""" Test the hashing module. """ # Author: Gael Varoquaux # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import time import hashlib import sys import gc import io import collections import itertools import pickle import random from decimal import Decimal from joblib.hashing import hash from joblib.func_inspect import filter_args from joblib.memory import Memory from joblib.testing import raises, skipif, fixture, parametrize from joblib.test.common import np, with_numpy from joblib.my_exceptions import TransportableException from joblib._compat import PY3_OR_LATER try: # Python 2/Python 3 compat unicode('str') except NameError: unicode = lambda s: s ############################################################################### # Helper functions for the tests def time_func(func, *args): """ Time function func on *args. """ times = list() for _ in range(3): t1 = time.time() func(*args) times.append(time.time() - t1) return min(times) def relative_time(func1, func2, *args): """ Return the relative time between func1 and func2 applied on *args. """ time_func1 = time_func(func1, *args) time_func2 = time_func(func2, *args) relative_diff = 0.5 * (abs(time_func1 - time_func2) / (time_func1 + time_func2)) return relative_diff class Klass(object): def f(self, x): return x class KlassWithCachedMethod(object): def __init__(self, cachedir): mem = Memory(cachedir=cachedir) self.f = mem.cache(self.f) def f(self, x): return x ############################################################################### # Tests input_list = [1, 2, 1., 2., 1 + 1j, 2. + 1j, 'a', 'b', (1,), (1, 1,), [1, ], [1, 1, ], {1: 1}, {1: 2}, {2: 1}, None, gc.collect, [1, ].append, # Next 2 sets have unorderable elements in python 3. set(('a', 1)), set(('a', 1, ('a', 1))), # Next 2 dicts have unorderable type of keys in python 3. {'a': 1, 1: 2}, {'a': 1, 1: 2, 'd': {'a': 1}}] @parametrize('obj1', input_list) @parametrize('obj2', input_list) def test_trivial_hash(obj1, obj2): """Smoke test hash on various types.""" # Check that 2 objects have the same hash only if they are the same. are_hashes_equal = hash(obj1) == hash(obj2) are_objs_identical = obj1 is obj2 assert are_hashes_equal == are_objs_identical def test_hash_methods(): # Check that hashing instance methods works a = io.StringIO(unicode('a')) assert hash(a.flush) == hash(a.flush) a1 = collections.deque(range(10)) a2 = collections.deque(range(9)) assert hash(a1.extend) != hash(a2.extend) @fixture(scope='function') @with_numpy def three_np_arrays(): rnd = np.random.RandomState(0) arr1 = rnd.random_sample((10, 10)) arr2 = arr1.copy() arr3 = arr2.copy() arr3[0] += 1 return arr1, arr2, arr3 def test_hash_numpy_arrays(three_np_arrays): arr1, arr2, arr3 = three_np_arrays for obj1, obj2 in itertools.product(three_np_arrays, repeat=2): are_hashes_equal = hash(obj1) == hash(obj2) are_arrays_equal = np.all(obj1 == obj2) assert are_hashes_equal == are_arrays_equal assert hash(arr1) != hash(arr1.T) def test_hash_numpy_dict_of_arrays(three_np_arrays): arr1, arr2, arr3 = three_np_arrays d1 = {1: arr1, 2: arr2} d2 = {1: arr2, 2: arr1} d3 = {1: arr2, 2: arr3} assert hash(d1) == hash(d2) assert hash(d1) != hash(d3) @with_numpy @parametrize('dtype', ['datetime64[s]', 'timedelta64[D]']) def test_numpy_datetime_array(dtype): # memoryview is not supported for some dtypes e.g. datetime64 # see https://github.com/joblib/joblib/issues/188 for more details a_hash = hash(np.arange(10)) array = np.arange(0, 10, dtype=dtype) assert hash(array) != a_hash @with_numpy def test_hash_numpy_noncontiguous(): a = np.asarray(np.arange(6000).reshape((1000, 2, 3)), order='F')[:, :1, :] b = np.ascontiguousarray(a) assert