260 lines
31 KiB
Plaintext
260 lines
31 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib as mpl\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import sklearn.linear_model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get the data\n",
|
|
"country_stats = pd.read_csv('data/country_stats.csv')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Country</th>\n",
|
|
" <th>GDP per capita</th>\n",
|
|
" <th>Life satisfaction</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <td>0</td>\n",
|
|
" <td>South Africa</td>\n",
|
|
" <td>6100.354</td>\n",
|
|
" <td>4.7</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Turkey</td>\n",
|
|
" <td>8957.894</td>\n",
|
|
" <td>5.5</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Russia</td>\n",
|
|
" <td>11162.652</td>\n",
|
|
" <td>5.8</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Poland</td>\n",
|
|
" <td>14901.547</td>\n",
|
|
" <td>6.1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Hungary</td>\n",
|
|
" <td>17463.284</td>\n",
|
|
" <td>5.6</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Country GDP per capita Life satisfaction\n",
|
|
"0 South Africa 6100.354 4.7\n",
|
|
"1 Turkey 8957.894 5.5\n",
|
|
"2 Russia 11162.652 5.8\n",
|
|
"3 Poland 14901.547 6.1\n",
|
|
"4 Hungary 17463.284 5.6"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"country_stats.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
|
|
"y = np.c_[country_stats[\"Life satisfaction\"]]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<function matplotlib.pyplot.show(*args, **kw)>"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcy0lEQVR4nO3dfbQcdZ3n8fcnJCSQBBOTiEh4yoJZwQ0Br0DMLAdkdAfkBGfBI+wyKu4uAzIqOmPAMzuMOLMP4owioATGHXdVRJTIgwqoiyisysNNIBEGGMOTCUG4ZHhIIAmJ97t/1K+h07kPfet2dVd1f17n9OnqX1VXf3/33vQ3Vb9v/UoRgZmZWR4TOh2AmZlVl5OImZnl5iRiZma5OYmYmVluTiJmZpbbxE4HMFazZ8+O/fffv9NhmJlVyooVK56NiDmt3m/lksj+++9Pf39/p8MwM6sUSU8UsV+fzjIzs9ycRMzMLDcnETMzy81JxMzMcnMSMTOz3JxEzMwsNycRM8ttw6atrFr7PBs2be10KC3XzX1rpcpdJ2Jm5XDDfU9y3vLVTJowgW2Dg1x08gKWLNy702G1RDf3rdV8JGJmY7Zh01bOW76aLdsG2bh1O1u2DbJ0+equ+F97N/etCE4iZjZm657bzKQJO359TJowgXXPbe5QRK3TzX0rgpOImY3Z3Jm7sW1wcIe2bYODzJ25W4ciap1u7lsRnETMbMxmTZvMRScvYMqkCUyfPJEpkyZw0ckLmDVtcqdDG7du7lsRVLV7rPf19YUnYDQrhw2btrLuuc3Mnblb133JdlvfJK2IiL5W77ew6ixJ84Fr6prmARdExMV12xwD3AA8lpq+FxGfLSomM2utWdMmd8UX7FDK1reyJrXCkkhEPAwsBJC0C/AkcN0Qm94REScWFYeZWdWVueS4XWMixwGPREQh89mbmXWrspcctyuJnApcPcy6RZJWSbpZ0iFDbSDpTEn9kvoHBgaKi9LMrGTKXnJceBKRtCuwBPjuEKtXAvtFxKHApcD1Q+0jIq6MiL6I6Jszp+V3dzQzK62ylxy340jkeGBlRDzduCIiXoyITWn5JmCSpNltiMnMrBLKXnLcjrmzTmOYU1mS3gg8HREh6QiypLahDTGZWYNOVv+UtfKoLJYs3JvFB84u5c+o0CQiaXfgXcCf1rWdBRARy4BTgLMlbQc2A6dG1S5cMesCnaz+KXPlUZmUreS4xhcbmvW4DZu2svhzP2XLttfOu0+ZNIFfnPfOwr+0OvnZvaaoiw097YlZj+tk9U/ZK49sdE4iZj2uk9U/Za88stE5iZj1uE5W/5S98shG5zERMwNcndXtKjcBo5mNT7u/WNtR/TNcn0b6bCeYcnMSMSuhbix7zdOnbvw5dBuPiZiVTNkn3MsjT5+68efQjZxEzEqmG8te8/SpG38O3chJxKxkurHsNU+fuvHn0I2cRMxKphvLXvP0qRt/Dt3IJb5mJdWNVUl5+tSNP4dOcImvWY8ZS8ltVb5o85QRl3XiQcs4iZhVnMtgrZM8JmJWYS6DtU5zEjGrMJfBWqc5iZhVmMtgrdOcRMwqzGWw1mkeWDeruDLff9u6n5OIWRcoWxlsVUqObfycRMyspVxy3Fs8JmJmLeOS497jJGJmLeOS497jJGJmLeOS497jJGJmLeOS495T2MC6pPnANXVN84ALIuLium0EfAk4AXgZ+FBErCwqJjMrnkuOe0thSSQiHgYWAkjaBXgSuK5hs+OBg9LjSODy9GxmHdKK8tyylRxbcdpV4nsc8EhEPNHQfhLw9chuanKnpBmS9oqIp9oUl5nVcXmujVW7xkROBa4eon1vYG3d63WpzczazOW5lkfhSUTSrsAS4LtDrR6ibadbLUo6U1K/pP6BgYFWh2hmuDzX8mnHkcjxwMqIeHqIdeuAfepezwXWN24UEVdGRF9E9M2ZM6egMM16m8tzLY92JJHTGPpUFsCNwAeUOQp4weMhZp3h8lzLo9CBdUm7A+8C/rSu7SyAiFgG3ERW3ruGrMT3jCLjMbPMcBVYLs9tv6pPVlloEomIl4FZDW3L