1253 lines
44 KiB
Plaintext
1253 lines
44 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 127,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"import os"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 102,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"BLI = pd.read_csv(\"data\\BLI.csv\")\n",
|
||
"WEO = pd.read_csv(\"data\\WEO.xls\", thousands=',', delimiter='\\t', encoding='latin1', na_values='n/a')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 103,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>WEO Country Code</th>\n",
|
||
" <th>Country</th>\n",
|
||
" <th>Units</th>\n",
|
||
" <th>Scale</th>\n",
|
||
" <th>2017</th>\n",
|
||
" <th>2018</th>\n",
|
||
" <th>2019</th>\n",
|
||
" <th>2020</th>\n",
|
||
" <th>2021</th>\n",
|
||
" <th>2022</th>\n",
|
||
" <th>2023</th>\n",
|
||
" <th>2024</th>\n",
|
||
" <th>Estimates Start After</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>0</td>\n",
|
||
" <td>512</td>\n",
|
||
" <td>Afghanistan</td>\n",
|
||
" <td>U.S. dollars</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>569.531</td>\n",
|
||
" <td>544.983</td>\n",
|
||
" <td>513.108</td>\n",
|
||
" <td>509.759</td>\n",
|
||
" <td>533.089</td>\n",
|
||
" <td>566.416</td>\n",
|
||
" <td>602.884</td>\n",
|
||
" <td>644.950</td>\n",
|
||
" <td>2016.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>1</td>\n",
|
||
" <td>914</td>\n",
|
||
" <td>Albania</td>\n",
|
||
" <td>U.S. dollars</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>4540.459</td>\n",
|
||
" <td>5239.212</td>\n",
|
||
" <td>5372.742</td>\n",
|
||
" <td>5847.056</td>\n",
|
||
" <td>6333.425</td>\n",
|
||
" <td>6876.566</td>\n",
|
||
" <td>7410.754</td>\n",
|
||
" <td>7993.468</td>\n",
|
||
" <td>2018.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2</td>\n",
|
||
" <td>612</td>\n",
|
||
" <td>Algeria</td>\n",
|
||
" <td>U.S. dollars</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>4012.134</td>\n",
|
||
" <td>4080.913</td>\n",
|
||
" <td>3980.118</td>\n",
|
||
" <td>4039.101</td>\n",
|
||
" <td>4032.707</td>\n",
|
||
" <td>4055.391</td>\n",
|
||
" <td>4047.724</td>\n",
|
||
" <td>3768.013</td>\n",
|
||
" <td>2017.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>3</td>\n",
|
||
" <td>614</td>\n",
|
||
" <td>Angola</td>\n",
|
||
" <td>U.S. dollars</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>4303.693</td>\n",
|
||
" <td>3620.589</td>\n",
|
||
" <td>3037.976</td>\n",
|
||
" <td>2867.517</td>\n",
|
||
" <td>2897.032</td>\n",
|
||
" <td>2953.859</td>\n",
|
||
" <td>3045.260</td>\n",
|
||
" <td>3120.541</td>\n",
|
||
" <td>2017.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>4</td>\n",
|
||
" <td>311</td>\n",
|
||
" <td>Antigua and Barbuda</td>\n",
|
||
" <td>U.S. dollars</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>16089.363</td>\n",
|
||
" <td>17464.336</td>\n",
|
||
" <td>18109.095</td>\n",
|
||
" <td>18887.448</td>\n",
|
||
" <td>19544.781</td>\n",
|
||
" <td>20124.740</td>\n",
|
||
" <td>20721.909</td>\n",
|
||
" <td>21336.798</td>\n",
|
||
" <td>2011.0</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" WEO Country Code Country Units Scale 2017 \\\n",
|
||
"0 512 Afghanistan U.S. dollars Units 569.531 \n",
|
||
"1 914 Albania U.S. dollars Units 4540.459 \n",
|
||
"2 612 Algeria U.S. dollars Units 4012.134 \n",
|
||
"3 614 Angola U.S. dollars Units 4303.693 \n",
|
||
"4 311 Antigua and Barbuda U.S. dollars Units 16089.363 \n",
|
||
