss: 0.1546 - acc: 0.94 - ETA: 17s - loss: 0.1549 - acc: 0.94 - ETA: 17s - loss: 0.1546 - acc: 0.94 - ETA: 17s - loss: 0.1549 - acc: 0.94 - ETA: 17s - loss: 0.1550 - acc: 0.94 - ETA: 17s - loss: 0.1548 - acc: 0.94 - ETA: 17s - loss: 0.1556 - acc: 0.94 - ETA: 17s - loss: 0.1555 - acc: 0.94 - ETA: 17s - loss: 0.1555 - acc: 0.94 - ETA: 16s - loss: 0.1562 - acc: 0.94 - ETA: 16s - loss: 0.1561 - acc: 0.94 - ETA: 16s - loss: 0.1562 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 16s - loss: 0.1571 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1567 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 16s - loss: 0.1570 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 16s - loss: 0.1566 - acc: 0.94 - ETA: 16s - loss: 0.1568 - acc: 0.94 - ETA: 15s - loss: 0.1568 - acc: 0.94 - ETA: 15s - loss: 0.1567 - acc: 0.94 - ETA: 15s - loss: 0.1570 - acc: 0.94 - ETA: 15s - loss: 0.1569 - acc: 0.94 - ETA: 15s - loss: 0.1568 - acc: 0.94 - ETA: 15s - loss: 0.1569 - acc: 0.94 - ETA: 15s - loss: 0.1567 - acc: 0.94 - ETA: 15s - loss: 0.1566 - acc: 0.94 - ETA: 15s - loss: 0.1567 - acc: 0.94 - ETA: 15s - loss: 0.1566 - acc: 0.94 - ETA: 15s - loss: 0.1565 - acc: 0.94 - ETA: 15s - loss: 0.1565 - acc: 0.94 - ETA: 15s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1565 - acc: 0.94 - ETA: 14s - loss: 0.1567 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1565 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1567 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1566 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1563 - acc: 0.94 - ETA: 14s - loss: 0.1565 - acc: 0.94 - ETA: 13s - loss: 0.1563 - acc: 0.94 - ETA: 13s - loss: 0.1561 - acc: 0.94 - ETA: 13s - loss: 0.1559 - acc: 0.94 - ETA: 13s - loss: 0.1559 - acc: 0.94 - ETA: 13s - loss: 0.1558 - acc: 0.94 - ETA: 13s - loss: 0.1557 - acc: 0.94 - ETA: 13s - loss: 0.1558 - acc: 0.94 - ETA: 13s - loss: 0.1559 - acc: 0.94 - ETA: 13s - loss: 0.1557 - acc: 0.94 - ETA: 13s - loss: 0.1556 - acc: 0.94 - ETA: 13s - loss: 0.1556 - acc: 0.94 - ETA: 13s - loss: 0.1553 - acc: 0.94 - ETA: 13s - loss: 0.1554 - acc: 0.94 - ETA: 13s - loss: 0.1555 - acc: 0.94 - ETA: 12s - loss: 0.1556 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1557 - acc: 0.94 - ETA: 12s - loss: 0.1555 - acc: 0.94 - ETA: 12s - loss: 0.1556 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1555 - acc: 0.94 - ETA: 12s - loss: 0.1554 - acc: 0.94 - ETA: 12s - loss: 0.1551 - acc: 0.94 - ETA: 12s - loss: 0.1551 - acc: 0.94 - ETA: 12s - loss: 0.1549 - acc: 0.94 - ETA: 12s - loss: 0.1548 - acc: 0.94 - ETA: 11s - loss: 0.1546 - acc: 0.94 - ETA: 11s - loss: 0.1544 - acc: 0.94 - ETA: 11s - loss: 0.1542 - acc: 0.94 - ETA: 11s - loss: 0.1541 - acc: 0.94 - ETA: 11s - loss: 0.1543 - acc: 0.94 - ETA: 11s - loss: 0.1544 - acc: 0.94 - ETA: 11s - loss: 0.1543 - acc: 0.94 - ETA: 11s - loss: 0.1542 - acc: 0.94 - ETA: 11s - loss: 0.1543 - acc: 0.94 - ETA: 11s - loss: 0.1542 - acc: 0.94 - ETA: 11s - loss: 0.1541 - acc: 0.94 - ETA: 11s - loss: 0.1540 - acc: 0.94 - ETA: 11s - loss: 0.1539 - acc: 0.94 - ETA: 11s - loss: 0.1541 - acc: 0.94 - ETA: 10s - loss: 0.1542 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1542 - acc: 0.94 - ETA: 10s - loss: 0.1541 - acc: 0.94 - ETA: 10s - loss: 0.1540 - acc: 0.94 - ETA: 10s - loss: 0.1542 - acc: 0.94 - ETA: 10s - loss: 0.1545 - acc: 0.94 - ETA: 10s - loss: 0.1545 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1543 - acc: 0.94 - ETA: 10s - loss: 0.1540 - acc: 0.94 - ETA: 9s - loss: 0.1541 - acc: 0.9468 - ETA: 9s - loss: 0.1540 - acc: 0.946 - ETA: 9s - loss: 0.1540 - acc: 0.946 - ETA: 9s - loss: 0.1539 - acc: 0.946 - ETA: 9s - loss: 0.1539 - acc: 0.946 - ETA: 9s - loss: 0.1539 - acc: 0.946 - ETA: 9s - loss: 0.1537 - acc: 0.946 - ETA: 9s - loss: 0.1537 - acc: 0.946 - ETA: 9s - loss: 0.1536 - acc: 0.946 - ETA: 9s - loss: 0.1535 - acc: 0.946 - ETA: 9s - loss: 0.1535 - acc: 0.947 - ETA: 9s - loss: 0.1533 - acc: 0.947 - ETA: 9s - loss: 0.1533 - acc: 0.947 - ETA: 9s - loss: 0.1531 - acc: 0.947 - ETA: 8s - loss: 0.1530 - acc: 0.947 - ETA: 8s - loss: 0.1532 - acc: 0.947 - ETA: 8s - loss: 0.1533 - acc: 0.947 - ETA: 8s - loss: 0.1532 - acc: 0.947 - ETA: 8s - loss: 0.1531 - acc: 0.947 - ETA: 8s - loss: 0.1529 - acc: 0.947 - ETA: 8s - loss: 0.1528 - acc: 0.947 - ETA: 8s - loss: 0.1529 - acc: 0.947 - ETA: 8s - loss: 0.1528 - acc: 0.947 - ETA: 8s - loss: 0.1526 - acc: 0.947 - ETA: 8s - loss: 0.1524 - acc: 0.947 - ETA: 8s - loss: 0.1522 - acc: 0.947 - ETA: 8s - loss: 0.1521 - acc: 0.947 - ETA: 7s - loss: 0.1523 - acc: 0.947 - ETA: 7s - loss: 0.1523 - acc: 0.947 - ETA: 7s - loss: 0.1523 - acc: 0.947 - ETA: 7s - loss: 0.1528 - acc: 0.947 - ETA: 7s - loss: 0.1527 - acc: 0.947 - ETA: 7s - loss: 0.1527 - acc: 0.947 - ETA: 7s - loss: 0.1526 - acc: 0.947 - ETA: 7s - loss: 0.1526 - acc: 0.947 - ETA: 7s - loss: 0.1525 - acc: 0.947 - ETA: 7s - loss: 0.1527 - acc: 0.946 - ETA: 7s - loss: 0.1526 - acc: 0.946 - ETA: 7s - loss: 0.1525 - acc: 0.946 - ETA: 7s - loss: 0.1524 - acc: 0.946 - ETA: 7s - loss: 0.1525 - acc: 0.9469" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 6s - loss: 0.1527 - acc: 0.946 - ETA: 6s - loss: 0.1525 - acc: 0.946 - ETA: 6s - loss: 0.1523 - acc: 0.946 - ETA: 6s - loss: 0.1522 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1522 - acc: 0.946 - ETA: 6s - loss: 0.1524 - acc: 0.946 - ETA: 6s - loss: 0.1522 - acc: 0.946 - ETA: 6s - loss: 0.1527 - acc: 0.946 - ETA: 6s - loss: 0.1528 - acc: 0.946 - ETA: 6s - loss: 0.1528 - acc: 0.946 - ETA: 6s - loss: 0.1530 - acc: 0.946 - ETA: 5s - loss: 0.1529 - acc: 0.946 - ETA: 5s - loss: 0.1527 - acc: 0.946 - ETA: 5s - loss: 0.1526 - acc: 0.946 - ETA: 5s - loss: 0.1524 - acc: 0.946 - ETA: 5s - loss: 0.1522 - acc: 0.947 - ETA: 5s - loss: 0.1524 - acc: 0.947 - ETA: 5s - loss: 0.1522 - acc: 0.947 - ETA: 5s - loss: 0.1523 - acc: 0.947 - ETA: 5s - loss: 0.1521 - acc: 0.947 - ETA: 5s - loss: 0.1521 - acc: 0.947 - ETA: 5s - loss: 0.1519 - acc: 0.947 - ETA: 5s - loss: 0.1520 - acc: 0.947 - ETA: 5s - loss: 0.1524 - acc: 0.946 - ETA: 5s - loss: 0.1529 - acc: 0.946 - ETA: 4s - loss: 0.1527 - acc: 0.946 - ETA: 4s - loss: 0.1525 - acc: 0.946 - ETA: 4s - loss: 0.1524 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1524 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1521 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1522 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1523 - acc: 0.947 - ETA: 4s - loss: 0.1526 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1523 - acc: 0.947 - ETA: 3s - loss: 0.1522 - acc: 0.947 - ETA: 3s - loss: 0.1521 - acc: 0.947 - ETA: 3s - loss: 0.1522 - acc: 0.947 - ETA: 3s - loss: 0.1526 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1523 - acc: 0.947 - ETA: 3s - loss: 0.1522 - acc: 0.947 - ETA: 3s - loss: 0.1524 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 3s - loss: 0.1524 - acc: 0.947 - ETA: 3s - loss: 0.1525 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1525 - acc: 0.947 - ETA: 2s - loss: 0.1524 - acc: 0.947 - ETA: 2s - loss: 0.1524 - acc: 0.947 - ETA: 2s - loss: 0.1524 - acc: 0.947 - ETA: 2s - loss: 0.1525 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 2s - loss: 0.1528 - acc: 0.947 - ETA: 2s - loss: 0.1528 - acc: 0.947 - ETA: 2s - loss: 0.1528 - acc: 0.947 - ETA: 2s - loss: 0.1526 - acc: 0.947 - ETA: 1s - loss: 0.1525 - acc: 0.947 - ETA: 1s - loss: 0.1526 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1525 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1524 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1523 - acc: 0.947 - ETA: 1s - loss: 0.1522 - acc: 0.947 - ETA: 1s - loss: 0.1521 - acc: 0.947 - ETA: 0s - loss: 0.1521 - acc: 0.947 - ETA: 0s - loss: 0.1520 - acc: 0.947 - ETA: 0s - loss: 0.1518 - acc: 0.947 - ETA: 0s - loss: 0.1520 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1519 - acc: 0.947 - ETA: 0s - loss: 0.1518 - acc: 0.947 - ETA: 0s - loss: 0.1516 - acc: 0.947 - ETA: 0s - loss: 0.1515 - acc: 0.947 - ETA: 0s - loss: 0.1515 - acc: 0.947 - ETA: 0s - loss: 0.1516 - acc: 0.947 - ETA: 0s - loss: 0.1516 - acc: 0.947 - 55s 2ms/step - loss: 0.1515 - acc: 0.9474 - val_loss: 0.1315 - val_acc: 0.9493\n", + "\n", + "Epoch 00010: val_acc did not improve from 0.95229\n" + ] + } + ], + "source": [ + "if config.mode == 'conv':\n", + " X, y = build_rand_feat()\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2], 1) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_conv_model()\n", + "elif config.mode == 'time':\n", + " X, y = build_rand_feat()\n", + " \"\"\"\n", + " TODO\n", + " \n", + " our rand_feat is saved as a pickle file and needs to be reshaped if\n", + " it was originally made for conv model (similar if running conv and \n", + " need to work with time)\n", + " \"\"\"\n", + " X = X.reshape(X.shape[0], X.shape[1], X.shape[2])\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2]) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_recurrent_model()\n", + " \n", + "# Setup weights so that our gradient updates based on our class distribution \n", + "# (less bass drumbs => stronger gradient from these samples)\n", + "# This will give a little extra accuracy as well as reducing bias\n", + "class_weight = compute_class_weight('balanced', np.unique(y_flat), y_flat)\n", + "\n", + "checkpoint = ModelCheckpoint(config.model_path, monitor='val_acc', verbose=1, mode='max',\n", + " save_best_only=True, save_weights_only=False, period=1)\n", + "\n", + "# Fit our model\n", + "model.fit(X, y, epochs=10, \n", + " shuffle=True,\n", + " class_weight=class_weight,\n", + " validation_split=0.1,\n", + " callbacks=[checkpoint])\n", + "\n", + "model.save(config.model_path)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "config.mode = 'time'\n", + "config.model_path = os.path.join('models', config.mode + '.model')\n", + "config.p_path = os.path.join('pickles', config.mode + '.p')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████████████████████████████████████| 26410/26410 [02:01<00:00, 217.66it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(26410, 9, 13)\n", + "Model: \"sequential_7\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_11 (LSTM) (None, 9, 128) 72704 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 9, 128) 131584 \n", + "_________________________________________________________________\n", + "dropout_7 (Dropout) (None, 9, 128) 0 \n", + "_________________________________________________________________\n", + "time_distributed_21 (TimeDis (None, 9, 64) 8256 \n", + "_________________________________________________________________\n", + "time_distributed_22 (TimeDis (None, 9, 32) 2080 \n", + "_________________________________________________________________\n", + "time_distributed_23 (TimeDis (None, 9, 16) 528 \n", + "_________________________________________________________________\n", + "time_distributed_24 (TimeDis (None, 9, 8) 136 \n", + "_________________________________________________________________\n", + "flatten_7 (Flatten) (None, 72) 0 \n", + "_________________________________________________________________\n", + "dense_34 (Dense) (None, 10) 730 \n", + "=================================================================\n", + "Total params: 216,018\n", + "Trainable params: 216,018\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 23769 samples, validate on 2641 samples\n", + "Epoch 1/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13696/23769 [================>.............] - ETA: 16:21 - loss: 2.3042 - acc: 0.0000e+ - ETA: 5:40 - loss: 2.3030 - acc: 0.0729 - ETA: 3:33 - loss: 2.3032 - acc: 0.100 - ETA: 2:38 - loss: 2.3016 - acc: 0.120 - ETA: 2:08 - loss: 2.2996 - acc: 0.128 - ETA: 1:48 - loss: 2.2990 - acc: 0.133 - ETA: 1:34 - loss: 2.2984 - acc: 0.134 - ETA: 1:25 - loss: 2.2974 - acc: 0.141 - ETA: 1:17 - loss: 2.2970 - acc: 0.134 - ETA: 1:11 - loss: 2.2941 - acc: 0.139 - ETA: 1:06 - loss: 2.2926 - acc: 0.141 - ETA: 1:02 - loss: 2.2926 - acc: 0.137 - ETA: 59s - loss: 2.2918 - acc: 0.136 - ETA: 56s - loss: 2.2893 - acc: 0.13 - ETA: 53s - loss: 2.2844 - acc: 0.13 - ETA: 51s - loss: 2.2807 - acc: 0.13 - ETA: 50s - loss: 2.2802 - acc: 0.13 - ETA: 48s - loss: 2.2774 - acc: 0.12 - ETA: 46s - loss: 2.2768 - acc: 0.12 - ETA: 45s - loss: 2.2773 - acc: 0.12 - ETA: 44s - loss: 2.2734 - acc: 0.12 - ETA: 43s - loss: 2.2701 - acc: 0.12 - ETA: 42s - loss: 2.2667 - acc: 0.12 - ETA: 41s - loss: 2.2674 - acc: 0.12 - ETA: 40s - loss: 2.2637 - acc: 0.12 - ETA: 39s - loss: 2.2608 - acc: 0.13 - ETA: 38s - loss: 2.2582 - acc: 0.13 - ETA: 38s - loss: 2.2556 - acc: 0.13 - ETA: 37s - loss: 2.2548 - acc: 0.13 - ETA: 36s - loss: 2.2524 - acc: 0.13 - ETA: 36s - loss: 2.2502 - acc: 0.13 - ETA: 35s - loss: 2.2488 - acc: 0.13 - ETA: 34s - loss: 2.2464 - acc: 0.13 - ETA: 34s - loss: 2.2433 - acc: 0.13 - ETA: 33s - loss: 2.2396 - acc: 0.13 - ETA: 33s - loss: 2.2359 - acc: 0.13 - ETA: 32s - loss: 2.2354 - acc: 0.13 - ETA: 32s - loss: 2.2323 - acc: 0.14 - ETA: 32s - loss: 2.2302 - acc: 0.14 - ETA: 31s - loss: 2.2284 - acc: 0.14 - ETA: 31s - loss: 2.2242 - acc: 0.14 - ETA: 31s - loss: 2.2207 - acc: 0.14 - ETA: 30s - loss: 2.2155 - acc: 0.14 - ETA: 30s - loss: 2.2130 - acc: 0.14 - ETA: 30s - loss: 2.2081 - acc: 0.14 - ETA: 29s - loss: 2.2041 - acc: 0.15 - ETA: 29s - loss: 2.1999 - acc: 0.15 - ETA: 29s - loss: 2.1989 - acc: 0.15 - ETA: 29s - loss: 2.1916 - acc: 0.15 - ETA: 28s - loss: 2.1879 - acc: 0.16 - ETA: 28s - loss: 2.1872 - acc: 0.15 - ETA: 28s - loss: 2.1845 - acc: 0.16 - ETA: 28s - loss: 2.1827 - acc: 0.16 - ETA: 27s - loss: 2.1793 - acc: 0.16 - ETA: 27s - loss: 2.1757 - acc: 0.16 - ETA: 27s - loss: 2.1733 - acc: 0.16 - ETA: 27s - loss: 2.1726 - acc: 0.16 - ETA: 26s - loss: 2.1710 - acc: 0.16 - ETA: 26s - loss: 2.1679 - acc: 0.16 - ETA: 26s - loss: 2.1669 - acc: 0.16 - ETA: 26s - loss: 2.1639 - acc: 0.16 - ETA: 26s - loss: 2.1612 - acc: 0.16 - ETA: 25s - loss: 2.1583 - acc: 0.16 - ETA: 25s - loss: 2.1569 - acc: 0.16 - ETA: 25s - loss: 2.1560 - acc: 0.16 - ETA: 25s - loss: 2.1516 - acc: 0.17 - ETA: 25s - loss: 2.1507 - acc: 0.17 - ETA: 24s - loss: 2.1484 - acc: 0.17 - ETA: 24s - loss: 2.1435 - acc: 0.17 - ETA: 24s - loss: 2.1415 - acc: 0.17 - ETA: 24s - loss: 2.1418 - acc: 0.17 - ETA: 24s - loss: 2.1384 - acc: 0.17 - ETA: 24s - loss: 2.1365 - acc: 0.17 - ETA: 23s - loss: 2.1339 - acc: 0.17 - ETA: 23s - loss: 2.1312 - acc: 0.17 - ETA: 23s - loss: 2.1284 - acc: 0.18 - ETA: 23s - loss: 2.1254 - acc: 0.18 - ETA: 23s - loss: 2.1228 - acc: 0.18 - ETA: 23s - loss: 2.1187 - acc: 0.18 - ETA: 22s - loss: 2.1153 - acc: 0.18 - ETA: 22s - loss: 2.1160 - acc: 0.18 - ETA: 22s - loss: 2.1123 - acc: 0.18 - ETA: 22s - loss: 2.1082 - acc: 0.19 - ETA: 22s - loss: 2.1059 - acc: 0.19 - ETA: 22s - loss: 2.1019 - acc: 0.19 - ETA: 22s - loss: 2.0994 - acc: 0.19 - ETA: 21s - loss: 2.0970 - acc: 0.19 - ETA: 21s - loss: 2.0967 - acc: 0.19 - ETA: 21s - loss: 2.0950 - acc: 0.19 - ETA: 21s - loss: 2.0935 - acc: 0.19 - ETA: 21s - loss: 2.0890 - acc: 0.20 - ETA: 21s - loss: 2.0864 - acc: 0.20 - ETA: 21s - loss: 2.0826 - acc: 0.20 - ETA: 21s - loss: 2.0781 - acc: 0.20 - ETA: 20s - loss: 2.0754 - acc: 0.20 - ETA: 20s - loss: 2.0734 - acc: 0.20 - ETA: 20s - loss: 2.0700 - acc: 0.20 - ETA: 20s - loss: 2.0689 - acc: 0.21 - ETA: 20s - loss: 2.0664 - acc: 0.21 - ETA: 20s - loss: 2.0637 - acc: 0.21 - ETA: 20s - loss: 2.0600 - acc: 0.21 - ETA: 20s - loss: 2.0586 - acc: 0.21 - ETA: 19s - loss: 2.0522 - acc: 0.21 - ETA: 19s - loss: 2.0501 - acc: 0.21 - ETA: 19s - loss: 2.0479 - acc: 0.22 - ETA: 19s - loss: 2.0461 - acc: 0.22 - ETA: 19s - loss: 2.0415 - acc: 0.22 - ETA: 19s - loss: 2.0383 - acc: 0.22 - ETA: 19s - loss: 2.0361 - acc: 0.22 - ETA: 19s - loss: 2.0353 - acc: 0.22 - ETA: 19s - loss: 2.0315 - acc: 0.22 - ETA: 19s - loss: 2.0280 - acc: 0.22 - ETA: 18s - loss: 2.0261 - acc: 0.22 - ETA: 18s - loss: 2.0254 - acc: 0.22 - ETA: 18s - loss: 2.0228 - acc: 0.23 - ETA: 18s - loss: 2.0204 - acc: 0.23 - ETA: 18s - loss: 2.0173 - acc: 0.23 - ETA: 18s - loss: 2.0138 - acc: 0.23 - ETA: 18s - loss: 2.0115 - acc: 0.23 - ETA: 18s - loss: 2.0079 - acc: 0.23 - ETA: 18s - loss: 2.0066 - acc: 0.23 - ETA: 18s - loss: 2.0035 - acc: 0.23 - ETA: 17s - loss: 2.0008 - acc: 0.24 - ETA: 17s - loss: 1.9989 - acc: 0.24 - ETA: 17s - loss: 1.9980 - acc: 0.24 - ETA: 17s - loss: 1.9953 - acc: 0.24 - ETA: 17s - loss: 1.9928 - acc: 0.24 - ETA: 17s - loss: 1.9917 - acc: 0.24 - ETA: 17s - loss: 1.9914 - acc: 0.24 - ETA: 17s - loss: 1.9914 - acc: 0.24 - ETA: 17s - loss: 1.9895 - acc: 0.24 - ETA: 17s - loss: 1.9869 - acc: 0.24 - ETA: 17s - loss: 1.9846 - acc: 0.24 - ETA: 16s - loss: 1.9823 - acc: 0.25 - ETA: 16s - loss: 1.9808 - acc: 0.25 - ETA: 16s - loss: 1.9787 - acc: 0.25 - ETA: 16s - loss: 1.9765 - acc: 0.25 - ETA: 16s - loss: 1.9744 - acc: 0.25 - ETA: 16s - loss: 1.9728 - acc: 0.25 - ETA: 16s - loss: 1.9699 - acc: 0.25 - ETA: 16s - loss: 1.9686 - acc: 0.25 - ETA: 16s - loss: 1.9666 - acc: 0.25 - ETA: 16s - loss: 1.9638 - acc: 0.25 - ETA: 16s - loss: 1.9617 - acc: 0.26 - ETA: 15s - loss: 1.9595 - acc: 0.26 - ETA: 15s - loss: 1.9571 - acc: 0.26 - ETA: 15s - loss: 1.9548 - acc: 0.26 - ETA: 15s - loss: 1.9535 - acc: 0.26 - ETA: 15s - loss: 1.9509 - acc: 0.26 - ETA: 15s - loss: 1.9478 - acc: 0.26 - ETA: 15s - loss: 1.9450 - acc: 0.26 - ETA: 15s - loss: 1.9427 - acc: 0.26 - ETA: 15s - loss: 1.9405 - acc: 0.26 - ETA: 15s - loss: 1.9390 - acc: 0.27 - ETA: 15s - loss: 1.9371 - acc: 0.27 - ETA: 15s - loss: 1.9358 - acc: 0.27 - ETA: 14s - loss: 1.9337 - acc: 0.27 - ETA: 14s - loss: 1.9319 - acc: 0.27 - ETA: 14s - loss: 1.9287 - acc: 0.27 - ETA: 14s - loss: 1.9268 - acc: 0.27 - ETA: 14s - loss: 1.9249 - acc: 0.27 - ETA: 14s - loss: 1.9228 - acc: 0.27 - ETA: 14s - loss: 1.9210 - acc: 0.27 - ETA: 14s - loss: 1.9193 - acc: 0.27 - ETA: 14s - loss: 1.9168 - acc: 0.28 - ETA: 14s - loss: 1.9151 - acc: 0.28 - ETA: 14s - loss: 1.9145 - acc: 0.28 - ETA: 14s - loss: 1.9121 - acc: 0.28 - ETA: 13s - loss: 1.9106 - acc: 0.28 - ETA: 13s - loss: 1.9078 - acc: 0.28 - ETA: 13s - loss: 1.9060 - acc: 0.28 - ETA: 13s - loss: 1.9033 - acc: 0.28 - ETA: 13s - loss: 1.9007 - acc: 0.28 - ETA: 13s - loss: 1.8986 - acc: 0.28 - ETA: 13s - loss: 1.8974 - acc: 0.28 - ETA: 13s - loss: 1.8952 - acc: 0.28 - ETA: 13s - loss: 1.8932 - acc: 0.28 - ETA: 13s - loss: 1.8911 - acc: 0.29 - ETA: 13s - loss: 1.8890 - acc: 0.29 - ETA: 13s - loss: 1.8887 - acc: 0.29 - ETA: 12s - loss: 1.8884 - acc: 0.29 - ETA: 12s - loss: 1.8872 - acc: 0.29 - ETA: 12s - loss: 1.8855 - acc: 0.29 - ETA: 12s - loss: 1.8834 - acc: 0.29 - ETA: 12s - loss: 1.8814 - acc: 0.29 - ETA: 12s - loss: 1.8797 - acc: 0.29 - ETA: 12s - loss: 1.8784 - acc: 0.29 - ETA: 12s - loss: 1.8756 - acc: 0.29 - ETA: 12s - loss: 1.8744 - acc: 0.29 - ETA: 12s - loss: 1.8713 - acc: 0.29 - ETA: 12s - loss: 1.8705 - acc: 0.29 - ETA: 12s - loss: 1.8683 - acc: 0.29 - ETA: 12s - loss: 1.8671 - acc: 0.29 - ETA: 12s - loss: 1.8651 - acc: 0.29 - ETA: 12s - loss: 1.8635 - acc: 0.30 - ETA: 11s - loss: 1.8619 - acc: 0.30 - ETA: 11s - loss: 1.8609 - acc: 0.30 - ETA: 11s - loss: 1.8598 - acc: 0.30 - ETA: 11s - loss: 1.8584 - acc: 0.30 - ETA: 11s - loss: 1.8553 - acc: 0.30 - ETA: 11s - loss: 1.8535 - acc: 0.30 - ETA: 11s - loss: 1.8511 - acc: 0.30 - ETA: 11s - loss: 1.8499 - acc: 0.30 - ETA: 11s - loss: 1.8483 - acc: 0.30 - ETA: 11s - loss: 1.8483 - acc: 0.30 - ETA: 11s - loss: 1.8469 - acc: 0.30 - ETA: 11s - loss: 1.8447 - acc: 0.30 - ETA: 11s - loss: 1.8442 - acc: 0.30 - ETA: 11s - loss: 1.8429 - acc: 0.30 - ETA: 10s - loss: 1.8420 - acc: 0.30 - ETA: 10s - loss: 1.8401 - acc: 0.30 - ETA: 10s - loss: 1.8390 - acc: 0.30 - ETA: 10s - loss: 1.8391 - acc: 0.30 - ETA: 10s - loss: 1.8367 - acc: 0.3105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 10s - loss: 1.8355 - acc: 0.31 - ETA: 10s - loss: 1.8343 - acc: 0.31 - ETA: 10s - loss: 1.8329 - acc: 0.31 - ETA: 10s - loss: 1.8315 - acc: 0.31 - ETA: 10s - loss: 1.8298 - acc: 0.31 - ETA: 10s - loss: 1.8283 - acc: 0.31 - ETA: 10s - loss: 1.8274 - acc: 0.31 - ETA: 10s - loss: 1.8260 - acc: 0.31 - ETA: 10s - loss: 1.8246 - acc: 0.31 - ETA: 9s - loss: 1.8229 - acc: 0.3163 - ETA: 9s - loss: 1.8220 - acc: 0.316 - ETA: 9s - loss: 1.8214 - acc: 0.316 - ETA: 9s - loss: 1.8209 - acc: 0.317 - ETA: 9s - loss: 1.8184 - acc: 0.317 - ETA: 9s - loss: 1.8174 - acc: 0.318 - ETA: 9s - loss: 1.8156 - acc: 0.318 - ETA: 9s - loss: 1.8140 - acc: 0.319 - ETA: 9s - loss: 1.8131 - acc: 0.319 - ETA: 9s - loss: 1.8119 - acc: 0.319 - ETA: 9s - loss: 1.8108 - acc: 0.320 - ETA: 9s - loss: 1.8090 - acc: 0.320 - ETA: 9s - loss: 1.8069 - acc: 0.321 - ETA: 9s - loss: 1.8055 - acc: 0.321 - ETA: 8s - loss: 1.8040 - acc: 0.322 - ETA: 8s - loss: 1.8033 - acc: 0.322 - ETA: 8s - loss: 1.8016 - acc: 0.323 - ETA: 8s - loss: 1.8004 - acc: 0.323 - ETA: 8s - loss: 1.7992 - acc: 0.323 - ETA: 8s - loss: 1.7983 - acc: 0.324 - ETA: 8s - loss: 1.7965 - acc: 0.324 - ETA: 8s - loss: 1.7947 - acc: 0.325 - ETA: 8s - loss: 1.7936 - acc: 0.325 - ETA: 8s - loss: 1.7915 - acc: 0.326 - ETA: 8s - loss: 1.7899 - acc: 0.327 - ETA: 8s - loss: 1.7887 - acc: 0.327 - ETA: 8s - loss: 1.7871 - acc: 0.328 - ETA: 8s - loss: 1.7862 - acc: 0.328 - ETA: 8s - loss: 1.7855 - acc: 0.329 - ETA: 7s - loss: 1.7847 - acc: 0.329 - ETA: 7s - loss: 1.7826 - acc: 0.330 - ETA: 7s - loss: 1.7812 - acc: 0.331 - ETA: 7s - loss: 1.7800 - acc: 0.331 - ETA: 7s - loss: 1.7786 - acc: 0.332 - ETA: 7s - loss: 1.7777 - acc: 0.332 - ETA: 7s - loss: 1.7762 - acc: 0.333 - ETA: 7s - loss: 1.7746 - acc: 0.333 - ETA: 7s - loss: 1.7730 - acc: 0.334 - ETA: 7s - loss: 1.7712 - acc: 0.335 - ETA: 7s - loss: 1.7701 - acc: 0.335 - ETA: 7s - loss: 1.7682 - acc: 0.336 - ETA: 7s - loss: 1.7661 - acc: 0.337 - ETA: 7s - loss: 1.7648 - acc: 0.338 - ETA: 6s - loss: 1.7631 - acc: 0.339 - ETA: 6s - loss: 1.7612 - acc: 0.339 - ETA: 6s - loss: 1.7604 - acc: 0.339 - ETA: 6s - loss: 1.7595 - acc: 0.340 - ETA: 6s - loss: 1.7586 - acc: 0.341 - ETA: 6s - loss: 1.7573 - acc: 0.341 - ETA: 6s - loss: 1.7561 - acc: 0.341 - ETA: 6s - loss: 1.7547 - acc: 0.342 - ETA: 6s - loss: 1.7533 - acc: 0.343 - ETA: 6s - loss: 1.7518 - acc: 0.343 - ETA: 6s - loss: 1.7499 - acc: 0.344 - ETA: 6s - loss: 1.7484 - acc: 0.345 - ETA: 6s - loss: 1.7471 - acc: 0.345 - ETA: 6s - loss: 1.7462 - acc: 0.345 - ETA: 6s - loss: 1.7445 - acc: 0.346 - ETA: 5s - loss: 1.7427 - acc: 0.347 - ETA: 5s - loss: 1.7416 - acc: 0.347 - ETA: 5s - loss: 1.7400 - acc: 0.348 - ETA: 5s - loss: 1.7385 - acc: 0.348 - ETA: 5s - loss: 1.7374 - acc: 0.349 - ETA: 5s - loss: 1.7358 - acc: 0.349 - ETA: 5s - loss: 1.7343 - acc: 0.350 - ETA: 5s - loss: 1.7328 - acc: 0.351 - ETA: 5s - loss: 1.7318 - acc: 0.351 - ETA: 5s - loss: 1.7310 - acc: 0.351 - ETA: 5s - loss: 1.7300 - acc: 0.352 - ETA: 5s - loss: 1.7299 - acc: 0.352 - ETA: 5s - loss: 1.7294 - acc: 0.353 - ETA: 5s - loss: 1.7280 - acc: 0.353 - ETA: 5s - loss: 1.7271 - acc: 0.353 - ETA: 4s - loss: 1.7255 - acc: 0.354 - ETA: 4s - loss: 1.7239 - acc: 0.355 - ETA: 4s - loss: 1.7221 - acc: 0.355 - ETA: 4s - loss: 1.7207 - acc: 0.356 - ETA: 4s - loss: 1.7197 - acc: 0.356 - ETA: 4s - loss: 1.7184 - acc: 0.357 - ETA: 4s - loss: 1.7185 - acc: 0.357 - ETA: 4s - loss: 1.7175 - acc: 0.357 - ETA: 4s - loss: 1.7166 - acc: 0.358 - ETA: 4s - loss: 1.7154 - acc: 0.358 - ETA: 4s - loss: 1.7142 - acc: 0.359 - ETA: 4s - loss: 1.7127 - acc: 0.359 - ETA: 4s - loss: 1.7118 - acc: 0.360 - ETA: 4s - loss: 1.7105 - acc: 0.360 - ETA: 4s - loss: 1.7096 - acc: 0.360 - ETA: 3s - loss: 1.7078 - acc: 0.361 - ETA: 3s - loss: 1.7065 - acc: 0.361 - ETA: 3s - loss: 1.7055 - acc: 0.362 - ETA: 3s - loss: 1.7050 - acc: 0.362 - ETA: 3s - loss: 1.7037 - acc: 0.362 - ETA: 3s - loss: 1.7026 - acc: 0.363 - ETA: 3s - loss: 1.7014 - acc: 0.363 - ETA: 3s - loss: 1.6995 - acc: 0.364 - ETA: 3s - loss: 1.6989 - acc: 0.364 - ETA: 3s - loss: 1.6974 - acc: 0.365 - ETA: 3s - loss: 1.6963 - acc: 0.365 - ETA: 3s - loss: 1.6953 - acc: 0.366 - ETA: 3s - loss: 1.6940 - acc: 0.366 - ETA: 3s - loss: 1.6928 - acc: 0.367 - ETA: 2s - loss: 1.6917 - acc: 0.367 - ETA: 2s - loss: 1.6914 - acc: 0.367 - ETA: 2s - loss: 1.6906 - acc: 0.368 - ETA: 2s - loss: 1.6892 - acc: 0.368 - ETA: 2s - loss: 1.6884 - acc: 0.368 - ETA: 2s - loss: 1.6867 - acc: 0.369 - ETA: 2s - loss: 1.6856 - acc: 0.370 - ETA: 2s - loss: 1.6845 - acc: 0.370 - ETA: 2s - loss: 1.6838 - acc: 0.370 - ETA: 2s - loss: 1.6831 - acc: 0.371 - ETA: 2s - loss: 1.6815 - acc: 0.372 - ETA: 2s - loss: 1.6798 - acc: 0.372 - ETA: 2s - loss: 1.6785 - acc: 0.373 - ETA: 2s - loss: 1.6775 - acc: 0.373 - ETA: 2s - loss: 1.6759 - acc: 0.374 - ETA: 1s - loss: 1.6754 - acc: 0.374 - ETA: 1s - loss: 1.6739 - acc: 0.375 - ETA: 1s - loss: 1.6727 - acc: 0.375 - ETA: 1s - loss: 1.6722 - acc: 0.376 - ETA: 1s - loss: 1.6717 - acc: 0.376 - ETA: 1s - loss: 1.6715 - acc: 0.376 - ETA: 1s - loss: 1.6707 - acc: 0.376 - ETA: 1s - loss: 1.6698 - acc: 0.377 - ETA: 1s - loss: 1.6695 - acc: 0.377 - ETA: 1s - loss: 1.6693 - acc: 0.377 - ETA: 1s - loss: 1.6686 - acc: 0.377 - ETA: 1s - loss: 1.6676 - acc: 0.377 - ETA: 1s - loss: 1.6668 - acc: 0.377 - ETA: 1s - loss: 1.6660 - acc: 0.378 - ETA: 1s - loss: 1.6652 - acc: 0.378 - ETA: 0s - loss: 1.6638 - acc: 0.378 - ETA: 0s - loss: 1.6624 - acc: 0.379 - ETA: 0s - loss: 1.6615 - acc: 0.379 - ETA: 0s - loss: 1.6607 - acc: 0.380 - ETA: 0s - loss: 1.6601 - acc: 0.380 - ETA: 0s - loss: 1.6599 - acc: 0.380 - ETA: 0s - loss: 1.6587 - acc: 0.381 - ETA: 0s - loss: 1.6574 - acc: 0.381 - ETA: 0s - loss: 1.6566 - acc: 0.381 - ETA: 0s - loss: 1.6554 - acc: 0.382 - ETA: 0s - loss: 1.6544 - acc: 0.383 - ETA: 0s - loss: 1.6526 - acc: 0.383 - ETA: 0s - loss: 1.6518 - acc: 0.384 - ETA: 0s - loss: 1.6499 - acc: 0.384 - ETA: 0s - loss: 1.6491 - acc: 0.385 - 25s 1ms/step - loss: 1.6489 - acc: 0.3852 - val_loss: 1.3373 - val_acc: 0.5112\n", + "\n", + "Epoch 00001: val_acc improved from -inf to 0.51117, saving model to models\\time.model\n", + "Epoch 2/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13888/23769 [================>.............] - ETA: 26s - loss: 1.3585 - acc: 0.56 - ETA: 25s - loss: 1.4329 - acc: 0.52 - ETA: 23s - loss: 1.4195 - acc: 0.50 - ETA: 23s - loss: 1.4322 - acc: 0.51 - ETA: 23s - loss: 1.4289 - acc: 0.51 - ETA: 23s - loss: 1.4460 - acc: 0.50 - ETA: 23s - loss: 1.4347 - acc: 0.50 - ETA: 23s - loss: 1.4273 - acc: 0.49 - ETA: 22s - loss: 1.3919 - acc: 0.50 - ETA: 22s - loss: 1.3785 - acc: 0.50 - ETA: 22s - loss: 1.3842 - acc: 0.49 - ETA: 22s - loss: 1.3787 - acc: 0.50 - ETA: 22s - loss: 1.3620 - acc: 0.50 - ETA: 22s - loss: 1.3609 - acc: 0.50 - ETA: 22s - loss: 1.3731 - acc: 0.50 - ETA: 22s - loss: 1.3503 - acc: 0.50 - ETA: 22s - loss: 1.3360 - acc: 0.50 - ETA: 22s - loss: 1.3362 - acc: 0.50 - ETA: 21s - loss: 1.3382 - acc: 0.50 - ETA: 21s - loss: 1.3280 - acc: 0.51 - ETA: 21s - loss: 1.3233 - acc: 0.51 - ETA: 21s - loss: 1.3161 - acc: 0.51 - ETA: 21s - loss: 1.3161 - acc: 0.52 - ETA: 21s - loss: 1.3250 - acc: 0.51 - ETA: 21s - loss: 1.3219 - acc: 0.51 - ETA: 21s - loss: 1.3145 - acc: 0.52 - ETA: 21s - loss: 1.3014 - acc: 0.53 - ETA: 21s - loss: 1.2978 - acc: 0.53 - ETA: 21s - loss: 1.2967 - acc: 0.53 - ETA: 21s - loss: 1.2918 - acc: 0.54 - ETA: 20s - loss: 1.2867 - acc: 0.54 - ETA: 20s - loss: 1.2804 - acc: 0.54 - ETA: 20s - loss: 1.2852 - acc: 0.54 - ETA: 20s - loss: 1.2794 - acc: 0.54 - ETA: 20s - loss: 1.2834 - acc: 0.54 - ETA: 20s - loss: 1.2879 - acc: 0.54 - ETA: 20s - loss: 1.2897 - acc: 0.54 - ETA: 20s - loss: 1.2916 - acc: 0.54 - ETA: 20s - loss: 1.2919 - acc: 0.54 - ETA: 20s - loss: 1.2886 - acc: 0.54 - ETA: 20s - loss: 1.2927 - acc: 0.54 - ETA: 20s - loss: 1.2922 - acc: 0.53 - ETA: 20s - loss: 1.2887 - acc: 0.54 - ETA: 20s - loss: 1.2858 - acc: 0.54 - ETA: 19s - loss: 1.2835 - acc: 0.54 - ETA: 19s - loss: 1.2785 - acc: 0.54 - ETA: 19s - loss: 1.2773 - acc: 0.54 - ETA: 19s - loss: 1.2727 - acc: 0.54 - ETA: 19s - loss: 1.2756 - acc: 0.54 - ETA: 19s - loss: 1.2684 - acc: 0.54 - ETA: 19s - loss: 1.2726 - acc: 0.54 - ETA: 19s - loss: 1.2741 - acc: 0.54 - ETA: 19s - loss: 1.2739 - acc: 0.54 - ETA: 19s - loss: 1.2768 - acc: 0.54 - ETA: 19s - loss: 1.2752 - acc: 0.54 - ETA: 19s - loss: 1.2732 - acc: 0.54 - ETA: 19s - loss: 1.2692 - acc: 0.55 - ETA: 19s - loss: 1.2643 - acc: 0.55 - ETA: 19s - loss: 1.2649 - acc: 0.55 - ETA: 19s - loss: 1.2628 - acc: 0.55 - ETA: 19s - loss: 1.2609 - acc: 0.55 - ETA: 19s - loss: 1.2618 - acc: 0.55 - ETA: 19s - loss: 1.2580 - acc: 0.55 - ETA: 19s - loss: 1.2554 - acc: 0.55 - ETA: 18s - loss: 1.2527 - acc: 0.55 - ETA: 18s - loss: 1.2479 - acc: 0.56 - ETA: 18s - loss: 1.2508 - acc: 0.55 - ETA: 18s - loss: 1.2510 - acc: 0.55 - ETA: 18s - loss: 1.2487 - acc: 0.55 - ETA: 18s - loss: 1.2486 - acc: 0.55 - ETA: 18s - loss: 1.2453 - acc: 0.55 - ETA: 18s - loss: 1.2456 - acc: 0.56 - ETA: 18s - loss: 1.2440 - acc: 0.56 - ETA: 18s - loss: 1.2438 - acc: 0.55 - ETA: 18s - loss: 1.2370 - acc: 0.56 - ETA: 18s - loss: 1.2359 - acc: 0.56 - ETA: 18s - loss: 1.2354 - acc: 0.56 - ETA: 18s - loss: 1.2355 - acc: 0.56 - ETA: 18s - loss: 1.2332 - acc: 0.56 - ETA: 18s - loss: 1.2332 - acc: 0.56 - ETA: 18s - loss: 1.2309 - acc: 0.56 - ETA: 17s - loss: 1.2270 - acc: 0.56 - ETA: 17s - loss: 1.2254 - acc: 0.56 - ETA: 17s - loss: 1.2252 - acc: 0.56 - ETA: 17s - loss: 1.2252 - acc: 0.56 - ETA: 17s - loss: 1.2251 - acc: 0.56 - ETA: 17s - loss: 1.2218 - acc: 0.56 - ETA: 17s - loss: 1.2219 - acc: 0.56 - ETA: 17s - loss: 1.2202 - acc: 0.56 - ETA: 17s - loss: 1.2186 - acc: 0.56 - ETA: 17s - loss: 1.2201 - acc: 0.56 - ETA: 17s - loss: 1.2176 - acc: 0.56 - ETA: 17s - loss: 1.2173 - acc: 0.57 - ETA: 17s - loss: 1.2163 - acc: 