6pYDOKfIGMxsR6NVYLk8t326oRrOV6yb9RBXYJVHt/wunETMeogrsMqjW34XTiJmPcQVWOXRLb8LJxGzHuIKrPLolt+FsrHt6ujr64v+/v5Oh2FWaVWvCOom7fpdSFoREX2t3q9vj2tWckV8ybgCqzyq/rtwEjErsW4oAbXu5jERs5LqlhJQ625OImYl1S0loNbdnETMSqpbSkCtuzmJmJVUt5SAWnfzwLpZiXlCRCs7JxEbF19vULyql4Bad3MSsdxcfmpmTY2JSNpF0psk7Vt7FB2YlZvLT80MmjgSkfRR4K+Bp4FaqUgACwqMy0quVn66hdeqh2rlpz71YtY7mjmd9XFgfkRsKDoYqw6Xn5oZNHc6ay3wQtGBWLW4/NTMoLkjkUeBn0n6IfDqCe+I+EJhUVkluPzUzJpJIr9Nj13Tw+xVLj81622jJpGIuBBA0vTsZWwqPCozM6uEUcdEJL1V0r3A/cADklZIOqT40MzMrOyaGVi/EvhkROwXEfsBfw78Q7FhmZlZFTSTRKZGxG21FxHxM2BqYRGZmVllNFWdJemvgG+k16cDjxUXkpmZVUUzRyIfBuYA3wOuS8tnNLNzSTMkXSvpIUkPSlrUsP4YSS9Iui89LhhrB8x6zYZNW1m19nlPMWOl0Ex11nPAx3Lu/0vALRFxiqRdgd2H2OaOiDgx5/7NeoonvbSyGTaJSLo4Is6V9H2yubJ2EBFLRtqxpD2Ao4EPpe1fAV4ZV7RmPax+0svanGVLl69m8YGzfa2OdcxIRyK1MZC/y7nvecAA8DVJhwIrgI9HxEsN2y2StApYD/xFRDzQuCNJZwJnAuy7rycQtt7kSS+tjIYdE4mIFWlxYUT8vP4BLGxi3xOBw4HLI+Iw4CXg/IZtVgL7RcShwKXA9cPEcmVE9EVE35w5c5r4aLPu40kvrYyaGVj/4BBtH2rifeuAdRFxV3p9LVlSeVVEvFi7Aj4ibgImSZrdxL7Neo4nvbQyGmlM5DTgPwAHSLqxbtV0YNRp4SPid5LWSpofEQ8DxwH/1PAZbwSejoiQdARZUvOU82bD8KSXVjYjjYn8EngKmA38fV37RmB1k/v/KHBVqsx6FDhD0lkAEbEMOAU4W9J2YDNwakTsNIhvZq/xpJdWJhrtO1vSPGB9RGxJr3cD9oyIx4sPb2d9fX3R39/fiY82M6ssSSsioq/V+21mTOQ7QP1o3u+B77Y6EDMzq55mksjEdI0H8Or1Hr6viJmZNZVEBiS9emGhpJOAZ4sLyczMqqKZCRjPIhscvwwQ2T3XP1BoVGZmVgnNzJ31CHCUpGlkA/Ebiw/LzMyqoJkjESS9BzgEmCIJgIj4bIFxmY3Jhk1bfe2EWQeMmkQkLSObffdY4Ktk13bcXXBcZk3zzLZmndPMwPo7IuIDwHMRcSGwCNin2LDMmlM/s+3GrdvZsm2QpctX+14bZm3STBLZkp5flvQmYBtwQHEhmTWvNrNtvdrMtmZWvGbGRL4vaQbwebJZdwP4h0KjMmuSZ7Y166xhj0QkvS8tfjMino+I5cB+wL+OCN/G1krBM9uaddZIRyKfJpveZDlpCveI2Ar4ZLOVime2NeuckZLIBkm3sfNU8MDot8e1cuu2kljPbGvWGSMlkfeQHYF8gx2ngreKc0msmbXKsEkkTbR4p6R3RMQAgKQJwLSIeLFdAVpr1ZfE1u7VvXT5ahYfONv/kzezMWumxPdLkvaQNJXszoQPS/pUwXFZQVwSa2at1EwSOTgdebwXuAnYF/iTQqOywrgk1sxaqZkkMknSJLIkckNEbCO7VsQqyCWxZtZKzVxseAXwOLAKuF3SfoDHRApWZPWUS2LNrFWamQr+EuCSuqYnJB1bXEjWjuopl8SaWSsMm0QknR4R35T0yWE2+UJBMfU0V0+ZWZWMdCQyNT1PH2Kdx0QKUqueqiUQeK16yknEzMpmpOtErkiL/zciflG/TtLiQqPqYa6eMrMqaaY669Im26wFXD1lZlUy0pjIIuAdwJyGcZE9gF2KDqyXuXrKzKpipCORXYFpZIlmet3jRbJb5I5K0gxJ10p6SNKDKTHVr5ekSyStkbRa0uH5utF9Zk2bzKH7zHACaYMNm7ayau3zvhuiWQ4jjYn8HPi5pP8dEU/k3P+XgFsi4hRJu5Ldq73e8cBB6XEkcHl6NmsLT0ZpNj7NXGz4sqTPA4cAU2qNEfHOkd4kaQ/gaOBDaftXgFcaNjsJ+HpEBNlkjzMk7RURTzXfBbN8XE5tNn7NDKxfBTxEdl/1C8muXr+niffNAwaAr0m6V9JX0ySO9fYG1ta9XpfadiDpTEn9kvoHBgaa+Giz0XkySrPxayaJzIqI/wVsi4ifR8SHgaOaeN9EsvuRXB4RhwEvAec3bKMh3rfTNSgRcWVE9EVE35w5c5r4aLPRuZzabPyaSSLb0vNTkt4j6TBgbhPvWwesi4i70utrSbfZbdhmn7rXc4H1TezbbNxcTm02fs2MifytpNcBf052fcgewCdGe1NE/E7SWknzI+Jh4Diy+5HUuxH4M0nfJhtQf8HjIdZOLqc2G59mJmD8QVp8ARjrxIsfBa5KlVmPAmdIOivtdxnZ/UlOANYALwNnjHH/NkZlurd6u2IZ7XPKPBllmX5fZkMZNYlIugj4W2AzcAtwKHBuRHxztPdGxH1AX0Pzsrr1AZwzloAtvzKVs7YrljL1eayqHLv1jmbGRN6d7mx4ItkYxpsB3x63YurLWTdu3c6WbYMsXb66IxfYtSuWMvV5rKocu/WWpu5smJ5PAK6OiH8pMB4rSJnKWdsVS5n6PFZVjt16SzMD69+X9BDZ6ayPSJoDbCk2LGu1MpWztiuWMvV5rKocu/WWUY9EIuJ8YBHQl+6v/jLZleZWIWUqZ21XLGXq81hVOXbrLcrGtqujr68v+vv7Ox1GZZWp2qcs1VllVuXYrVwkrYiIxkKncWvmdJaNQdn/0ZepnLVdsZSpz2NV5ditNziJtJBLMs2s14w6JpLu+XG6pAvS630lHVF8aNXikkwz60XNlPh+hWxg/bT0eiPw5cIiqiiXZJpZL2rmdNaREXG4pHsBIuK5NI2J1XFJppn1oqZm8ZW0C2mK9nSdyODIb+k9Lsk0s17UzJHIJcB1wBsk/Tey+6v/10KjqijPCGtmvWbYJCLpgIh4LCKukrSCbCp3Ae+NiAfbFmHF9GJJZtnLms2sOCMdiVwLvE3SrRFxHNktcs124LJms942UhKZIOmvgTdL+mTjyoj4QnFhWRXUlzVvScNkS5evZvGBs31EYtYjRhpYP5VsosWJwPQhHtbjXNZsZsMeiaRb2n5O0uqIuLmNMVlFuKzZzEYaWD893b3wYElvaVzv01lWK2te2jAm4lNZZr1jpDGRqel52hDrqjX1b4/oRJWUy5rNettIp7OuSM8XNq6TdG6RQdnYdbJKqhfLms0s08wV60PZqVrLOseTP5pZp+RNImppFDYurpIys07Jm0Q8JlIirpIys04ZNolI2ijpxSEeG4E3tTFGG