"\n",
|
||
" 2018 2019 2020 2021 2022 2023 \\\n",
|
||
"0 544.983 513.108 509.759 533.089 566.416 602.884 \n",
|
||
"1 5239.212 5372.742 5847.056 6333.425 6876.566 7410.754 \n",
|
||
"2 4080.913 3980.118 4039.101 4032.707 4055.391 4047.724 \n",
|
||
"3 3620.589 3037.976 2867.517 2897.032 2953.859 3045.260 \n",
|
||
"4 17464.336 18109.095 18887.448 19544.781 20124.740 20721.909 \n",
|
||
"\n",
|
||
" 2024 Estimates Start After \n",
|
||
"0 644.950 2016.0 \n",
|
||
"1 7993.468 2018.0 \n",
|
||
"2 3768.013 2017.0 \n",
|
||
"3 3120.541 2017.0 \n",
|
||
"4 21336.798 2011.0 "
|
||
]
|
||
},
|
||
"execution_count": 103,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"WEO.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 104,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>LOCATION</th>\n",
|
||
" <th>Country</th>\n",
|
||
" <th>INDICATOR</th>\n",
|
||
" <th>Indicator</th>\n",
|
||
" <th>MEASURE</th>\n",
|
||
" <th>Measure</th>\n",
|
||
" <th>INEQUALITY</th>\n",
|
||
" <th>Inequality</th>\n",
|
||
" <th>Unit Code</th>\n",
|
||
" <th>Unit</th>\n",
|
||
" <th>PowerCode Code</th>\n",
|
||
" <th>PowerCode</th>\n",
|
||
" <th>Reference Period Code</th>\n",
|
||
" <th>Reference Period</th>\n",
|
||
" <th>Value</th>\n",
|
||
" <th>Flag Codes</th>\n",
|
||
" <th>Flags</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>0</td>\n",
|
||
" <td>AUS</td>\n",
|
||
" <td>Australia</td>\n",
|
||
" <td>JE_LMIS</td>\n",
|
||
" <td>Labour market insecurity</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>Value</td>\n",
|
||
" <td>TOT</td>\n",
|
||
" <td>Total</td>\n",
|
||
" <td>PC</td>\n",
|
||
" <td>Percentage</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>5.4</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>1</td>\n",
|
||
" <td>AUT</td>\n",
|
||
" <td>Austria</td>\n",
|
||
" <td>JE_LMIS</td>\n",
|
||
" <td>Labour market insecurity</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>Value</td>\n",
|
||
" <td>TOT</td>\n",
|
||
" <td>Total</td>\n",
|
||
" <td>PC</td>\n",
|
||
" <td>Percentage</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>3.5</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2</td>\n",
|
||
" <td>BEL</td>\n",
|
||
" <td>Belgium</td>\n",
|
||
" <td>JE_LMIS</td>\n",
|
||
" <td>Labour market insecurity</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>Value</td>\n",
|
||
" <td>TOT</td>\n",
|
||
" <td>Total</td>\n",
|
||
" <td>PC</td>\n",
|
||
" <td>Percentage</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>3.7</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>3</td>\n",
|
||
" <td>CAN</td>\n",
|
||
" <td>Canada</td>\n",
|
||
" <td>JE_LMIS</td>\n",
|
||
" <td>Labour market insecurity</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>Value</td>\n",
|
||
" <td>TOT</td>\n",
|
||
" <td>Total</td>\n",
|
||
" <td>PC</td>\n",
|
||
" <td>Percentage</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>6.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>4</td>\n",
|
||
" <td>CZE</td>\n",
|
||
" <td>Czech Republic</td>\n",
|
||
" <td>JE_LMIS</td>\n",
|
||
" <td>Labour market insecurity</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>Value</td>\n",
|
||
" <td>TOT</td>\n",
|
||
" <td>Total</td>\n",
|
||
" <td>PC</td>\n",
|
||
" <td>Percentage</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>3.1</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" LOCATION Country INDICATOR Indicator MEASURE \\\n",
|
||