hash(a) != hash(b) c = np.asfortranarray(a) assert hash(a) != hash(c) @with_numpy @parametrize('coerce_mmap', [True, False]) def test_hash_memmap(tmpdir, coerce_mmap): """Check that memmap and arrays hash identically if coerce_mmap is True.""" filename = tmpdir.join('memmap_temp').strpath try: m = np.memmap(filename, shape=(10, 10), mode='w+') a = np.asarray(m) are_hashes_equal = (hash(a, coerce_mmap=coerce_mmap) == hash(m, coerce_mmap=coerce_mmap)) assert are_hashes_equal == coerce_mmap finally: if 'm' in locals(): del m # Force a garbage-collection cycle, to be certain that the # object is delete, and we don't run in a problem under # Windows with a file handle still open. gc.collect() @with_numpy @skipif(sys.platform == 'win32', reason='This test is not stable under windows' ' for some reason') def test_hash_numpy_performance(): """ Check the performance of hashing numpy arrays: In [22]: a = np.random.random(1000000) In [23]: %timeit hashlib.md5(a).hexdigest() 100 loops, best of 3: 20.7 ms per loop In [24]: %timeit hashlib.md5(pickle.dumps(a, protocol=2)).hexdigest() 1 loops, best of 3: 73.1 ms per loop In [25]: %timeit hashlib.md5(cPickle.dumps(a, protocol=2)).hexdigest() 10 loops, best of 3: 53.9 ms per loop In [26]: %timeit hash(a) 100 loops, best of 3: 20.8 ms per loop """ rnd = np.random.RandomState(0) a = rnd.random_sample(1000000) if hasattr(np, 'getbuffer'): # Under python 3, there is no getbuffer getbuffer = np.getbuffer else: getbuffer = memoryview md5_hash = lambda x: hashlib.md5(getbuffer(x)).hexdigest() relative_diff = relative_time(md5_hash, hash, a) assert relative_diff < 0.3 # Check that hashing an tuple of 3 arrays takes approximately # 3 times as much as hashing one array time_hashlib = 3 * time_func(md5_hash, a) time_hash = time_func(hash, (a, a, a)) relative_diff = 0.5 * (abs(time_hash - time_hashlib) / (time_hash + time_hashlib)) assert relative_diff < 0.3 def test_bound_methods_hash(): """ Make sure that calling the same method on two different instances of the same class does resolve to the same hashes. """ a = Klass() b = Klass() assert (hash(filter_args(a.f, [], (1, ))) == hash(filter_args(b.f, [], (1, )))) def test_bound_cached_methods_hash(tmpdir): """ Make sure that calling the same _cached_ method on two different instances of the same class does resolve to the same hashes. """ a = KlassWithCachedMethod(tmpdir.strpath) b = KlassWithCachedMethod(tmpdir.strpath) assert (hash(filter_args(a.f.func, [], (1, ))) == hash(filter_args(b.f.func, [], (1, )))) @with_numpy def test_hash_object_dtype(): """ Make sure that ndarrays with dtype `object' hash correctly.""" a = np.array([np.arange(i) for i in range(6)], dtype=object) b = np.array([np.arange(i) for i in range(6)], dtype=object) assert hash(a) == hash(b) @with_numpy def test_numpy_scalar(): # Numpy scalars are built from compiled functions, and lead to # strange pickling paths explored, that can give hash collisions a = np.float64(2.0) b = np.float64(3.0) assert hash(a) != hash(b) def test_dict_hash(tmpdir): # Check that dictionaries hash consistently, eventhough the ordering # of the keys is not garanteed k = KlassWithCachedMethod(tmpdir.strpath) d = {'#s12069__c_maps.nii.gz': [33], '#s12158__c_maps.nii.gz': [33], '#s12258__c_maps.nii.gz': [33], '#s12277__c_maps.nii.gz': [33], '#s12300__c_maps.nii.gz': [33], '#s12401__c_maps.nii.gz': [33], '#s12430__c_maps.nii.gz': [33], '#s13817__c_maps.nii.gz': [33], '#s13903__c_maps.nii.gz': [33], '#s13916__c_maps.nii.gz': [33], '#s13981__c_maps.nii.gz': [33], '#s13982__c_maps.nii.gz': [33], '#s13983__c_maps.nii.gz': [33]} a = k.f(d) b = k.f(a) assert hash(a) == hash(b) def test_set_hash(tmpdir): # Check