4UnfzSzThlpYN0XFFaIq6TMrBMKvT2upMfJbmL1e2B7403iJR0D3AA8lpq+FxGfLTKmPKoywaCrpMys3dpxj/VjI+LZEdbfEREntiGOXDzBoJnZ8PIOrPcEl86amY2s6CQSwI8lrZB05jDbLJK0StLNkg4ZagNJZ0rql9Q/MDBQXLQNXDprZjayok9nLY6I9ZLeAPxE0kMRcXvd+pXAfhGxSdIJwPXAQY07iYgrgSsB+vr62lZe7NJZM7ORFXokEhHr0/MzZLfYPaJh/YsRsSkt3wRMkjS7yJjGwqWzZmYjK+xIRNJUYEJEbEzL7wY+27DNG4GnIyIkHUGW1DYUFVMeLp01Mxtekaez9gSuk1T7nG9FxC2SzgKIiGXAKcDZkrYDm4FTI6J0V8N3c+nseMqXq1L6bGbFKSyJRMSjwKFDtC+rW74MuKyoGGxk4ylfdumzmYFLfHvWeMqXXfpsZjVOIj1qPOXLLn02sxonkR41nvJllz6bWY2TSI8aT/myS5/NrEYlLIYaUV9fX/T393c6jK7h6iyz3iBpReMkuK3QjgkYrcTGU77czaXPZtYcn84yM7PcnETMzCw3JxEzM8vNScTMzHJzEjEzs9ycRMzMLDcnETMzy81JxMzMcnMSMTOz3JxEzMwsNycRMzPLzUnEzMxycxIxM7PcnETMzCw3JxEzM8vNScTMzHJzEjEzs9ycRMzMLDcnETMzy63QJCLpcUm/lnSfpP4h1kvSJZLWSFot6fAi4zEzs9aa2IbPODYinh1m3fHAQelxJHB5ejYzswro9Omsk4CvR+ZOYIakvTock5mZNanoJBLAjyWtkHTmEOv3BtbWvV6X2nYg6UxJ/ZL6BwYGCgrVzMzGqugksjgiDic7bXWOpKMb1muI98RODRFXRkRfRPTNmTOniDjNzCyHQpNIRKxPz88A1wFHNGyyDtin7vVcYH2RMZmZWesUlkQkTZU0vbYMvBu4v2GzG4EPpCqto4AXIuKpomIyM7PWKrI6a0/gOkm1z/lWRNwi6SyAiFgG3AScAKwBXgbOKDAeMzNrscKSSEQ8Chw6RPuyuuUAzikqBjMzK1anS3zNzKzCnETMzCw3JxEzM8vNScTMzHJzEjEzs9ycRMzMLDcnETMzy81JxMzMcnMSMTOz3JxEzMwsNycRMzPLrWeSyIZNW1m19nk2bNra6VDMzLpGO+6x3nE33Pck5y1fzaQJE9g2OMhFJy9gycKdbqBoZmZj1PVHIhs2beW85avZsm2QjVu3s2XbIEuXr/YRiZlZC3R9Eln33GYmTdixm5MmTGDdc5s7FJGZWffo+iQyd+ZubBsc3KFt2+Agc2fu1qGIzMy6R9cnkVnTJnPRyQuYMmkC0ydPZMqkCVx08gJmTZvc6dDMzCqvJwbWlyzcm8UHzmbdc5uZO3M3JxAzsxbpiSQC2RGJk4eZWWt1/eksMzMrjpOImZnl5iRiZma5OYmYmVluTiJmZpabk4iZmeWmiOh0DGMiaQB4otNxJLOBZzsdRAu4H+XifpRLt/RjfkRMb/VOK3edSETM6XQMNZL6I6Kv03GMl/tRLu5HuXRTP4rYr09nmZlZbk4iZmaWm5PI+FzZ6QBaxP0oF/ejXNyPEVRuYN3MzMrDRyJmZpabk4iZmeXW80lE0j9KekbS/XVtr5f0E0m/Sc8zU7skXSJpjaTVkg6ve88H0/a/kfTBuva3Sfp1es8lklRQP/aRdJukByU9IOnjVeyLpCmS7pa0KvXjwtR+gKS7UkzXSNo1tU9Or9ek9fvX7evTqf1hSf+urv2PUtsaSee3ug8N/dlF0r2SflDVfkh6PP3e76uViVbt7yp9zgxJ10p6KP07WVS1fkian34PtceLks7taD8ioqcfwNHA4cD9dW0XAeen5fOBz6XlE4CbAQFHAXel9tcDj6bnmWl5Zlp3N7Aovedm4PiC+rEXcHhang78M3Bw1fqS9j0tLU8C7krxfQc4NbUvA85Oyx8BlqXlU4Fr0vLBwCpgMnAA8AiwS3o8AswDdk3bHFzg39cngW8BP0ivK9cP4HFgdkNbpf6u0uf8H+A/p+VdgRlV7Eddf3YBfgfs18l+FNbBKj2A/dkxiTwM7JWW9wIeTstXAKc1bgecBlxR135FatsLeKiufYftCu7TDcC7qtwXYHdgJXAk2RXDE1P7IuBHaflHwKK0PDFtJ+DTwKfr9vWj9L5X35vad9iuxfHPBW4F3gn8IMVVxX48zs5JpFJ/V8AewGOkYqKq9qMh9ncDv+h0P3r+dNYw9oyIpwDS8xtS+97A2rrt1qW2kdrXDdFeqHQq5DCy/8VXri/pFNB9wDPAT8j+x/18RGwf4rNfjTetfwGYNUo/hmovwsXAUmAwvZ5FNfsRwI8lrZB0Zmqr2t/VPGAA+Fo6vfhVSVMr2I96pwJXp+WO9cNJZGyGOjcYOdoLI2kasBw4NyJeHGnTIdpK0ZeI+H1ELCT7n/wRwFtG+OxS9kPSicAzEbGivnmEzy5lP5LFEXE4cDxwjqSjR9i2rP2YSHba+vKIOAx4iey0z3DK2g8A0ljaEuC7o206RFtL++EkMrSnJe0FkJ6fSe3rgH3qtpsLrB+lfe4Q7YWQNIksgVwVEd9LzZXsC0BEPA/8jOxc7gxJtbne6j/71XjT+tcB/8LY+9dqi4Elkh4Hvk12SuviCvaDiFifnp8BriNL7FX7u1oHrIuIu9Lra8mSStX6UXM8sDIink6vO9ePIs/ZVeXBzmMin2fHQaqL0vJ72HGQ6u7U/nqy860z0+Mx4PVp3T1p29og1QkF9UHA14GLG9or1RdgDjAjLe8G3AGcSPY/rvoB6Y+k5XPYcUD6O2n5EHYckH6UbCByYlo+gNcGpA8p+O/rGF4bWK9UP4CpwPS65V8Cf1S1v6v0OXeQzWQL8JnUh8r1I33Wt4Ez6l53rB+F/cOpyoPsnOJTwDayLPyfyM5F3wr8Jj3XfrgCvkx2jv7XQF/dfj4MrEmP+l9uH3B/es9lNAzstbAff0B22LkauC89TqhaX4AFwL2pH/cDF6T2eWRVI2vIvognp/Yp6fWatH5e3b7+MsX6MHUVJunn8s9p3V+24W/sGF5LIpXqR4p3VXo8UPucqv1dpc9ZCPSnv63ryb48q9iP3YENwOvq2jrWD097YmZmuXlMxMzMcnMSMTOz3JxEzMwsNycRMzPLzUnEzMxycxKxypK0p6RvSXo0TcnxK0l/nNYdI+mFNMXFw5JuT1eR1977GUlPpplQ75e0pHM9GRtJN6UZaWdI+kin47He5iRilZSmp74euD0i5kXE28gu0qu/2vaOiDgsIuYDHwMuk3Rc3fovRja9yvuAf5TUsn8PaQruQv59RcQJkV3NP4Ns9l+zjnESsap6J/BKRCyrNUTEExFx6VAbR8R9wGeBPxti3YPAdmB2fXs6WvmGpJ+mey78l7p1n5J0T7pHQ+2eJ/un+1R8hWz24X0a9vd2Sb9Udq+UuyVNT++5Q9LK9HhH2vaYdPR0naR/krSslpSU3d