"0 AUS Australia JE_LMIS Labour market insecurity L \n",
|
||
"1 AUT Austria JE_LMIS Labour market insecurity L \n",
|
||
"2 BEL Belgium JE_LMIS Labour market insecurity L \n",
|
||
"3 CAN Canada JE_LMIS Labour market insecurity L \n",
|
||
"4 CZE Czech Republic JE_LMIS Labour market insecurity L \n",
|
||
"\n",
|
||
" Measure INEQUALITY Inequality Unit Code Unit PowerCode Code \\\n",
|
||
"0 Value TOT Total PC Percentage 0 \n",
|
||
"1 Value TOT Total PC Percentage 0 \n",
|
||
"2 Value TOT Total PC Percentage 0 \n",
|
||
"3 Value TOT Total PC Percentage 0 \n",
|
||
"4 Value TOT Total PC Percentage 0 \n",
|
||
"\n",
|
||
" PowerCode Reference Period Code Reference Period Value Flag Codes Flags \n",
|
||
"0 Units NaN NaN 5.4 NaN NaN \n",
|
||
"1 Units NaN NaN 3.5 NaN NaN \n",
|
||
"2 Units NaN NaN 3.7 NaN NaN \n",
|
||
"3 Units NaN NaN 6.0 NaN NaN \n",
|
||
"4 Units NaN NaN 3.1 NaN NaN "
|
||
]
|
||
},
|
||
"execution_count": 104,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"BLI.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 107,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"BLI = BLI[BLI['INEQUALITY']=='TOT']\n",
|
||
"BLI = BLI.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 108,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th>Indicator</th>\n",
|
||
" <th>Air pollution</th>\n",
|
||
" <th>Dwellings without basic facilities</th>\n",
|
||
" <th>Educational attainment</th>\n",
|
||
" <th>Employees working very long hours</th>\n",
|
||
" <th>Employment rate</th>\n",
|
||
" <th>Feeling safe walking alone at night</th>\n",
|
||
" <th>Homicide rate</th>\n",
|
||
" <th>Household net adjusted disposable income</th>\n",
|
||
" <th>Household net wealth</th>\n",
|
||
" <th>Housing expenditure</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>Personal earnings</th>\n",
|
||
" <th>Quality of support network</th>\n",
|
||
" <th>Rooms per person</th>\n",
|
||
" <th>Self-reported health</th>\n",
|
||
" <th>Stakeholder engagement for developing regulations</th>\n",
|
||
" <th>Student skills</th>\n",
|
||
" <th>Time devoted to leisure and personal care</th>\n",
|
||
" <th>Voter turnout</th>\n",
|
||
" <th>Water quality</th>\n",
|
||
" <th>Years in education</th>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Country</th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>Australia</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>81.0</td>\n",
|
||
" <td>13.04</td>\n",
|
||
" <td>73.0</td>\n",
|
||
" <td>63.5</td>\n",
|
||
" <td>1.1</td>\n",
|
||
" <td>32759.0</td>\n",
|
||
" <td>427064.0</td>\n",
|
||
" <td>20.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>49126.0</td>\n",
|
||
" <td>95.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>2.7</td>\n",
|
||
" <td>502.0</td>\n",
|
||
" <td>14.35</td>\n",
|
||
" <td>91.0</td>\n",
|
||
" <td>93.0</td>\n",
|
||
" <td>21.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Austria</td>\n",
|
||
" <td>16.0</td>\n",
|
||
" <td>0.9</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>6.66</td>\n",
|
||
" <td>72.0</td>\n",
|
||
" <td>80.6</td>\n",
|
||
" <td>0.5</td>\n",
|
||
" <td>33541.0</td>\n",
|
||
" <td>308325.0</td>\n",
|
||
" <td>21.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>50349.0</td>\n",
|
||
" <td>92.0</td>\n",
|
||
" <td>1.6</td>\n",
|
||
" <td>70.0</td>\n",
|
||
" <td>1.3</td>\n",
|
||
" <td>492.0</td>\n",
|
||
" <td>14.55</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>92.0</td>\n",
|