that sets hash consistently, even though their ordering # is not guaranteed k = KlassWithCachedMethod(tmpdir.strpath) s = set(['#s12069__c_maps.nii.gz', '#s12158__c_maps.nii.gz', '#s12258__c_maps.nii.gz', '#s12277__c_maps.nii.gz', '#s12300__c_maps.nii.gz', '#s12401__c_maps.nii.gz', '#s12430__c_maps.nii.gz', '#s13817__c_maps.nii.gz', '#s13903__c_maps.nii.gz', '#s13916__c_maps.nii.gz', '#s13981__c_maps.nii.gz', '#s13982__c_maps.nii.gz', '#s13983__c_maps.nii.gz']) a = k.f(s) b = k.f(a) assert hash(a) == hash(b) def test_set_decimal_hash(): # Check that sets containing decimals hash consistently, even though # ordering is not guaranteed assert (hash(set([Decimal(0), Decimal('NaN')])) == hash(set([Decimal('NaN'), Decimal(0)]))) def test_string(): # Test that we obtain the same hash for object owning several strings, # whatever the past of these strings (which are immutable in Python) string = 'foo' a = {string: 'bar'} b = {string: 'bar'} c = pickle.loads(pickle.dumps(b)) assert hash([a, b]) == hash([a, c]) @with_numpy def test_dtype(): # Test that we obtain the same hash for object owning several dtype, # whatever the past of these dtypes. Catter for cache invalidation with # complex dtype a = np.dtype([('f1', np.uint), ('f2', np.int32)]) b = a c = pickle.loads(pickle.dumps(a)) assert hash([a, c]) == hash([a, b]) @parametrize('to_hash,expected', [('This is a string to hash', {'py2': '80436ada343b0d79a99bfd8883a96e45', 'py3': '71b3f47df22cb19431d85d92d0b230b2'}), (u"C'est l\xe9t\xe9", {'py2': '2ff3a25200eb6219f468de2640913c2d', 'py3': '2d8d189e9b2b0b2e384d93c868c0e576'}), ((123456, 54321, -98765), {'py2': '50d81c80af05061ac4dcdc2d5edee6d6', 'py3': 'e205227dd82250871fa25aa0ec690aa3'}), ([random.Random(42).random() for _ in range(5)], {'py2': '1a36a691b2e2ba3a9df72de3dccf17ea', 'py3': 'a11ffad81f9682a7d901e6edc3d16c84'}), ([3, 'abc', None, TransportableException('foo', ValueError)], {'py2': 'adb6ba84990ee5e462dc138383f11802', 'py3': '994f663c64ba5e64b2a85ebe75287829'}), ({'abcde': 123, 'sadfas': [-9999, 2, 3]}, {'py2': 'fc9314a39ff75b829498380850447047', 'py3': 'aeda150553d4bb5c69f0e69d51b0e2ef'})]) def test_hashes_stay_the_same(to_hash, expected): # We want to make sure that hashes don't change with joblib # version. For end users, that would mean that they have to # regenerate their cache from scratch, which potentially means # lengthy recomputations. # Expected results have been generated with joblib 0.9.2 py_version_str = 'py3' if PY3_OR_LATER else 'py2' assert hash(to_hash) == expected[py_version_str] @with_numpy def test_hashes_are_different_between_c_and_fortran_contiguous_arrays(): # We want to be sure that the c-contiguous and f-contiguous versions of the # same array produce 2 different hashes. rng = np.random.RandomState(0) arr_c = rng.random_sample((10, 10)) arr_f = np.asfortranarray(arr_c) assert hash(arr_c) != hash(arr_f) @with_numpy def test_0d_array(): hash(np.array(0)) @with_numpy def test_0d_and_1d_array_hashing_is_different(): assert hash(np.array(0)) != hash(np.array([0])) @with_numpy def test_hashes_stay_the_same_with_numpy_objects(): # We want to make sure that hashes don't change with joblib # version. For end users, that would mean that they have to # regenerate their cache from scratch, which potentially means # lengthy recomputations. rng = np.random.RandomState(42) # Being explicit about dtypes in order to avoid # architecture-related differences. Also using 'f4' rather than # 'f8' for float arrays because 'f8' arrays generated by # rng.random.randn don't seem to be bit-identical on 32bit and # 64bit machines. to_hash_list = [ rng.randint(-1000, high=1000, size=50).astype('