277 lines
55 KiB
Plaintext
277 lines
55 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import os\n",
|
|
"from sklearn.datasets import fetch_openml\n",
|
|
"from sklearn.ensemble import RandomForestClassifier\n",
|
|
"from sklearn.decomposition import PCA\n",
|
|
"from time import time\n",
|
|
"from matplotlib import pyplot as plt\n",
|
|
"\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**Exercise 9**\n",
|
|
"\n",
|
|
"Train Random forest on MNIST then retrain with PCA and compare"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"mnist=fetch_openml('mnist_784', version=1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'DESCR', 'details', 'categories', 'url'])"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"mnist.keys()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X, y = mnist['data'], mnist['target']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Split between training and test set\n",
|
|
"\n",
|
|
"X_train = X[:60000]\n",
|
|
"y_train = y[:60000]\n",
|
|
"X_test = X[60000:]\n",
|
|
"y_test = y[60000:]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Training Time: 81.104\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Train and time the training\n",
|
|
"\n",
|
|
"rfc = RandomForestClassifier()\n",
|
|
"t0 = time()\n",
|
|
"rfc.fit(X_train, y_train)\n",
|
|
"print('Training Time: ', round(time() - t0, 3))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.9699"
|
|
]
|
|
},
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Accuracy score\n",
|
|
"rfc.score(X_test, y_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Training Time: 211.507\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"t0 = time()\n",
|
|
"pca = PCA(n_components = 0.95)\n",
|
|
"X_reduced = pca.fit_transform(X_train)\n",
|
|
"\n",
|
|
"rfc = RandomForestClassifier()\n",
|
|
"rfc.fit(X_reduced, y_train)\n",
|
|
"print('Training Time: ', round(time() - t0, 3))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.9495"
|
|
]
|
|
},
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Accuracy score\n",
|
|
"rfc.score(pca.transform(X_test), y_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**Exercise 10**\n",
|
|
"\n",
|
|
"Use t-SNE to visualize MNIST data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.manifold import TSNE"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X_disp = X[:10000]\n",
|
|
"y_disp = y[:10000]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# First use PCA to reduce to 50 dim as recommended in the documentation at shorturl.at/ghMRY\n",
|
|
"\n",
|
|
"pca = PCA(n_components = 50)\n",
|
|
"X_reduced = pca.fit_transform(X_disp)\n",
|
|
"\n",
|
|
"# Now use TSNE to reduce to 2 dimensions\n",
|
|
"\n",
|
|
"tsne = TSNE(n_components=2)\n",
|
|
"X_reduced = tsne.fit_transform(X_reduced)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.colorbar.Colorbar at 0x212d8f544c8>"
|
|
]
|
|
},
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAV8AAAD8CAYAAADQSqd1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd3gU1drAf2e2ZpOQBoTei/QiTcBCsSC2iw28Ilaun2LDXq6gomKvWLCLoldBBQUVQYooCqH33kklPdt3zvfHJCFlN2zIJpuE+T3PPElmzpxzZrPzzjvveYuQUqKjo6OjU7Mo4Z6Ajo6OzumILnx1dHR0woAufHV0dHTCgC58dXR0dMKALnx1dHR0woAufHV0dHTCgC58dXR0dEKAEOIeIcQWIcRWIcS9J2uvC18dHR2dKiKE6A7cBgwAegGXCCE6VnRO0MJXCPGxECJNCLGlxL54IcRvQojdhT/jShx7VAixRwixUwhxYeUvR0dHR6fO0AX4W0ppl1J6geXAvyo6QQQb4SaEOAfIBz6XUnYv3PcikCmlnC6EeASIk1I+LIToCnyF9hRoBiwGOkkpfRWN0bBhQ9mmTZug5qOjo3N6s3bt2gwpZaOq9NFBCGkPsm0ybAWcJXbNlFLOBBBCdAHmAWcBDmAJkCSlvCtQf8ZgJymlXCGEaFNm9+XAeYW/fwYsAx4u3P+1lNIF7BdC7EETxKsqGqNNmzYkJSUFOyUdHZ3TGCHEwar2YQf+E2TbqeCUUvbzd0xKuV0I8QLwG5qSuhHwVtRfVW2+iVLK5MLBk4HGhfubA4dLtDtSuK8cQoiJQogkIURSenp6Faejo6OjEzwCTQMNZjsZUsqPpJR9pZTnAJnA7oraB635VhLhZ59f+0ah2j4ToF+/fnqWHx0dnRpDASJC1JcQorGUMk0I0QoYg2aCCEhVhW+qEKKplDJZCNEUSCvcfwRoWaJdC+BYFcfS0dHRCSkCMIWuu7lCiATAA9wppcyqqHFVzQ7zgQmFv09AMzgX7R8rhLAIIdoCHYHVVRxLR0dHJ6SE2OxwtpSyq5Syl5RyycnaB635CiG+QltcayiEOAJMAaYD3wghbgEOAVcXTmKrEOIbYBua0fnOk3k66OiUJSPDzq5dx2nbNpamTaPDPR2dekiINd9KURlvh3EBDo0I0P5Z4NlTmZTO6Y3Pp3LLLfP54otNSAlSSoYMacnixTdgsVTXMoXO6UiR5hsO9Ag3nVrHlClL+eyzjfh8ElWVSAkrVx5m8OCPwj01nXpGkeYbzBZqdDVCp8ZwODwcPpxL06ZRREdbAFBVyQcfrGXevJ14PD7i4qx8++12v+evW5fCyJGf0axZA84+uxW33NIXRfHnWKOjExyh9HaoLLrw1al2pJQ8/PBvvPLKKlRV2zdgQFO6dGnErFmbivcFw5IlBwCYNWsTd9/9M7t23UXLljGhn7TOaUGdsPnq6Jwqjz66mJdeKh3cuHp1MqtXJ1epX6fTR6tWryMEfPLJ5UyY0LtK/emcnug2X516yfffb+eFF/6q1jGkhBtvnMf48XM5eDC7WsfSqV+E0+arC1+dKnHsWB5PP72M0aO/5PXX/6Zkoqa5c7cxZsw3NTaXL77YQps2bzB27Lc1NqZO3SaUfr6VRTc76JwyU6Ys5emnVxT/vXDhHu6771eMRoWGDSPIzHSEZV7/+982LrpoAzfeqJshdComnAtuuuarc0p8/vmGUoK3JF6vSkpKAW53JVbSQsyzz/qfm45OSXSzg06dYtasTdx88/xwT6NC9uzJ4rbb5rFq1WG8XhWfT+W33/Yye/bmsGnkOrUP3eygUyc4cCCbu+5ayE8/lcyUJ/GfxC78fPjhBj78cEOxL7CqnrBHn312K1asuClcU9OpJYTT1UzXfHWCIivLQf/+H7BgQVnBW/tRVVlK8AL88cchLr10dphmpFNb0DVfnVrPtGkryM11UbrqlEATwFXRfos6rHnt+aefduP1qhiNug5yuqIHWejUWux2D5de+hXLlh0opz0CKIpEVasivMJrsli79hgDB7YI6xx0wodA93bQqaXcdddCli7d71fwAghRpPnWTQYN+ohFi/aEexo6YUIAJmNw20n7EuI+IcRWIcQWIcRXQghrRe114asTkAcfXMTHH2+gogLXCXHB1n6tvYwe/VW4p6ATJoQAozG4reJ+RHPgbqBfYXV3AzC2onN04avjl3Xrknn55QqLTQOQlhFF5/bp1GXt1+tVOXYsF9Ayr9nt7jDPSKemEAJMhuC2IDACEUIII2DjJKXTdJuvjl+mTFkaZEvBzr2NT96slrNmzRFuu20B6emaJh8fH8G8eWMZOrRVmGemU50Uab5VRUp5VAjxMlpFHwewSEq5qKJzdM1Xxy9ZWc5wT6FGueKKb4sFL0BmpoNzz/2UzMy6b1bRCYwQYLIEt6GVUEsqsU080Y+IAy4H2gLNgEghxPUVja0LXx2/3Hhjr3BPIeyoquTRR09aB1GnLlM5R98MKWW/EtvMEj2NBPZLKdOllB7gO2BwRUPrwlfHLzff3Jf4+AoXa08Ltm5ND/cUdKqT0EVZHAIGCSFsQgiBVtvSf0mWQqosfIUQnYUQG0psuUKIe4UQU4UQR0vsv7iqY+nUHIoiOHp0MibT6f18HjCgebinoFPdhED4Sin/AeYA64DNaLJ1ZkXnVPnOklLulFL2llL2Bs4E7MD3hYdfKzompVxY1bF0apb161MYObLtaVsnzWhUePrpYeGehk51ItCcwoLZToKUcoqU8gwpZXcp5Xgppaui9qFWa0YAe6WUB0Pcr04NIqVk0KAPGTz4Y37+eW/AAIv6QpcuDdm48Xa6dGlYvK9Dhzi2bPk/oqLMYZyZTrUTxuQOoe5yLFDSY32SEOIGIAm4X0qZVfaEwhXDiQCtWuluPbWB555byT//HA33NGoMk0mhZ89Etm27M9xT0alpBGAJz9Ah03yFEGbgMqCohsu7QHugN5AMvOLvPCnlzKLVw0aNGoVqOjpVYMaM1eGeQo2yaVMa2dl6jt/TkjBqvqE0O4wC1kkpUwGklKlSSp+UUgU+AAaEcCydasTt9oV7CjXOrl2Z4Z6CTjioJ8J3HCVMDkKIpiWO/QvYEsKxdKqRyy/vHO4p1Djt2zYA+yzIfwG8R8I9HZ2aJEQLbpUlJMJXCGEDzkdzLC7iRSHEZiHEJmAYcF8oxtKpft58cxQREdXwbaulNGpkJMEbDzk3QN4jkN4SMq+q/oGlBM8OSB8EyWZIjoTs20H1VP/YOhp1XfOVUtqllAlSypwS+8ZLKXtIKXtKKS+TUiaHYiyd6icy0szhw5PDPY0awWo1sO7nlwFv6QOuuVAwo3oG9eVAWh9IUSCjC3j/ATyAHRzvQ2oC+PTkPjVCXRe+OvWPhAQbl1/eKdzTqEYknTs1IDe5OS2aZftvkj899MP6MiAtDnwbKmiUBxltQC0I/fg6pSnydghmCzG68NUBNRs8W8vd7N9/P5bBg+tblQeJ1eLh6SesbNx0FyZDSgVN84LvVs2DvKchvTtkDAT7ZyDV0m3yP4K0RgSVflNNxpn3Ml9kw7uZsNcN+JLBPhvyXwbPTu1nxgA4PgIc31Fh4mUd/9QjP1+duoT0QM7t4PgShBmkFyIfhOipLFi4m1tumUdqan3K6iV56G4PL7w8Fkw9tF3G6yD/Mf/NzSOD69aXCum9QaYDhZ4iOevBOQ/iv9O03YJPoeDBSs3Wnf8y/+JFFOEj3x6FNBw/UXQp70FO1NADPP+AeyLEvFqpMU57ioRvGNCF7+lM7kPg+ApwQVEk5LGXyZ22gPN+3sR+JDeaLucbT3fCXWstFLz44kgefHBo6Z2G1mD5F7i+L9PaDDHvBOzLwXFyOEQD1x5smeMoFrrFeLQ+k5sAqac032iRjyj82K2Ky89/oISmKwvAPgPUDPDtB9MAiLoXDC1PaezThqLw4jCgC9/TFekF+0y0vM+FqMAEO9EH15IuIxmdex1rfc2oD4IX4Ntvt5UXvqqqaaYlMXSDhKVgKB/0I1FZyzscZClWr49RmfOp2IxwaoJXSooFL5T+PTBucM7SfvWsBseHYL0BXPNAdYDSAGQm4AHTWRDzMRhPc+EcRs1Xt/merkgHUGZFfRWQDMILY/KuYaOvCbKeCF6Adev82HfTO4L3j9L7fFvB8Y3fPnbzI4dYTpQ7nTaObeyKbEeBIfT1b4MTthXhBpkLjrdBPQxkgLoPZLamJbsXQ3o78J7maVj0BTedGkdEgVImXeIezQx82NeAtd5meML1PlZNGI1lvu7ew5pA8kfeQ3537+JHfNJJgTGKbVGd2BrdmV8aDeOgtanf9rUbL2SOCfckwovuaqZT4wgBMW8DJ7Q2XxvABJkyApNQA51ZZ7n66q6ldzh/rKC1/4VGN3kIJD7FCEJBFQaaOFNp7kytmyVEfesg5/Tw6faLLnx1woL1EkhYDOaLwNCexWpfDjpjaK8cR9RNUVIh7703uvQO85AKWvu/26zElDLFRPgcDMxejxG17hpo7K9BsgGybjg93dV04asTFsyDIeFnaLyHFVtfpH/GRBZ4OvF6xEJsuBHUHw24nNucuRcQ7b9xxO1g/wEyzoOMIZD3CrhW0diZAUiWfRbPpHbdGWM7izNHTuS35e2qefbVjaot1qW2PL2CO0KYTD1QVZ+A7WUtetL169dPJiUlhXsa9ZbNR+DbNZrF4ep+0L1M/EROjpNGjV7C41E5sYJfZ/W5crhcT2A2l7mLfJnaopsskdXMNFqzBfvKl+A6borlka8vZ9bDrXDZT/QVYfbw0y2zGX7VfuhSXVdQU1ggfj5YLgj3RCpECLFWStmvKn30ayJkUoU1hkuM9wpBjyeEMABHgYGBikvomu9pwlPzYOA0eO4nePYnGPAMPFto8nR5VC75bAcJS7LwWEyFZwjqk+Dt2rVhecELYIiHJsehcQYkrIbGHrAM8yt4AeJcOXz7ZLNSghfA4Tbx6Icj4CYgvxouoEZxQeYocJT1fa6HVJ+3w0mr+ujC9zRgRzK8sBAcbvBJ8Kng8MC0n2B3KnRekMKCbu3wndEUPPUvl6/BIPjrr1tO0igBzP3BYAT7m36bqAgOFSTgyPf/DrrD2xBaU0+eWSpkj9GyreU+dsIUISXk5oCvnnxPKrfg1lAIkVRim1hBz2Wr+pRDF76nAT+sA48f062qwsvLPRxs2RBshbXKetW3XA4wa9YVxMRYK3FGeVNchimeHxPPJ7VJU6xWr59zoK2SpSUnqxfCtwgPFDwP6QNgzqfQrRl0bgTt4+C5/2pforpM5YRvRlHVncLNb3ViP1V9/KIL33rAjmQ4mBH4uNEAih+BIgTsyPNAyerEz10BhvrztbDZjIwb17OSJ91T6k+PMPJH/EDcioWsiAQemrQSW0TpAJUI3EyzLYXdQCbUo3VKDc82WDAR0lLA44H8PHjnBXj8cnDU4Xp/1eNqVqqqTyDqz112GvLlKrBOhC6PQ5uHIH4SrPNjYRrabBcKznL7BZJR/ZXSanHTGFh8D5zdAQwnhHJ8fAQ9etStGns2m4nDh08hh3/UPSDaApoOfNTapPjRlWeK5ob79zD1waXEx9oRSFop2Xwa9QOXmHdpje4/kSqj3mAABnggCngE+BAY44HZP0H7FnBnP3DU0Tp4oa9kUaqqTyB0b4c6ypaj0OO/5fcbDeB4F4wlntQblnTmz5xhPPDLa5rrmAApFe7sPptpk24hdp0Ll9VcWgO2u1kZmceQLgml+n/00cVMn/5nNV1V6DAYBAUFj2GxVMFBM/8V1Lzn2RUZw9boM1CFdgcKqdKxYB/tCg6i/OPBNsmD8KJFa9vA08rAtq8609W4E2Nhwp06b4mQwB/AQKBoTdZTuN2GpvEPHwqz/vB/fjUQEm+HlkImBfl8Fvef3NuhsKrPYaBdyeISftvqwrducuErsGirvyOS5//l45FLNaGTk51KRE5zzGYfR3OaMW/75QghubzLPHDYadY7m/X5PkZscZFlMoGqYnJ5ectSwH/6N/Y7drdu77BtRwaoNf/dURS4887+fP/9Do4cOZFv12RSCl3koEOHOH755Xrat48PyZgLuBW7TPMrQU0+F1e8tQhygAygH6SOSOCpxMdo5T3Mw9mv133BC5rwdaGt+pe9oFS0ImJmBZIOQ9NmNTKlkAjfVkImPRzkeJOCdzULBj2rWR1lX3qAAxJmvzmfq8yRdLjwQlSft/iVuXnMMe4Y9G5x01S3FmDQJ8rA8YE2drvBLSVdLRYUERlw7BnfX8fwkZ8jj2Vr7hM1RMeO8fzyy79p1y6eN9+8mOxsB4cO5dK+fRyRkeZqG3cY01kgbtWSoxcJnkKlZdBm4BLARvGxRhznheNPctTQpNrmFBb8CV6AWKATcEzAkYM1JnxDgp7PV6eyDOkAe9L8H9vTcAjfjGnH3Xv3EtekOTu2N6VT2yMoJSz8TpeBHQeGkViYU1wI6GSBYF6Qe7SLxfTLXbjfWQEzllX1UoqZOLEvZ53VgsxMJ82bR3PppZ1ZseIgqan5DB3aqpwmGxsbQWxs6DOKlcVGQ67ga/4QUzkutwMSq7RxljqJhqnXQ2NKfWwKYJEuOnr31Q+tFyr+WhgKj7sFdKhjla/ruvAVQhwA8tAySnullP2EEPHA/4A2wAHgGillVijG04ELu8Nnf/k5IAQOa2NUVWXzV19x1n33YUiYRW7+KExGH5E2D3n5ZjKyYug15F0/HZycBCNcECVYMKY3cuYfIfENvuCC9rz//qXl9l90UYcq9x0KTFgZzvQTQkgABU9B10N+BZMZbz3MjhEAH3AQuNoLpo+AylXsCCthTKYeSm+HYVLK3iVsIo8AS6SUHYElhX/rhIjDxys+7nU6sWdo/mcdu5yHaLyPpF13s2zN5Ww+9AzNex0gNv7UXw9nNYd+jSwwrj9YTSc/AejUKZ7GjcubMzp10swJdQqfHfKfq1B9qTdab0VI4AikzG3E/57+F5/LDWz3rkHWlUdPPa3hdjlwXuHvnwHLgCBN2zonY3QveHiunwNSInxuzJGRxJ3fjj94GlDpGHcZ5456OWTjxxpgdQ8rg/Jz+adJAziUWeEC3Jw5V3PllVpKR59P5fPPN7Jr13H+859+tGkTW6ptFnvYyEfkk0o8nejNrdhoGLK5Vwkp4fil4FkQ7pnUDgQs7XY2M2InoqLgxcCP7GUokrvpj6jtjyABVCb+JoSESvhKYJEQQgLvF0Z+JEopkwGklMlCCP9L5zqnRLcW0CIOjvgx5Fy2bjIxw1uy59wfir/8KawjkT6cw1PF7fJynbx3/wwOfvU+MQWHiRRuWkUYGPzQQ7SbMi2oeayacxXvvLOGV19dhdPpY+zYblx8cQceeOA39u3LpkOHOKY/3oce7dz43G4MZjMGg8JNN/Xx298BlrCGN4r/PkoGR1nF+bxOLG0r8QkFz3EHPPoHrD8KfVvC80MhPtANmTs5LIK3bFmh2kK+sDEjdiJucSL5gQv4Ux7hHNGKPtTyRccwmh1C4momhGgmpTxWKGB/A+4C5kspY0u0yZJSxvk5dyIwEaBVq1ZnHjx4mpc1qQQFLs3l7M892v/QID1cn/UOt13t5ujYP5CKwK1aMCkeDIXJ0YfyX5rSn5xsB/e3GEjTgq0Yy4RjmYBxk26j7Vt+oyeDJj8lhf+NGUPG+nVYTUYcQuHiGe/Q8/rAaaTmMgaV8uG7UTRjFO9VaT7+WJMKg6aB6kbzWTWBYoXVT8CZZWNKpIQUM/iZ3+nKSusg3oq5HYdiK31AqozwOrnHeEO1PTVC4mrWUcikIAs+i8tC62oWEpuvlPJY4c804HtgAJAqhGgKUPjT79q8lHJmUax0o0Z1K4Iq3ERaYOVj4P1Q4Hhf4P3EzKc/3Iv8t5MConCpVsyKG7dqxu6LwCcFu9BSmc247y0SC3aUE7ygyaCVMz8AV9XCtL6+6CLO3LKKB2wuJpkKmGTIY+f/3cLR1av9ts8nxa/g1Y4ln3xAtxs+nwmXnQdXXwQ/fXfS5OCXfgyqHe2i0X6q+XDZZ/5ae9AFb2kM0v9iqwCM7j8h586andCpUFeTqQshIoUQ0UW/AxcAW4D5wITCZhOAeVUdS8c/BqX0mtcOdy4W4SLC4EQRkgiDE4twkeZuUmyB2//TPMzFEqc8xzzAoQOnPKe0LVsYdmATvUxalLJBQJQCV5rd7JrymP/rqCBvn5ACtmyEHX4jS7QsW1ddAE9Mhr+Ww9Jf4Y4b4ME7AvYpJaTuoXweHQnHdvqR28IMIkDy9dOUPu5NSD9ixCzdDHOsQDreJd9Xi3M/hDCZemUJheabCKwUQmwEVgMLpJS/ANOB84UQu9HiX6aHYCydIDAZjmFSSmtoBkWlsTmVe/fdh7INjpojK8z9EqVAQmZjxDZouhMWVzJHrX3ndtoZZLk3TgH0XLvC7zkRxGGmQfkDqqTTm7vhvN4wtDu0jIRlv5Vus2gBbFwL9hJVGOwF8PWnsGdX4IkGeiNWArwtR5+ae159xSpdvJd+F1OPT+OCgt+w+gowSzeX2hfS1bMTgNc877KYA+GdaCDqsreDlHIf0MvP/uNoCYV1qoKUZK36i7zlvxOTEE/MlddCQumVf1XCl9nwaQ5EKvCvZv4likSwxWVDAhtuupM+zy7zq/0aAUP/s8iM1kz0KT644BCsawu9g4xpaLrRv2lBCIj1aWOqePFQgIkolELV4jyeYzH3oRbNS0LzBcl0e+5EcnPpsMPVF7Jlz5u0iBlFHO01TbfAzxNCKPDnMujQye9cWnWBQ9spnYVMgbbdAlxY5L9BSMgZXzy/2r6gX93EqznEuzfR072FsflzcGOimXrCytjas5f3rOvoSkOaERXGmfqhKJl6GNAj3GoRUsIxL9gUiDNAntvHun9fw5mrfqW5y4HTbMH+9MOIL+cTce5wAA57oNtuLcKliMa5Qxke+1sp7dcnFXbYu+CR2jct+brL+X3l7YxY/g4CiaFQ+ihCgbOGct/bv5SeG3BHMvwVZKkyi9kc0NNTCNjG1+xgDj68CARtGEl3rmcLs1AwomAklvZ0nb6dxFfWlj4fkFJimf4qC6f9zfb8UZgfj0V96FGifrRzx+PvY3MXZnEzGCA+ofwkCll0M/R8Ftz5aMECCphjYNGEgKeA7Xry3bOJdPyM0IVvMUZUGqql3W8EcHX+dxwxtmSZtRPXie7hmVwgwhjhpifWCTNSwoSj8EVu6appQyKg7fzZvPPSRKKcpQsaZkbHE7kjBYvFRJc9sKN0allsSj7PtHmYhqZ0LIoTl2rFKa08sf9F0j2lXX8i9x+gy/ffMSZe8sGg4Rxr1wWX2X8Qf7SA1M4QEYyxKj0NuiT6vV5vtJV5By5EBpH0tveUPTT+5SBr3+xNVi/Necaa4qTN7EOYDzn56pXraGvdh9WgLQ46fRZ27uvKM2c9rV1BbBxsOQbWwM6cbh9MT4K1x6B/C3i4L5gqsPF5cbHSPYqhx1dgXOWDQSCFLoMDUfS9zlZaE9d4n/Y2EgJC4u3QVcikWUGO1y+03g668A0zww/AUrv/Y79OvoALkn4rtz/HFs30txYy6eKhtNztr+4CKPjoG7WG1tYDpLqb8E/eYDwycPIZK/jJ+FsSbRSzEDzWEP6bQKlcEeXYuA5GnBmwp9ShCax+tw+uphXbMRpsySa3a0xhSbkS4s0n8UkFjzBhNZR++rhVE/EP5dArdQeRj75PTNcyJeMD4UsB1y8gTGAZDUqs32ZpbORPnqdD3ga6j9iJuBXkpaEXvvVNqZaAiJoO0aGJtQqJ8O0mZNLsIMfrXQtdzXROjVxvYMELIAP4RwrgL6cgvQKvJxUDSfmDmJsxlpW551UoeOFkgrdoVIFbwtR0MOyAFrvgkwDZOuTGNXii/KuPAkhceZwLz12BNaXikXO7xWh5hst8Fj5FQTFILIq73DmK8JH7UiR/ft6HRV3f5w+exleBZwcABTMgrS3kToKc2yG1OTh/9NtU88qQ7IjuxJqpvfC+HrhwRVVVm9qjGlUdAVDwWrinUZ467O2gc4psOokb7ScX30S+tXwuBLfRzJ9dBnLuwZq4OQOPcNSr2YHfKJFnYocLfszzsOjKnWT1iAl4rgDMmW46vbWn4uEreAAFwoCKIk6EhKWQxAYqCBjxbIfcBwEnyAKQ+YAdssaCWv7pEk8nTGga+8GLW/HX2/2RAe5Op7Cc0v9IAocszXCJqqfKrF0CvJb5SYfY20EIESuEmCOE2CGE2C6EOCtQW134hpGOAe8riQEP3wy7hp8GX0K+1YbHYKTAaiMvIoorp83FZzSSW1bdKjIhBTAlCU4l+1jFL75O4N5UMGwD8zboshdm5C5iqS+WH2Zcyu4b2+IzBhagTZcEyItZApda/oMSaG5s/mSzv337WVxsY7aTzj5+IYNt2kHHl+BXM1bAOd/P2ApDmYKZBhiJ4Pjwtuy2tcVbRgB7MbDd1iGwZTuAVJTAcVMs62O6k2GuekL4WmW6sI4L9wxKE/rS8W8Av0gpz0DzAtseqKHu7RBGEk3Q2ABpfmRiE/NRzrDtYNzUr+m/bTXD1/1OZoN4/jfsGnKj