||
" <td>17.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Belgium</td>\n",
|
||
" <td>15.0</td>\n",
|
||
" <td>1.9</td>\n",
|
||
" <td>77.0</td>\n",
|
||
" <td>4.75</td>\n",
|
||
" <td>63.0</td>\n",
|
||
" <td>70.1</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>30364.0</td>\n",
|
||
" <td>386006.0</td>\n",
|
||
" <td>21.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>49675.0</td>\n",
|
||
" <td>91.0</td>\n",
|
||
" <td>2.2</td>\n",
|
||
" <td>74.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>503.0</td>\n",
|
||
" <td>15.70</td>\n",
|
||
" <td>89.0</td>\n",
|
||
" <td>84.0</td>\n",
|
||
" <td>19.3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Brazil</td>\n",
|
||
" <td>10.0</td>\n",
|
||
" <td>6.7</td>\n",
|
||
" <td>49.0</td>\n",
|
||
" <td>7.13</td>\n",
|
||
" <td>61.0</td>\n",
|
||
" <td>35.6</td>\n",
|
||
" <td>26.7</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>90.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>2.2</td>\n",
|
||
" <td>395.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>79.0</td>\n",
|
||
" <td>73.0</td>\n",
|
||
" <td>16.2</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Canada</td>\n",
|
||
" <td>7.0</td>\n",
|
||
" <td>0.2</td>\n",
|
||
" <td>91.0</td>\n",
|
||
" <td>3.69</td>\n",
|
||
" <td>73.0</td>\n",
|
||
" <td>82.2</td>\n",
|
||
" <td>1.3</td>\n",
|
||
" <td>30854.0</td>\n",
|
||
" <td>423849.0</td>\n",
|
||
" <td>22.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>47622.0</td>\n",
|
||
" <td>93.0</td>\n",
|
||
" <td>2.6</td>\n",
|
||
" <td>88.0</td>\n",
|
||
" <td>2.9</td>\n",
|
||
" <td>523.0</td>\n",
|
||
" <td>14.56</td>\n",
|
||
" <td>68.0</td>\n",
|
||
" <td>91.0</td>\n",
|
||
" <td>17.3</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 24 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
"Indicator Air pollution Dwellings without basic facilities \\\n",
|
||
"Country \n",
|
||
"Australia 5.0 NaN \n",
|
||
"Austria 16.0 0.9 \n",
|
||
"Belgium 15.0 1.9 \n",
|
||
"Brazil 10.0 6.7 \n",
|
||
"Canada 7.0 0.2 \n",
|
||
"\n",
|
||
"Indicator Educational attainment Employees working very long hours \\\n",
|
||
"Country \n",
|
||
"Australia 81.0 13.04 \n",
|
||
"Austria 85.0 6.66 \n",
|
||
"Belgium 77.0 4.75 \n",
|
||
"Brazil 49.0 7.13 \n",
|
||
"Canada 91.0 3.69 \n",
|
||
"\n",
|
||
"Indicator Employment rate Feeling safe walking alone at night \\\n",
|
||
"Country \n",
|
||
"Australia 73.0 63.5 \n",
|
||
"Austria 72.0 80.6 \n",
|
||
"Belgium 63.0 70.1 \n",
|
||
"Brazil 61.0 35.6 \n",
|
||
"Canada 73.0 82.2 \n",
|
||
"\n",
|
||
"Indicator Homicide rate Household net adjusted disposable income \\\n",
|
||
"Country \n",
|
||
"Australia 1.1 32759.0 \n",
|
||
"Austria 0.5 33541.0 \n",
|
||
"Belgium 1.0 30364.0 \n",
|
||
"Brazil 26.7 NaN \n",
|
||
"Canada 1.3 30854.0 \n",
|
||
"\n",
|
||
"Indicator Household net wealth Housing expenditure ... Personal earnings \\\n",
|
||
"Country ... \n",
|
||
"Australia 427064.0 20.0 ... 49126.0 \n",
|
||
"Austria 308325.0 21.0 ... 50349.0 \n",
|
||
"Belgium 386006.0 21.0 ... 49675.0 \n",
|
||
"Brazil NaN NaN ... NaN \n",
|
||
"Canada 423849.0 22.0 ... 47622.0 \n",
|
||
"\n",
|
||
"Indicator Quality of support network Rooms per person Self-reported health \\\n",
|
||
"Country \n",
|
||
"Australia 95.0 NaN 85.0 \n",
|
||
"Austria 92.0 1.6 70.0 \n",
|
||
"Belgium 91.0 2.2 74.0 \n",
|
||
"Brazil 90.0 NaN NaN \n",
|
||
"Canada 93.0 2.6 88.0 \n",
|
||
"\n",
|
||