0.57 - ETA: 17s - loss: 1.2151 - acc: 0.57 - ETA: 17s - loss: 1.2118 - acc: 0.57 - ETA: 16s - loss: 1.2120 - acc: 0.57 - ETA: 16s - loss: 1.2124 - acc: 0.57 - ETA: 16s - loss: 1.2113 - acc: 0.57 - ETA: 16s - loss: 1.2104 - acc: 0.57 - ETA: 16s - loss: 1.2102 - acc: 0.57 - ETA: 16s - loss: 1.2105 - acc: 0.57 - ETA: 16s - loss: 1.2086 - acc: 0.57 - ETA: 16s - loss: 1.2057 - acc: 0.57 - ETA: 16s - loss: 1.2067 - acc: 0.57 - ETA: 16s - loss: 1.2109 - acc: 0.57 - ETA: 16s - loss: 1.2102 - acc: 0.57 - ETA: 16s - loss: 1.2103 - acc: 0.57 - ETA: 16s - loss: 1.2098 - acc: 0.57 - ETA: 16s - loss: 1.2093 - acc: 0.57 - ETA: 16s - loss: 1.2079 - acc: 0.57 - ETA: 15s - loss: 1.2076 - acc: 0.57 - ETA: 15s - loss: 1.2070 - acc: 0.57 - ETA: 15s - loss: 1.2056 - acc: 0.57 - ETA: 15s - loss: 1.2063 - acc: 0.57 - ETA: 15s - loss: 1.2058 - acc: 0.57 - ETA: 15s - loss: 1.2045 - acc: 0.57 - ETA: 15s - loss: 1.2035 - acc: 0.57 - ETA: 15s - loss: 1.2026 - acc: 0.57 - ETA: 15s - loss: 1.2011 - acc: 0.57 - ETA: 15s - loss: 1.1977 - acc: 0.57 - ETA: 15s - loss: 1.1960 - acc: 0.57 - ETA: 15s - loss: 1.1950 - acc: 0.57 - ETA: 15s - loss: 1.1941 - acc: 0.57 - ETA: 15s - loss: 1.1936 - acc: 0.57 - ETA: 15s - loss: 1.1916 - acc: 0.58 - ETA: 15s - loss: 1.1895 - acc: 0.58 - ETA: 15s - loss: 1.1886 - acc: 0.58 - ETA: 14s - loss: 1.1866 - acc: 0.58 - ETA: 14s - loss: 1.1855 - acc: 0.58 - ETA: 14s - loss: 1.1860 - acc: 0.58 - ETA: 14s - loss: 1.1845 - acc: 0.58 - ETA: 14s - loss: 1.1841 - acc: 0.58 - ETA: 14s - loss: 1.1838 - acc: 0.58 - ETA: 14s - loss: 1.1839 - acc: 0.58 - ETA: 14s - loss: 1.1814 - acc: 0.58 - ETA: 14s - loss: 1.1806 - acc: 0.58 - ETA: 14s - loss: 1.1810 - acc: 0.58 - ETA: 14s - loss: 1.1791 - acc: 0.58 - ETA: 14s - loss: 1.1780 - acc: 0.58 - ETA: 14s - loss: 1.1789 - acc: 0.58 - ETA: 14s - loss: 1.1803 - acc: 0.58 - ETA: 14s - loss: 1.1799 - acc: 0.58 - ETA: 13s - loss: 1.1787 - acc: 0.58 - ETA: 13s - loss: 1.1787 - acc: 0.58 - ETA: 13s - loss: 1.1777 - acc: 0.58 - ETA: 13s - loss: 1.1761 - acc: 0.58 - ETA: 13s - loss: 1.1752 - acc: 0.58 - ETA: 13s - loss: 1.1746 - acc: 0.58 - ETA: 13s - loss: 1.1728 - acc: 0.58 - ETA: 13s - loss: 1.1732 - acc: 0.58 - ETA: 13s - loss: 1.1720 - acc: 0.58 - ETA: 13s - loss: 1.1716 - acc: 0.58 - ETA: 13s - loss: 1.1707 - acc: 0.58 - ETA: 13s - loss: 1.1709 - acc: 0.58 - ETA: 13s - loss: 1.1700 - acc: 0.58 - ETA: 13s - loss: 1.1701 - acc: 0.58 - ETA: 13s - loss: 1.1710 - acc: 0.58 - ETA: 12s - loss: 1.1709 - acc: 0.58 - ETA: 12s - loss: 1.1694 - acc: 0.58 - ETA: 12s - loss: 1.1692 - acc: 0.58 - ETA: 12s - loss: 1.1700 - acc: 0.58 - ETA: 12s - loss: 1.1682 - acc: 0.58 - ETA: 12s - loss: 1.1675 - acc: 0.58 - ETA: 12s - loss: 1.1660 - acc: 0.58 - ETA: 12s - loss: 1.1647 - acc: 0.58 - ETA: 12s - loss: 1.1634 - acc: 0.58 - ETA: 12s - loss: 1.1638 - acc: 0.58 - ETA: 12s - loss: 1.1626 - acc: 0.59 - ETA: 12s - loss: 1.1613 - acc: 0.59 - ETA: 12s - loss: 1.1604 - acc: 0.59 - ETA: 12s - loss: 1.1581 - acc: 0.59 - ETA: 12s - loss: 1.1571 - acc: 0.59 - ETA: 12s - loss: 1.1565 - acc: 0.59 - ETA: 11s - loss: 1.1558 - acc: 0.59 - ETA: 11s - loss: 1.1551 - acc: 0.59 - ETA: 11s - loss: 1.1534 - acc: 0.59 - ETA: 11s - loss: 1.1534 - acc: 0.59 - ETA: 11s - loss: 1.1528 - acc: 0.59 - ETA: 11s - loss: 1.1523 - acc: 0.59 - ETA: 11s - loss: 1.1530 - acc: 0.59 - ETA: 11s - loss: 1.1527 - acc: 0.59 - ETA: 11s - loss: 1.1525 - acc: 0.59 - ETA: 11s - loss: 1.1521 - acc: 0.59 - ETA: 11s - loss: 1.1525 - acc: 0.59 - ETA: 11s - loss: 1.1522 - acc: 0.59 - ETA: 11s - loss: 1.1519 - acc: 0.59 - ETA: 11s - loss: 1.1516 - acc: 0.59 - ETA: 11s - loss: 1.1508 - acc: 0.59 - ETA: 11s - loss: 1.1506 - acc: 0.59 - ETA: 11s - loss: 1.1505 - acc: 0.59 - ETA: 10s - loss: 1.1495 - acc: 0.59 - ETA: 10s - loss: 1.1485 - acc: 0.59 - ETA: 10s - loss: 1.1478 - acc: 0.59 - ETA: 10s - loss: 1.1478 - acc: 0.59 - ETA: 10s - loss: 1.1479 - acc: 0.59 - ETA: 10s - loss: 1.1483 - acc: 0.59 - ETA: 10s - loss: 1.1474 - acc: 0.59 - ETA: 10s - loss: 1.1476 - acc: 0.59 - ETA: 10s - loss: 1.1466 - acc: 0.59 - ETA: 10s - loss: 1.1463 - acc: 0.59 - ETA: 10s - loss: 1.1462 - acc: 0.59 - ETA: 10s - loss: 1.1454 - acc: 0.59 - ETA: 10s - loss: 1.1452 - acc: 0.59 - ETA: 10s - loss: 1.1450 - acc: 0.59 - ETA: 10s - loss: 1.1438 - acc: 0.59 - ETA: 10s - loss: 1.1425 - acc: 0.59 - ETA: 9s - loss: 1.1422 - acc: 0.5970 - ETA: 9s - loss: 1.1420 - acc: 0.597 - ETA: 9s - loss: 1.1411 - acc: 0.597 - ETA: 9s - loss: 1.1399 - acc: 0.597 - ETA: 9s - loss: 1.1391 - acc: 0.598 - ETA: 9s - loss: 1.1386 - acc: 0.598 - ETA: 9s - loss: 1.1388 - acc: 0.598 - ETA: 9s - loss: 1.1382 - acc: 0.5989" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 1.1365 - acc: 0.599 - ETA: 9s - loss: 1.1359 - acc: 0.599 - ETA: 9s - loss: 1.1354 - acc: 0.599 - ETA: 9s - loss: 1.1351 - acc: 0.599 - ETA: 9s - loss: 1.1335 - acc: 0.599 - ETA: 9s - loss: 1.1320 - acc: 0.600 - ETA: 9s - loss: 1.1315 - acc: 0.600 - ETA: 9s - loss: 1.1311 - acc: 0.600 - ETA: 8s - loss: 1.1306 - acc: 0.600 - ETA: 8s - loss: 1.1294 - acc: 0.601 - ETA: 8s - loss: 1.1287 - acc: 0.601 - ETA: 8s - loss: 1.1279 - acc: 0.601 - ETA: 8s - loss: 1.1274 - acc: 0.601 - ETA: 8s - loss: 1.1262 - acc: 0.601 - ETA: 8s - loss: 1.1259 - acc: 0.602 - ETA: 8s - loss: 1.1250 - acc: 0.602 - ETA: 8s - loss: 1.1251 - acc: 0.602 - ETA: 8s - loss: 1.1247 - acc: 0.602 - ETA: 8s - loss: 1.1252 - acc: 0.602 - ETA: 8s - loss: 1.1250 - acc: 0.602 - ETA: 8s - loss: 1.1250 - acc: 0.602 - ETA: 8s - loss: 1.1239 - acc: 0.603 - ETA: 8s - loss: 1.1237 - acc: 0.603 - ETA: 8s - loss: 1.1234 - acc: 0.603 - ETA: 8s - loss: 1.1240 - acc: 0.603 - ETA: 7s - loss: 1.1239 - acc: 0.603 - ETA: 7s - loss: 1.1224 - acc: 0.603 - ETA: 7s - loss: 1.1211 - acc: 0.604 - ETA: 7s - loss: 1.1206 - acc: 0.604 - ETA: 7s - loss: 1.1199 - acc: 0.604 - ETA: 7s - loss: 1.1200 - acc: 0.605 - ETA: 7s - loss: 1.1199 - acc: 0.605 - ETA: 7s - loss: 1.1192 - acc: 0.605 - ETA: 7s - loss: 1.1186 - acc: 0.605 - ETA: 7s - loss: 1.1180 - acc: 0.605 - ETA: 7s - loss: 1.1170 - acc: 0.606 - ETA: 7s - loss: 1.1161 - acc: 0.606 - ETA: 7s - loss: 1.1154 - acc: 0.606 - ETA: 7s - loss: 1.1143 - acc: 0.606 - ETA: 7s - loss: 1.1151 - acc: 0.607 - ETA: 7s - loss: 1.1135 - acc: 0.607 - ETA: 6s - loss: 1.1133 - acc: 0.607 - ETA: 6s - loss: 1.1135 - acc: 0.608 - ETA: 6s - loss: 1.1129 - acc: 0.608 - ETA: 6s - loss: 1.1124 - acc: 0.608 - ETA: 6s - loss: 1.1121 - acc: 0.608 - ETA: 6s - loss: 1.1125 - acc: 0.608 - ETA: 6s - loss: 1.1121 - acc: 0.608 - ETA: 6s - loss: 1.1125 - acc: 0.608 - ETA: 6s - loss: 1.1119 - acc: 0.608 - ETA: 6s - loss: 1.1111 - acc: 0.608 - ETA: 6s - loss: 1.1101 - acc: 0.609 - ETA: 6s - loss: 1.1112 - acc: 0.609 - ETA: 6s - loss: 1.1103 - acc: 0.609 - ETA: 6s - loss: 1.1100 - acc: 0.609 - ETA: 6s - loss: 1.1092 - acc: 0.609 - ETA: 6s - loss: 1.1083 - acc: 0.610 - ETA: 5s - loss: 1.1078 - acc: 0.610 - ETA: 5s - loss: 1.1077 - acc: 0.610 - ETA: 5s - loss: 1.1065 - acc: 0.611 - ETA: 5s - loss: 1.1064 - acc: 0.611 - ETA: 5s - loss: 1.1062 - acc: 0.611 - ETA: 5s - loss: 1.1062 - acc: 0.611 - ETA: 5s - loss: 1.1059 - acc: 0.611 - ETA: 5s - loss: 1.1053 - acc: 0.611 - ETA: 5s - loss: 1.1048 - acc: 0.611 - ETA: 5s - loss: 1.1041 - acc: 0.611 - ETA: 5s - loss: 1.1035 - acc: 0.612 - ETA: 5s - loss: 1.1030 - acc: 0.612 - ETA: 5s - loss: 1.1019 - acc: 0.612 - ETA: 5s - loss: 1.1021 - acc: 0.612 - ETA: 5s - loss: 1.1015 - acc: 0.613 - ETA: 5s - loss: 1.1013 - acc: 0.613 - ETA: 5s - loss: 1.1001 - acc: 0.613 - ETA: 4s - loss: 1.1002 - acc: 0.613 - ETA: 4s - loss: 1.0996 - acc: 0.614 - ETA: 4s - loss: 1.0992 - acc: 0.614 - ETA: 4s - loss: 1.0982 - acc: 0.614 - ETA: 4s - loss: 1.0972 - acc: 0.615 - ETA: 4s - loss: 1.0967 - acc: 0.615 - ETA: 4s - loss: 1.0957 - acc: 0.615 - ETA: 4s - loss: 1.0957 - acc: 0.615 - ETA: 4s - loss: 1.0952 - acc: 0.616 - ETA: 4s - loss: 1.0958 - acc: 0.615 - ETA: 4s - loss: 1.0955 - acc: 0.615 - ETA: 4s - loss: 1.0953 - acc: 0.616 - ETA: 4s - loss: 1.0952 - acc: 0.616 - ETA: 4s - loss: 1.0948 - acc: 0.616 - ETA: 4s - loss: 1.0940 - acc: 0.616 - ETA: 4s - loss: 1.0933 - acc: 0.616 - ETA: 3s - loss: 1.0928 - acc: 0.616 - ETA: 3s - loss: 1.0921 - acc: 0.617 - ETA: 3s - loss: 1.0910 - acc: 0.617 - ETA: 3s - loss: 1.0902 - acc: 0.618 - ETA: 3s - loss: 1.0894 - acc: 0.618 - ETA: 3s - loss: 1.0888 - acc: 0.618 - ETA: 3s - loss: 1.0883 - acc: 0.618 - ETA: 3s - loss: 1.0885 - acc: 0.618 - ETA: 3s - loss: 1.0877 - acc: 0.619 - ETA: 3s - loss: 1.0863 - acc: 0.619 - ETA: 3s - loss: 1.0860 - acc: 0.619 - ETA: 3s - loss: 1.0863 - acc: 0.619 - ETA: 3s - loss: 1.0856 - acc: 0.619 - ETA: 3s - loss: 1.0850 - acc: 0.620 - ETA: 3s - loss: 1.0850 - acc: 0.620 - ETA: 3s - loss: 1.0849 - acc: 0.620 - ETA: 2s - loss: 1.0849 - acc: 0.619 - ETA: 2s - loss: 1.0852 - acc: 0.619 - ETA: 2s - loss: 1.0847 - acc: 0.619 - ETA: 2s - loss: 1.0843 - acc: 0.620 - ETA: 2s - loss: 1.0841 - acc: 0.620 - ETA: 2s - loss: 1.0830 - acc: 0.621 - ETA: 2s - loss: 1.0816 - acc: 0.621 - ETA: 2s - loss: 1.0810 - acc: 0.621 - ETA: 2s - loss: 1.0804 - acc: 0.621 - ETA: 2s - loss: 1.0802 - acc: 0.622 - ETA: 2s - loss: 1.0799 - acc: 0.622 - ETA: 2s - loss: 1.0796 - acc: 0.622 - ETA: 2s - loss: 1.0785 - acc: 0.622 - ETA: 2s - loss: 1.0791 - acc: 0.622 - ETA: 2s - loss: 1.0785 - acc: 0.622 - ETA: 1s - loss: 1.0776 - acc: 0.623 - ETA: 1s - loss: 1.0766 - acc: 0.623 - ETA: 1s - loss: 1.0764 - acc: 0.623 - ETA: 1s - loss: 1.0757 - acc: 0.623 - ETA: 1s - loss: 1.0756 - acc: 0.623 - ETA: 1s - loss: 1.0747 - acc: 0.624 - ETA: 1s - loss: 1.0745 - acc: 0.624 - ETA: 1s - loss: 1.0744 - acc: 0.624 - ETA: 1s - loss: 1.0744 - acc: 0.623 - ETA: 1s - loss: 1.0747 - acc: 0.623 - ETA: 1s - loss: 1.0739 - acc: 0.624 - ETA: 1s - loss: 1.0737 - acc: 0.624 - ETA: 1s - loss: 1.0732 - acc: 0.624 - ETA: 1s - loss: 1.0724 - acc: 0.625 - ETA: 1s - loss: 1.0720 - acc: 0.625 - ETA: 1s - loss: 1.0718 - acc: 0.625 - ETA: 0s - loss: 1.0716 - acc: 0.625 - ETA: 0s - loss: 1.0710 - acc: 0.625 - ETA: 0s - loss: 1.0706 - acc: 0.625 - ETA: 0s - loss: 1.0696 - acc: 0.626 - ETA: 0s - loss: 1.0690 - acc: 0.626 - ETA: 0s - loss: 1.0682 - acc: 0.626 - ETA: 0s - loss: 1.0679 - acc: 0.626 - ETA: 0s - loss: 1.0678 - acc: 0.626 - ETA: 0s - loss: 1.0677 - acc: 0.626 - ETA: 0s - loss: 1.0677 - acc: 0.627 - ETA: 0s - loss: 1.0674 - acc: 0.627 - ETA: 0s - loss: 1.0675 - acc: 0.627 - ETA: 0s - loss: 1.0669 - acc: 0.627 - ETA: 0s - loss: 1.0669 - acc: 0.627 - ETA: 0s - loss: 1.0669 - acc: 0.627 - ETA: 0s - loss: 1.0667 - acc: 0.627 - 24s 1ms/step - loss: 1.0660 - acc: 0.6275 - val_loss: 0.9075 - val_acc: 0.6865\n", + "\n", + "Epoch 00002: val_acc improved from 0.51117 to 0.68648, saving model to models\\time.model\n", + "Epoch 3/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 28s - loss: 0.8473 - acc: 0.65 - ETA: 27s - loss: 0.9525 - acc: 0.62 - ETA: 24s - loss: 1.0035 - acc: 0.61 - ETA: 24s - loss: 1.0098 - acc: 0.62 - ETA: 24s - loss: 1.0103 - acc: 0.62 - ETA: 23s - loss: 0.9616 - acc: 0.65 - ETA: 23s - loss: 0.9501 - acc: 0.65 - ETA: 22s - loss: 0.9368 - acc: 0.66 - ETA: 22s - loss: 0.9427 - acc: 0.66 - ETA: 22s - loss: 0.9610 - acc: 0.65 - ETA: 22s - loss: 0.9530 - acc: 0.66 - ETA: 22s - loss: 0.9366 - acc: 0.67 - ETA: 22s - loss: 0.9291 - acc: 0.67 - ETA: 22s - loss: 0.9161 - acc: 0.68 - ETA: 22s - loss: 0.9086 - acc: 0.68 - ETA: 22s - loss: 0.9223 - acc: 0.68 - ETA: 21s - loss: 0.9187 - acc: 0.68 - ETA: 21s - loss: 0.9246 - acc: 0.67 - ETA: 21s - loss: 0.9195 - acc: 0.67 - ETA: 21s - loss: 0.9197 - acc: 0.67 - ETA: 21s - loss: 0.9145 - acc: 0.68 - ETA: 21s - loss: 0.9148 - acc: 0.68 - ETA: 21s - loss: 0.9133 - acc: 0.68 - ETA: 21s - loss: 0.9096 - acc: 0.67 - ETA: 21s - loss: 0.9117 - acc: 0.67 - ETA: 21s - loss: 0.9114 - acc: 0.68 - ETA: 21s - loss: 0.9201 - acc: 0.67 - ETA: 20s - loss: 0.9304 - acc: 0.67 - ETA: 20s - loss: 0.9306 - acc: 0.67 - ETA: 20s - loss: 0.9249 - acc: 0.68 - ETA: 20s - loss: 0.9234 - acc: 0.68 - ETA: 20s - loss: 0.9148 - acc: 0.68 - ETA: 20s - loss: 0.9157 - acc: 0.68 - ETA: 20s - loss: 0.9153 - acc: 0.68 - ETA: 20s - loss: 0.9252 - acc: 0.68 - ETA: 19s - loss: 0.9208 - acc: 0.68 - ETA: 19s - loss: 0.9241 - acc: 0.68 - ETA: 19s - loss: 0.9266 - acc: 0.68 - ETA: 19s - loss: 0.9258 - acc: 0.68 - ETA: 19s - loss: 0.9288 - acc: 0.68 - ETA: 19s - loss: 0.9310 - acc: 0.68 - ETA: 19s - loss: 0.9239 - acc: 0.69 - ETA: 19s - loss: 0.9257 - acc: 0.68 - ETA: 19s - loss: 0.9193 - acc: 0.69 - ETA: 19s - loss: 0.9198 - acc: 0.68 - ETA: 19s - loss: 0.9130 - acc: 0.69 - ETA: 19s - loss: 0.9131 - acc: 0.68 - ETA: 19s - loss: 0.9109 - acc: 0.69 - ETA: 19s - loss: 0.9113 - acc: 0.68 - ETA: 19s - loss: 0.9073 - acc: 0.69 - ETA: 19s - loss: 0.9036 - acc: 0.69 - ETA: 19s - loss: 0.9016 - acc: 0.69 - ETA: 18s - loss: 0.9007 - acc: 0.69 - ETA: 18s - loss: 0.9035 - acc: 0.69 - ETA: 18s - loss: 0.9032 - acc: 0.69 - ETA: 18s - loss: 0.9017 - acc: 0.69 - ETA: 18s - loss: 0.9030 - acc: 0.68 - ETA: 18s - loss: 0.9020 - acc: 0.68 - ETA: 18s - loss: 0.9030 - acc: 0.68 - ETA: 18s - loss: 0.9046 - acc: 0.68 - ETA: 18s - loss: 0.9037 - acc: 0.68 - ETA: 18s - loss: 0.9072 - acc: 0.68 - ETA: 18s - loss: 0.9114 - acc: 0.68 - ETA: 18s - loss: 0.9102 - acc: 0.68 - ETA: 18s - loss: 0.9098 - acc: 0.68 - ETA: 18s - loss: 0.9088 - acc: 0.68 - ETA: 18s - loss: 0.9091 - acc: 0.68 - ETA: 18s - loss: 0.9065 - acc: 0.68 - ETA: 18s - loss: 0.9034 - acc: 0.68 - ETA: 17s - loss: 0.9011 - acc: 0.68 - ETA: 17s - loss: 0.9004 - acc: 0.68 - ETA: 17s - loss: 0.8996 - acc: 0.68 - ETA: 17s - loss: 0.9029 - acc: 0.68 - ETA: 17s - loss: 0.9006 - acc: 0.68 - ETA: 17s - loss: 0.8985 - acc: 0.68 - ETA: 17s - loss: 0.8964 - acc: 0.68 - ETA: 17s - loss: 0.8972 - acc: 0.68 - ETA: 17s - loss: 0.8999 - acc: 0.68 - ETA: 17s - loss: 0.9018 - acc: 0.68 - ETA: 17s - loss: 0.9016 - acc: 0.68 - ETA: 17s - loss: 0.9006 - acc: 0.68 - ETA: 17s - loss: 0.9007 - acc: 0.68 - ETA: 17s - loss: 0.9009 - acc: 0.68 - ETA: 17s - loss: 0.9008 - acc: 0.68 - ETA: 17s - loss: 0.9013 - acc: 0.68 - ETA: 17s - loss: 0.8993 - acc: 0.68 - ETA: 17s - loss: 0.8985 - acc: 0.69 - ETA: 17s - loss: 0.8960 - acc: 0.69 - ETA: 16s - loss: 0.8952 - acc: 0.69 - ETA: 16s - loss: 0.8973 - acc: 0.69 - ETA: 16s - loss: 0.8957 - acc: 0.69 - ETA: 16s - loss: 0.8935 - acc: 0.69 - ETA: 16s - loss: 0.8924 - acc: 0.69 - ETA: 16s - loss: 0.8926 - acc: 0.69 - ETA: 16s - loss: 0.8949 - acc: 0.69 - ETA: 16s - loss: 0.8939 - acc: 0.69 - ETA: 16s - loss: 0.8949 - acc: 0.69 - ETA: 16s - loss: 0.8943 - acc: 0.69 - ETA: 16s - loss: 0.8926 - acc: 0.69 - ETA: 16s - loss: 0.8941 - acc: 0.69 - ETA: 16s - loss: 0.8917 - acc: 0.69 - ETA: 16s - loss: 0.8905 - acc: 0.69 - ETA: 16s - loss: 0.8899 - acc: 0.69 - ETA: 16s - loss: 0.8877 - acc: 0.69 - ETA: 16s - loss: 0.8879 - acc: 0.69 - ETA: 16s - loss: 0.8857 - acc: 0.69 - ETA: 15s - loss: 0.8870 - acc: 0.69 - ETA: 15s - loss: 0.8875 - acc: 0.69 - ETA: 15s - loss: 0.8876 - acc: 0.69 - ETA: 15s - loss: 0.8872 - acc: 0.69 - ETA: 15s - loss: 0.8897 - acc: 0.69 - ETA: 15s - loss: 0.8864 - acc: 0.69 - ETA: 15s - loss: 0.8872 - acc: 0.69 - ETA: 15s - loss: 0.8893 - acc: 0.69 - ETA: 15s - loss: 0.8908 - acc: 0.69 - ETA: 15s - loss: 0.8900 - acc: 0.69 - ETA: 15s - loss: 0.8909 - acc: 0.69 - ETA: 15s - loss: 0.8894 - acc: 0.69 - ETA: 15s - loss: 0.8902 - acc: 0.69 - ETA: 15s - loss: 0.8908 - acc: 0.69 - ETA: 15s - loss: 0.8914 - acc: 0.69 - ETA: 15s - loss: 0.8901 - acc: 0.69 - ETA: 15s - loss: 0.8907 - acc: 0.69 - ETA: 14s - loss: 0.8900 - acc: 0.69 - ETA: 14s - loss: 0.8919 - acc: 0.69 - ETA: 14s - loss: 0.8938 - acc: 0.69 - ETA: 14s - loss: 0.8921 - acc: 0.69 - ETA: 14s - loss: 0.8901 - acc: 0.69 - ETA: 14s - loss: 0.8883 - acc: 0.69 - ETA: 14s - loss: 0.8876 - acc: 0.69 - ETA: 14s - loss: 0.8873 - acc: 0.69 - ETA: 14s - loss: 0.8879 - acc: 0.69 - ETA: 14s - loss: 0.8891 - acc: 0.69 - ETA: 14s - loss: 0.8908 - acc: 0.69 - ETA: 14s - loss: 0.8912 - acc: 0.69 - ETA: 14s - loss: 0.8908 - acc: 0.69 - ETA: 14s - loss: 0.8915 - acc: 0.69 - ETA: 14s - loss: 0.8899 - acc: 0.69 - ETA: 14s - loss: 0.8897 - acc: 0.69 - ETA: 13s - loss: 0.8894 - acc: 0.69 - ETA: 13s - loss: 0.8893 - acc: 0.69 - ETA: 13s - loss: 0.8868 - acc: 0.69 - ETA: 13s - loss: 0.8868 - acc: 0.69 - ETA: 13s - loss: 0.8874 - acc: 0.69 - ETA: 13s - loss: 0.8866 - acc: 0.69 - ETA: 13s - loss: 0.8879 - acc: 0.69 - ETA: 13s - loss: 0.8890 - acc: 0.69 - ETA: 13s - loss: 0.8885 - acc: 0.69 - ETA: 13s - loss: 0.8875 - acc: 0.69 - ETA: 13s - loss: 0.8867 - acc: 0.69 - ETA: 13s - loss: 0.8840 - acc: 0.69 - ETA: 13s - loss: 0.8843 - acc: 0.69 - ETA: 13s - loss: 0.8834 - acc: 0.69 - ETA: 13s - loss: 0.8834 - acc: 0.69 - ETA: 13s - loss: 0.8832 - acc: 0.69 - ETA: 13s - loss: 0.8826 - acc: 0.69 - ETA: 12s - loss: 0.8810 - acc: 0.69 - ETA: 12s - loss: 0.8811 - acc: 0.69 - ETA: 12s - loss: 0.8812 - acc: 0.69 - ETA: 12s - loss: 0.8827 - acc: 0.69 - ETA: 12s - loss: 0.8818 - acc: 0.69 - ETA: 12s - loss: 0.8821 - acc: 0.69 - ETA: 12s - loss: 0.8817 - acc: 0.69 - ETA: 12s - loss: 0.8820 - acc: 0.69 - ETA: 12s - loss: 0.8822 - acc: 0.69 - ETA: 12s - loss: 0.8815 - acc: 0.69 - ETA: 12s - loss: 0.8811 - acc: 0.69 - ETA: 12s - loss: 0.8792 - acc: 0.69 - ETA: 12s - loss: 0.8790 - acc: 0.69 - ETA: 12s - loss: 0.8786 - acc: 0.69 - ETA: 12s - loss: 0.8808 - acc: 0.69 - ETA: 12s - loss: 0.8809 - acc: 0.69 - ETA: 11s - loss: 0.8802 - acc: 0.69 - ETA: 11s - loss: 0.8795 - acc: 0.69 - ETA: 11s - loss: 0.8795 - acc: 0.69 - ETA: 11s - loss: 0.8783 - acc: 0.69 - ETA: 11s - loss: 0.8772 - acc: 0.69 - ETA: 11s - loss: 0.8784 - acc: 0.69 - ETA: 11s - loss: 0.8775 - acc: 0.69 - ETA: 11s - loss: 0.8779 - acc: 0.69 - ETA: 11s - loss: 0.8783 - acc: 0.69 - ETA: 11s - loss: 0.8769 - acc: 0.69 - ETA: 11s - loss: 0.8764 - acc: 0.70 - ETA: 11s - loss: 0.8764 - acc: 0.70 - ETA: 11s - loss: 0.8753 - acc: 0.70 - ETA: 11s - loss: 0.8746 - acc: 0.70 - ETA: 11s - loss: 0.8741 - acc: 0.70 - ETA: 11s - loss: 0.8733 - acc: 0.70 - ETA: 11s - loss: 0.8717 - acc: 0.70 - ETA: 10s - loss: 0.8723 - acc: 0.70 - ETA: 10s - loss: 0.8729 - acc: 0.70 - ETA: 10s - loss: 0.8727 - acc: 0.70 - ETA: 10s - loss: 0.8729 - acc: 0.70 - ETA: 10s - loss: 0.8725 - acc: 0.70 - ETA: 10s - loss: 0.8723 - acc: 0.70 - ETA: 10s - loss: 0.8723 - acc: 0.70 - ETA: 10s - loss: 0.8713 - acc: 0.70 - ETA: 10s - loss: 0.8713 - acc: 0.70 - ETA: 10s - loss: 0.8698 - acc: 0.70 - ETA: 10s - loss: 0.8696 - acc: 0.70 - ETA: 10s - loss: 0.8690 - acc: 0.70 - ETA: 10s - loss: 0.8680 - acc: 0.70 - ETA: 10s - loss: 0.8676 - acc: 0.70 - ETA: 10s - loss: 0.8665 - acc: 0.70 - ETA: 10s - loss: 0.8663 - acc: 0.70 - ETA: 10s - loss: 0.8661 - acc: 0.70 - ETA: 9s - loss: 0.8666 - acc: 0.7034 - ETA: 9s - loss: 0.8659 - acc: 0.703 - ETA: 9s - loss: 0.8655 - acc: 0.703 - ETA: 9s - loss: 0.8653 - acc: 0.703 - ETA: 9s - loss: 0.8653 - acc: 0.703 - ETA: 9s - loss: 0.8648 - acc: 0.703 - ETA: 9s - loss: 0.8647 - acc: 0.704 - ETA: 9s - loss: 0.8650 - acc: 0.703 - ETA: 9s - loss: 0.8646 - acc: 0.7039" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.8646 - acc: 0.704 - ETA: 9s - loss: 0.8647 - acc: 0.704 - ETA: 9s - loss: 0.8650 - acc: 0.704 - ETA: 9s - loss: 0.8659 - acc: 0.703 - ETA: 9s - loss: 0.8652 - acc: 0.703 - ETA: 9s - loss: 0.8652 - acc: 0.703 - ETA: 9s - loss: 0.8643 - acc: 0.703 - ETA: 9s - loss: 0.8640 - acc: 0.704 - ETA: 8s - loss: 0.8637 - acc: 0.703 - ETA: 8s - loss: 0.8638 - acc: 0.704 - ETA: 8s - loss: 0.8643 - acc: 0.703 - ETA: 8s - loss: 0.8644 - acc: 0.703 - ETA: 8s - loss: 0.8646 - acc: 0.703 - ETA: 8s - loss: 0.8653 - acc: 0.703 - ETA: 8s - loss: 0.8659 - acc: 0.703 - ETA: 8s - loss: 0.8657 - acc: 0.703 - ETA: 8s - loss: 0.8674 - acc: 0.703 - ETA: 8s - loss: 0.8678 - acc: 0.702 - ETA: 8s - loss: 0.8685 - acc: 0.702 - ETA: 8s - loss: 0.8695 - acc: 0.702 - ETA: 8s - loss: 0.8697 - acc: 0.702 - ETA: 8s - loss: 0.8690 - acc: 0.702 - ETA: 8s - loss: 0.8695 - acc: 0.702 - ETA: 8s - loss: 0.8691 - acc: 0.702 - ETA: 8s - loss: 0.8694 - acc: 0.702 - ETA: 7s - loss: 0.8693 - acc: 0.702 - ETA: 7s - loss: 0.8691 - acc: 0.702 - ETA: 7s - loss: 0.8693 - acc: 0.702 - ETA: 7s - loss: 0.8690 - acc: 0.702 - ETA: 7s - loss: 0.8692 - acc: 0.702 - ETA: 7s - loss: 0.8702 - acc: 0.702 - ETA: 7s - loss: 0.8699 - acc: 0.701 - ETA: 7s - loss: 0.8699 - acc: 0.702 - ETA: 7s - loss: 0.8702 - acc: 0.701 - ETA: 7s - loss: 0.8698 - acc: 0.702 - ETA: 7s - loss: 0.8709 - acc: 0.701 - ETA: 7s - loss: 0.8709 - acc: 0.701 - ETA: 7s - loss: 0.8711 - acc: 0.701 - ETA: 7s - loss: 0.8707 - acc: 0.701 - ETA: 7s - loss: 0.8702 - acc: 0.702 - ETA: 7s - loss: 0.8703 - acc: 0.702 - ETA: 6s - loss: 0.8694 - acc: 0.702 - ETA: 6s - loss: 0.8691 - acc: 0.702 - ETA: 6s - loss: 0.8690 - acc: 0.702 - ETA: 6s - loss: 0.8692 - acc: 0.702 - ETA: 6s - loss: 0.8702 - acc: 0.702 - ETA: 6s - loss: 0.8712 - acc: 0.702 - ETA: 6s - loss: 0.8710 - acc: 0.702 - ETA: 6s - loss: 0.8704 - acc: 0.702 - ETA: 6s - loss: 0.8700 - acc: 0.702 - ETA: 6s - loss: 0.8701 - acc: 0.702 - ETA: 6s - loss: 0.8701 - acc: 0.702 - ETA: 6s - loss: 0.8699 - acc: 0.702 - ETA: 6s - loss: 0.8699 - acc: 0.702 - ETA: 6s - loss: 0.8695 - acc: 0.702 - ETA: 6s - loss: 0.8694 - acc: 0.702 - ETA: 6s - loss: 0.8691 - acc: 0.702 - ETA: 5s - loss: 0.8685 - acc: 0.702 - ETA: 5s - loss: 0.8682 - acc: 0.702 - ETA: 5s - loss: 0.8676 - acc: 0.703 - ETA: 5s - loss: 0.8677 - acc: 0.703 - ETA: 5s - loss: 0.8674 - acc: 0.703 - ETA: 5s - loss: 0.8666 - acc: 0.703 - ETA: 5s - loss: 0.8668 - acc: 0.703 - ETA: 5s - loss: 0.8657 - acc: 0.703 - ETA: 5s - loss: 0.8652 - acc: 0.703 - ETA: 5s - loss: 0.8648 - acc: 0.703 - ETA: 5s - loss: 0.8646 - acc: 0.704 - ETA: 5s - loss: 0.8646 - acc: 0.704 - ETA: 5s - loss: 0.8633 - acc: 0.704 - ETA: 5s - loss: 0.8631 - acc: 0.704 - ETA: 5s - loss: 0.8628 - acc: 0.704 - ETA: 5s - loss: 0.8622 - acc: 0.704 - ETA: 5s - loss: 0.8618 - acc: 0.704 - ETA: 4s - loss: 0.8614 - acc: 0.704 - ETA: 4s - loss: 0.8603 - acc: 0.705 - ETA: 4s - loss: 0.8596 - acc: 0.705 - ETA: 4s - loss: 0.8593 - acc: 0.705 - ETA: 4s - loss: 0.8593 - acc: 0.705 - ETA: 4s - loss: 0.8590 - acc: 0.705 - ETA: 4s - loss: 0.8592 - acc: 0.705 - ETA: 4s - loss: 0.8598 - acc: 0.705 - ETA: 4s - loss: 0.8594 - acc: 0.705 - ETA: 4s - loss: 0.8588 - acc: 0.705 - ETA: 4s - loss: 0.8592 - acc: 0.705 - ETA: 4s - loss: 0.8597 - acc: 0.705 - ETA: 4s - loss: 0.8591 - acc: 0.705 - ETA: 4s - loss: 0.8588 - acc: 0.705 - ETA: 4s - loss: 0.8586 - acc: 0.705 - ETA: 4s - loss: 0.8582 - acc: 0.705 - ETA: 4s - loss: 0.8582 - acc: 0.705 - ETA: 3s - loss: 0.8581 - acc: 0.706 - ETA: 3s - loss: 0.8579 - acc: 0.705 - ETA: 3s - loss: 0.8584 - acc: 0.705 - ETA: 3s - loss: 0.8584 - acc: 0.705 - ETA: 3s - loss: 0.8579 - acc: 0.706 - ETA: 3s - loss: 0.8578 - acc: 0.706 - ETA: 3s - loss: 0.8574 - acc: 0.706 - ETA: 3s - loss: 0.8574 - acc: 0.706 - ETA: 3s - loss: 0.8575 - acc: 0.706 - ETA: 3s - loss: 0.8570 - acc: 0.706 - ETA: 3s - loss: 0.8569 - acc: 0.706 - ETA: 3s - loss: 0.8558 - acc: 0.706 - ETA: 3s - loss: 0.8558 - acc: 0.706 - ETA: 3s - loss: 0.8556 - acc: 0.706 - ETA: 3s - loss: 0.8553 - acc: 0.706 - ETA: 3s - loss: 0.8548 - acc: 0.707 - ETA: 2s - loss: 0.8545 - acc: 0.706 - ETA: 2s - loss: 0.8549 - acc: 0.706 - ETA: 2s - loss: 0.8550 - acc: 0.706 - ETA: 2s - loss: 0.8547 - acc: 0.706 - ETA: 2s - loss: 0.8551 - acc: 0.706 - ETA: 2s - loss: 0.8544 - acc: 0.706 - ETA: 2s - loss: 0.8546 - acc: 0.706 - ETA: 2s - loss: 0.8543 - acc: 0.706 - ETA: 2s - loss: 0.8534 - acc: 0.707 - ETA: 2s - loss: 0.8526 - acc: 0.707 - ETA: 2s - loss: 0.8527 - acc: 0.707 - ETA: 2s - loss: 0.8525 - acc: 0.707 - ETA: 2s - loss: 0.8527 - acc: 0.707 - ETA: 2s - loss: 0.8529 - acc: 0.707 - ETA: 2s - loss: 0.8528 - acc: 0.707 - ETA: 2s - loss: 0.8527 - acc: 0.707 - ETA: 1s - loss: 0.8523 - acc: 0.707 - ETA: 1s - loss: 0.8522 - acc: 0.707 - ETA: 1s - loss: 0.8522 - acc: 0.707 - ETA: 1s - loss: 0.8523 - acc: 0.707 - ETA: 1s - loss: 0.8522 - acc: 0.707 - ETA: 1s - loss: 0.8524 - acc: 0.706 - ETA: 1s - loss: 0.8522 - acc: 0.706 - ETA: 1s - loss: 0.8520 - acc: 0.706 - ETA: 1s - loss: 0.8521 - acc: 0.706 - ETA: 1s - loss: 0.8517 - acc: 0.707 - ETA: 1s - loss: 0.8514 - acc: 0.707 - ETA: 1s - loss: 0.8510 - acc: 0.707 - ETA: 1s - loss: 0.8508 - acc: 0.707 - ETA: 1s - loss: 0.8507 - acc: 0.706 - ETA: 1s - loss: 0.8504 - acc: 0.707 - ETA: 1s - loss: 0.8507 - acc: 0.707 - ETA: 1s - loss: 0.8504 - acc: 0.707 - ETA: 0s - loss: 0.8500 - acc: 0.707 - ETA: 0s - loss: 0.8499 - acc: 0.707 - ETA: 0s - loss: 0.8493 - acc: 0.707 - ETA: 0s - loss: 0.8495 - acc: 0.707 - ETA: 0s - loss: 0.8503 - acc: 0.707 - ETA: 0s - loss: 0.8503 - acc: 0.707 - ETA: 0s - loss: 0.8501 - acc: 0.707 - ETA: 0s - loss: 0.8499 - acc: 0.707 - ETA: 0s - loss: 0.8499 - acc: 0.707 - ETA: 0s - loss: 0.8500 - acc: 0.707 - ETA: 0s - loss: 0.8501 - acc: 0.707 - ETA: 0s - loss: 0.8504 - acc: 0.706 - ETA: 0s - loss: 0.8503 - acc: 0.706 - ETA: 0s - loss: 0.8503 - acc: 0.706 - ETA: 0s - loss: 0.8504 - acc: 0.706 - ETA: 0s - loss: 0.8502 - acc: 0.706 - 24s 992us/step - loss: 0.8502 - acc: 0.7069 - val_loss: 0.7456 - val_acc: 0.7429\n", + "\n", + "Epoch 00003: val_acc improved from 0.68648 to 0.74290, saving model to models\\time.model\n", + "Epoch 4/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14016/23769 [================>.............] - ETA: 26s - loss: 0.4521 - acc: 0.78 - ETA: 24s - loss: 0.7109 - acc: 0.70 - ETA: 23s - loss: 0.7446 - acc: 0.70 - ETA: 23s - loss: 0.7848 - acc: 0.71 - ETA: 23s - loss: 0.7006 - acc: 0.75 - ETA: 22s - loss: 0.6822 - acc: 0.75 - ETA: 22s - loss: 0.7115 - acc: 0.75 - ETA: 22s - loss: 0.7077 - acc: 0.76 - ETA: 22s - loss: 0.7133 - acc: 0.76 - ETA: 21s - loss: 0.7111 - acc: 0.75 - ETA: 21s - loss: 0.7155 - acc: 0.75 - ETA: 21s - loss: 0.7398 - acc: 0.74 - ETA: 21s - loss: 0.7355 - acc: 0.74 - ETA: 21s - loss: 0.7398 - acc: 0.74 - ETA: 21s - loss: 0.7388 - acc: 0.74 - ETA: 21s - loss: 0.7588 - acc: 0.74 - ETA: 21s - loss: 0.7654 - acc: 0.73 - ETA: 21s - loss: 0.7676 - acc: 0.73 - ETA: 20s - loss: 0.7614 - acc: 0.74 - ETA: 20s - loss: 0.7677 - acc: 0.73 - ETA: 20s - loss: 0.7633 - acc: 0.73 - ETA: 20s - loss: 0.7536 - acc: 0.73 - ETA: 20s - loss: 0.7522 - acc: 0.74 - ETA: 20s - loss: 0.7601 - acc: 0.74 - ETA: 20s - loss: 0.7631 - acc: 0.73 - ETA: 20s - loss: 0.7673 - acc: 0.73 - ETA: 20s - loss: 0.7747 - acc: 0.73 - ETA: 20s - loss: 0.7807 - acc: 0.73 - ETA: 20s - loss: 0.7792 - acc: 0.73 - ETA: 20s - loss: 0.7741 - acc: 0.73 - ETA: 19s - loss: 0.7750 - acc: 0.73 - ETA: 19s - loss: 0.7693 - acc: 0.73 - ETA: 19s - loss: 0.7784 - acc: 0.73 - ETA: 19s - loss: 0.7777 - acc: 0.73 - ETA: 19s - loss: 0.7722 - acc: 0.73 - ETA: 19s - loss: 0.7765 - acc: 0.73 - ETA: 19s - loss: 0.7778 - acc: 0.73 - ETA: 19s - loss: 0.7812 - acc: 0.73 - ETA: 19s - loss: 0.7815 - acc: 0.73 - ETA: 19s - loss: 0.7793 - acc: 0.73 - ETA: 19s - loss: 0.7798 - acc: 0.73 - ETA: 19s - loss: 0.7780 - acc: 0.73 - ETA: 19s - loss: 0.7742 - acc: 0.73 - ETA: 19s - loss: 0.7747 - acc: 0.73 - ETA: 19s - loss: 0.7794 - acc: 0.73 - ETA: 19s - loss: 0.7828 - acc: 0.73 - ETA: 18s - loss: 0.7813 - acc: 0.73 - ETA: 18s - loss: 0.7782 - acc: 0.73 - ETA: 18s - loss: 0.7802 - acc: 0.73 - ETA: 18s - loss: 0.7799 - acc: 0.73 - ETA: 18s - loss: 0.7856 - acc: 0.73 - ETA: 18s - loss: 0.7901 - acc: 0.73 - ETA: 18s - loss: 0.7904 - acc: 0.73 - ETA: 18s - loss: 0.7930 - acc: 0.72 - ETA: 18s - loss: 0.7891 - acc: 0.73 - ETA: 18s - loss: 0.7850 - acc: 0.73 - ETA: 18s - loss: 0.7831 - acc: 0.73 - ETA: 18s - loss: 0.7792 - acc: 0.73 - ETA: 18s - loss: 0.7781 - acc: 0.73 - ETA: 18s - loss: 0.7790 - acc: 0.73 - ETA: 18s - loss: 0.7788 - acc: 0.73 - ETA: 18s - loss: 0.7775 - acc: 0.73 - ETA: 18s - loss: 0.7748 - acc: 0.73 - ETA: 18s - loss: 0.7730 - acc: 0.73 - ETA: 18s - loss: 0.7703 - acc: 0.73 - ETA: 17s - loss: 0.7715 - acc: 0.73 - ETA: 17s - loss: 0.7687 - acc: 0.73 - ETA: 17s - loss: 0.7680 - acc: 0.73 - ETA: 17s - loss: 0.7637 - acc: 0.74 - ETA: 17s - loss: 0.7619 - acc: 0.74 - ETA: 17s - loss: 0.7586 - acc: 0.74 - ETA: 17s - loss: 0.7562 - acc: 0.74 - ETA: 17s - loss: 0.7527 - acc: 0.74 - ETA: 17s - loss: 0.7512 - acc: 0.74 - ETA: 17s - loss: 0.7510 - acc: 0.74 - ETA: 17s - loss: 0.7544 - acc: 0.74 - ETA: 17s - loss: 0.7581 - acc: 0.74 - ETA: 17s - loss: 0.7562 - acc: 0.74 - ETA: 17s - loss: 0.7543 - acc: 0.74 - ETA: 17s - loss: 0.7548 - acc: 0.74 - ETA: 17s - loss: 0.7544 - acc: 0.74 - ETA: 17s - loss: 0.7517 - acc: 0.74 - ETA: 17s - loss: 0.7528 - acc: 0.74 - ETA: 17s - loss: 0.7519 - acc: 0.74 - ETA: 16s - loss: 0.7545 - acc: 0.74 - ETA: 16s - loss: 0.7558 - acc: 0.74 - ETA: 16s - loss: 0.7529 - acc: 0.74 - ETA: 16s - loss: 0.7529 - acc: 0.74 - ETA: 16s - loss: 0.7575 - acc: 0.74 - ETA: 16s - loss: 0.7564 - acc: 0.74 - ETA: 16s - loss: 0.7583 - acc: 0.74 - ETA: 16s - loss: 0.7585 - acc: 0.74 - ETA: 16s - loss: 0.7584 - acc: 0.74 - ETA: 16s - loss: 0.7595 - acc: 0.74 - ETA: 16s - loss: 0.7594 - acc: 0.74 - ETA: 16s - loss: 0.7606 - acc: 0.74 - ETA: 16s - loss: 0.7605 - acc: 0.74 - ETA: 16s - loss: 0.7602 - acc: 0.74 - ETA: 16s - loss: 0.7569 - acc: 0.74 - ETA: 16s - loss: 0.7579 - acc: 0.74 - ETA: 16s - loss: 0.7578 - acc: 0.74 - ETA: 16s - loss: 0.7585 - acc: 0.74 - ETA: 16s - loss: 0.7580 - acc: 0.74 - ETA: 15s - loss: 0.7585 - acc: 0.74 - ETA: 15s - loss: 0.7561 - acc: 0.74 - ETA: 15s - loss: 0.7546 - acc: 0.74 - ETA: 15s - loss: 0.7544 - acc: 0.74 - ETA: 15s - loss: 0.7540 - acc: 0.74 - ETA: 15s - loss: 0.7561 - acc: 0.74 - ETA: 15s - loss: 0.7547 - acc: 0.74 - ETA: 15s - loss: 0.7549 - acc: 0.74 - ETA: 15s - loss: 0.7547 - acc: 0.74 - ETA: 15s - loss: 0.7540 - acc: 0.74 - ETA: 15s - loss: 0.7541 - acc: 0.74 - ETA: 15s - loss: 0.7547 - acc: 0.74 - ETA: 15s - loss: 0.7530 - acc: 0.74 - ETA: 15s - loss: 0.7537 - acc: 0.74 - ETA: 15s - loss: 0.7539 - acc: 0.74 - ETA: 15s - loss: 0.7555 - acc: 0.74 - ETA: 15s - loss: 0.7551 - acc: 0.74 - ETA: 15s - loss: 0.7542 - acc: 0.74 - ETA: 14s - loss: 0.7542 - acc: 0.74 - ETA: 14s - loss: 0.7548 - acc: 0.74 - ETA: 14s - loss: 0.7553 - acc: 0.74 - ETA: 14s - loss: 0.7557 - acc: 0.74 - ETA: 14s - loss: 0.7564 - acc: 0.74 - ETA: 14s - loss: 0.7582 - acc: 0.74 - ETA: 14s - loss: 0.7581 - acc: 0.74 - ETA: 14s - loss: 0.7579 - acc: 0.74 - ETA: 14s - loss: 0.7577 - acc: 0.74 - ETA: 14s - loss: 0.7571 - acc: 0.74 - ETA: 14s - loss: 0.7569 - acc: 0.74 - ETA: 14s - loss: 0.7574 - acc: 0.74 - ETA: 14s - loss: 0.7574 - acc: 0.74 - ETA: 14s - loss: 0.7571 - acc: 0.74 - ETA: 14s - loss: 0.7561 - acc: 0.74 - ETA: 14s - loss: 0.7581 - acc: 0.74 - ETA: 14s - loss: 0.7582 - acc: 0.74 - ETA: 13s - loss: 0.7599 - acc: 0.73 - ETA: 13s - loss: 0.7590 - acc: 0.73 - ETA: 13s - loss: 0.7601 - acc: 0.73 - ETA: 13s - loss: 0.7596 - acc: 0.74 - ETA: 13s - loss: 0.7574 - acc: 0.74 - ETA: 13s - loss: 0.7570 - acc: 0.74 - ETA: 13s - loss: 0.7555 - acc: 0.74 - ETA: 13s - loss: 0.7582 - acc: 0.74 - ETA: 13s - loss: 0.7575 - acc: 0.74 - ETA: 13s - loss: 0.7579 - acc: 0.74 - ETA: 13s - loss: 0.7574 - acc: 0.74 - ETA: 13s - loss: 0.7567 - acc: 0.74 - ETA: 13s - loss: 0.7555 - acc: 0.74 - ETA: 13s - loss: 0.7550 - acc: 0.74 - ETA: 13s - loss: 0.7543 - acc: 0.74 - ETA: 13s - loss: 0.7534 - acc: 0.74 - ETA: 12s - loss: 0.7522 - acc: 0.74 - ETA: 12s - loss: 0.7523 - acc: 0.74 - ETA: 12s - loss: 0.7531 - acc: 0.74 - ETA: 12s - loss: 0.7525 - acc: 0.74 - ETA: 12s - loss: 0.7519 - acc: 0.74 - ETA: 12s - loss: 0.7539 - acc: 0.74 - ETA: 12s - loss: 0.7541 - acc: 0.74 - ETA: 12s - loss: 0.7542 - acc: 0.74 - ETA: 12s - loss: 0.7537 - acc: 0.74 - ETA: 12s - loss: 0.7526 - acc: 0.74 - ETA: 12s - loss: 0.7516 - acc: 0.74 - ETA: 12s - loss: 0.7523 - acc: 0.74 - ETA: 12s - loss: 0.7521 - acc: 0.74 - ETA: 12s - loss: 0.7524 - acc: 0.74 - ETA: 12s - loss: 0.7511 - acc: 0.74 - ETA: 12s - loss: 0.7497 - acc: 0.74 - ETA: 12s - loss: 0.7497 - acc: 0.74 - ETA: 12s - loss: 0.7482 - acc: 0.74 - ETA: 11s - loss: 0.7471 - acc: 0.74 - ETA: 11s - loss: 0.7467 - acc: 0.74 - ETA: 11s - loss: 0.7473 - acc: 0.74 - ETA: 11s - loss: 0.7476 - acc: 0.74 - ETA: 11s - loss: 0.7466 - acc: 0.74 - ETA: 11s - loss: 0.7464 - acc: 0.74 - ETA: 11s - loss: 0.7471 - acc: 0.74 - ETA: 11s - loss: 0.7475 - acc: 0.74 - ETA: 11s - loss: 0.7490 - acc: 0.74 - ETA: 11s - loss: 0.7491 - acc: 0.74 - ETA: 11s - loss: 0.7493 - acc: 0.74 - ETA: 11s - loss: 0.7494 - acc: 0.74 - ETA: 11s - loss: 0.7493 - acc: 0.74 - ETA: 11s - loss: 0.7488 - acc: 0.74 - ETA: 11s - loss: 0.7478 - acc: 0.74 - ETA: 10s - loss: 0.7482 - acc: 0.74 - ETA: 10s - loss: 0.7477 - acc: 0.74 - ETA: 10s - loss: 0.7469 - acc: 0.74 - ETA: 10s - loss: 0.7462 - acc: 0.74 - ETA: 10s - loss: 0.7460 - acc: 0.74 - ETA: 10s - loss: 0.7459 - acc: 0.74 - ETA: 10s - loss: 0.7456 - acc: 0.74 - ETA: 10s - loss: 0.7466 - acc: 0.74 - ETA: 10s - loss: 0.7472 - acc: 0.74 - ETA: 10s - loss: 0.7481 - acc: 0.74 - ETA: 10s - loss: 0.7473 - acc: 0.74 - ETA: 10s - loss: 0.7470 - acc: 0.74 - ETA: 10s - loss: 0.7471 - acc: 0.74 - ETA: 10s - loss: 0.7463 - acc: 0.74 - ETA: 10s - loss: 0.7464 - acc: 0.74 - ETA: 9s - loss: 0.7465 - acc: 0.7459 - ETA: 9s - loss: 0.7461 - acc: 0.746 - ETA: 9s - loss: 0.7456 - acc: 0.746 - ETA: 9s - loss: 0.7451 - acc: 0.746 - ETA: 9s - loss: 0.7459 - acc: 0.746 - ETA: 9s - loss: 0.7460 - acc: 0.746 - ETA: 9s - loss: 0.7451 - acc: 0.747 - ETA: 9s - loss: 0.7444 - acc: 0.747 - ETA: 9s - loss: 0.7445 - acc: 0.747 - ETA: 9s - loss: 0.7443 - acc: 0.747 - ETA: 9s - loss: 0.7433 - acc: 0.747 - ETA: 9s - loss: 0.7432 - acc: 0.747 - ETA: 9s - loss: 0.7437 - acc: 0.7475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.7432 - acc: 0.747 - ETA: 9s - loss: 0.7439 - acc: 0.747 - ETA: 9s - loss: 0.7435 - acc: 0.747 - ETA: 9s - loss: 0.7436 - acc: 0.747 - ETA: 8s - loss: 0.7439 - acc: 0.747 - ETA: 8s - loss: 0.7446 - acc: 0.746 - ETA: 8s - loss: 0.7460 - acc: 0.746 - ETA: 8s - loss: 0.7460 - acc: 0.746 - ETA: 8s - loss: 0.7454 - acc: 0.746 - ETA: 8s - loss: 0.7448 - acc: 0.746 - ETA: 8s - loss: 0.7453 - acc: 0.746 - ETA: 8s - loss: 0.7459 - acc: 0.746 - ETA: 8s - loss: 0.7460 - acc: 0.746 - ETA: 8s - loss: 0.7455 - acc: 0.746 - ETA: 8s - loss: 0.7455 - acc: 0.746 - ETA: 8s - loss: 0.7453 - acc: 0.746 - ETA: 8s - loss: 0.7461 - acc: 0.746 - ETA: 8s - loss: 0.7456 - acc: 0.746 - ETA: 8s - loss: 0.7459 - acc: 0.746 - ETA: 8s - loss: 0.7458 - acc: 0.746 - ETA: 8s - loss: 0.7462 - acc: 0.746 - ETA: 7s - loss: 0.7458 - acc: 0.746 - ETA: 7s - loss: 0.7452 - acc: 0.746 - ETA: 7s - loss: 0.7448 - acc: 0.746 - ETA: 7s - loss: 0.7444 - acc: 0.746 - ETA: 7s - loss: 0.7445 - acc: 0.746 - ETA: 7s - loss: 0.7446 - acc: 0.746 - ETA: 7s - loss: 0.7436 - acc: 0.747 - ETA: 7s - loss: 0.7433 - acc: 0.747 - ETA: 7s - loss: 0.7429 - acc: 0.747 - ETA: 7s - loss: 0.7427 - acc: 0.747 - ETA: 7s - loss: 0.7427 - acc: 0.747 - ETA: 7s - loss: 0.7434 - acc: 0.747 - ETA: 7s - loss: 0.7434 - acc: 0.747 - ETA: 7s - loss: 0.7435 - acc: 0.747 - ETA: 7s - loss: 0.7425 - acc: 0.747 - ETA: 7s - loss: 0.7426 - acc: 0.747 - ETA: 7s - loss: 0.7430 - acc: 0.747 - ETA: 6s - loss: 0.7428 - acc: 0.747 - ETA: 6s - loss: 0.7419 - acc: 0.747 - ETA: 6s - loss: 0.7414 - acc: 0.747 - ETA: 6s - loss: 0.7412 - acc: 0.747 - ETA: 6s - loss: 0.7402 - acc: 0.748 - ETA: 6s - loss: 0.7409 - acc: 0.748 - ETA: 6s - loss: 0.7401 - acc: 0.748 - ETA: 6s - loss: 0.7391 - acc: 0.748 - ETA: 6s - loss: 0.7383 - acc: 0.748 - ETA: 6s - loss: 0.7380 - acc: 0.748 - ETA: 6s - loss: 0.7380 - acc: 0.749 - ETA: 6s - loss: 0.7378 - acc: 0.749 - ETA: 6s - loss: 0.7381 - acc: 0.748 - ETA: 6s - loss: 0.7379 - acc: 0.748 - ETA: 6s - loss: 0.7375 - acc: 0.749 - ETA: 6s - loss: 0.7370 - acc: 0.749 - ETA: 5s - loss: 0.7362 - acc: 0.749 - ETA: 5s - loss: 0.7370 - acc: 0.748 - ETA: 5s - loss: 0.7370 - acc: 0.748 - ETA: 5s - loss: 0.7364 - acc: 0.749 - ETA: 5s - loss: 0.7359 - acc: 0.749 - ETA: 5s - loss: 0.7358 - acc: 0.749 - ETA: 5s - loss: 0.7356 - acc: 0.749 - ETA: 5s - loss: 0.7350 - acc: 0.749 - ETA: 5s - loss: 0.7350 - acc: 0.749 - ETA: 5s - loss: 0.7359 - acc: 0.749 - ETA: 5s - loss: 0.7357 - acc: 0.749 - ETA: 5s - loss: 0.7351 - acc: 0.749 - ETA: 5s - loss: 0.7361 - acc: 0.749 - ETA: 5s - loss: 0.7363 - acc: 0.749 - ETA: 5s - loss: 0.7357 - acc: 0.749 - ETA: 5s - loss: 0.7351 - acc: 0.750 - ETA: 5s - loss: 0.7349 - acc: 0.750 - ETA: 4s - loss: 0.7347 - acc: 0.750 - ETA: 4s - loss: 0.7341 - acc: 0.750 - ETA: 4s - loss: 0.7347 - acc: 0.750 - ETA: 4s - loss: 0.7345 - acc: 0.750 - ETA: 4s - loss: 0.7339 - acc: 0.750 - ETA: 4s - loss: 0.7332 - acc: 0.750 - ETA: 4s - loss: 0.7334 - acc: 0.750 - ETA: 4s - loss: 0.7334 - acc: 0.750 - ETA: 4s - loss: 0.7337 - acc: 0.750 - ETA: 4s - loss: 0.7335 - acc: 0.750 - ETA: 4s - loss: 0.7335 - acc: 0.750 - ETA: 4s - loss: 0.7328 - acc: 0.750 - ETA: 4s - loss: 0.7326 - acc: 0.751 - ETA: 4s - loss: 0.7321 - acc: 0.751 - ETA: 4s - loss: 0.7313 - acc: 0.751 - ETA: 4s - loss: 0.7309 - acc: 0.751 - ETA: 3s - loss: 0.7310 - acc: 0.751 - ETA: 3s - loss: 0.7311 - acc: 0.751 - ETA: 3s - loss: 0.7302 - acc: 0.751 - ETA: 3s - loss: 0.7298 - acc: 0.751 - ETA: 3s - loss: 0.7296 - acc: 0.751 - ETA: 3s - loss: 0.7296 - acc: 0.752 - ETA: 3s - loss: 0.7293 - acc: 0.752 - ETA: 3s - loss: 0.7287 - acc: 0.752 - ETA: 3s - loss: 0.7283 - acc: 0.752 - ETA: 3s - loss: 0.7284 - acc: 0.752 - ETA: 3s - loss: 0.7285 - acc: 0.752 - ETA: 3s - loss: 0.7279 - acc: 0.752 - ETA: 3s - loss: 0.7278 - acc: 0.752 - ETA: 3s - loss: 0.7279 - acc: 0.752 - ETA: 3s - loss: 0.7275 - acc: 0.752 - ETA: 3s - loss: 0.7287 - acc: 0.752 - ETA: 2s - loss: 0.7288 - acc: 0.752 - ETA: 2s - loss: 0.7285 - acc: 0.752 - ETA: 2s - loss: 0.7284 - acc: 0.752 - ETA: 2s - loss: 0.7280 - acc: 0.752 - ETA: 2s - loss: 0.7274 - acc: 0.752 - ETA: 2s - loss: 0.7282 - acc: 0.752 - ETA: 2s - loss: 0.7284 - acc: 0.752 - ETA: 2s - loss: 0.7283 - acc: 0.752 - ETA: 2s - loss: 0.7285 - acc: 0.752 - ETA: 2s - loss: 0.7291 - acc: 0.752 - ETA: 2s - loss: 0.7289 - acc: 0.752 - ETA: 2s - loss: 0.7293 - acc: 0.752 - ETA: 2s - loss: 0.7294 - acc: 0.751 - ETA: 2s - loss: 0.7294 - acc: 0.752 - ETA: 2s - loss: 0.7295 - acc: 0.751 - ETA: 2s - loss: 0.7299 - acc: 0.751 - ETA: 2s - loss: 0.7296 - acc: 0.751 - ETA: 1s - loss: 0.7295 - acc: 0.751 - ETA: 1s - loss: 0.7291 - acc: 0.751 - ETA: 1s - loss: 0.7290 - acc: 0.751 - ETA: 1s - loss: 0.7294 - acc: 0.751 - ETA: 1s - loss: 0.7293 - acc: 0.751 - ETA: 1s - loss: 0.7296 - acc: 0.751 - ETA: 1s - loss: 0.7296 - acc: 0.751 - ETA: 1s - loss: 0.7303 - acc: 0.751 - ETA: 1s - loss: 0.7306 - acc: 0.751 - ETA: 1s - loss: 0.7303 - acc: 0.751 - ETA: 1s - loss: 0.7304 - acc: 0.751 - ETA: 1s - loss: 0.7298 - acc: 0.751 - ETA: 1s - loss: 0.7291 - acc: 0.751 - ETA: 1s - loss: 0.7288 - acc: 0.751 - ETA: 1s - loss: 0.7290 - acc: 0.751 - ETA: 1s - loss: 0.7293 - acc: 0.751 - ETA: 0s - loss: 0.7293 - acc: 0.751 - ETA: 0s - loss: 0.7291 - acc: 0.751 - ETA: 0s - loss: 0.7292 - acc: 0.751 - ETA: 0s - loss: 0.7292 - acc: 0.751 - ETA: 0s - loss: 0.7292 - acc: 0.751 - ETA: 0s - loss: 0.7291 - acc: 0.751 - ETA: 0s - loss: 0.7285 - acc: 0.751 - ETA: 0s - loss: 0.7280 - acc: 0.751 - ETA: 0s - loss: 0.7280 - acc: 0.752 - ETA: 0s - loss: 0.7282 - acc: 0.752 - ETA: 0s - loss: 0.7282 - acc: 0.752 - ETA: 0s - loss: 0.7278 - acc: 0.752 - ETA: 0s - loss: 0.7274 - acc: 0.752 - ETA: 0s - loss: 0.7271 - acc: 0.752 - ETA: 0s - loss: 0.7272 - acc: 0.752 - ETA: 0s - loss: 0.7273 - acc: 0.752 - 24s 998us/step - loss: 0.7274 - acc: 0.7524 - val_loss: 0.8577 - val_acc: 0.7088\n", + "\n", + "Epoch 00004: val_acc did not improve from 0.74290\n", + "Epoch 5/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14208/23769 [================>.............] - ETA: 27s - loss: 1.2790 - acc: 0.71 - ETA: 26s - loss: 1.0301 - acc: 0.70 - ETA: 25s - loss: 0.9794 - acc: 0.70 - ETA: 24s - loss: 0.8918 - acc: 0.71 - ETA: 24s - loss: 0.8653 - acc: 0.72 - ETA: 23s - loss: 0.8969 - acc: 0.70 - ETA: 22s - loss: 0.8851 - acc: 0.70 - ETA: 22s - loss: 0.8612 - acc: 0.72 - ETA: 22s - loss: 0.8428 - acc: 0.72 - ETA: 22s - loss: 0.8352 - acc: 0.73 - ETA: 22s - loss: 0.8676 - acc: 0.71 - ETA: 21s - loss: 0.8666 - acc: 0.71 - ETA: 22s - loss: 0.8541 - acc: 0.72 - ETA: 22s - loss: 0.8309 - acc: 0.73 - ETA: 21s - loss: 0.8166 - acc: 0.73 - ETA: 21s - loss: 0.8009 - acc: 0.73 - ETA: 21s - loss: 0.7835 - acc: 0.74 - ETA: 21s - loss: 0.7671 - acc: 0.74 - ETA: 21s - loss: 0.7636 - acc: 0.75 - ETA: 21s - loss: 0.7598 - acc: 0.75 - ETA: 21s - loss: 0.7527 - acc: 0.75 - ETA: 21s - loss: 0.7431 - acc: 0.75 - ETA: 21s - loss: 0.7455 - acc: 0.74 - ETA: 21s - loss: 0.7424 - acc: 0.75 - ETA: 21s - loss: 0.7370 - acc: 0.75 - ETA: 20s - loss: 0.7245 - acc: 0.75 - ETA: 20s - loss: 0.7207 - acc: 0.76 - ETA: 20s - loss: 0.7186 - acc: 0.75 - ETA: 20s - loss: 0.7225 - acc: 0.75 - ETA: 20s - loss: 0.7183 - acc: 0.75 - ETA: 20s - loss: 0.7122 - acc: 0.76 - ETA: 20s - loss: 0.7105 - acc: 0.76 - ETA: 20s - loss: 0.7071 - acc: 0.76 - ETA: 20s - loss: 0.7040 - acc: 0.76 - ETA: 19s - loss: 0.6970 - acc: 0.76 - ETA: 19s - loss: 0.6915 - acc: 0.77 - ETA: 19s - loss: 0.6898 - acc: 0.77 - ETA: 19s - loss: 0.6900 - acc: 0.77 - ETA: 19s - loss: 0.6926 - acc: 0.76 - ETA: 19s - loss: 0.6887 - acc: 0.76 - ETA: 19s - loss: 0.6850 - acc: 0.77 - ETA: 19s - loss: 0.6859 - acc: 0.77 - ETA: 19s - loss: 0.6818 - acc: 0.77 - ETA: 18s - loss: 0.6796 - acc: 0.77 - ETA: 18s - loss: 0.6797 - acc: 0.77 - ETA: 18s - loss: 0.6771 - acc: 0.77 - ETA: 18s - loss: 0.6776 - acc: 0.77 - ETA: 18s - loss: 0.6747 - acc: 0.77 - ETA: 18s - loss: 0.6744 - acc: 0.77 - ETA: 18s - loss: 0.6765 - acc: 0.77 - ETA: 18s - loss: 0.6775 - acc: 0.77 - ETA: 18s - loss: 0.6755 - acc: 0.77 - ETA: 18s - loss: 0.6718 - acc: 0.77 - ETA: 18s - loss: 0.6722 - acc: 0.77 - ETA: 18s - loss: 0.6710 - acc: 0.77 - ETA: 18s - loss: 0.6702 - acc: 0.77 - ETA: 18s - loss: 0.6714 - acc: 0.77 - ETA: 18s - loss: 0.6751 - acc: 0.77 - ETA: 17s - loss: 0.6745 - acc: 0.77 - ETA: 17s - loss: 0.6707 - acc: 0.77 - ETA: 17s - loss: 0.6714 - acc: 0.77 - ETA: 17s - loss: 0.6748 - acc: 0.77 - ETA: 17s - loss: 0.6743 - acc: 0.77 - ETA: 17s - loss: 0.6723 - acc: 0.77 - ETA: 17s - loss: 0.6730 - acc: 0.77 - ETA: 17s - loss: 0.6722 - acc: 0.77 - ETA: 17s - loss: 0.6717 - acc: 0.77 - ETA: 17s - loss: 0.6717 - acc: 0.77 - ETA: 17s - loss: 0.6703 - acc: 0.77 - ETA: 17s - loss: 0.6718 - acc: 0.77 - ETA: 17s - loss: 0.6728 - acc: 0.77 - ETA: 17s - loss: 0.6732 - acc: 0.77 - ETA: 17s - loss: 0.6775 - acc: 0.77 - ETA: 17s - loss: 0.6745 - acc: 0.77 - ETA: 17s - loss: 0.6756 - acc: 0.77 - ETA: 17s - loss: 0.6745 - acc: 0.77 - ETA: 16s - loss: 0.6727 - acc: 0.77 - ETA: 16s - loss: 0.6745 - acc: 0.77 - ETA: 16s - loss: 0.6723 - acc: 0.77 - ETA: 16s - loss: 0.6708 - acc: 0.77 - ETA: 16s - loss: 0.6734 - acc: 0.77 - ETA: 16s - loss: 0.6737 - acc: 0.77 - ETA: 16s - loss: 0.6713 - acc: 0.77 - ETA: 16s - loss: 0.6701 - acc: 0.77 - ETA: 16s - loss: 0.6732 - acc: 0.77 - ETA: 16s - loss: 0.6745 - acc: 0.77 - ETA: 16s - loss: 0.6744 - acc: 0.77 - ETA: 16s - loss: 0.6718 - acc: 0.77 - ETA: 15s - loss: 0.6734 - acc: 0.77 - ETA: 15s - loss: 0.6729 - acc: 0.77 - ETA: 15s - loss: 0.6715 - acc: 0.77 - ETA: 15s - loss: 0.6711 - acc: 0.77 - ETA: 15s - loss: 0.6723 - acc: 0.77 - ETA: 15s - loss: 0.6717 - acc: 0.77 - ETA: 15s - loss: 0.6723 - acc: 0.77 - ETA: 15s - loss: 0.6714 - acc: 0.77 - ETA: 15s - loss: 0.6706 - acc: 0.77 - ETA: 15s - loss: 0.6700 - acc: 0.77 - ETA: 15s - loss: 0.6700 - acc: 0.77 - ETA: 15s - loss: 0.6713 - acc: 0.77 - ETA: 15s - loss: 0.6721 - acc: 0.77 - ETA: 15s - loss: 0.6709 - acc: 0.77 - ETA: 14s - loss: 0.6710 - acc: 0.77 - ETA: 14s - loss: 0.6693 - acc: 0.77 - ETA: 14s - loss: 0.6684 - acc: 0.77 - ETA: 14s - loss: 0.6686 - acc: 0.77 - ETA: 14s - loss: 0.6672 - acc: 0.77 - ETA: 14s - loss: 0.6688 - acc: 0.77 - ETA: 14s - loss: 0.6692 - acc: 0.77 - ETA: 14s - loss: 0.6688 - acc: 0.77 - ETA: 14s - loss: 0.6664 - acc: 0.77 - ETA: 14s - loss: 0.6678 - acc: 0.77 - ETA: 14s - loss: 0.6668 - acc: 0.77 - ETA: 14s - loss: 0.6663 - acc: 0.77 - ETA: 14s - loss: 0.6658 - acc: 0.77 - ETA: 14s - loss: 0.6645 - acc: 0.77 - ETA: 14s - loss: 0.6636 - acc: 0.77 - ETA: 14s - loss: 0.6641 - acc: 0.77 - ETA: 14s - loss: 0.6626 - acc: 0.77 - ETA: 14s - loss: 0.6633 - acc: 0.77 - ETA: 13s - loss: 0.6630 - acc: 0.77 - ETA: 13s - loss: 0.6638 - acc: 0.77 - ETA: 13s - loss: 0.6628 - acc: 0.77 - ETA: 13s - loss: 0.6627 - acc: 0.77 - ETA: 13s - loss: 0.6616 - acc: 0.77 - ETA: 13s - loss: 0.6622 - acc: 0.77 - ETA: 13s - loss: 0.6616 - acc: 0.77 - ETA: 13s - loss: 0.6619 - acc: 0.77 - ETA: 13s - loss: 0.6628 - acc: 0.77 - ETA: 13s - loss: 0.6629 - acc: 0.77 - ETA: 13s - loss: 0.6623 - acc: 0.77 - ETA: 13s - loss: 0.6620 - acc: 0.77 - ETA: 13s - loss: 0.6635 - acc: 0.77 - ETA: 13s - loss: 0.6637 - acc: 0.77 - ETA: 13s - loss: 0.6628 - acc: 0.77 - ETA: 13s - loss: 0.6624 - acc: 0.77 - ETA: 13s - loss: 0.6622 - acc: 0.77 - ETA: 13s - loss: 0.6608 - acc: 0.77 - ETA: 13s - loss: 0.6602 - acc: 0.77 - ETA: 12s - loss: 0.6585 - acc: 0.77 - ETA: 12s - loss: 0.6593 - acc: 0.77 - ETA: 12s - loss: 0.6612 - acc: 0.77 - ETA: 12s - loss: 0.6604 - acc: 0.77 - ETA: 12s - loss: 0.6593 - acc: 0.77 - ETA: 12s - loss: 0.6592 - acc: 0.77 - ETA: 12s - loss: 0.6583 - acc: 0.77 - ETA: 12s - loss: 0.6568 - acc: 0.77 - ETA: 12s - loss: 0.6549 - acc: 0.77 - ETA: 12s - loss: 0.6547 - acc: 0.77 - ETA: 12s - loss: 0.6536 - acc: 0.77 - ETA: 12s - loss: 0.6523 - acc: 0.77 - ETA: 12s - loss: 0.6522 - acc: 0.77 - ETA: 12s - loss: 0.6509 - acc: 0.77 - ETA: 12s - loss: 0.6503 - acc: 0.77 - ETA: 12s - loss: 0.6495 - acc: 0.77 - ETA: 12s - loss: 0.6494 - acc: 0.77 - ETA: 11s - loss: 0.6490 - acc: 0.77 - ETA: 11s - loss: 0.6484 - acc: 0.77 - ETA: 11s - loss: 0.6472 - acc: 0.77 - ETA: 11s - loss: 0.6470 - acc: 0.77 - ETA: 11s - loss: 0.6473 - acc: 0.77 - ETA: 11s - loss: 0.6467 - acc: 0.77 - ETA: 11s - loss: 0.6461 - acc: 0.77 - ETA: 11s - loss: 0.6454 - acc: 0.77 - ETA: 11s - loss: 0.6446 - acc: 0.77 - ETA: 11s - loss: 0.6440 - acc: 0.77 - ETA: 11s - loss: 0.6433 - acc: 0.77 - ETA: 11s - loss: 0.6429 - acc: 0.77 - ETA: 11s - loss: 0.6417 - acc: 0.77 - ETA: 11s - loss: 0.6409 - acc: 0.78 - ETA: 11s - loss: 0.6406 - acc: 0.78 - ETA: 11s - loss: 0.6407 - acc: 0.78 - ETA: 11s - loss: 0.6413 - acc: 0.78 - ETA: 11s - loss: 0.6401 - acc: 0.78 - ETA: 11s - loss: 0.6419 - acc: 0.78 - ETA: 10s - loss: 0.6421 - acc: 0.78 - ETA: 10s - loss: 0.6423 - acc: 0.78 - ETA: 10s - loss: 0.6429 - acc: 0.78 - ETA: 10s - loss: 0.6433 - acc: 0.78 - ETA: 10s - loss: 0.6433 - acc: 0.78 - ETA: 10s - loss: 0.6424 - acc: 0.78 - ETA: 10s - loss: 0.6427 - acc: 0.78 - ETA: 10s - loss: 0.6427 - acc: 0.78 - ETA: 10s - loss: 0.6438 - acc: 0.78 - ETA: 10s - loss: 0.6437 - acc: 0.78 - ETA: 10s - loss: 0.6441 - acc: 0.78 - ETA: 10s - loss: 0.6447 - acc: 0.78 - ETA: 10s - loss: 0.6453 - acc: 0.77 - ETA: 10s - loss: 0.6461 - acc: 0.77 - ETA: 10s - loss: 0.6460 - acc: 0.77 - ETA: 10s - loss: 0.6455 - acc: 0.77 - ETA: 10s - loss: 0.6459 - acc: 0.77 - ETA: 9s - loss: 0.6457 - acc: 0.7797 - ETA: 9s - loss: 0.6458 - acc: 0.779 - ETA: 9s - loss: 0.6463 - acc: 0.779 - ETA: 9s - loss: 0.6464 - acc: 0.779 - ETA: 9s - loss: 0.6463 - acc: 0.779 - ETA: 9s - loss: 0.6456 - acc: 0.779 - ETA: 9s - loss: 0.6467 - acc: 0.778 - ETA: 9s - loss: 0.6460 - acc: 0.779 - ETA: 9s - loss: 0.6462 - acc: 0.778 - ETA: 9s - loss: 0.6461 - acc: 0.778 - ETA: 9s - loss: 0.6452 - acc: 0.779 - ETA: 9s - loss: 0.6445 - acc: 0.779 - ETA: 9s - loss: 0.6444 - acc: 0.779 - ETA: 9s - loss: 0.6436 - acc: 0.780 - ETA: 9s - loss: 0.6442 - acc: 0.779 - ETA: 9s - loss: 0.6440 - acc: 0.779 - ETA: 9s - loss: 0.6437 - acc: 0.779 - ETA: 8s - loss: 0.6438 - acc: 0.779 - ETA: 8s - loss: 0.6441 - acc: 0.779 - ETA: 8s - loss: 0.6442 - acc: 0.779 - ETA: 8s - loss: 0.6440 - acc: 0.779 - ETA: 8s - loss: 0.6457 - acc: 0.779 - ETA: 8s - loss: 0.6448 - acc: 0.7794" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 8s - loss: 0.6442 - acc: 0.779 - ETA: 8s - loss: 0.6443 - acc: 0.779 - ETA: 8s - loss: 0.6442 - acc: 0.779 - ETA: 8s - loss: 0.6439 - acc: 0.779 - ETA: 8s - loss: 0.6434 - acc: 0.780 - ETA: 8s - loss: 0.6427 - acc: 0.780 - ETA: 8s - loss: 0.6432 - acc: 0.780 - ETA: 8s - loss: 0.6439 - acc: 0.780 - ETA: 8s - loss: 0.6438 - acc: 0.780 - ETA: 8s - loss: 0.6445 - acc: 0.779 - ETA: 8s - loss: 0.6433 - acc: 0.780 - ETA: 8s - loss: 0.6435 - acc: 0.779 - ETA: 7s - loss: 0.6433 - acc: 0.779 - ETA: 7s - loss: 0.6425 - acc: 0.780 - ETA: 7s - loss: 0.6421 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6414 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6429 - acc: 0.779 - ETA: 7s - loss: 0.6423 - acc: 0.780 - ETA: 7s - loss: 0.6417 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6415 - acc: 0.780 - ETA: 7s - loss: 0.6412 - acc: 0.780 - ETA: 7s - loss: 0.6412 - acc: 0.780 - ETA: 7s - loss: 0.6409 - acc: 0.780 - ETA: 7s - loss: 0.6405 - acc: 0.780 - ETA: 7s - loss: 0.6402 - acc: 0.781 - ETA: 7s - loss: 0.6402 - acc: 0.781 - ETA: 7s - loss: 0.6404 - acc: 0.781 - ETA: 6s - loss: 0.6406 - acc: 0.781 - ETA: 6s - loss: 0.6401 - acc: 0.781 - ETA: 6s - loss: 0.6406 - acc: 0.781 - ETA: 6s - loss: 0.6409 - acc: 0.780 - ETA: 6s - loss: 0.6417 - acc: 0.780 - ETA: 6s - loss: 0.6414 - acc: 0.780 - ETA: 6s - loss: 0.6408 - acc: 0.780 - ETA: 6s - loss: 0.6401 - acc: 0.781 - ETA: 6s - loss: 0.6398 - acc: 0.781 - ETA: 6s - loss: 0.6398 - acc: 0.781 - ETA: 6s - loss: 0.6402 - acc: 0.781 - ETA: 6s - loss: 0.6406 - acc: 0.781 - ETA: 6s - loss: 0.6405 - acc: 0.781 - ETA: 6s - loss: 0.6409 - acc: 0.781 - ETA: 6s - loss: 0.6412 - acc: 0.781 - ETA: 6s - loss: 0.6418 - acc: 0.781 - ETA: 6s - loss: 0.6415 - acc: 0.781 - ETA: 5s - loss: 0.6415 - acc: 0.781 - ETA: 5s - loss: 0.6405 - acc: 0.781 - ETA: 5s - loss: 0.6404 - acc: 0.781 - ETA: 5s - loss: 0.6399 - acc: 0.781 - ETA: 5s - loss: 0.6399 - acc: 0.782 - ETA: 5s - loss: 0.6393 - acc: 0.782 - ETA: 5s - loss: 0.6389 - acc: 0.782 - ETA: 5s - loss: 0.6384 - acc: 0.782 - ETA: 5s - loss: 0.6392 - acc: 0.782 - ETA: 5s - loss: 0.6388 - acc: 0.782 - ETA: 5s - loss: 0.6377 - acc: 0.782 - ETA: 5s - loss: 0.6375 - acc: 0.783 - ETA: 5s - loss: 0.6377 - acc: 0.783 - ETA: 5s - loss: 0.6382 - acc: 0.783 - ETA: 5s - loss: 0.6387 - acc: 0.782 - ETA: 5s - loss: 0.6382 - acc: 0.782 - ETA: 5s - loss: 0.6380 - acc: 0.782 - ETA: 4s - loss: 0.6381 - acc: 0.783 - ETA: 4s - loss: 0.6374 - acc: 0.783 - ETA: 4s - loss: 0.6374 - acc: 0.783 - ETA: 4s - loss: 0.6372 - acc: 0.783 - ETA: 4s - loss: 0.6376 - acc: 0.783 - ETA: 4s - loss: 0.6372 - acc: 0.783 - ETA: 4s - loss: 0.6376 - acc: 0.783 - ETA: 4s - loss: 0.6380 - acc: 0.783 - ETA: 4s - loss: 0.6375 - acc: 0.783 - ETA: 4s - loss: 0.6378 - acc: 0.783 - ETA: 4s - loss: 0.6378 - acc: 0.783 - ETA: 4s - loss: 0.6381 - acc: 0.783 - ETA: 4s - loss: 0.6390 - acc: 0.783 - ETA: 4s - loss: 0.6393 - acc: 0.782 - ETA: 4s - loss: 0.6395 - acc: 0.782 - ETA: 4s - loss: 0.6394 - acc: 0.782 - ETA: 4s - loss: 0.6385 - acc: 0.783 - ETA: 3s - loss: 0.6379 - acc: 0.783 - ETA: 3s - loss: 0.6377 - acc: 0.783 - ETA: 3s - loss: 0.6383 - acc: 0.783 - ETA: 3s - loss: 0.6379 - acc: 0.784 - ETA: 3s - loss: 0.6381 - acc: 0.783 - ETA: 3s - loss: 0.6384 - acc: 0.783 - ETA: 3s - loss: 0.6384 - acc: 0.783 - ETA: 3s - loss: 0.6382 - acc: 0.783 - ETA: 3s - loss: 0.6378 - acc: 0.784 - ETA: 3s - loss: 0.6377 - acc: 0.784 - ETA: 3s - loss: 0.6373 - acc: 0.784 - ETA: 3s - loss: 0.6372 - acc: 0.784 - ETA: 3s - loss: 0.6369 - acc: 0.784 - ETA: 3s - loss: 0.6374 - acc: 0.784 - ETA: 3s - loss: 0.6366 - acc: 0.784 - ETA: 3s - loss: 0.6358 - acc: 0.785 - ETA: 3s - loss: 0.6365 - acc: 0.784 - ETA: 3s - loss: 0.6364 - acc: 0.784 - ETA: 2s - loss: 0.6366 - acc: 0.784 - ETA: 2s - loss: 0.6370 - acc: 0.784 - ETA: 2s - loss: 0.6366 - acc: 0.784 - ETA: 2s - loss: 0.6363 - acc: 0.784 - ETA: 2s - loss: 0.6364 - acc: 0.784 - ETA: 2s - loss: 0.6364 - acc: 0.784 - ETA: 2s - loss: 0.6362 - acc: 0.784 - ETA: 2s - loss: 0.6361 - acc: 0.784 - ETA: 2s - loss: 0.6360 - acc: 0.784 - ETA: 2s - loss: 0.6356 - acc: 0.784 - ETA: 2s - loss: 0.6354 - acc: 0.784 - ETA: 2s - loss: 0.6352 - acc: 0.785 - ETA: 2s - loss: 0.6351 - acc: 0.785 - ETA: 2s - loss: 0.6353 - acc: 0.785 - ETA: 2s - loss: 0.6359 - acc: 0.784 - ETA: 2s - loss: 0.6357 - acc: 0.784 - ETA: 1s - loss: 0.6356 - acc: 0.785 - ETA: 1s - loss: 0.6359 - acc: 0.784 - ETA: 1s - loss: 0.6357 - acc: 0.785 - ETA: 1s - loss: 0.6352 - acc: 0.785 - ETA: 1s - loss: 0.6349 - acc: 0.785 - ETA: 1s - loss: 0.6346 - acc: 0.785 - ETA: 1s - loss: 0.6344 - acc: 0.785 - ETA: 1s - loss: 0.6347 - acc: 0.785 - ETA: 1s - loss: 0.6339 - acc: 0.785 - ETA: 1s - loss: 0.6343 - acc: 0.785 - ETA: 1s - loss: 0.6343 - acc: 0.785 - ETA: 1s - loss: 0.6339 - acc: 0.786 - ETA: 1s - loss: 0.6339 - acc: 0.786 - ETA: 1s - loss: 0.6343 - acc: 0.785 - ETA: 1s - loss: 0.6341 - acc: 0.786 - ETA: 1s - loss: 0.6334 - acc: 0.786 - ETA: 1s - loss: 0.6333 - acc: 0.786 - ETA: 0s - loss: 0.6332 - acc: 0.786 - ETA: 0s - loss: 0.6329 - acc: 0.786 - ETA: 0s - loss: 0.6331 - acc: 0.786 - ETA: 0s - loss: 0.6331 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6326 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6325 - acc: 0.786 - ETA: 0s - loss: 0.6325 - acc: 0.786 - ETA: 0s - loss: 0.6324 - acc: 0.786 - ETA: 0s - loss: 0.6330 - acc: 0.786 - ETA: 0s - loss: 0.6337 - acc: 0.785 - ETA: 0s - loss: 0.6333 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6327 - acc: 0.786 - ETA: 0s - loss: 0.6324 - acc: 0.786 - ETA: 0s - loss: 0.6325 - acc: 0.786 - 23s 968us/step - loss: 0.6324 - acc: 0.7866 - val_loss: 0.5207 - val_acc: 0.8243\n", + "\n", + "Epoch 00005: val_acc improved from 0.74290 to 0.82431, saving model to models\\time.model\n", + "Epoch 6/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 25s - loss: 0.4004 - acc: 0.84 - ETA: 25s - loss: 0.4835 - acc: 0.84 - ETA: 24s - loss: 0.4817 - acc: 0.85 - ETA: 22s - loss: 0.4866 - acc: 0.83 - ETA: 23s - loss: 0.4733 - acc: 0.83 - ETA: 22s - loss: 0.5116 - acc: 0.82 - ETA: 22s - loss: 0.5383 - acc: 0.82 - ETA: 22s - loss: 0.5395 - acc: 0.81 - ETA: 22s - loss: 0.5827 - acc: 0.80 - ETA: 22s - loss: 0.6001 - acc: 0.79 - ETA: 22s - loss: 0.5915 - acc: 0.80 - ETA: 22s - loss: 0.5751 - acc: 0.80 - ETA: 22s - loss: 0.5685 - acc: 0.80 - ETA: 22s - loss: 0.5756 - acc: 0.80 - ETA: 22s - loss: 0.5668 - acc: 0.80 - ETA: 22s - loss: 0.5791 - acc: 0.80 - ETA: 22s - loss: 0.5834 - acc: 0.80 - ETA: 22s - loss: 0.5841 - acc: 0.80 - ETA: 22s - loss: 0.6073 - acc: 0.80 - ETA: 21s - loss: 0.6031 - acc: 0.80 - ETA: 21s - loss: 0.6119 - acc: 0.79 - ETA: 21s - loss: 0.6023 - acc: 0.80 - ETA: 21s - loss: 0.5968 - acc: 0.80 - ETA: 21s - loss: 0.5990 - acc: 0.80 - ETA: 21s - loss: 0.6008 - acc: 0.80 - ETA: 21s - loss: 0.5974 - acc: 0.80 - ETA: 21s - loss: 0.5956 - acc: 0.80 - ETA: 21s - loss: 0.5910 - acc: 0.80 - ETA: 20s - loss: 0.5929 - acc: 0.80 - ETA: 20s - loss: 0.5874 - acc: 0.80 - ETA: 20s - loss: 0.5980 - acc: 0.79 - ETA: 20s - loss: 0.5977 - acc: 0.79 - ETA: 20s - loss: 0.5957 - acc: 0.80 - ETA: 20s - loss: 0.5944 - acc: 0.79 - ETA: 20s - loss: 0.5904 - acc: 0.80 - ETA: 19s - loss: 0.5981 - acc: 0.79 - ETA: 19s - loss: 0.6001 - acc: 0.79 - ETA: 19s - loss: 0.6009 - acc: 0.79 - ETA: 19s - loss: 0.6005 - acc: 0.79 - ETA: 19s - loss: 0.5984 - acc: 0.79 - ETA: 19s - loss: 0.5977 - acc: 0.79 - ETA: 19s - loss: 0.5948 - acc: 0.79 - ETA: 19s - loss: 0.5961 - acc: 0.79 - ETA: 19s - loss: 0.5953 - acc: 0.79 - ETA: 19s - loss: 0.5960 - acc: 0.79 - ETA: 19s - loss: 0.5949 - acc: 0.79 - ETA: 19s - loss: 0.5957 - acc: 0.79 - ETA: 18s - loss: 0.5933 - acc: 0.79 - ETA: 18s - loss: 0.5963 - acc: 0.79 - ETA: 18s - loss: 0.5975 - acc: 0.79 - ETA: 18s - loss: 0.5994 - acc: 0.79 - ETA: 18s - loss: 0.5970 - acc: 0.79 - ETA: 18s - loss: 0.5988 - acc: 0.79 - ETA: 18s - loss: 0.5973 - acc: 0.79 - ETA: 18s - loss: 0.5958 - acc: 0.79 - ETA: 18s - loss: 0.5940 - acc: 0.79 - ETA: 18s - loss: 0.5936 - acc: 0.79 - ETA: 18s - loss: 0.5943 - acc: 0.80 - ETA: 18s - loss: 0.5921 - acc: 0.80 - ETA: 18s - loss: 0.5960 - acc: 0.79 - ETA: 18s - loss: 0.5975 - acc: 0.79 - ETA: 18s - loss: 0.5971 - acc: 0.79 - ETA: 18s - loss: 0.5965 - acc: 0.79 - ETA: 18s - loss: 0.5968 - acc: 0.79 - ETA: 18s - loss: 0.5994 - acc: 0.79 - ETA: 17s - loss: 0.5995 - acc: 0.79 - ETA: 17s - loss: 0.6029 - acc: 0.79 - ETA: 17s - loss: 0.6067 - acc: 0.79 - ETA: 17s - loss: 0.6064 - acc: 0.79 - ETA: 17s - loss: 0.6045 - acc: 0.79 - ETA: 17s - loss: 0.6016 - acc: 0.79 - ETA: 17s - loss: 0.6019 - acc: 0.79 - ETA: 17s - loss: 0.6034 - acc: 0.79 - ETA: 17s - loss: 0.6039 - acc: 0.79 - ETA: 17s - loss: 0.6057 - acc: 0.79 - ETA: 17s - loss: 0.6083 - acc: 0.79 - ETA: 17s - loss: 0.6087 - acc: 0.79 - ETA: 17s - loss: 0.6102 - acc: 0.79 - ETA: 17s - loss: 0.6117 - acc: 0.79 - ETA: 17s - loss: 0.6101 - acc: 0.79 - ETA: 17s - loss: 0.6103 - acc: 0.79 - ETA: 17s - loss: 0.6102 - acc: 0.79 - ETA: 17s - loss: 0.6104 - acc: 0.79 - ETA: 17s - loss: 0.6114 - acc: 0.79 - ETA: 17s - loss: 0.6124 - acc: 0.79 - ETA: 17s - loss: 0.6103 - acc: 0.79 - ETA: 16s - loss: 0.6098 - acc: 0.79 - ETA: 16s - loss: 0.6096 - acc: 0.79 - ETA: 16s - loss: 0.6095 - acc: 0.79 - ETA: 16s - loss: 0.6089 - acc: 0.79 - ETA: 16s - loss: 0.6067 - acc: 0.79 - ETA: 16s - loss: 0.6057 - acc: 0.79 - ETA: 16s - loss: 0.6055 - acc: 0.79 - ETA: 16s - loss: 0.6063 - acc: 0.79 - ETA: 16s - loss: 0.6051 - acc: 0.79 - ETA: 16s - loss: 0.6044 - acc: 0.79 - ETA: 16s - loss: 0.6028 - acc: 0.79 - ETA: 16s - loss: 0.6028 - acc: 0.79 - ETA: 16s - loss: 0.6037 - acc: 0.79 - ETA: 16s - loss: 0.6056 - acc: 0.79 - ETA: 16s - loss: 0.6057 - acc: 0.79 - ETA: 16s - loss: 0.6068 - acc: 0.79 - ETA: 16s - loss: 0.6078 - acc: 0.79 - ETA: 16s - loss: 0.6076 - acc: 0.79 - ETA: 16s - loss: 0.6069 - acc: 0.79 - ETA: 15s - loss: 0.6068 - acc: 0.79 - ETA: 15s - loss: 0.6046 - acc: 0.79 - ETA: 15s - loss: 0.6034 - acc: 0.79 - ETA: 15s - loss: 0.6023 - acc: 0.79 - ETA: 15s - loss: 0.6006 - acc: 0.79 - ETA: 15s - loss: 0.5992 - acc: 0.79 - ETA: 15s - loss: 0.5983 - acc: 0.79 - ETA: 15s - loss: 0.5976 - acc: 0.79 - ETA: 15s - loss: 0.5970 - acc: 0.79 - ETA: 15s - loss: 0.5958 - acc: 0.79 - ETA: 15s - loss: 0.5975 - acc: 0.79 - ETA: 15s - loss: 0.5963 - acc: 0.79 - ETA: 15s - loss: 0.5957 - acc: 0.79 - ETA: 15s - loss: 0.5955 - acc: 0.79 - ETA: 15s - loss: 0.5941 - acc: 0.80 - ETA: 15s - loss: 0.5953 - acc: 0.79 - ETA: 15s - loss: 0.5940 - acc: 0.80 - ETA: 15s - loss: 0.5934 - acc: 0.80 - ETA: 15s - loss: 0.5923 - acc: 0.80 - ETA: 14s - loss: 0.5914 - acc: 0.80 - ETA: 14s - loss: 0.5909 - acc: 0.80 - ETA: 14s - loss: 0.5900 - acc: 0.80 - ETA: 14s - loss: 0.5918 - acc: 0.80 - ETA: 14s - loss: 0.5914 - acc: 0.80 - ETA: 14s - loss: 0.5913 - acc: 0.80 - ETA: 14s - loss: 0.5909 - acc: 0.80 - ETA: 14s - loss: 0.5921 - acc: 0.80 - ETA: 14s - loss: 0.5934 - acc: 0.80 - ETA: 14s - loss: 0.5939 - acc: 0.80 - ETA: 14s - loss: 0.5941 - acc: 0.80 - ETA: 14s - loss: 0.5944 - acc: 0.80 - ETA: 14s - loss: 0.5946 - acc: 0.80 - ETA: 14s - loss: 0.5933 - acc: 0.80 - ETA: 14s - loss: 0.5929 - acc: 0.80 - ETA: 14s - loss: 0.5919 - acc: 0.80 - ETA: 14s - loss: 0.5908 - acc: 0.80 - ETA: 13s - loss: 0.5903 - acc: 0.80 - ETA: 13s - loss: 