9jNvA/gX+VjqY+L2mapFvTfn4t6aQcP1ezMZk4+iZmpXQI2Rf1WKwEPtXYKOlIspl2B4Z4zwKyKSCmAvdK+iHwVuAgsjmkBNyYJiX8LTCf7OrfHY4Q0oR51wDvj4h7JO0BbCab4+hdEbFF0kFkMyj0pbcdQXY/kSeAW4B/TzbnU835wFvT0VRtzq0/jogXU5K5U9KN4SuKrUBOItYVJH2ZbOqXVyLi7cNt1vD6E5JOBzaSfbkP9WV7Q0RsBjZLuo3si/0PyO7lcG/aZhpZUvkt8ERE3DnEfuYDT0XEPQCRZlhO05FfJmkh8HvgzXXvuTsiHk3bXZ0+91qGJ+C/p4Q2SDaF955kNy4yK4STiFXVA8DJtRcRcU7633f/CO85DHiw7vUXI+LvRvmcxsRSmy77f0TEFfUr0n1cXhpmPxpiXwCfAJ4GDiU7vbxllM8eyX8km8DybRGxLc0gPGWU95iNi8dErKp+CkyRdHZd2+7DbSxpAfBXZJPRjcVJyu77PotsIsV7yO4u+OF07xYk7S3pDSPsA+Ah4E2S3p7eM71uyvenImIQ+BOyGXprjlB2T/YJwPuB/9ewz41kt0KueR3ZPUy2STqW7LapZoXykYhVUkSEpPcCX5S0lGw84yXgvLrN/q2ke8mSyzPAxyLi1jF+1N3AD4F9gb+J7N4a6yW9BfhVViTGJuB0stNRw8X7iqT3A5dK2o1sPOQPga8AyyW9D7iNHY9kfkU2eP5vgNvJ7uVRv88Nkn4h6X6yKbs/B3xfUj/ZLM4PjbGvZmPmWXzNhiHpM8CmJk55FfHZxwB/EREnjratWSf5dJaZmeXmIxEzM8vNRyJmZpabk4iZmeXmJGJmZrk5iZiZWW5OImZmltv/B9VssLhK2UIVAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Visualize the data\n",
|
|
"country_stats.plot(kind='scatter', x = \"GDP per capita\", y = \"Life satisfaction\")\n",
|
|
"plt.show"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Here we can see a fairly linear association and as such a linear model will fit decently\n",
|
|
"\n",
|
|
"# Choose model\n",
|
|
"model = sklearn.linear_model.LinearRegression()\n",
|
|
"\n",
|
|
"# Train the model\n",
|
|
"model.fit(X, y)\n",
|
|
"\n",
|
|
"# Predictions\n",
|
|
"y_pred = model.predict(X)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.legend.Legend at 0x1db6af81948>"
|
|
]
|
|
},
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5hV1fX/8feSIkpTkag/USk2FGGAEQQiYsNYAtavEo0tBBEiYiRGMYMgYh3RAOqIiok1RhTsLQYNaiygSFFUIKCjRBClCCpt/f7YZ8hlmBnuXObcMvN5Pc995t59zj1nbRlZ7LObuTsiIiKVtV2mAxARkdykBCIiIilRAhERkZQogYiISEqUQEREJCW1Mx1AZe26667evHnzTIchIpJTpk+f/o27N63Ka+ZcAmnevDnTpk3LdBgiIjnFzBZV9TX1CEtERFKiBCIiIilRAhERkZQogYiISEqUQEREJCVKICIikhIlEBERSYkSiIhINlu7FsaNg5deynQkW1ACERHJRhs2wAMPwAEHwCWXwJNPZjqiLSiBiIhkE3d46ilo1w7OOw922QVefBGKijId2RaUQEREssWUKdC1K5x8MqxbB3//O7z3Hhx3HJhlOrotKIGIiGTa9OkhSRx1FBQXwz33wJw5cMYZsF32/jWdvZGJiFR3n3wC//d/kJ8fksitt8Jnn0HfvlA7+9e6zf4IRUSqmy++gBEj4C9/gR12gGHD4PLLoVGjTEdWKUogIiLp8s03cMMNcMcdobP8d7+DoUPhZz/LdGQpUQIREYnbqlUwenR4RLV6dRhddc01sM8+mY5smyiBiIjE5ccfw/DbUaNC6+PUU+G666B160xHViXUiS4iUtXWr4cJE2D//eGyyyAvD959F554otokD1ACEZFtMHLkSBo3bszIkSMzHUqVSrle7iFJHHII/OY3sPvu8I9/wCuvwKGHxhNsBpm7ZzqGSsnPz3ftiS6SHRo3bszKlStp1KgRK1asyHQ4VabS9XIPiWLoUJg2LbQyRo0KEwKzZAKgmU139/yqvKZaICKSsiFDhtCoUSOGDBmS6VCqVKXq9c47cPTR0LMnLFkC998Ps2bBKadkTfKIi1ogIiKpmDMH/vQnmDwZmjYN7y+6CLbfPtORlSmnWiBmdoCZzUh4rTSzwaXO6WFmKxLOGRZXPCIiVWLhwjAM95BD4J//hGuvhfnzYdCgrE0ecYltGK+7fwLkAZhZLeBLYFIZp05195PiikNEpEp8/XXo1ygqCutTXX45XHklNGmS6cgyJl19IEcD8919UZruJyJSNVasgIICaNUK7rwTzj8f5s2DW25JW/LI1tFuaekDMbMJwPvuPq5UeQ/gCaAY+AoY4u5zyvh+P6AfwN57791x0SLlIRGJ2Q8/hJ0Ab7wRvv02LHo4cmSY25FmVTHaLaf6QEqYWV2gF/B4GYffB/Zx93bAWGByWddw9/Hunu/u+U2bNo0vWBGRdetg/HjYbz+44gro1CmslPvYYxlJHpC9o91ib4GYWW9goLv3TOLchUC+u39T3jkahSUisdi4MWzgVFAQHlF16RIWPjziiExHViVysgUC9AEeLeuAme1uFgZKm1mnKJ5laYhJRCRwhxdegI4doU8fqFcPnn4a3nyz2iSPuMS6mKKZ7QgcC1yUUNYfwN2LgNOBi81sPfADcJbn2sQUEcldb74JV10FU6dCixbw4IMhidSqlenIckKsCcTd1wBNSpUVJbwfB4wr/T0RkVjNnAlXXw3PPgu77Rb25+jbF+rWzXRkOUVLmYhIRoeJpvXe8+fD2WeH1XHfeAOuvz6UDRig5JECLWUiIhldFDEt9168OAzBveceqFMHLr00jLDaeed47peFcrUTXUSyXCaHicZ67+++C30crVqF5PHb34YWxw031KjkERe1QESk+lm9GsaMgZtvDjPJf/UrGDEiJJIaKo4WiLa0FZHqY+1auPfe8Ljqv/+Fk04K61e1bZvpyKolJRARyX0bN8Kjj8KwYbBgARx+OEycCN26ZTqyak19ICJZKlsX0EtVKvXZ6nfc4Zlnwqiqc86BRo3g+efh9deVPNJAfSAiWaq6bRebSn0q/M6//hU6yN96K6