"Indicator Stakeholder engagement for developing regulations Student skills \\\n",
|
||
"Country \n",
|
||
"Australia 2.7 502.0 \n",
|
||
"Austria 1.3 492.0 \n",
|
||
"Belgium 2.0 503.0 \n",
|
||
"Brazil 2.2 395.0 \n",
|
||
"Canada 2.9 523.0 \n",
|
||
"\n",
|
||
"Indicator Time devoted to leisure and personal care Voter turnout \\\n",
|
||
"Country \n",
|
||
"Australia 14.35 91.0 \n",
|
||
"Austria 14.55 80.0 \n",
|
||
"Belgium 15.70 89.0 \n",
|
||
"Brazil NaN 79.0 \n",
|
||
"Canada 14.56 68.0 \n",
|
||
"\n",
|
||
"Indicator Water quality Years in education \n",
|
||
"Country \n",
|
||
"Australia 93.0 21.0 \n",
|
||
"Austria 92.0 17.0 \n",
|
||
"Belgium 84.0 19.3 \n",
|
||
"Brazil 73.0 16.2 \n",
|
||
"Canada 91.0 17.3 \n",
|
||
"\n",
|
||
"[5 rows x 24 columns]"
|
||
]
|
||
},
|
||
"execution_count": 108,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"BLI.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 111,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"WEO.rename(columns={\"2019\": \"GDP per capita\"}, inplace=True)\n",
|
||
"WEO.set_index(\"Country\", inplace=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 115,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"full_country_stats = pd.merge(left=BLI, right=WEO,\n",
|
||
" left_index=True, right_index=True)\n",
|
||
"full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 116,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>Air pollution</th>\n",
|
||
" <th>Dwellings without basic facilities</th>\n",
|
||
" <th>Educational attainment</th>\n",
|
||
" <th>Employees working very long hours</th>\n",
|
||
" <th>Employment rate</th>\n",
|
||
" <th>Feeling safe walking alone at night</th>\n",
|
||
" <th>Homicide rate</th>\n",
|
||
" <th>Household net adjusted disposable income</th>\n",
|
||
" <th>Household net wealth</th>\n",
|
||
" <th>Housing expenditure</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>Scale</th>\n",
|
||
" <th>2017</th>\n",
|
||
" <th>2018</th>\n",
|
||
" <th>GDP per capita</th>\n",
|
||
" <th>2020</th>\n",
|
||
" <th>2021</th>\n",
|
||
" <th>2022</th>\n",
|
||
" <th>2023</th>\n",
|
||
" <th>2024</th>\n",
|
||
" <th>Estimates Start After</th>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Country</th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>South Africa</td>\n",
|
||
" <td>22.0</td>\n",
|
||
" <td>37.0</td>\n",
|
||
" <td>73.0</td>\n",
|
||
" <td>18.12</td>\n",
|
||
" <td>43.0</td>\n",
|
||
" <td>36.1</td>\n",
|
||
" <td>13.7</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>18.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>6119.887</td>\n",
|
||
" <td>6353.846</td>\n",
|
||
" <td>6100.354</td>\n",
|
||
" <td>6193.171</td>\n",
|
||
" <td>6331.797</td>\n",
|
||
" <td>6493.317</td>\n",
|
||
" <td>6663.568</td>\n",
|
||
" <td>6846.991</td>\n",
|
||
" <td>2018.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Colombia</td>\n",
|
||
" <td>10.0</td>\n",
|
||
" <td>23.9</td>\n",
|
||
" <td>54.0</td>\n",
|
||
" <td>26.56</td>\n",
|
||
" <td>67.0</td>\n",
|
||
" <td>44.4</td>\n",
|
||
" <td>24.5</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>17.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>6325.486</td>\n",
|
||
" <td>6641.507</td>\n",
|
||
" <td>6508.127</td>\n",
|
||
" <td>6744.007</td>\n",
|
||
" <td>7053.528</td>\n",
|
||
" <td>7381.726</td>\n",
|
||
" <td>7729.015</td>\n",
|
||
" <td>8096.644</td>\n",
|
||