0.5897 - acc: 0.80 - ETA: 13s - loss: 0.5894 - acc: 0.80 - ETA: 13s - loss: 0.5879 - acc: 0.80 - ETA: 13s - loss: 0.5882 - acc: 0.80 - ETA: 13s - loss: 0.5874 - acc: 0.80 - ETA: 13s - loss: 0.5887 - acc: 0.80 - ETA: 13s - loss: 0.5891 - acc: 0.80 - ETA: 13s - loss: 0.5897 - acc: 0.80 - ETA: 13s - loss: 0.5899 - acc: 0.80 - ETA: 13s - loss: 0.5892 - acc: 0.80 - ETA: 13s - loss: 0.5894 - acc: 0.80 - ETA: 13s - loss: 0.5906 - acc: 0.80 - ETA: 13s - loss: 0.5910 - acc: 0.80 - ETA: 13s - loss: 0.5910 - acc: 0.80 - ETA: 13s - loss: 0.5906 - acc: 0.80 - ETA: 13s - loss: 0.5892 - acc: 0.80 - ETA: 12s - loss: 0.5882 - acc: 0.80 - ETA: 12s - loss: 0.5871 - acc: 0.80 - ETA: 12s - loss: 0.5864 - acc: 0.80 - ETA: 12s - loss: 0.5865 - acc: 0.80 - ETA: 12s - loss: 0.5857 - acc: 0.80 - ETA: 12s - loss: 0.5866 - acc: 0.80 - ETA: 12s - loss: 0.5884 - acc: 0.80 - ETA: 12s - loss: 0.5893 - acc: 0.80 - ETA: 12s - loss: 0.5904 - acc: 0.80 - ETA: 12s - loss: 0.5899 - acc: 0.80 - ETA: 12s - loss: 0.5895 - acc: 0.80 - ETA: 12s - loss: 0.5884 - acc: 0.80 - ETA: 12s - loss: 0.5885 - acc: 0.80 - ETA: 12s - loss: 0.5872 - acc: 0.80 - ETA: 12s - loss: 0.5871 - acc: 0.80 - ETA: 12s - loss: 0.5873 - acc: 0.80 - ETA: 11s - loss: 0.5872 - acc: 0.80 - ETA: 11s - loss: 0.5872 - acc: 0.80 - ETA: 11s - loss: 0.5873 - acc: 0.80 - ETA: 11s - loss: 0.5900 - acc: 0.80 - ETA: 11s - loss: 0.5901 - acc: 0.80 - ETA: 11s - loss: 0.5902 - acc: 0.80 - ETA: 11s - loss: 0.5919 - acc: 0.80 - ETA: 11s - loss: 0.5921 - acc: 0.80 - ETA: 11s - loss: 0.5921 - acc: 0.80 - ETA: 11s - loss: 0.5919 - acc: 0.80 - ETA: 11s - loss: 0.5916 - acc: 0.80 - ETA: 11s - loss: 0.5912 - acc: 0.80 - ETA: 11s - loss: 0.5912 - acc: 0.80 - ETA: 11s - loss: 0.5915 - acc: 0.80 - ETA: 11s - loss: 0.5918 - acc: 0.80 - ETA: 11s - loss: 0.5918 - acc: 0.80 - ETA: 10s - loss: 0.5916 - acc: 0.80 - ETA: 10s - loss: 0.5925 - acc: 0.80 - ETA: 10s - loss: 0.5926 - acc: 0.80 - ETA: 10s - loss: 0.5919 - acc: 0.80 - ETA: 10s - loss: 0.5915 - acc: 0.80 - ETA: 10s - loss: 0.5912 - acc: 0.80 - ETA: 10s - loss: 0.5916 - acc: 0.80 - ETA: 10s - loss: 0.5908 - acc: 0.80 - ETA: 10s - loss: 0.5908 - acc: 0.80 - ETA: 10s - loss: 0.5896 - acc: 0.80 - ETA: 10s - loss: 0.5894 - acc: 0.80 - ETA: 10s - loss: 0.5892 - acc: 0.80 - ETA: 10s - loss: 0.5887 - acc: 0.80 - ETA: 10s - loss: 0.5894 - acc: 0.80 - ETA: 10s - loss: 0.5894 - acc: 0.80 - ETA: 10s - loss: 0.5897 - acc: 0.80 - ETA: 10s - loss: 0.5882 - acc: 0.80 - ETA: 9s - loss: 0.5881 - acc: 0.8024 - ETA: 9s - loss: 0.5884 - acc: 0.802 - ETA: 9s - loss: 0.5876 - acc: 0.802 - ETA: 9s - loss: 0.5877 - acc: 0.802 - ETA: 9s - loss: 0.5873 - acc: 0.802 - ETA: 9s - loss: 0.5866 - acc: 0.802 - ETA: 9s - loss: 0.5859 - acc: 0.802 - ETA: 9s - loss: 0.5861 - acc: 0.8030" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.5858 - acc: 0.803 - ETA: 9s - loss: 0.5853 - acc: 0.803 - ETA: 9s - loss: 0.5850 - acc: 0.803 - ETA: 9s - loss: 0.5850 - acc: 0.803 - ETA: 9s - loss: 0.5847 - acc: 0.803 - ETA: 9s - loss: 0.5857 - acc: 0.803 - ETA: 9s - loss: 0.5848 - acc: 0.803 - ETA: 9s - loss: 0.5843 - acc: 0.804 - ETA: 8s - loss: 0.5838 - acc: 0.804 - ETA: 8s - loss: 0.5835 - acc: 0.804 - ETA: 8s - loss: 0.5838 - acc: 0.804 - ETA: 8s - loss: 0.5842 - acc: 0.804 - ETA: 8s - loss: 0.5841 - acc: 0.804 - ETA: 8s - loss: 0.5831 - acc: 0.804 - ETA: 8s - loss: 0.5825 - acc: 0.804 - ETA: 8s - loss: 0.5816 - acc: 0.804 - ETA: 8s - loss: 0.5824 - acc: 0.804 - ETA: 8s - loss: 0.5828 - acc: 0.804 - ETA: 8s - loss: 0.5830 - acc: 0.804 - ETA: 8s - loss: 0.5832 - acc: 0.804 - ETA: 8s - loss: 0.5833 - acc: 0.804 - ETA: 8s - loss: 0.5831 - acc: 0.804 - ETA: 8s - loss: 0.5830 - acc: 0.804 - ETA: 8s - loss: 0.5833 - acc: 0.804 - ETA: 8s - loss: 0.5826 - acc: 0.804 - ETA: 7s - loss: 0.5829 - acc: 0.803 - ETA: 7s - loss: 0.5829 - acc: 0.803 - ETA: 7s - loss: 0.5823 - acc: 0.804 - ETA: 7s - loss: 0.5826 - acc: 0.803 - ETA: 7s - loss: 0.5827 - acc: 0.803 - ETA: 7s - loss: 0.5831 - acc: 0.803 - ETA: 7s - loss: 0.5825 - acc: 0.803 - ETA: 7s - loss: 0.5815 - acc: 0.803 - ETA: 7s - loss: 0.5814 - acc: 0.803 - ETA: 7s - loss: 0.5809 - acc: 0.804 - ETA: 7s - loss: 0.5804 - acc: 0.804 - ETA: 7s - loss: 0.5799 - acc: 0.804 - ETA: 7s - loss: 0.5796 - acc: 0.804 - ETA: 7s - loss: 0.5798 - acc: 0.804 - ETA: 7s - loss: 0.5802 - acc: 0.804 - ETA: 7s - loss: 0.5790 - acc: 0.804 - ETA: 7s - loss: 0.5781 - acc: 0.805 - ETA: 6s - loss: 0.5776 - acc: 0.805 - ETA: 6s - loss: 0.5775 - acc: 0.805 - ETA: 6s - loss: 0.5760 - acc: 0.805 - ETA: 6s - loss: 0.5762 - acc: 0.805 - ETA: 6s - loss: 0.5753 - acc: 0.806 - ETA: 6s - loss: 0.5748 - acc: 0.806 - ETA: 6s - loss: 0.5735 - acc: 0.806 - ETA: 6s - loss: 0.5738 - acc: 0.806 - ETA: 6s - loss: 0.5739 - acc: 0.806 - ETA: 6s - loss: 0.5735 - acc: 0.806 - ETA: 6s - loss: 0.5733 - acc: 0.806 - ETA: 6s - loss: 0.5727 - acc: 0.806 - ETA: 6s - loss: 0.5741 - acc: 0.806 - ETA: 6s - loss: 0.5741 - acc: 0.806 - ETA: 6s - loss: 0.5738 - acc: 0.806 - ETA: 6s - loss: 0.5735 - acc: 0.806 - ETA: 5s - loss: 0.5731 - acc: 0.806 - ETA: 5s - loss: 0.5735 - acc: 0.806 - ETA: 5s - loss: 0.5733 - acc: 0.806 - ETA: 5s - loss: 0.5728 - acc: 0.806 - ETA: 5s - loss: 0.5733 - acc: 0.806 - ETA: 5s - loss: 0.5731 - acc: 0.806 - ETA: 5s - loss: 0.5732 - acc: 0.806 - ETA: 5s - loss: 0.5723 - acc: 0.806 - ETA: 5s - loss: 0.5723 - acc: 0.806 - ETA: 5s - loss: 0.5724 - acc: 0.807 - ETA: 5s - loss: 0.5715 - acc: 0.807 - ETA: 5s - loss: 0.5715 - acc: 0.807 - ETA: 5s - loss: 0.5713 - acc: 0.807 - ETA: 5s - loss: 0.5713 - acc: 0.807 - ETA: 5s - loss: 0.5710 - acc: 0.807 - ETA: 5s - loss: 0.5709 - acc: 0.807 - ETA: 5s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5706 - acc: 0.807 - ETA: 4s - loss: 0.5711 - acc: 0.807 - ETA: 4s - loss: 0.5706 - acc: 0.807 - ETA: 4s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5708 - acc: 0.807 - ETA: 4s - loss: 0.5702 - acc: 0.807 - ETA: 4s - loss: 0.5700 - acc: 0.807 - ETA: 4s - loss: 0.5698 - acc: 0.807 - ETA: 4s - loss: 0.5692 - acc: 0.807 - ETA: 4s - loss: 0.5689 - acc: 0.807 - ETA: 4s - loss: 0.5692 - acc: 0.807 - ETA: 4s - loss: 0.5694 - acc: 0.807 - ETA: 4s - loss: 0.5698 - acc: 0.807 - ETA: 4s - loss: 0.5692 - acc: 0.807 - ETA: 4s - loss: 0.5690 - acc: 0.807 - ETA: 3s - loss: 0.5686 - acc: 0.807 - ETA: 3s - loss: 0.5684 - acc: 0.807 - ETA: 3s - loss: 0.5680 - acc: 0.807 - ETA: 3s - loss: 0.5684 - acc: 0.807 - ETA: 3s - loss: 0.5685 - acc: 0.807 - ETA: 3s - loss: 0.5684 - acc: 0.807 - ETA: 3s - loss: 0.5688 - acc: 0.807 - ETA: 3s - loss: 0.5683 - acc: 0.807 - ETA: 3s - loss: 0.5677 - acc: 0.808 - ETA: 3s - loss: 0.5688 - acc: 0.807 - ETA: 3s - loss: 0.5681 - acc: 0.808 - ETA: 3s - loss: 0.5675 - acc: 0.808 - ETA: 3s - loss: 0.5684 - acc: 0.808 - ETA: 3s - loss: 0.5676 - acc: 0.808 - ETA: 3s - loss: 0.5672 - acc: 0.808 - ETA: 3s - loss: 0.5675 - acc: 0.808 - ETA: 2s - loss: 0.5676 - acc: 0.808 - ETA: 2s - loss: 0.5679 - acc: 0.807 - ETA: 2s - loss: 0.5681 - acc: 0.807 - ETA: 2s - loss: 0.5678 - acc: 0.807 - ETA: 2s - loss: 0.5684 - acc: 0.807 - ETA: 2s - loss: 0.5695 - acc: 0.807 - ETA: 2s - loss: 0.5695 - acc: 0.807 - ETA: 2s - loss: 0.5695 - acc: 0.807 - ETA: 2s - loss: 0.5701 - acc: 0.806 - ETA: 2s - loss: 0.5706 - acc: 0.806 - ETA: 2s - loss: 0.5711 - acc: 0.806 - ETA: 2s - loss: 0.5708 - acc: 0.806 - ETA: 2s - loss: 0.5710 - acc: 0.806 - ETA: 2s - loss: 0.5713 - acc: 0.806 - ETA: 2s - loss: 0.5720 - acc: 0.806 - ETA: 2s - loss: 0.5721 - acc: 0.806 - ETA: 2s - loss: 0.5715 - acc: 0.806 - ETA: 1s - loss: 0.5714 - acc: 0.806 - ETA: 1s - loss: 0.5713 - acc: 0.806 - ETA: 1s - loss: 0.5709 - acc: 0.806 - ETA: 1s - loss: 0.5708 - acc: 0.806 - ETA: 1s - loss: 0.5712 - acc: 0.806 - ETA: 1s - loss: 0.5708 - acc: 0.806 - ETA: 1s - loss: 0.5707 - acc: 0.806 - ETA: 1s - loss: 0.5702 - acc: 0.807 - ETA: 1s - loss: 0.5701 - acc: 0.807 - ETA: 1s - loss: 0.5699 - acc: 0.807 - ETA: 1s - loss: 0.5701 - acc: 0.807 - ETA: 1s - loss: 0.5703 - acc: 0.807 - ETA: 1s - loss: 0.5701 - acc: 0.807 - ETA: 1s - loss: 0.5697 - acc: 0.807 - ETA: 1s - loss: 0.5698 - acc: 0.807 - ETA: 1s - loss: 0.5702 - acc: 0.807 - ETA: 0s - loss: 0.5702 - acc: 0.807 - ETA: 0s - loss: 0.5698 - acc: 0.807 - ETA: 0s - loss: 0.5699 - acc: 0.807 - ETA: 0s - loss: 0.5693 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5698 - acc: 0.807 - ETA: 0s - loss: 0.5696 - acc: 0.807 - ETA: 0s - loss: 0.5698 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5691 - acc: 0.807 - ETA: 0s - loss: 0.5688 - acc: 0.807 - ETA: 0s - loss: 0.5683 - acc: 0.807 - ETA: 0s - loss: 0.5677 - acc: 0.807 - ETA: 0s - loss: 0.5676 - acc: 0.807 - ETA: 0s - loss: 0.5672 - acc: 0.808 - 24s 998us/step - loss: 0.5674 - acc: 0.8079 - val_loss: 0.4905 - val_acc: 0.8402\n", + "\n", + "Epoch 00006: val_acc improved from 0.82431 to 0.84021, saving model to models\\time.model\n", + "Epoch 7/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13856/23769 [================>.............] - ETA: 25s - loss: 0.7763 - acc: 0.75 - ETA: 25s - loss: 0.5529 - acc: 0.78 - ETA: 24s - loss: 0.5891 - acc: 0.77 - ETA: 24s - loss: 0.5748 - acc: 0.78 - ETA: 23s - loss: 0.5857 - acc: 0.78 - ETA: 23s - loss: 0.5700 - acc: 0.80 - ETA: 23s - loss: 0.5880 - acc: 0.80 - ETA: 22s - loss: 0.5760 - acc: 0.80 - ETA: 22s - loss: 0.5486 - acc: 0.81 - ETA: 22s - loss: 0.5384 - acc: 0.81 - ETA: 22s - loss: 0.5457 - acc: 0.81 - ETA: 22s - loss: 0.5382 - acc: 0.81 - ETA: 22s - loss: 0.5584 - acc: 0.80 - ETA: 21s - loss: 0.5528 - acc: 0.80 - ETA: 22s - loss: 0.5614 - acc: 0.80 - ETA: 22s - loss: 0.5667 - acc: 0.80 - ETA: 22s - loss: 0.5716 - acc: 0.79 - ETA: 21s - loss: 0.5598 - acc: 0.80 - ETA: 21s - loss: 0.5614 - acc: 0.80 - ETA: 21s - loss: 0.5586 - acc: 0.80 - ETA: 21s - loss: 0.5728 - acc: 0.80 - ETA: 21s - loss: 0.5661 - acc: 0.80 - ETA: 21s - loss: 0.5702 - acc: 0.80 - ETA: 21s - loss: 0.5710 - acc: 0.80 - ETA: 21s - loss: 0.5667 - acc: 0.80 - ETA: 21s - loss: 0.5665 - acc: 0.80 - ETA: 20s - loss: 0.5613 - acc: 0.80 - ETA: 20s - loss: 0.5581 - acc: 0.81 - ETA: 20s - loss: 0.5632 - acc: 0.80 - ETA: 20s - loss: 0.5644 - acc: 0.80 - ETA: 20s - loss: 0.5585 - acc: 0.80 - ETA: 20s - loss: 0.5561 - acc: 0.80 - ETA: 20s - loss: 0.5509 - acc: 0.81 - ETA: 20s - loss: 0.5479 - acc: 0.81 - ETA: 20s - loss: 0.5446 - acc: 0.81 - ETA: 20s - loss: 0.5394 - acc: 0.81 - ETA: 20s - loss: 0.5366 - acc: 0.81 - ETA: 20s - loss: 0.5404 - acc: 0.81 - ETA: 20s - loss: 0.5415 - acc: 0.81 - ETA: 20s - loss: 0.5422 - acc: 0.81 - ETA: 20s - loss: 0.5437 - acc: 0.81 - ETA: 20s - loss: 0.5423 - acc: 0.81 - ETA: 19s - loss: 0.5406 - acc: 0.81 - ETA: 19s - loss: 0.5410 - acc: 0.81 - ETA: 19s - loss: 0.5418 - acc: 0.81 - ETA: 19s - loss: 0.5458 - acc: 0.81 - ETA: 19s - loss: 0.5460 - acc: 0.81 - ETA: 19s - loss: 0.5432 - acc: 0.81 - ETA: 19s - loss: 0.5426 - acc: 0.81 - ETA: 19s - loss: 0.5379 - acc: 0.81 - ETA: 19s - loss: 0.5387 - acc: 0.81 - ETA: 19s - loss: 0.5428 - acc: 0.81 - ETA: 19s - loss: 0.5411 - acc: 0.81 - ETA: 19s - loss: 0.5397 - acc: 0.81 - ETA: 19s - loss: 0.5352 - acc: 0.81 - ETA: 19s - loss: 0.5370 - acc: 0.81 - ETA: 19s - loss: 0.5390 - acc: 0.81 - ETA: 19s - loss: 0.5386 - acc: 0.81 - ETA: 19s - loss: 0.5365 - acc: 0.81 - ETA: 19s - loss: 0.5376 - acc: 0.81 - ETA: 19s - loss: 0.5379 - acc: 0.81 - ETA: 19s - loss: 0.5379 - acc: 0.81 - ETA: 19s - loss: 0.5377 - acc: 0.81 - ETA: 18s - loss: 0.5379 - acc: 0.81 - ETA: 18s - loss: 0.5401 - acc: 0.81 - ETA: 18s - loss: 0.5418 - acc: 0.81 - ETA: 18s - loss: 0.5434 - acc: 0.81 - ETA: 18s - loss: 0.5421 - acc: 0.81 - ETA: 18s - loss: 0.5481 - acc: 0.81 - ETA: 18s - loss: 0.5458 - acc: 0.81 - ETA: 18s - loss: 0.5440 - acc: 0.81 - ETA: 18s - loss: 0.5433 - acc: 0.81 - ETA: 18s - loss: 0.5439 - acc: 0.81 - ETA: 18s - loss: 0.5443 - acc: 0.81 - ETA: 18s - loss: 0.5453 - acc: 0.81 - ETA: 18s - loss: 0.5469 - acc: 0.81 - ETA: 18s - loss: 0.5450 - acc: 0.81 - ETA: 18s - loss: 0.5432 - acc: 0.81 - ETA: 18s - loss: 0.5419 - acc: 0.81 - ETA: 18s - loss: 0.5439 - acc: 0.81 - ETA: 18s - loss: 0.5462 - acc: 0.81 - ETA: 18s - loss: 0.5442 - acc: 0.81 - ETA: 17s - loss: 0.5434 - acc: 0.81 - ETA: 17s - loss: 0.5446 - acc: 0.81 - ETA: 17s - loss: 0.5434 - acc: 0.81 - ETA: 17s - loss: 0.5423 - acc: 0.81 - ETA: 17s - loss: 0.5437 - acc: 0.81 - ETA: 17s - loss: 0.5490 - acc: 0.81 - ETA: 17s - loss: 0.5506 - acc: 0.81 - ETA: 17s - loss: 0.5521 - acc: 0.81 - ETA: 17s - loss: 0.5519 - acc: 0.81 - ETA: 17s - loss: 0.5521 - acc: 0.81 - ETA: 17s - loss: 0.5518 - acc: 0.81 - ETA: 17s - loss: 0.5495 - acc: 0.81 - ETA: 17s - loss: 0.5473 - acc: 0.81 - ETA: 17s - loss: 0.5478 - acc: 0.81 - ETA: 17s - loss: 0.5459 - acc: 0.81 - ETA: 17s - loss: 0.5449 - acc: 0.81 - ETA: 17s - loss: 0.5469 - acc: 0.81 - ETA: 16s - loss: 0.5458 - acc: 0.81 - ETA: 16s - loss: 0.5456 - acc: 0.81 - ETA: 16s - loss: 0.5440 - acc: 0.81 - ETA: 16s - loss: 0.5441 - acc: 0.81 - ETA: 16s - loss: 0.5418 - acc: 0.81 - ETA: 16s - loss: 0.5434 - acc: 0.81 - ETA: 16s - loss: 0.5438 - acc: 0.81 - ETA: 16s - loss: 0.5424 - acc: 0.81 - ETA: 16s - loss: 0.5420 - acc: 0.81 - ETA: 16s - loss: 0.5456 - acc: 0.81 - ETA: 16s - loss: 0.5461 - acc: 0.81 - ETA: 16s - loss: 0.5464 - acc: 0.81 - ETA: 16s - loss: 0.5478 - acc: 0.81 - ETA: 16s - loss: 0.5492 - acc: 0.81 - ETA: 16s - loss: 0.5508 - acc: 0.81 - ETA: 15s - loss: 0.5510 - acc: 0.81 - ETA: 15s - loss: 0.5498 - acc: 0.81 - ETA: 15s - loss: 0.5492 - acc: 0.81 - ETA: 15s - loss: 0.5489 - acc: 0.81 - ETA: 15s - loss: 0.5469 - acc: 0.81 - ETA: 15s - loss: 0.5457 - acc: 0.81 - ETA: 15s - loss: 0.5442 - acc: 0.81 - ETA: 15s - loss: 0.5441 - acc: 0.81 - ETA: 15s - loss: 0.5436 - acc: 0.81 - ETA: 15s - loss: 0.5445 - acc: 0.81 - ETA: 15s - loss: 0.5423 - acc: 0.81 - ETA: 15s - loss: 0.5410 - acc: 0.81 - ETA: 15s - loss: 0.5403 - acc: 0.81 - ETA: 15s - loss: 0.5403 - acc: 0.81 - ETA: 15s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5400 - acc: 0.81 - ETA: 14s - loss: 0.5397 - acc: 0.81 - ETA: 14s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5402 - acc: 0.81 - ETA: 14s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5398 - acc: 0.81 - ETA: 14s - loss: 0.5407 - acc: 0.81 - ETA: 14s - loss: 0.5397 - acc: 0.81 - ETA: 14s - loss: 0.5388 - acc: 0.81 - ETA: 14s - loss: 0.5376 - acc: 0.81 - ETA: 14s - loss: 0.5360 - acc: 0.81 - ETA: 14s - loss: 0.5349 - acc: 0.81 - ETA: 14s - loss: 0.5349 - acc: 0.81 - ETA: 14s - loss: 0.5357 - acc: 0.81 - ETA: 14s - loss: 0.5354 - acc: 0.81 - ETA: 14s - loss: 0.5337 - acc: 0.82 - ETA: 13s - loss: 0.5328 - acc: 0.82 - ETA: 13s - loss: 0.5344 - acc: 0.82 - ETA: 13s - loss: 0.5348 - acc: 0.82 - ETA: 13s - loss: 0.5362 - acc: 0.81 - ETA: 13s - loss: 0.5369 - acc: 0.81 - ETA: 13s - loss: 0.5377 - acc: 0.81 - ETA: 13s - loss: 0.5389 - acc: 0.81 - ETA: 13s - loss: 0.5388 - acc: 0.81 - ETA: 13s - loss: 0.5377 - acc: 0.81 - ETA: 13s - loss: 0.5373 - acc: 0.81 - ETA: 13s - loss: 0.5394 - acc: 0.81 - ETA: 13s - loss: 0.5399 - acc: 0.81 - ETA: 13s - loss: 0.5387 - acc: 0.81 - ETA: 13s - loss: 0.5381 - acc: 0.81 - ETA: 13s - loss: 0.5375 - acc: 0.81 - ETA: 13s - loss: 0.5380 - acc: 0.81 - ETA: 12s - loss: 0.5378 - acc: 0.81 - ETA: 12s - loss: 0.5375 - acc: 0.81 - ETA: 12s - loss: 0.5365 - acc: 0.81 - ETA: 12s - loss: 0.5361 - acc: 0.81 - ETA: 12s - loss: 0.5355 - acc: 0.81 - ETA: 12s - loss: 0.5352 - acc: 0.81 - ETA: 12s - loss: 0.5362 - acc: 0.81 - ETA: 12s - loss: 0.5375 - acc: 0.81 - ETA: 12s - loss: 0.5396 - acc: 0.81 - ETA: 12s - loss: 0.5403 - acc: 0.81 - ETA: 12s - loss: 0.5410 - acc: 0.81 - ETA: 12s - loss: 0.5410 - acc: 0.81 - ETA: 12s - loss: 0.5418 - acc: 0.81 - ETA: 12s - loss: 0.5415 - acc: 0.81 - ETA: 12s - loss: 0.5420 - acc: 0.81 - ETA: 12s - loss: 0.5419 - acc: 0.81 - ETA: 11s - loss: 0.5416 - acc: 0.81 - ETA: 11s - loss: 0.5416 - acc: 0.81 - ETA: 11s - loss: 0.5425 - acc: 0.81 - ETA: 11s - loss: 0.5423 - acc: 0.81 - ETA: 11s - loss: 0.5414 - acc: 0.81 - ETA: 11s - loss: 0.5428 - acc: 0.81 - ETA: 11s - loss: 0.5429 - acc: 0.81 - ETA: 11s - loss: 0.5424 - acc: 0.81 - ETA: 11s - loss: 0.5420 - acc: 0.81 - ETA: 11s - loss: 0.5426 - acc: 0.81 - ETA: 11s - loss: 0.5422 - acc: 0.81 - ETA: 11s - loss: 0.5413 - acc: 0.81 - ETA: 11s - loss: 0.5414 - acc: 0.81 - ETA: 11s - loss: 0.5408 - acc: 0.81 - ETA: 11s - loss: 0.5415 - acc: 0.81 - ETA: 10s - loss: 0.5436 - acc: 0.81 - ETA: 10s - loss: 0.5435 - acc: 0.81 - ETA: 10s - loss: 0.5428 - acc: 0.81 - ETA: 10s - loss: 0.5426 - acc: 0.81 - ETA: 10s - loss: 0.5424 - acc: 0.81 - ETA: 10s - loss: 0.5425 - acc: 0.81 - ETA: 10s - loss: 0.5422 - acc: 0.81 - ETA: 10s - loss: 0.5421 - acc: 0.81 - ETA: 10s - loss: 0.5421 - acc: 0.81 - ETA: 10s - loss: 0.5424 - acc: 0.81 - ETA: 10s - loss: 0.5422 - acc: 0.81 - ETA: 10s - loss: 0.5427 - acc: 0.81 - ETA: 10s - loss: 0.5430 - acc: 0.81 - ETA: 10s - loss: 0.5429 - acc: 0.81 - ETA: 10s - loss: 0.5432 - acc: 0.81 - ETA: 10s - loss: 0.5429 - acc: 0.81 - ETA: 9s - loss: 0.5427 - acc: 0.8161 - ETA: 9s - loss: 0.5420 - acc: 0.816 - ETA: 9s - loss: 0.5414 - acc: 0.816 - ETA: 9s - loss: 0.5402 - acc: 0.816 - ETA: 9s - loss: 0.5404 - acc: 0.816 - ETA: 9s - loss: 0.5399 - acc: 0.816 - ETA: 9s - loss: 0.5397 - acc: 0.8171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.5383 - acc: 0.817 - ETA: 9s - loss: 0.5374 - acc: 0.817 - ETA: 9s - loss: 0.5364 - acc: 0.818 - ETA: 9s - loss: 0.5358 - acc: 0.818 - ETA: 9s - loss: 0.5353 - acc: 0.818 - ETA: 9s - loss: 0.5359 - acc: 0.818 - ETA: 9s - loss: 0.5361 - acc: 0.818 - ETA: 9s - loss: 0.5368 - acc: 0.818 - ETA: 9s - loss: 0.5362 - acc: 0.818 - ETA: 8s - loss: 0.5367 - acc: 0.818 - ETA: 8s - loss: 0.5366 - acc: 0.818 - ETA: 8s - loss: 0.5367 - acc: 0.818 - ETA: 8s - loss: 0.5365 - acc: 0.818 - ETA: 8s - loss: 0.5366 - acc: 0.818 - ETA: 8s - loss: 0.5371 - acc: 0.818 - ETA: 8s - loss: 0.5371 - acc: 0.818 - ETA: 8s - loss: 0.5380 - acc: 0.818 - ETA: 8s - loss: 0.5379 - acc: 0.818 - ETA: 8s - loss: 0.5373 - acc: 0.818 - ETA: 8s - loss: 0.5369 - acc: 0.818 - ETA: 8s - loss: 0.5365 - acc: 0.818 - ETA: 8s - loss: 0.5370 - acc: 0.818 - ETA: 8s - loss: 0.5365 - acc: 0.818 - ETA: 8s - loss: 0.5367 - acc: 0.818 - ETA: 8s - loss: 0.5361 - acc: 0.818 - ETA: 8s - loss: 0.5355 - acc: 0.819 - ETA: 7s - loss: 0.5358 - acc: 0.818 - ETA: 7s - loss: 0.5357 - acc: 0.818 - ETA: 7s - loss: 0.5350 - acc: 0.819 - ETA: 7s - loss: 0.5344 - acc: 0.819 - ETA: 7s - loss: 0.5344 - acc: 0.819 - ETA: 7s - loss: 0.5342 - acc: 0.819 - ETA: 7s - loss: 0.5345 - acc: 0.819 - ETA: 7s - loss: 0.5347 - acc: 0.819 - ETA: 7s - loss: 0.5348 - acc: 0.819 - ETA: 7s - loss: 0.5354 - acc: 0.818 - ETA: 7s - loss: 0.5352 - acc: 0.818 - ETA: 7s - loss: 0.5348 - acc: 0.818 - ETA: 7s - loss: 0.5346 - acc: 0.819 - ETA: 7s - loss: 0.5341 - acc: 0.819 - ETA: 7s - loss: 0.5342 - acc: 0.819 - ETA: 7s - loss: 0.5343 - acc: 0.819 - ETA: 6s - loss: 0.5340 - acc: 0.818 - ETA: 6s - loss: 0.5338 - acc: 0.818 - ETA: 6s - loss: 0.5336 - acc: 0.819 - ETA: 6s - loss: 0.5330 - acc: 0.819 - ETA: 6s - loss: 0.5317 - acc: 0.819 - ETA: 6s - loss: 0.5320 - acc: 0.819 - ETA: 6s - loss: 0.5315 - acc: 0.819 - ETA: 6s - loss: 0.5316 - acc: 0.819 - ETA: 6s - loss: 0.5317 - acc: 0.819 - ETA: 6s - loss: 0.5318 - acc: 0.819 - ETA: 6s - loss: 0.5310 - acc: 0.820 - ETA: 6s - loss: 0.5310 - acc: 0.819 - ETA: 6s - loss: 0.5303 - acc: 0.820 - ETA: 6s - loss: 0.5302 - acc: 0.820 - ETA: 6s - loss: 0.5303 - acc: 0.820 - ETA: 6s - loss: 0.5303 - acc: 0.820 - ETA: 5s - loss: 0.5307 - acc: 0.819 - ETA: 5s - loss: 0.5303 - acc: 0.820 - ETA: 5s - loss: 0.5304 - acc: 0.820 - ETA: 5s - loss: 0.5305 - acc: 0.819 - ETA: 5s - loss: 0.5304 - acc: 0.819 - ETA: 5s - loss: 0.5309 - acc: 0.819 - ETA: 5s - loss: 0.5312 - acc: 0.819 - ETA: 5s - loss: 0.5311 - acc: 0.819 - ETA: 5s - loss: 0.5306 - acc: 0.820 - ETA: 5s - loss: 0.5305 - acc: 0.820 - ETA: 5s - loss: 0.5301 - acc: 0.820 - ETA: 5s - loss: 0.5299 - acc: 0.820 - ETA: 5s - loss: 0.5291 - acc: 0.820 - ETA: 5s - loss: 0.5287 - acc: 0.820 - ETA: 5s - loss: 0.5288 - acc: 0.820 - ETA: 5s - loss: 0.5285 - acc: 0.820 - ETA: 5s - loss: 0.5279 - acc: 0.820 - ETA: 4s - loss: 0.5278 - acc: 0.820 - ETA: 4s - loss: 0.5286 - acc: 0.820 - ETA: 4s - loss: 0.5290 - acc: 0.820 - ETA: 4s - loss: 0.5291 - acc: 0.820 - ETA: 4s - loss: 0.5284 - acc: 0.820 - ETA: 4s - loss: 0.5278 - acc: 0.820 - ETA: 4s - loss: 0.5272 - acc: 0.820 - ETA: 4s - loss: 0.5275 - acc: 0.820 - ETA: 4s - loss: 0.5274 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5274 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5276 - acc: 0.820 - ETA: 4s - loss: 0.5271 - acc: 0.820 - ETA: 4s - loss: 0.5276 - acc: 0.820 - ETA: 3s - loss: 0.5284 - acc: 0.820 - ETA: 3s - loss: 0.5284 - acc: 0.820 - ETA: 3s - loss: 0.5282 - acc: 0.820 - ETA: 3s - loss: 0.5276 - acc: 0.820 - ETA: 3s - loss: 0.5272 - acc: 0.820 - ETA: 3s - loss: 0.5267 - acc: 0.820 - ETA: 3s - loss: 0.5265 - acc: 0.820 - ETA: 3s - loss: 0.5264 - acc: 0.820 - ETA: 3s - loss: 0.5259 - acc: 0.820 - ETA: 3s - loss: 0.5258 - acc: 0.820 - ETA: 3s - loss: 0.5253 - acc: 0.821 - ETA: 3s - loss: 0.5247 - acc: 0.821 - ETA: 3s - loss: 0.5239 - acc: 0.821 - ETA: 3s - loss: 0.5236 - acc: 0.821 - ETA: 3s - loss: 0.5229 - acc: 0.822 - ETA: 2s - loss: 0.5221 - acc: 0.822 - ETA: 2s - loss: 0.5222 - acc: 0.822 - ETA: 2s - loss: 0.5220 - acc: 0.822 - ETA: 2s - loss: 0.5216 - acc: 0.822 - ETA: 2s - loss: 0.5207 - acc: 0.823 - ETA: 2s - loss: 0.5212 - acc: 0.822 - ETA: 2s - loss: 0.5221 - acc: 0.822 - ETA: 2s - loss: 0.5218 - acc: 0.822 - ETA: 2s - loss: 0.5220 - acc: 0.822 - ETA: 2s - loss: 0.5216 - acc: 0.822 - ETA: 2s - loss: 0.5214 - acc: 0.823 - ETA: 2s - loss: 0.5211 - acc: 0.823 - ETA: 2s - loss: 0.5217 - acc: 0.822 - ETA: 2s - loss: 0.5214 - acc: 0.822 - ETA: 2s - loss: 0.5218 - acc: 0.822 - ETA: 2s - loss: 0.5218 - acc: 0.822 - ETA: 1s - loss: 0.5216 - acc: 0.822 - ETA: 1s - loss: 0.5215 - acc: 0.822 - ETA: 1s - loss: 0.5213 - acc: 0.823 - ETA: 1s - loss: 0.5209 - acc: 0.823 - ETA: 1s - loss: 0.5210 - acc: 0.822 - ETA: 1s - loss: 0.5213 - acc: 0.822 - ETA: 1s - loss: 0.5211 - acc: 0.822 - ETA: 1s - loss: 0.5208 - acc: 0.822 - ETA: 1s - loss: 0.5204 - acc: 0.823 - ETA: 1s - loss: 0.5203 - acc: 0.823 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 1s - loss: 0.5205 - acc: 0.823 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 1s - loss: 0.5212 - acc: 0.822 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 1s - loss: 0.5206 - acc: 0.823 - ETA: 0s - loss: 0.5203 - acc: 0.823 - ETA: 0s - loss: 0.5202 - acc: 0.823 - ETA: 0s - loss: 0.5198 - acc: 0.823 - ETA: 0s - loss: 0.5203 - acc: 0.823 - ETA: 0s - loss: 0.5201 - acc: 0.823 - ETA: 0s - loss: 0.5195 - acc: 0.823 - ETA: 0s - loss: 0.5202 - acc: 0.823 - ETA: 0s - loss: 0.5204 - acc: 0.822 - ETA: 0s - loss: 0.5200 - acc: 0.823 - ETA: 0s - loss: 0.5195 - acc: 0.823 - ETA: 0s - loss: 0.5200 - acc: 0.823 - ETA: 0s - loss: 0.5204 - acc: 0.823 - ETA: 0s - loss: 0.5198 - acc: 0.823 - ETA: 0s - loss: 0.5196 - acc: 0.823 - ETA: 0s - loss: 0.5196 - acc: 0.823 - ETA: 0s - loss: 0.5197 - acc: 0.823 - 24s 1ms/step - loss: 0.5194 - acc: 0.8233 - val_loss: 0.5294 - val_acc: 0.8205\n", + "\n", + "Epoch 00007: val_acc did not improve from 0.84021\n", + "Epoch 8/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13824/23769 [================>.............] - ETA: 27s - loss: 0.5609 - acc: 0.84 - ETA: 25s - loss: 0.6138 - acc: 0.85 - ETA: 25s - loss: 0.6006 - acc: 0.84 - ETA: 25s - loss: 0.5875 - acc: 0.83 - ETA: 25s - loss: 0.5760 - acc: 0.82 - ETA: 24s - loss: 0.5706 - acc: 0.82 - ETA: 24s - loss: 0.5816 - acc: 0.82 - ETA: 24s - loss: 0.5719 - acc: 0.82 - ETA: 23s - loss: 0.5450 - acc: 0.83 - ETA: 23s - loss: 0.5402 - acc: 0.82 - ETA: 23s - loss: 0.5229 - acc: 0.83 - ETA: 23s - loss: 0.5088 - acc: 0.84 - ETA: 23s - loss: 0.5010 - acc: 0.84 - ETA: 23s - loss: 0.4894 - acc: 0.84 - ETA: 22s - loss: 0.4933 - acc: 0.84 - ETA: 22s - loss: 0.4892 - acc: 0.84 - ETA: 22s - loss: 0.5021 - acc: 0.84 - ETA: 22s - loss: 0.5061 - acc: 0.84 - ETA: 22s - loss: 0.5010 - acc: 0.84 - ETA: 22s - loss: 0.4978 - acc: 0.84 - ETA: 21s - loss: 0.5055 - acc: 0.83 - ETA: 21s - loss: 0.5104 - acc: 0.83 - ETA: 21s - loss: 0.5026 - acc: 0.84 - ETA: 21s - loss: 0.4986 - acc: 0.84 - ETA: 21s - loss: 0.4996 - acc: 0.84 - ETA: 21s - loss: 0.5025 - acc: 0.84 - ETA: 21s - loss: 0.4967 - acc: 0.84 - ETA: 21s - loss: 0.4919 - acc: 0.84 - ETA: 21s - loss: 0.4885 - acc: 0.84 - ETA: 21s - loss: 0.4933 - acc: 0.84 - ETA: 21s - loss: 0.4926 - acc: 0.84 - ETA: 21s - loss: 0.4969 - acc: 0.84 - ETA: 20s - loss: 0.4916 - acc: 0.84 - ETA: 20s - loss: 0.4909 - acc: 0.84 - ETA: 20s - loss: 0.4853 - acc: 0.84 - ETA: 20s - loss: 0.4807 - acc: 0.84 - ETA: 20s - loss: 0.4770 - acc: 0.84 - ETA: 20s - loss: 0.4788 - acc: 0.84 - ETA: 20s - loss: 0.4729 - acc: 0.84 - ETA: 20s - loss: 0.4675 - acc: 0.85 - ETA: 20s - loss: 0.4708 - acc: 0.85 - ETA: 19s - loss: 0.4670 - acc: 0.85 - ETA: 19s - loss: 0.4658 - acc: 0.85 - ETA: 19s - loss: 0.4650 - acc: 0.84 - ETA: 19s - loss: 0.4655 - acc: 0.84 - ETA: 19s - loss: 0.4693 - acc: 0.84 - ETA: 19s - loss: 0.4747 - acc: 0.84 - ETA: 19s - loss: 0.4745 - acc: 0.84 - ETA: 19s - loss: 0.4754 - acc: 0.84 - ETA: 19s - loss: 0.4807 - acc: 0.84 - ETA: 19s - loss: 0.4829 - acc: 0.84 - ETA: 19s - loss: 0.4854 - acc: 0.83 - ETA: 19s - loss: 0.4846 - acc: 0.84 - ETA: 19s - loss: 0.4861 - acc: 0.84 - ETA: 19s - loss: 0.4886 - acc: 0.83 - ETA: 19s - loss: 0.4898 - acc: 0.83 - ETA: 19s - loss: 0.4911 - acc: 0.83 - ETA: 18s - loss: 0.4954 - acc: 0.83 - ETA: 18s - loss: 0.5017 - acc: 0.83 - ETA: 18s - loss: 0.5028 - acc: 0.83 - ETA: 18s - loss: 0.5065 - acc: 0.83 - ETA: 18s - loss: 0.5072 - acc: 0.83 - ETA: 18s - loss: 0.5038 - acc: 0.83 - ETA: 18s - loss: 0.5062 - acc: 0.83 - ETA: 18s - loss: 0.5066 - acc: 0.82 - ETA: 18s - loss: 0.5077 - acc: 0.82 - ETA: 18s - loss: 0.5061 - acc: 0.82 - ETA: 18s - loss: 0.5066 - acc: 0.82 - ETA: 18s - loss: 0.5073 - acc: 0.82 - ETA: 18s - loss: 0.5093 - acc: 0.82 - ETA: 18s - loss: 0.5079 - acc: 0.82 - ETA: 18s - loss: 0.5058 - acc: 0.82 - ETA: 18s - loss: 0.5055 - acc: 0.82 - ETA: 18s - loss: 0.5056 - acc: 0.82 - ETA: 18s - loss: 0.5033 - acc: 0.82 - ETA: 18s - loss: 0.5048 - acc: 0.82 - ETA: 18s - loss: 0.5037 - acc: 0.82 - ETA: 17s - loss: 0.5033 - acc: 0.82 - ETA: 17s - loss: 0.5011 - acc: 0.82 - ETA: 17s - loss: 0.5022 - acc: 0.82 - ETA: 17s - loss: 0.5020 - acc: 0.82 - ETA: 17s - loss: 0.5018 - acc: 0.82 - ETA: 17s - loss: 0.5004 - acc: 0.83 - ETA: 17s - loss: 0.5007 - acc: 0.83 - ETA: 17s - loss: 0.5013 - acc: 0.82 - ETA: 17s - loss: 0.5019 - acc: 0.82 - ETA: 17s - loss: 0.5014 - acc: 0.83 - ETA: 17s - loss: 0.5041 - acc: 0.83 - ETA: 17s - loss: 0.5063 - acc: 0.82 - ETA: 17s - loss: 0.5049 - acc: 0.83 - ETA: 17s - loss: 0.5047 - acc: 0.83 - ETA: 17s - loss: 0.5055 - acc: 0.83 - ETA: 17s - loss: 0.5056 - acc: 0.83 - ETA: 17s - loss: 0.5060 - acc: 0.83 - ETA: 17s - loss: 0.5046 - acc: 0.83 - ETA: 16s - loss: 0.5030 - acc: 0.83 - ETA: 16s - loss: 0.5018 - acc: 0.83 - ETA: 16s - loss: 0.5003 - acc: 0.83 - ETA: 16s - loss: 0.5005 - acc: 0.83 - ETA: 16s - loss: 0.4995 - acc: 0.83 - ETA: 16s - loss: 0.4986 - acc: 0.83 - ETA: 16s - loss: 0.4973 - acc: 0.83 - ETA: 16s - loss: 0.4959 - acc: 0.83 - ETA: 16s - loss: 0.4976 - acc: 0.83 - ETA: 16s - loss: 0.4975 - acc: 0.83 - ETA: 16s - loss: 0.4970 - acc: 0.83 - ETA: 16s - loss: 0.4971 - acc: 0.83 - ETA: 16s - loss: 0.4964 - acc: 0.83 - ETA: 16s - loss: 0.4958 - acc: 0.83 - ETA: 16s - loss: 0.4951 - acc: 0.83 - ETA: 16s - loss: 0.4964 - acc: 0.83 - ETA: 16s - loss: 0.4962 - acc: 0.83 - ETA: 15s - loss: 0.4942 - acc: 0.83 - ETA: 15s - loss: 0.4932 - acc: 0.83 - ETA: 15s - loss: 0.4919 - acc: 0.83 - ETA: 15s - loss: 0.4915 - acc: 0.83 - ETA: 15s - loss: 0.4900 - acc: 0.83 - ETA: 15s - loss: 0.4895 - acc: 0.83 - ETA: 15s - loss: 0.4896 - acc: 0.83 - ETA: 15s - loss: 0.4890 - acc: 0.83 - ETA: 15s - loss: 0.4885 - acc: 0.83 - ETA: 15s - loss: 0.4872 - acc: 0.83 - ETA: 15s - loss: 0.4883 - acc: 0.83 - ETA: 15s - loss: 0.4897 - acc: 0.83 - ETA: 15s - loss: 0.4872 - acc: 0.83 - ETA: 15s - loss: 0.4864 - acc: 0.83 - ETA: 15s - loss: 0.4853 - acc: 0.83 - ETA: 15s - loss: 0.4858 - acc: 0.83 - ETA: 14s - loss: 0.4857 - acc: 0.83 - ETA: 14s - loss: 0.4852 - acc: 0.83 - ETA: 14s - loss: 0.4854 - acc: 0.83 - ETA: 14s - loss: 0.4849 - acc: 0.83 - ETA: 14s - loss: 0.4868 - acc: 0.83 - ETA: 14s - loss: 0.4875 - acc: 0.83 - ETA: 14s - loss: 0.4870 - acc: 0.83 - ETA: 14s - loss: 0.4874 - acc: 0.83 - ETA: 14s - loss: 0.4885 - acc: 0.83 - ETA: 14s - loss: 0.4884 - acc: 0.83 - ETA: 14s - loss: 0.4888 - acc: 0.83 - ETA: 14s - loss: 0.4891 - acc: 0.83 - ETA: 14s - loss: 0.4913 - acc: 0.83 - ETA: 14s - loss: 0.4932 - acc: 0.83 - ETA: 14s - loss: 0.4926 - acc: 0.83 - ETA: 13s - loss: 0.4931 - acc: 0.83 - ETA: 13s - loss: 0.4924 - acc: 0.83 - ETA: 13s - loss: 0.4912 - acc: 0.83 - ETA: 13s - loss: 0.4914 - acc: 0.83 - ETA: 13s - loss: 0.4906 - acc: 0.83 - ETA: 13s - loss: 0.4902 - acc: 0.83 - ETA: 13s - loss: 0.4907 - acc: 0.83 - ETA: 13s - loss: 0.4902 - acc: 0.83 - ETA: 13s - loss: 0.4908 - acc: 0.83 - ETA: 13s - loss: 0.4910 - acc: 0.83 - ETA: 13s - loss: 0.4904 - acc: 0.83 - ETA: 13s - loss: 0.4892 - acc: 0.83 - ETA: 13s - loss: 0.4889 - acc: 0.83 - ETA: 13s - loss: 0.4882 - acc: 0.83 - ETA: 13s - loss: 0.4890 - acc: 0.83 - ETA: 13s - loss: 0.4896 - acc: 0.83 - ETA: 13s - loss: 0.4894 - acc: 0.83 - ETA: 12s - loss: 0.4897 - acc: 0.83 - ETA: 12s - loss: 0.4894 - acc: 0.83 - ETA: 12s - loss: 0.4905 - acc: 0.83 - ETA: 12s - loss: 0.4907 - acc: 0.83 - ETA: 12s - loss: 0.4901 - acc: 0.83 - ETA: 12s - loss: 0.4895 - acc: 0.83 - ETA: 12s - loss: 0.4890 - acc: 0.83 - ETA: 12s - loss: 0.4900 - acc: 0.83 - ETA: 12s - loss: 0.4894 - acc: 0.83 - ETA: 12s - loss: 0.4888 - acc: 0.83 - ETA: 12s - loss: 0.4882 - acc: 0.83 - ETA: 12s - loss: 0.4874 - acc: 0.83 - ETA: 12s - loss: 0.4881 - acc: 0.83 - ETA: 12s - loss: 0.4872 - acc: 0.83 - ETA: 12s - loss: 0.4871 - acc: 0.83 - ETA: 12s - loss: 0.4879 - acc: 0.83 - ETA: 11s - loss: 0.4888 - acc: 0.83 - ETA: 11s - loss: 0.4884 - acc: 0.83 - ETA: 11s - loss: 0.4882 - acc: 0.83 - ETA: 11s - loss: 0.4879 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4888 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4875 - acc: 0.83 - ETA: 11s - loss: 0.4877 - acc: 0.83 - ETA: 11s - loss: 0.4873 - acc: 0.83 - ETA: 11s - loss: 0.4874 - acc: 0.83 - ETA: 11s - loss: 0.4878 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4880 - acc: 0.83 - ETA: 11s - loss: 0.4878 - acc: 0.83 - ETA: 11s - loss: 0.4881 - acc: 0.83 - ETA: 10s - loss: 0.4876 - acc: 0.83 - ETA: 10s - loss: 0.4874 - acc: 0.83 - ETA: 10s - loss: 0.4871 - acc: 0.83 - ETA: 10s - loss: 0.4859 - acc: 0.83 - ETA: 10s - loss: 0.4866 - acc: 0.83 - ETA: 10s - loss: 0.4863 - acc: 0.83 - ETA: 10s - loss: 0.4866 - acc: 0.83 - ETA: 10s - loss: 0.4864 - acc: 0.83 - ETA: 10s - loss: 0.4865 - acc: 0.83 - ETA: 10s - loss: 0.4858 - acc: 0.83 - ETA: 10s - loss: 0.4861 - acc: 0.83 - ETA: 10s - loss: 0.4866 - acc: 0.83 - ETA: 10s - loss: 0.4868 - acc: 0.83 - ETA: 10s - loss: 0.4871 - acc: 0.83 - ETA: 10s - loss: 0.4869 - acc: 0.83 - ETA: 10s - loss: 0.4878 - acc: 0.83 - ETA: 9s - loss: 0.4875 - acc: 0.8359 - ETA: 9s - loss: 0.4873 - acc: 0.835 - ETA: 9s - loss: 0.4868 - acc: 0.836 - ETA: 9s - loss: 0.4867 - acc: 0.836 - ETA: 9s - loss: 0.4870 - acc: 0.835 - ETA: 9s - loss: 0.4872 - acc: 0.836 - ETA: 9s - loss: 0.4872 - acc: 0.8359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.4875 - acc: 0.835 - ETA: 9s - loss: 0.4878 - acc: 0.835 - ETA: 9s - loss: 0.4886 - acc: 0.835 - ETA: 9s - loss: 0.4888 - acc: 0.835 - ETA: 9s - loss: 0.4887 - acc: 0.835 - ETA: 9s - loss: 0.4894 - acc: 0.835 - ETA: 9s - loss: 0.4904 - acc: 0.834 - ETA: 9s - loss: 0.4915 - acc: 0.834 - ETA: 9s - loss: 0.4919 - acc: 0.834 - ETA: 9s - loss: 0.4924 - acc: 0.833 - ETA: 8s - loss: 0.4929 - acc: 0.833 - ETA: 8s - loss: 0.4930 - acc: 0.833 - ETA: 8s - loss: 0.4938 - acc: 0.832 - ETA: 8s - loss: 0.4949 - acc: 0.832 - ETA: 8s - loss: 0.4942 - acc: 0.832 - ETA: 8s - loss: 0.4938 - acc: 0.832 - ETA: 8s - loss: 0.4934 - acc: 0.832 - ETA: 8s - loss: 0.4934 - acc: 0.832 - ETA: 8s - loss: 0.4934 - acc: 0.832 - ETA: 8s - loss: 0.4933 - acc: 0.832 - ETA: 8s - loss: 0.4933 - acc: 0.833 - ETA: 8s - loss: 0.4927 - acc: 0.833 - ETA: 8s - loss: 0.4923 - acc: 0.833 - ETA: 8s - loss: 0.4928 - acc: 0.833 - ETA: 8s - loss: 0.4925 - acc: 0.833 - ETA: 8s - loss: 0.4931 - acc: 0.833 - ETA: 7s - loss: 0.4933 - acc: 0.832 - ETA: 7s - loss: 0.4929 - acc: 0.832 - ETA: 7s - loss: 0.4925 - acc: 0.833 - ETA: 7s - loss: 0.4923 - acc: 0.833 - ETA: 7s - loss: 0.4931 - acc: 0.832 - ETA: 7s - loss: 0.4922 - acc: 0.832 - ETA: 7s - loss: 0.4921 - acc: 0.832 - ETA: 7s - loss: 0.4915 - acc: 0.832 - ETA: 7s - loss: 0.4908 - acc: 0.833 - ETA: 7s - loss: 0.4908 - acc: 0.833 - ETA: 7s - loss: 0.4911 - acc: 0.833 - ETA: 7s - loss: 0.4908 - acc: 0.833 - ETA: 7s - loss: 0.4907 - acc: 0.833 - ETA: 7s - loss: 0.4896 - acc: 0.833 - ETA: 7s - loss: 0.4900 - acc: 0.833 - ETA: 7s - loss: 0.4903 - acc: 0.833 - ETA: 6s - loss: 0.4904 - acc: 0.833 - ETA: 6s - loss: 0.4905 - acc: 0.832 - ETA: 6s - loss: 0.4908 - acc: 0.832 - ETA: 6s - loss: 0.4909 - acc: 0.832 - ETA: 6s - loss: 0.4902 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4894 - acc: 0.832 - ETA: 6s - loss: 0.4892 - acc: 0.832 - ETA: 6s - loss: 0.4893 - acc: 0.832 - ETA: 6s - loss: 0.4895 - acc: 0.832 - ETA: 6s - loss: 0.4900 - acc: 0.832 - ETA: 6s - loss: 0.4905 - acc: 0.833 - ETA: 6s - loss: 0.4899 - acc: 0.833 - ETA: 6s - loss: 0.4899 - acc: 0.833 - ETA: 5s - loss: 0.4898 - acc: 0.833 - ETA: 5s - loss: 0.4907 - acc: 0.833 - ETA: 5s - loss: 0.4913 - acc: 0.833 - ETA: 5s - loss: 0.4910 - acc: 0.833 - ETA: 5s - loss: 0.4916 - acc: 0.833 - ETA: 5s - loss: 0.4917 - acc: 0.833 - ETA: 5s - loss: 0.4921 - acc: 0.832 - ETA: 5s - loss: 0.4926 - acc: 0.832 - ETA: 5s - loss: 0.4916 - acc: 0.833 - ETA: 5s - loss: 0.4912 - acc: 0.833 - ETA: 5s - loss: 0.4909 - acc: 0.833 - ETA: 5s - loss: 0.4914 - acc: 0.833 - ETA: 5s - loss: 0.4913 - acc: 0.833 - ETA: 5s - loss: 0.4912 - acc: 0.833 - ETA: 5s - loss: 0.4911 - acc: 0.833 - ETA: 5s - loss: 0.4911 - acc: 0.833 - ETA: 5s - loss: 0.4912 - acc: 0.833 - ETA: 4s - loss: 0.4914 - acc: 0.832 - ETA: 4s - loss: 0.4906 - acc: 0.833 - ETA: 4s - loss: 0.4905 - acc: 0.833 - ETA: 4s - loss: 0.4902 - acc: 0.833 - ETA: 4s - loss: 0.4900 - acc: 0.833 - ETA: 4s - loss: 0.4893 - acc: 0.833 - ETA: 4s - loss: 0.4897 - acc: 0.833 - ETA: 4s - loss: 0.4905 - acc: 0.833 - ETA: 4s - loss: 0.4900 - acc: 0.833 - ETA: 4s - loss: 0.4898 - acc: 0.833 - ETA: 4s - loss: 0.4901 - acc: 0.833 - ETA: 4s - loss: 0.4904 - acc: 0.833 - ETA: 4s - loss: 0.4905 - acc: 0.833 - ETA: 4s - loss: 0.4903 - acc: 0.833 - ETA: 4s - loss: 0.4902 - acc: 0.833 - ETA: 4s - loss: 0.4904 - acc: 0.833 - ETA: 3s - loss: 0.4903 - acc: 0.833 - ETA: 3s - loss: 0.4903 - acc: 0.833 - ETA: 3s - loss: 0.4904 - acc: 0.833 - ETA: 3s - loss: 0.4898 - acc: 0.833 - ETA: 3s - loss: 0.4897 - acc: 0.833 - ETA: 3s - loss: 0.4892 - acc: 0.833 - ETA: 3s - loss: 0.4895 - acc: 0.833 - ETA: 3s - loss: 0.4895 - acc: 0.833 - ETA: 3s - loss: 0.4890 - acc: 0.833 - ETA: 3s - loss: 0.4884 - acc: 0.833 - ETA: 3s - loss: 0.4885 - acc: 0.833 - ETA: 3s - loss: 0.4889 - acc: 0.833 - ETA: 3s - loss: 0.4887 - acc: 0.833 - ETA: 3s - loss: 0.4883 - acc: 0.833 - ETA: 3s - loss: 0.4885 - acc: 0.833 - ETA: 3s - loss: 0.4880 - acc: 0.833 - ETA: 2s - loss: 0.4885 - acc: 0.833 - ETA: 2s - loss: 0.4890 - acc: 0.833 - ETA: 2s - loss: 0.4892 - acc: 0.833 - ETA: 2s - loss: 0.4889 - acc: 0.833 - ETA: 2s - loss: 0.4886 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4878 - acc: 0.833 - ETA: 2s - loss: 0.4881 - acc: 0.833 - ETA: 2s - loss: 0.4882 - acc: 0.833 - ETA: 2s - loss: 0.4876 - acc: 0.834 - ETA: 2s - loss: 0.4870 - acc: 0.834 - ETA: 2s - loss: 0.4863 - acc: 0.834 - ETA: 2s - loss: 0.4863 - acc: 0.834 - ETA: 2s - loss: 0.4861 - acc: 0.834 - ETA: 1s - loss: 0.4861 - acc: 0.834 - ETA: 1s - loss: 0.4859 - acc: 0.834 - ETA: 1s - loss: 0.4856 - acc: 0.834 - ETA: 1s - loss: 0.4857 - acc: 0.834 - ETA: 1s - loss: 0.4859 - acc: 0.834 - ETA: 1s - loss: 0.4860 - acc: 0.834 - ETA: 1s - loss: 0.4857 - acc: 0.834 - ETA: 1s - loss: 0.4854 - acc: 0.834 - ETA: 1s - loss: 0.4849 - acc: 0.834 - ETA: 1s - loss: 0.4844 - acc: 0.834 - ETA: 1s - loss: 0.4845 - acc: 0.834 - ETA: 1s - loss: 0.4839 - acc: 0.834 - ETA: 1s - loss: 0.4837 - acc: 0.834 - ETA: 1s - loss: 0.4833 - acc: 0.835 - ETA: 1s - loss: 0.4826 - acc: 0.835 - ETA: 1s - loss: 0.4824 - acc: 0.835 - ETA: 0s - loss: 0.4819 - acc: 0.835 - ETA: 0s - loss: 0.4818 - acc: 0.835 - ETA: 0s - loss: 0.4813 - acc: 0.835 - ETA: 0s - loss: 0.4807 - acc: 0.835 - ETA: 0s - loss: 0.4803 - acc: 0.835 - ETA: 0s - loss: 0.4807 - acc: 0.835 - ETA: 0s - loss: 0.4802 - acc: 0.835 - ETA: 0s - loss: 0.4798 - acc: 0.835 - ETA: 0s - loss: 0.4795 - acc: 0.835 - ETA: 0s - loss: 0.4791 - acc: 0.836 - ETA: 0s - loss: 0.4790 - acc: 0.836 - ETA: 0s - loss: 0.4797 - acc: 0.835 - ETA: 0s - loss: 0.4793 - acc: 0.835 - ETA: 0s - loss: 0.4793 - acc: 0.835 - ETA: 0s - loss: 0.4799 - acc: 0.835 - ETA: 0s - loss: 0.4797 - acc: 0.835 - 24s 1ms/step - loss: 0.4793 - acc: 0.8358 - val_loss: 0.5314 - val_acc: 0.8281\n", + "\n", + "Epoch 00008: val_acc did not improve from 0.84021\n", + "Epoch 9/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13760/23769 [================>.............] - ETA: 27s - loss: 0.8435 - acc: 0.75 - ETA: 26s - loss: 0.7932 - acc: 0.76 - ETA: 24s - loss: 0.7639 - acc: 0.76 - ETA: 24s - loss: 0.6599 - acc: 0.79 - ETA: 23s - loss: 0.5871 - acc: 0.81 - ETA: 24s - loss: 0.5589 - acc: 0.82 - ETA: 23s - loss: 0.5460 - acc: 0.82 - ETA: 23s - loss: 0.5346 - acc: 0.83 - ETA: 23s - loss: 0.5334 - acc: 0.83 - ETA: 23s - loss: 0.5292 - acc: 0.83 - ETA: 23s - loss: 0.5164 - acc: 0.83 - ETA: 23s - loss: 0.5101 - acc: 0.83 - ETA: 22s - loss: 0.4981 - acc: 0.84 - ETA: 22s - loss: 0.5063 - acc: 0.83 - ETA: 22s - loss: 0.5009 - acc: 0.83 - ETA: 22s - loss: 0.4867 - acc: 0.84 - ETA: 22s - loss: 0.4847 - acc: 0.84 - ETA: 22s - loss: 0.4821 - acc: 0.84 - ETA: 22s - loss: 0.4727 - acc: 0.85 - ETA: 22s - loss: 0.4599 - acc: 0.85 - ETA: 22s - loss: 0.4558 - acc: 0.85 - ETA: 22s - loss: 0.4582 - acc: 0.85 - ETA: 21s - loss: 0.4520 - acc: 0.85 - ETA: 21s - loss: 0.4494 - acc: 0.85 - ETA: 21s - loss: 0.4527 - acc: 0.85 - ETA: 21s - loss: 0.4489 - acc: 0.85 - ETA: 21s - loss: 0.4377 - acc: 0.86 - ETA: 21s - loss: 0.4331 - acc: 0.86 - ETA: 21s - loss: 0.4409 - acc: 0.86 - ETA: 21s - loss: 0.4366 - acc: 0.86 - ETA: 20s - loss: 0.4333 - acc: 0.86 - ETA: 20s - loss: 0.4351 - acc: 0.86 - ETA: 20s - loss: 0.4347 - acc: 0.86 - ETA: 20s - loss: 0.4368 - acc: 0.86 - ETA: 20s - loss: 0.4382 - acc: 0.86 - ETA: 20s - loss: 0.4365 - acc: 0.86 - ETA: 20s - loss: 0.4336 - acc: 0.86 - ETA: 20s - loss: 0.4376 - acc: 0.85 - ETA: 20s - loss: 0.4332 - acc: 0.86 - ETA: 20s - loss: 0.4338 - acc: 0.86 - ETA: 20s - loss: 0.4323 - acc: 0.86 - ETA: 19s - loss: 0.4317 - acc: 0.86 - ETA: 19s - loss: 0.4300 - acc: 0.86 - ETA: 19s - loss: 0.4291 - acc: 0.86 - ETA: 19s - loss: 0.4299 - acc: 0.86 - ETA: 19s - loss: 0.4288 - acc: 0.85 - ETA: 19s - loss: 0.4308 - acc: 0.85 - ETA: 19s - loss: 0.4292 - acc: 0.85 - ETA: 19s - loss: 0.4342 - acc: 0.85 - ETA: 19s - loss: 0.4310 - acc: 0.85 - ETA: 19s - loss: 0.4309 - acc: 0.85 - ETA: 19s - loss: 0.4323 - acc: 0.85 - ETA: 19s - loss: 0.4291 - acc: 0.85 - ETA: 19s - loss: 0.4306 - acc: 0.85 - ETA: 19s - loss: 0.4292 - acc: 0.85 - ETA: 19s - loss: 0.4252 - acc: 0.86 - ETA: 19s - loss: 0.4246 - acc: 0.86 - ETA: 18s - loss: 0.4265 - acc: 0.85 - ETA: 18s - loss: 0.4248 - acc: 0.86 - ETA: 18s - loss: 0.4250 - acc: 0.86 - ETA: 18s - loss: 0.4246 - acc: 0.85 - ETA: 18s - loss: 0.4232 - acc: 0.85 - ETA: 18s - loss: 0.4209 - acc: 0.86 - ETA: 18s - loss: 0.4212 - acc: 0.86 - ETA: 18s - loss: 0.4205 - acc: 0.86 - ETA: 18s - loss: 0.4205 - acc: 0.86 - ETA: 18s - loss: 0.4212 - acc: 0.86 - ETA: 18s - loss: 0.4249 - acc: 0.85 - ETA: 18s - loss: 0.4224 - acc: 0.85 - ETA: 18s - loss: 0.4231 - acc: 0.86 - ETA: 18s - loss: 0.4231 - acc: 0.85 - ETA: 18s - loss: 0.4227 - acc: 0.85 - ETA: 18s - loss: 0.4239 - acc: 0.85 - ETA: 18s - loss: 0.4237 - acc: 0.85 - ETA: 18s - loss: 0.4229 - acc: 0.86 - ETA: 18s - loss: 0.4248 - acc: 0.85 - ETA: 18s - loss: 0.4270 - acc: 0.85 - ETA: 18s - loss: 0.4289 - acc: 0.85 - ETA: 17s - loss: 0.4305 - acc: 0.85 - ETA: 17s - loss: 0.4292 - acc: 0.85 - ETA: 17s - loss: 0.4284 - acc: 0.85 - ETA: 17s - loss: 0.4296 - acc: 0.85 - ETA: 17s - loss: 0.4294 - acc: 0.85 - ETA: 17s - loss: 0.4282 - acc: 0.85 - ETA: 17s - loss: 0.4277 - acc: 0.85 - ETA: 17s - loss: 0.4283 - acc: 0.85 - ETA: 17s - loss: 0.4276 - acc: 0.85 - ETA: 17s - loss: 0.4252 - acc: 0.85 - ETA: 17s - loss: 0.4262 - acc: 0.85 - ETA: 17s - loss: 0.4250 - acc: 0.85 - ETA: 17s - loss: 0.4267 - acc: 0.85 - ETA: 17s - loss: 0.4279 - acc: 0.85 - ETA: 17s - loss: 0.4268 - acc: 0.86 - ETA: 17s - loss: 0.4282 - acc: 0.85 - ETA: 17s - loss: 0.4286 - acc: 0.85 - ETA: 17s - loss: 0.4268 - acc: 0.85 - ETA: 17s - loss: 0.4274 - acc: 0.86 - ETA: 16s - loss: 0.4277 - acc: 0.86 - ETA: 16s - loss: 0.4251 - acc: 0.86 - ETA: 16s - loss: 0.4249 - acc: 0.86 - ETA: 16s - loss: 0.4246 - acc: 0.86 - ETA: 16s - loss: 0.4236 - acc: 0.86 - ETA: 16s - loss: 0.4242 - acc: 0.86 - ETA: 16s - loss: 0.4233 - acc: 0.86 - ETA: 16s - loss: 0.4221 - acc: 0.86 - ETA: 16s - loss: 0.4211 - acc: 0.86 - ETA: 16s - loss: 0.4202 - acc: 0.86 - ETA: 16s - loss: 0.4187 - acc: 0.86 - ETA: 16s - loss: 0.4187 - acc: 0.86 - ETA: 16s - loss: 0.4178 - acc: 0.86 - ETA: 16s - loss: 0.4179 - acc: 0.86 - ETA: 16s - loss: 0.4165 - acc: 0.86 - ETA: 16s - loss: 0.4158 - acc: 0.86 - ETA: 16s - loss: 0.4167 - acc: 0.86 - ETA: 15s - loss: 0.4156 - acc: 0.86 - ETA: 15s - loss: 0.4164 - acc: 0.86 - ETA: 15s - loss: 0.4155 - acc: 0.86 - ETA: 15s - loss: 0.4151 - acc: 0.86 - ETA: 15s - loss: 0.4171 - acc: 0.86 - ETA: 15s - loss: 0.4196 - acc: 0.86 - ETA: 15s - loss: 0.4213 - acc: 0.86 - ETA: 15s - loss: 0.4214 - acc: 0.86 - ETA: 15s - loss: 0.4222 - acc: 0.86 - ETA: 15s - loss: 0.4223 - acc: 0.86 - ETA: 15s - loss: 0.4220 - acc: 0.86 - ETA: 15s - loss: 0.4226 - acc: 0.86 - ETA: 15s - loss: 0.4247 - acc: 0.86 - ETA: 15s - loss: 0.4249 - acc: 0.86 - ETA: 15s - loss: 0.4242 - acc: 0.86 - ETA: 15s - loss: 0.4243 - acc: 0.86 - ETA: 14s - loss: 0.4251 - acc: 0.85 - ETA: 14s - loss: 0.4243 - acc: 0.86 - ETA: 14s - loss: 0.4236 - acc: 0.86 - ETA: 14s - loss: 0.4234 - acc: 0.86 - ETA: 14s - loss: 0.4233 - acc: 0.86 - ETA: 14s - loss: 0.4230 - acc: 0.86 - ETA: 14s - loss: 0.4232 - acc: 0.85 - ETA: 14s - loss: 0.4232 - acc: 0.85 - ETA: 14s - loss: 0.4217 - acc: 0.86 - ETA: 14s - loss: 0.4216 - acc: 0.86 - ETA: 14s - loss: 0.4236 - acc: 0.85 - ETA: 14s - loss: 0.4237 - acc: 0.85 - ETA: 14s - loss: 0.4254 - acc: 0.85 - ETA: 14s - loss: 0.4266 - acc: 0.85 - ETA: 14s - loss: 0.4267 - acc: 0.85 - ETA: 13s - loss: 0.4265 - acc: 0.85 - ETA: 13s - loss: 0.4265 - acc: 0.85 - ETA: 13s - loss: 0.4275 - acc: 0.85 - ETA: 13s - loss: 0.4266 - acc: 0.85 - ETA: 13s - loss: 0.4266 - acc: 0.85 - ETA: 13s - loss: 0.4283 - acc: 0.85 - ETA: 13s - loss: 0.4278 - acc: 0.85 - ETA: 13s - loss: 0.4280 - acc: 0.85 - ETA: 13s - loss: 0.4277 - acc: 0.85 - ETA: 13s - loss: 0.4273 - acc: 0.85 - ETA: 13s - loss: 0.4274 - acc: 0.85 - ETA: 13s - loss: 0.4276 - acc: 0.85 - ETA: 13s - loss: 0.4264 - acc: 0.85 - ETA: 13s - loss: 0.4274 - acc: 0.85 - ETA: 13s - loss: 0.4270 - acc: 0.85 - ETA: 13s - loss: 0.4273 - acc: 0.85 - ETA: 13s - loss: 0.4267 - acc: 0.85 - ETA: 12s - loss: 0.4260 - acc: 0.85 - ETA: 12s - loss: 0.4260 - acc: 0.85 - ETA: 12s - loss: 0.4270 - acc: 0.85 - ETA: 12s - loss: 0.4261 - acc: 0.85 - ETA: 12s - loss: 0.4252 - acc: 0.85 - ETA: 12s - loss: 0.4259 - acc: 0.85 - ETA: 12s - loss: 0.4264 - acc: 0.85 - ETA: 12s - loss: 0.4263 - acc: 0.85 - ETA: 12s - loss: 0.4261 - acc: 0.85 - ETA: 12s - loss: 0.4269 - acc: 0.85 - ETA: 12s - loss: 0.4280 - acc: 0.85 - ETA: 12s - loss: 0.4275 - acc: 0.85 - ETA: 12s - loss: 0.4278 - acc: 0.85 - ETA: 12s - loss: 0.4276 - acc: 0.85 - ETA: 12s - loss: 0.4283 - acc: 0.85 - ETA: 12s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 11s - loss: 0.4264 - acc: 0.85 - ETA: 11s - loss: 0.4269 - acc: 0.85 - ETA: 11s - loss: 0.4265 - acc: 0.85 - ETA: 11s - loss: 0.4264 - acc: 0.85 - ETA: 11s - loss: 0.4273 - acc: 0.85 - ETA: 11s - loss: 0.4279 - acc: 0.85 - ETA: 11s - loss: 0.4275 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4270 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 11s - loss: 0.4268 - acc: 0.85 - ETA: 11s - loss: 0.4268 - acc: 0.85 - ETA: 11s - loss: 0.4271 - acc: 0.85 - ETA: 11s - loss: 0.4266 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4263 - acc: 0.85 - ETA: 10s - loss: 0.4270 - acc: 0.85 - ETA: 10s - loss: 0.4264 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4260 - acc: 0.85 - ETA: 10s - loss: 0.4254 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4259 - acc: 0.85 - ETA: 10s - loss: 0.4261 - acc: 0.85 - ETA: 10s - loss: 0.4262 - acc: 0.85 - ETA: 10s - loss: 0.4267 - acc: 0.85 - ETA: 10s - loss: 0.4260 - acc: 0.85 - ETA: 10s - loss: 0.4257 - acc: 0.85 - ETA: 10s - loss: 0.4271 - acc: 0.85 - ETA: 10s - loss: 0.4276 - acc: 0.85 - ETA: 9s - loss: 0.4276 - acc: 0.8566 - ETA: 9s - loss: 0.4273 - acc: 0.856 - ETA: 9s - loss: 0.4275 - acc: 0.856 - ETA: 9s - loss: 0.4278 - acc: 0.856 - ETA: 9s - loss: 0.4280 - acc: 0.8561" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.4294 - acc: 0.855 - ETA: 9s - loss: 0.4292 - acc: 0.855 - ETA: 9s - loss: 0.4300 - acc: 0.855 - ETA: 9s - loss: 0.4303 - acc: 0.855 - ETA: 9s - loss: 0.4301 - acc: 0.855 - ETA: 9s - loss: 0.4343 - acc: 0.854 - ETA: 9s - loss: 0.4359 - acc: 0.853 - ETA: 9s - loss: 0.4355 - acc: 0.853 - ETA: 9s - loss: 0.4367 - acc: 0.853 - ETA: 9s - loss: 0.4367 - acc: 0.853 - ETA: 9s - loss: 0.4370 - acc: 0.853 - ETA: 8s - loss: 0.4376 - acc: 0.852 - ETA: 8s - loss: 0.4385 - acc: 0.852 - ETA: 8s - loss: 0.4389 - acc: 0.852 - ETA: 8s - loss: 0.4390 - acc: 0.852 - ETA: 8s - loss: 0.4395 - acc: 0.852 - ETA: 8s - loss: 0.4392 - acc: 0.852 - ETA: 8s - loss: 0.4388 - acc: 0.852 - ETA: 8s - loss: 0.4386 - acc: 0.852 - ETA: 8s - loss: 0.4388 - acc: 0.852 - ETA: 8s - loss: 0.4387 - acc: 0.852 - ETA: 8s - loss: 0.4386 - acc: 0.852 - ETA: 8s - loss: 0.4380 - acc: 0.852 - ETA: 8s - loss: 0.4384 - acc: 0.852 - ETA: 8s - loss: 0.4384 - acc: 0.852 - ETA: 8s - loss: 0.4385 - acc: 0.852 - ETA: 8s - loss: 0.4378 - acc: 0.852 - ETA: 8s - loss: 0.4370 - acc: 0.853 - ETA: 7s - loss: 0.4359 - acc: 0.853 - ETA: 7s - loss: 0.4356 - acc: 0.853 - ETA: 7s - loss: 0.4350 - acc: 0.853 - ETA: 7s - loss: 0.4357 - acc: 0.853 - ETA: 7s - loss: 0.4354 - acc: 0.853 - ETA: 7s - loss: 0.4351 - acc: 0.854 - ETA: 7s - loss: 0.4353 - acc: 0.854 - ETA: 7s - loss: 0.4358 - acc: 0.853 - ETA: 7s - loss: 0.4366 - acc: 0.853 - ETA: 7s - loss: 0.4373 - acc: 0.853 - ETA: 7s - loss: 0.4380 - acc: 0.853 - ETA: 7s - loss: 0.4383 - acc: 0.853 - ETA: 7s - loss: 0.4382 - acc: 0.853 - ETA: 7s - loss: 0.4376 - acc: 0.853 - ETA: 7s - loss: 0.4375 - acc: 0.853 - ETA: 7s - loss: 0.4377 - acc: 0.853 - ETA: 6s - loss: 0.4373 - acc: 0.853 - ETA: 6s - loss: 0.4374 - acc: 0.853 - ETA: 6s - loss: 0.4371 - acc: 0.853 - ETA: 6s - loss: 0.4367 - acc: 0.853 - ETA: 6s - loss: 0.4370 - acc: 0.853 - ETA: 6s - loss: 0.4363 - acc: 0.853 - ETA: 6s - loss: 0.4363 - acc: 0.853 - ETA: 6s - loss: 0.4360 - acc: 0.853 - ETA: 6s - loss: 0.4369 - acc: 0.853 - ETA: 6s - loss: 0.4367 - acc: 0.853 - ETA: 6s - loss: 0.4372 - acc: 0.853 - ETA: 6s - loss: 0.4372 - acc: 0.853 - ETA: 6s - loss: 0.4375 - acc: 0.853 - ETA: 6s - loss: 0.4376 - acc: 0.852 - ETA: 6s - loss: 0.4381 - acc: 0.852 - ETA: 6s - loss: 0.4374 - acc: 0.853 - ETA: 5s - loss: 0.4373 - acc: 0.853 - ETA: 5s - loss: 0.4371 - acc: 0.853 - ETA: 5s - loss: 0.4371 - acc: 0.853 - ETA: 5s - loss: 0.4374 - acc: 0.853 - ETA: 5s - loss: 0.4381 - acc: 0.852 - ETA: 5s - loss: 0.4389 - acc: 0.852 - ETA: 5s - loss: 0.4390 - acc: 0.852 - ETA: 5s - loss: 0.4395 - acc: 0.852 - ETA: 5s - loss: 0.4394 - acc: 0.852 - ETA: 5s - loss: 0.4388 - acc: 0.852 - ETA: 5s - loss: 0.4386 - acc: 0.852 - ETA: 5s - loss: 0.4385 - acc: 0.852 - ETA: 5s - loss: 0.4389 - acc: 0.852 - ETA: 5s - loss: 0.4384 - acc: 0.852 - ETA: 5s - loss: 0.4376 - acc: 0.852 - ETA: 5s - loss: 0.4376 - acc: 0.852 - ETA: 4s - loss: 0.4381 - acc: 0.852 - ETA: 4s - loss: 0.4387 - acc: 0.852 - ETA: 4s - loss: 0.4389 - acc: 0.852 - ETA: 4s - loss: 0.4393 - acc: 0.852 - ETA: 4s - loss: 0.4402 - acc: 0.852 - ETA: 4s - loss: 0.4399 - acc: 0.852 - ETA: 4s - loss: 0.4398 - acc: 0.852 - ETA: 4s - loss: 0.4398 - acc: 0.852 - ETA: 4s - loss: 0.4396 - acc: 0.852 - ETA: 4s - loss: 0.4402 - acc: 0.851 - ETA: 4s - loss: 0.4397 - acc: 0.852 - ETA: 4s - loss: 0.4402 - acc: 0.851 - ETA: 4s - loss: 0.4405 - acc: 0.851 - ETA: 4s - loss: 0.4408 - acc: 0.851 - ETA: 4s - loss: 0.4412 - acc: 0.851 - ETA: 4s - loss: 0.4420 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4418 - acc: 0.851 - ETA: 3s - loss: 0.4422 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4419 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4422 - acc: 0.851 - ETA: 3s - loss: 0.4421 - acc: 0.851 - ETA: 3s - loss: 0.4419 - acc: 0.850 - ETA: 3s - loss: 0.4417 - acc: 0.851 - ETA: 3s - loss: 0.4419 - acc: 0.850 - ETA: 3s - loss: 0.4416 - acc: 0.851 - ETA: 3s - loss: 0.4416 - acc: 0.850 - ETA: 3s - loss: 0.4415 - acc: 0.850 - ETA: 3s - loss: 0.4408 - acc: 0.851 - ETA: 2s - loss: 0.4401 - acc: 0.851 - ETA: 2s - loss: 0.4402 - acc: 0.851 - ETA: 2s - loss: 0.4397 - acc: 0.851 - ETA: 2s - loss: 0.4394 - acc: 0.851 - ETA: 2s - loss: 0.4395 - acc: 0.851 - ETA: 2s - loss: 0.4393 - acc: 0.851 - ETA: 2s - loss: 0.4392 - acc: 0.851 - ETA: 2s - loss: 0.4384 - acc: 0.851 - ETA: 2s - loss: 0.4384 - acc: 0.851 - ETA: 2s - loss: 0.4383 - acc: 0.851 - ETA: 2s - loss: 0.4380 - acc: 0.851 - ETA: 2s - loss: 0.4385 - acc: 0.851 - ETA: 2s - loss: 0.4386 - acc: 0.851 - ETA: 2s - loss: 0.4387 - acc: 0.851 - ETA: 2s - loss: 0.4388 - acc: 0.851 - ETA: 2s - loss: 0.4386 - acc: 0.851 - ETA: 1s - loss: 0.4385 - acc: 0.851 - ETA: 1s - loss: 0.4383 - acc: 0.851 - ETA: 1s - loss: 0.4383 - acc: 0.851 - ETA: 1s - loss: 0.4379 - acc: 0.852 - ETA: 1s - loss: 0.4381 - acc: 0.852 - ETA: 1s - loss: 0.4379 - acc: 0.852 - ETA: 1s - loss: 0.4383 - acc: 0.852 - ETA: 1s - loss: 0.4385 - acc: 0.851 - ETA: 1s - loss: 0.4394 - acc: 0.851 - ETA: 1s - loss: 0.4400 - acc: 0.851 - ETA: 1s - loss: 0.4401 - acc: 0.851 - ETA: 1s - loss: 0.4405 - acc: 0.851 - ETA: 1s - loss: 0.4408 - acc: 0.851 - ETA: 1s - loss: 0.4409 - acc: 0.851 - ETA: 1s - loss: 0.4406 - acc: 0.851 - ETA: 1s - loss: 0.4409 - acc: 0.851 - ETA: 0s - loss: 0.4408 - acc: 0.851 - ETA: 0s - loss: 0.4415 - acc: 0.851 - ETA: 0s - loss: 0.4417 - acc: 0.850 - ETA: 0s - loss: 0.4420 - acc: 0.850 - ETA: 0s - loss: 0.4420 - acc: 0.850 - ETA: 0s - loss: 0.4423 - acc: 0.850 - ETA: 0s - loss: 0.4423 - acc: 0.850 - ETA: 0s - loss: 0.4422 - acc: 0.850 - ETA: 0s - loss: 0.4422 - acc: 0.850 - ETA: 0s - loss: 0.4418 - acc: 0.850 - ETA: 0s - loss: 0.4416 - acc: 0.850 - ETA: 0s - loss: 0.4415 - acc: 0.850 - ETA: 0s - loss: 0.4417 - acc: 0.850 - ETA: 0s - loss: 0.4413 - acc: 0.850 - ETA: 0s - loss: 0.4413 - acc: 0.850 - ETA: 0s - loss: 0.4411 - acc: 0.850 - 24s 1ms/step - loss: 0.4411 - acc: 0.8506 - val_loss: 0.4261 - val_acc: 0.8633\n", + "\n", + "Epoch 00009: val_acc improved from 0.84021 to 0.86331, saving model to models\\time.model\n", + "Epoch 10/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13856/23769 [================>.............] - ETA: 27s - loss: 0.2064 - acc: 0.93 - ETA: 25s - loss: 0.3155 - acc: 0.90 - ETA: 26s - loss: 0.3755 - acc: 0.88 - ETA: 25s - loss: 0.3878 - acc: 0.87 - ETA: 24s - loss: 0.3765 - acc: 0.87 - ETA: 24s - loss: 0.3647 - acc: 0.87 - ETA: 23s - loss: 0.3561 - acc: 0.87 - ETA: 23s - loss: 0.3628 - acc: 0.88 - ETA: 23s - loss: 0.3772 - acc: 0.87 - ETA: 23s - loss: 0.3752 - acc: 0.87 - ETA: 23s - loss: 0.3953 - acc: 0.87 - ETA: 23s - loss: 0.3723 - acc: 0.88 - ETA: 23s - loss: 0.3903 - acc: 0.87 - ETA: 22s - loss: 0.3933 - acc: 0.87 - ETA: 22s - loss: 0.4089 - acc: 0.86 - ETA: 22s - loss: 0.4107 - acc: 0.86 - ETA: 22s - loss: 0.4061 - acc: 0.85 - ETA: 22s - loss: 0.4089 - acc: 0.86 - ETA: 22s - loss: 0.4034 - acc: 0.86 - ETA: 22s - loss: 0.3981 - acc: 0.86 - ETA: 22s - loss: 0.3910 - acc: 0.86 - ETA: 22s - loss: 0.3945 - acc: 0.86 - ETA: 22s - loss: 0.4023 - acc: 0.86 - ETA: 21s - loss: 0.3957 - acc: 0.86 - ETA: 21s - loss: 0.3965 - acc: 0.86 - ETA: 21s - loss: 0.3924 - acc: 0.86 - ETA: 21s - loss: 0.3869 - acc: 0.86 - ETA: 21s - loss: 0.3890 - acc: 0.86 - ETA: 21s - loss: 0.3932 - acc: 0.86 - ETA: 20s - loss: 0.3891 - acc: 0.86 - ETA: 20s - loss: 0.3932 - acc: 0.86 - ETA: 20s - loss: 0.3942 - acc: 0.86 - ETA: 20s - loss: 0.3967 - acc: 0.86 - ETA: 20s - loss: 0.4003 - acc: 0.86 - ETA: 20s - loss: 0.4000 - acc: 0.86 - ETA: 20s - loss: 0.3975 - acc: 0.86 - ETA: 20s - loss: 0.3965 - acc: 0.86 - ETA: 20s - loss: 0.3978 - acc: 0.86 - ETA: 20s - loss: 0.3959 - acc: 0.86 - ETA: 20s - loss: 0.3921 - acc: 0.86 - ETA: 20s - loss: 0.3971 - acc: 0.86 - ETA: 20s - loss: 0.3982 - acc: 0.86 - ETA: 20s - loss: 0.3922 - acc: 0.86 - ETA: 20s - loss: 0.3893 - acc: 0.86 - ETA: 20s - loss: 0.3898 - acc: 0.86 - ETA: 19s - loss: 0.3893 - acc: 0.86 - ETA: 19s - loss: 0.3921 - acc: 0.86 - ETA: 19s - loss: 0.3911 - acc: 0.86 - ETA: 19s - loss: 0.3937 - acc: 0.86 - ETA: 19s - loss: 0.3930 - acc: 0.86 - ETA: 19s - loss: 0.3956 - acc: 0.86 - ETA: 19s - loss: 0.3969 - acc: 0.86 - ETA: 19s - loss: 0.3964 - acc: 0.86 - ETA: 19s - loss: 0.3981 - acc: 0.86 - ETA: 19s - loss: 0.3984 - acc: 0.86 - ETA: 19s - loss: 0.3968 - acc: 0.86 - ETA: 19s - loss: 0.3961 - acc: 0.86 - ETA: 19s - loss: 0.3960 - acc: 0.86 - ETA: 19s - loss: 0.3984 - acc: 0.86 - ETA: 18s - loss: 0.3980 - acc: 0.86 - ETA: 18s - loss: 0.3989 - acc: 0.86 - ETA: 18s - loss: 0.3972 - acc: 0.86 - ETA: 18s - loss: 0.3988 - acc: 0.86 - ETA: 18s - loss: 0.4001 - acc: 0.86 - ETA: 18s - loss: 0.4027 - acc: 0.86 - ETA: 18s - loss: 0.4012 - acc: 0.86 - ETA: 18s - loss: 0.3986 - acc: 0.86 - ETA: 18s - loss: 0.4002 - acc: 0.86 - ETA: 18s - loss: 0.3989 - acc: 0.86 - ETA: 18s - loss: 0.3974 - acc: 0.86 - ETA: 18s - loss: 0.3976 - acc: 0.86 - ETA: 18s - loss: 0.3952 - acc: 0.86 - ETA: 18s - loss: 0.3972 - acc: 0.86 - ETA: 18s - loss: 0.3976 - acc: 0.86 - ETA: 18s - loss: 0.4002 - acc: 0.86 - ETA: 18s - loss: 0.3994 - acc: 0.86 - ETA: 18s - loss: 0.3988 - acc: 0.86 - ETA: 18s - loss: 0.3963 - acc: 0.86 - ETA: 18s - loss: 0.3980 - acc: 0.86 - ETA: 18s - loss: 0.3972 - acc: 0.86 - ETA: 18s - loss: 0.3984 - acc: 0.86 - ETA: 17s - loss: 0.3980 - acc: 0.86 - ETA: 17s - loss: 0.3975 - acc: 0.86 - ETA: 17s - loss: 0.3987 - acc: 0.86 - ETA: 17s - loss: 0.4016 - acc: 0.86 - ETA: 17s - loss: 0.4006 - acc: 0.86 - ETA: 17s - loss: 0.4049 - acc: 0.86 - ETA: 17s - loss: 0.4069 - acc: 0.86 - ETA: 17s - loss: 0.4088 - acc: 0.86 - ETA: 17s - loss: 0.4093 - acc: 0.86 - ETA: 17s - loss: 0.4101 - acc: 0.86 - ETA: 17s - loss: 0.4092 - acc: 0.86 - ETA: 17s - loss: 0.4082 - acc: 0.86 - ETA: 17s - loss: 0.4088 - acc: 0.86 - ETA: 17s - loss: 0.4068 - acc: 0.86 - ETA: 17s - loss: 0.4056 - acc: 0.86 - ETA: 17s - loss: 0.4076 - acc: 0.86 - ETA: 17s - loss: 0.4072 - acc: 0.86 - ETA: 16s - loss: 0.4064 - acc: 0.86 - ETA: 16s - loss: 0.4079 - acc: 0.86 - ETA: 16s - loss: 0.4074 - acc: 0.86 - ETA: 16s - loss: 0.4069 - acc: 0.86 - ETA: 16s - loss: 0.4071 - acc: 0.86 - ETA: 16s - loss: 0.4079 - acc: 0.86 - ETA: 16s - loss: 0.4073 - acc: 0.86 - ETA: 16s - loss: 0.4069 - acc: 0.86 - ETA: 16s - loss: 0.4051 - acc: 0.86 - ETA: 16s - loss: 0.4056 - acc: 0.86 - ETA: 16s - loss: 0.4055 - acc: 0.86 - ETA: 16s - loss: 0.4083 - acc: 0.86 - ETA: 16s - loss: 0.4085 - acc: 0.86 - ETA: 16s - loss: 0.4082 - acc: 0.86 - ETA: 16s - loss: 0.4077 - acc: 0.86 - ETA: 16s - loss: 0.4077 - acc: 0.86 - ETA: 15s - loss: 0.4066 - acc: 0.86 - ETA: 15s - loss: 0.4066 - acc: 0.86 - ETA: 15s - loss: 0.4063 - acc: 0.86 - ETA: 15s - loss: 0.4058 - acc: 0.86 - ETA: 15s - loss: 0.4066 - acc: 0.86 - ETA: 15s - loss: 0.4088 - acc: 0.86 - ETA: 15s - loss: 0.4072 - acc: 0.86 - ETA: 15s - loss: 0.4063 - acc: 0.86 - ETA: 15s - loss: 0.4063 - acc: 0.86 - ETA: 15s - loss: 0.4071 - acc: 0.86 - ETA: 15s - loss: 0.4070 - acc: 0.86 - ETA: 15s - loss: 0.4073 - acc: 0.86 - ETA: 15s - loss: 0.4072 - acc: 0.86 - ETA: 15s - loss: 0.4070 - acc: 0.86 - ETA: 14s - loss: 0.4061 - acc: 0.86 - ETA: 14s - loss: 0.4070 - acc: 0.86 - ETA: 14s - loss: 0.4077 - acc: 0.86 - ETA: 14s - loss: 0.4080 - acc: 0.86 - ETA: 14s - loss: 0.4075 - acc: 0.86 - ETA: 14s - loss: 0.4081 - acc: 0.86 - ETA: 14s - loss: 0.4085 - acc: 0.86 - ETA: 14s - loss: 0.4076 - acc: 0.86 - ETA: 14s - loss: 0.4075 - acc: 0.86 - ETA: 14s - loss: 0.4081 - acc: 0.86 - ETA: 14s - loss: 0.4070 - acc: 0.86 - ETA: 14s - loss: 0.4074 - acc: 0.86 - ETA: 14s - loss: 0.4064 - acc: 0.86 - ETA: 14s - loss: 0.4072 - acc: 0.86 - ETA: 14s - loss: 0.4061 - acc: 0.86 - ETA: 14s - loss: 0.4050 - acc: 0.86 - ETA: 14s - loss: 0.4063 - acc: 0.86 - ETA: 13s - loss: 0.4067 - acc: 0.86 - ETA: 13s - loss: 0.4061 - acc: 0.86 - ETA: 13s - loss: 0.4061 - acc: 0.86 - ETA: 13s - loss: 0.4072 - acc: 0.86 - ETA: 13s - loss: 0.4066 - acc: 0.86 - ETA: 13s - loss: 0.4069 - acc: 0.86 - ETA: 13s - loss: 0.4062 - acc: 0.86 - ETA: 13s - loss: 0.4062 - acc: 0.86 - ETA: 13s - loss: 0.4060 - acc: 0.86 - ETA: 13s - loss: 0.4049 - acc: 0.86 - ETA: 13s - loss: 0.4044 - acc: 0.86 - ETA: 13s - loss: 0.4040 - acc: 0.86 - ETA: 13s - loss: 0.4036 - acc: 0.86 - ETA: 13s - loss: 0.4045 - acc: 0.86 - ETA: 13s - loss: 0.4048 - acc: 0.86 - ETA: 12s - loss: 0.4044 - acc: 0.86 - ETA: 12s - loss: 0.4048 - acc: 0.86 - ETA: 12s - loss: 0.4045 - acc: 0.86 - ETA: 12s - loss: 0.4044 - acc: 0.86 - ETA: 12s - loss: 0.4040 - acc: 0.86 - ETA: 12s - loss: 0.4040 - acc: 0.86 - ETA: 12s - loss: 0.4050 - acc: 0.86 - ETA: 12s - loss: 0.4051 - acc: 0.86 - ETA: 12s - loss: 0.4045 - acc: 0.86 - ETA: 12s - loss: 0.4037 - acc: 0.86 - ETA: 12s - loss: 0.4027 - acc: 0.86 - ETA: 12s - loss: 0.4029 - acc: 0.86 - ETA: 12s - loss: 0.4020 - acc: 0.86 - ETA: 12s - loss: 0.4032 - acc: 0.86 - ETA: 12s - loss: 0.4038 - acc: 0.86 - ETA: 12s - loss: 0.4041 - acc: 0.86 - ETA: 12s - loss: 0.4042 - acc: 0.86 - ETA: 11s - loss: 0.4034 - acc: 0.86 - ETA: 11s - loss: 0.4033 - acc: 0.86 - ETA: 11s - loss: 0.4031 - acc: 0.86 - ETA: 11s - loss: 0.4029 - acc: 0.86 - ETA: 11s - loss: 0.4048 - acc: 0.86 - ETA: 11s - loss: 0.4064 - acc: 0.86 - ETA: 11s - loss: 0.4065 - acc: 0.86 - ETA: 11s - loss: 0.4066 - acc: 0.86 - ETA: 11s - loss: 0.4078 - acc: 0.86 - ETA: 11s - loss: 0.4096 - acc: 0.86 - ETA: 11s - loss: 0.4110 - acc: 0.86 - ETA: 11s - loss: 0.4109 - acc: 0.86 - ETA: 11s - loss: 0.4114 - acc: 0.85 - ETA: 11s - loss: 0.4116 - acc: 0.86 - ETA: 11s - loss: 0.4119 - acc: 0.86 - ETA: 11s - loss: 0.4117 - acc: 0.86 - ETA: 10s - loss: 0.4110 - acc: 0.86 - ETA: 10s - loss: 0.4111 - acc: 0.86 - ETA: 10s - loss: 0.4117 - acc: 0.86 - ETA: 10s - loss: 0.4119 - acc: 0.85 - ETA: 10s - loss: 0.4121 - acc: 0.85 - ETA: 10s - loss: 0.4124 - acc: 0.85 - ETA: 10s - loss: 0.4131 - acc: 0.85 - ETA: 10s - loss: 0.4139 - acc: 0.85 - ETA: 10s - loss: 0.4135 - acc: 0.85 - ETA: 10s - loss: 0.4135 - acc: 0.85 - ETA: 10s - loss: 0.4125 - acc: 0.85 - ETA: 10s - loss: 0.4122 - acc: 0.85 - ETA: 10s - loss: 0.4120 - acc: 0.86 - ETA: 10s - loss: 0.4121 - acc: 0.86 - ETA: 10s - loss: 0.4123 - acc: 0.85 - ETA: 10s - loss: 0.4120 - acc: 0.85 - ETA: 9s - loss: 0.4122 - acc: 0.8598 - ETA: 9s - loss: 0.4127 - acc: 0.859 - ETA: 9s - loss: 0.4119 - acc: 0.859 - ETA: 9s - loss: 0.4114 - acc: 0.860 - ETA: 9s - loss: 0.4110 - acc: 0.860 - ETA: 9s - loss: 0.4109 - acc: 0.8600" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23769/23769 [==============================] - ETA: 9s - loss: 0.4102 - acc: 0.860 - ETA: 9s - loss: 0.4106 - acc: 0.860 - ETA: 9s - loss: 0.4098 - acc: 0.860 - ETA: 9s - loss: 0.4105 - acc: 0.860 - ETA: 9s - loss: 0.4113 - acc: 0.860 - ETA: 9s - loss: 0.4115 - acc: 0.860 - ETA: 9s - loss: 0.4113 - acc: 0.860 - ETA: 9s - loss: 0.4114 - acc: 0.860 - ETA: 9s - loss: 0.4114 - acc: 0.860 - ETA: 9s - loss: 0.4125 - acc: 0.860 - ETA: 8s - loss: 0.4129 - acc: 0.859 - ETA: 8s - loss: 0.4127 - acc: 0.860 - ETA: 8s - loss: 0.4122 - acc: 0.860 - ETA: 8s - loss: 0.4121 - acc: 0.860 - ETA: 8s - loss: 0.4119 - acc: 0.859 - ETA: 8s - loss: 0.4122 - acc: 0.859 - ETA: 8s - loss: 0.4113 - acc: 0.860 - ETA: 8s - loss: 0.4120 - acc: 0.859 - ETA: 8s - loss: 0.4113 - acc: 0.860 - ETA: 8s - loss: 0.4117 - acc: 0.860 - ETA: 8s - loss: 0.4116 - acc: 0.860 - ETA: 8s - loss: 0.4120 - acc: 0.860 - ETA: 8s - loss: 0.4117 - acc: 0.860 - ETA: 8s - loss: 0.4123 - acc: 0.859 - ETA: 8s - loss: 0.4122 - acc: 0.859 - ETA: 8s - loss: 0.4120 - acc: 0.859 - ETA: 7s - loss: 0.4120 - acc: 0.859 - ETA: 7s - loss: 0.4134 - acc: 0.859 - ETA: 7s - loss: 0.4139 - acc: 0.859 - ETA: 7s - loss: 0.4136 - acc: 0.859 - ETA: 7s - loss: 0.4136 - acc: 0.859 - ETA: 7s - loss: 0.4134 - acc: 0.859 - ETA: 7s - loss: 0.4128 - acc: 0.859 - ETA: 7s - loss: 0.4128 - acc: 0.859 - ETA: 7s - loss: 0.4133 - acc: 0.859 - ETA: 7s - loss: 0.4132 - acc: 0.859 - ETA: 7s - loss: 0.4128 - acc: 0.859 - ETA: 7s - loss: 0.4119 - acc: 0.859 - ETA: 7s - loss: 0.4118 - acc: 0.860 - ETA: 7s - loss: 0.4116 - acc: 0.860 - ETA: 7s - loss: 0.4121 - acc: 0.859 - ETA: 7s - loss: 0.4123 - acc: 0.859 - ETA: 7s - loss: 0.4117 - acc: 0.859 - ETA: 6s - loss: 0.4121 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4124 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4128 - acc: 0.859 - ETA: 6s - loss: 0.4132 - acc: 0.859 - ETA: 6s - loss: 0.4133 - acc: 0.859 - ETA: 6s - loss: 0.4128 - acc: 0.859 - ETA: 6s - loss: 0.4127 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4125 - acc: 0.859 - ETA: 6s - loss: 0.4126 - acc: 0.859 - ETA: 6s - loss: 0.4121 - acc: 0.859 - ETA: 6s - loss: 0.4123 - acc: 0.859 - ETA: 6s - loss: 0.4126 - acc: 0.859 - ETA: 6s - loss: 0.4128 - acc: 0.859 - ETA: 5s - loss: 0.4125 - acc: 0.859 - ETA: 5s - loss: 0.4125 - acc: 0.859 - ETA: 5s - loss: 0.4129 - acc: 0.859 - ETA: 5s - loss: 0.4127 - acc: 0.859 - ETA: 5s - loss: 0.4128 - acc: 0.859 - ETA: 5s - loss: 0.4134 - acc: 0.859 - ETA: 5s - loss: 0.4137 - acc: 0.859 - ETA: 5s - loss: 0.4136 - acc: 0.859 - ETA: 5s - loss: 0.4135 - acc: 0.859 - ETA: 5s - loss: 0.4151 - acc: 0.858 - ETA: 5s - loss: 0.4148 - acc: 0.859 - ETA: 5s - loss: 0.4147 - acc: 0.858 - ETA: 5s - loss: 0.4154 - acc: 0.858 - ETA: 5s - loss: 0.4152 - acc: 0.858 - ETA: 5s - loss: 0.4157 - acc: 0.858 - ETA: 5s - loss: 0.4154 - acc: 0.858 - ETA: 4s - loss: 0.4155 - acc: 0.858 - ETA: 4s - loss: 0.4156 - acc: 0.858 - ETA: 4s - loss: 0.4160 - acc: 0.858 - ETA: 4s - loss: 0.4163 - acc: 0.858 - ETA: 4s - loss: 0.4159 - acc: 0.858 - ETA: 4s - loss: 0.4162 - acc: 0.858 - ETA: 4s - loss: 0.4166 - acc: 0.858 - ETA: 4s - loss: 0.4165 - acc: 0.858 - ETA: 4s - loss: 0.4163 - acc: 0.858 - ETA: 4s - loss: 0.4157 - acc: 0.858 - ETA: 4s - loss: 0.4150 - acc: 0.858 - ETA: 4s - loss: 0.4145 - acc: 0.859 - ETA: 4s - loss: 0.4146 - acc: 0.859 - ETA: 4s - loss: 0.4145 - acc: 0.859 - ETA: 4s - loss: 0.4148 - acc: 0.858 - ETA: 4s - loss: 0.4147 - acc: 0.858 - ETA: 3s - loss: 0.4146 - acc: 0.858 - ETA: 3s - loss: 0.4146 - acc: 0.858 - ETA: 3s - loss: 0.4146 - acc: 0.858 - ETA: 3s - loss: 0.4152 - acc: 0.858 - ETA: 3s - loss: 0.4154 - acc: 0.858 - ETA: 3s - loss: 0.4152 - acc: 0.858 - ETA: 3s - loss: 0.4147 - acc: 0.858 - ETA: 3s - loss: 0.4150 - acc: 0.858 - ETA: 3s - loss: 0.4144 - acc: 0.858 - ETA: 3s - loss: 0.4141 - acc: 0.859 - ETA: 3s - loss: 0.4136 - acc: 0.859 - ETA: 3s - loss: 0.4134 - acc: 0.859 - ETA: 3s - loss: 0.4134 - acc: 0.859 - ETA: 3s - loss: 0.4129 - acc: 0.859 - ETA: 3s - loss: 0.4129 - acc: 0.859 - ETA: 3s - loss: 0.4125 - acc: 0.859 - ETA: 2s - loss: 0.4122 - acc: 0.859 - ETA: 2s - loss: 0.4117 - acc: 0.859 - ETA: 2s - loss: 0.4108 - acc: 0.860 - ETA: 2s - loss: 0.4104 - acc: 0.860 - ETA: 2s - loss: 0.4103 - acc: 0.860 - ETA: 2s - loss: 0.4106 - acc: 0.860 - ETA: 2s - loss: 0.4101 - acc: 0.860 - ETA: 2s - loss: 0.4098 - acc: 0.860 - ETA: 2s - loss: 0.4100 - acc: 0.860 - ETA: 2s - loss: 0.4096 - acc: 0.860 - ETA: 2s - loss: 0.4094 - acc: 0.860 - ETA: 2s - loss: 0.4096 - acc: 0.860 - ETA: 2s - loss: 0.4090 - acc: 0.860 - ETA: 2s - loss: 0.4089 - acc: 0.860 - ETA: 2s - loss: 0.4089 - acc: 0.860 - ETA: 2s - loss: 0.4083 - acc: 0.860 - ETA: 1s - loss: 0.4089 - acc: 0.860 - ETA: 1s - loss: 0.4087 - acc: 0.861 - ETA: 1s - loss: 0.4087 - acc: 0.860 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4078 - acc: 0.861 - ETA: 1s - loss: 0.4077 - acc: 0.861 - ETA: 1s - loss: 0.4083 - acc: 0.861 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4079 - acc: 0.861 - ETA: 1s - loss: 0.4084 - acc: 0.861 - ETA: 1s - loss: 0.4081 - acc: 0.861 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4080 - acc: 0.861 - ETA: 1s - loss: 0.4078 - acc: 0.861 - ETA: 1s - loss: 0.4085 - acc: 0.861 - ETA: 0s - loss: 0.4088 - acc: 0.860 - ETA: 0s - loss: 0.4088 - acc: 0.860 - ETA: 0s - loss: 0.4085 - acc: 0.861 - ETA: 0s - loss: 0.4085 - acc: 0.861 - ETA: 0s - loss: 0.4087 - acc: 0.861 - ETA: 0s - loss: 0.4086 - acc: 0.861 - ETA: 0s - loss: 0.4080 - acc: 0.861 - ETA: 0s - loss: 0.4075 - acc: 0.861 - ETA: 0s - loss: 0.4073 - acc: 0.861 - ETA: 0s - loss: 0.4074 - acc: 0.861 - ETA: 0s - loss: 0.4070 - acc: 0.861 - ETA: 0s - loss: 0.4073 - acc: 0.861 - ETA: 0s - loss: 0.4083 - acc: 0.861 - ETA: 0s - loss: 0.4086 - acc: 0.861 - ETA: 0s - loss: 0.4084 - acc: 0.861 - ETA: 0s - loss: 0.4089 - acc: 0.860 - 24s 1ms/step - loss: 0.4091 - acc: 0.8608 - val_loss: 0.4260 - val_acc: 0.8732\n", + "\n", + "Epoch 00010: val_acc improved from 0.86331 to 0.87315, saving model to models\\time.model\n" + ] + } + ], + "source": [ + "if config.mode == 'conv':\n", + " X, y = build_rand_feat()\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2], 1) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_conv_model()\n", + "elif config.mode == 'time':\n", + " X, y = build_rand_feat()\n", + " print(X.shape)\n", + " y_flat = np.argmax(y, axis=1) # Flatten out by grabbing collumn corrosponding to y label\n", + " input_shape = (X.shape[1], X.shape[2]) # Grab input shape not including number of samples (since each input is one sample)\n", + " model = get_recurrent_model()\n", + " \n", + "# Setup weights so that our gradient updates based on our class distribution \n", + "# (less bass drumbs => stronger gradient from these samples)\n", + "# This will give a little extra accuracy as well as reducing bias\n", + "class_weight = compute_class_weight('balanced', np.unique(y_flat), y_flat)\n", + "\n", + "checkpoint = ModelCheckpoint(config.model_path, monitor='val_acc', verbose=1, mode='max',\n", + " save_best_only=True, save_weights_only=False, period=1)\n", + "\n", + "# Fit our model\n", + "model.fit(X, y, epochs=10, \n", + " shuffle=True,\n", + " class_weight=class_weight,\n", + " validation_split=0.1,\n", + " callbacks=[checkpoint])\n", + "\n", + "model.save(config.model_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Audi_Classification_ML/models/conv.model b/Audi_Classification_ML/models/conv.model new file mode 100644 index 0000000..ce7d1c5 Binary files /dev/null and b/Audi_Classification_ML/models/conv.model differ diff --git a/Audi_Classification_ML/models/time.model b/Audi_Classification_ML/models/time.model new file mode 100644 index 0000000..9f7ff76 Binary files /dev/null and b/Audi_Classification_ML/models/time.model differ diff --git a/Audi_Classification_ML/pickles/conv.p b/Audi_Classification_ML/pickles/conv.p new file mode 100644 index 0000000..be3971a Binary files /dev/null and b/Audi_Classification_ML/pickles/conv.p differ diff --git a/Audi_Classification_ML/pickles/time.p b/Audi_Classification_ML/pickles/time.p new file mode 100644 index 0000000..48f3da3 Binary files /dev/null and b/Audi_Classification_ML/pickles/time.p differ diff --git a/Audi_Classification_ML/predict.ipynb b/Audi_Classification_ML/predict.ipynb new file mode 100644 index 0000000..8de89ca --- /dev/null +++ b/Audi_Classification_ML/predict.ipynb @@ -0,0 +1,166 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "import numpy as np\n", + "import pickle\n", + "from tqdm import tqdm\n", + "from scipy.io import wavfile\n", + "from python_speech_features import mfcc\n", + "from keras.models import load_model\n", + "import pandas as pd\n", + "from sklearn.metrics import accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def build_predictions(audio_dir):\n", + " \"\"\"\n", + " Function which takes an audio directory as input (which should contain a series of wav files), \n", + " and returns true labels, predicted labels, and a dictionary of probabilites corrosponding to labels\n", + " for each file.\n", + " \n", + " Arguments:\n", + " ----------\n", + " audio_dir : location of folder containing wav files\n", + " \n", + " Returns:\n", + " --------\n", + " y_true : A list containing the true labels for each file\n", + " \n", + " y_pred : A list contianing predicted labels for each file\n", + " \n", + " fn_prob : A dict containing the probabilities of each label for each file\n", + " \n", + " \"\"\"\n", + " \n", + " y_true = [] # List containing actual labels\n", + " y_pred = [] # List containing predicted labels\n", + " fn_prob = {} # Dict containing probability of given label\n", + " \n", + " print('Extracting features from audio')\n", + " for fn in tqdm(os.listdir(audio_dir)):\n", + " rate, wav = wavfile.read(os.path.join(audio_dir, fn))\n", + " label = fn2class[fn]\n", + " c = classes.index(label) # Grab true label\n", + " y_prob = []\n", + " \n", + " # Step through audio file in chunks\n", + " for i in range(0, wav.shape[0]-config.step, config.step):\n", + " sample = wav[i:i+config.step] # Take chunk of audio file\n", + " x = mfcc(sample, rate, numcep=config.nfeat,\n", + " nfilt=config.nfilt, nfft = config.nfft) # Take mfcc of our sample\n", + " x = (x - config.min) / (config.max - config.min) # Normalize based on max/min\n", + " \n", + " if config.mode == 'conv':\n", + " x = x.reshape(1, x.shape[0], x.shape[1], 1)\n", + " elif config.mode == 'time':\n", + " x = np.expand_dims(x, axis=0)\n", + " y_hat = model.predict(x)\n", + " y_prob.append(y_hat)\n", + " y_pred.append(np.argmax(y_hat))\n", + " y_true.append(c)\n", + " \n", + " fn_prob[fn] = np.mean(y_prob, axis=0).flatten()\n", + " \n", + " return y_true, y_pred, fn_prob" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting features from audio\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████████████████████| 300/300 [01:08<00:00, 4.36it/s]\n" + ] + } + ], + "source": [ + "df = pd.read_csv('data/instruments.csv')\n", + "classes = list(np.unique(df.label))\n", + "fn2class = dict(zip(df.fname, df.label))\n", + "p_path = os.path.join('pickles', 'conv.p')\n", + "\n", + "with open(p_path, 'rb') as handle:\n", + " config = pickle.load(handle)\n", + " \n", + "model = load_model(config.model_path)\n", + "\n", + "y_true, y_pred, fn_prob = build_predictions('data/clean')\n", + "\n", + "\n", + "acc_score = accuracy_score(y_true=y_true, y_pred=y_pred)\n", + "\n", + "y_probs = []\n", + "# Iterate through each sample\n", + "for i, row in df.iterrows():\n", + " y_prob = fn_prob[row.fname] # Grab probabilities for each class for the sample\n", + " y_probs.append(y_prob)\n", + " for c, p in zip(classes, y_prob):\n", + " df.at[i, c] = p # add probabilities to dataframe\n", + " \n", + "y_pred = [classes[np.argmax(y)] for y in y_probs]\n", + "df['y_pred'] = y_pred\n", + "\n", + "# Save as csv file which now contains all samples along with true label, predicted label, and probabilities for each class\n", + "df.to_csv('predictions.csv', index=False) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Audi_Classification_ML/predictions.csv b/Audi_Classification_ML/predictions.csv new file mode 100644 index 0000000..295b4a5 --- /dev/null +++ b/Audi_Classification_ML/predictions.csv @@ -0,0 +1,301 @@ +fname,label,Acoustic_guitar,Bass_drum,Cello,Clarinet,Double_bass,Flute,Hi-hat,Saxophone,Snare_drum,Violin_or_fiddle,y_pred +5388d14d.wav,Saxophone,1.3490342098521069e-05,0.0027045283932238817,0.004322782624512911,0.007217498030513525,0.00032903486862778664,0.0021102887112647295,1.0118960744875949e-05,0.9473693370819092,0.0002908135938923806,0.035632260143756866,Saxophone +c685f05f.wav,Saxophone,0.0001339537848252803,0.0004067889240104705,0.009488077834248543,0.0020617523696273565,0.00018861722492147237,0.003898893715813756,1.5867838101257803e-06,0.959974467754364,0.008475703187286854,0.015370193868875504,Saxophone +36d20ab5.wav,Saxophone,0.00013068984844721854,5.393858941715735e-07,1.7220338122569956e-05,0.00023038435028865933,3.111252954113297e-05,0.0019342867890372872,7.617306607698993e-08,0.9839615225791931,0.013642153702676296,5.198333747102879e-05,Saxophone +d6665734.wav,Saxophone,0.00790328998118639,9.477190906181931e-05,0.013706422410905361,0.00522078201174736,0.000789171492215246,0.0138504384085536,2.525541276554577e-06,0.9498098492622375,0.0005973679362796247,0.008025658316910267,Saxophone +7352e28f.wav,Saxophone,1.1981965144514106e-06,6.640316074779662e-10,2.809614124998916e-05,0.00700949365273118,7.866192390793003e-06,0.02749437466263771,1.0791914029084637e-09,0.965348482131958,1.6065943100329605e-06,0.00010880126501433551,Saxophone +8fa096bf.wav,Saxophone,2.2542175429407507e-05,7.541958621004596e-05,0.0006973668350838125,0.0009081515017896891,1.655681262491271e-05,0.0010592469479888678,2.6830305159819545e-06,0.994408369064331,2.7749418222811073e-05,0.002782014198601246,Saxophone +2f9c5f62.wav,Saxophone,8.73081007739529e-05,5.246744358422539e-11,4.341080966696609e-06,0.01137458998709917,2.2873105081089307e-06,3.1741753900860203e-06,2.998969961254261e-10,0.9647494554519653,0.02362286113202572,0.00015604135114699602,Saxophone +9cd05a2b.wav,Saxophone,1.2062248515576357e-06,8.035148368890077e-08,0.000165471836226061,0.0010272484505549073,2.3540762413176708e-05,0.007971051149070263,3.5414988275306314e-08,0.989250659942627,0.001234377734363079,0.0003262799873482436,Saxophone +ab465bf9.wav,Saxophone,4.5068904910294805e-06,2.953080280310161e-10,9.146821685135365e-05,0.00021238870976958424,4.1847588363452815e-06,0.0016358202556148171,1.0305809677868538e-10,0.9979821443557739,1.5771438484080136e-05,5.389230136643164e-05,Saxophone +c40632d7.wav,Saxophone,0.002256488660350442,0.00014672105317004025,0.036763936281204224,0.03400382027029991,0.0011501394910737872,0.012968880124390125,4.807504592463374e-05,0.8917620778083801,0.004541669972240925,0.016358288004994392,Saxophone +3a80061f.wav,Saxophone,0.006741643883287907,7.856729644117877e-05,0.002090266440063715,0.0015705130062997341,0.00014461424143519253,0.01410192996263504,0.0003896051784977317,0.9469864964485168,0.006699686404317617,0.021196473389863968,Saxophone +dba6817d.wav,Saxophone,0.004895240534096956,5.876900104340166e-05,0.01111315842717886,0.001326658995822072,0.0008709245594218373,0.008969481103122234,5.596721894107759e-05,0.9470522999763489,0.025560608133673668,9.675957699073479e-05,Saxophone +25f26095.wav,Saxophone,0.0003926426579710096,0.00014568594633601606,0.048948343843221664,0.00018851160712074488,0.000275136815616861,0.0005681967595592141,2.7666890218824847e-06,0.8977242708206177,0.004501143470406532,0.04725334793329239,Saxophone +37cebbd4.wav,Saxophone,3.3037413231795654e-05,4.747503723478985e-08,0.0009099635062739253,0.0005205133929848671,3.0510531360050663e-05,0.01693820394575596,4.2353285323315504e-08,0.9812435507774353,2.386266032772255e-06,0.00032167669269256294,Saxophone +f8d96888.wav,Saxophone,0.028018414974212646,5.7673580158734694e-05,0.00746140768751502,0.025632809847593307,0.00019089980924036354,0.005236587952822447,8.349475683644414e-05,0.9192428588867188,0.01026579737663269,0.003810020862147212,Saxophone +d94c94f0.wav,Saxophone,0.00019341509323567152,9.405308082932606e-05,0.0006659870268777013,0.036338306963443756,7.507170084863901e-05,0.0016269874759018421,5.909178071306087e-05,0.9470312595367432,0.011785663664340973,0.0021301978267729282,Saxophone +ec6afeb6.wav,Saxophone,5.204206559028535e-07,2.6741848319078443e-11,9.512593533145264e-05,9.820527338888496e-06,0.00013244766159914434,0.003256876254454255,4.858965660381465e-12,0.9963392615318298,4.794126198248705e-06,0.00016091020370367914,Saxophone +5f0dc8e4.wav,Saxophone,8.69272923864628e-07,1.055246385064934e-12,7.522459877229437e-10,0.0005219023441895843,6.362142357829725e-06,7.378246664302424e-05,2.6020415070651323e-14,0.9992163777351379,0.0001805546198738739,4.9329016427179795e-09,Saxophone +b8c0a88a.wav,Saxophone,0.00021355932403821498,4.291294075642327e-08,0.0021408055908977985,0.0028797059785574675,1.382102618663339e-05,0.026071174070239067,2.889418624363316e-07,0.9686599969863892,3.088519633820397e-06,1.745261761243455e-05,Saxophone +96dad435.wav,Saxophone,0.0010870989644899964,1.0222172022622544e-05,0.0001290132204303518,0.010921606793999672,4.9327893066219985e-05,0.006407788023352623,1.566053651913535e-05,0.9787530303001404,0.0007786633796058595,0.0018476087134331465,Saxophone +b120dc90.wav,Saxophone,7.828488378436305e-06,1.9142526070936583e-05,0.0001088078279281035,0.0002897881786338985,0.00010989943984895945,0.0005025335121899843,8.71660290613363e-07,0.9964178204536438,0.0004591076576616615,0.002084227278828621,Saxophone +c1948f24.wav,Saxophone,2.399151810550393e-07,1.2866822052259863e-09,3.7219280784484e-05,0.0005943375872448087,0.0005438643274828792,0.03016514517366886,1.768364121801369e-08,0.9686247706413269,2.11283204407664e-05,1.3300533282745164e-05,Saxophone +ac097834.wav,Saxophone,4.0534399886382744e-05,4.642289241019171e-06,0.0020132167264819145,0.06433261930942535,0.0005155209801159799,0.031607866287231445,3.781609052566637e-07,0.9012429118156433,0.00020478390797507018,3.753946293727495e-05,Saxophone +4345851e.wav,Saxophone,0.0014287714147940278,0.00010431982082081959,0.0035274955444037914,0.005710992030799389,0.00035804108483716846,0.019099514931440353,1.498787423770409e-05,0.962022602558136,0.006388976704329252,0.0013444283977150917,Saxophone +5d4f8187.wav,Saxophone,4.840376277570613e-05,0.00012166298256488517,0.0008606447954662144,0.0023550023324787617,2.0514076823019423e-05,0.0005863019032403827,1.202305952574534e-07,0.9939089417457581,0.001950060948729515,0.00014850836305413395,Saxophone +b83049f4.wav,Saxophone,0.00031763003789819777,0.00021658152400050312,1.4185394320520572e-05,0.007223470602184534,5.37563892066828e-06,0.0009907825151458383,1.5528657471008955e-08,0.9898274540901184,0.0009413830703124404,0.0004630179319065064,Saxophone +c1c3c8b9.wav,Saxophone,2.94206779472006e-06,1.0730696886618318e-10,2.8198142899782397e-05,2.7804944693343714e-05,0.0001361432223347947,0.008406284265220165,1.0448374804239435e-11,0.9880990386009216,1.0206809974988573e-06,0.003298921277746558,Saxophone +78a86075.wav,Saxophone,0.005687276367098093,8.104307198664173e-05,0.02288833260536194,0.0009653037413954735,0.00016119182691909373,0.01598057895898819,3.5102527817798546e-06,0.9441798329353333,0.0002764030359685421,0.009776647202670574,Saxophone +f0d315bc.wav,Saxophone,0.0005248257075436413,6.171534892018826e-07,0.0024142940528690815,0.002061041770502925,0.00017427139391656965,0.007727318909019232,5.023825906391721e-07,0.9787675738334656,0.0008267277735285461,0.0075029777362942696,Saxophone +9c0838c1.wav,Saxophone,0.013795779086649418,1.7324920236205799e-06,0.001095587620511651,0.0017591590294614434,0.0001961093075806275,0.02697131037712097,5.321293429005891e-06,0.9494699835777283,0.006407523527741432,0.0002975399256683886,Saxophone +d6144e01.wav,Violin_or_fiddle,4.3758729972864785e-09,1.4582876572966086e-10,9.069197517419525e-07,3.060144081246108e-05,2.022573636351055e-10,3.346621497257729e-06,1.3423215023067314e-05,3.120836922221315e-10,6.707884381285112e-08,0.9999516606330872,Violin_or_fiddle +cfb9c5fd.wav,Violin_or_fiddle,0.013476630672812462,0.0065217954106628895,0.05443879961967468,0.004848124459385872,0.023795312270522118,0.016310010105371475,0.00015357037773355842,0.0020779974292963743,0.02639547921717167,0.8519822955131531,Violin_or_fiddle +c6865306.wav,Violin_or_fiddle,0.0544816255569458,7.268281933647813e-06,0.022350259125232697,0.02622799202799797,0.0009854513918980956,0.009461987763643265,8.834975596982986e-05,0.0157089214771986,0.016392668709158897,0.8542957901954651,Violin_or_fiddle +642aba58.wav,Violin_or_fiddle,0.001354498672299087,5.707224772777408e-07,0.0185844749212265,0.010423632338643074,0.00015755314962007105,0.03758222982287407,6.714262326568132e-06,0.05110815167427063,0.0003276183851994574,0.8804544806480408,Violin_or_fiddle +848faca3.wav,Violin_or_fiddle,3.5468392525217496e-06,3.989148808614118e-06,0.0004719893913716078,0.0004656461242120713,2.3678237539570546e-06,4.909982089884579e-05,2.312880133104045e-05,2.1482424926944077e-05,4.756935959449038e-05,0.9989111423492432,Violin_or_fiddle +7eb9dac0.wav,Violin_or_fiddle,0.001412699231877923,0.01066927146166563,0.014262218028306961,0.0021299454383552074,0.0013547922717407346,0.002881689229980111,7.654037472093478e-05,0.0005564775201492012,0.018026037141680717,0.9486303925514221,Violin_or_fiddle +8d7d7dba.wav,Violin_or_fiddle,0.0021298369392752647,0.0005404077819548547,0.02711998112499714,0.0034743710421025753,0.001846209284849465,0.0014316753949970007,6.069672599551268e-05,0.006489782128483057,0.017889823764562607,0.9390172362327576,Violin_or_fiddle +2424ad60.wav,Violin_or_fiddle,8.909863390726969e-05,0.005677670240402222,0.004647022113204002,0.00034909319947473705,0.003615099238231778,0.0009414709638804197,4.1206258174497634e-05,0.002970919944345951,0.014814730733633041,0.9668537378311157,Violin_or_fiddle +ba648ac1.wav,Violin_or_fiddle,0.00042904101428575814,2.3780215997248888e-05,0.0017042172839865088,0.0008514827932231128,5.8026820624945685e-05,0.00021145095524843782,0.00022980022185947746,0.0001457751786801964,0.0018182189669460058,0.9945282340049744,Violin_or_fiddle +2e4a9850.wav,Violin_or_fiddle,1.4206731066224165e-05,3.873069087667602e-10,1.5755276194795442e-07,2.09630093195301e-06,5.308235184742216e-09,2.7484026077218005e-07,6.156116114652832e-07,1.8733047909336165e-05,0.0023838921915739775,0.9975800514221191,Violin_or_fiddle +2cc8683d.wav,Violin_or_fiddle,0.0010719540296122432,0.0002681692421901971,0.008161205798387527,0.0007455824525095522,0.007058870978653431,0.005268081557005644,8.656924910610542e-05,0.0011995217064395547,0.02540617249906063,0.9507337808609009,Violin_or_fiddle +7b6a119e.wav,Violin_or_fiddle,9.426374276699789e-07,1.045915837494249e-06,0.00017628837667871267,0.0008170679793693125,5.10980225953972e-06,0.06509040296077728,4.853222890233155e-07,1.6927201613725629e-06,1.7376096366206184e-05,0.9338896870613098,Violin_or_fiddle +68589f79.wav,Violin_or_fiddle,0.00012705926201306283,0.02171023003757,0.01596316508948803,0.000742220610845834,0.007503598928451538,0.002603834727779031,3.297560760984197e-05,0.00017485866555944085,0.0010814438574016094,0.9500606060028076,Violin_or_fiddle +fec00143.wav,Violin_or_fiddle,9.051584129338153e-06,7.664834811293986e-06,0.0012673193123191595,0.004178408533334732,1.7698448573355563e-05,0.0015142412157729268,4.164117490290664e-05,0.00015055092808324844,2.202134737672168e-06,0.9928112626075745,Violin_or_fiddle +1b24c166.wav,Violin_or_fiddle,0.000707847997546196,0.008168371394276619,0.03682694211602211,0.003951392602175474,0.03555223345756531,0.017495648935437202,0.0001065654432750307,0.0028971030842512846,0.0029105432331562042,0.8913833498954773,Violin_or_fiddle +6eb59008.wav,Violin_or_fiddle,2.3990143205310233e-08,3.3503206875451497e-09,5.143854286870919e-05,0.00011094577348558232,1.76430899045954e-06,0.0004902870277874172,3.856007779745596e-08,2.3544704163214192e-05,3.742323428923555e-07,0.9993215799331665,Violin_or_fiddle +0e7cd4eb.wav,Violin_or_fiddle,0.014446437358856201,0.0001958649227162823,0.02755938097834587,0.020843008533120155,0.029686061665415764,0.0018666371470317245,0.00027940093423239887,0.007039167452603579,0.011285162530839443,0.8867988586425781,Violin_or_fiddle +56e79c6f.wav,Violin_or_fiddle,0.012972325086593628,1.4257374232329312e-06,0.002705552615225315,0.0012435639509931207,0.000365755200618878,0.02040702849626541,0.004843907430768013,0.002939763246104121,0.0034809941425919533,0.9510396718978882,Violin_or_fiddle +cdc5fe8e.wav,Violin_or_fiddle,0.0008164333994500339,1.5302001656891662e-06,0.0014752516290172935,6.46154658170417e-05,0.0033388198353350163,0.07197975367307663,2.7054477413912537e-07,0.0017629846697673202,0.0017945666331797838,0.9187658429145813,Violin_or_fiddle +b38409bb.wav,Violin_or_fiddle,1.5109833384485682e-06,5.55833490345492e-10,0.00023755535949021578,9.145817602984607e-05,5.168012506828745e-08,8.667022939334856e-07,4.6859646829489066e-08,4.246028595389362e-08,1.1858810466947034e-07,0.999668300151825,Violin_or_fiddle +c8c117dc.wav,Violin_or_fiddle,0.035789284855127335,0.001541253412142396,0.03677929937839508,0.0012684458633884788,0.002661880338564515,0.00145849643740803,0.000411970482673496,0.0007930985884740949,0.01636464335024357,0.9029316306114197,Violin_or_fiddle +b73c3595.wav,Violin_or_fiddle,1.1805666417785687e-06,1.4543306559033908e-09,1.3906103049521334e-05,2.166712874895893e-05,3.7092562354956726e-09,1.012220309348777e-06,3.660216663092797e-08,3.788895863721109e-09,1.1536583315319149e-06,0.9999610781669617,Violin_or_fiddle +d84c8c43.wav,Violin_or_fiddle,0.00019055488519370556,0.002385122235864401,0.017790265381336212,0.004006104543805122,0.008640826679766178,0.006913573481142521,0.00017799594206735492,0.0030093600507825613,0.0014229359803721309,0.955463171005249,Violin_or_fiddle +d914225a.wav,Violin_or_fiddle,0.002342512598261237,5.906564183533192e-06,0.016456399112939835,0.0013392630498856306,0.025753548368811607,0.00014505363651551306,1.8188453623224632e-06,0.00012723248801194131,0.00043346971506252885,0.953394889831543,Violin_or_fiddle +1148986e.wav,Violin_or_fiddle,0.010020649060606956,3.997377007181058e-06,0.011669560335576534,0.00029069121228531003,0.000438908115029335,0.0020387035328894854,9.014161150844302e-06,0.09040623158216476,0.0007724335300736129,0.8843498229980469,Violin_or_fiddle +e3f479f3.wav,Violin_or_fiddle,0.00044868048280477524,3.184898787367274e-06,0.007174610160291195,0.002294831210747361,1.108077685785247e-05,0.013854015618562698,7.660546543775126e-05,0.0070207142271101475,0.017482345923781395,0.9516341686248779,Violin_or_fiddle +aab28420.wav,Violin_or_fiddle,0.0006357928505167365,0.002553338650614023,0.015702741220593452,0.0004607890441548079,0.002706204541027546,0.004578321240842342,3.603897857828997e-05,0.0030561136081814766,0.024241618812084198,0.9460290670394897,Violin_or_fiddle +21346775.wav,Violin_or_fiddle,0.0001032545042107813,0.00032122235279530287,0.004809483420103788,7.021616329438984e-05,0.00011762415670091286,0.0021675152238458395,7.614373316755518e-05,0.00014910008758306503,0.0008767700055614114,0.9913085699081421,Violin_or_fiddle +cdeece57.wav,Violin_or_fiddle,0.0004570437886286527,3.782533894991502e-05,0.0010151464957743883,0.0020677826832979918,0.0002040351537289098,0.011802087537944317,2.4130766178132035e-05,0.008837970905005932,0.0031276552472263575,0.9724262952804565,Violin_or_fiddle +c9fb642d.wav,Violin_or_fiddle,0.0028496014419943094,8.933882782002911e-05,0.005984884686768055,0.001005688332952559,6.234773172764108e-05,0.0005826479755342007,0.00011978900874964893,0.003340761410072446,0.006783270742744207,0.9791817665100098,Violin_or_fiddle +078f7ac0.wav,Hi-hat,3.3657672204867595e-09,3.578675238633845e-14,2.7226558681203716e-12,7.50545936512026e-08,6.054539682109894e-12,2.6771436978378915e-07,0.9994083642959595,1.0011589474112625e-10,0.00059141730889678,6.283247810934256e-10,Hi-hat +e897db78.wav,Hi-hat,1.2984854080855257e-08,9.55253454462679e-13,5.247186365964218e-11,1.8873898000038025e-07,3.533375148023765e-09,2.6127966634703625e-07,0.999992311000824,8.333090619448702e-13,7.323755653487751e-06,7.014596459242739e-09,Hi-hat +b31ed1fb.wav,Hi-hat,3.1515722298536275e-07,4.129706021593904e-10,4.3818122321681585e-06,0.0001632597850402817,1.9204557943908185e-08,0.00026034226175397635,0.9947892427444458,1.6314493223035242e-07,0.000312829710310325,0.004469531122595072,Hi-hat +06c48eab.wav,Hi-hat,7.091155566740781e-05,7.196685487542709e-07,0.00013289350317791104,0.002715249080210924,4.625791916623712e-06,0.009883579798042774,0.9845465421676636,1.2498589967435692e-05,0.002041849074885249,0.0005911775515414774,Hi-hat +2503aaa1.wav,Hi-hat,9.88715331828871e-09,3.648603121020333e-12,1.5890500720816547e-11,5.385233635024633e-06,1.0016217716346532e-10,1.7169099919556174e-06,0.999743640422821,3.541278159602257e-09,0.0002492817002348602,2.2237351515741466e-08,Hi-hat +3d3439f1.wav,Hi-hat,1.689377882030385e-08,1.7658050585969698e-12,1.1999194693412818e-10,2.877842142368081e-08,2.598655179930631e-10,1.0326043309305533e-07,0.9999488592147827,1.3505623214834367e-13,5.095890810480341e-05,6.565533450242356e-09,Hi-hat +34a90030.wav,Hi-hat,2.5412529858215294e-09,4.705538056101223e-14,3.304771178935795e-10,7.696478121488326e-09,2.567590307034351e-10,6.137742758483e-08,0.9999991059303284,2.1160360247872434e-13,8.260436175078212e-07,1.6947160341729273e-10,Hi-hat +da4b0379.wav,Hi-hat,1.6170437211471267e-10,3.8479330365223576e-16,2.2511781935102837e-12,7.047111783009541e-10,1.1895015354645988e-11,2.451724379071152e-09,0.9999997019767761,2.0977621280422452e-17,2.86790736936382e-07,3.846023846620916e-11,Hi-hat +a090c45a.wav,Hi-hat,4.542428211351535e-09,2.73326961107781e-13,3.8396650442473756e-11,1.2772870832122862e-05,1.4447003706188899e-12,5.286845521368377e-07,0.9999772906303406,2.31028114390866e-13,8.99445603863569e-06,4.171694172327989e-07,Hi-hat +41897c32.wav,Hi-hat,2.4984181390408366e-09,9.068524577104942e-12,6.715782774335821e-08,0.0002347649569856003,2.143473419591313e-11,0.0004508319834712893,0.9993130564689636,4.231300310131303e-10,1.131525664277433e-07,1.2510733995441115e-06,Hi-hat +2032be87.wav,Hi-hat,5.346064146927176e-10,1.2569445470892414e-14,5.90801322794543e-12,1.6189206064609607e-07,6.407931043422854e-12,1.0509747880860232e-06,0.9999613165855408,6.964429921652027e-09,3.749303868971765e-05,3.5894312522266603e-10,Hi-hat +73677128.wav,Hi-hat,3.383538726975388e-10,1.8488518482569043e-14,2.9911557172107583e-12,1.1965616977249738e-06,1.9749155436010746e-11,5.060384111743588e-08,0.9999974966049194,6.320058951007901e-13,1.4404400872081169e-06,3.4824934602717406e-10,Hi-hat +c53a217e.wav,Hi-hat,1.9298103393072807e-10,1.317192454792311e-15,2.540383485169495e-12,3.9363945347759e-07,2.8084687353491233e-12,5.2730619870544615e-08,0.9999975562095642,1.0382447939577544e-12,2.0400680114107672e-06,1.6964429860877317e-10,Hi-hat +f0dfe343.wav,Hi-hat,2.2924711018390553e-09,1.096282786772207e-12,5.376328271466946e-09,9.954585038940422e-06,7.671550616983325e-10,0.0001631239429116249,0.9997897744178772,9.109079655900132e-06,2.696748560993001e-05,1.1222653029108187e-06,Hi-hat +0ed06544.wav,Hi-hat,7.482596764418759e-09,7.814787635366735e-14,1.2598147525189063e-10,1.6875192798693206e-08,3.817355112567533e-11,3.2036331276685814e-07,0.999977707862854,1.0332262823098404e-09,2.1982757971272804e-05,1.4780093815502937e-10,Hi-hat +99c96a07.wav,Hi-hat,4.904749744127912e-07,1.1011993539256082e-09,1.496774815201718e-09,7.551311136921868e-05,8.728923006628975e-08,3.300106982351281e-05,0.9998747706413269,9.870386286081612e-09,1.6046493328758515e-05,1.4567680750587897e-07,Hi-hat +3a3d0279.wav,Hi-hat,8.957515618135403e-09,8.56936049897783e-12,1.276831002039458e-10,3.705726339831017e-05,1.590640119619735e-11,1.7332381503365468e-06,0.9999597668647766,4.773040643279991e-11,1.3541974794861744e-06,1.0207721601318553e-07,Hi-hat +612702c3.wav,Hi-hat,7.715670768959626e-09,5.397841462001507e-14,1.0689087635851191e-11,4.9215768740396015e-06,3.2529140492343345e-10,5.990297722746618e-06,0.9999850392341614,9.859591365568576e-09,3.4193694773421157e-06,6.313273388514062e-07,Hi-hat +d6854eb4.wav,Hi-hat,0.0007383262855000794,0.0012251591542735696,0.0036773693282157183,0.020431742072105408,0.0009202355868183076,0.016990618780255318,0.9244822859764099,0.029620064422488213,0.0008474880596622825,0.0010667566675692797,Hi-hat +52300f9b.wav,Hi-hat,7.675521676575592e-12,2.1020439457650647e-17,1.603040481390136e-13,2.2949624423063142e-08,6.41720927630862e-15,1.4216856136783917e-08,1.0,2.872697332833088e-14,2.7330395724334267e-08,6.170171578528949e-12,Hi-hat +09a1cfd7.wav,Hi-hat,1.6037828842740964e-08,8.34408659788205e-13,1.9898152136405e-12,1.432925245126171e-07,1.34631528148077e-10,9.75231557731604e-08,0.9999660849571228,2.945458980885274e-12,3.3737054764060304e-05,1.0788951954054937e-08,Hi-hat +3aafb6ad.wav,Hi-hat,2.6649036755088673e-08,2.478650097670343e-11,9.557089564182775e-10,0.0004527111304923892,6.200464447436715e-11,4.970625013811514e-06,0.9995175004005432,3.1816931311823282e-09,2.4380828108405694e-05,3.419091569867305e-07,Hi-hat +493c247b.wav,Hi-hat,1.1812060218829856e-09,7.38929520328023e-14,5.3211129946717506e-11,1.5510288449149812e-06,4.956417221091414e-11,3.6986541545047658e-06,0.9999790787696838,8.244389615441605e-10,1.5687190170865506e-05,1.106072122780688e-08,Hi-hat +5ec7ad26.wav,Hi-hat,2.992295549120172e-07,1.6587173301552127e-10,6.3786989024094964e-09,2.9564321266661864e-06,3.852333207987613e-08,9.088159913517302e-07,0.9996588826179504,1.9787313454422417e-10,0.00033655299921520054,3.277219207120652e-07,Hi-hat +a1b369d7.wav,Hi-hat,2.1793991056284767e-09,3.1286351547671343e-12,5.096208788302192e-09,1.3411928193818312e-05,8.654982286415702e-11,3.644952448667027e-05,0.999950110912323,6.898295823454248e-11,9.210328499875686e-08,7.408588231783142e-08,Hi-hat +8cd809d3.wav,Hi-hat,3.347450316937284e-08,5.435839278700172e-12,8.32086510804686e-10,0.00021741603268310428,1.050812561964598e-10,1.0956136065942701e-05,0.9995543956756592,1.5878168779792645e-09,0.00021647143876180053,7.123071554815397e-07,Hi-hat +aed9d22f.wav,Hi-hat,2.147475308689195e-09,4.249002544124206e-14,2.8053072018141556e-11,2.3917948510643328e-06,4.508927009538866e-09,1.850291846494656e-05,0.9997740983963013,8.857048983124116e-10,0.000204764524823986,3.525012743921252e-07,Hi-hat +a7964699.wav,Hi-hat,7.900927023740678e-09,3.710831988912311e-12,5.089070276298457e-10,0.0004516387125477195,3.6306441793948485e-12,1.3521936352844932e-06,0.9994971752166748,3.7553054416106235e-11,4.963485480402596e-05,1.0997271715496026e-07,Hi-hat +da3f8050.wav,Hi-hat,1.90692723833763e-08,1.918682877508071e-12,2.241625773891087e-09,2.3578348191222176e-05,2.319843622755613e-10,7.888257641752716e-06,0.9999254941940308,1.6626617593828996e-07,4.269024066161364e-05,1.1970305990871566e-07,Hi-hat +468f9c4c.wav,Hi-hat,2.4786327230685856e-06,4.4498444928819936e-09,3.267289503128268e-05,4.435304072103463e-05,1.9246938620653964e-07,0.011480331420898438,0.981978178024292,4.271467446415045e-07,0.0064607467502355576,5.192249545871164e-07,Hi-hat +229be2be.wav,Snare_drum,4.2201520500384504e-07,1.4330216124847084e-08,9.91298065855517e-09,4.7582901174791914e-08,1.2799944215657888e-08,8.883386612978939e-07,2.021762338699773e-05,8.041129149205517e-07,0.9999762773513794,1.3374651643971447e-06,Snare_drum +b6cbc6a9.wav,Snare_drum,7.923706135670727e-08,2.2569430768726306e-09,7.3599721872597e-09,1.1465466354110276e-09,1.9880710411257496e-09,1.7256088113981605e-08,4.468521638045786e-06,7.502097787437378e-07,0.9999945759773254,1.4952193794215418e-07,Snare_drum +ae7d1c37.wav,Snare_drum,0.00017837519408203661,5.451323090710503e-07,0.00020151649368926883,6.1777932387485635e-06,2.344483931437935e-07,6.372784991981462e-05,9.49107601400101e-08,0.005883445497602224,0.9936076998710632,5.824879553983919e-05,Snare_drum +82d4fb44.wav,Snare_drum,0.0025763034354895353,2.2304766389424913e-06,0.0003726267605088651,2.5281691705458798e-05,1.585165773576591e-05,0.0006553006242029369,0.025171302258968353,0.0005706856027245522,0.9495455026626587,0.021064871922135353,Snare_drum +4c590f69.wav,Snare_drum,0.00030095948022790253,2.1100995581946336e-05,2.5928669856511988e-05,0.00020176390535198152,2.562077497714199e-05,2.0588024199241772e-05,4.8919988330453634e-05,5.474632416735403e-05,0.9981974363327026,0.00110291235614568,Snare_drum +1c9a423f.wav,Snare_drum,2.2869123483815201e-07,1.4167333755796263e-12,3.1008446512714727e-06,0.001780865015462041,3.661699921053696e-08,3.467633359832689e-05,1.561397955374133e-10,6.989917892497033e-05,0.9980611801147461,4.9957696319324896e-05,Snare_drum +f0727eac.wav,Snare_drum,2.050011049803402e-09,1.7277373975943533e-11,2.382820937091301e-12,1.7355372347593878e-11,3.30210967076916e-12,2.107562124820106e-09,1.8322707546758465e-05,1.0318353282912085e-08,0.999981701374054,4.333326941718951e-08,Snare_drum +31db8c5e.wav,Snare_drum,0.001256510498933494,0.00045549854985438287,0.00031417576246894896,0.0009287302382290363,0.0016164286062121391,1.2252814485691488e-05,3.271254536230117e-05,0.01136776339262724,0.9835743308067322,0.00044163750135339797,Snare_drum +b86b5a96.wav,Snare_drum,6.956511100497664e-08,2.9554731995062866e-09,9.448313242899076e-10,3.893352751305201e-09,1.6085436316259916e-09,6.904749056957371e-07,2.970841572746963e-09,4.681354766944423e-05,0.9999521970748901,1.9590349609188706e-07,Snare_drum +6fca680b.wav,Snare_drum,2.6673900720197707e-05,2.6963846266880864e-07,7.647504389751703e-07,8.93725245987298e-06,3.1707231755717658e-06,9.95579867435481e-08,1.0755009327567677e-07,4.217460809741169e-05,0.9999027252197266,1.51025833474705e-05,Snare_drum +1bc8eae1.wav,Snare_drum,8.488590538036078e-05,6.0260758800723124e-06,1.3821077118336689e-06,2.6259428409503016e-07,2.798844889184693e-07,3.088907033088617e-05,1.2531675110949436e-06,6.360961560858414e-05,0.9994572997093201,0.00035415514139458537,Snare_drum +46b52f97.wav,Snare_drum,2.7203819197296752e-09,1.28884666827922e-10,2.0305947201482155e-10,7.57348530555646e-08,7.61737728449674e-10,1.5019816501649075e-09,5.535508762477548e-08,1.9843969312205445e-06,0.9999974370002747,4.810906375496415e-07,Snare_drum +0c67f402.wav,Snare_drum,7.978972575983789e-07,1.2250673364633258e-07,7.54686446668984e-09,1.0872174271980839e-08,1.0487993762353653e-07,2.5058383812393004e-07,8.057344375034248e-11,1.687951044004876e-05,0.9999817609786987,2.2401502519642236e-07,Snare_drum +c8ecbbfd.wav,Snare_drum,1.0443226727829824e-07,1.921441006302871e-09,1.9507699899889985e-09,4.2159697954957664e-09,1.796116588792529e-09,3.7681056141991576e-07,7.863969919696956e-09,4.591863671521423e-06,0.9999915957450867,3.3487167456769384e-06,Snare_drum +9f84ea5a.wav,Snare_drum,0.0024424272123724222,0.0006296546198427677,0.0658997967839241,0.02060023695230484,0.053038839250802994,0.020084165036678314,2.1670095406989276e-07,0.00010265051969327033,0.8371843695640564,1.7618873243918642e-05,Snare_drum +e4958adc.wav,Snare_drum,4.071270431893481e-09,1.0401032568552182e-06,1.030929439038708e-10,0.00011349293345119804,4.4872952575936154e-10,1.078951719635235e-10,7.719607938994066e-12,9.327847010354162e-07,0.9998846054077148,2.7244861922071095e-09,Snare_drum +5ce40b1b.wav,Snare_drum,7.536141310993116e-06,6.549949489453866e-07,5.527380722014641e-07,2.7423206461207883e-07,8.772497750442199e-08,5.165386482985923e-06,2.2082494979258627e-06,0.00012414276716299355,0.9996110796928406,0.00024833634961396456,Snare_drum +9d308738.wav,Snare_drum,2.1267819647619035e-06,6.028387815604219e-07,3.5899374779546633e-06,1.3177592563806684e-06,5.474138333738665e-07,0.00012573719141073525,1.4442875908571295e-05,0.00012917935964651406,0.9996838569641113,3.8683829188812524e-05,Snare_drum +1e3391d5.wav,Snare_drum,5.054859570918779e-07,2.8031383862980874e-06,2.1963998619867198e-08,0.00041781511390581727,3.003938786605431e-07,1.1341766281702803e-07,2.8806896867905607e-09,0.00019699663971550763,0.9993087649345398,7.26520229363814e-05,Snare_drum +ff3f21e7.wav,Snare_drum,1.7501965032806766e-07,7.647373649888323e-07,8.230948367327073e-09,8.875309163158818e-07,2.8717666022970434e-09,1.1805733279857122e-08,3.195531395050466e-09,1.119602984545054e-06,0.9999949336051941,2.1408695829450153e-06,Snare_drum +b68f10af.wav,Snare_drum,3.457483762758784e-05,9.238226994057186e-06,1.4728274436492939e-05,8.961446292232722e-05,1.7087575542973354e-05,0.001434605335816741,6.080751518311445e-06,0.01698715053498745,0.9813852310180664,2.1607760572806e-05,Snare_drum +e8e00924.wav,Snare_drum,5.896316451980965e-06,5.295270966598764e-06,5.729633357987041e-06,3.8013359926480916e-07,1.3921468280386762e-06,9.745966963237152e-06,1.490986818453166e-07,0.0056282938458025455,0.9942749738693237,6.809674960095435e-05,Snare_drum +22e1c02c.wav,Snare_drum,4.682169219449861e-06,1.6939669649218558e-06,0.00027919074636884034,1.48223371070344e-05,0.000147777987876907,0.0006094525451771915,1.1333569318594527e-06,6.953900447115302e-05,0.9988369941711426,3.4722223062999547e-05,Snare_drum +5c33d972.wav,Snare_drum,0.010689185932278633,0.02643231488764286,0.037658095359802246,0.0018759204540401697,0.04037625342607498,0.0059656063094735146,0.00016150072042364627,0.0005263271741569042,0.872658908367157,0.003655852749943733,Snare_drum +9320c55f.wav,Snare_drum,0.0001004132573143579,2.4998786102514714e-05,0.0006304185371845961,1.1986641766270623e-05,8.40839566080831e-05,0.00046936911530792713,6.024874892318621e-05,0.0034167044796049595,0.9948595762252808,0.00034217326901853085,Snare_drum +f1754aea.wav,Snare_drum,0.0055971909314394,0.010440793819725513,0.0010584929259493947,0.00019929895643144846,0.0002861492976080626,0.005451586563140154,4.647287369152764e-06,0.005218795966356993,0.9715316891670227,0.0002113076188834384,Snare_drum +b218444c.wav,Snare_drum,0.00014274778368417174,0.0002123992017004639,0.0018864000448957086,0.0010056761093437672,0.00036868525785394013,4.76218992844224e-05,1.1441558172009536e-06,0.0036721813958138227,0.9848608374595642,0.00780226057395339,Snare_drum +36d06cc0.wav,Snare_drum,4.848533535550814e-06,2.237783064629184e-06,3.3452579595305565e-10,2.8169878873995913e-08,6.136732899619801e-09,1.9675247542316754e-11,7.08553788558719e-12,1.1821091902675107e-05,0.9999810457229614,8.467087297958642e-08,Snare_drum +4c4d4797.wav,Snare_drum,4.114767307328293e-06,2.5040341355975215e-08,1.754478695659145e-08,1.3429713590085157e-06,1.6442180950093643e-08,3.916236892109737e-06,2.655761655034894e-08,0.000257723790127784,0.9997310042381287,1.8634674461281975e-06,Snare_drum +cae0d841.wav,Snare_drum,1.9215354996049427e-07,9.230381459168768e-10,1.6363712163069977e-08,1.7800486773467128e-07,5.0398796247463906e-08,2.184500772273168e-06,3.0950366181059508e-06,5.837110165884951e-06,0.9997372627258301,0.0002512435894459486,Snare_drum +17f82c05.wav,Acoustic_guitar,0.5690929293632507,0.014118797145783901,0.15939973294734955,0.0029417709447443485,0.2017306685447693,0.002886746311560273,2.0235502233845182e-05,0.0027058611158281565,0.011185234412550926,0.03591796010732651,Acoustic_guitar +0eeaebcb.wav,Acoustic_guitar,0.7548785209655762,2.6175057428190485e-06,0.002747755032032728,0.022121619433164597,0.013560831546783447,0.19131909310817719,2.0554002730932552e-06,0.014820702373981476,0.00019965469255112112,0.000347002933267504,Acoustic_guitar +e92bf0fa.wav,Acoustic_guitar,0.9473311901092529,2.3605434762430377e-06,0.006051685195416212,0.0004075161414220929,0.001523690763860941,0.03614191710948944,1.0669508583305287e-06,0.00018454980454407632,0.00014098796236794442,0.008214781992137432,Acoustic_guitar +10da16fb.wav,Acoustic_guitar,0.9607498645782471,1.2037831993438886e-06,0.003475495846942067,0.008436120115220547,0.0007869887049309909,0.000764323107432574,9.894375097019292e-09,0.00869154091924429,0.011559042148292065,0.00553534459322691,Acoustic_guitar +a25423a8.wav,Acoustic_guitar,0.8269829154014587,0.004927671514451504,0.007367479614913464,0.010097173042595387,0.13577106595039368,0.0022766010370105505,7.4973931987187825e-06,0.010895959101617336,0.0002339471539016813,0.0014395320322364569,Acoustic_guitar +16c9a838.wav,Acoustic_guitar,0.8978180885314941,3.989950982941082e-06,0.0017242502653971314,0.032894525676965714,0.0005875843344256282,0.006350034847855568,0.00012001005961792544,0.033836640417575836,4.2032927012769505e-05,0.02662288211286068,Acoustic_guitar +70ca9c77.wav,Acoustic_guitar,0.7882883548736572,2.1156702132429928e-05,0.020255926996469498,0.015608658082783222,0.1697707176208496,0.002594668185338378,1.3081447036711324e-07,0.00027367306756787,0.0028592925518751144,0.00032762615592218935,Acoustic_guitar +38216fad.wav,Acoustic_guitar,0.9215964078903198,0.0010131478775292635,0.007423449773341417,0.001633600564673543,0.04451882094144821,0.008943326771259308,3.9897595343063585e-06,0.009333564899861813,0.0034919544123113155,0.0020417682826519012,Acoustic_guitar +d8a257e5.wav,Acoustic_guitar,0.9473835825920105,0.00456666387617588,0.007810590788722038,0.008348625153303146,0.013834308832883835,0.005167784169316292,2.656351171026472e-05,0.004801079630851746,0.0056083607487380505,0.0024525378830730915,Acoustic_guitar +7506dcc4.wav,Acoustic_guitar,0.42421624064445496,2.737069451086427e-07,0.00038534088525921106,0.5657839179039001,0.0018226862885057926,0.00018730558804236352,1.2058608334086784e-08,0.003258930053561926,0.0037568076513707638,0.0005884359707124531,Clarinet +a6728901.wav,Acoustic_guitar,0.9791516065597534,1.9545843770174542e-06,0.0003107443335466087,0.0001502429076936096,4.890404852631036e-06,0.0034030452370643616,0.0007290326757356524,0.00010082081280415878,0.004263340495526791,0.011884303763508797,Acoustic_guitar +b88322f6.wav,Acoustic_guitar,0.9743931293487549,0.0003608641563914716,0.020869145169854164,7.120268855942413e-05,0.0004805940552614629,0.0016583207761868834,1.5429695849888958e-05,0.0016497315373271704,1.928110395965632e-05,0.0004824868228752166,Acoustic_guitar +35039ae1.wav,Acoustic_guitar,0.9859123229980469,2.7205076094105607e-06,0.0006625661044381559,0.0001409962133038789,0.001555910799652338,0.011414810083806515,3.707878875047754e-07,0.00013687806494999677,0.00013350561494007707,3.985896910307929e-05,Acoustic_guitar +236cbab1.wav,Acoustic_guitar,0.8068973422050476,0.0019319165730848908,0.03643146529793739,0.019956443458795547,0.09260386973619461,0.0006602725479751825,5.811117262055632e-06,0.03194783255457878,0.008709701709449291,0.0008552963263355196,Acoustic_guitar +0356dec7.wav,Acoustic_guitar,0.8945199847221375,0.0008303238428197801,0.02679034136235714,0.001208384637720883,0.0006664752145297825,0.019364874809980392,3.992243728134781e-05,0.020467158406972885,0.011051449924707413,0.025061188265681267,Acoustic_guitar +bb1f5874.wav,Acoustic_guitar,0.9931238293647766,4.007946699857712e-06,0.0016115071484819055,0.00033935747342184186,0.0015098042786121368,0.00016295374371111393,8.08477480518377e-08,5.1651204557856545e-05,0.0025801348965615034,0.00061674794415012,Acoustic_guitar +34747922.wav,Acoustic_guitar,0.9828930497169495,3.167526756442385e-07,0.00038184254663065076,7.0971465902403e-05,0.0001873979636002332,0.015076958574354649,1.9707938463398023e-06,0.0001550960005261004,2.204002157668583e-05,0.0012103106128051877,Acoustic_guitar +44fb3eeb.wav,Acoustic_guitar,0.8692111968994141,5.001214731237269e-07,0.004270331468433142,0.0002303175861015916,0.0007389714010059834,0.029529685154557228,6.421969622749657e-09,0.09068484604358673,0.002773555228486657,0.0025606949348002672,Acoustic_guitar +367ad7b1.wav,Acoustic_guitar,0.8786322474479675,5.5860031267229715e-08,0.003752350341528654,0.00015948194777593017,0.08915762603282928,0.019156988710165024,8.883363378231479e-09,0.007965391501784325,0.0011426473502069712,3.3167605579365045e-05,Acoustic_guitar +160c92d7.wav,Acoustic_guitar,0.9178969264030457,8.56737244703254e-07,0.0009401139686815441,0.0002251979458378628,0.00024968531215563416,0.0003557898453436792,1.6201555652628485e-08,0.0014342241920530796,0.0421113558113575,0.0367857851088047,Acoustic_guitar +2016d256.wav,Acoustic_guitar,0.8722516894340515,5.160373864332435e-12,8.684335028874557e-08,0.12737581133842468,5.176642844162416e-06,1.4111591553955805e-05,9.836362627191342e-12,0.0003524220664985478,4.71163104975858e-07,8.499480230739209e-08,Acoustic_guitar +fc55d588.wav,Acoustic_guitar,0.9046971201896667,1.2239327134011546e-06,0.022271133959293365,0.0011516817612573504,0.022254304960370064,0.005933268927037716,2.568382114986889e-06,0.001607023528777063,0.03699755296111107,0.0050842189230024815,Acoustic_guitar +c7846d27.wav,Acoustic_guitar,0.9730818271636963,6.727538561790425e-07,0.0009074528352357447,0.00037415605038404465,7.814025593688712e-06,0.020155787467956543,2.2528349745698506e-06,4.646208708436461e-06,3.4599070204421878e-06,0.00546195637434721,Acoustic_guitar +55822aae.wav,Acoustic_guitar,0.8517265319824219,0.0002046364825218916,0.08058764040470123,0.011973864398896694,0.02599654532968998,0.00784345343708992,5.7330318668391556e-05,0.008583353832364082,0.011317322961986065,0.0017094038194045424,Acoustic_guitar +9923ddf8.wav,Acoustic_guitar,0.9912402033805847,1.2871606891451393e-08,2.4154451239155605e-06,0.0029232485685497522,2.360461076023057e-05,5.885701466468163e-05,8.909608162355198e-09,1.0135898520502451e-07,0.00016667965974193066,0.005584997590631247,Acoustic_guitar +32dee61b.wav,Acoustic_guitar,0.8203943371772766,0.02373727597296238,0.042960911989212036,0.001522694481536746,0.08785393834114075,0.0003537614829838276,9.129094905802049e-06,0.003922044765204191,0.0010039762128144503,0.018241817131638527,Acoustic_guitar +fa4d4a92.wav,Acoustic_guitar,0.6052725911140442,6.032969849911751e-06,0.01268669031560421,0.0016900572227314115,0.37959399819374084,7.958101923577487e-05,2.440555313398818e-09,0.00010985456901835278,0.0005593029782176018,1.8349783204030246e-06,Acoustic_guitar +8da75280.wav,Acoustic_guitar,0.6984784007072449,6.527202003780985e-06,0.03181504085659981,0.0075054713524878025,0.2588965594768524,0.0004334313271101564,4.5505399270950875e-07,0.001959236105903983,0.0007827610825188458,0.00012230964784976095,Acoustic_guitar +b2261238.wav,Acoustic_guitar,0.8726373910903931,5.481918196892366e-05,0.0031909614335745573,0.0025617885403335094,0.0006226807017810643,0.07882574945688248,4.3230343180766795e-06,0.027124756947159767,0.012712620198726654,0.002265054965391755,Acoustic_guitar +673defaf.wav,Acoustic_guitar,0.9569414854049683,2.9064997306704754e-06,0.00021598154853563756,0.008063554763793945,4.5450769903254695e-06,0.002581903478130698,9.696610732135014e-07,0.018942033872008324,0.010537591762840748,0.002709113759920001,Acoustic_guitar +e6597186.wav,Double_bass,0.19278191030025482,9.906320883601438e-06,0.07137715071439743,1.7768143152352422e-05,0.727083683013916,1.4607509001507424e-05,3.844743134973072e-10,4.628953684004955e-05,0.008660862222313881,7.863630344218109e-06,Double_bass +fcfafbc8.wav,Double_bass,0.00043663548422046006,0.00742958951741457,0.0011725655058398843,2.427093249934842e-06,0.9899274706840515,7.619608481945761e-07,3.027226525009752e-10,7.066772695907275e-07,0.0010255470406264067,4.435700247995555e-06,Double_bass +444f9db5.wav,Double_bass,0.002071985974907875,2.8453370759962127e-05,0.0011164629831910133,0.00037578720366582274,0.9203805327415466,0.002391024259850383,2.167537677122411e-11,0.06859582662582397,0.003380604088306427,0.001659287721849978,Double_bass +19893aa8.wav,Double_bass,0.005239528138190508,0.006335004232823849,0.00815166812390089,0.004145101178437471,0.9292111992835999,0.022290201857686043,0.00014479477249551564,0.0012064973125234246,0.0006588822579942644,0.02261705882847309,Double_bass +f042282c.wav,Double_bass,0.007592164445668459,0.0294522512704134,0.02186674438416958,0.012215204536914825,0.9134483933448792,0.009031607769429684,1.1414123946451582e-05,0.0003337631933391094,0.003925406839698553,0.0021230019629001617,Double_bass +95e1d0ae.wav,Double_bass,0.009470943361520767,0.018485940992832184,0.039901264011859894,2.451414729875978e-05,0.9280237555503845,0.0005366338300518692,2.650059286679607e-06,0.0007436603773385286,0.002754916436970234,5.567694461205974e-05,Double_bass +595c191d.wav,Double_bass,0.016005825251340866,0.00022110760619398206,0.00013262689753901213,0.00021745741833001375,0.959445595741272,2.122271507687401e-05,2.885887306902646e-09,0.02191784605383873,5.5113821872510016e-05,0.001983284717425704,Double_bass +8073923c.wav,Double_bass,0.1857139617204666,3.9296708564506844e-05,0.0354573018848896,0.0005920203984715044,0.7434561252593994,0.0006736613577231765,4.047808133122999e-08,0.0002768693957477808,0.03376808390021324,2.264378417748958e-05,Double_bass +6efbaf90.wav,Double_bass,0.001553473761305213,0.043966956436634064,0.010152041912078857,0.00026589626213535666,0.9424439668655396,0.0006502841715700924,5.842272457812214e-06,2.866052909666905e-06,0.0005322956712916493,0.00042646145448088646,Double_bass +642ad7e4.wav,Double_bass,0.019507061690092087,7.712910155532882e-05,0.009214391931891441,2.1480906070792116e-05,0.9669124484062195,0.00011531396012287587,1.0286597129649522e-09,3.797792669502087e-05,0.00323854829184711,0.0008756372262723744,Double_bass +5eadbc6d.wav,Double_bass,0.023950882256031036,0.0006556311273016036,0.008863933384418488,0.006003800313919783,0.927649974822998,0.0010207098675891757,1.123350671150547e-06,0.028699979186058044,0.00047011912101879716,0.002683955943211913,Double_bass +1a7d3f2d.wav,Double_bass,0.033153876662254333,0.0004577343352138996,0.13000935316085815,0.00022171996533870697,0.8053664565086365,1.9007398805115372e-05,2.1058017551922603e-08,8.83359753061086e-05,0.030661292374134064,2.206974386353977e-05,Double_bass +13da16ae.wav,Double_bass,6.530111704705632e-07,5.3107552957953885e-05,7.3885089477698784e-06,3.0020894428162137e-06,0.9999237060546875,3.934352662327001e-06,3.56127141665219e-11,2.043150516328751e-06,4.666899258154444e-06,1.5345362953667063e-06,Double_bass +103f29e5.wav,Double_bass,0.01623527705669403,9.804871660890058e-05,0.000265526061411947,0.00021462904987856746,0.9805362820625305,0.000707549334038049,4.744295836189849e-07,0.00013921235222369432,0.00047592874034307897,0.0013271349016577005,Double_bass +da8ea649.wav,Double_bass,0.000268208677880466,0.007683873176574707,0.0002431571192573756,5.5678556236671284e-05,0.9911702871322632,3.6410149277799064e-06,1.8842178928224484e-09,2.5056995582417585e-05,0.0005427589057944715,7.3710452852537856e-06,Double_bass +ca348cbb.wav,Double_bass,0.05399283021688461,1.548365048620326e-06,0.025828873738646507,3.342214313306613e-06,0.9200992584228516,7.024463570814987e-07,1.3003846263681673e-11,4.27005797973834e-05,2.8907295927638188e-05,1.816415192479326e-06,Double_bass +8ce2e863.wav,Double_bass,5.5642052757320926e-05,0.0010585049167275429,6.8022823143110145e-06,3.995207862317329e-06,0.9988283514976501,4.1658146074041724e-05,5.053036548213763e-12,2.8155666313978145e-06,4.1050941490539117e-07,1.94338099390734e-06,Double_bass +462b676f.wav,Double_bass,0.02180313505232334,0.006554514169692993,0.0053001404739916325,0.02027856931090355,0.8892138004302979,0.0013565442059189081,5.626737333841447e-07,0.0019619602244347334,0.00026326108491048217,0.053267400711774826,Double_bass +b428466c.wav,Double_bass,0.004291201010346413,0.0006979394238442183,0.0013488804688677192,2.8491260309237987e-05,0.9935340881347656,9.275016168430739e-07,2.383261643590373e-10,7.281851139850914e-05,1.445971429347992e-05,1.1278516467427835e-05,Double_bass +4fd883bb.wav,Double_bass,0.08903992921113968,5.0667069444898516e-05,0.047338929027318954,0.002242314862087369,0.8570330142974854,0.00032811754499562085,3.601916205298039e-07,7.339373405557126e-05,0.0038714688271284103,2.1714997274102643e-05,Double_bass +2ac8b94f.wav,Double_bass,0.00012720194354187697,0.00038799920002929866,0.01218823529779911,5.862980833626352e-05,0.9656659364700317,0.016413062810897827,1.527296603853756e-06,0.002569278934970498,0.0010455152951180935,0.001542591257020831,Double_bass +c840804f.wav,Double_bass,0.004343887325376272,0.0004151216708123684,0.003677378874272108,3.5248831409262493e-06,0.9914392828941345,2.7639911422738805e-05,6.243219274892908e-10,2.3509524908149615e-05,4.4467444240581244e-05,2.5091027055168524e-05,Double_bass +f63f3703.wav,Double_bass,0.00019272790814284235,0.0027090352959930897,0.0018866283353418112,3.7907286696281517e-06,0.9757416844367981,4.304644244257361e-05,1.924529513530615e-08,5.209395749261603e-05,1.033957778417971e-05,0.019360722973942757,Double_bass +c0ddf010.wav,Double_bass,0.009994545951485634,0.005899334792047739,0.020884215831756592,1.4457319593930151e-05,0.9571091532707214,6.19903948972933e-05,1.0123150673280179e-07,7.329730124183698e-06,0.004562804941087961,0.0014661079039797187,Double_bass +a0cbe92e.wav,Double_bass,0.0019349466310814023,0.018002888187766075,0.004090707749128342,0.0013544515240937471,0.9566214680671692,0.015676405280828476,1.4334665138449054e-05,0.001139155705459416,0.0004433627182152122,0.0007223282009363174,Double_bass +4fb480bf.wav,Double_bass,0.002693986287340522,0.09462146461009979,0.023453783243894577,0.002007844625040889,0.8536761999130249,0.018412455916404724,9.711856546346098e-05,0.0005861828685738146,0.0013736789114773273,0.0030771209858357906,Double_bass +9dd0141c.wav,Double_bass,0.002210992621257901,1.9132943634758703e-05,0.004147558473050594,0.0002944570442195982,0.9177263379096985,0.0006637254846282303,3.3567675927770324e-07,0.0049789524637162685,0.053617049008607864,0.016341587528586388,Double_bass +deb87700.wav,Double_bass,0.0003924580232705921,0.006470170337706804,0.011414437554776669,0.07264405488967896,0.8914942145347595,0.012963365763425827,1.5177417481027078e-05,0.0027477967087179422,0.0008798040798865259,0.0009786332957446575,Double_bass +e0ecd1a6.wav,Double_bass,0.11761759221553802,7.26073949408601e-06,0.07530993968248367,7.98808741819812e-06,0.8024067878723145,6.495203706435859e-06,1.977822572385435e-09,0.00017596491670701653,0.0041394964791834354,0.00032843081862665713,Double_bass +0286fc27.wav,Double_bass,0.00024857776588760316,0.0016701131826266646,0.010565684176981449,0.003592143300920725,0.9716756939888,0.0039380500093102455,7.181686669355258e-05,0.0008325931266881526,0.000527114316355437,0.0068781147710978985,Double_bass +e2d993ec.wav,Cello,0.015993457287549973,0.000880810315720737,0.8322016000747681,0.036905333399772644,0.023181991651654243,0.02733786404132843,7.844504580134526e-05,0.0082791056483984,0.005453241057693958,0.04968831688165665,Cello +0091fc7f.wav,Cello,0.030657265335321426,0.004019167739897966,0.8634262084960938,0.008575075305998325,0.015553757548332214,0.009150154888629913,3.5921762901125476e-05,0.023201188072562218,0.002919763093814254,0.04246138036251068,Cello +e55c5160.wav,Cello,0.002367734909057617,0.00017639763245824724,0.819765031337738,0.018381359055638313,0.02092292159795761,0.027476513758301735,9.447834599995986e-05,0.07052621245384216,0.011753000319004059,0.028536438941955566,Cello +a59b5a08.wav,Cello,0.0030763440299779177,0.023131219670176506,0.8544525504112244,0.0016011681873351336,0.06634527444839478,0.008062077686190605,0.00021534760890062898,0.000416636117734015,0.0012357637751847506,0.04146353155374527,Cello +88500b88.wav,Cello,0.0008003658731468022,0.0010846640216186643,0.8773357272148132,0.002726765349507332,0.004252435173839331,0.05921375751495361,0.0005142341833561659,0.04083389416337013,0.0021101098973304033,0.011128143407404423,Cello +743ae0f9.wav,Cello,0.013850171118974686,0.01375940628349781,0.7714498043060303,0.004123474471271038,0.1445865035057068,0.014018459245562553,0.00015608547255396843,0.011627892963588238,0.003088906407356262,0.023339377716183662,Cello +9e3bc1b6.wav,Cello,0.004537637811154127,0.006096312310546637,0.8866992592811584,0.006959594786167145,0.019404064863920212,0.0012776784133166075,4.2247532405781385e-07,0.03878178820014,0.03510994464159012,0.0011333347065374255,Cello +3e2bddda.wav,Cello,0.0008472540066577494,0.0003249474975746125,0.873989462852478,0.0010499980999156833,0.0022746273316442966,0.009270790964365005,0.00016377675638068467,0.028205959126353264,0.03988569974899292,0.043987467885017395,Cello +d328db67.wav,Cello,0.004926485475152731,7.435098814312369e-05,0.9297267198562622,0.011145634576678276,0.004025542177259922,0.01855132356286049,8.405813787248917e-06,0.02609007991850376,0.0016420957399532199,0.003809317946434021,Cello +7d896090.wav,Cello,0.05549778789281845,0.0020876305643469095,0.7692105174064636,0.023265764117240906,0.0428694449365139,0.020397229120135307,1.7377600670442916e-05,0.05294812098145485,0.020403428003191948,0.013302730396389961,Cello +4bff8f32.wav,Cello,0.022654855623841286,0.0009561188635416329,0.829496443271637,0.00298074958845973,0.13938350975513458,0.0007156252977438271,5.643905183205788e-07,0.002834925428032875,0.0006671033916063607,0.00031027509248815477,Cello +5e5bca7a.wav,Cello,0.010596412234008312,0.006654761731624603,0.8744508624076843,0.0025330479256808758,0.031168732792139053,0.014684172347187996,0.0001037971451296471,0.00935219693928957,0.0019724341109395027,0.0484837107360363,Cello +811bf309.wav,Cello,0.024103520438075066,0.0005490939947776496,0.8843744993209839,8.337143663084134e-05,0.023002685979008675,0.0411430262029171,2.5957289835787378e-05,0.001930153463035822,0.007582799531519413,0.017205065116286278,Cello +5689818f.wav,Cello,0.014680925756692886,0.0027081093285232782,0.8679954409599304,0.0007980310474522412,0.03062189370393753,0.03643453121185303,2.7294612664263695e-05,0.006535788998007774,0.005673424806445837,0.03452454134821892,Cello +81d9f077.wav,Cello,0.011155270040035248,0.000868604751303792,0.8721839785575867,0.02640642412006855,0.06085653230547905,0.011934144422411919,4.172811429725698e-07,0.012904955074191093,0.0031315223313868046,0.0005581525037996471,Cello +00353774.wav,Cello,0.014454900287091732,0.00018663983792066574,0.8674709796905518,0.005203459411859512,0.0016365915071219206,0.020453808829188347,0.00039859701064415276,0.038878705352544785,0.020242542028427124,0.03107372857630253,Cello +6a210ffa.wav,Cello,0.03329802304506302,0.0017811324214562774,0.7951878905296326,0.0006532811094075441,0.14630508422851562,0.003978539723902941,5.62766581424512e-06,0.004419597331434488,0.013888902962207794,0.0004819690075237304,Cello +e97d9707.wav,Cello,0.006808340549468994,0.0005364203825592995,0.8733065128326416,0.0014223761390894651,0.01273173838853836,0.021927904337644577,2.5412835384486243e-05,0.01335889007896185,0.049233026802539825,0.020649448037147522,Cello +238b16a5.wav,Cello,0.023463046178221703,0.00010226609447272494,0.6907916069030762,0.005147791467607021,0.2650521695613861,0.003240815130993724,8.783813245827332e-05,0.00043761287815868855,0.01000148244202137,0.0016753694508224726,Cello +dc5be9d7.wav,Cello,0.013967071659862995,0.0008589292992837727,0.8950741291046143,0.0013042471837252378,0.07138184458017349,0.005789672955870628,1.3603397746919654e-05,0.0004393839626573026,0.0004415938165038824,0.010729734785854816,Cello +f9653de8.wav,Cello,0.03498363494873047,0.02884431928396225,0.6891723871231079,0.0007601315737701952,0.21569818258285522,0.005942913703620434,2.8244012355571613e-05,0.0016261567361652851,0.0018679555505514145,0.021076025441288948,Cello +31dbc5c0.wav,Cello,0.022564521059393883,0.002478692913427949,0.7716478109359741,0.018426639959216118,0.02804476022720337,0.07934240251779556,3.247527638450265e-05,0.007795616053044796,0.001143245492130518,0.06852380931377411,Cello +cbc8d551.wav,Cello,0.04940761998295784,0.032994069159030914,0.7239221334457397,0.0009896921692416072,0.044918492436409,0.044133882969617844,5.828774010296911e-05,0.0071622454561293125,0.03437293693423271,0.062040649354457855,Cello +195f544d.wav,Cello,0.02443823777139187,0.01216210052371025,0.7134106159210205,0.002161617623642087,0.013035817071795464,0.1217297613620758,0.012476537376642227,0.030460314825177193,0.001252097892574966,0.06887293606996536,Cello +22bea889.wav,Cello,0.02666202373802662,0.0006819772534072399,0.8355444073677063,0.004957371391355991,0.11861623823642731,0.00029257358983159065,5.1226802497694734e-06,0.0012994412099942565,0.00973860826343298,0.002202253323048353,Cello +ab8e8ae3.wav,Cello,0.008099587634205818,0.006700108293443918,0.9435520172119141,0.0022513282019644976,0.013560139574110508,0.010812121443450451,3.146341987303458e-05,0.013659998774528503,0.0007810111856088042,0.0005523532745428383,Cello +e70c41d4.wav,Cello,0.016286859288811684,2.359311474720016e-05,0.7271075248718262,0.03051072731614113,0.0008474612259306014,0.1099783331155777,1.3310261238075327e-05,0.05032948777079582,0.0012845551827922463,0.06361803412437439,Cello +125e6ccf.wav,Cello,0.010025235824286938,0.0015734260668978095,0.9493789672851562,0.006492175627499819,0.01511449832469225,0.0007449554395861924,6.167571882542688e-06,0.00047570187598466873,0.013672882691025734,0.0025160207878798246,Cello +2da9e12a.wav,Cello,0.03728962317109108,0.0012907404452562332,0.8677985072135925,0.0005904249264858663,0.06301482766866684,0.01787051558494568,3.6606983485398814e-05,0.004430420231074095,0.0010670163901522756,0.006611363496631384,Cello +34e4d187.wav,Cello,0.023327253758907318,0.012342274188995361,0.694802463054657,0.0012368899770081043,0.21639984846115112,0.007956589572131634,4.7162007831502706e-05,0.02830067276954651,0.011267921887338161,0.004319018684327602,Cello +52e54bdd.wav,Bass_drum,0.005245693027973175,0.32131272554397583,0.19500181078910828,0.01637999154627323,0.3385266661643982,0.05624819174408913,0.000396480638301,0.003796600503847003,0.048484791070222855,0.014607087709009647,Double_bass +6d21ad67.wav,Bass_drum,1.418154079146916e-05,0.9193596243858337,0.029122041538357735,0.00021889235358685255,0.013545827008783817,0.03678923100233078,7.4195381785102654e-06,2.1714993636123836e-05,0.0006152717978693545,0.0003058049187529832,Bass_drum +ca3f3698.wav,Bass_drum,1.932549480443413e-07,0.9987500309944153,1.0329912583983969e-05,5.6188150665548164e-06,0.0012199449120089412,3.7656270706065698e-06,4.062534131321627e-08,1.647550220695848e-07,5.8339642237115186e-06,4.094041287316941e-06,Bass_drum +aa9ae956.wav,Bass_drum,5.6653689171071164e-06,0.969592273235321,0.0003948264638893306,0.00011786282993853092,0.025275414809584618,0.0033186539076268673,1.981302830245113e-06,5.947237582404341e-07,5.7979004850494675e-06,0.0012869348283857107,Bass_drum +0ddb4bdf.wav,Bass_drum,3.108378950855695e-05,0.9324160814285278,0.0010470557026565075,3.8915146433282644e-05,0.06461934745311737,0.001591776846908033,8.028388265302056e-07,8.705612231096893e-07,8.594784048909787e-06,0.00024551403475925326,Bass_drum +921eee9d.wav,Bass_drum,0.0007721188012510538,0.750528872013092,0.0065078772604465485,0.2144259661436081,0.0019447446102276444,0.0007845941581763327,0.0001396447332808748,0.018672840669751167,0.00585981784388423,0.0003635300090536475,Bass_drum +c153f347.wav,Bass_drum,3.320669293316314e-06,0.9877222180366516,7.73706633481197e-05,3.0142426112433895e-05,0.012091451324522495,1.2851696737925522e-05,1.221718122224047e-07,2.4188445877371123e-06,5.102190334582701e-05,9.0902876763721e-06,Bass_drum +63e0ab2c.wav,Bass_drum,3.751982148969546e-05,0.9711946249008179,0.0010295547544956207,1.352152776235016e-05,0.02677888609468937,0.0006096391589380801,1.0046233001048677e-06,4.255461760749313e-08,1.4593006198992953e-05,0.00032067432766780257,Bass_drum +88780eac.wav,Bass_drum,0.004785574972629547,0.8323174715042114,0.009455549530684948,0.012722328305244446,0.024800628423690796,0.03972284123301506,0.0036101543810218573,0.013743038289248943,0.041793081909418106,0.01704927161335945,Bass_drum +bea51ca5.wav,Bass_drum,0.004427318461239338,0.735855221748352,0.01254334021359682,0.15930914878845215,0.00531527865678072,0.040151387453079224,0.0005601609591394663,0.0009530205279588699,0.04079087823629379,9.42930782912299e-05,Bass_drum +f26131d8.wav,Bass_drum,6.1101472965674475e-06,0.9753561019897461,0.0005520483828149736,0.0004923412343487144,0.00015978624287527055,0.00015984971832949668,2.8679726256086724e-06,0.018334170803427696,0.004870441742241383,6.621919601457193e-05,Bass_drum +ce75b5ce.wav,Bass_drum,1.765806473486009e-06,0.9902232885360718,0.00010656591621227562,0.00013332380331121385,0.00022346031619235873,3.2632233342155814e-05,1.7463208905610372e-06,0.000521221081726253,0.00869565736502409,6.038685387466103e-05,Bass_drum +565f3ee2.wav,Bass_drum,2.2374057152774185e-05,0.9170838594436646,0.004816643428057432,0.0009953563567250967,0.048894863575696945,0.0006792350905016065,3.483901309664361e-05,2.116105315508321e-05,0.001069348305463791,0.026382340118288994,Bass_drum +ff11628d.wav,Bass_drum,0.00011013188486685976,0.9130502939224243,0.004858631640672684,0.0006039572763256729,0.06713514029979706,0.011069349944591522,2.6731975594884716e-05,2.73937239398947e-05,0.0001776251883711666,0.0029408331029117107,Bass_drum +cdfc8967.wav,Bass_drum,0.0015908603090792894,0.5795578956604004,0.03652387112379074,0.0018541173776611686,0.3339325487613678,0.02907637320458889,0.00017068312445189804,0.0004577627405524254,0.010745709761977196,0.00609015766531229,Bass_drum +f8a99b37.wav,Bass_drum,2.3505976059823297e-05,0.9634884595870972,0.0006721727550029755,5.858096483279951e-05,0.03287263959646225,0.002076207660138607,1.5133506394704455e-06,9.592106380296173e-07,8.572212209401187e-06,0.0007974639302119613,Bass_drum +809ea09e.wav,Bass_drum,9.970014070859179e-05,0.9511886835098267,0.0022608013823628426,3.8017849874449894e-05,0.04161308333277702,0.004393840674310923,1.6972622916000546e-06,1.96824066733825e-06,4.7837856982368976e-05,0.0003543952770996839,Bass_drum +03fc1f96.wav,Bass_drum,0.03368142247200012,0.4748646318912506,0.05085822939872742,0.00992149580270052,0.34297558665275574,0.00645486731082201,3.344478272993001e-06,0.06932572275400162,0.009046187624335289,0.002868574345484376,Bass_drum +8b6a16de.wav,Bass_drum,1.8814224631569232e-06,0.9860088229179382,2.562398549343925e-05,6.5330327743140515e-06,0.013936235569417477,6.806757482991088e-06,6.370289185042566e-08,4.182428767762758e-07,7.827668923710007e-06,5.812545168737415e-06,Bass_drum +7dda9dc2.wav,Bass_drum,0.0002882361295633018,0.9235320687294006,0.0031629009172320366,0.0012730564922094345,0.024100974202156067,0.0009495686972513795,0.0006438255659304559,0.0003623606462497264,0.029140761122107506,0.016546303406357765,Bass_drum +3a9085ca.wav,Bass_drum,1.8149532479583286e-05,0.9596287608146667,0.00016165096894837916,0.00025592761812731624,0.0005120044224895537,6.488841609098017e-05,2.2321125925373053e-06,0.001770614879205823,0.037469442933797836,0.00011626698687905446,Bass_drum +4ba2b70e.wav,Bass_drum,5.632567194879812e-07,0.9721773266792297,0.0002090463531203568,5.3449988627107814e-05,2.5522436772007495e-05,0.000125782928080298,9.764703463588376e-07,0.0053184316493570805,0.02203891985118389,4.9971571570495144e-05,Bass_drum +01c2f88b.wav,Bass_drum,1.528855318611022e-05,0.8851056694984436,0.002758464077487588,0.0004198796523269266,0.09833818674087524,0.009862898848950863,1.7233427342944196e-06,3.263190228608437e-05,0.0031116025056689978,0.00035364102222956717,Bass_drum +ce3f3400.wav,Bass_drum,0.10746841132640839,0.6543030738830566,0.057095255702733994,0.0012782627018168569,0.06794877350330353,0.0019543925300240517,0.0003724464913830161,0.005020549520850182,0.05711903050541878,0.047439828515052795,Bass_drum +6a96272b.wav,Bass_drum,8.07315700512845e-06,0.9808074831962585,0.0004593537305481732,0.001110326498746872,0.016740642488002777,0.00018616054148878902,5.409874574979767e-07,2.1546033167396672e-05,0.0006003031739965081,6.552317063324153e-05,Bass_drum +9adffd44.wav,Bass_drum,0.002842589048668742,0.961566686630249,0.004156423266977072,2.7228643375565298e-05,0.030486758798360825,3.157225000904873e-05,7.882608201725816e-07,1.0636227671056986e-05,6.581851630471647e-05,0.000811440811958164,Bass_drum +7d11b3b4.wav,Bass_drum,1.640458322071936e-06,0.9987800121307373,8.579422137700021e-05,5.0452639698050916e-05,0.000942088954616338,3.389605262782425e-05,4.772594479618419e-07,4.339643055573106e-06,7.93781946413219e-05,2.2008578525856137e-05,Bass_drum +bab98261.wav,Bass_drum,1.0655299774953164e-05,0.9971764087677002,0.00013768042845185846,4.9963087803917006e-05,0.0024392269551753998,7.210022886283696e-05,1.342098130407976e-06,7.020835255389102e-06,5.076673915027641e-05,5.4876276408322155e-05,Bass_drum +c11bacda.wav,Bass_drum,0.0009591001435182989,0.8739227652549744,0.03520099073648453,0.0012624241644516587,0.044285424053668976,0.027071867138147354,8.567083568777889e-05,0.012099686078727245,0.0012616126332432032,0.0038504910189658403,Bass_drum +9a4bfb69.wav,Bass_drum,0.00022431885008700192,0.6232407093048096,0.02271605096757412,0.0005156212719157338,0.3343689441680908,0.017437726259231567,1.6296359035550267e-06,0.0010776964481920004,0.0001783157786121592,0.00023898987274151295,Bass_drum +18865530.wav,Flute,4.2866777221206576e-05,2.3523254810697836e-07,0.00018320922390557826,0.0025356283877044916,0.000857815844938159,0.9542351365089417,2.821679117914755e-06,0.0015695595648139715,0.020757727324962616,0.019814904779195786,Flute +9f6eac9c.wav,Flute,2.2415482817450538e-05,6.5194210030483646e-09,0.00011578570411074907,0.05605308338999748,0.0009157546446658671,0.911268949508667,3.2539403036935255e-05,0.02912275306880474,0.0017088981112465262,0.0007597118383273482,Flute +07db7f16.wav,Flute,1.5400146367028356e-05,0.001695919199846685,0.0017771362327039242,0.013955769129097462,0.02450668066740036,0.9381398558616638,7.386010111076757e-05,0.00030745065305382013,0.0005972959334030747,0.018930625170469284,Flute +dc6676ff.wav,Flute,1.9604694898589514e-05,4.812053475689027e-07,0.005953204818069935,0.011156661435961723,2.3308961317525245e-05,0.9741169810295105,8.646372589282691e-05,0.0076453797519207,0.0007504580426029861,0.0002475876244716346,Flute +3eaddda8.wav,Flute,0.0011141757713630795,9.79151991487015e-06,0.030343472957611084,0.06280597299337387,0.0032493353355675936,0.8649512529373169,0.0009819668484851718,0.02085450291633606,0.0001863341312855482,0.015503291971981525,Flute +1b93aeba.wav,Flute,0.009515519253909588,2.3977128194019315e-07,5.355889879865572e-05,0.004483402241021395,0.00018481395090930164,0.9841182827949524,8.275548566416546e-07,0.0006010316428728402,0.0002805275726132095,0.0007617718656547368,Flute +c683f28f.wav,Flute,0.00015853391960263252,6.5472742782901605e-09,9.151727135758847e-05,0.009315352886915207,2.2333319975587074e-06,0.9902040958404541,2.4484035066052456e-07,0.00013848482922185212,2.8993778755648236e-07,8.957307727541775e-05,Flute +55d52a69.wav,Flute,1.7629261492402293e-05,0.0012377048842608929,0.0034053134731948376,0.002518837107345462,0.009149354882538319,0.965842604637146,0.00287874648347497,0.010444299317896366,7.701567665208131e-05,0.004428474232554436,Flute +ca8653d2.wav,Flute,0.00017462119285482913,1.216346504406829e-06,0.005559372249990702,0.03254096210002899,0.00024032969668041915,0.9298694133758545,1.9189701561117545e-05,0.02786511369049549,0.0002507026365492493,0.0034789755009114742,Flute +6b27a847.wav,Flute,0.0001664415030973032,5.185025656828657e-05,0.006199970375746489,0.0024428959004580975,0.0009754901984706521,0.9820490479469299,0.00032286529312841594,0.003999611828476191,7.295111572602764e-05,0.003718983381986618,Flute +4bcc8a77.wav,Flute,0.0011408863356336951,3.336600275360979e-05,0.00023898314975667745,0.005397482309490442,0.0005562471924349666,0.9860690236091614,4.830415855394676e-05,0.002263301517814398,0.0015947254141792655,0.002657670993357897,Flute +84f5b84b.wav,Flute,3.0700030038133264e-05,1.6761149135291475e-09,3.1437198231287766e-06,0.0005512004136107862,6.84673466366803e-07,0.998970091342926,7.485427744313711e-08,1.528873144707177e-05,5.065332970843883e-07,0.00042852110345847905,Flute +5d73ee6f.wav,Flute,0.0005085112643428147,0.00014219649892766029,0.00580428633838892,0.05238768085837364,0.013071703724563122,0.8383690118789673,0.005296612624078989,0.03939215838909149,0.01616450399160385,0.028863180428743362,Flute +5d040c3b.wav,Flute,0.0037970177363604307,1.2933665857417509e-05,0.005977779161185026,0.0015231150900945067,0.000613052980042994,0.9805618524551392,7.068761988193728e-06,0.005186711438000202,0.00024388583551626652,0.0020766647066920996,Flute +6a037ddf.wav,Flute,3.415967512410134e-05,0.0012148171663284302,0.004244244657456875,0.015520734712481499,0.015592739917337894,0.9466527104377747,0.000774335814639926,0.0074956682510674,0.00016409582167398185,0.00830654613673687,Flute +35e97db3.wav,Flute,1.7003767838197348e-10,9.223277388148085e-14,3.9526777406706515e-09,5.2242626225051936e-06,2.680858356488014e-12,0.999990701675415,8.757571094974992e-07,3.919718716272058e-12,5.08526424095046e-12,3.3539251944603166e-06,Flute +d14f5df1.wav,Flute,0.0016667860327288508,3.0040639558137627e-06,0.0035136702936142683,0.01348462700843811,0.0004901643842458725,0.9417778253555298,7.83680661697872e-05,0.03714931383728981,1.849969703471288e-05,0.001817763433791697,Flute +9f522cda.wav,Flute,0.006663767620921135,2.413717892224554e-09,0.00010119019134435803,0.013655430637300014,4.340612576925196e-05,0.9781174659729004,5.509401717063156e-07,0.0010536761255934834,1.5163549278440769e-06,0.0003630327992141247,Flute +fe76c972.wav,Flute,0.00010862702765734866,8.467268486356261e-08,0.006657413672655821,0.019997652620077133,4.275883475202136e-05,0.9541111588478088,1.9943711322412128e-06,0.018696501851081848,1.2682862688961904e-05,0.00037107488606125116,Flute +562d93f5.wav,Flute,0.0002118353731930256,0.00023791322018951178,0.002940658712759614,0.03840509429574013,0.009347723796963692,0.90423983335495,3.881848533637822e-05,0.03924333676695824,0.0032095948699861765,0.0021253919694572687,Flute +fa32109e.wav,Flute,0.00013035914162173867,4.0906179492594674e-05,0.00938767846673727,0.05054846033453941,0.0005081589333713055,0.9045955538749695,0.00017962115816771984,0.022619562223553658,0.0002375417825533077,0.011752072721719742,Flute +b4b2b68d.wav,Flute,0.005128243938088417,8.935444384405855e-06,0.021732749417424202,0.04661194235086441,0.0022499507758766413,0.9018940329551697,3.977882442995906e-05,0.00904536247253418,0.001183186424896121,0.012105765752494335,Flute +af227d6f.wav,Flute,6.761951226508245e-05,1.0176021305596805e-06,0.002200361108407378,0.07189548760652542,0.00022411171812564135,0.8852366209030151,0.0028905433136969805,0.029784787446260452,8.726100350031629e-05,0.007612296380102634,Flute +85d6a7d2.wav,Flute,0.00013346344348974526,7.029399995417407e-08,0.004077976569533348,0.08291342854499817,0.0001314794208155945,0.887315034866333,0.00013321170990820974,0.02414662018418312,1.1874006304424256e-05,0.001136855105869472,Flute +3707da71.wav,Flute,0.0002899749088101089,3.912800366379088e-06,0.005642123054713011,0.09483504295349121,0.00041872949805110693,0.8290480375289917,0.030150853097438812,0.02878878079354763,0.0020061295945197344,0.008816490881145,Flute +61c914b1.wav,Flute,1.5146770238061436e-05,4.936096956953406e-05,0.0028447776567190886,0.1581132709980011,0.002027441281825304,0.8358521461486816,6.1179293879831675e-06,0.0003356290399096906,1.3534505342249759e-05,0.0007423966890200973,Flute +f5e20dce.wav,Flute,0.028926914557814598,2.98687991744373e-05,0.0816667377948761,0.08083420246839523,0.008612195961177349,0.7304999232292175,0.010896428488194942,0.027170361950993538,0.010144324973225594,0.02121930941939354,Flute +b0d9849d.wav,Flute,0.00041514995973557234,0.00047591139446012676,0.006743935868144035,0.0449540801346302,0.008820151910185814,0.9067944288253784,0.0004427846288308501,0.015666818246245384,0.0017863215180113912,0.013900591060519218,Flute +6ef82473.wav,Flute,0.01087793055921793,2.5873173399304505e-06,0.003990620840340853,0.05320436507463455,0.010498572140932083,0.8918244242668152,0.004525293130427599,0.022432386875152588,0.00024535012198612094,0.0023984964936971664,Flute +8986cced.wav,Flute,3.1161249353317544e-05,5.728405199079134e-07,1.404899921908509e-05,0.0035302278120070696,0.00017445608682464808,0.9951742887496948,1.1282578270765953e-05,0.0009913004469126463,3.250773443141952e-05,4.01237812184263e-05,Flute +a64a3740.wav,Clarinet,9.274384069613006e-07,5.765434352156262e-09,6.164494834592915e-07,0.9887019395828247,1.024960965878563e-06,0.00865160021930933,1.4208366337697953e-05,2.660181337432732e-07,2.7631102057057433e-05,0.0026018978096544743,Clarinet +ad7ec8cb.wav,Clarinet,3.541655579919478e-10,2.2281406659497606e-14,1.8873544949116194e-09,0.9985883235931396,6.319537115828666e-10,0.00011496804654598236,3.6403444703125842e-09,1.698242879655254e-09,1.948489443748258e-05,0.001277277828194201,Clarinet +8ee44fb5.wav,Clarinet,0.010055890306830406,6.350033743274253e-08,2.7930080250371248e-05,0.9824504852294922,0.00039357042987830937,0.005730930250138044,1.1034673974563702e-07,0.0005945251905359328,0.00039537757402285933,0.00035119897802360356,Clarinet +7eb959ec.wav,Clarinet,0.003456784412264824,0.0006267225835472345,0.00521831726655364,0.9612107276916504,0.0020970008336007595,0.019506404176354408,0.000611715717241168,0.003490301314741373,0.0033729635179042816,0.0004089649301022291,Clarinet +e51e1770.wav,Clarinet,1.2529269952210598e-05,2.467187641741475e-06,0.0002447757578920573,0.9711055755615234,0.00031253008637577295,0.00047874628216959536,5.9054484154330567e-05,0.019885405898094177,0.001843747915700078,0.00605517765507102,Clarinet +3f7e6da8.wav,Clarinet,5.4230025853030384e-05,2.8302370083110873e-06,3.248633584007621e-05,0.997409462928772,4.570906821754761e-05,5.6184857385233045e-05,0.00048250038526020944,2.576867882453371e-05,0.0015749975573271513,0.0003160611668135971,Clarinet +3cbe9902.wav,Clarinet,0.0001220919075421989,0.0020671868696808815,0.0076854173094034195,0.9060734510421753,0.02342905104160309,0.0276019349694252,0.0004903973313048482,0.002874269150197506,0.0004758759168908,0.02918049320578575,Clarinet +9a722e53.wav,Clarinet,3.307981387479231e-05,1.057831044981583e-09,2.5758529318409273e-06,0.9978103041648865,6.599538755835965e-05,0.00022605707636103034,8.756930292008747e-09,0.0018441545544192195,4.108146640646737e-06,1.4144225133350119e-05,Clarinet +19105b8a.wav,Clarinet,0.001993628917261958,0.00010484785889275372,0.00011693647684296593,0.963266909122467,0.00019976407929789275,0.007640541065484285,0.0005371510051190853,0.01216212660074234,0.013216420076787472,0.0007617045193910599,Clarinet +1f81cc2b.wav,Clarinet,6.333521014312282e-05,6.313098310783971e-07,0.00010075071622850373,0.9705891609191895,3.5652596125146374e-05,0.012820037081837654,3.297103103250265e-05,0.015325228683650494,0.0004689258348662406,0.0005635907291434705,Clarinet +44c5094c.wav,Clarinet,5.343199518392794e-07,1.902544614906798e-11,6.135764579084935e-06,0.9960074424743652,7.731448192771495e-08,0.0033147684298455715,3.0207323309383582e-09,0.0006683246465399861,9.5587282089582e-08,2.700446884773555e-06,Clarinet +5506629f.wav,Clarinet,0.00031582245719619095,0.01266520842909813,0.00285675679333508,0.9612302184104919,0.0010697455145418644,0.01554157119244337,0.0006899047875776887,0.001999450149014592,0.003387916600331664,0.00024338472576346248,Clarinet +ddf23920.wav,Clarinet,2.0985370952075755e-07,4.070633163877346e-09,1.0395253866590792e-06,0.999140202999115,3.4085536526617943e-07,0.00060816336190328,2.4595638024038635e-06,6.864624424451904e-08,9.509928844408932e-08,0.00024745738483034074,Clarinet +2e1cd085.wav,Clarinet,4.2077456102740385e-11,1.4049144605923075e-13,4.937727449139118e-10,0.9951633810997009,8.38548714909848e-08,0.0014962329296395183,8.180107702315809e-10,1.7933814433490625e-06,3.7495759897865355e-05,0.003300874726846814,Clarinet +dc981a38.wav,Clarinet,0.01681188866496086,3.8176631278474815e-06,2.7569471058086492e-05,0.8886191844940186,3.579655822250061e-05,0.0919552817940712,4.454578447621316e-05,0.0010252263164147735,0.00030072787194512784,0.0011761081404983997,Clarinet +a053797b.wav,Clarinet,0.0020654313266277313,2.7637208077635478e-09,4.141262252232991e-06,0.997743546962738,1.6870384342837497e-06,2.5362431188113987e-05,2.1308531827912702e-08,0.00013600967940874398,1.5840372725506313e-05,8.01225451141363e-06,Clarinet +f2310f0d.wav,Clarinet,0.00037857561255805194,0.0015867373440414667,0.0036348311696201563,0.9213011264801025,0.01794254034757614,0.02609660103917122,0.000270467484369874,0.0037925089709460735,0.0004939906648360193,0.02450275421142578,Clarinet +ce65d6b5.wav,Clarinet,0.0028899479657411575,7.868091067564364e-09,5.787249506283842e-07,0.867130696773529,8.585783689341042e-06,0.026492711156606674,7.509415667072972e-08,0.10262945294380188,0.0008307941025123,1.7271358956350014e-05,Clarinet +45de3233.wav,Clarinet,0.0013182290131226182,0.007374017499387264,0.01605105586349964,0.9095422029495239,0.037159934639930725,0.017771732062101364,0.00011813784658443183,0.002033831086009741,0.0015872291987761855,0.007043606601655483,Clarinet +8916ffcd.wav,Clarinet,3.745723688552971e-06,7.42883293942953e-13,1.4652934510195337e-07,0.9999618530273438,1.9947730578451228e-08,1.4205963452695869e-05,4.421205623827973e-10,1.853433968790341e-05,1.2137782050558599e-06,3.376377719632728e-07,Clarinet +e43f7db2.wav,Clarinet,5.070572228760284e-07,3.010248272872218e-09,0.0004568718431983143,0.9902639389038086,3.107347197328636e-07,0.005959104280918837,3.1293882329919143e-07,0.0029710019007325172,1.4595023856145417e-07,0.0003477888531051576,Clarinet +3c66098d.wav,Clarinet,3.007241502928082e-06,5.2507120179567934e-11,1.514051177764486e-06,0.980341911315918,4.1484818780190835e-07,0.01964448392391205,3.2309779385286674e-07,2.110136620103731e-06,1.6106935163406888e-07,6.24977928964654e-06,Clarinet +ad42e493.wav,Clarinet,0.0007448694086633623,9.987093108065892e-06,0.001046151272021234,0.993361234664917,0.00017061982362065464,0.002960500307381153,7.719497079961002e-05,0.0005055894725956023,2.4349670638912357e-05,0.0010996474884450436,Clarinet +740e5bb7.wav,Clarinet,0.0003801618004217744,0.006729796528816223,0.019295038655400276,0.8724762797355652,0.022435542196035385,0.026368772611021996,0.0013799862936139107,0.03055380843579769,0.00030871774652041495,0.020071880891919136,Clarinet +800b401e.wav,Clarinet,0.006849069148302078,0.0008071086485870183,0.011644288897514343,0.9528882503509521,0.018906021490693092,0.0031998485792428255,3.335520432301564e-06,0.0029958540108054876,0.0025919668842107058,0.00011439561058068648,Clarinet +3c713bcf.wav,Clarinet,3.664677592496446e-07,0.0003958278684876859,0.006448259577155113,0.988262951374054,0.0009318992379121482,5.910032086831052e-06,0.00017828482668846846,0.0036246641539037228,0.00015111823449842632,7.671218895666243e-07,Clarinet +2fc00271.wav,Clarinet,0.0004607287119142711,4.608774816006189e-06,8.513918146491051e-05,0.9879159927368164,0.00016464889631606638,0.0004647855821531266,0.009813358075916767,0.0007722683949396014,0.00012637011241167784,0.00019221429829485714,Clarinet +b0c06255.wav,Clarinet,0.00012863842130172998,3.304662143932546e-08,0.0002730235573835671,0.9682917594909668,1.3239079635241069e-05,0.02440045401453972,5.5016029364196584e-05,0.004439815413206816,5.874098405911354e-06,0.0023919434752315283,Clarinet +71c6451f.wav,Clarinet,9.556532631904702e-08,4.081334228911437e-12,4.921076524055934e-08,0.9738950133323669,2.961796781164594e-06,0.010887745767831802,5.088983900947142e-09,0.0042087724432349205,1.7191041479236446e-05,0.01098827738314867,Clarinet +5de123c3.wav,Clarinet,7.029766493360512e-06,1.5586381144072625e-11,2.5585976004549593e-07,0.9958546757698059,9.397295031021713e-08,0.0005784981185570359,4.3438323160671644e-08,0.0001150686148321256,0.0001853677531471476,0.003259007353335619,Clarinet