/dsiEaLCiC6j8DI+cSYfp9xOqG9JFYhWMhjT6FsGRP9DvCkT0QDWP9ud5IsacfbY1X5HdCWcXLMzC3ep3Ab+8hxIqQlpi+L2K3yl9OH17WCl4XMyxLbi/SaiuEA0xOb3waSC9G8WiaUtl/IpqWzATR5RDRLZzxja2rWoDZ8wsC66B69H3k1by0GmZT6NocQYgsZQpjpG0X9uj60NGxt0Q0ES68096edTp2jwerhnUJoQejsIIRoA5wA3Akgp3WjFpfy31xfcwsvqfBh4qKSfQxGSBoYcmpsPs93R4xR6lhjx4i0suGURTq5oOIeL4+fzzrF7+CdvSFWnXm48gAjFjleaGNRgJXc0e1PLKaFKRpz/B7Gbc1DU0mf8Mbs/qRcEn3wlUIIZKbX+lADPFKPqoVP+fnZGtcOnlL7bIlQrl6Qt1EwOpbBC411gaBnU3Lw4OSyXUKDu5IDSmM+EEVehNmxUPQx3LKeXz8mQiPtRTD1h+eXQYT5SAR+CAoONv9Y/cxcAACAASURBVOL6k2+KxqB6aepK46zstfVr4c16C8R9GJKuQrLg1kvIpF9O3g5ANOMgWrGoImaWLB8vhOgNzAS2oWm9a4F7pCz3xdLa68I3fPgkdN0Nu7wq/ixABtxEKA7y1cC200BEK1n0iV7HHkcnGhhyuSThBwY0+AeA9fl9ef7Q1CrOvmLMhcL+qkbfAGDKcjN4whoars5C8Up8JsHBq5uz9k3/2c0qotIZvqSktf0gDoONNKuf5HoSLspLILrgW8BO8bto9FRSo85nO3Owk0EjutKVa4kMMlPXXrL4zLGTpIIsslNtHFzSkY6Opnx2i6B1Q7TcGYOawX2ZOEaa2dSgK8kRiRilj/a5B+jk2otAkq4kEK/mYArWXupHWksJFICILHvMiLaaVIPllhN9J3GVCY6QCN/eQvpxKPI/XuOKvR2EEP2Av4EhUsp/hBBvALlSSj+lbnWzQ9jY7YIee7WvvMC/+c+HiXw1uETlZclTY1idexbT202mmeVYqWOGU7L9Vo4IxcG2gu5QKHw9cWaWzx+CbW8+DVdncvjqFkjjqd+AlRXAB22tMUr/Hg8q8J73AYS8ictM39LebMFgu579pnTW8xy+QsFUQCpHWcVIXieqAgEspSQz0wH5Jma82J8sp6HYGpSqwODnYP+LYLZY4LvVMHEcEdPWM3DQJoizwrjzoe+nED+EKaxgo0xmYu7HjLQvRUHFgE/T8v2NDVqQf89Cd9pCeS0eBEwC7r0Eeo4Gz19g6gG2e4ECSA1gyqoOHB9D5K01N95JkKHzZDgCHJFS/lP49xwqKCKhC98w4JHQd98JXUMGfKmsysumglNGMH33Eww78DsFjkh6d19H+067WJ4zvAr9VoxFOLmz+Wv0jUrCK8t/veztozjUvmohppXOUFh4ghdTYRHM0mLLrVp5Oq0j+Wo3nhLn0M4Mi9oeYz3PFgteDRUPDrYym4FMLj2GaznkP0Vu1maW/xXPlJfPY/3mwkohsY3hklvAZManQp4T5m+Aq/oBbdvDb6u1oBSfD5o0LdXtYwzhCbGM92Ju5YvosTTxptDQ2JVHxCWQMRS8f59orHQA2w24vngf65GjMAjIBxYX/oyOhryJEHUJ8J8So1T+zapK1KLkRFIBd4iSqUspU4QQh4UQnaWUO9HSK2wL1F4XvmFgYT4UlFJ1i3Tf0jbfqlv6BCmyOf/bPQ51s4Fff7+YVp0OsvuCjtVmRJzY9G36RiVhVjwVZk0LH6JYbS7SRj9LvYn8Qo8Ku/RyfbP7WS72BwgdlhxiGVlyN0P/OIeopH3QPRV6fAg4aBAJo0dkMHzIfoZfPYHV61tAdhr88C5cfQ8ADjfsL1t9upH/WgNmqXDNe7tY/PEMsq0qLQyxXDJlEMowAzRaBdIO3r1gaANKtFaY4bImyCfuRXxRxonc44aBAWz9ojnIirKPGdHUaIXAXs1BYru2aueHECnAawj2DSyo674L+FIIYQb2ATcFaqi7moWBXS5/ZoaSy94ydM6ZikA93wTtFFyuCHYrnUP6nlUSq2JnYINVmJXKC10pT5p6t+oU+aYVasJCSuL/yqTXkk3YHNqayEMtp9Haul9rEuABpTh9nHnpN1jGj0dO/y80fBtwnDiuQKTNw8tP/nripPxs4uQOzh2ymJYt9vHxqgKm/CDJyCvdtwc7eRwp1rhXTp/Obw88gDtpK7aV28lcvoqvLrmEw38VVk8VNs18oJTQJq8Zj2jfCSJsJ67bZoNHp2nh1v5o+Dd+Iwks10PCamjqgaYSmvqg8VHwl30uGEy1K9eWFAKf0RjUFlR/Um4ozE/eU0p5RUVFg3XNt4ZxqvDqSYpfhjTzf5EQuQj4FjhPVNsjN1LJr8CEUjGBvOSqtXyOgD5PbmHI3iSe8j7D2Klf0/uW9RWOp0pBh5n7iduQjdGpanHZAWoAtO7mgoFtINqK2H6Uwd1/5Lc1d+HxmJFSYXqKh5nLjWx8StCwgZd1vMdBlqJgQCLp7P0XK59/Ho+9tAbrsdv5/YknmPD776UH3L4Fpj0GSaugUSJcOQ4OH4S4BLj5Dhh8TuALM7aAJk7IexJci8DYFWJmlBbqRRiagdIQ1Eq6wRmGQcLCyp1TA/gM4akjpAvfGubrHC1F40kJtdQxotkAq/F7lumNw6Vay4X8BnspFQVMFAnmSn8kJU405Hk484FNNF2UhjQIDoxrgaOZlYSNOaQNiuT/hr9GAeUjCkvikwqGfFUTvKAZ7l2UupNWe/vz74Iv2OPrCB8BXhWpqiw45oWtJwyMbq+J4/kqzy8QTBj3KYdYjoqnOJ3mTuU7osY1JnNmGfUYSN9aJqn87h1w0VlaDmMp4XgGHNoPDz8Nd94f3GcljNDgOeC5k7eNvAvy7guuX9NFEPMSmGpZRjO09RZfmIq46WaHGmRJPtyTGqbBDUBHqvU/LjHxccpEnKqluJCxVyp4Q2jmqLR5otDMINw+Lum1mFZzj2HO82LJ9tDp3f00/S2NjAFxLP/+LOztIk8q3E2Kj7QLS6i6EphNsdXhqNqMEXlL2KN2ItaURf8Gf9OpwS6wGKGNVSsrUAKPT+HnLV728WuZxT3wKW7iH2xTal8ajThES6Lan1G6oxemgsNe+sOx2+HFqeA8eeaOShN5DxgHBNc29u1aKXhBE75eDEFtoUbXfGuIVXa47DDYgxUcodR6fWimhxp41P6Vew6Z3gSuSJhDojmFbQXdEfgYEbe4SpckyprEK/li0PXFXZhyvaWMIgJQvJJDlzUFU/AfTlafWP55sxf9HtiMwa3C2yCtkHd9JFN5Ahdm/t34Ey6O/wmJxCBUXKqFV488zKZufeC30hNvGu8KWLvO0iIKk81Gut3EbK4jizgUJF9viMD66XpuvLHQT3rt36AGWBA6fAA6nuH/2KkiBDT6B5yLIft2pNwbwOCkgKGp3yO1AYnAHaZs6rrwrSGeTK+E4A0lRQ6hNRgitcPejen2E6UgPug03r+gPEVbQpF9OGgBLCXNf04J+BHEr89hb2UmoAgOjW2Jp4GRITetxWs1sLZNDw43bcGWI93pG53EhfELMZVYeIxQHDzW6ilePPw4zs4Wtu3Uir/YzD4mnWfDQiwOyi8GNLJ0J/G/gxjzeDLH1VgkChacqI4C7rzzZ7p1a0z//s2hVVvNvlsWrxcaV1/5drd1GG8kfEajOZM5o8FhepyRRqSthF3NMkZbFKylhNPsoAvfGmJbDQYQlaIWxKWaRQUXf4rqcFlNuMJuhMAVbwrovOdMPIXMYYogeXRTNj3ZBUcTC4evagFCcIZtm5bcXSl9zUJoyYDuavYKtoccbEjqzMvT7+bB8c258kzBESaymldLmB4EBsz0FDexcaSB3Ge/IDY/nX/xPc3RXMKS7U1479kY+v9wJ9z/X1i3WjM9FGGNgCuuhZjqC6AY/9M6frhhOVGcy9wPv0FKBa9XxVBUv8/1R7WNHSp0m289p0vVMwPWWbYW9KhWN7Jg5Pf2yeVruBWR2esUhZMQ7LqrA4evbglCkOJuQoanEQuOX87fuYPxyfK3l83gQAjo3W8nD972KJ/e+yZbtqTRgrM4myk0phc2GtOCsxjBy0ia8WT6MoTi5hY+ogVHMKBiQKUZx0hc+AjuggI4Zzi8/gE0bAQWq7ZdMx5eee/Uru0kOFzQ/H7JN+NX4852c8u49QzofZSoSA9GoyZ4VRV27PEycth0jh2rnQmCwmnz1YVvDfF042p1NKjVfJGqFUQrJYClBG8N2mEEqKbyUloArX5MrnL3q3LO4oG9b/Jz5qWszh/MjKP3MOXA83jU0i+XRQ8KIaDXhbkkp2UyYsRneDw+GtGdc3mG0XzIWTxCDK35im3YBlrp5NiOCQ9KCQdwBTAID9u+/VbbceV1sC0F1u2HPZnw6vtgqR575pgZcOxgJuTlgBTcPHY9tojSdmtFgdYtctizJ5n27d8iPz9ggq+woZkdjEFtoabKwlcI0VIIsbQwcfBWIcQ9hfunCiGOCiE2FG4XV326dZfBNri36qlZ6yTHPK14eN+rrM3rx257R/7MHkJS3pmaIKqhxE5ClahW/193UcVUFw6vhXeO3YtbWvEVZpFzyQgOOtuyNHtkhef2uywbp9PHokX+rc5rScYcb6DDMDdGPxGDBreL7AMHTuxQFEhsAhFBlpk+RX7bhhYOXfg0URT//0fNNq/gdHp57rnaZ4LQFtzMQW2hJhSarxe4X0rZBc2T9E4hRNfCY69JKXsXbrXPu7qGuaT2hLTXOAdcHXjxyJM8fuBlZqbcRdfI7VpinWqLoChN+lnxCLW8gPDYDBy8pnmV+l6TPwi3nzJNLmllVU7FqTt7XZiLqqocP+7wezyq8KaPuL8H0lp+DBllpemZ/mvlVSeqCsQ0RBSG5s6a0xO7w1iuzaGjMRw6quWOCPSACScS6q7ZQUqZLKVcV/h7Hlrm9qp9m+spQ2ycxIW/fqD4fPTftpozdyQhyrk/CQZEr0LUcHEb1Wrknw/64rMqeK2KFtNvM5B8YSJHR59whToVRbx31Fosorwv7ZAGy3mk9TMBzxMCzv53Jp2GZnHOOa39trmcTihA3sgeuLo1R7WcyHKnWozEtW1Hx4sr/1Kp+nzYMzJQvadW1qdjIqAoxJzZDxNuXn9/IJu3J5KXb0ZKyC8wkZtnYez/XUXRMmeHDrXx1S98ZoeQ9iiEaAP0Af4BhgCThBA3AElo2nG5OGchxERgIkCrVq1COZ1ah0nAr23g7AO1ra5W6Dh3/TK+ffJqLJ7CNIzWSMZMm8Pf3QdTdBM2NqVg9lP4sloRgmPnN2He9vOJ3ZpH7OYcsnrHktkvrpT2fSqKeLQhnxFxi1iQeRndbFsZErOCSCWPM6OTTprnwmCCB+bvJMZ0HCi/8Dec1uwnm/nKbnYtm0qTZ+aQMOsPBJJO113LtU++iFLJ8Nik99/n98cew11QgMFs5qzJkzn3yScRlcix++0d0Gcq5HY8h4lrbmK7ox13XNqXcRduwty3EdsPJfLlDz3Iy9ci+gTw/PO1K68DhNfVLGTJ1IUQUcBy4Fkp5XdCiES0rO8SeAZoKqW8uaI+Tpdk6sP2wzL/b5l1mobZ6ey/pi1RztKJ+3Ns0bScc5i8qBj6Rq1hcovpmISnpiwOpammZBFO1cJfOUMZHLMSs3AVu7QF54cMkaIJFwcq8pmxmyz7MfY170CUIYKOxKGcog/h5q++4qsZ09j/wljsZ7ZDyXXQ4sUfuTKmH+f912/Ob6SU7Fu8GNXrpf0FFxQL+yOZ8OAv69n9xSYu/Pk24qI83HEbZLmjGP/TGP480goBNDA7eefaDVz1SZBZy4MkFMnUz+gXKWcmBRd9d65YHdLS8SHRfIUQJmAu8KWU8jsAKWVqieMfAD+FYqy6zhoHrKiHghdg7JKvUWT5KCtFVblyxXd8Mfp67m7+SqWynpWVlRmehnyTNo5NBX2IMuRxWcL3nB2zLHh5Wk0S36q4GBa75NS6F1BASvn96Tvg/SHgyCQOOFMocP40OPfRSnV/HAffsI0CPGSt+JItSx4Di2Y/9lnNHHzp33w6dzXnqmo57XfbnDnMHTfuhHlCURj15psMuPNOWsTDQ9etYcsVi9g65WouOzwbixmaR+Tz+78/J9MRgdNrpGlUHsJSOxc86nSQhRBCoKUP2S6lfLXE/qZSyiIfnn8BW6o6Vn1gWnqVs6HWWhJyMrC6yj9ZLB43nQ/uoKN1J5UxuJQVvFmeOB7a9zp2nw0VI5nehnyQfAdHXC25LnFWCK6galRVrntxYqQw8Y6UMKMveEp8nlKFRY9Bk17QOTg773x28SEbT+x4+/ryJXyEIPPKARwrOE7zKC1vxfF8eHf+cZwTJmAqaRdWVX6eNInEnj1pffbZNOFM9kT8yOQzltG4zHpgfESJuce3C2q+NY1E4ApTeHEovB2GAOOB4WXcyl4UQmwWQmwChgFBpkCq36yrhhwnYaWE2Wp57/OwW8svKRp9XiZ99zZfTLkOsze4UD9/1rAFmZfh9FlRS+gMLmllQeZl5Pvq/lJmqfwOm78pLXhL8stDQfVnx11a8AIYDAGfEisi0wA4dBy6PA7z350bMEXo3BuvQyJpQl+EMBB7LCfgPCTA8CeDmnNNU6T5BrMFgxDiQKHc2yCEqNCGWmXNV0q5Ev9Rm6e9a5k/elnhSH64ZxFCStzIy/qcx9Le5zFsw7Jiu2++1YbNaSfKZafPL5vZ72tRSngiJY1WZhC/Pht7CxtHL26CajX4ze+7taAHXj/+libh4bCzNV0iA1ZsqfWYiMJMifJKqRW8KOb5MVH4YT57/B8IYPc2C03APPwtZOZDZ8dxjD7/2oInPo8PPuiNWGSm7UfnYI+JwOwsn/pSAiIqEbqNCWrONU01mR2GSSkzTtZIz+1QRV79FZ79EfJc0DoBPpgA53UJ3P6tRFhQn4RvSYTgsunzGf/rLG5d8BE+RWH+4Et57Z0HAPBFGMBw4qY35HkYPvpPovYVaBWNrQq9H9vC0gVDyG8fVSyAi+REojmFfc4OyDIvbB5pIsF0sgz1QVCtmdsrxkM+BaScqIzc5XJYNs1/4xb9g+rTHahQaoDEyT1Q2MbXWNp4aJ02iEMpZ+M1WDF7Sy+gek0WCjYW4HpgG0JKjjVci+udjlxosmP0nBizOJfGmE+Cmm+4qA4f3mDQw4urwB2z4P7/QaYdPD7YkwbDXoJFFSgtbS0wu1mtyHdTPSgKs0ZN4Ny3VzD8jaW0TDtSfMjRxIri0dTZRiszuKzrImK25WF0qiheiSnfhznTzdBr/2H4BX8wqt8S+jy6BUuKEylhdPw8lDIWc4vbyeAtf9HYcIohwlKiqD6En4XC6sSfWWU/JbwBWvSDxl3LNxIKXPZuUGOMpkPQ8+nILjbwCFuZzagL5jD14ccYed9mMjr0xWs6kQBeFQKDx4XB40XmelHzfOCRrL1jD+uHdMQVYcJnEPgUgRRAs37Q6aKg51HTVDK8uKEQIqnENtFvl7BICLE2wPFidOF7iri98N5S/8du+7Tic8fFgrsLDA1R1dTazMV/LwDA2chM2pAEfCaBOcPFkOtWY3So5R5CigpRB+wkrMsm6oCddp8dYOSwP3h1wyO8sGcq981+lcTMFGzOAixuJ0PTV3Dz6HdO2XFaoNLacUizbdag1nvwSBuefP55jhxrUbxPLbsUO2kT9B4PBgsIAyR2hzs3QHyboMZIIIJRnHyhy4qDfiQhCm3OiiKxWlxcOOJnhiQ1oukrHbH2jUFEGVACuKZKj4or6To8gybgjkygwNOQ7K6T+W5le+Zcdx3ZB/2ku6wFVNLmm1FYn61o8+cbOERK2RcYhRbtG7B2U8j8fENBXfLz/WsPDAlQbUUR4Pvo5H3cehQ+CrxOUS84b+NiZq69hU3TuiO8EtWs0P6TA/R4ZvuJUjwnwWM28P4V/6FVo0QumzEFVQgON26J9wyFjZ93wRd56tYzIVWsPgcOY80t2DldFt6aeT9r1g/AZrPz5vP/oUF0HqN4nyhCn3h8I6l8Xehq5sRLCqXNCO3ZQ39WYwpkpijEl+dld4vfUHP9R8UJoxFLgwY4MzP9Hu9y5ZVcM2fOqV2Ev/FC4Ofbtl+8nJp0/skbAjeKbyo1nhBiKpAvpXzZ33Fd8z1FWicEPmYJUhY0Og0s7kprH5ue6Y5qNeCLMiLNCpbjbgwBBK8/VcDk9nH73Pe4oF0zsEWiSEnr1ENkXBur2ZGrgBRKjQheVRV4vUayc2L4cNbtrFk/CFDwekz8/sf5tGFEUII3Ly+bT197gqcvGMCLt17Bho0ri4+tefddnrFYeEoIpgrB46MHcm3+bJ5kBV5U7qE/E+ldrk+JwCiDyy7U4MrAc5Reb0DBC7B97lz2LFoU1Dg1RSizmgkhIoUQ0UW/AxdQgYvtaXD7Vw/N46BNAhzws87j9kKDO2DCYHjharAFcCO8NQ6mh2CdqDYzxvwN0lD6dT5taEM6vrcPkz34dGKKT2XXJx/Rfvgobul/DT8OGoXPYqDPkSTubPFGqaKdXtXAz5mX4JYmLo3/AbPh1PIXhAqPamT+iitY8MPlFORFI0vk+XV7LDgOXUF/P6HFZcnOSufVM3sgUrJQHG4KDArff/Uzez99ndZZBhbecceJxkJQYAbD39uRI3uyk0we4nfe5kLaE8tesrV2UmIX/jOgqU4fh69MwtTUQqMnO2FItKDEabklihbTAiWoD8SiyZPpsKV2ufyH0NshEfheC33ACMyWUv4SqLEufE8BjxcMCqx5UotvP1ImY4VPQp4TPlgBm4/Csof999PeDFdFwZz66v0gJZFRBZrwVSWJS9Np/uMxFLdKXscoYrfmopTJ6RvoRlaA1vu20vyt5eQopmL77N/5Q9myqxcfdBqPoTCtoYrCnIyxuFUzZ9i20y1ya4Beq58CbwSzUm9imRyBajeVU+1tZji7nX/Bu54U3mEtGTiwYaLzq98jjmWiuLQIQcWngt3NrrF3kGAGE+BBG2L/J/9H9lWDkJHWYi8Oj/Rxj+dnPpIX8+lt15MxdyHC7qbBbZ1RX2+PYjOgooBHRXh9pD+zi4KFaWCE3O9SaLtqCAWLNQ+q4vDpID4DCexZ+Cj2Pm0xH8vCwkZupieiFiw7h9LVTEq5D+gVbHtd+Prh7z0w/gPYl64FA53dCb67E3alwdh3YX+GZtcddgZsmwbHsuHer7Qcp74Sb9MuL6zZD+sPQh//Sav4thVMSdU0YH+pZtoa4bCXAOUVazFSInxees7bwIG72zFo4loSl6Zj8Mhi+SMree99MurGUoJXQ5CvRvNL1qWMiv8RjzTxacqtOFTNlNDAUN73tCYxKj422/ugJILaBEiGItOqIiDSAjcNLX/eGpJ5hhMmhTzc2H/4nQhX+dBsVYVVTkpl+2174zvIW98jecrVpDxxpbZTCJxGlckv3EqLWT8U2xydvx5it3EUW+lJc/chWj36BQVzj+I5WBjk4QU130vy/23GuSm30iLT1a4xuRf2AkXB2ySWeewiCwcPMKiSPYWeOh1eXN9YuQvOnn7ib1WFpTsg/i7tni9KCatKWLIdmk8Gu6e00C2JAOat1zThge2gREbAYp5KhKmNtQKbNqEJWim1m9Mo4JAbWgfwl6/NtNmxjgbTd9IrzUHiMk3wQgmtKcBarwR2t+iA0eelbfKB4vbzhl4RwCNBsCFvGE2MDr7OGM1B14kV/nX5Z9LEfAyTUnOPL0O+l3afHKD7CztRXCrnD/iLZ2bsYM41JuwrwLMF8MGF3eH1cRDrp77k25RfePbG+bdNl72y4s/Xq9Lsv/8DRZDy2BiaPPUNzZ6ee+JLXIgzQ+XgT4KWLz6P+WA6mcfzUDxlTEIeiX3p8UoLXglk3HhuuZDmFRzmbvpjDnN9l3CGF9dr4bswD6YdgcPHYUQzeLoltPIj/PbsySQ310WPHo0Z+57/L4PEv29m3kmiZQvc8NR8bbMY4evb4Yq+2rFtK/ewa+UOuiV66XjVCCKjteQjJij1PtfKDP0skBTKIpxS1XxGAVQVofqQRtPJAw1OUnHY4nLw70Vf8NK7DxHhcmA1AbMOBe3F5RMKd977Fkafj0dmv4DXYMRrMGJ2O2mSlYpfK6OUdNuZz5rOkzjoKn1s/vExnBOzjBiRhVIDb7nGbA8XDV6KNe1EZrPG/yTz9uDGvH3UAd39T0JKmJ4Bb2WBU4VBHb0Yy3wV0+6+GNu6/RgKgv8iCKDJM3PxxthoNnWOX+HpjY+k9fUzMDi0d69Q+z8lvvELqY+OoewFLeEAo2gf4tEqR71IKRkKQulq9mY6TJ4Fvu2FO1TABM0i4d4RMGkkpKfkMOyCrziw7zgIBZNJwTVmMhj9SOgQYVBg2UOSqS/v4C9Xa0yqB49iZmTmUr59NBbL4MF+z7v5KHwSQre01quXktapJ9Fpxxj4xRtkN23N1lHXktW8DdIUuGSK8HowFeTjjok7sVNK+u5ax/1fv8yVy7/D6PVgqMItbDdHIAVElkjS4xOCDZ370e/9f8oLfinZf3Ub1nbpx4Snv6FAnLiZBHCG5RhT291eI268I89dQezWHP8a4qsz4Ybb/J539n5YWSKVw7ntfqWBtUzRSSlp9vhXNH1pPsKrBv0JS8AXHYExz3+uCH+LZpVdSCs65/gN55Ly3yvxNIklYv1+Wjz4BbZ1+9j33QPkXFK+4kYfEnmKgK6wFRIKV7MW/RLlpKTrgmr7qHg9pCkl66XwdarQ4D3wrCNgCrHEaEnOF2/jzMoqrdJefjvEJ1Z5DhWjRVWpyokXjwivnUnJH/Liz3eAsfwLSaoHmuwO3QyunXQFrdavJDL7hLuFyxbFSytS8Ub4eQ8OhJSMW/Qls567AUUGSsNSOSq68T+75QlumfAMvsL/mUH1MfOl27h54adI4N6732BVr6FE52axsV1PzELydfYXpF64tFRocyjpze0oCBrTg+hGrQKXw+jVD5asKbd7rQP67S+9r1mDQ/Rp/k85bd105Djduk7GEECQ+kM1GRAeX8DPNNDnXVkBnHL/pSQ/dTVq5InoIaXARcfzppA54TzSJ/mPdHuNEbSn8lUuQiF8m/drIv8v6fqg2v5XvFL78vmGG48X/vM5zPoLvEFGiabuPQK5+cU3Soxw0ELJZc+W5biGXglKdb6KiFKCF8BhtPFhk/G8uGYVnHV2uTMSTfCfWHg/OzQzmPPK14Ck97zPGf3MHSiqislp5+z3p7H03gDRI2Uw+LyM/WUWn714K4YaeohP+Gw64/+fvfMOr6LquvjvzO3pCWmU0HtHOgpWFMQXBBUEwY40C6KIXSzYeQEVCy+oqCgWQFBAOgLSa+i9hVAC6e22Od8fk557k5vkpuDHep55IHPPlFtmzZ599l7r3bf4Y0A/pBD8558/co4tgGmfPIMqBA5Fh5CgSCeKlFy8OYz1NNYcbQAAIABJREFUczt7lYCDaMANvIoFrehbSpAGA8LmxqWjvut2329dfKexybWpGXCaCP8L+SL2iP/+ibCWzAVEF2ZBxrovqfHGJ6IadJx//d58xAugWgycf3sQzkD3tdTfspe3udELZ1FyZNf5Vgau+iaLxHQIehK+2eA58QKQmQFCoMPJF75/cD74Y/4JmMWVhAfocXxehbnq5kW6zgfs7oXGv6wBf0Z551hOkxmnycKe/wzl75GvYfX1J61aBLvudf1YXBAD1v5G+u2+fP/+o+i8rItQJBk4HChrl9Hvnz+4e8Mil6SvSInR6cCgOtBlRePh6y/TYNYpr55nGuexUA1VhUl/apOyYxpPdp8OmOa67THCzbW/81xXrHbfnJ+ikpJB4MJtKLaS2S0XRbxut6F4UpaANTIQp68Ja71wXCbVFYW0Dg1I69LI7X4cxXTWlTe8KSlZElz15Dvsf5BeGjuwmg3A6eAdy2qGmaKxCCeBig1f4WDJoYd4/PRXXj/XoiBUJzcnrIPORbvd9vGHN4rorispHBZf/nlsAr9P+papy0+RWKue9kIRN5+oi2f4ftKDGO22CpNDyHc244rUK3EJxSFp9/I+ety9EX2KVh8QSgt8y9DOayedDOJ5ZT68+6cWCHxR/0nmRfbXJmjzDv74S/Bxnc4ZV8010alSwZpuRCCx7DxBq6hRGM9crhD/v6JSFKpeh9PXxMnZY9h39kuiT3/OufeGoFpcz5U4g/2KnMTNqMRCysq0jr/q0w4rSyvhqtPB9X0Ys/9tfEX+aNNXZvL6kUnMrDuy7CfoDjLr8hQKJmcGFtXK1KF6MBVf9vJGuCZL6a3qB4fZwsGeefRWpaRu7AnSffxI8g0EnQ6nzoARcAp4eMUcDKoTFe0i9Tb/uoq68v197myp9iuAiA1X6N91D+w7l7P+Dx4mE/dtsUXBaodPVuYPAO7rNJ9AWwJvJX3J03eaYOSz+cjH6YQDB8BigYYNwaZk8na9c3yT5OBiaiSptkB0wkH7Gv8QGHAFJDS4ZzL6pPRSnWNpUPA7kIAz0Ifk3m2Je/gmMlvXwREaAHodajV/kgZ0drMjWewP5ARJXCCVyLx6xhUEiag0ScmrnnzLEnkp9Vrgc8D1XfeQb+PS79hDCKlqP0y9nsEdndS9+2bPthOwrQGsT4OJcWCX8FoY9PTTfutr0mBhCnxSyCvaM/inJXNycENUIYgPCCHAYSX9n0MsMEfg3B9N/+RjXLotGHNMOiF7vd/EUO7B9IVYuHgeIqojcZaaePX4kJzseqIoyRjM5ObPMGKUA1Oed7R8OQwbBunSTtMvtxJR+zzCIBEWaG6GphF7Sc/wx8+cmFUbq1D9xe8xnC/ll1lKSIMOa1Q1TCfjcEQEcP7lAdqEWV6Ve08uPg8v0BEsZTAtGESzCu18q8yc71VPvj0awrJSRr+qzsig9nP5aecQDDI/CT/ZeroXzq4ICIEU2sdvlQrf7DJwZjr8OdbzXXT3hVUF5jGEgFv8tOWQFZaXNFiSkm77NwJa7jQ06Qr4B2B8+wUeWTAXVK3EKaF1AEF7U8rlMnEVdXn9OHGXIKI6+zN1qMYQFKWkBCy4nlcJDCic6gzwT2TM41Np3WwPC+1ObLE2jiwwcqHrUL7vfy+Z6YLbLy3BGGor2KyHgsTPJ4nsd2yIuYLvzlMc3Poemc1rYbiUROQ78wn7YrlXP5O8n7HTx8ilp+8k9r0h+YlWytIJznswXgI/sh+JZDAtSrb/MqKy6nyv+pzvkK5l235ejXt5rvlHZCvLOlFI0/lw3Ldii78z7bD6IBzxzCHGIyyrC1PDIUQBs4BuZlhbGwYWYSQrpMoLP35IhjHPrLXNCvN+1Nr90C7S4L0lbzNVJTg8SFgWmXLwBnQ67M1a0e8MdD4JX194AKuaP92jw0h7nqIx/ahJN8Jph5lqmAmlLj3pyxzCaYnJAC/10TQaNEheH/8qrZruRqd3IgxgqmOk+WMOat/7MM8aQ+gzelJh4nXzjv1XRHN84Qtktq4Deh32GiGc+3AoF17s59WPRFUEae3rkdCnHQe3vkfsu4OzTiXPSYry1zz+mYq1gvK2h1tJcNVGvsdJYBPniG9oAhpS6ktUCD6r/xS3xK2hZep+dgZex9tNXsOplF+jhTsY9LD/HDSOLPu+sniSZ0K1JS9u9IOTJ2BbQXsuKdE7ndw6dTUALY/vZc0zNxOaUjgqFLLknVAC2J8JdYwQVBHBht4ADhfVI7f04uMEhRVpkCFheWJPMqXC/WFzqGa4gp8IpxUPEYUL0QUXeKkPhPhqFQ+BYYeIDLuE3pC/AkQYBCFP1Mb5+mEC+6SRUmw8r0Waqdc3QRaQxVP9zFx4aQCR7y/0yo0ps2Ekx/58EWujyMLOxlA+hOsmglYBiayw1MO/OucrhOgFTAN0wEwp5fvFbFIsvmYPSzmODSdKhMDoXwtbipnSErAUOvp3WVjW0yozMq3QxA3xWu3wyzaY8TccuwiXUzU9CV8TdGkA93eGR66HA+fhzv/C2awUYc0gWDwW2tTOv7+1daDHadiRl4CFQEjJW7Ne57E/ZxKeGIcoouqhpJ+2E2hh1h63KsQuzRXxAqxYzIxLNjLyzGCvS7qVdUm3YgQuNYHAElyPQsDIm7XlDJfYYit8XMWsw9hEm1Aynb2Cp5lyW+1Ql+ulTkE1G9Blui9N9AQSOLLmDezVg10Tb3lASoJSEkgMcJ0vr2jytf0btR2EEDpgOtATiAG2CSEWSSlL/WxxlHiWchxrVm1gYqwfthQj/wZXNJsKf+6B5jXzr0/JgOve1DziCiLVqlV8rDwAj3+j5R/z6qacS4T2b0HCp+CfR7bVRwfb68MVB5x3wJBzsNcqWfRSX7rvWY+PzfMOKndwSO2OKwRYpaZZUTA/KoFMowmzzVqh36A+7iKEFS6aFgJsZajlSvo7BrWTDSVPNGXFyJWMQNKOXgSgxhu/cnn4bTk/WcueUwQs3Y3qayLhvq44InMlJk0Hz2FtV6/weUoVVFnmfLjTz4wzwKL1vVcEpETndLglXoD1xHAjtd2+7tXT+RermnUCjmXpXCKEmAv0g9IndjZxLp8r66Xo6vwbiDcbE36DDjVh9yrYtw969ICjvq6J1xVUF8ThVKH28/DpAxpZ39AIWmZZh1XTa8tZO7Q9spsbojd4hXgBtmdqKm2KgHQV2prA6OKr+l+f4UwdOJbjgxtW2Dc5YNcqptw2DHuBTsb6hsIOI5dIY3GWDfs9NCWgQKS0gbPM5zA2nERN+JDQ8Qb8eoWj+OqJpiX7ZCsUkxPn2JvQ359IjZd+pO7gaZz6fgxR476j2tdrEHYnGHTUmjCHE3OeJql/J4TNQZ1x33H0zxeRvnmO6VQJmrsR4U5KrwQQ9gqusRUCZzHaKadIqtB+N2+Sb1bAuR04J6W8q6ix5U2+NYG8RZkxQL6CwCyHzycAatcu/m6nIMiMt3B4SRNit9TGnub94ufKxq2j0b4+G3zzDYj6wA1Qlt9IYgYMmwlmvSZmdnc7+GF47pNmIyO0OLoL1YudfeE6mJui6cy2NkIbN4ahgWlJnI6si01vxOQoTcdMyfH8zNf5uc0tXA4IIc3ih9luxWA0MrtmLv1LJO+ziU3k1gQv4AiNCaYPjehIdaayja3E5rzulxhH5v0XCB5Vh9QWdYkJTEX2tmEP9AFfTesgcNkedMkZhPy6ERQll0QdWlBRb+inRMd+Ra1xs/Ffu58GA//L2f8+hLVxdbA7qfHGz0S8v9A7s+UCpMEFDVRIXsg1OpSDj507lEPO9xngIBBQ3MDyJl93eh25f2gOoDNAE9YpbocR5+qwelITHJl6N7u/yiGBekAD4CiwBeSprNe8EA5kZgU6i3bBdxvh4aw5pemR8HyN+vh5KeoFqGeAJkZN6OhGH9z2CC3t3AtVp+PnWwZy/+qfMbrL1XoRYRfOsn9YM+bcNoR1bXvQ5PxJHm9bn+rNckVWVnM6H/Fm4wgJHGGry/0ejJ5M7UemIz/9B9Vwljr2tdQBEu9sy+kfnqb+wCnokjO0X67EpRC0sNlp2uVlLIc0Ug9csovAJbtwmgwodgeo3hEwAtBlOgie+w/xD9+US7aVSLwR+NIC13nu8oA363yFELWAPsAkYFxx48ubfGOAvIm1WpAnTCgF3pvjjyOzXCo/qwYEuSzVEEgD9gKn0J4ZvGQ3n2aDL9fmkm9HH3hv1mve2XkWhIABfhrHuNPSlUBk/AXqxZ7gyWen0/zUQToc2eHV88iH4BBITwdrJr6Z6Tzx50ye+HOm9lq7jjA4l3znliI7pr+URMj8rQhAl0eQPGjJbvzrjUGxOor95SoONYd4syEBxeYocgK0tAiZs574Qd0wXEzCXjvU/ZdVzmhJaKnlJUuL7PZiDxEqhMgruzijgH38VOAFoIhizlyUd5Z9G9BICFFPCGEE7gcWlWWH64/Av5Z4C8IAOfXmOsDL3aUFJ8q7ndjj9U9WiKKvZQG8M+s19j/Ygh8nDubNh1/38hkUwMAHXUp2AoVEjUqjORD8yyaXCk8C0CVlIEpZnSDAI+ItCTVb64SR3KMZF167F8OFRBzVg7SJt0qIen0zUnFkxGOo4Mmv7LSDJwtwWUrZIc+SQ7xCiLuAS1JKjyOHco18pZQOIcSTwDI0+vhaSlkmN0NfEyR578m46iP7pqzi4f3Ucwwp2I6fWvF+ZwLwy9TuKrfuWkWnw4X1br2KGdMgLALS8it9SYsPB+5+iHfPQpwTBgdCl+AaLOekmx25hpJuRThcq3QJvO8SAbndaU5fM9KgoKRZC9sA5YEjyJfj85/XlMZ0Amn0wMGknFAz7hzjfv2UuhdOZ63oDPd9DyH1i97Qi/BS2uF6oK8Q4k6059MAIcQPUkq3YsHlXl8ipVwipWwspWwgpZxU1v0N7wHGyrV9KiMkY3w+5Wx4LayRRrZV60AP49/uh19Gu0W2IstfyHv4fA2srCRjX1ckZLFZCU+MK+cDS3hqAvj6gVmrvZO+fuxs0p7WPZ/mxxRYkQ6PnofxB9uDs2QfetJd7TW3ZleHpnye2eIHdSN+YFdOzR7N3uOfkdS3A6pRj2rUYw8tfMc+8fNY0ro1RlqMGvFCpRCvUFWu37uJGpdjMTidGJxO5NnN8NX14PCmZ5Z7eKvDTUr5kpSylpSyLtoT/uqiiBeuwvbidwbAna1Bf9WduYbXfN/iff8XqaU7h1HY6WDcwZLgO+lk2JJ/oIpWJrAPLdfb1vvncvoK9JysTb4BWs6zglAZiaNUiy9f9n2CEa3vYvq6WJJf/xDGPM/vk3+i09S1qCL/jypTCpYd7os+uQmKqtMmx4p59M9oW5fEezpXiOxjNk5/M5qTPz9L4j1dUEP8OPHbc+xO+IbomC84+1H+698eEUhqj2ZIV06uFQypKCzo3pcXRkzCmlV+JqQKtjQ4WDFNT9fai0sAkwEWPAXHL0H0WXj0a62M6mqAASsv+H2En5I/eWsR6bzp9zq9E5blrlSyllvL/7yGz4a+7YCpM6FXF8i4Sj7QEuBseC06frWNVB8/0ix++KTDxBufZEs9eOssqG4CLRsKS2JaY3I24JE7mxM3YwgpvdqBQyX844X47DuLLjmDhKzoE4Oek3OfRYpphPy8sdzflyPIF2l3gNmQL3qVPiacFiMRnyzNPz40AGFzIr00cVtW2A1GLgWF8XebG7h9xxptpSMDEk5V2Dl4u71YSrkWWFvcuKuOfLPRIFxbYuLh6Z8q+2w8g79w7SigCGhl2FfBZ5OLS9k+jS1aw6ZD8OVU2LEZmraC72cUue3Vgqef+YS4oFBUnfaTT5eQ6YRR50FfTBhuBeyqkXXDX6Xvf0aSfHsbApbuynldAAEr9xI+dTGHNrwNZiOn5o4l9r0hVJu5CuFwEjeyJwEr9lJn1P/clopJwFo3DOO5eHA4USQ4zQYUu9NtQ0Xs6/doEYkLU1H/v3bju+tUvtWmI7EItezNGd6E1WRmR5PrcslXb4Ya11XIsVWUSmsvvkof3nMx8mZo7A2/S0G5fxop0g8hXP/wDzmalO/Bi0C+FE6t2vDOf2HpRri5Z6Wdk7extHPvHOLNhgqsSoPHii2HB9Vg4MjNfRFONYd48wrJK5l2LNFnCFq8M2cbW71wzk8aTOz7D2CvG86VJ27j4Pb3SRjUDXuIL2qBlt7Evh04uHcyhzdN4sojN5PUuy0xkx9k//b33aYxjLEJGvkWgBKbQKM73yu83u4kYtI8sDkqxSrLFRSng2pJWUauejOEN4f6t1TY8a/ZCJUSBj3sexsahnm4gR7tXRsBC+CD1tAwFK9PaBWEHROfpj1FqprfTiZdtTAx5c3yPXgRGOgu1Xuw8qJxb0PvcF02JoFRHrZuG7MqJNwFyordSY1X5xZaL2y5x85oV4+Tc8cSfflrTs55CntIrnvD+dfvRfUzk96+PmdmjeLYkpe5PPoOrUrC7PrHGfzrJpfr1fAApLHwg21K92ZcmDhQe9zKK4xeiRBAt/2bSfMPg25j4bHVFSbyU5k536uefEEj4N+f9nDwzcAI4ClgDDAa6I/2C6iACdaXU97j3dSXiVeDkRKOOBpxT+I8NtgLOxZXBHyMMPtxNy9ef1NFnkq5YvCqHzHaC3/Brp5DXF0U+ow0Ov34ac7f7gjYdOxC/pREpg39xaRCnWxKSgbVvv0bQ3xuKsoZ7NrhV3WzHrTaYaWgjbzdgf+a/Si2/DccFTj1zWjNYVifRSaV1MmWF06dnveGv4/hxfNwx3tgdP9+vQ0JJanz9Sr+FeQL0KImPO5Jc8w/5FYSkPWvFVimzVlUK+fvXaLwXtorVLsYj/6CgyZxR/jL2rt8D1oEpg3JvQ4L4frKsfMuD0yePp5WWPETYMla3KG6DtqZwVeAX7ITwwEnraNj6LhgZrFVDIpDpcbLP6K7koI+Lpmwz5fT6Na3CD91kSbbjmDJIkpDbDyBf+3Ot23gnztdthvb6oSR0awm0sU56xLTaF1jBCHf/a3liZMzMFxMou5jXxYaa68ehK1+eDHvoOJRj0C+5S6MlaIuprUXe7J4/ciyCjx2ZKNDhw5y+/btxQ8sAjHxMP4XTf/27f7Q4wOITyswKLtzrAYQD+yFd26H6avhfFKZDn9VoWkk7H+nmCe8l56B/31SYedUbujQBTl/NRukhf1WmHYFDrlpNhOAs5GDx8eu5fv0HhhVGzqpYsLKQ8u743fxcJGHkkITmwctuuntA619BXZfM3q7k5+fG8COf04SPG9LvgjaHh7I3mOfIP3MhSJS4+FztGj5PIqbBg6pCC4/ejP6xHTNXr5Ak4UEEnu25MTycu4gLCGaU423uQlDKeJAIcQOKWWHshzf3KGFrLPdsxn7I6JNmY+XF/+ayDcbtULgp5Ew/yloUQvmjnDxZGUHdgNLgM2gS4fIwP9fxGvWQ/RbGvF+uQb8R4N4FILGwBdr8gx8579Qs7DubZWEqQhB/V3bEa+Po7svjAyBAAXc9ZsZgeVTl/BzSlfswkiazo9kfQBx+mocqtmnyJuVqlfy2cZLYFk67E+X+KZkYMq0MXDKAjqv3l3oTA2XkmjW8UWtBTmPNqhIt2I5GOuWeAGEKgmbuZrg3za7JF6AE0tfcX/ilYAnac/73FIq4vUWJAIrRo8Wb+NfR74F0bMlHJoEd7aCcH/XOgOfDdUcIkqC4sqTqjJubQYJn2m58pd+g1HfQ2qWo0VSBoz+Hj7+K2vw2hWltmqvCEgAnR7q1ofefXFHqDgd8NO3mr/S5s8Zu2aY26FDA+GLbX6k6QvmoBRMKZcoqlJLOFREHrd0LacIi9NgcwZMiYepZ61kJLueYLAcPk/ztuMJ+GsXItOGLj6V8E+WUn/QFPcHLQYCOLZwPOiqVmvoUSrWkdkV5LW0gwZvpB2Kw5ELMGU5bDkBzWvApAFQJxRCnoSEEgjXBFquPo2JsbfBx/fnmhaoKujcTLYZFLDNBGpawFrQ7K1qQALnml9HrXU7ICkRWkcV0mzIB0WB1fPhp7tREdTvd5zTvnXzPRoFIkmInUjmqg8xCStxaihPJn3Gb9aBAHQ+PoM+m0ah2ktWK1teug6eYl/6j1gtVaus/0FacS9NS729N9IOxg6tZOh2z7S+zov619IOZUHjSPjiQdg5EX54QiNegGp+RW5WCEkZ8Mxt2v99HKnoVFuVKNtxBZ2Alc/DlCEa8f5zFHp+DOYn3G9jV8G2bVuRxJti9qlUQgGIDMzSLpjyLmQUc/ds3hpWvABoFu2H/2jKa9FvUi0zjpDMK4zXxxB/aDhizVtYlEwUIYnQxfFL8CDuM/8CwMF69xAcKEtcCVXZn1NVI14B9KZiHcJd4VqpWRXAy31Kvk3T6jChNwQ5krk3dh4uL7GSEnJgyc/DHfQKjL4ZMmfArc21dcv2we2TNc+34oI3g9N97Z0EBk78xXsnWxpI0A8cpv1/7myKzAfoDTD5S0jOFUc3qTbGbZ/K0BE/ULv3GXbcmwjbvym0qRDwWcCT+JDG58FPMeReWdWe4IuEIbzixMk9xUS641vehfUeQCJwqjqPFm+jat0OKxGPdIe/9mkOwdkQQFQInCnsnA5oudNGkTDypuqcuXMuf0T2Jb1QnrAEuAlNvewLKIWUbD4oAuwzC69/eg6ke+DUE+4H9eddT3zvRIyqjSExPzLxyESC7YkA7GrYhhkfFRE6lzPsUofd5I/P0Efhtx/hcjGdEhsPaH71fjUg/igApxJr0/Srw1idJkAQnnYeq9OIRV842g9V4tga2ommygH+WFVI+rdSkdeAwhWMbzxWcSfjAQwI2uHGpruCIVWBNfNae3Gl4+dRcPojmNgPpg+FzK/gxxGux7atrREvQN0wQY/pExh35lMsznT0ql2LGkuqkZqtOegF3d43+hZe51ThyEXPtr+UCqeuCJINgVw2hTG93hg6d9+MVdFmfVuf2EetK7EVqk6mSkGmNJEpTWxxdOajlgtg03p46uHiN/68PUyun0O8APfO/y2HeAESMqrhUF3HI1JRsESlsaH+dew5VrkRW3bKQ6fTdOH9/d0Tb3CAP21HVt5NshCkpJmsVtlnkQMpBU6HzqPF27hGvgVQuxq80Q9G3wJGA1zfCJY8q5WigfYof28H2FbQcadTN97+cSgba8/i3vPzCLaVYib3b+AboAwlb0E+8NWD8Hq/wq8pQpsoLA2cip7TPnX56ea3AdCpzgohXim1qiunBBt61tm60ylxM7ckr0GGRcKHEz0LQy8nF1q162I78pam2VUjk7eMI82Wv/1bAou69mbsUx8xefgE0muH4vR1Hy2Vd373/nuhxw1w603w9CgIcpOqEsDg3jdhVaqWkE69C5V9BnkgqTTy/X9X7VDe+HEzPFDBQmD92sKXD+XeIIrCW4vggyWepR5cIdyYyYV5vpruagXAKXMjhGwpAgd6WibuZfHeejQcWB8ueGALeAvQKP8q8a5Kwbpggcor17/DWze+kbNuc7MOvPfA+NynGIcToUr8V0ZT9+HPMcQVJvbyxIRxYM4jCXnoMMxfVPgeVMOkY93Fr0kq7R23vCDhR9EPvzLWznqj2kG0uU4qy9d7NFaN9PNqtcO1nK+XkVoJVVkLd2tL4wgtIg/wcT/21bsgOUNzsVDQfNwkWnTpYyyelBMcRk5Z6lAvvWT2OqVFQVMIIUAvHaytfx/Vm+/VZDA9Id9tFCLf2oFnuZQWSqYj9wMTBpWvwx/i3HPViEiM41RkbWyXMvBfEU3KLS21Xmy9Dgkk39aaI6tfp3mr5ys0/RJ3GaJq5f7dtAl06wIbNoIzq78iwiC4/MNYkgIqiXiLSbkt4ihDcgwKKxMC1ek192IzsA4woXHrb1LKN9yNv5Z28DJub1l5xz5yEQKfhJavwoy14KohSlHg40EQNw12vwkpX4BzFqizNJ2H4tDIdobLFm9oeJYeQkD1pCxn4acnuDfEzIusmuxTZ2DxXxpR/fPiU9xaZxUWfTr+xmTM5nQCWifS+pudXA4JZ3/9FqSZfVFsTnw2HSnszWbUY6sTRlq3ipUD3bAJbAWi3Ou7aIRsMpt4fPQjpJ5byKZ7Olee12xRcx0C0ijlo5e3IQGHzrOleFiBW6SUbdC8Z3oJIbq4G3wt8vUy6obCyJs0W/bKwv5YGPmDZO5uOyufMaC4uBB8TdAwD4cKAXcUEYgo0snn0aN48OwPGNUq0HSh18Ovc5Cjh+WbbXJ3yatB8OVXEHcld12H5EUsGriIveebsj++Db9PuJOMrpb8vKEo2GsGk3FdPaTZ9WOytW4YfhuL1nvwJswmuBQHgQHavETcFVi9Fmo/9DqDXn+FV3TrqkT3WFG4gSrSsq4KyPQODUoth5vd5WPIWtzmdcsU+QohPhJCHBJCRAshFgghgrLW1xVCZAghdmcthSWW/sUY2rWyz0AroVl3SKH/8U3E4FlOMqoa3O6GgH/Y8QAPnf0Oi5qBrtJbBoC+98HoBxFS5oiaZ3eRFTo7IdgQXD0f8YJGYp9Mh4WzD3Hqr5+p9sd8ly4PITNXEbBsDyKt8E1H6hR8dlVMCgbAzw/u6g21aoDFrL3XPxbDhZRqBL05igd1f1Z54gX4lCo0t+PwcIFQIcT2PEuhMhIhhE4IsRu4BKyQUm4pOCYbZU07rABaSilbA0eAl/K8dlxK2TZrGVnG41xVGPo/z8a5Mbn1Gpw2Hft3BfMKf+N0qVxbGIvHwvN3aJGxLqs6IlSkM+DC75jdGZ1VBtYsR7qY9BOAVafHqdNp4Xyd+vDHOtbtKlysvWk7JCVrgbPdBmGfLKXW89/lH2S1E7B6P6Gz/0afkKY5QGQfK91KwPJo9rS/h88XRGM3la8xmqJAr9vAkFXppteDyQh39oJmz4ziXTaSiXvxnaqEGFJIrggB7eKQLb7hGflellJ2yLMUmlqXUjqllG2BWkAnIYSyabuNAAAgAElEQVTbRGSZyFdKuVxKmf1r3Jx1wP/3OH2l+DEAbWprjRrliZjNUWTiYA+e2TXodfDRIEj9AhyzIHE6xH2QhkmpYhf1FfcW8yl+gfTa4oA4FXYchy43IJ15zl8BY0t/nAXyprp0G2FfrUTJE+EKh4rxdBy61EyadXiRarP/Rn8pCcPpOKq/PY+YlWZWPTOJmnu35opmlBP63QUtmud5nxZfvur7KK98/j9mv9IWu4c32KqCc6RU9imUlHw9362UiWgmmr3cjfFmzvdR4Oc8f9cTQuwCkoFXpZQu6zmyQvcnAGrXru3F06k86BWwe8BV7w6A9nWh3USITcynIuglCKwJWsddmaKMaqEQXA3iPOzQqERIYGH3/tQpkJ717dKO5A3bNLPL+2qQvs71HVIqAv3FJGz1tShWZFjxiT4DoImUP/EVPPFVzrG+2foddh8/gn2uoIjyu0HV79mT1i1Xkp1Usev0PD/yXeKCQnHoDbj25KjaqE7FOVa4hSTXWKGMEEKEAXYpZaIQwgLcBnzgbnyxt2ohxEohxD4XS788Y15BuzfMyVp1HqgtpWwHjAN+FEK4tCmUUs7IDuPDwjw1YqvauM+DSsAejeGOVhDqD6c+goVPwYf3aZ119b38MThQaU4Z+vuFgM++rRKWM/mgNxTSzk30DeTFp6fydIi2TkUyxrGYGF9bzpjAYbUwX+e+KNpeU9tYSc0k9Nu1CLe18AKpKIDEPKQ6wpM7bilg9PPjvl9/hRrtc9ZtbNGZBP+gLOK9+qADgqgC9ccSrUbBk6V4VAfWCCGi0YobV0gp/3Q3uFjylVLeJqVs6WJZCCCEeAi4C3gga7YPKaVVSnkl6/87gONAY49O/1+A2Y9DWxeTuTWCoEsDWPEc/P1i7nqdAne1hfG9tc66WK/Nl0gCohLpRQPCs6IMVZYywr61F8xdAsEhGgnrKr9QRgx+mIQ5SzjQvCPHajZkygMv0PyPi8xs6EvrrPTrXPaTMfN3/NYfyp2Us6mEDi6sLSCB9Hb1MB+IwWfzEaKenEWt8T8UcQYSS8IV9IodEWHh3JsDvT4V2WvaNCYkJGAODIRHloE5CIBDUY3INFUB8ioljFWl0MqLaQcpZbSUsp2UsnUWR75V1PgyfQJCiF7ABOBGKWV6nvVhQLyU0imEqI9W3n6iLMe6mqDXwa434WAs/LVXy+3eUoLcrskAmaUS1slS8Za58/5zx6fTizZsTIdBMRDj0IZ0tcC8KIgsyS/g1l5w9AqcPa3JN168AI/cA4mVNLv+4HBC2nUk5I7enLNDLxWeMeafyFzOCcJnrkaXnhu6JM46Q/2aKoqSXwhNAH4bDtG088uF3CBcQQB933icX6bNQzrh0oR+hH61AvOpOK+U11Zr0oTOT+dxhvUJgVfjYfcPJPmdQqhqVuR99SEDBw5U9JXdapBNvpWAsr7zz9BkYFYUKCnrAUQLIfYAvwEjpZRutMH+vWhWA569o2TEC/BEaX0rAwV0F6DA3e0EzpkKN5tq8topwfUnNeIF7fe2MQNaHQdHaUK1qDrQuBl0vxmOxUNMhrYEBJXyxEuJyBo5/61pgOamwhUkKiAKmFKmLr6E+UKaS1lIadCR0SIKp48JqYgcWyB3aLBxBTd+/iaZaxMR6VZOzR2LatLnpENKGwnrzGZu+yArXbj8FXjDAq8IeDsY7OnUaXTvVUu82VheFeKxcppw8wRlrXZoKKWMKlhSJqWcJ6VsIaVsI6W8Tkr5h3dO918C+05IeAAud4Kk8eDM3x47aQB0LaAzrVfg/XugYXY+OC9xKEBNYDDQDnR+8OtoeP4X8HkSJs3D5Y/nshN+dzHhvG0b3H03NGkCDzwABw8W837MZm2Z/CWYK+hRuFoYVK9Z7LAbqc2Vh3rgtOSfgbOfznCtBKbXcfz38RxZ8waxr91Dwj1dkCb3jwcCuP6byXS/4wki3l1A/YFTEGr+2uPSoPPTT9O0Xz9YMAL+fhccWRUY1iRYOJIBW1aXcs9VB5cogXVMeaESybeKJF7+HyHzT0gYBGQCKtj3QMbXELoD9HUBzVtt4ysQfRZ+36mZgj7UTZMQHHcHvLoAPvIBWQdIQeujyZYnyABnChiGk9t1EJU1xgW2pMO9eaZCly+H/v0hI0Orfz12DBYuhPXroV27ot/a5dsGseCtdmSuWM6AbVOpmXi8tJ9S0fD1g5Xbih8HDKMV60f1I33eVny3H0fJ1Ka2DxyC//SGP//S1N6cioJN6Dk1cyRCSmq+OAf/dQfJ1vnMVvt0ByElNd9dUOw4TyB0Oqq3a6cJNexwXTRuWPYSgztv4icOlPFo5Yfsm4+7OoxuFH/zrBBUUtrhGvl6ERu/PcjHL1/mbLwfPcN38OwHNQgbfGfuAKlC0gjO6oKY59cPiUK/tD+p74iBlNchOH+Bf+sobckLgx4+uA8aLIMRQ4HsqNQC3Ai0J//0P0B99+fcwaK5W0z+S3NvjpkJ6XkCElWFtDR47jlYXUSwNX8HDJ0BQjRGDWjMC7c+yeyI+Qz832Ctg8EbUBTtDtSxG6R6ViNqRMfXpv4s/rslG5fNo+Zb0zGdPsflK7ByDfS+XcvR20x6Pvj8U6y+vrSqNwZdXDIia2ZSIj0mVG/keoUQNLjjDog76F6o15rCYFrQiGDeYyP2qtB1WABv0oOGBDOUhYUIuAFBNKYK6PqqaHFQJeAa+XoJs988zoiJ9bDSBFDYfbYlM4YlsfXM99SfkGV1o57nS787WeLTM2e7NZYedM/YwPiU/JY88RxlMx+RxkVAYiSQdoygNjewbh2M7U+OWAwANmARcBjoSi4L6MBd05OQcG4LPDo/S83MAbgp5d3itkkSEtO1rr6MAvWSD18aQIMN6bQ/tAgevhcp1bKRk6pqy9rlcFtHWL8X6jcsdjMFQR+1Pv5bbfy9Lw6jTdtNSiosWqyNadXCxsB/FrIsPgolzYqS17o9z768EdkWh17TpmHx94HZg9wP0mlplA7UYA538xnbWUfVcZl+mW60RRMPmc1/mMY2oonDgMLt1GMorSr5DLNQiRNu18i3hEgkkzns4wJptCeSu2jE+bMKj06sh5onhe7AwBVnNe7+sBXb79uOsX4HTgqpEW+Betn1lhu4Pe0obY6thIBaHAs/wS7yy2HYSGILH2InhQkTepPhyjm5BtCR/OzgBJYCAwsPj1Thtfl5ZCSVrKUgWfuC+hiEHoIQHUwMgyF55tYW73HdKm21w5xtOtrf3x/bZ7Nxjn0Ms91WMvKKqgtnT7nYeSa88xJ8/atHu/nl/iHs+30RBqfNpZ7W3v2gDFhCrUahSDe6oKmBIZgy0jDY8hd9SkRWYqLsGLxkCY1794Zd30HSafcDO+ZarJjR8zxdeI7OOFDZzUU+YBO2Smi8qEMAz9OFOnnMCAMx8zrdK/xcPMJVXO3w/wqbiGHClf8Rc3Ixx1JPMNO2l+5/bqRDJyeuYzrB3vg2fP3UbLBnMuvCUaRaeFznA1tp/Pka+KYncloz/L55GIMbYd09fM2+fW4u9Ja4zu2eo7A7hgr36bWJvBwoQBPyT+YFAAsg8zG4osJROzwQC6NyfShxurnGJbmdfp/dNpSnx37m5nNyB+GaeLOxeEGxe8iwQf8Pkhji9yOThmXw9oMZrGj/rkuqVFXg8GWX+5HA8glT2D5oJDZLbmeWzezDlXYt2BX/Ncd/G4etRnC+7Qwe9kAIg4Eh2cQLcGQZ2NLcDFZg3y8Ql19JTSAwoKMjNRhCC4woWMrBddcd6hDI1H0p1PntGVj7LjiqiGxkUajECbdrThbFQVVhw1rksT0ctM+gwfkTOHR69A47M5Ie55nPP0XaFYp6GPUzJNE88iRX+plp8sF+dD65bFU/9iQfzHgNU568qFMnSKgRxJqRN7jc3+vNF3DooIuL6m4guPBqAO4B6pAzCddNgW+qQdvXC6QLooDtwEoQRuBxkI/g8hkpsQkE6iAuGWqP14TZ88LHCH+Ng+6NocVxiI2L57t3hnHX5iXee3TfcQLq1Mu/zm7XvN0yM7ht5+2sOqIn3/cjJe2OzKTfRvfeZnnTC1rJmEDV6VBUlcSadUmOqImiqkT3GcLhQQO5qeUacDjRJaQxdvRYfFNTCQ6CkKZN+Wmegcv79yNVFaHXozcaafvoo+j0ek5v2EBo48Z0Gz+eyLZtc45/7JuPmPBhQ1afvIkgcyJjO07hqY6foYg812toExh70G3nYSo2jhBPGlamsq1c88Jmm5W5k8ejpObxCFJ0MHwD1HYraVsmeMXJok4HyQQPOWdM2Y+XF9fSDkUh7hL0vZEPD97DySY1qOFzD/0b/k6LsP3YnXps+0z4i1SSi/F7T7UHsPVsK/Q/OKj91HFOTGnChd9rophV5g4bhF7Nz1o6pyToQjKhBy7jvy0NqRfE9orAVs0EKEx8UzLsARfWZbFAEK7vA/Ogx1AID4LnGkCXrFNuVwe2ncyKUJug9SoOBJJAnkfrS3QTPP2WDI8FQ1gAfDIEnvkRHKoWCZsN8MgNcEOWe4QqITEghDHPfUGHJzoSkpyAyWkvOodqNIGtiL5OvQHSC0SHO7fC/X3AZuWUpQ5rO9+ulTPkhRDsbvQIPbdPwMeN154AVIMOYc/2qpPonVr4ExxzgqDY00xddpzkGnXwMWRJuOp1qL4mtvW8ledPL9T2MmYho9/Qmjuddjtply7hExqK3uTeA+7cOej47DiSk0GVOhKtwby89j0OXWnGF71H5w6MPw5XjkKo6+ZRP4xcl+US3I0oNnKO0yTwC97XHn7x50/zEy+A6oRvesIbVUBAxx2u5XyrKJ4dTpMt8zkim2LcYUVVdbz590SklFpvjlBRpaePdTociTrWNL0ToVORWcr4IWcS0NXUIpK4tFAmrPmA+YcHoBNO7pv+M+8ZX8JPl8Z1E/ay9dO20H8QXe/Tk5IEI0aAmrdXeC/QDJeRkABW9tCqJfJi4VMw4DPYdgoye5LLhEFZSxGw5Tn08Bu1ZpKfNmuR9N3XQcc8AemDQTDxEpwNj6Lh3BMMXvUT3Xevo/mpA1x3ZCdKwYoCnQ763w+H9sKena5PICBAa/bIRmYm3HsHJGv29sfN4UXWKcQFNafOpX9cviaFIPbNgdR8dS6o+fciAFQnd7/yCD98u5xaQaeIiL/E4FW/0ObEPjKFHlQdDJ6fjxh1BgMBxjRYNVm76DuNgLDCLhhTpkB6hoIqc4+a7vDl2+iHmdh9IhF+WQp1qiO3/rcY6FDoThTdieIMKWwl1qsZYZ90N66vtlS4eAAimrt+vbKhkn/iugJxjXxd4Px5mPKBDetvN3FENgUENmdhrVbPiLdAbCdFDvECrDpxK+0jdqAg6Tx7MzHJUdhVbSb7q8yRLBL9iAmqxRlZh42P3IwaPZINPrB0KdzSLYOmh39mU3wLIsQF3vabxIqjN/Ni43cLEfCw6wsTL2jCPutegtOXoa5nqpM5KPjuG4TDqy4s6wHGhsDCZNieCelmH2b1eYxZfR5Dpzroln6ZgVuXMvrLV1EcDo1QnxwPt/fRNm5evbCimtEE078jX5vaqqX5+oWbpxRVAysJTDvj9lUhJcazV7DVCsF0prACmgBq7dlMgCmZLrp/mDL9BSzWDHTZaTwn8Omz8L88H8iCJ2B7nrrdjVPgukfhnln59v3PP2CzFb5pmPRWDlxunku+ABmJRbxH1xhDB86ymnM5pgtlx+FajWh6xk1EbavikW8lqaVeI98C+Osv0OY8DMBYL+yx6OzmlK3jGNnuK5advJ2LqZE5xKtB4bysQcvEaE7IhoDA+aY+pyVYYGQtQ5A4kbRl++WO6C87ufHKFrb36EyaQ6ADQi+Cuhai2ztpffE12PmNVnPc5gHo9SHo9NQJBQ8lfwGtrLh6CQS1LApsrAd/pQh+TIbjNtiWCU6dgfX+1Vl/66OMv+1RDjSAegXdeg5egK0bYcokiD0HHbvCqHHQoIAjZkqy9r6yUN16gT4XF/NHZN/8NyMpqXNxPUFpZzECd/nBlgy44NRkMbIfJsK/WI7Dx+g2NSJ9DNxQYxmDls/HbLPmEi9oP5+QE3BsHzRsCVtn5SfebOz8Gto/BHV75Kxq1gy2bXXiVHWEWK7Qq/5fOKWONaduom7Qqfzb//IATChZiVkgJqbTi1WcZDo7yhwB6xBU07kULQRFD7U6lfEI5YxKSjtcm3DLA6cTfH3BWsEC+9XMl2gedoD1Z29yM6Jk1aV6bOhNejKFom1aA7BIDvZoRpOQw/n3FFATxp8BRaHOYTjjYRQQoYOzjcFQypmzBkfhhAsd1foGON6o8HqPcO4sdGqslaFlwYnCI21nMSdqWFYpoEqjmKXcu/Z+TI40LAKeD9bSwukqRHdqwrJlnuVEu735Busfacnj856ldlxModet0ohyw2cYavjAr0Pd76haIxh3JOfP/fuhU0eV+xp+xxe9RmFXtbucUWfDrC/44xQwqfT06UTlfhZgLQMF+6Dn+4Q2GP7bFArMX9BvBnQaXup9FwWvTLjV6CB53EPOefvahFu5YffuiidegCuZ4aw/G17EiJIxnAMjDmuem+pJQAfvdx3Ptzyef3DyOdj6JXQZzaAA+KgIgTI/RYsKaxvg96jSE6+UrokXtPXFuI67R80oLV3xxeScNj2dxcx3ex7l212P8L05ghPxKejt6QipQwfc7587H6f4mYgb1J+brvfBEhKCUBT0FgsRLVvy3a23Yk3O8sJTFGrc3ovDI1+lnlGPb9IkpIwpdM6qTjDWoeeLoogXIDFP5Hrgd1r8PYkVgwNpF7oBi96KpagWLJ1rU09PoUPhSToymSK6aIqAER0fcyuG4AB46SIsewFO/A3BdaDXR1CjbfE7qUxU4oTbtcg3D6KjoU2bSjt8uUNp6ODivZGEKgVymLW7wYh/SHFCgJug735/eDkMzAIauZ+o9whSglKEWI/aLJd8bTiZywGiuUg4vjxIKyLxK/oA69fADzMhLRXZ/35WLT3OouOBJOoCiNMFsCaiJzadD03TDjLt8DN0j1+PkLBjUE+u+3gBZlE4nyKlJGbzZpJOn+bnOtfxcZA2kaYDpOrgpzX96Xs+Vzc7QzGxsnpPWiVEUyf9TPG3zyZ9IKqrJqJjT8/5nIq9CXUaBf0+L27vxeIDNvIP54ofmAUdgjtpwOO0RVSSP71XIt+IDpIHPOScKUUfTwgRBXwHRKJN5c2QUk5zO/4a+eZCSs2U0IWB7VUPk8hgVOfpDK82EwIl/nVTiOK89mKTu+BBTXhu/AX4uID4Z6ACsY3Ax4v1+hGH4ZKLFEe4Di5mFQAkksljLC7kTTaOTtxEnSL3n5oJL/0GX6wBKZ0IKXEKfSFG0ykOhkd9id4UxnMDb6Bu/SyxFynh/B64cgzijsDu7yDxNJtCOnDbLX+Rrs9vgaNX7RxZ2Ihwaxw66WRRrb78Uvs+vt78KAEO701s5UNALRh/Squn9QIOc4X/sYsjHrgfz+MeDJXco+U18h3kIed8Wiz5VgeqSyl3CiH8gR3A3VJKlzO/19IOeSAEvDUdXh1N6YVYqyAsIo3drdsQFROD5agVh6Lg0BuY37cPtbqeR/R5kdY4MaHjo0j4jw+MOwXJCjwQDi+GgsnL19nCKLj+VH7FKwVYkMeC9SmWuTSFnMY2ehCF4ubilxJu+RB2nQGnBNDlZm4KhJJOqedLyxg4oXLmo0VMvXE39e4cCVNbgLUwCc2u+wAZilb5olMdPHz8G8Yd+i9hGZeIM4fxvwaPM7XpWE771+OpQ59gcpZjHislNmuC0Tvk24RqfMxtbOIcH7IJp5uLYATtKp14vQYvph2klOfRLNSQUqYIIQ6iib1eI19PENYU6AesBC9W4rhBRci0wJjq04m6GIPFrhGBXlXR26z0/PVvav56ho6N91Ct6yIm0IXLy6ozZIjWwKGq8F0E3LMQWmYbYNvtWlVBULCmMgakxcWx4f33ObJoEebgYLo8+ywt778fUcQzcxcfONcIxl+EPZnQxgwfRUBk1hP/PA6R5FKFAZxIDhNPMze+dOuOwMHzWsNHsZ+xBC4LaC9YsqkPE3e+hTz6CcLquoTLrhiQQoCULFzbl9vPL8eQVasUao+nWcphnjw6nWfaT2NfYHMUF/b2XoNUYfssDtYawepDgmBf6NcOfMuYFupKTX5jAFuJJR07mdjZzHmqYeEBWhBWFYwvvYWSGWiGCiHyhskzXNnHAwgh6gLtwH0y/Rr5FkDb2mgtuvehfTF/Aq7b/a8a9E1dhMVQOAJTpULbtD2svukGbj+3mNfTd7NmQCQZ6blkdeIE3HwznDvtwDh8AKxYrIWWFh+YNIXM/9zHV+3akRYXh2rTyPKP4cO5sGsXPT/8sMjzijTA97Vcv/Yde4vctqjIK/psNvF6AAFEAG0U5CbBKUcUbTN3ux1+/+m5/FxnEO0SdnHzpTU5xJu9KwC9dDJlx7PE+NREX45FpBJQF40hQn2Z+cm/s1XtwajvYPlz0LlBsZsXCR0KXcn9cvr8Wy0YS1bne9mTNIcQwg+YB4yVUia7G/cveXbwHjrWgxrZ3cIC6EI5Bqfe3bFAJcCUVMjCPFG6blXTCScpzgCw6Tj8WnNWdbqJDBfmAlYrnO7aG5b9oYXDUmptveNGcGLcGDKuXMkhXgB7WhpbP/2UtLi4Er8HieS/bCk26xNE4aaXbDQMB0POk3gxn7Ee6AyYQUGltT66yOG3XVjJfWd+pef5FZid7qsQDNJO/bRT5fpcIwAdKsEigZWBNzLB8DLJmfCfT9yLHV1DAXhZWEcIYUAj3jlSyvlFjb1GvgUgBBx8N4/7cBhwCxWRHSgTHmk9iwvPRBI3Noz4ccG80u0dRFa+dHrmk6TK/I+KTim4oEay29kOEJz+siHWixZcvVFHajp1Y9YWPqiURC2dhyOzMAnpTCbO79hR4vfxPKtYi/vOs2w8ymLeYT2vsJZ1nEHmoevbW0JEQF7FNomJDHxI1USM9eRaL90PhAAXVP4K7kl9/ekildcE8PXmRxlyak6R51eRPxchtOUVv/doq9tOph22VAF7tKsCEq292JOlGAgtzzYLOCil/G9x46+lHVwgwKK5D0uZVRalaKlOi0VrxKhquKfpb3x6+9P4GrWw1aiz81K395AI3t34CsvsvfgoYzwvWt7HJo0IJIkyiDuTl5BnJsrt/oNFPHYMGFzc/n0cdoSiIAuUiKgOB/41ahQaXxSSsHLUg5n2bGxFE3LZSxwz2MVM+mBGj06BDS/BE7NhSTQ4TgjsZy04FImIkshhQJDIcviQCJvk+51D6WH+hzEdp5Os92fG1hH4OF1fcQJomFo12W1rWBcaJMYRuXM6LJ0PfuHQ7wsIKaD8lpn1NGx205n2/wXebS++HhgG7BVCZOeuXpZSLnE1uEylZkKIicBwIPv5MudAQoiXgMfQ3trTUsplxe2vskvNioOUMHYsfPGFC0WxSsS+4c1pEVa4cDYpM4CQKfE5GhTh4gLXGzZyWQ1lg+MGpIcPPjocxAWHEazkn4SSEuLN1fkyIQlHnnyFotcT3qoVI3a6EcRxgxWc5FO2E5YQR++ty6kZF8u+es1Y3uE2rCb3aYZsXE8tJtA137p167R28fQMtCeY6mhRrwEwQctue/jhzBDapB7gzVav8WHzCaTrfRlwZh6Tdr9CvbSTJOv9CbMV1neoipAya4pRFLid+oTB8PWw9XPYOgOcmYDQhH+G/QGhpW0rrDx4pdQsqIOkh4ec84d3O9y8kXaYkse9OJt4m6M90LUAegGfCyEqTtW5nCAETJsGNhv065f3lcqtS6sd6Lq332LIwMeQS4qXZCQLbANY7+jhMfECONHzavo7pEmfQq+NTviEv6t9j6VaNQx+fujMZqK6deOBpUtL/D7qEkjT04f5bNo4+v3zJ50O7yAmrGZOdUFx2MI5VKfkVPQ5Lp3WipUnZze7NUdrszagVWapIDJUTH/baJOqVQId823Avj+aY/3RwDu7X2FGwyfYEHYDBllJLVClQHYKotBzTHocTGsKmz7JIl4ACZcPw/T2YKsCTsKVgX+he3E/YK6U0gqcFEIcAzoBm8rpeBWOv/7K/b/FnE5GZuWV3xyIa07nmlsLrU/IDCbVVkw3mIf43DqGyzKU1y1vUUuJIdrRipczJrHBcSPEwKXWd/Pxa6fo3M1cZLrhEJf5jB3EkoIfRobQnDtogEDQUAbxzLzpOSVxyzrcwoG6zbAZPaudMsRkcPbDhkRYYlFQ2ZF6PYcPLgMMmi5xgV+7RGGfoyXnnZFU111g9uZHULJupM1SDjN513OAZ/lbj7rRPKgsjHVGMin1Fc47q/Mf858MtvyEWZSsVrjE+WZbCuz9Gdo/UtItr36UrNTMq/BG5PukECJaCPG1ECLbR6Em5HPzi8laVwhCiCeEENuFENvjSjE7XlnIDsRaNNmLqroK6iVCVMyU8wtrPiTNbsm3Ls3mw4TVH+DNqZ9fbINombSfoIQkeqSs14g3C3uiFXreV59Zv+Qn3hUr4PnnYc4c2CUv8gJrOEMyDiSJWPmcXczOKiu7nHaKsMTcx/uV7W/Gaiw+3QCAUzJ8zdfU8T+BRZ+JSW+jXcAanms4ipqBF/6vvTOPk6K6FvB3evYFGJaRbRgYFBHRx+4OGEEFX5TNgESNGnniGolbXBNcEkzUl0XzTCCSEI0IuMcVIUGILLJoAoIOKDvIvgwwzHreH7cGumd6prunq7t6mPv9fsV0V9+qOtzqPnXvuWep9ZteRiq7KkwVXV+1GUxV6fNwCCsXRRhtmslBNlfk80bJKO44+Czn7F7MEc0IfWC07FgV+2skKhVhbi4TUvmKyBwRWRVkGwY8D5wM9MREdjxTdViQUwWdN6rqZFXtq6p9c3Nz6/nfiD8XXmj+9u2xnKtHvURmRmBFhbTUozxwxxNxkWX+poFcNknRdukAABPjSURBVON9Fm89m4MlTVi1qzvX/v1Fpq28PoZXDa5Jfvxj2LHD2MXT0uCSS8zU/5pr4JYPvqIyyPTtTb6ihAoykpvWuxBl7to9nPdF4MTK54Mbe0xl3fhO9C5eGnTqWImP7slf1OuasSDLd4R7sp4G4LBms7a8C1MOxyYrWAAdzg3d5kSkqnR8OJvLhDQ7qOrgcE4kIlMwIQlgRrod/D7OwxS5OWGYPh06dID1mwp4c+owWrfawXNT7+DQkWxO7VzIb5+4m227zoubPPM3DeTcaYtdPGP9o+/y841dvPr5Wl28E1+Qb1wlsIvD5KW34j8n96Dbus9Jqaxg8PJ/sqFNxzpHv+kkczbtOOv3M8lsWnN67vMp6b4S5p4xmPbrt3EkMytgyNHWt61GlSGvaZd0PMHNEbJ45egY7sz+XQyv6IPOF8bw/AlMQzU7OIkkqhgBVM1d3gauEpE0ESkAugA1jZINmBYtYN8+yD9lAN/uasfEux/lQGEzSjaksWZ+Ny69cAE33DqOX/zCa0nrg5JMGfVdSKypeA3vNx3Owksu4MDnNWveNcdMrdtf+RrbcvMoTk3nvFVL6L5+DSllpQGitCKDy+jMn7iMmYwwJdPbfYejZSm1ugLmJB9k/8lNSU8JNAV1TNpEaQJ5XKqaf+7Jeoox6a+QxlFypJYSPa5RCU/mQUkCV5yIFVWuZh6YHaJ1NXsRY3JQYAMw3kkugYg8BPwQM9mboKohl78T3dWsNirLd1K8/QYykz8yY8Xk0yHnz5DSCzCVbhpSprSm7KeLr5DCytMowm0/UIWUSnq+sIwO126isgTaayZ/TP9vvybK6i3vsm/fV7Rp158jrTqxgM00I41hnEo2NXPYFu05xKbb23Jqh0N1lmu/v/T/+OWeW469z5YidrQ+iUyJwbyyDuqaV6hCGSkc1XSOahp7KlvSLcX9opc1aJYP922M/XVcwhVXs8y+yilh6pyV7rqa2ZSSblJ5GCgDX2A4b3Y2HD4c/JDEQ0mhlDKizM4SgqSsMgZ98x6+b5W/fX2YFiOuDv9gVVg5C1bNMmkVL3wAsk/ihbP7cc2AZaTVkV+8Eh8jDr7H24cvPbbvoazHeaTJY6RJ/FzKwjXqVGrN4ssx5cKfwsWPxvGC9ccV5ZvRVykIU+esSTw/X0sVvqwaiheqasIlMuq3EXPFC1BR6mPJ0Au4/Nz3aFG4NvQB5SUw/2l4JBUe9sGMMfDFq7DoNzCpNSx6jvLSchb8q26XYB+VzGw2kubspoXsJp1iCiu6xjQBTjDC1adxt0fPewwqGo5fc9Qk8oKbJXr+8hd4663EiooLxIMVpzIfusLHDW1mwmlBCkv6c/Qg/L437P269jbv3EH3URPJWPJvQtmq0/QIu9vkIpiRcFKcXAIbDLsLE7fUu9t4WEbIjnzjQFYW7N8PFw8B0oEsIIeIer9ly9jIFh6xMU31YxELUwbB0GF1N/x4EuxbH/J85+StoPeZGtLnVp2pvAhW8QYjzZ3AnAaDRxFuVvnGicxMmP0+fLoaTrkd0oeDtCWsIgT9+sEiT2MDYzEyFuYyhMGbX+WXvw5RBHLljICS8LWRvGFOWMEO9SrOmYDEbLmmaS1Jlk9EqlzNwtlcxpod4ky/AiicBJv3mpyzJfth9mz45BN4913Y45e/RQRGjIBXXzWvzzwTVtadY7yBYZ79DzwAt9wC6emwaRO0agU5/qbzpDBt0GXV8hNUAMuANZgfTxtgAFDT061BEpOHiC/5WIWSRoG7Wc0iohH1cuIgAvktoW0OdOoEN90E06bB7t2mfP1dd8H48fDhh8cVL8DChXBSXRXmGyiq0KyZ8Z3u1QvatIGrr4biqoyOZ90UukR6r+sho0Xgvn8AK4ESzMLKIQhV+LhRI0nQd5zXUsSXEzCxjqWe9OhhwnGDkZ0N27fD3Lnwwgswa1ZN/+EBA+D002Hq1NqDHRIVf3e8114zA7AXXwTOuR2+mQeF71EjPjkpHa78K/zX92DBM/DRg1BRCkXARgJHNWdxQg43/M0P9RoN+1IhKRk6nANDn3ZNrgZBJWElSo8F1s+3AbN/v1FO8+ebBbnhw00uBZ8Piopg61Zo2xb++EdYutSMoutPfIp9VmfSJJMvIi0N2PY5rJ9ntE33EdC8UzURFf75OMz/FawvRj+qRPwfQFcT85FvWNnNXD5fdMrXB4Mmmv5sfUbI1omEK36+0leRMHWOhiwdPxX4LrBTVUN2plW+jYTiYrPoV3+8Ub5gTBKFhRGYXMpLYfaz6A33EFDObhTQkoQvCeXP0aMwfRaMHmm8ZtzHB/euh5z8WJw8primfAlX54RUvgMwxq2/hqN8T8BJmCUYJZGlhA2CdxrrwAEYF4kpMjkVzhuNtpdAb5LPvE57HxmlpfCvRbBlK7w8M0YXaXNmg1S8iYiqzgf2htveKt9GwpKF35KWGrUG9ox33gndJoCcDrw3eDR6GsdXNoogwrzkrhDJ5LKkBMrLzd8FC+GTRcauv3OXeQi5ii8Nxs1z+aSWcLELbo2BysO08F1HSekHodsmKKpmJJgawunBn6dzXqKotzLmvJkmMbrPsaHGTMqaRGoDfmk67N5rlK+/0u5+OjRp4qZkyfDwHkjzrgJLA6SVSICBeLKqTq7vyezItzFwdCYFeTULbDY0cnKMF0e4I8lBZyRz9cEZnLt3MR+VDqbMKSSaQMscAVQCnU72UV5WU8aLBrrofpuaDXetsYoXOO7uEFbt+N1VhR+crd6KF6zybRyUf0lSUhi5WjMwBSYTlOJiE4xx223htf+fgZCZAivKenFO6mJSpOJYgcl4Ecm1fECvfimkZQpJfrbqjAxo4oqXhsDQ38Ij+6HlKW6c8ATAuxA3q3wbAyk9aN68nHattxB0yak9MBq4EhiLKbGeoEq4tNSMfrdsCd22TTOYcy88kDuFJnIo9sK5QHJ2KnmPXMbZ/SC3FXTMh2HfjeaBIdBtBNy9Hn5eCRf8CHwNvpC4i7gXZSEi0zFFgruKyBYRubGu9tbm2xhIHwVFDzN31hC6DahWKLE5Rtn6fxPygEFAApuIlyyBvDBSEJxzMpw96Fv4OPYyuYGgLOs0kKcvepeLL4ryZKNfhh5jXZHrxMW9OkKqGlFn25FvY0DSoOViTjujD89PGkfA6Lc7Nb8FSUAuuF7EwiVKSozr2d4wnXqkz3UJ59pbGaRUaJkkszkzj4wKN0KufFbxhoU1O1hiTdJJ0PyvNM2fAG12QJLz029K8G9BJSb1ZYKyfz906RKm+1XLU6BgYOh2ccSH8vPuD7EpI48jSRkc9aWxIPcChg18i1vW/SH6C6Qm8M1LKJQIFtxcxZodGhnf//6ZHDn6GbcuPELZvo6QJRjnq2pjQx8RuIt7w969JhfGunWQHOqbPG4ePNkeilwsor0WWMrxhD0XYTKnhUNGSyYMu5sf73+ceds3cUAy6ZJcwuup62lXvD162fLOjv4cjQLvsqnbkW8jZNwPe1EypYDVf1Ge+7nQNFMCvwjlwFeYbGDByAR6xFrK8Ni4Ef7+9zAbT1gDXYfhytd+LTAfk8BHnb+zMTOGcKgoJTurOVPaC4V9OrK9dy6f9MjjzK7nRy+bJMGlk6I/T6PAO7NDVCNfEZkBdHXe5gD7VbWniHTCZFGtKrm6WFVvjuZaFncREbo1SaZbE7j8UXjkDZi9CnKy4OYLYMp9sCYZKis4biLOAIZhPCEWeyZ6DZYvN3mPQ5LeFH7wJhTvM1tlOfxnJhS+D5sXRnbRT6k5YCrGLOx9J4zjc7seeyn+UdA+nxMNEqYWL/iOyWO8bbk5LiUbhv8B8lyr83iC493INyrlq6pjql6LyDOAvwXua1XtGc35LfEhvyVMq5Y74c6hRqm9uhoWpUFSBvTdA3ml8MEGeK/SxUQ7VQPRelb0ad48wgMympsNoP+9MPenkV+0Ns+1QsJQvgJX1GHX7TYMVr8RWobRr0AP5yd4aId5oLQ4xaSHtISJe94OkeLKXRIRwXiKRuscY0kg+vQxW3XuAB7lYyZOGkjUCjgZM5KOYj1j9Ogorr9sMvVKt5NNcAUcLBgiuw0c3gVaAU3awpUvQl6Qjq1izCvwm9Nqr1uX1RqumgmdB/hdo7XZLBHSQEe+fvQHdqiqfw3wAhH5DDgIPKyqC1y6liUB+Nn9H7Bv1wp++6cJBCrgCJRxDtAL+Fd0suTmRnFwST2DL/oBCwj83SZjErZXIT64bys0DXcVruo8qXDPN7BhIcx5EA5sM5nHel5jNjuydRHvsqmHzOcrInMIvob7kKq+5bR5Hlinqs8479OAbFXdIyJ9gDeB7qp6MMj5bwJuAsjPz++zcePGaP4/lnhR+gnsvZTysmJee2cU3+5qw7J/9+Gl13/gNAhDCY/GuLO9CeyrnxgpKcbvt94RYId2waR61mYqxNh+D2NGvP2AU53PMlvC+MXQyobxxgp38vl2UfhdmK0vi/p6/oR8hKrq4Lo+F5FkYCRwbB6lqiU4a+WqulxEvsZ8LWtkLXaSU0wGk0w9EuEtHpJyHqSNJJnXGTN8FiAgGTz84A5GXHsf69ZBWRBT2v33G7ew8nKYsQfWlwK9gXnUq5DhnXdGmashO9eUKVr8XOD+1KYwdiZ06g//eBwWPFnz2FOdTTEhuz3GQu8bIaulqQpxopRJPuFpuGaHwcCXqnos2l5EcoG9qlohIp2BLsA3LlzLkiiIQM40KPk+FE8HSYGMH9C1zQBWrzZNiorgRz+CBQugc2dTEsjfhvy9jdB/EhzJB87HPJqLMYPmMBbfhg6Fp55y4f9y+bNw2uUw92dm0ar7KLjoZ2b6DzBkEpQehiXPBj/el2SCGgY9Ci06uyCQJX407AW3q4Dp1fYNAB4TkXLMeOZmVU1wl31LxIhA+hCzBaFJE/jzn2s/vHdHmHsv3DsTPhUoOwl0BWTugJvHm7JHTzwReMy558LIkXD99abEvGt0ucRstXHF76D16TDnETi6H9KbQXoLKC820XNW8TZQvFO+toabJWFQNeaIFL+Majt3wq9/bfbfeisUFHgnnyWxcMfm21nh8TBbXxNfm6/FEi9EAhUvmKKZk2ywliVmeOftYJWvxWJpxDRsm6/FYrE0UGxiHYvFYvEA9xLriMgQEflKRNaJyP2h2tuRr8ViacS4M/IVkSTg98DFwBZgqYi8raqrazvGKl+LxdKIcW3B7SxMlO83ACLyCiYHYMNQvsuXL98tIl7FF7cCdnt07bqwckVGIsqViDJBw5erY/SX2v4hTAzXYzxdRPx9YSf7lY9vD2z2+2wLUGdG+4RSvqoaTYqUqBCRZW768LmFlSsyElGuRJQJrFwAqho8QihygsWS1xlEYRfcLBaLJXq2AB383ucBddasssrXYrFYomcp0EVECkQkFZN24e26Dkgos4PHTA7dxBOsXJGRiHIlokxg5XINVS0XkduBDzFVoaaq6hd1HZNQuR0sFoulsWDNDhaLxeIBVvlaLBaLBzR65SsiM0Tkc2fbICKfO/s7iUix32d1lJuNiVwTRWSr3/Uv8/vsASeE8SsRuTSOMj0lIl+KyH9E5A0RyXH2e9pXjgwRhXbGUI4OIvJPEVkjIl+IyJ3O/lrvZxxl2yAiK53rL3P2tRCRj0RkrfM30lrQ0cjT1a8/PheRgyIyIRH6Kh5Ym68fIvIMcEBVHxORTsA7qnqGR7JMBA6p6tPV9p+OSV5/FtAOmAOcqqr1KMITsUyXAP9wFhd+CaCqP0mAvkrCVFQ7FtoJjK0rtDOGsrQF2qrqChFpAiwHhmMq1tW4n3GWbQPQV1V3++37FabqzJPOQ6u5qv7EA9mSgK2YwIQb8Liv4kGjH/lWISKC+YFUr8qRaAwDXlHVElVdD6wjsGZuzFDV2apaFQi/GOPLmAgcC+1U1VKgKrQz7qjqdlVd4bwuAtZgop8SlWHANOf1NMyDwgsGAV+raqOpoGuV73H6AztUda3fvgIR+UxEPhaR/h7IdLszxZ/qNx0MFsboxY/7h8D7fu+97KtE6ZMAnBlBL2CJsyvY/YwnCswWkeVO1XCA1qq6HcyDA6hnKeeoqV6OzOu+ijmNQvmKyBwRWRVk8x8djSXw5m8H8lW1F3AX8LKINI2jXM8DJwM9HVmeqTosyKlcsx2F01ci8hAmFdTfnF0x76tQYgfZ56k9TUSygdeACap6kNrvZzw5X1V7A0OB20RkgAcy1EBMUMIVwCxnVyL0VcxpFEEWqjq4rs9FJBkYCRyrrauqJUCJ83q5iHyNKRTuWpG5UHL5yTcFeMd5G3EYo5syich1wHeBQeosGMSjr0IQ0z6JFBFJwSjev6nq6wCqusPvc//7GTdUdZvzd6eIvIEx1+wQkbaqut2xV++Mt1yYh8GKqj5KhL6KB41i5BsGg4EvVXVL1Q4RyXUWARCRzkAX4Jt4CeT8EKoYAaxyXr8NXCUiaSJS4Mj1aZxkGgL8BLhCVY/47fe0r6hHaGescNYOXgDWqOr/+u2v7X7GS64sZwEQEckCLnFkeBu4zml2HfBWPOVyCJh1et1X8aJRjHzDoLq9CWAA8JiIlAMVwM2qujeOMv1KRHpips8bgPEAqvqFiMzE5AktB26Lh6eDw3NAGvCR0TEsVtWb8biv6hPaGUPOB64FVorjtgg8CIwNdj/jSGvgDee+JQMvq+oHIrIUmCkiNwKbgO/FUygRycR4qfj3R9Dv/omGdTWzWCwWD7BmB4vFYvEAq3wtFovFA6zytVgsFg+wytdisVg8wCpfi8Vi8QCrfC0Wi8UDrPK1WCwWD/h/eK6FKQ1TSskAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y_disp.astype(int), cmap=\"jet\")\n",
|
|
"plt.colorbar()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|