" <td>2018.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Brazil</td>\n",
|
||
" <td>10.0</td>\n",
|
||
" <td>6.7</td>\n",
|
||
" <td>49.0</td>\n",
|
||
" <td>7.13</td>\n",
|
||
" <td>61.0</td>\n",
|
||
" <td>35.6</td>\n",
|
||
" <td>26.7</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>9926.291</td>\n",
|
||
" <td>8958.576</td>\n",
|
||
" <td>8796.909</td>\n",
|
||
" <td>8955.650</td>\n",
|
||
" <td>9344.111</td>\n",
|
||
" <td>9737.998</td>\n",
|
||
" <td>10167.442</td>\n",
|
||
" <td>10606.458</td>\n",
|
||
" <td>2016.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Turkey</td>\n",
|
||
" <td>20.0</td>\n",
|
||
" <td>8.0</td>\n",
|
||
" <td>39.0</td>\n",
|
||
" <td>32.64</td>\n",
|
||
" <td>52.0</td>\n",
|
||
" <td>59.8</td>\n",
|
||
" <td>1.4</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>20.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>10551.139</td>\n",
|
||
" <td>9405.321</td>\n",
|
||
" <td>8957.894</td>\n",
|
||
" <td>9683.565</td>\n",
|
||
" <td>10635.818</td>\n",
|
||
" <td>11373.637</td>\n",
|
||
" <td>11901.693</td>\n",
|
||
" <td>12489.904</td>\n",
|
||
" <td>2018.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Mexico</td>\n",
|
||
" <td>16.0</td>\n",
|
||
" <td>25.5</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>28.70</td>\n",
|
||
" <td>61.0</td>\n",
|
||
" <td>41.8</td>\n",
|
||
" <td>18.1</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>20.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>Units</td>\n",
|
||
" <td>9366.655</td>\n",
|
||
" <td>9796.976</td>\n",
|
||
" <td>10118.167</td>\n",
|
||
" <td>10405.789</td>\n",
|
||
" <td>10767.497</td>\n",
|
||
" <td>11150.183</td>\n",
|
||
" <td>11563.558</td>\n",
|
||
" <td>12007.789</td>\n",
|
||
" <td>2018.0</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 36 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" Air pollution Dwellings without basic facilities \\\n",
|
||
"Country \n",
|
||
"South Africa 22.0 37.0 \n",
|
||
"Colombia 10.0 23.9 \n",
|
||
"Brazil 10.0 6.7 \n",
|
||
"Turkey 20.0 8.0 \n",
|
||
"Mexico 16.0 25.5 \n",
|
||
"\n",
|
||
" Educational attainment Employees working very long hours \\\n",
|
||
"Country \n",
|
||
"South Africa 73.0 18.12 \n",
|
||
"Colombia 54.0 26.56 \n",
|
||
"Brazil 49.0 7.13 \n",
|
||
"Turkey 39.0 32.64 \n",
|
||
"Mexico 38.0 28.70 \n",
|
||
"\n",
|
||
" Employment rate Feeling safe walking alone at night \\\n",
|
||
"Country \n",
|
||
"South Africa 43.0 36.1 \n",
|
||
"Colombia 67.0 44.4 \n",
|
||
"Brazil 61.0 35.6 \n",
|
||
"Turkey 52.0 59.8 \n",
|
||
"Mexico 61.0 41.8 \n",
|
||
"\n",
|
||
" Homicide rate Household net adjusted disposable income \\\n",
|
||
"Country \n",
|
||
"South Africa 13.7 NaN \n",
|
||
"Colombia 24.5 NaN \n",
|
||
"Brazil 26.7 NaN \n",
|
||
"Turkey 1.4 NaN \n",
|
||
"Mexico 18.1 NaN \n",
|
||
"\n",
|
||
" Household net wealth Housing expenditure ... Scale \\\n",
|
||
"Country ... \n",
|
||
"South Africa NaN 18.0 ... Units \n",
|
||
"Colombia NaN 17.0 ... Units \n",
|
||
"Brazil NaN NaN ... Units \n",
|
||
"Turkey NaN 20.0 ... Units \n",
|
||
"Mexico NaN 20.0 ... Units \n",
|
||
"\n",
|
||
" 2017 2018 GDP per capita 2020 2021 \\\n",
|
||
"Country \n",
|
||
"South Africa 6119.887 6353.846 6100.354 6193.171 6331.797 \n",
|
||
"Colombia 6325.486 6641.507 6508.127 6744.007 7053.528 \n",
|
||
"Brazil 9926.291 8958.576 8796.909 8955.650 9344.111 \n",
|
||
"Turkey 10551.139 9405.321 8957.894 9683.565 10635.818 \n",
|
||