xbNXIknHFGWGpdtqBRWCI1SLYuoJeqVOpT5nc++ACOPz4sM7JwIdx9d9gd8MwzlTzSTC0QEckNn30WFjp87DHYZZfQ+hg4EHbYIdOR5QSNwhKRmqe4OGwbO2FCWOjwT3+CIUOgceNMR1bjKYGISHZatixs5jRuHGzYEFobQ4eGtaskKyiBiEh2+f57uO02KCwM73/9axg+HJo3z3RkUop6nESqgWox5Penn8Ls8ZYtw3yOo44Kq+b+5S9KHllKnegi1UBOD/ndsCHswzF8OCxaBEceGVbJPeywTEdWrWgYr4iUKSeH/LrDpElwyCFwwQWw667w0kvw6qtKHjlCLRARSb9XXw0d4u++CwceCNddB6eeCmGHa4mBWiAiktveew+OOSa8Fi+G++6DWbPgtNOUPHKQEoiIxO/jj0OS6NQJPvwwjLL69FO48EKorcGguUoJRESq1GYjwj7/PCSJNm3glVdCR/mCBTB4cJgUKDlNfSAiUqUaN27M9itXMrxuXQZAeDQ1YEBYeqRp00yHV2OpD0REstuKFTzTvj3zgf7r1oVJgJ99BqNHK3lUQ0ogIrLtfvgBbr0VWrWi++uv0/D009nuo4/C7oB77ZXp6CQmsSUQMzvAzGYkvFaa2eBS55iZjTGzeWY208w6xBWPiMRg/fqQJPbbLyxw2LEjTJsGjz8ehudKtRbb8Ad3/wTIAzCzWsCXwKRSpx0P7Be9OgN3RT9FJJtt3Bi2jC0oCKOpOncOs8mPPDLTkUkapesR1tHAfHdfVKq8N/CAB28DO5nZHmmKSURKSWoL2Zdegvz8sIFTnTphNvm//63kUQOlK4GcBTxaRvmewBcJn4ujss2YWT8zm2Zm05YuXRpTiCJSWFjIypUrKSws3PJgSZL4xS/gu+/ggQfCnI6TT9YkwBoq9gRiZnWBXsDjZR0uo2yLccXuPt7d8909v6lGcojEpsw1tWbPht69oWvXMCFw7FiYOzeMsKpVK3PBSsalYwro8cD77v51GceKgcQhGs2Ar9IQk4iUoaCggIKCgvBhwQK45hp4+GFo2DCsV3XppdCgQWaDlKyRjkdYfSj78RXA08C50Wisw4AV7r44DTGJSHn++1/43e/CKKqJE8PoqgUL4OqrlTxkM7G2QMxsR+BY4KKEsv4A7l4EPA+cAMwD1gAXxBmPiFRg+XK45Ra4/fawuVPfvmGU1Z5bdEuKADEnEHdfAzQpVVaU8N6BgXHGICJbsWZN6Ne46abQOX7WWXDttWFuh0gFNBNdpIYpGao7avhwKCqCffeFK6+ELl3ggw/g0UeVPNIk17ci1mKKIjXMTo0accKqVVxnRkt36NYNbrgBDj8806HVOOnciliLKYpI6tzhuef4ZMcdeQSo/7OfwbPPwtSpSh4ZkpNbESdQC0SkJpg6NSyn/uab0KpV6OM46yzYTv+GrCnUAhGRypkxA048Ebp3D0Nx77orTAb81a+UPGSb6TdIpDqaNw/69IH27cMSJDfeGMr69w/rV4lUgaQSiJnVMrP/Z2Z7l7ziDkxEgkqN1Pnyy5AkDjwQnn4ahg4NLY8//hF23DH+YKVG2WofiJldAlwDfA1sjIrd3dvGHFuZ1AciNU1SI3W+/Ta0MsaOhQ0boF8/+NOfYPfd0xusZK1M9YFcChzg7ge7+yHRKyPJQ6QmqnCkzvffw6hR0LIlFBbC6aeHhQ7HjVPykNgl0wKZAhzr7uvTE1LF1AIRAdauhfHjYeRIWLIEevUKix0eckimI5MsFUcLJJmlTBYAr5nZc8BPJYXuProqAxGRJGzYAI88AsOGwcKFcMQRMHlymEUukmbJPML6HHgFqAs0THiJSLq4w1NPQbt2cO65sMsu8OKLMGWKkodkzFZbIO4+AsDMGoaP/n3sUYnI/0yZEkZTvf027L8//P3vcNppmschGbfV30Aza2NmHwCzgTlmNt3MDo4/NMkFub4YXFabPh169oSjjoLiYrjnHpgzB844Q8lDskIynehvAVe7+5Tocw/genfvGn94W1InenZJ52JwNcbcuWEfjokToUmTsATJgAGwww6ZjkxyWKaG8dYvSR4A7v4aUL8qg5DcleuLwWWVzz+H3/wGDj449G8MGwbz58Pllyt5SFZKpgUyCXgfeDAqOgfId/eTY46tTGqBSLWzdGlYTv3OO0Nn+cUXhz6Pn/0s05FJNZKpYbwXAiOAJwED/oW2nhXZditXwujRcOutYVfA886Da66BffbJdGQiSUlmFNZ3wKA0xCJSM/z4Y1gV9/rr4Ztv4NRTwyTA1q0zHZlIpZSbQMzsdncfbGbPAFs853L3XrFGJlLdrF8PDzwAw4fDF1/A0UeHJNKpU6YjE0lJRS2Qkj6PwnQEIlJtucMTT4SRVXPnwqGHwv33hwQiksPKHYXl7tOjt3nu/nriC8hLT3giOcwdXnkltDDOOAPM4Mkn4Z13lDykWkhmGO95ZZSdX8VxiFQvJUmiZ8+w2OH998OsWXDKKSGRiFQDFfWB9AF+BbQws6cTDjUEliVzcTPbCbgXaEPoR7nQ3f+dcLwH8BTwn6joSXe/tjIVEMkqc+aEfTgmT4amTeHPf4aLLoLtt890ZCJVrqI+kLeAxcCuwK0J5auAmUle/8/Ai+5+upnVBcraEm2qu5+U5PVEstPChWEI7oMPQsOGcO21MHhweC9STVXUB7IomnV+NvBOQv/Hx0CzrV3YzBoB3YH7ouutdfflVRK1SLb4+msYNCgscvjYY2HW+IIFocM8huShtcckmyQzE30a0NXd10af6wJvuvuhW/leHjAe+AhoB0wHLnX31Qnn9ACeAIqBr4Ah7j6njGv1A/oB7L333h0XLVqUbP1E4rFiRdgB8LbbwryOCy8MS4802+q/rbaJ1h6TVGVqLazaJckDQkuCsDfIVr8HdADucvf2wGrgylLnvA/s4+7tgLHA5LIu5O7j3T3f3fObNm2axK1FYvLDD3DLLWEL2euugxNPhI8+CrsDxpw8QGuPSXZJJoEsNbNNkwbNrDfwTRLfKwaK3f2d6PNEQkLZxN1Xluwv4u7PA3XMbNekIhdJp3XrQpLYd1+44oowNHf69PDYav/90xZGQUEBK1asoKCgIG33FClPMmth9QceNrNxhLWwvgDO3dqX3P2/ZvaFmR3g7p8ARxMeZ21iZrsDX7u7m1knQkJLaoSXSFps3Bg2cCoogHnzwu5/jzwStpIVqeGSWQtrPnCYmTUg9JmsqsT1LyEkn7qEvdUvMLP+0XWLgNOBi81sPfADcJZvrVNGJB3cw5LqQ4fCjBnQpg08/TScdJLmcYhEkmmBYGYnAgcD9Sz6nyeZ+RruPgMo3WlTlHB8HDAu2WBF0uLNN8MmTlOnQosWYWhunz5Qq1amIxPJKslsaVsEnEloTRhwBqD1pqX6mTkTfvlL+PnP4dNP4Y47wtpV55yj5CFShmQ60bu6+7nAd+4+AugC7BVvWCJpNH8+nH025OWFVsf114eyAQOgbjIDDkVqpmQeYf0Y/VxjZv+P0MndIr6QRNJk8WIYORLuuQfq1Amjq664AnbZJdORieSEZBLIM9GaVrcQ5m04cE+sUYnE6bvv4KabYMyYMDz3t78No6z22CPTkYnklIoWUzzD3R8HHoqWIHnCzJ4F6rm7psBK7lm9OiSNm28OM8n79AlrVrVqlenIRHJSRX0gV0U/nygpcPeflDwk56xdC3feGRLF0KGhk3zGDHj4YSUPkW1QUQJZZmZTiJZzL/1KV4AiyShzkcENG+Chh+DAA2HgwDBj/I034JlnoG3bzAUrUk2Uu5hiNPmvA2Fr276lj0cr86Zdfn6+T5s2LRO3liy22SKDy5fDs8+G1sbs2WF01fXXwy9+oUmAUmPFsZhiuX0g0aKJb5tZV3dfGgWwHdDA3VdWZRAi22rIkCEUFhYy5rTToFs3+Pe/Yb/94G9/C9vJbpfMiHURqYxk/q/6s5k1MrP6hLWsPjGzP8Qcl0ilFJx0Eiu6duW8+++HRYvg7rvD7oBnnqnkIRKTZP7POihqcZwMPA/sDfw61qhEkvXppyFJdOgQ9iG/+eaw6GG/fmFuh4jEJpkEUsfM6hASyFPuvo4wF0Qkc4qLQ5I46CB47jm4+uqwE+Af/gA77JDp6ERqhGQmEt4NLAQ+BP5lZvsA6gORzFi2DG64AcaNC0utDxgQksduu2U6MpEaZ6stEHcf4+57uvsJHiwCjkxDbBKjnNtb+/vvw7IjLVvC6NFw1lnh8dWYMUoeIhlS0TDec9z9ITP7fVnH3X10rJGVQ8N4q0bO7K3900+hQ/y662DpUjj55PD+4IMzHZlITkn3nuj1o58Ny3g1qMogJP2yfm/tDRvgL3+BAw6ASy8NGzq9/TZMmqTkIZIlym2BbDrBrJu7v7m1snRRC6Sac4fJk0O/xscfQ35+mAR4zDGaBCiyDdLdAikxNskykW3z6qtw2GFw6qkhkUycCO++C8ceq+QhkoUqWo23C9AVaFqqH6QRoO3ZpOq8917YQvbVV2GvvWDCBPj1r6F2Ujsui0iGVNQCqUvo66jN5v0fK4HT4w9Ncm6kVGV9/DGcdhp06gQffgi33RZGVl1wgZKHSA5Ipg9kn2joblaoSX0gOTNSqrI+/xyGD4e//hXq14chQ+Cyy6Bhw0xHJlJtZaoPZI2Z3WJmz5vZP0teVRmElC3rR0pV1pIlMHhwWOTwkUfC+wULYNgwJQ+RHJRMC+Rl4DFgCNAfOA9Y6u5/jD+8LdWkFki1sWIF3HpreES1Zg1ceGFIGnvtlenIRGqMTLVAmrj7fcA6d3/d3S8EDkvm4ma2k5lNNLO5ZvZx1DGfeNzMbIyZzTOzmWbWIYU6SLb64YeQOFq1CrPIjz8ePvoI7rlHyUOkGkimp3Jd9HOxmZ0IfAU0S/L6fwZedPfTow2qdix1/Hhgv+jVGbgr+im5bP16uP9+GDECvvwSevYMczk6dsx0ZCJShZJJINeZWWPgcsL8j0bAZVv7kpk1AroD58OmDarWljqtN/CAh+dob0ctlj3cfXHyVZCssXFjmLtRUBBGUx12WNhStkePTEcmIjFIZjHFZ919hbvPdvcj3b2juyezJ3pLYClwv5l9YGb3RptSJdoT+CLhc3FUJrnEHV58McwaP/PMsA/H5Mnw1ls5kTyq/XBpkZiUm0DM7Ldmtl/03szsfjNbEfVVtE/i2rUJe6rf5e7tgdXAlaVvU8b3tujVN7N+ZjbNzKYtXbo0iVtL2vz733DkkaF/47vv4IEHwpyO3r1zZvZ4YWEhK1eupLCwMNOhiOSUiloglxL2AQHoA7QltCp+D4xJ4trFQLG7vxN9nkhIKKXPSexNbUboY9mMu49393x3z2/atGkSt5bYzZoFvXpB165hQuDYsTB3bphBXiu3FiqodsOlRdKkogSyPtp9EOAkQl/FMnf/B/9bqbdc7v5f4AszOyAqOpqwp3qip4FzoxbOYcAK9X9kuQULQpJo1w5efz0srT5/Pvzud7D99pmOLiUFBQWsWLGCgoKCTIciklMq6kTfaGZ7AN8R/vIflXAs2T1DLwEejkZgLQAuMLP+AO5eRNhj/QRgHrAGuKBy4UvaLF4cksU994QWxh/+AH/8I+yyS6YjE5EMqSiBDAOmERZOfNrd5wCY2RGEZLBV7j4DKD1xpSjhuAMDKxOwpNny5XDzzfDnP4fNnfr2DaOs9tRYB5GartxHWO7+LLAP0Nrdf5twaBpwZtyBSXySGnW0Zg3ceCO0aBH2IO/dO/RxFBVVWfJI1+inXB5llcuxS/W31aVMso2WMtl2FS7SuG4d3HtvmDm+eDGccAKMGgV5eemNIwfvE4dcjl2yS6aWMpFqpsxRRxs3hgUODzwQBgyAli3hX/+C556LJXmUG0cO3ycOuRy7VH9qgdR07vD88zB0KMycCW3bhmVHTjghZ+ZxiMjWZaQFEg2xPcfMhkWf9zazTlUZhGTI1Klw+OFw0kmwenVogXzwAZx4opKHiGxVMo+w7gS6ECYTAqwC7ogtIonfjBkhSXTvHuZ13HVXmAzYpw9sp6eaIpKcZP626OzuA4EfAdz9O8J2t1KGrB4189lnIUm0bx+WILnxRpg3D/r3D+tXiYhUQjIJZJ2Z1SJao8rMmgIbY40qh2XlukpffgkXXQStW8PTT4f+jgULwkTAHUuvsC8ikpxkEsgYYBLwMzMbBbwBXB9rVDksq0bNfPstXHEF7Ltv2J/j4ovDsiOjRsFOO2U6OhHJceWOwjKzFu7+n+j9gYTlTAx41d0/Tl+Im9MorCR8/32YOX7zzbBqFZxzTtjcqUWLTEcmIhkSxyisipYymQh0NLNX3f1oYG5V3lhi8NNPMH58WLNqyZIwe/y666BNm0xHJiLVUEUJZDszuwbY38x+X/qgu4+OLyyplA0b4OGH4ZprYOHCsInTU0+FHQFFRGJSUR/IWYSRV7WBhmW8JNPcw85/7drBeedBkybw0kvwz38qeYhI7CpaTPETd78JuNDdR5R+pTFGKcuUKdClC5xySli/6vHH4b33oGfPjEwCzOrhyyISi4o60c9x94fM7HLK2GY2U4+wanwn+rRpYRjuK69As2bhsdX550Ptip5Gxk+L/olkt3QvZVKy62ADtnx81aAqg5AkzJ0LZ5wBhx4K778Pt94aJgb27Zvx5AFZNnxZRNIipcUUzWywu98eQzxbVeNaIJ9/Hobg/uUvYdLf5ZfD738PjRplOjIRySHZtJz7FqOypIotXRoSxf77w0MPwaBBYfb48OFKHiKSFVJ99qGlWuOyciWMHh0eUa1ZE/o3rrkG9t4705GJiGwm1RZIbm0ikgt+/BFuuw1atQqPrI47DmbPhvvuq1Ty0GgoEUmXikZhraLsRGHADu6ekZ7batcHsn49/PWvIWl88QUcc0zY0OnQQ1O6nEZDiUhZ0toH4u4N3b1RGa+GmUoe1Yo7TJwYlhnp2xf22ANefTUMz00xeYBGQ4lI+mhL23RzD0li6FCYPh0OOiisjtu7t3YBFJHYZNMoLEnFO+/A0UeH/o1vvglDc2fOhJNPVvIQkZwTawIxs4VmNsvMZpjZFs0GM+thZiui4zNK9l2vdubMCUuOHHZY6BgfMwY++SSsX1WrVqajExFJSTr6Mo50928qOD7V3U9KQxzpt3BhGIL74IPQsCGMHAmDB0MDTeQXkdynR1hJqtTw2K+/hksuCZMA//73MHt8wQL405+UPESk2oi1E93M/gN8RxgOfLe7jy91vAfwBFAMfAUMcfc5ZVynH9APYO+99+64aNGi2GIuT1LDY1esgFtugdtvD/M6fvMbGDYM9twzvcGKiJSSi53o3dy9A3A8MNDMupc6/j6wj7u3A8YCk8u6iLuPd/d8d89v2rRpvBGXo8LhsWvWhO1jW7QII6pOOgk++gjuvlvJQ0SqrbQN4zWz4cD37l5YwTkLgfyK+kyyahjvunUwYQJcey189RUcf3xIIO3bZzoyEZHN5FQLxMzqm1nDkvdAT2B2qXN2NwvjV82sUxTPsrhiqjIbN8Kjj4Y5HP37Q/Pm8Prr8PzzSh4iUmPEOQprN2BSlB9qA4+4+4tm1h/A3YuA04GLzWw98ANwlmfzzEZ3eOGFMAnwww/hkEPgmWfgxBM1j0NEapzYWiDuvsDd20Wvg919VFReFCUP3H1cdKydux/m7m/FFc82e/NNOOKIkCxWrQpLrM+YEfo7cjh5bMvii1q4UaRm01ImW/Phh3D11fDcc7D77lBQENauqls3fTHEaFsWX9TCjSK5I6f6QHLe/Plw9tmhT+PNN+GGG2DePBgwoNokD9i2xRe1cKNIzaYWSGmLF4cZ4/fcA3XqwKWXwhVXwM47x3dPEZGYxdEC0bLsJb77Dm66KaxTtW4d9OsXZo7vsUemIxMRyUpKIKtXh6Rx881hJvmvfhU2d2rVKtORiYhktZqbQNauDY+pRo4Ma1f98pdw3XXQtm2mIxMRyQk1L4Fs2BAmAQ4bBv/5D3TvDk8+CV27ZjoyEZGcUrMSyOuvh1VyZ80Ko6teeCFs7pTD8zhERDKlZiWQ778Pq+T+7W9wxhmwnUYxi4ikqmYlkBNOCC2O2jWr2iIicahZ/wQ3U/IQEakiNSuBiIhIlVECERGRlCiBiIhISpRAREQkJUogIiKSEiUQERFJiRKIiIikRAlERERSogQiIiIpUQIREZGUKIGIiEhKlEBERCQlsSYQM1toZrPMbIaZTSvjuJnZGDObZ2YzzaxDnPGIiEjVScfStEe6+zflHDse2C96dQbuin6KiEiWy/QjrN7AAx68DexkZntkOCYREUlC3AnEgZfNbLqZ9Svj+J7AFwmfi6OyzZhZPzObZmbTli5dGlOoIiJSGXEnkG7u3oHwqGqgmXUvdbyszch9iwL38e6e7+75TZs2jSNOERGppFgTiLt/Ff1cAkwCOpU6pRjYK+FzM+CrOGMSEZGqEVsCMbP6Ztaw5D3QE5hd6rSngXOj0ViHASvcfXFcMYmISNWJcxTWbsAkMyu5zyPu/qKZ9Qdw9yLgeeAEYB6wBrggxnhERKQKxZZA3H0B0K6M8qKE9w4MjCsGERGJT6aH8YqISI5Kx0RCEclR69ato7i4mB9//DHToUiS6tWrR7NmzahTp07s91ICEZFyFRcX07BhQ5o3b07UnylZzN1ZtmwZxcXFtGjRIvb76RGWiJTrxx9/pEmTJkoeOcLMaNKkSdpajEogIlIhJY/cks4/LyUQERFJiRKIiGS1Bg0abFFWVFTEAw88EOt9x4wZQ+vWrTn77LM3K3/ttddo3LgxeXl5tG3blmOOOYYlS5ZU+vrLly/nzjvvLPd4rVq1yMvL2/RauHAh06ZNY9CgQZvieOuttyp936qkTnQRyTn9+/eP/R533nknL7zwQpmd0YcffjjPPvssAFdddRV33HEHI0aMqNT1SxLIgAEDyjy+ww47MGPGjM3KmjdvTn5+PhASSIMGDejatWul7o4cgJsAAAy2SURBVFuVlEBEJDmDB0Opv9C2WV4e3H57pb82fPhwGjRowJAhQ+jRowedO3dmypQpLF++nPvuu4/DDz+cDRs2cOWVV/Laa6/x008/MXDgQC666KItrjV69GgmTJgAQN++fRk8eDD9+/dnwYIF9OrViwsvvJDLLruszDjcnVWrVrHvvvsCsHr1ai655BJmzZrF+vXrGT58OL1792bOnDlccMEFrF27lo0bN/LEE09QUFDA/PnzycvL49hjj+WWW27Zar1fe+01CgsLGTduHEVFRdSqVYuHHnqIsWPHcvjhh1f6v+O2UgIRkZy3fv163n33XZ5//nlGjBjBP/7xD+677z4aN27Me++9x08//US3bt3o2bPnZi2K6dOnc//99/POO+/g7nTu3JkjjjiCoqIiXnzxRaZMmcKuu+66xf2mTp1KXl4ey5Yto379+lx//fUAjBo1iqOOOooJEyawfPlyOnXqxDHHHENRURGXXnopZ599NmvXrmXDhg3ceOONzJ49e4tWRokffviBvLw8AFq0aMGkSZM2HWvevDn9+/fflEQzRQlERJKTQkshXU499VQAOnbsyMKFCwF4+eWXmTlzJhMnTgRgxYoVfPbZZ5slkDfeeINTTjmF+vXrb7rO1KlTad++fYX3S3yEddNNN3HFFVdQVFTEyy+/zNNPP01hYSEQhkF//vnndOnShVGjRlFcXMypp57Kfvvtt9U6lfUIK9sogYhIztt+++2B0PG8fv16IDxeGjt2LMcdd1y53wvL8W2bXr16cdppp2263hNPPMEBBxyw2TmtW7emc+fOPPfccxx33HHce++9tGzZcpvvnWk1ahTWyJEjady4MSNHjsx0KCISs+OOO4677rqLdevWAfDpp5+yevXqzc7p3r07kydPZs2aNaxevZpJkyZVui/hjTfeoFWrVpvuOXbs2E2J6YMPPgBgwYIFtGzZkkGDBtGrVy9mzpxJw4YNWbVqVcr129bvV4UalUAKCwtZuXLlpualiGS/NWvW0KxZs02v0aNHJ/W9vn37ctBBB9GhQwfatGnDRRddtKl1UqJDhw6cf/75dOrUic6dO9O3b9+tPr6C//WBtGvXjgcffJBbb70VgIKCAtatW0fbtm1p06YNBQUFADz22GO0adOGvLw85s6dy7nnnkuTJk3o1q0bbdq04Q9/+EMl/6vAL3/5SyZNmkReXh5Tp06t9PerglVFEy6d8vPzfdq0aSl9d+TIkRQWFjJkyJBNf7AiUr6PP/6Y1q1bZzoMqaSy/tzMbLq751flfWpUH0hBQYESh4hIFalRj7BERKTqKIGISIVy7TF3TZfOPy8lEBEpV7169Vi2bJmSSI4o2Q+kXr16ablfjeoDEZHKadasGcXFxSxdujTToUiSSnYkTAclEBEpV506ddKys53kJj3CEhGRlCiBiIhISpRAREQkJTk3E93MlgKLMh1Hgl2BbzIdxDaqDnUA1SObVIc6QPWqR313b1qVF825BJJtzGxaVS8PkG7VoQ6gemST6lAHUD22Ro+wREQkJUogIiKSEiWQbTc+0wFUgepQB1A9skl1qAOoHhVSH4iIiKRELRAREUmJEoiIiKRECQQwswlmtsTMZieU7WJmr5jZZ9HPnaNyM7MxZjbPzGaaWYeE75wXnf+ZmZ2XUN7RzGZF3xljZhZDHfYysylm9rGZzTGzS3O0HvXM7F0z+zCqx4iovIWZvRPF9JiZ1Y3Kt48+z4uON0+41lVR+SdmdlxC+S+isnlmdmVV1yHhPrXM7AMzezaH67Aw+jOfYWbTorKc+p2K7rOTmU00s7nR/yNdcq0eZnZA9OdQ8lppZoMzWg93r/EvoDvQAZidUHYzcGX0/krgpuj9CcALgAGHAe9E5bsAC6KfO0fvd46OvQt0ib7zAnB8DHXYA+gQvW8IfAoclIP1MKBB9L4O8E4U39+Bs6LyIuDi6P0AoCh6fxbwWPT+IOBDYHugBTAfqBW95gMtgbrROQfF9Hv1e+AR4Nnocy7WYSGwa6mynPqdiu7zV6Bv9L4usFMu1iOhPrWA/wL7ZLIesVUw115AczZPIJ8Ae0Tv9wA+id7fDfQpfR7QB7g7ofzuqGwPYG5C+WbnxVifp4Bjc7kewI7A+0Bnwmzg2lF5F+Cl6P1LQJfofe3oPAOuAq5KuNZL0fc2fTcq3+y8Koy9GfAqcBTwbBRTTtUhuvZCtkwgOfU7BTQC/kM0aChX61Eq9p7Am5muhx5hlW83d18MEP38WVS+J/BFwnnFUVlF5cVllMcmegTSnvCv95yrR/ToZwawBHiF8K/t5e6+vox7b4o3Or4CaLKVepRVXtVuB64ANkafm5B7dQBw4GUzm25m/aKyXPudagksBe6PHinea2b1c7Aeic4CHo3eZ6weSiCVV9YzQU+hPBZm1gB4Ahjs7isrOrWMsqyoh7tvcPc8wr/iOwGtK7h31tXDzE4Clrj79MTiCu6bdXVI0M3dOwDHAwPNrHsF52ZrPWoTHlHf5e7tgdWERz3lydZ6ABD1nfUCHt/aqWWUVWk9lEDK97WZ7QEQ/VwSlRcDeyWc1wz4aivlzcoor3JmVoeQPB529yej4pyrRwl3Xw68Rnh+u5OZlWyAlnjvTfFGxxsD31L5+lWlbkAvM1sI/I3wGOv2HKsDAO7+VfRzCTCJkNBz7XeqGCh293eizxMJCSXX6lHieOB9d/86+py5esT5nC6XXmzZB3ILm3dM3Ry9P5HNO6bejcp3ITxn3Tl6/QfYJTr2XnRuScfUCTHEb8ADwO2lynOtHk2BnaL3OwBTgZMI/9pK7IAeEL0fyOYd0H+P3h/M5h3QCwgdj7Wj9y34Xwf0wTH+XvXgf53oOVUHoD7QMOH9W8Avcu13KrrPVOCA6P3wqA45V4/oXn8DLkj4nLF6xFLBXHsRniUuBtYRsvBvCM+gXwU+i36W/Ac24A7Cc/lZQH7CdS4E5kWvxD/gfGB29J1xlOrMq6I6/JzQ3JwJzIheJ+RgPdoCH0T1mA0Mi8pbEkaIzCP8Rbx9VF4v+jwvOt4y4VpXR7F+QsJokui/y6fRsatj/t3qwf8SSE7VIYr3w+g1p+Q+ufY7Fd0nD5gW/V5NJvzFmYv12BFYBjROKMtYPbSUiYiIpER9ICIikhIlEBERSYkSiIiIpEQJREREUqIEIiIiKVECkZxlZruZ2SNmtiBaauPfZnZKdKyHma2Ilq74xMz+Fc0QL/nucDP7MlrVdLaZ9Srj+ueb2dLonI/M7LfbGO/uZvY3M5sfXe95M9s/xWvda2YHRe+HbktcIqlSApGcFC0zPRn4l7u3dPeOhEl4iTNpp7p7e3c/ABgEjDOzoxOO3+ZhyZQzgAlmVtb/D49F5/QArjez3ZKMr3apz0aYyf2au7dy94OAoUBS1yvN3fu6+0fRRyUQyQglEMlVRwFr3b2opMDdF7n72LJOdvcZwLXA78o49jGwHti1vJt5WMpjPrCPmdW3sIfMe1ELpzdsarE8bmbPAC+XusSRwLpS8c5w96lm1sDMXjWz96O9GEqu19zC/hV/jfZzmGhmO0bHXjOzfDO7EdghaiU9HB2bHLXI5iQsgChS5ZRAJFcdTFjqvTLeBw4sXWhmnQmr5i4t74tm1pIwM3seYXb4P939UEJiuCVa3RXCUuvnuftRpS7RBphO2X4ETvGwaOGRwK0JG/kcAIx397bASsLeIZu4+5XAD+6e5+5nR8UXRi2yfGCQmTUpr14i26L21k8RyX5mdgdhOZe10V/sZZ5W6vNlZnYOsAo408teluFMM/s58BNwkbt/a2Y9CYslDonOqQfsHb1/xd2/rWz4hMdj3QmJbE/+92jrC3d/M3r/EOFRXOFWrjeopC+IsGjefoTlL0SqlBKI5Ko5wGklH9x9oJntSljvqDztgY8TPt/m7lv7y/gxdy/92MuA09z9k80KQ0tmdQXxnl7OsbMJi0h2dPd10Sq+9aJjpZNahWsPmVkP4BjCBlVrzOy1hGuJVCk9wpJc9U+gnpldnFC2Y3knm1lboICwuNy2egm4pOQxk5m1T+I7/wS2TxzJZWaHmtkRhOXbl0TJ40jCNqUl9jazLtH7PsAbZVx7XbSUP9G1vouSx4GElVVFYqEEIjkpetx0MnCEmf3HzN4l7Hv9x4TTDi8ZxktIHIPc/dUquP1Iwn7tM81sdvQ5mXhPAY6NhvHOISwr/hXwMJBvZtMIrZG5CV/9GDjPzGYSluG+q4zLj49ieRh4EagdnT8SeDu1KopsnVbjFclSFrYmftbd22Q4FJEyqQUiIiIpUQtERERSohaIiIikRAlERERSogQiIiIpUQIREZGUKIGIiEhK/j8G/AaoD3QIJwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# plot with the line of best fit found by our model\n",
|
|
"\n",
|
|
"plt.plot(X, y_pred, 'r', label='Line of Best Fit')\n",
|
|
"plt.scatter(X, y, color='k', s=3.5)\n",
|
|
"plt.ylabel('Life Satisfaction')\n",
|
|
"plt.xlabel('GDP Per Capita')\n",
|
|
"plt.legend(loc='lower right')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'For our line of best fit, the slope is 4.082156611743397e-05 and the intercept is 5.027635740227981'"
|
|
]
|
|
},
|
|
"execution_count": 48,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"For our line of best fit, the slope is {} and the intercept is {}\".format(model.coef_[0][0], model.intercept_[0])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|