"Mexico 9366.655 9796.976 10118.167 10405.789 10767.497 \n",
|
||
"\n",
|
||
" 2022 2023 2024 Estimates Start After \n",
|
||
"Country \n",
|
||
"South Africa 6493.317 6663.568 6846.991 2018.0 \n",
|
||
"Colombia 7381.726 7729.015 8096.644 2018.0 \n",
|
||
"Brazil 9737.998 10167.442 10606.458 2016.0 \n",
|
||
"Turkey 11373.637 11901.693 12489.904 2018.0 \n",
|
||
"Mexico 11150.183 11563.558 12007.789 2018.0 \n",
|
||
"\n",
|
||
"[5 rows x 36 columns]"
|
||
]
|
||
},
|
||
"execution_count": 116,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"full_country_stats.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 119,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['South Africa', 'Colombia', 'Brazil', 'Turkey', 'Mexico', 'Russia',\n",
|
||
" 'Poland', 'Chile', 'Hungary', 'Latvia', 'Lithuania', 'Slovak Republic',\n",
|
||
" 'Greece', 'Portugal', 'Czech Republic', 'Estonia', 'Slovenia', 'Spain',\n",
|
||
" 'Korea', 'Italy', 'New Zealand', 'Japan', 'United Kingdom', 'France',\n",
|
||
" 'Israel', 'Belgium', 'Canada', 'Germany', 'Finland', 'Austria',\n",
|
||
" 'Sweden', 'Netherlands', 'Australia', 'Denmark', 'United States',\n",
|
||
" 'Iceland', 'Ireland', 'Norway', 'Switzerland', 'Luxembourg'],\n",
|
||
" dtype='object', name='Country')\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(full_country_stats.index)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 125,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>GDP per capita</th>\n",
|
||
" <th>Life satisfaction</th>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Country</th>\n",
|
||
" <th></th>\n",
|
||
" <th></th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>South Africa</td>\n",
|
||
" <td>6100.354</td>\n",
|
||
" <td>4.7</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Turkey</td>\n",
|
||
" <td>8957.894</td>\n",
|
||
" <td>5.5</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Russia</td>\n",
|
||
" <td>11162.652</td>\n",
|
||
" <td>5.8</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Poland</td>\n",
|
||
" <td>14901.547</td>\n",
|
||
" <td>6.1</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Hungary</td>\n",
|
||
" <td>17463.284</td>\n",
|
||
" <td>5.6</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Lithuania</td>\n",
|
||
" <td>19266.788</td>\n",
|
||
" <td>5.9</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Slovak Republic</td>\n",
|
||
" <td>19547.657</td>\n",
|
||
" <td>6.2</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Greece</td>\n",
|
||
" <td>19974.374</td>\n",
|
||
" <td>5.4</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Portugal</td>\n",
|
||
" <td>23030.786</td>\n",
|
||
" <td>5.4</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Czech Republic</td>\n",
|
||
" <td>23213.954</td>\n",
|
||
" <td>6.7</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Estonia</td>\n",
|
||
" <td>23523.596</td>\n",
|
||
" <td>5.7</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Slovenia</td>\n",
|
||
" <td>26170.250</td>\n",
|
||
" <td>5.9</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Spain</td>\n",
|
||
" <td>29961.105</td>\n",
|
||
" <td>6.3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Korea</td>\n",
|
||
" <td>31430.598</td>\n",
|
||
" <td>5.9</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Italy</td>\n",
|
||
" <td>32946.524</td>\n",
|
||
" <td>6.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>New Zealand</td>\n",
|
||
" <td>40634.137</td>\n",
|
||
" <td>7.3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Japan</td>\n",
|
||
" <td>40846.777</td>\n",
|
||
" <td>5.9</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>United Kingdom</td>\n",
|
||
" <td>41030.232</td>\n",
|
||
" <td>6.8</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>France</td>\n",
|
||
" <td>41760.606</td>\n",
|
||
" <td>6.5</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Israel</td>\n",
|
||
" <td>42823.307</td>\n",
|
||
" <td>7.2</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Belgium</td>\n",
|
||
" <td>45175.585</td>\n",
|
||
" <td>6.9</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Canada</td>\n",
|
||
" <td>46212.842</td>\n",
|
||
" <td>7.4</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Germany</td>\n",
|
||
" <td>46563.989</td>\n",
|
||
" <td>7.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Finland</td>\n",
|
||
" <td>48868.742</td>\n",
|
||
" <td>7.6</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Austria</td>\n",
|
||
" <td>50022.612</td>\n",
|
||
" <td>7.1</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Sweden</td>\n",
|
||
" <td>51241.914</td>\n",
|
||
" <td>7.3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Netherlands</td>\n",
|
||
" <td>52367.849</td>\n",
|
||
" <td>7.4</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Australia</td>\n",
|
||
" <td>53825.164</td>\n",
|
||
" <td>7.3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Denmark</td>\n",
|
||
" <td>59795.269</td>\n",
|
||
" <td>7.6</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>United States</td>\n",
|
||
" <td>65111.596</td>\n",
|
||
" <td>6.9</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>Iceland</td>\n",
|
||
" <td>67037.340</td>\n",
|
||
" <td>7.5</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" GDP per capita Life satisfaction\n",
|
||
"Country \n",
|
||
"South Africa 6100.354 4.7\n",
|
||
"Turkey 8957.894 5.5\n",
|
||
"Russia 11162.652 5.8\n",
|
||
"Poland 14901.547 6.1\n",
|
||
"Hungary 17463.284 5.6\n",
|
||
"Lithuania 19266.788 5.9\n",
|
||
"Slovak Republic 19547.657 6.2\n",
|
||
"Greece 19974.374 5.4\n",
|
||
"Portugal 23030.786 5.4\n",
|
||
"Czech Republic 23213.954 6.7\n",
|
||
"Estonia 23523.596 5.7\n",
|
||
"Slovenia 26170.250 5.9\n",
|
||
"Spain 29961.105 6.3\n",
|
||
"Korea 31430.598 5.9\n",
|
||
"Italy 32946.524 6.0\n",
|
||
"New Zealand 40634.137 7.3\n",
|
||
"Japan 40846.777 5.9\n",
|
||
"United Kingdom 41030.232 6.8\n",
|
||
"France 41760.606 6.5\n",
|
||
"Israel 42823.307 7.2\n",
|
||
"Belgium 45175.585 6.9\n",
|
||
"Canada 46212.842 7.4\n",
|
||
"Germany 46563.989 7.0\n",
|
||
"Finland 48868.742 7.6\n",
|
||
"Austria 50022.612 7.1\n",
|
||
"Sweden 51241.914 7.3\n",
|
||
"Netherlands 52367.849 7.4\n",
|
||
"Australia 53825.164 7.3\n",
|
||
"Denmark 59795.269 7.6\n",
|
||
"United States 65111.596 6.9\n",
|
||
"Iceland 67037.340 7.5"
|
||
]
|
||
},
|
||
"execution_count": 125,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"remove_indices = [9, 1, 2, 4, 7]\n",
|
||
"keep_indices = list(set(range(36)) - set(remove_indices))\n",
|
||
"clean_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]\n",
|
||
"clean_data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 129,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"clean_data.to_csv('data/country_stats.csv')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.4"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|